
Introduction
Syntax

Categorical Semantics
Some models

Splitting the Atom of Dependent Types
...or Linear and Operational Dependent Type Theory

Matthijs Vákár

Oxford, 10 November, 2014

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Our Journey

intuitionistic linear operational

Done for propositional logic, external first order quantification,
(impredicative) second order quantification.

Subtle for internal first order quantification: dependent type theory.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Our Journey

intuitionistic linear operational

Done for propositional logic, external first order quantification,
(impredicative) second order quantification.

Subtle for internal first order quantification: dependent type theory.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Our Journey

intuitionistic linear operational

Done for propositional logic, external first order quantification,
(impredicative) second order quantification.

Subtle for internal first order quantification: dependent type theory.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Table of contents
1 Introduction

Motivation
Programme of research

2 Syntax
Judgements
Structural rules
Logical rules
Some metatheorems

3 Categorical Semantics
Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

4 Some models
Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Motivation
Programme of research

Introduction

My motivation:
Deepen understanding of HoTT:

As foundation of mathematics.
As language for homotopy: relation to stable homotopy?

Computational semantics for dependent types:
Game semantics.
Stepping stone: coherence space semantics.
Generally: models of DTT in !-co-Kleisli or !-co-EM categories.

Dependently Typed Quantum Computing?
Find proper linear understanding of predicate logic, including
identity.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Motivation
Programme of research

Introduction

My motivation:
Deepen understanding of HoTT:

As foundation of mathematics.
As language for homotopy: relation to stable homotopy?

Computational semantics for dependent types:
Game semantics.
Stepping stone: coherence space semantics.
Generally: models of DTT in !-co-Kleisli or !-co-EM categories.

Dependently Typed Quantum Computing?

Find proper linear understanding of predicate logic, including
identity.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Motivation
Programme of research

Introduction

My motivation:
Deepen understanding of HoTT:

As foundation of mathematics.
As language for homotopy: relation to stable homotopy?

Computational semantics for dependent types:
Game semantics.
Stepping stone: coherence space semantics.
Generally: models of DTT in !-co-Kleisli or !-co-EM categories.

Dependently Typed Quantum Computing?
Find proper linear understanding of predicate logic, including
identity.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Motivation
Programme of research

Introduction

My motivation:
Deepen understanding of HoTT:

As foundation of mathematics.
As language for homotopy: relation to stable homotopy?

Computational semantics for dependent types:
Game semantics.
Stepping stone: coherence space semantics.
Generally: models of DTT in !-co-Kleisli or !-co-EM categories.

Dependently Typed Quantum Computing?
Find proper linear understanding of predicate logic, including
identity.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Motivation
Programme of research

Programme of research
1 Combining linear and dependent types,

syntactically and semantically,
in sufficient generality to admit models from a variety of fields.

Matthijs Vákár, http://arxiv.org/abs/1405.0033. Submitted to
FoSSaCS2015.

2 Coherence space semantics.
With Samson Abramsky: draft ready.

3 Game semantics.
With Radha Jagadeesan and Samson Abramsky: draft ready.

4 Stable homotopy theory.
Planned. Related to Mike Shulman,
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html.

5 Quantum physics.
Planned. Related to Urs Schreiber, http://arxiv.org/abs/1402.7041

Matthijs Vákár Splitting the Atom of Dependent Types

http://arxiv.org/abs/1405.0033
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
http://arxiv.org/abs/1402.7041

Introduction
Syntax

Categorical Semantics
Some models

Motivation
Programme of research

Programme of research
1 Combining linear and dependent types,

syntactically and semantically,
in sufficient generality to admit models from a variety of fields.

Matthijs Vákár, http://arxiv.org/abs/1405.0033. Submitted to
FoSSaCS2015.

2 Coherence space semantics.
With Samson Abramsky: draft ready.

3 Game semantics.
With Radha Jagadeesan and Samson Abramsky: draft ready.

4 Stable homotopy theory.
Planned. Related to Mike Shulman,
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html.

5 Quantum physics.
Planned. Related to Urs Schreiber, http://arxiv.org/abs/1402.7041

Matthijs Vákár Splitting the Atom of Dependent Types

http://arxiv.org/abs/1405.0033
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
http://arxiv.org/abs/1402.7041

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Syntax

Primarily designed as very straightforward blend of
(intuitionistic) dependent type theory, as in
Hofman, Syntax and semantics of dependent types
intuitionistic linear type theory, as in
Barber, Dual Intuitionistic Linear Logic.

Very similar to Cervesato and Pfenning’s LLF plus Σ-types
(although developed independently). By constrast, not
focussed on specific computational implementation, but
meant to be general through modularity.

Very similar to upcoming Krishnaswami, Pradic, Benton,
which appears to be a conservative extension.

Matthijs Vákár Splitting the Atom of Dependent Types

https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Syntax

Primarily designed as very straightforward blend of
(intuitionistic) dependent type theory, as in
Hofman, Syntax and semantics of dependent types
intuitionistic linear type theory, as in
Barber, Dual Intuitionistic Linear Logic.

Very similar to Cervesato and Pfenning’s LLF plus Σ-types
(although developed independently). By constrast, not
focussed on specific computational implementation, but
meant to be general through modularity.
Very similar to upcoming Krishnaswami, Pradic, Benton,
which appears to be a conservative extension.

Matthijs Vákár Splitting the Atom of Dependent Types

https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Syntax

Primarily designed as very straightforward blend of
(intuitionistic) dependent type theory, as in
Hofman, Syntax and semantics of dependent types
intuitionistic linear type theory, as in
Barber, Dual Intuitionistic Linear Logic.

Very similar to Cervesato and Pfenning’s LLF plus Σ-types
(although developed independently). By constrast, not
focussed on specific computational implementation, but
meant to be general through modularity.
Very similar to upcoming Krishnaswami, Pradic, Benton,
which appears to be a conservative extension.

Matthijs Vákár Splitting the Atom of Dependent Types

https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Judgements

Contexts ∆; Ξ consist of intuitionistic region ∆ and linear region
Ξ. (Intuitionistic and linear) types in context can depend on
intuitionistic context to their left.

` ∆; Ξ ctxt ∆; Ξ is a valid context
∆; · ` A type A is a type in (intuitionistic) context ∆
∆; Ξ ` a : A a is a term of type A in context ∆; Ξ

` ∆; Ξ ≡ ∆′; Ξ′ ctxt ∆; Ξ and ∆′; Ξ′ are judgementally equal contexts
∆; · ` A ≡ B type A and B are judgementally equal types

in (intuitionistic) context ∆
∆; Ξ ` a ≡ a′ : A a and a′ are judgementally equal terms of type A

in context ∆; Ξ

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Judgements

Contexts ∆; Ξ consist of intuitionistic region ∆ and linear region
Ξ. (Intuitionistic and linear) types in context can depend on
intuitionistic context to their left.

` ∆; Ξ ctxt ∆; Ξ is a valid context
∆; · ` A type A is a type in (intuitionistic) context ∆
∆; Ξ ` a : A a is a term of type A in context ∆; Ξ

` ∆; Ξ ≡ ∆′; Ξ′ ctxt ∆; Ξ and ∆′; Ξ′ are judgementally equal contexts
∆; · ` A ≡ B type A and B are judgementally equal types

in (intuitionistic) context ∆
∆; Ξ ` a ≡ a′ : A a and a′ are judgementally equal terms of type A

in context ∆; Ξ

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Judgements

Contexts ∆; Ξ consist of intuitionistic region ∆ and linear region
Ξ. (Intuitionistic and linear) types in context can depend on
intuitionistic context to their left.

` ∆; Ξ ctxt ∆; Ξ is a valid context
∆; · ` A type A is a type in (intuitionistic) context ∆
∆; Ξ ` a : A a is a term of type A in context ∆; Ξ

` ∆; Ξ ≡ ∆′; Ξ′ ctxt ∆; Ξ and ∆′; Ξ′ are judgementally equal contexts
∆; · ` A ≡ B type A and B are judgementally equal types

in (intuitionistic) context ∆
∆; Ξ ` a ≡ a′ : A a and a′ are judgementally equal terms of type A

in context ∆; Ξ

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Structural rules

Rules for context formation:

C-Emp·; · ctxt

` ∆; Ξ ctxt ∆; · ` A type
Int-C-Ext` ∆, x : A; Ξ ctxt

` ∆; Ξ ctxt ∆; · ` A type
Lin-C-Ext` ∆; Ξ, x : A ctxt

Variable/axiom rules:

∆, x : A,∆′; · ctxt
Int-Var∆, x : A,∆′; · ` x : A

∆; x : A ctxt
Lin-Var∆; x : A ` x : A

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Structural rules

Rules for context formation:

C-Emp·; · ctxt

` ∆; Ξ ctxt ∆; · ` A type
Int-C-Ext` ∆, x : A; Ξ ctxt

` ∆; Ξ ctxt ∆; · ` A type
Lin-C-Ext` ∆; Ξ, x : A ctxt

Variable/axiom rules:

∆, x : A,∆′; · ctxt
Int-Var∆, x : A,∆′; · ` x : A

∆; x : A ctxt
Lin-Var∆; x : A ` x : A

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Weakening: ∆,∆′; Ξ ` J ∆; · ` A type
Int-Weak∆, x : A,∆′; Ξ ` J

Exchange: the obvious rules in both the Int- and Lin-regions

Substitution:

∆, x : A,∆′; · ` B type ∆; · ` a : A Int-Ty-Subst
∆,∆′[a/x]; · ` B[a/x] type

∆, x : A,∆′; Ξ ` b : B ∆; · ` a : A
Int-Tm-Subst∆,∆′[a/x]; Ξ[a/x] ` b[a/x] : B[a/x]

∆; Ξ, x : A ` b : B ∆; Ξ′ ` a : A
Lin-Tm-Subst∆; Ξ,Ξ′ ` b[a/x] : B

and all the obvious rules for judgemental equality...

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Weakening: ∆,∆′; Ξ ` J ∆; · ` A type
Int-Weak∆, x : A,∆′; Ξ ` J

Exchange: the obvious rules in both the Int- and Lin-regions

Substitution:

∆, x : A,∆′; · ` B type ∆; · ` a : A Int-Ty-Subst
∆,∆′[a/x]; · ` B[a/x] type

∆, x : A,∆′; Ξ ` b : B ∆; · ` a : A
Int-Tm-Subst∆,∆′[a/x]; Ξ[a/x] ` b[a/x] : B[a/x]

∆; Ξ, x : A ` b : B ∆; Ξ′ ` a : A
Lin-Tm-Subst∆; Ξ,Ξ′ ` b[a/x] : B

and all the obvious rules for judgemental equality...

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Weakening: ∆,∆′; Ξ ` J ∆; · ` A type
Int-Weak∆, x : A,∆′; Ξ ` J

Exchange: the obvious rules in both the Int- and Lin-regions

Substitution:

∆, x : A,∆′; · ` B type ∆; · ` a : A Int-Ty-Subst
∆,∆′[a/x]; · ` B[a/x] type

∆, x : A,∆′; Ξ ` b : B ∆; · ` a : A
Int-Tm-Subst∆,∆′[a/x]; Ξ[a/x] ` b[a/x] : B[a/x]

∆; Ξ, x : A ` b : B ∆; Ξ′ ` a : A
Lin-Tm-Subst∆; Ξ,Ξ′ ` b[a/x] : B

and all the obvious rules for judgemental equality...

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Weakening: ∆,∆′; Ξ ` J ∆; · ` A type
Int-Weak∆, x : A,∆′; Ξ ` J

Exchange: the obvious rules in both the Int- and Lin-regions

Substitution:

∆, x : A,∆′; · ` B type ∆; · ` a : A Int-Ty-Subst
∆,∆′[a/x]; · ` B[a/x] type

∆, x : A,∆′; Ξ ` b : B ∆; · ` a : A
Int-Tm-Subst∆,∆′[a/x]; Ξ[a/x] ` b[a/x] : B[a/x]

∆; Ξ, x : A ` b : B ∆; Ξ′ ` a : A
Lin-Tm-Subst∆; Ξ,Ξ′ ` b[a/x] : B

and all the obvious rules for judgemental equality...

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Logical rules

Optional natural deduction style (F-, I-, E-, C-, and U-) rules for
standard type formers from linear logic, in each intuitionistic
context: I, ⊗, (, !, >, &, 0, ⊕,
(multiplicative) linear variants of Σ-, Π-, and Id-types from
dependent type theory,

with all the commutative conversions one would expect.

Σ, Π, and Id are the ones that require some thought.

Obvious additive Σ-types and Id-types ’boring’ as forced to be
intuitionistic.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Logical rules

Optional natural deduction style (F-, I-, E-, C-, and U-) rules for
standard type formers from linear logic, in each intuitionistic
context: I, ⊗, (, !, >, &, 0, ⊕,
(multiplicative) linear variants of Σ-, Π-, and Id-types from
dependent type theory,

with all the commutative conversions one would expect.

Σ, Π, and Id are the ones that require some thought.

Obvious additive Σ-types and Id-types ’boring’ as forced to be
intuitionistic.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Logical rules

Optional natural deduction style (F-, I-, E-, C-, and U-) rules for
standard type formers from linear logic, in each intuitionistic
context: I, ⊗, (, !, >, &, 0, ⊕,
(multiplicative) linear variants of Σ-, Π-, and Id-types from
dependent type theory,

with all the commutative conversions one would expect.

Σ, Π, and Id are the ones that require some thought.

Obvious additive Σ-types and Id-types ’boring’ as forced to be
intuitionistic.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Multiplicative Σ-types:

∆, x : A; · ` B type
Σ-F∆; · ` Σ!x :!AB type

∆; · ` a : A ∆; Ξ ` b : B[a/x]
Σ-I∆; Ξ `!a ⊗ b : Σ!x :!AB

∆; · ` C type
∆; Ξ ` t : Σ!x :!AB

∆, x : A; Ξ′, y : B ` c : C
Σ-E∆; Ξ,Ξ′ ` let t be !x ⊗ y in c : C

and the obvious C- and U- rules.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Multiplicative Π-types:

∆, x : A; · ` B type
Π-F∆; · ` Π!x :!AB type

∆, x : A; Ξ ` b : B
Π-I∆; Ξ ` λ!x :!Ab : Π!x :!AB

∆; · ` a : A ∆; Ξ ` f : Π!x :!AB
Π-E∆; Ξ ` f (!a) : B[a/x]

and the obvious C- and U-rules.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Multiplicative Id-types:

∆; · ` a : A ∆; · ` a′ : A
Id-F∆; · ` Id!A(a, a′) type

∆; · ` a : A
Id-I∆; · ` refl!a : Id!A(a, a)

∆, x : A, x ′ : A; · ` D type
∆, z : A; Ξ ` d : D[z/x , z/x ′]
∆; · ` a : A
∆; · ` a′ : A
∆; Ξ′ ` p : Id!A(a, a′)

Id-E∆; Ξ[a/z],Ξ′ ` let (a, a′, p) be (z, z, refl!z) in d : D[a/x , a′/x ′]

and the obvious C- and U-rules.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Some metatheorems

Theorem (Consistency)
The full calculus with all logical rules is consistent, both as a logic
and type theory, as we have (several) non-trivial models.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Theorem (Interdefinable connectives)
If x : A is not free in B, then

Σ!x :!AB =!A⊗ B,

Π!x :!AB =!A(B.

In particular,
Σ!x :!AI =!A.

If 2 is a type of Booleans with dependent elimination rule, then

Σ!x :!2B = B(tt)⊕ B(ff),

Π!x :!2B = B(tt)&B(ff).

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Theorem (Interdefinable connectives)
If x : A is not free in B, then

Σ!x :!AB =!A⊗ B,

Π!x :!AB =!A(B.

In particular,
Σ!x :!AI =!A.

If 2 is a type of Booleans with dependent elimination rule, then

Σ!x :!2B = B(tt)⊕ B(ff),

Π!x :!2B = B(tt)&B(ff).

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Judgements
Structural rules
Logical rules
Some metatheorems

Theorem (Interdefinable connectives)
If x : A is not free in B, then

Σ!x :!AB =!A⊗ B,

Π!x :!AB =!A(B.

In particular,
Σ!x :!AI =!A.

If 2 is a type of Booleans with dependent elimination rule, then

Σ!x :!2B = B(tt)⊕ B(ff),

Π!x :!2B = B(tt)&B(ff).

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Categorical Semantics

First sound and complete categorical semantics for linear
dependent types. It fits in with existing traditions.

Designed to be a mixture of (c.f. syntax)
Benton’s linear-non-linear adjunction
[semantics for linear types],
Split comprehension categories, viewed as indexed categories
[semantics for dependent types].

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Categorical Semantics

First sound and complete categorical semantics for linear
dependent types. It fits in with existing traditions.

Designed to be a mixture of (c.f. syntax)
Benton’s linear-non-linear adjunction
[semantics for linear types],
Split comprehension categories, viewed as indexed categories
[semantics for dependent types].

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Recall: semantics of (intuitionistic) linear types
syntax semantics
structural core symmetric multicategory D
I- and ⊗-types D equivalent to symmetric monoidal category
(-types D symmetric monoidal closed
>- and &-types finite products in D
0- and ⊕-types finite distributive coproducts in D
!-types linear exponential comonad† (!,der, δ) on D,

† i.e. ! is a comonad that arises from a linear-non-linear
adjunction: monoidal adjunction to a cartesian monoidal category.

(C, 1,×)
L
-
⊥�
M

(D, I,⊗)

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Recall: semantics of (intuitionistic) linear types
syntax semantics
structural core symmetric multicategory D
I- and ⊗-types D equivalent to symmetric monoidal category
(-types D symmetric monoidal closed
>- and &-types finite products in D
0- and ⊕-types finite distributive coproducts in D
!-types linear exponential comonad† (!,der, δ) on D,

† i.e. ! is a comonad that arises from a linear-non-linear
adjunction: monoidal adjunction to a cartesian monoidal category.

(C, 1,×)
L
-
⊥�
M

(D, I,⊗)

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Recall: semantics of dependent types

Use an equivalent of categories with families:

syntax semantics
structural core (strict) indexed cartesian multicategory

· ∈ Cop I−→ CMultCat (−{f } := I(f))
with fully faithful comprehension† (p, v)

1- and ×-types I factoring over CMCat
(i.e. I indexed cartesian monoidal category)

→-types I factoring over CCCat

(extensional) Σ-types left adjoints to −{p} satisfying
Beck-Chevalley and Frobenius reciprocity

(extensional) Π-types right adjoints to −{p} satisfying BC
(extensional) Id-types left adjoints to −{diag} satisfying BC

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Recall: semantics of dependent types

Use an equivalent of categories with families:

syntax semantics
structural core (strict) indexed cartesian multicategory

· ∈ Cop I−→ CMultCat (−{f } := I(f))
with fully faithful comprehension† (p, v)

1- and ×-types I factoring over CMCat
(i.e. I indexed cartesian monoidal category)

→-types I factoring over CCCat
(extensional) Σ-types left adjoints to −{p} satisfying

Beck-Chevalley and Frobenius reciprocity
(extensional) Π-types right adjoints to −{p} satisfying BC
(extensional) Id-types left adjoints to −{diag} satisfying BC

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Recall: semantics of dependent types

Use an equivalent of categories with families:

syntax semantics
structural core (strict) indexed cartesian multicategory

· ∈ Cop I−→ CMultCat (−{f } := I(f))
with fully faithful comprehension† (p, v)

1- and ×-types I factoring over CMCat
(i.e. I indexed cartesian monoidal category)

→-types I factoring over CCCat
(extensional) Σ-types left adjoints to −{p} satisfying

Beck-Chevalley and Frobenius reciprocity
(extensional) Π-types right adjoints to −{p} satisfying BC
(extensional) Id-types left adjoints to −{diag} satisfying BC

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

†: we say Cop I−→ CMultCat satisfies comprehension axiom if for
all ∆ ∈ ob(C), A ∈ ob(I(∆))

(C/∆)op - Set

f - I(dom(f))(·,A{f })

is representable: I(dom(f))(·,A{f })
∼=−→ C/∆(f ,p∆,A).

Call fully faithful if A 7→ p∆,A defines fully faithful functor.

Equivalently, by Yoneda, we have
a representing object p∆,A (projection)
a universal element v∆,A (diagonal).

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

†: we say Cop I−→ CMultCat satisfies comprehension axiom if for
all ∆ ∈ ob(C), A ∈ ob(I(∆))

(C/∆)op - Set

f - I(dom(f))(·,A{f })

is representable: I(dom(f))(·,A{f })
∼=−→ C/∆(f ,p∆,A).

Call fully faithful if A 7→ p∆,A defines fully faithful functor.

Equivalently, by Yoneda, we have
a representing object p∆,A (projection)
a universal element v∆,A (diagonal).

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

†: we say Cop I−→ CMultCat satisfies comprehension axiom if for
all ∆ ∈ ob(C), A ∈ ob(I(∆))

(C/∆)op - Set

f - I(dom(f))(·,A{f })

is representable: I(dom(f))(·,A{f })
∼=−→ C/∆(f ,p∆,A).

Call fully faithful if A 7→ p∆,A defines fully faithful functor.

Equivalently, by Yoneda, we have
a representing object p∆,A (projection)
a universal element v∆,A (diagonal).

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Semantics of linear dependent types

Nothing surprising here...

syntax semantics
structural core (strict) indexed symmetric multicategory

· ∈ Cop L−→ SMultCat (−{f } := L(f))
with comprehension† (p, v)

I- and ⊗-types L factoring over SMCat
(i.e. L indexed symmetric monoidal category)

(-types L factoring over SMCCat

>- and &-types L factoring over CMCat
0- and ⊕-types L factoring over distr.coCMCat
(ext.) mult. Σ-types left adjoints to −{p} satisfying BC and Frob.
(ext.) mult. Π-types right adjoints to −{p} satisfying BC
(ext.) mult. Id-types left adjoints to −{diag} satisfying BC

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Semantics of linear dependent types

Nothing surprising here...

syntax semantics
structural core (strict) indexed symmetric multicategory

· ∈ Cop L−→ SMultCat (−{f } := L(f))
with comprehension† (p, v)

I- and ⊗-types L factoring over SMCat
(i.e. L indexed symmetric monoidal category)

(-types L factoring over SMCCat
>- and &-types L factoring over CMCat
0- and ⊕-types L factoring over distr.coCMCat

(ext.) mult. Σ-types left adjoints to −{p} satisfying BC and Frob.
(ext.) mult. Π-types right adjoints to −{p} satisfying BC
(ext.) mult. Id-types left adjoints to −{diag} satisfying BC

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Semantics of linear dependent types

Nothing surprising here...

syntax semantics
structural core (strict) indexed symmetric multicategory

· ∈ Cop L−→ SMultCat (−{f } := L(f))
with comprehension† (p, v)

I- and ⊗-types L factoring over SMCat
(i.e. L indexed symmetric monoidal category)

(-types L factoring over SMCCat
>- and &-types L factoring over CMCat
0- and ⊕-types L factoring over distr.coCMCat
(ext.) mult. Σ-types left adjoints to −{p} satisfying BC and Frob.
(ext.) mult. Π-types right adjoints to −{p} satisfying BC
(ext.) mult. Id-types left adjoints to −{diag} satisfying BC

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Semantics of linear dependent types

Nothing surprising here...

syntax semantics
structural core (strict) indexed symmetric multicategory

· ∈ Cop L−→ SMultCat (−{f } := L(f))
with comprehension† (p, v)

I- and ⊗-types L factoring over SMCat
(i.e. L indexed symmetric monoidal category)

(-types L factoring over SMCCat
>- and &-types L factoring over CMCat
0- and ⊕-types L factoring over distr.coCMCat
(ext.) mult. Σ-types left adjoints to −{p} satisfying BC and Frob.
(ext.) mult. Π-types right adjoints to −{p} satisfying BC
(ext.) mult. Id-types left adjoints to −{diag} satisfying BC

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

...except

syntax semantics
!-types comprehension induces unique linear

exponential comonad on each fibre L(∆).
Recall, comprehension defines morphism of indexed categories
onto I ⊂full C/− (equivalence earlier; now monoidal adjunction!)

L(∆)
M∆- I(∆)

A - p∆,A

(+ obvious definition
on morphisms)

!-types iff this has strong monoidal left adjoint L∆:
linear-non-linear adjunction L a M : L −→ I of indexed categories.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

...except

syntax semantics
!-types comprehension induces unique linear

exponential comonad on each fibre L(∆).
Recall, comprehension defines morphism of indexed categories
onto I ⊂full C/− (equivalence earlier; now monoidal adjunction!)

L(∆)
M∆- I(∆)

A - p∆,A

(+ obvious definition
on morphisms)

!-types iff this has strong monoidal left adjoint L∆:
linear-non-linear adjunction L a M : L −→ I of indexed categories.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

...except

syntax semantics
!-types comprehension induces unique linear

exponential comonad on each fibre L(∆).
Recall, comprehension defines morphism of indexed categories
onto I ⊂full C/− (equivalence earlier; now monoidal adjunction!)

L(∆)
M∆- I(∆)

A - p∆,A

(+ obvious definition
on morphisms)

!-types iff this has strong monoidal left adjoint L∆:
linear-non-linear adjunction L a M : L −→ I of indexed categories.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Dependent Seely Isomorphisms?

Theorem (Type Formers in I and Dependent Seely Isomorphisms)

The intuitionistic type formers in I relate to the linear ones in L as
follows (where L a M induces !):

Σ!A!B ∼= L(ΣMAMB) MΠ!BC ∼= ΠMBMC
Id!A(!B) ∼= LIdMA(MB).

I supports Σ- respectively Id-types iff we have “additive” Σ- resp.
Id-types, that is Σ&

A B, Id&
A (B) ∈ ob(L) s.t.

MΣ&
A B ∼= ΣMAMB and hence !Σ&

A B ∼= Σ⊗!A!B resp.
MId&

A (B) ∼= IdMA(MB) and hence !Id&
A (B) ∼= Id⊗!A(!B).

In this situation when modelling DTT in co-Kleisli category L(·)!.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Dependent Seely Isomorphisms?

Theorem (Type Formers in I and Dependent Seely Isomorphisms)

The intuitionistic type formers in I relate to the linear ones in L as
follows (where L a M induces !):

Σ!A!B ∼= L(ΣMAMB) MΠ!BC ∼= ΠMBMC
Id!A(!B) ∼= LIdMA(MB).

I supports Σ- respectively Id-types iff we have “additive” Σ- resp.
Id-types, that is Σ&

A B, Id&
A (B) ∈ ob(L) s.t.

MΣ&
A B ∼= ΣMAMB and hence !Σ&

A B ∼= Σ⊗!A!B resp.
MId&

A (B) ∼= IdMA(MB) and hence !Id&
A (B) ∼= Id⊗!A(!B).

In this situation when modelling DTT in co-Kleisli category L(·)!.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Dependent Seely Isomorphisms?

Theorem (Type Formers in I and Dependent Seely Isomorphisms)

The intuitionistic type formers in I relate to the linear ones in L as
follows (where L a M induces !):

Σ!A!B ∼= L(ΣMAMB) MΠ!BC ∼= ΠMBMC
Id!A(!B) ∼= LIdMA(MB).

I supports Σ- respectively Id-types iff we have “additive” Σ- resp.
Id-types, that is Σ&

A B, Id&
A (B) ∈ ob(L) s.t.

MΣ&
A B ∼= ΣMAMB and hence !Σ&

A B ∼= Σ⊗!A!B resp.
MId&

A (B) ∼= IdMA(MB) and hence !Id&
A (B) ∼= Id⊗!A(!B).

In this situation when modelling DTT in co-Kleisli category L(·)!.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Recall: semantics of linear types
Recall: semantics of dependent types
Semantics of linear dependent types
Soundness & completeness

Soundness & completeness

Theorem (Soundness & Completeness)
The semantics presented is both sound and complete.

Theorem (Failure of Definability)
In line with the tradition of categorical semantics of dependent
types, definability fails. This choice was made to fit in smoothly
with convention.

Corollary (Restoring Definability)
By a slight modification, either by extending the syntax or
restricting the semantics, though, we can easily obtain the
situation of a real internal language.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Cofree type dependency

Theorem
The forgetful functor SMCatSetop

compr
ev1−→ SMCat has a right adjoint

Fam : V 7→ Cat(−,V).

Type formers in Fam(V):
Σ-types V small coproducts that distribute over ⊗
Π-types V small products
Id-types V with initial object (V also has 1⇒only if)
(-types V monoidal closed (note ⊗ then distributes)
0- and ⊕-types V finite distributive coproducts
>- and &-types V finite products
!-types V has small distributive sums of I

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Cofree type dependency

Theorem
The forgetful functor SMCatSetop

compr
ev1−→ SMCat has a right adjoint

Fam : V 7→ Cat(−,V).

Type formers in Fam(V):
Σ-types V small coproducts that distribute over ⊗
Π-types V small products
Id-types V with initial object (V also has 1⇒only if)
(-types V monoidal closed (note ⊗ then distributes)
0- and ⊕-types V finite distributive coproducts
>- and &-types V finite products
!-types V has small distributive sums of I

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Dependency in Coherence Spaces and Games

Theorem (Work with Samson Abramsky and Radha Jagadeesan)
The usual models of linear logic in coherence spaces and games
come with a completely natural notion of dependent type, as well
as Σ-, Π-, and Id-type (extensional if total functions).

Comprehension is not satisfied, however, over co-Kleisli category,
as we don’t have additive Σ-types Σ&

A B.

2 (equivalent) options to get an actual model:
use (fragment of) co-Eilenberg-Moore as category of contexts;
add extra structure to objects so we get additive Σ-types and
get model over modified co-Kleisli.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Dependency in Coherence Spaces and Games

Theorem (Work with Samson Abramsky and Radha Jagadeesan)
The usual models of linear logic in coherence spaces and games
come with a completely natural notion of dependent type, as well
as Σ-, Π-, and Id-type (extensional if total functions).

Comprehension is not satisfied, however, over co-Kleisli category,
as we don’t have additive Σ-types Σ&

A B.

2 (equivalent) options to get an actual model:
use (fragment of) co-Eilenberg-Moore as category of contexts;
add extra structure to objects so we get additive Σ-types and
get model over modified co-Kleisli.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Dependency in Coherence Spaces and Games

Theorem (Work with Samson Abramsky and Radha Jagadeesan)
The usual models of linear logic in coherence spaces and games
come with a completely natural notion of dependent type, as well
as Σ-, Π-, and Id-type (extensional if total functions).

Comprehension is not satisfied, however, over co-Kleisli category,
as we don’t have additive Σ-types Σ&

A B.

2 (equivalent) options to get an actual model:
use (fragment of) co-Eilenberg-Moore as category of contexts;
add extra structure to objects so we get additive Σ-types and
get model over modified co-Kleisli.

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Further directions

Questions:
Intensional ILDTT? Lack of dependent E-rules a problem?
Should we expect natural models in !-co-Kleisli categories? If
not, should we re-evaluate its status as canonical model of
intuitionistic logic?

Can we make sense of additive Σ- and Id-types syntactically?
Relationship with linear predicate logic?

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Further directions

Questions:
Intensional ILDTT? Lack of dependent E-rules a problem?
Should we expect natural models in !-co-Kleisli categories? If
not, should we re-evaluate its status as canonical model of
intuitionistic logic?
Can we make sense of additive Σ- and Id-types syntactically?

Relationship with linear predicate logic?

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Further directions

Questions:
Intensional ILDTT? Lack of dependent E-rules a problem?
Should we expect natural models in !-co-Kleisli categories? If
not, should we re-evaluate its status as canonical model of
intuitionistic logic?
Can we make sense of additive Σ- and Id-types syntactically?
Relationship with linear predicate logic?

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Further directions

Questions:
Intensional ILDTT? Lack of dependent E-rules a problem?
Should we expect natural models in !-co-Kleisli categories? If
not, should we re-evaluate its status as canonical model of
intuitionistic logic?
Can we make sense of additive Σ- and Id-types syntactically?
Relationship with linear predicate logic?

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Further directions

Further models:
Models related to quantum theory.

Hope
We can construct a model of ILDTT to represent quantum
information theory parametrised by classical information theory.

Models in stable homotopy theory.

Hope
Spectra parametrised over spaces form a model of (intensional)
ILDTT, with Σ,Π, Id, !, I,⊗,(,>,&, 0,⊕-types. Here,
! = Σ∞Ω∞. Connections with the Goodwillie calculus?

Matthijs Vákár Splitting the Atom of Dependent Types

Introduction
Syntax

Categorical Semantics
Some models

Cofree type dependency
Dependency in Coherence Spaces and Games
Further directions

Further directions

Further models:
Models related to quantum theory.

Hope
We can construct a model of ILDTT to represent quantum
information theory parametrised by classical information theory.

Models in stable homotopy theory.

Hope
Spectra parametrised over spaces form a model of (intensional)
ILDTT, with Σ,Π, Id, !, I,⊗,(,>,&, 0,⊕-types. Here,
! = Σ∞Ω∞. Connections with the Goodwillie calculus?

Matthijs Vákár Splitting the Atom of Dependent Types

	Introduction
	Motivation
	Programme of research

	Syntax
	Judgements
	Structural rules
	Logical rules
	Some metatheorems

	Categorical Semantics
	Recall: semantics of linear types
	Recall: semantics of dependent types
	Semantics of linear dependent types
	Soundness & completeness

	Some models
	Cofree type dependency
	Dependency in Coherence Spaces and Games
	Further directions

