Monads and Interaction Lecture 2

Tarmo Uustalu, Reykjavik University

MGS 2021, Sheffield, UK, 12-16 April 2021

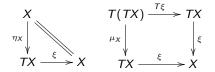
(ロ)、(型)、(E)、(E)、 E) の(の)

Monad algebras

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Monad algebras

• An *algebra* of a monad (T, η, μ) is an object X with a map $\xi : TX \to X$ such that



• A map between two algebras (Y, χ) and (X, ξ) is a map h such that

• The algebras of the monad and maps between them form a category Alg(T), called the *Eilenberg-Moore category*, with an obvious forgetful functor $U : Alg(T) \rightarrow C$.

Kleisli triple algebras

- A variation of algebras fitting more smoothly with Kleisli triples is this.
- A algebra of a Kleisli triple $(T, \eta, (-)^*)$ (a Mendler-style algebra, an algebra in extension form, no-iteration form) is given by
 - an object X,

• a family of maps $(-)_Y^+ : \mathcal{C}(Y, X) \to \mathcal{C}(TY, X)$ indexed by $Y \in |\mathcal{C}|$ such that

• if
$$f: Y \to X$$
, then $f^+ \circ \eta_Y = f$

• if $k: Z \to TY$, $f: Y \to X$, then $(f^+ \circ k)^+ = f^+ \circ k^* : TZ \to X$

• Naturality of $(-)^+$ is not required, it follows.

• There's also the correct concept of Kleisli triple algebra map. (Definition omitted.)

Monad algebras = Kleisli triple algebras

- Algebras of monads/Kleisli triples with the same carrier X are in a bijection.
- This is again crucially by the Yoneda lemma.

$$rac{TX o X}{\mathcal{C}(Y,X) o \mathcal{C}(TY,X) ext{ nat. in } Y}$$

- From ξ , one defines $(-)^+$ by $f^+ = \xi \circ Tf$.
- From $(-)^+$, one defines ξ by $\xi = id_X^+$.

• The respective categories are isomorphic.

FP intuition

• An algebra of a monad T with carrier X is a "handler" of computations of values of the type X (and only of that type!).

• $\xi : TX \rightarrow X -$

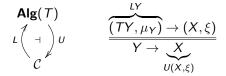
a value of X can be extracted from a computation of values of X

•
$$(-)^+_Y : \mathcal{C}(Y, X) \to \mathcal{C}(TY, X) -$$

given a way $f : Y \to X$ to "observe" values of Y as values of X, $f^+ : TY \to X$ is a way of observing computations of values of Y

Eilenberg-Moore adjunction

- In the opposite direction of $U : Alg(T) \to C$ there is a functor $L : C \to Alg(T)$ defined by
 - $LX = (TX, \mu_X),$ • $Lf = Tf : (TY, \mu_Y) \rightarrow (TX, \mu_X)$ for $f : Y \rightarrow X.$
- L is left adjoint to U.



- This says that (TX, μ_X) is an algebra of the monad T, moreover, it is the free one.
- $U \cdot L = T$. Indeed,
 - $U(LX) = U(TX, \mu_X) = TX$,
 - if $f: Y \to X$, then U(Lf) = U(Tf) = Tf.
- The unit of the adjunction is η .
- The E-M resolution of a monad is its final resolution.

Algebras of exceptions monads

- Algebras of the exceptions monad TX = E + X are (by definition) objects X with a map ξ : E + X → X subject to 2 equations.
- They are in a bijection with pairs of an object X and map $E \rightarrow X$.
- The E-M category of this monad is isomorphic to the coslice category E/\mathcal{C} .

- [FP intuition] These are handlers for exceptional computations!
- To able to extract a value from any given exceptional computation, you must know how to deal with the exception case.

Algebras of reader monads

Algebras of the reader monad TX = S ⇒ X are (by definition) objects X with a map get : S ⇒ X → X such that

•
$$get(\lambda s. x) = \lambda$$

• $get(\lambda s. get(\lambda s'. f s s')) = get(\lambda s. f s s)$

Algebras of state monads

- The E-M category of the state monad $TX = S \Rightarrow S \times X$ is isomorphic to the category of mnemoids.
- An algebra of this monad is an object X with a map $getput: S \Rightarrow S \times X \rightarrow X$ such that

• A mnemoid is an object X with maps $get : S \Rightarrow X \rightarrow X$ and $put : S \times X \rightarrow X$ such that

- From ξ , one constructs get, put by get $f = \xi (\lambda s. (s, f s))$, put $(s, x) = \xi (\lambda_{-}, (s, x))$.
- From get, put, one obtains ξ by $\xi f = get(\lambda s. put(f s))$.

Algebras of list monads

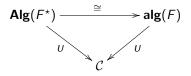
- The E-M category of the standard list monad is isomorphic to that of monoids,
 - i.e., objects X with maps $1 \rightarrow X$ and $X \times X \rightarrow X$ satisfying left and right unitality and associativity.
- It is therefore also called the *free monoids monad*.

• The E-M category of the alternative list monad is in a bijection with semigroups with zero.

 A semigroup with zero is an object X with maps 1 → X and X × X → X satisfying left and right zeroness and associativity.

Algebras of free functor-algebras monads

 The E-M category Alg(F*) of the monad F* of free algebras of a functor F is isomorphic to the category alg(F) of algebras of F



- For $FX = X \times X$, algebras with carrier X of the monad F^* are maps $\mu Z. X + Z \times Z \rightarrow X$ subject to two equations.
- They are in bijection with algebras with carrier X of the functor F, which are maps X × X → X subject to no conditions (magmas).

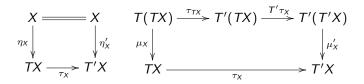
• A monad with this property is said to be *algebraically free* on *F*.

Monad maps

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Monad maps

• A monad map between monads T, T' on a category C is a natural transformation $\tau : T \xrightarrow{\cdot} T'$ satisfying



• Monads on C and maps between them form a category **Monad**(C).

• **Monad**(C) is the category of monoids in the (strict) monoidal category ([C, C], Id_C, ·).

Kleisli triple maps

• A map between two Kleisli triples T, T' is a family of maps $\tau_X : TX \to T'X$ indexed by $X \in |C|$ such that

•
$$\tau_X \circ \eta_X = \eta'_X$$

• if
$$k: X \to TY$$
, then $\tau_Y \circ k^* = (\tau_Y \circ k)^{*'} \circ \tau_X$.

- Naturality of τ is not required, but it follows.
- Kleisli triples on C and maps between them form a category isomorphic to Monad(C).

Maps between exceptions, reader, writer monads

- Monad maps between the exception monads for sets E, E' are in a bijection with pairs of maps $1 \rightarrow E' + 1$ and $E \rightarrow E'$.
- Monad maps between the reader monads for sets *S*, *S'* are in a bijection with maps between *S'*, *S*.
- Monad maps between the writer monads for monoids (P, o, ⊕) and (P', o', ⊕') are in a bijection with homomorphisms between these monoids.

Maps between state monads

- The monad maps between the state monads for S and S₀ are in a bijection with (very well-behaved) lenses.
- These are pairs of maps $coget: S_0 \rightarrow S$, $coput: S_0 \times S \rightarrow S_0$ such that

- *s*₀ = *coput* (*s*₀, *coget s*₀)),
- *coget* (*coput* (*s*₀, *s*)) = *s*,
- coput (coput (s₀, s), s') = coput (s₀, s').

Free functor-algebras monads are free

• The monad F^* of free algebras of a functor F (the algebraically-free monad on F), if it exists, is the free monad on F.

$$\begin{array}{c} \mathsf{Monad}(\mathcal{C}) \\ (-)^{\star} \left(\begin{array}{c} \dashv \\ \end{array} \right) u \qquad \qquad \frac{F^{\star} \to R}{F \to UR} \\ [\mathcal{C}, \mathcal{C}] \end{array}$$

- (Use the full subcategory of $[\mathcal{C},\mathcal{C}]$ of those functors for which $(-)^{\star}$ exists.)
- If a monad T is free on F, it need not be algebraically-free on F.
- A monad T is free on F iff $T \cong \mu H$. Id $+ F \cdot H$.
- It is algebraically free iff TX ≅ μZ.X + F(TX). This is generally a stronger condition.

Maps to continuation monads

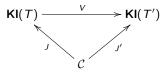
- Let $xCnt^R$ be the external continuation monad for R($xCnt^R X = C(X, R) \oplus R$).
- Monad maps between an arbitrary monad T and the monad xCnt^R are in a bijection with algebras of T with carrier R.
- Yoneda strikes again. :-)

$$\frac{TR \to R}{\mathcal{C}(X, R) \to \mathcal{C}(TX, R) \text{ nat. in } X}$$
$$\overline{TX \to \mathcal{C}(X, R) \pitchfork R \text{ nat. in } X}$$

- Let Cnt^R be the continuation monad for R, which is strong.
- Strong monad maps between an arbitrary strong monad T and Cnt^R are in a bijection with algebras T with carrier R.

Monad maps vs. functors between Kleisli categories

• There is a bijection between monad maps $\tau : T \rightarrow T'$ and functors $V : \mathbf{KI}(T) \rightarrow \mathbf{KI}(T')$ such that



• This is defined by

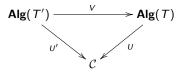
•
$$VX = X$$
,
• $Vk = Y \xrightarrow{k} TX \xrightarrow{\tau_X} T'X$ for $k : Y \to TX$

and

•
$$\tau_X = V(TX \xrightarrow{\operatorname{id}_{TX}} {}^TX) : TX \to {}^{T'}X.$$

Monad maps vs. functors between E-M categories

• There is a bijection between monad maps $\tau : T \rightarrow T'$ and functors $V : \operatorname{Alg}(T') \rightarrow \operatorname{Alg}(T)$ such that



(Note the reversed direction.)

This is defined by

•
$$V(X,\xi) = (X, TX \xrightarrow{\tau_X} T'X \xrightarrow{\xi} X),$$

• $Vh = h : (Y, \chi \circ \tau_Y) \to (X, \xi \circ \tau_X) \text{ for } h : (Y, \chi) \to (X, \xi)$

and

•
$$\tau_X = \text{let} (T'X, \zeta) = V(T'X, \mu'_X) \text{ in } \zeta \circ T\eta'_X.$$