
Monads and Interaction
Lecture 1

Tarmo Uustalu, Reykjavik University

MGS 2021, Sheffield, UK, 12–16 April 2021

This course

We will talk about functional computation with effects (“impure”
functional computation),
i.e., so functions are there not only to return values, but do other
things along the way (talk to the environment, “world”).

E.g., nondeterministic choice, input/output, manipulation of
(external) store.

The classic approach by Moggi is based on monads, refined by
Plotkin and Power (finitary monads = algebraic theories).

Here we add an explicit discussion of running such computations.

They are “helpless” alone, without an environment and a
communication protocol with it.

Today: a start on monads.

Prerequisites

Not sure what level you will find this course is.

Intermediate?! :-)

This is necessary:

basics of functional programming
categories, functors, natural transformations
Cartesian (closed) categories, coproducts
initial algebras, final coalgebras

This will help (it’s quite a bit to ask, but then none of this is
central):

adjunctions
ends, coends
(symmetric) monoidal (closed) categories

All examples work in Set, but almost all are more general.

Text in gray is additional information for those that have an
advanced background; it is not needed to follow the main material.

Warm-up

Some pictures without words

Z → Y Y → X
Z → X

W → V V → Z Z → Y Y → X
W → X

Y → 1 + 1 Y → Y

Y → (1 + 1)× Y

Y → Y + Y
Y → X Y → X

Y + Y → X
Y → X

Some pictures without words

Z → E + Y Y → E + X
Z → E + X

?

Z → ListY Y → ListX
Z → ListX

?

Z → ListY Y → ListX
Z → X

??

Z → E + Y Y → ListX

Z → List (E + X)
??

Some pictures without words

Z → E + Y

Y → E + X

E + Y → E + (E + X) E + (E + X)→ E + X
µ

E + Y → E + X
Z → E + X

Z → ListY

Y → ListX
ListY → List (ListX) List (ListX)→ ListX

µ

ListY → ListX
Z → ListX

Z → ListY

Y → ListX
ListY → List (ListX) List (ListX)→ ListX

µ

ListY → ListX
Z → ListX

X a monoid
ListX → X

Z → X

Monads and their Kleisli categories

Monads

A monad on a category C is given by a

a functor T : C → C,
a natural transformation η : IdC

.→ T (the unit),
a natural transformation µ : T · T .→ T (the multiplication)

such that

TX
TηX //

ηTX

��

T (TX)

µX

��
T (TX)

µX

// TX

T (T (TX))
TµX //

µTX

��

T (TX)

µX

��
T (TX)

µX

// TX

Here, IdC is the identity functor and · the composition of functors:
IdCX = X and (F · G)X = F (GX).

This definition says that monads are monoids in the (strict)
monoidal category ([C, C], IdC , ·).

FP intuition

C – types and functions

A “computation” is a process that can do various things (talk to the
“environment” to get help) and may eventually finish and return a
value.

(T , η, µ) –
a particular “notion” of computation
(closed under just returning and sequential composition)

X – values (of some type X)

TX – computations of values of type X

T (TX) – computations of computations of values type X

ηX : X → TX –
turns a value into the computation just returning this value

µX : T (TX)→ TX –
turns a computation of computations into their sequence

Exceptions monads

Suppose C has finite coproducts.

The exceptions monad for an object E (of exceptions) is:

TX = E + X

ηX = X
inr // E + X

= X
λ+
// 0 + X

?+id // E + X

µX = E + (E + X)
[inl,id] // E + X

= E + (E + X)
α+
// (E + E) + X

∇+id // E + X

(These η, µ are the only monad structure on this functor T .)

Computations here are of two forms:

inl e – a process that just raises some exception e
inr x – a process that just returns some value x

An alternative to monads: Kleisli triples

A more FP friendly definition is this.

A Kleisli triple (monad in extension form, no-iteration form) is given
by

an object mapping T : |C| → |C|,
a family of maps ηX : X → TX
indexed by X ∈ |C|,
a family of maps (−)?X ,Y : C(Y ,TX)→ C(TY ,TX)
indexed by X ,Y ∈ |C | (the Kleisli extension operation)

such that

k? ◦ ηY = k for k : Y → TX ,
η?X = idTX ,
(`? ◦ k)? = `? ◦ k? : TZ → TX for k : Z → TY , ` : Y → TX

Functoriality of T , naturality of η, (−)? are not required, but follow.

So there are only 3 equations instead of 7 for a monad.

FP intuition

k? : TY → TX for given k : Y → TX –

turns a computation of values of Y
into a computation of values of X

by replacing returning a value y of Y
with continuing as the computation k y of values of X

Exceptions Kleisli triple

Recall that the exceptions monad for E had

µX = E + (E + X)
[inl,id] // E + X

The exceptions Kleisli triple has

k? = E + Y
[inl,k] // E + X for k : Y → E + X

Monads = Kleisli triples

Monads and Kleisli triples with the same T : |C| → |C| and η are in
a bijection:

Given a monad, one obtains a Kleisli triple by

k? = TY
Tk // T (TX)

µX // TX for k : Y → TX

A Kleisli triple is turned into a monad by

Tf =

(
Y

f // X
ηX // TX

)?
: TY → TX for f : Y → X ,

µX =

(
TX

idTX // TX
)?

: T (TX)→ TX

The Yoneda lemma is the main ingredient here,

T (TX)→ TX

C(Y ,TX)→ C(TY ,TX) nat. in Y

but there is more going on.

Monads of Haskell = strong Kleisli triples

Haskell used to have a type class Monad like this:

class Monad t where

return :: x -> t x

(>>=) :: t y -> (y -> t x) -> t x

This class formalizes strong Kleisli triples.

Differently from a (non-strong) Kleisli triple, instead of a family of
maps

(−)?X ,Y : C(Y ,TX)→ C(TY ,TX) in Set

a strong Kleisli triple on a CCC (more generally a MCC) C has a
family of maps

iextX ,Y : Y ⇒ TX → TY ⇒ TX in C

In categories with unique strengths like Set, strong functors/monads
are “the same” as functors/monads.

In general categories, strong functors/monads are more special.

Exceptions monads in Haskell

Exceptions type transformers are instances of Monad.

class Monad t where

return :: x -> t x

(>>=) :: t y -> (y -> t x) -> t x

data Either e x = Left e | Right x

instance Monad (Either e) where

return x = Right x

Left e >>= _ = Left e

Right y >>= k = k y

Monads in Haskell ctd.

Since GHC 7.10, Monad is a subsclass of Applicative (= strong
lax monoidal endofunctors) and that in turn is a subclass of
Functor (= strong functors).

This is conceptually problematic since the most “natural” applicative
structure on a functor may differ from the one induced by the
“natural” monad structure.

It is misleading since only strong monads are canonically strong
applicatives.

It is problematic for software engineering since a type transformer
must be made an instance of Functor (and even Applicative)
before can be made an instance of Monad.

This defeats the whole point of using the Kleisli form.

Kleisli category of a monad

A monad T on a category C induces a category Kl(T) called the
Kleisli category of T defined by

an object is an object of C,
a map of from Y to X is a map of C from Y to TX ,

idT
X = X

ηX // TX ,

` ◦T k = Z
k // TY T` //

`?

55T (TX)
µX // TX

for k : Z →T Y , ` : Y →T X

From C there is an identity-on-objects functor J to Kl(T), defined
on maps by

Jf = Y
f // X

ηX // TX for f : Y → X

If η is mono, then J is faithful.

Kleisli adjunction

In the opposite direction of J : C → Kl(T), there is a functor
R : Kl(T)→ C defined by

RX = TX ,

Rk = TY
k? // TX for k : Y →T X .

R is right adjoint to J.

Kl(T)

R

��
a

C

J

CC
JY︷︸︸︷
Y →T X

Y → TX︸︷︷︸
RX

Importantly, R · J = T . Indeed,

R(JX) = TX ,
if f : Y → X , then R(Jf) = (ηX ◦ f)? = Tf .

Moreover, the unit of the adjunction is η.

FP intuition

C – types and (pure) functions

Kl(T) – types and impure functions;
instead of returning a value of X , they return a computation of
values of X

Jf – the function f turned into a (trivially) impure function

Reader monads

Suppose C is Cartesian closed.

The reader monad for an object S (of readable states) is:

TX = S ⇒ X

ηX : X → S ⇒ X
η x = λs. x

µX : S ⇒ S ⇒ X → S ⇒ X
µ f = λs. f s s

(These η, µ are the only monad structure on this T .)

This example generalizes to any monoidal closed category with a
given comonoid object.

In a CCC, any object S comes with a unique comonoid structure
given by !S : S → 1, ∆S : S → S × S .

Writer monads

Suppose C has finite products.

The writer monad for a monoid object (P, o,⊕) (of updates, trivial
update, composition of updates) is:

TX = P × X

ηX : X → P × X
η x = (o, x)

µX : P × (P × X)→ P × X
µ (p, (p′, x)) = (p ⊕ p′, x)

(Monad structures η, µ on this functor T are in a bijection with
monoid structures o, ⊕ on the object P.)

E.g,. we can take P = Nat, o = 0, ⊕ = +.

This example generalizes to any monoidal category with a given
monoid object.

It then subsumes the exceptions monads example.
There, C is coCartesian monoidal and any object E carries a unique
monoid structure ?E : 0→ E and ∇E : E + E → E .

State monads

Suppose C is Cartesian closed.

The state monad for an object S (of readable/overwritable states) is
this:

T X = S ⇒ S × X

ηX : X → S ⇒ S × X
η x = λs. (s, x)

µX : S ⇒ S × (S ⇒ S × X)→ S ⇒ S × X
µ f = λs. let (s ′, g) = f s in g s ′

This example generalizes to any monoidal closed category.

List monads

Suppose C is distributive, has list objects.

This the ordinary list monad
(for a “notion” of nondeterministic computation where any “little”
choices it makes to reach outcomes are not recorded, but the
“left-to-right” order and multiplicity of the outcomes is):

TX = ListX ,
η x = [x],
µ xss = concat xss.

It is not the only list monad. Here is another.

TX = ListX ,
η x = [x],

µ xss =

{
[] if exists null xss
concat xss otherwise

In fact, there are infinitely many list monads, some very crazy.

Free algebras monad of a functor

Suppose C has coproducts and the relevant initial algebras.

This monad delivers (carriers of) free algebras of a functor F :

TX = µZ .X + F Z (TX ∼=µ X + F (TX))
(F -branching trees with X -labelled leaves)

η x = in (inl x)
(turns a value into a tree that is just a leaf)

µ (in (inl t)) = t
µ (in (inr tts)) = in (inr (F µ tts))

(flattens a tree with leaves labelled with trees into a tree)

The exceptions monad arises as a special case FX = E .

For FX = X × X , this specializes to TX = µZ .X + Z × Z
(binary leaf-labelled trees)
(for a “notion” of nondeterministic computation where the
computation makes binary choices and they are all recorded)

Continuation monad

Suppose C is Cartesian closed.

The continuation monad for an object R (of answers) is

TX = (X ⇒ R)⇒ R

ηX : X → (X ⇒ R)⇒ R
η x = λk. k x

µX : (Y ⇒ R)⇒ R → (X ⇒ R)⇒ R
µ f = λk. f (λg . g k)

This example generalizes to any symmetric closed or biclosed
category.

Suppose C has small products (and is locally small).

A variation of the continuation monad (the external continuation
monad) is

TX = C(X ,R) t R

(I t R is the product of I many copies of R, i.e.,
∏

i∈I R,
for I a set and R ∈ |C|.)
For C = Set, the two monads are isomorphic.

Monads from adjunctions

Any adjunction gives rise to a monad.

Given an adjunction

D

R

��
a

C

L

@@
LY → X

Y → RX

the endofunctor T = R · L on C carries a monad structure with η the
unit of the adjunction.

Adjunctions so related to a monad are called its resolutions.

Resolutions of a monad form a category.

The Kleisli adjunction is a resolution. It is the initial object of this
category.

State and continuation monads

The state monads for S arise from the adjunction

C

S⇒−
��

a

C

−×S

@@
X × S → Y

X → S ⇒ Y

C

C(S,−)
��

a

Set

−•S

@@
I • S → Y

I → C(S ,Y)

(I • S is the coproduct of I many copies of S , i.e.,
∐

i∈I S ,
for I a set and S ∈ |C|.)

The continuation monads for R arise from the adjunctions

Cop

−⇒R

��
a

C

(−⇒R)op

@@ X ⇒ R ← Y

Y → X ⇒ R

X → Y ⇒ R

Setop

−tR

��
a

C

(C(−,R))op

@@ C(X ,R)← I

I → C(X ,R)

X → I t R

