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Abstract

I show a basic Yoneda-like lemma relating strongly dinatural transformations and initial algebras.
Further, I apply it to reprove known results about unique existence of uniform parameterized fixpoint
operators.

1 Introduction

I present a Yoneda-like lemma relating strongly dinatural (a.k.a. Barr dinatural) transformations and
initial functor-algebras. It is very basic, but I do not know whether it has appeared in the literature. I have
found it quite useful: it can be used, for example, to prove the validity of some Mendler-style structured
recursion schemes for initial algebras or recursive coalgebras [12, 14] and to prove properties of Church
representations of inductive types [9, 5]. Here, I use it to reprove some known results [7, 10] about
existence and unique existence of uniform parameterized fixpoint operators, exploiting that uniformity
is a strong dinaturality condition. I would not dare to claim that the proofs become simpler, but they
obtain a structure that nicely localizes the invocations of the various initial and bifree algebra existence
assumptions made.

2 Strong dinaturality and a Yoneda lemma for initial algebras

Dinatural transformations [2] and strongly dinatural (a.k.a. Barr dinatural) transformations [7, 8] are
two generalizations of natural transformations from (covariant) functors to mixed-variant functors that
have components only defined for the diagonal of the domain. We recall the definitions, starting with
dinaturality.

Definition 1 (Dinaturality). A dinatural transformation between H,K ∈ Cop ×C → E is given by, for
any X ∈ |C|, a map ΘX ∈ E(H(X ,X),K(X ,X)) such that, for any f ∈ C(X ,X ′), the following hexagon
commutes in E:

H(X ,X)
ΘX // K(X ,X)

K(X , f )
))SSSSSS

H(X ′,X)

H( f ,X) 55kkkkkk

H(X ′, f ) ))SSSSSS
K(X ,X ′)

H(X ′,X ′)
ΘX ′

// K(X ′,X ′) K( f ,X ′)

55kkkkkk

Dinatural transformations are used, for example, in the definitions of coend and end. A coend is an
initial cowedge, where a cowedge is given by an object and an accompanying dinatural transformation
(just as a colimit is defined as an initial cocone, a cocone being an object with a natural transformation).

Dinatural transformations do not generally compose and so do not give a category. Strongly dinatural
transformations do not suffer from this shortcoming.
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Definition 2 (Strong dinaturality). A strongly dinatural transformation between H,K ∈ Cop×C → E is
given by, for any X ∈ |C|, a map ΘX ∈ E(H(X ,X),K(X ,X)) such that, for any map f ∈ C(X ,X ′) and
any span (W, p, p′) on (X ,X ′), if the square in the following diagram commutes in E, then so does the
hexagon:

H(X ,X)
H(X , f )

))SSSSSS
ΘX // K(X ,X)

K(X , f )
))SSSSSS

W

p 66nnnnnnn

p′ ((PPPPPPP H(X ,X ′) ⇒ K(X ,X ′)

H(X ′,X ′) H( f ,X ′)

55kkkkkk

ΘX ′
// K(X ′,X ′) K( f ,X ′)

55kkkkkk

If E is a category with pullbacks such as, e.g., Set, one can equivalently require that, for every map
f ∈ C(X ,X ′), the outer hexagon of the above diagram commutes for (W, p, p′) the chosen pullback of
the cospan (H(X ,X ′),H(X , f ),H( f ,X ′)).

We write [C,E]sd for the category of mixed-variant functors from C to E and strongly dinatural
transformations.

Any strongly dinatural transformation is also dinatural, but the converse does not hold in general.
This note is centered around the following observation, which I have not noticed published (I have

mentioned it in an unpublished talk abstract [11] ten years ago, and also in a paper on the recursion
scheme from the cofree recursive comonad [14]). Please be so kind and tell me, if you know of a
reference where it might appear. It is a kind of a Yoneda lemma for strongly dinatural transformations
and initial algebras.

Proposition 1 (Yoneda lemma for initial algebras). Let C be a locally small category, F ∈ C → C a
functor with an initial algebra (which we denote (µ F, inF ) and K ∈ C → Set a functor (whose padding
into a mixed-variant functor we denote also by K). Then

[C,Set]sd(C(F−,−),K)∼= K(µ F)

(so [C,Set]sd(C(F−,−),K) is, in fact, a set too). This isomorphism is natural in F (to the extent that
initial algebras exist in C).

A strongly dinatural transformation between C(F−,−) and K is given by, for any X , a map ΘX ∈
C(FX ,X)→K X , such that, for any X , X ′, φ ∈C(F X ,X), φ ′ ∈C(F X ′,X ′), f ∈C(X ,X ′), f ◦φ = φ ′◦F f
(i.e., f being an F-algebra map from between (X ,φ) and (X ′,φ ′)) implies ΘX ′ = K f ΘX ∈ K X ′.

We denote the natural isomorphism by iF . It is defined as follows: for Θ ∈ [C,Set]sd(C(F−,−),K),
iF Θ =df Θµ F inF ∈ K (µ F); and, for x ∈ K (µ F), X ∈ |C|, k ∈ C(FX ,X), (i−1

F x)X k =df K (foldF,X k)x ∈
K X , where foldF,X denotes the unique algebra map from (µ F, inF) to (X ,k).

An important special case is when KX =df C(1,X). We get that

[C,Set]sd(C(F−,−),C(1,−))∼= C(1,µ F)

This is closely related to Church representations of inductive types. Remember that, in System F, we
represent µ F by ∀X . (F X ⇒ X)⇒ X).

Needless to say, for final coalgebras, a dual proposition is true; I refrain from spelling it out here.

3 Uniform parameterized fixpoint operators

We now turn to parameterized fixpoint-like operators and uniformity. The dependencies between differ-
ent axiomatiozations and sufficient conditions for existence have been studied by Bloom and Ésik [1],
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Freyd [3, 4], Mulry [7], Simpson and Plotkin [10] etc. Hyland and Hasegawa [6] showed that (uniform)
Conway operators are equivalent to (uniform) traces (definable in general monoidal categories, not just
categories with finite products).

We will closely follow the account of Simpson and Plotkin [10]. First we recall the definitions of
parameterized fixpoint operators, parameterized Conway operators and uniformity.

We assume given a category D with finite products.

Definition 3 (Parameterized fixpoint-like operator). A parameterized fixpoint-like operator on D is given
by, for any X ,Y ∈ |D|, a function fixX ,Y ∈ D(X ×Y,Y )→ D(X ,Y ).

Definition 4 (Parameterized fixpoint operator). A parameterized fixpoint operator on D is a parameter-
ized fixpoint-like operator fix on D such that

• for any f ∈ D(X ,X ′) and k′ ∈ D(X ′×Y,Y ), fix(k′ ◦ ( f × idY )) = fixk′ ◦ f (naturality);

• for any k ∈ D(X ×Y,Y ), fixk = k ◦ 〈idX ,fixk〉 (parameterized fixpoint property).

Definition 5 (Conway operator). A Conway operator on D is a parameterized fixpoint operator fix on D
with the further properties that

• for any f ∈D(X×Y,Y ′) and h ∈D(X×Y ′,Y ), f ◦〈idX ,fix(h◦〈fst, f 〉)〉= fix( f ◦〈fst,h〉) (param-
eterized dinaturality);

• for any k ∈ D((X ×Y )×Y,Y ), fix(k ◦ 〈idX×Y ,sndX ,Y 〉) = fix(fixk) (diagonal property).

Parameterized dinaturality implies the parameterized fixpoint property, so for Conway operators the
latter condition is redundant.

For our final definition, we assume we also have a category C with finite products and the same
objects as D together with an identity-on-objects functor J ∈ C → D preserving the finite products of C
strictly. We call the maps of D in the image of J pure.

Definition 6 (Uniformity). A parameterized fixpoint-like operator fix on D is said to be uniform wrt. J,
if

• for any f ∈ C(Y,Y ′), k ∈ D(X ×Y,Y ) and k′ ∈ D(X ×Y ′,Y ′), J f ◦ k = k′ ◦ (idX × J f ) implies
J f ◦fixk = fixk′.

(In the terminology of iteration theories [1], naturality is parameter identity, parameterized fixpoint
property is fixpoint identity, parameterized dinaturality is composition identity and diagonal property is
double dagger identity. Finally, uniformity corresponds to the functoriality condition.)

We now focus on the special case of D arising as the coKleisli category of a comonad (D,ε,(−)†)1

on C with J the right adjoint in its coKleisli splitting. The prototypical well-behaved situation here has
C =df Cppo⊥, D =df (−)⊥ and D ∼= Cppo, where Cppo stands for the category of ω-complete pointed
partial orders and ω-continuous functions, Cppo⊥ is as Cppo but has as maps only the strict (bottom-
preserving) maps of Cppo and (−)⊥ is the lifting endofunctor. More generally, the lifting comonad can
be replaced with any comonad on Cppo⊥ that has its underlying functor Cppo-enriched.

In terms of the “base” category C, a parameterized fixpoint-like operator is now, for any X ,Y ∈ |C|,
a function fixX ,Y ∈ C(D(X ×Y ),Y )→ C(DX ,Y ). The various optional additional conditions specialize
into the following:

1We write (−)† for the coKleisli extension operation of a comonad.
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• for any f ∈ C(DX ,X ′) and k′ ∈ C(D(X ′×Y ),Y ), fix(k′ ◦ 〈 f ◦D fst,εY ◦Dsnd〉†) = fixk′ ◦ f † (nat-
urality);

• for any k ∈ C(D(X ×Y ),Y ), fixk = k ◦ 〈εX ,fixk〉† (parameterized fixpoint property);

• for any f ∈C(D(X ×Y ),Y ′) and h ∈C(D(X ×Y ′),Y ), f ◦〈εX ,fix(h◦〈εX ◦D fst, f 〉†)〉† = fix( f ◦
〈εX ◦D fst,h〉†) (parameterized dinaturality);

• for any k ∈ C(D((X ×Y )×Y ),Y ), fix(k ◦D〈idX×Y ,sndX ,Y 〉) = fix(fixk) (diagonal property);

• for any f ∈C(Y,Y ′), k∈C(D(X×Y ),Y ) and k′ ∈C(D(X×Y ′),Y ′), f ◦k = k′◦D(idX × f ) implies
f ◦fixk = fixk′ (uniformity).

(Notice that here, id and ◦ refer to identity and composition in C rather than in D, differently from what
they meant above.)

Crucially for us, the uniformity condition asserts nothing else than strong dinaturality of fixX ,Y in Y ,
i.e., that fixX ,− ∈ [C,Set]sd(C(D(X ×−),−),C(DX ,−))—an observation first made by Mulry [7].

From Proposition 1, we immediately get:

Corollary 1. If every functor D(X ×−) ∈ C→ C has an initial algebra, then a uniform wrt. J parame-
terized fixpoint-like operator fix on D is the same as, for any X ∈ |C|, a map fixX ∈C(DX ,µ(D(X×−))).

The bijection is given by fixX =df fixX ,µ(D(X×−) inD(X×−) and, for k ∈ C(D(X ×Y ),Y ), fixX ,Y k =df
foldD(X×−),Y k ◦fixX .

It is not difficult to strengthen this corollary to the following characterization of uniform parameter-
ized fixpoint operators (one has to verify that the conditions are pairwise equivalent):

Proposition 2. If every functor D(X×−) ∈C→C has an initial algebra, then a uniform wrt. J param-
eterized fixpoint operator fix on D is the same as, for any X ∈ |C|, a map fixX ∈ C(DX ,µ(D(X ×−)))
such that

• for any f ∈ C(DX ,X ′), µ(〈 f ◦D fst,ε− ◦Dsnd〉†)◦fixX = fixX ′ ◦ f † (“naturality”);

• for any X ∈ |C|, fixX = inD(X×−) ◦ 〈εX ,fixX〉† (“parameterized fixpoint property”).

Recall that a bifree algebra is an initial algebra that is at the same time also a final coalgebra. The
following is nearly immediate from the proposition we just stated.

Proposition 3 ([10, Proposition 6.5]). If every functor D(X ×−) ∈ C→ C has a bifree algebra, then D
has a unique uniform wrt. J parameterized fixpoint operator.

Proof. Just observe that the parameterized fixpoint property can be rewritten as in−1
D(X×−) ◦ fixX =

D(X × fixX) ◦ 〈εX , idDX〉†, which stipulates that fixX (if existing) must be a coalgebra map between
(DX ,〈εX , idDX〉†) and (µ(D(X ×−)), in−1

D(X×−)). As the latter is a final coalgebra, there is exactly one
such map. This map turns out to also satisfy the required naturality condition.

Uniform Conway operators can be analyzed similarly. Here we need the existence of further initial
algebras to replace conditions on fix with conditions on fix. When these initial algebras are also final
coalgebras, we have a unique uniform Conway operator.

Proposition 4. If all functors D(X ×−),D(X ×D(X ×−)),D((X ×−)×−) ∈ C → C have initial
algebras, then a uniform wrt. J Conway operator on D is the same as, for any X ∈ |C|, a map fixX ∈
C(DX ,µ(D(X ×−))) satisfying the conditions of Proposition 2, but also the following conditions:
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• for any X ∈ |C|, in ◦ 〈εX , fold(〈εX ◦ D fst, in〉†) ◦ fix〉† = fold(in ◦ 〈εX ◦ D fst, id〉†) ◦ fix
∈ C(DX ,µ(D(X ×D(X ×−)))) (“parameterized dinaturality”);

• for any X ∈ |C|, fold(in◦D〈id,snd〉)◦fix = fold(fold in◦fix)◦fix ∈ C(DX ,µ(D((X ×−)×−)))
“diagonal property”).

Proposition 5 ([10, Theorem 3]). If all functors D(X×−),D(X×D (X×−)),D((X×−)×−)∈C→C
have bifree algebras, then D has a unique uniform wrt. J Conway operator.

4 Uniform guarded recursion operators

A similar treatment is possible for guarded recursion operators (we have previously considered some
aspects for the dual situation of guarded iteration [13]). Here, the prototypical example is given by cofree
recursive comonads on endofunctors on Set, such as the nonempty list comonad defined by DX =df
µ(X × (1+(−))).

An ideal comonad on a category C with finite products is a comonad given by DX =df X ×D0X ,
εX =df fst ∈ C(DX ,X), for any k ∈ C(DX ,Y ), k† =df 〈k,k‡ ◦ snd〉 ∈ C(DX ,DY ) where D0 is an endo-
functor on C and, for any X ,Y ∈ |C|, (−)‡

X ,Y ∈ C(DX ,Y )→ C(D0X ,D0Y ).
A guarded recursion operator for an ideal comonad is, for any X ,Y ∈ |C|, a unique function recX ,Y ∈

C(X ×D0 (X ×Y ),Y ) → C(DX ,Y ) satisfying the guarded recursion equation reck = k ◦ (fst× id) ◦
〈ε, reck〉† and possibly further properties.

As soon as all functors X ×D0 (X ×−) have initial algebras, having a uniform guarded recursion
operator rec becomes equivalent to having, for any X ∈ |C|, a map recX ∈ C(DX ,µ (X ×D0 (X ×−))
such that rec = in◦ (fst× id)◦ 〈ε, rec〉†.

A uniform guarded recursion operator exists uniquely, e.g., whenever D is the cofree recursive
comonad on an endofunctor H on C, in which case DX ∼= µ (X ×H (−))∼= X ×µ (H (X ×−)).

5 Conclusion

I find it intruiging that the use of the Yoneda-like lemma stages the invocations of the initial algebra resp.
bifree algebra existence assumptions: the initial algebra existence assumptions ensure the possibility of
reducing the existence of a parameterized fixpoint operator to the existence of a family of maps to initial
algebras; the bifree algebra existence assumptions ensure that such a family of maps exists uniquely.

I would like to learn more about the relationship of strong dinaturality and models of parametric
polymorphism.
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