Monads and interaction:
 Lecture 4

Tarmo Uustalu

MGS 2021, Sheffield, UK, 12-16 Apr. 2021

Monad-comonad interaction laws

Effects happen in interaction

- To run,
an effectful (effect-requesting) program behaving as a computation
needs to interact with
a environment
that an effect-providing (coeffectful) machine behaves as
- E.g.,
- a nondeterministic program needs a machine making choices;
- a stateful program needs a machine coherently responding to fetch and store commands.

Monad-comonad interaction laws

- Let \mathcal{C} be a Cartesian category. (Symmetric monoidal works too.)
- A monad-comonad interaction law is given by a monad (T, η, μ) and a comonad (D, ε, δ) and a nat. transf. ψ typed

$$
\psi_{X, Y}: T X \times D Y \rightarrow X \times Y
$$

such that

- Legend:
X - values, $T X$ - computations
Y - states, $D Y$ - environments (incl an initial state)

Reader monads

- $T X=S \Rightarrow X$ (the reader monad),
$D Y=S_{0} \times Y$ (the coreader comonad)
for some S_{0}, S and $c: S_{0} \rightarrow S$
- $\psi\left(f,\left(s_{0}, y\right)\right)=\left(f\left(c s_{0}\right), y\right)$
- Legend:
X - values, S - "views" of stores (data states),
Y - (control) states, S_{0} - stores (data states)

State monads

- $T X=S \Rightarrow(S \times X)$ (the state monad),
$D Y=S_{0} \times\left(S_{0} \Rightarrow Y\right)$ (the costate comonad)
for some $S_{0}, S, c: S_{0} \rightarrow S$ and $d: S_{0} \times S \rightarrow S_{0}$ forming a (very well-behaved) lens
- $\psi\left(f,\left(s_{0}, g\right)\right)=$ let $\left(s^{\prime}, x\right)=f\left(c s_{0}\right)$ in $\left(x, g\left(d\left(s_{0}, s^{\prime}\right)\right)\right)$
- Legend:
X - values, S - "views" of stores (data states),
Y - (control) states, S_{0} - stores (data states)

Free functor-algebras monads (free monads)

- Free monad for intensional nondeterminism:
- $T X=\mu Z . X+Z \times Z$, $D Y=\nu W . Y \times(W+W)$ $\psi_{X, Y}: T X \times D Y \rightarrow X \times Y$
$\psi(\operatorname{in}(\operatorname{inl} x), e)=(x$, fst $($ out $e))$
$\psi\left(\operatorname{in}\left(\operatorname{inr}\left(c_{0}, c_{1}\right)\right), e\right)=$ case snd (out e) of $\left\{\begin{array}{l}\text { inl } e^{\prime} \mapsto \psi\left(c_{0}, e^{\prime}\right) \\ \operatorname{inr} e^{\prime} \mapsto \psi\left(c_{1}, e^{\prime}\right)\end{array}\right.$
- Free monad for intensional store manipulation:
- $T X=\mu Z . X+(S \Rightarrow Z)+(S \times Z)$,
$D Y=\nu W . Y \times(S \times W) \times(S \Rightarrow W)$
$\psi_{X, Y}: T X \times D Y \rightarrow X \times Y$
$\psi(\operatorname{in}(\operatorname{inl} x), e)=(x$, fst $($ out $e))$
$\psi(\operatorname{in}(\operatorname{inr}(\operatorname{inl} f)), e)=$ let $\left(s, e^{\prime}\right)=\mathrm{fst}(\operatorname{snd}($ out $e))$ in $\psi\left(f s, e^{\prime}\right)$
$\psi(\operatorname{in}(\operatorname{inr}(\operatorname{inr}(s, c))), e)=\psi(c, \operatorname{snd}(\operatorname{snd}($ out $e)) s)$

Monad-comonad interaction laws are monoids

- A functor-functor interaction law is given by two functors $F, G: \mathcal{C} \rightarrow \mathcal{C}$ and a family of maps

$$
\phi_{X, Y}: F X \times G Y \rightarrow X \times Y
$$

natural in X, Y.

- A functor-functor interaction law map between $(F, G, \phi),\left(F^{\prime}, G^{\prime}, \phi^{\prime}\right)$ is given by nat. transfs. $f: F \rightarrow F^{\prime}, g: G^{\prime} \rightarrow G$ such that

- Functor-functor interaction laws form a category with a composition-based monoidal structure.
- These categories are isomorphic:
- monad-comonad interaction laws;
- monoid objects of the category of functor-functor interaction laws.

Some degeneracy thms for func-func int laws

- Assume \mathcal{C} is extensive ("has well-behaved coproducts").
- If F has a nullary operation, i.e., a family of maps

$$
c_{X}: 1 \rightarrow F X
$$

natural in X (eg, $F=$ Maybe)
or a binary commutative operation, i.e., a family of maps

$$
c_{X}: X \times X \rightarrow F X
$$

natural in X such that

(eg, $F=\mathcal{M}_{\text {fin }}^{+}$) and F interacts with G, then $G Y \cong 0$.

A degeneracy thm for mnd-cmnd int laws

- If T has a binary associative operation, ie a family of maps $c_{X}: X \times X \rightarrow T X$ natural in X such that

where

$$
\begin{aligned}
& \ell_{X}=(X \times X) \times x \xrightarrow{c_{X} \times \eta_{X}} T X \times T X \xrightarrow{c_{T X}} T T X \xrightarrow{\mu_{X}} T X \\
& r_{X}=X \times(X \times X) \xrightarrow{\eta_{X} \times c_{X}} T X \times T X \xrightarrow{c_{T X}} T T X \xrightarrow{\mu_{X}} T X
\end{aligned}
$$

(eg, $T=$ List $^{+}$), then any int law ψ of T and D obeys

Residual interaction laws

- Given a monad $\left(R, \eta^{R}, \mu^{R}\right)$ on \mathcal{C}.
- Eg, $R=$ Maybe, \mathcal{M}^{+}or \mathcal{M}.
- A residual functor-functor interaction law is given by two functors $F, G: \mathcal{C} \rightarrow \mathcal{C}$ and a family of maps

$$
\phi_{X, Y}: F X \times G Y \rightarrow R(X \times Y)
$$

natural in X, Y.

Residual interaction laws ctd

- A residual monad-comonad interaction law is given by a monad (T, η, μ), a comonad (D, ε, δ) and a family of maps

$$
\psi_{X, Y}: T X \times D Y \rightarrow R(X \times Y)
$$

natural in X, Y such that

- R-residual functor-functor interaction laws form a monoidal category with R-residual monad-comonad interaction laws as monoids.

Duals

Duals

- Given a functor/monad/comonad, is there a "greatest" functor/comonad/monad interacting with it?

- The same question makes sense in the presense of a residual monad R.

Dual of a functor

- Assume again that \mathcal{C} is Cartesian closed (or symm monoidal closed).
- For a functor $G: \mathcal{C} \rightarrow \mathcal{C}$, its dual is the functor $G^{\circ}: \mathcal{C} \rightarrow \mathcal{C}$ is

$$
G^{\circ} X=\int_{Y} G Y \Rightarrow(X \times Y)
$$

(if this end exists).

- $(-)^{\circ}$ is a functor $[\mathcal{C}, \mathcal{C}]^{\text {op }} \rightarrow[\mathcal{C}, \mathcal{C}]$ (if all functors $\mathcal{C} \rightarrow \mathcal{C}$ are dualizable; if not, restrict to some full subcategory of $[\mathcal{C}, \mathcal{C}]$ closed under dualization).
- $G^{\circ}=G \rightarrow$ Id where $G \rightarrow(-)$ is the right adjoint of $(-) \star G$ and $F \star G$ is the Day convolution of F and G.

Dual of a functor ctd

- The dual G° is the "greatest" functor interacting with G.
- These categories are isomorphic:
- functor-functor interaction laws;
- pairs of functors F, G with nat. transfs. $F \rightarrow G^{\circ}$;
- pairs of functors F, G with nat. transfs. $G \rightarrow F^{\circ}$.

$$
\frac{F X \times G Y \rightarrow X \times Y \text { nat in } X, Y}{\overline{F X \rightarrow \underbrace{\int_{Y} G Y \Rightarrow(X \times Y)}_{G^{\circ} X} \text { nat in } X}}
$$

Some examples of dual

- For $G Y=0$, we have $G^{\circ} X \cong 1$ and, for $G Y=G_{0} Y+G_{1} Y$, we have $G^{\circ} X \cong G_{0}^{\circ} X \times G_{1}^{\circ} X$.
- For $G Y=1$, we have $G^{\circ} X \cong 0$.
- For $G Y=A \times G^{\prime} Y$, we have $G^{\circ} X \cong A \Rightarrow G^{\circ} X$.
- For $G Y=A \Rightarrow Y$, we have $G^{\circ} X \cong A \times X$.
- For $G Y=A \Rightarrow G^{\prime} Y$, we only have $G^{\circ} X \leftarrow A \times G^{\circ} X$.
- $\mathrm{Id}^{\circ} \cong \mathrm{Id}$.
- But we only have $\left(G_{0} \cdot G_{1}\right)^{\circ} \leftarrow G_{0}^{\circ} \cdot G_{1}^{\circ}$.
- For any G with a nullary or a binary commutative operation, we have $G^{\circ} X \cong 0$.

Dual of a comonad / Sweedler dual a monad

- The dual D° of a comonad D is a monad.
- This is because $(-)^{\circ}:[\mathcal{C}, \mathcal{C}]^{\text {op }} \rightarrow[\mathcal{C}, \mathcal{C}]$ is lax monoidal, so send monoids to monoids.
- But $(-)^{\circ}$ is not oplax monoidal, does not send comonoids to comonoids.
- So the dual T° of a monad T is generally not a comonad.
- However we can talk about the Sweedler dual T^{\bullet} of T.
- Informally, it is defined as the greatest functor D that is smaller than the functor T° and carries a comonad structure $\eta^{\bullet}, \mu^{\bullet}$ agreeing with $\eta^{\circ}, \mu^{\circ}$.

Dual of a comonad / Sweedler dual of a monad ctd

- Formally, the Sweedler dual of the monad T is the comonad ($T^{\bullet}, \eta^{\bullet}, \mu^{\bullet}$) together with a natural transformation $\iota: T^{\bullet} \rightarrow T^{\circ}$ such that

and such that, for any comonad (D, ε, δ) together with a natural transformation ψ satisfying the same conditions, there is a unique comonad map $h: D \rightarrow T^{\bullet}$ satisfying

Some examples of dual and Sweedler dual

- Let $T X=$ List $^{+} X \cong \Sigma n: \mathbb{N} .([0 . . n] \Rightarrow X)$ (the nonempty list monad).
- We have $T^{\circ} Y \cong \Pi n: \mathbb{N}$. $([0 . . n] \times Y)$ but $T^{\bullet} Y \cong Y \times(Y+Y)$.
- Let $T X=S \Rightarrow(S \times X) \cong(S \Rightarrow S) \times(S \Rightarrow X)$ (the state monad).
- We have $T^{\circ} Y=(S \Rightarrow S) \Rightarrow(S \times Y)$ but $T^{\bullet} Y=S \times(S \Rightarrow Y)$.

An algebraic-coalgebraic perspective

Stafeful runners

- Given
- a resid mnd-cmnd int law, i.e., nat transf typed $\psi_{X, Y}: T X \times D Y \rightarrow R(X \times Y)$ subject to eqns
- a coEM coalgebra $(Y, \chi: Y \rightarrow D Y)$ of D
(a "cohandler")
we get
- a nat transf typed $\theta_{X}: T X \times Y \rightarrow R(X \times Y)$ subject to other eqns (a resid stateful runner)
by

$$
\theta_{X}=T X \times Y \xrightarrow{T X \times \chi} T X \times D Y \xrightarrow{\psi_{X, Y}} R(X \times Y)
$$

- Where do these constructions with EM (co)algebras come from?

Alternative definitions

- If \mathcal{C} is Cartesian closed (or symmetric monoidal closed), R-resid mnd-cmnd int laws of T, D can be defined in multiple ways:

$$
\begin{gathered}
\overline{\overline{\mathcal{C}}(X \times Y, Z) \rightarrow \mathcal{C}(T X \times D Y, R Z) \text { nat in } X, Y, Z \text { subj to eqs }} \\
\xlongequal[\overline{T(Y \Rightarrow Z) \rightarrow D Y \Rightarrow R Z \text { nat in } Y, Z \text { subj to eqs }}]{\overline{D(X \Rightarrow Z) \rightarrow T X \Rightarrow R Z \text { nat in } X, Z \text { subj to eqs }}} \text { }
\end{gathered}
$$

(Yoneda again!)
(A symm monoidal closed category will also do.)

- Legend:
X - values
Y - states
Z - observables
(values for residual computations)
$X \times Y \rightarrow Z$ - observation functions

A (co)algebraic view

- Resid mnd-cmnd int laws are in a bijection with coalgebra-algebra exponentiation functors:

$$
T(Y \Rightarrow Z) \rightarrow D Y \Rightarrow R Z \text { nat in } Y, Z \text { subj to eqs }
$$

A (co)algebraic view ctd

- Explicitly, given a resid mnd-cmnd int law ψ,
the corresponding (co)alg exp functor E sends an EM-coalgebra (Y, χ) of D and an EM-algebra (Z, ζ) of R to the EM-algebra $(Y \Rightarrow Z, \xi)$ of T where

$$
\xi=T(Y \Rightarrow Z) \xrightarrow{\psi_{Y, Z}} D Y \Rightarrow R Z \xrightarrow{\chi \Rightarrow \zeta} Y \Rightarrow Z
$$

- Conversely, given a (co)alg exp functor E,
the corresponding resid mnd-cmnd int law is
$\psi_{Y, Z}=T(Y \Rightarrow Z) \xrightarrow{T\left(\varepsilon_{Y} \Rightarrow \eta_{Z}^{R}\right)} T(D Y \Rightarrow R Z) \xrightarrow{e_{Y, Z}} D Y \Rightarrow R Z$
where $\left(D Y \Rightarrow R Z, e_{Y, Z}\right)=E\left(\left(D Y, \delta_{Y}\right),\left(R Z, \mu_{Z}^{R}\right)\right)$.

Intermediate views

- In fact the picture is finer, there are also two intermediate bijections:

where
$\operatorname{SRun}_{R}(T)-R$-residual stateful runners of T
CRun $_{D}(T)$ - D-fuelled continuation-based runners of T

Stateful runners

- For any Y, we have

where St_{Y}^{R} is the R-transformed state monad for state object Y given by

$$
\operatorname{St}_{Y}^{R} X=Y \Rightarrow R(X \times Y)
$$

Continuation-based runners

- For any Z, we have
D-fuelled continuation-based runners of $T \mathrm{w} /$ carrier Z, ie $D(X \Rightarrow Z) \rightarrow T X \Rightarrow Z$ nat in X subj to eqs
monad morphisms from T to Cnt_{Z}^{D}, ie
$T X \rightarrow D(X \Rightarrow Z) \Rightarrow Z$ nat in X subj to eqs
$(\operatorname{coEM}(D))^{\mathrm{op}} \longrightarrow \mathrm{EM}(T)$

where Cnt_{Z}^{D} is the D-transformed continuation monad for answer object Z given by

$$
\operatorname{Cnt}_{Z}^{D} X=D(X \Rightarrow Z) \Rightarrow Z
$$

EM algebras of $T \mathrm{w} /$ carrier $Y \Rightarrow Z$ as runners

- For any Y, Z, we have
state and continuation based runners of $T \mathrm{w} /$ carrier Z, ie $\mathcal{C}(X \times Y, Z) \rightarrow \mathcal{C}(T X \times Y, Z)$ nat in X subj to eqs

$$
\begin{aligned}
& \hline \hline \text { monad morphisms from } T \text { to } \times \operatorname{CntSt}_{Y, Z} \cong \times \operatorname{CostCnt}_{Y, Z}, \text { ie } \\
& T X \rightarrow Y \Rightarrow \times \operatorname{Cnt}_{Z}(X \times Y) \\
& \cong \operatorname{Cost}_{Y}(X \Rightarrow Z) \Rightarrow Z \text { nat in } X \text { subj to eqs }
\end{aligned}
$$

EM algebras of T with carrier $Y \Rightarrow Z$
where

$$
\begin{aligned}
\times \operatorname{Cnt}_{Z} X & =\mathcal{C}(X, Z) \pitchfork Z \\
\times \operatorname{CntSt}_{Y, Z} X & =Y \Rightarrow \times \operatorname{Cnt}_{Z}(X \times Y) \\
& =Y \Rightarrow(\mathcal{C}(X \times Y, Z) \pitchfork Z) \\
\times \operatorname{Cost}_{Y} X & =\mathcal{C}(Y, X) \bullet Y \\
\times \operatorname{CostCnt}_{Y, Z} X & =\times \operatorname{Cost}_{Y}(X \Rightarrow Z) \Rightarrow Z \\
& =(\mathcal{C}(Y, X \Rightarrow Z) \bullet Y) \Rightarrow Z
\end{aligned}
$$

Monoid-comonoid interaction laws

Residual interaction laws and Chu spaces

- The Day convolution of F, G is

$$
(F \star G) Z=\int^{X, Y} \mathcal{C}(X \times Y, Z) \bullet(F X \times G Y)
$$

(if this coend exists).

- These categories are isomorphic for a given monad R :
- R-residual functor-functor interaction laws;
- Chu spaces on the symm monoidal category ($[\mathcal{C}, \mathcal{C}], J, \star$) with vertex R, ie, triples of two functors F, G with a nat transf $F \star G \rightarrow R$.
(if \star is defined for all functors).

$$
\frac{F X \times G Y \rightarrow R(X \times Y) \text { nat in } X, Y}{\frac{\overline{\mathcal{C}(X \times Y, Z) \rightarrow \mathcal{C}(F X \times G Y, R Z) \text { nat in } X, Y, Z}}{\overline{\underbrace{X, Y}_{(F * G) Z} \mathcal{C}(X \times Y, Z) \bullet(F X \times G Y)} \rightarrow R Z \text { nat in } Z}}
$$

Residual interaction laws and Chu spaces ctd

- We do not immediately get another chacterization of the category of R-residual monad-comonad interaction laws.
- We have to use that $[\mathcal{C}, \mathcal{C}]$ has a duoidal structure (Id, \cdot, J, \star).
- In particular, \star is oplax monoidal wrt (Id, \cdot), so there are structural laws

$$
\begin{gathered}
\text { Id } \star \operatorname{ld} \rightarrow \mathrm{Id} \\
\left(F \cdot F^{\prime}\right) \star\left(G \cdot G^{\prime}\right) \rightarrow(F \star G) \cdot\left(F^{\prime} \star G^{\prime}\right)
\end{gathered}
$$

with the requisite properties.

- This duoidal structure induces a monoidal structure on $\mathbf{C h u}(R)$ based on (Id, •).
- R-residual monad-comonad interaction laws are monoid objects of Chu(R) wrt this monoidal structure.

General residual interaction laws

- Instead of an endofunctor category, one can consider any duoidal category ($\mathcal{D}, I, \diamond, J, \star)$.
- Given a monoid object $\left(R, \eta^{R}, \mu^{R}\right)$ wrt. (I, \diamond), we get a (I, \diamond)-based monoidal structure on $\mathbf{C h u}(R)$.
- An R-residual monoid-comonoid interaction law is a monoid object of $\operatorname{Chu}(R)$.
- Explicitly, it is given by a monoid (T, η, μ), a comonoid (D, ε, δ) and a map $\psi: T \star D \rightarrow R$ such that

