Splitting the Atom of Dependent Types ...or Linear and Operational Dependent Type Theory

Matthijs Vákár

Oxford, 10 November, 2014

Matthijs Vákár Splitting the Atom of Dependent Types

イロト イポト イヨト

Our Journey

intuitionistic \rightsquigarrow linear \rightsquigarrow operational

Done for propositional logic, external first order quantification, (impredicative) second order quantification.

イロト イポト イヨト イヨト

3

Our Journey

intuitionistic \rightsquigarrow linear \rightsquigarrow operational

Done for propositional logic, external first order quantification, (impredicative) second order quantification.

Subtle for internal first order quantification: dependent type theory.

- 小田 ト イヨト

Our Journey

intuitionistic \rightsquigarrow linear \rightsquigarrow operational

Done for propositional logic, external first order quantification, (impredicative) second order quantification.

Subtle for internal first order quantification: dependent type theory.

Table of contents

Introduction

- Motivation
- Programme of research
- 2 Syntax
 - Judgements
 - Structural rules
 - Logical rules
 - Some metatheorems

3 Categorical Semantics

- Recall: semantics of linear types
- Recall: semantics of dependent types
- Semantics of linear dependent types
- Soundness & completeness

Some models

- Cofree type dependency
- Dependency in Coherence Spaces and Games
- Further directions

Syntax Categorical Semantics Some models Motivation Programme of research

Introduction

My motivation:

- Deepen understanding of HoTT:
 - As foundation of mathematics.
 - As language for homotopy: relation to stable homotopy?
- Computational semantics for dependent types:
 - Game semantics.
 - Stepping stone: coherence space semantics.
 - Generally: models of DTT in !-co-Kleisli or !-co-EM categories.

Syntax Categorical Semantics Some models Motivation Programme of research

Introduction

My motivation:

- Deepen understanding of HoTT:
 - As foundation of mathematics.
 - As language for homotopy: relation to stable homotopy?
- Computational semantics for dependent types:
 - Game semantics.
 - Stepping stone: coherence space semantics.
 - Generally: models of DTT in !-co-Kleisli or !-co-EM categories.
- Dependently Typed Quantum Computing?

Syntax Categorical Semantics Some models Motivation Programme of research

Introduction

My motivation:

- Deepen understanding of HoTT:
 - As foundation of mathematics.
 - As language for homotopy: relation to stable homotopy?
- Computational semantics for dependent types:
 - Game semantics.
 - Stepping stone: coherence space semantics.
 - Generally: models of DTT in !-co-Kleisli or !-co-EM categories.
- Dependently Typed Quantum Computing?
- Find proper linear understanding of predicate logic, including identity.

Syntax Categorical Semantics Some models Motivation Programme of research

Introduction

My motivation:

- Deepen understanding of HoTT:
 - As foundation of mathematics.
 - As language for homotopy: relation to stable homotopy?
- Computational semantics for dependent types:
 - Game semantics.
 - Stepping stone: coherence space semantics.
 - Generally: models of DTT in !-co-Kleisli or !-co-EM categories.
- Dependently Typed Quantum Computing?
- Find proper linear understanding of predicate logic, including identity.

Motivation Programme of research

Programme of research

- Combining linear and dependent types,
 - syntactically and semantically,
 - in sufficient generality to admit models from a variety of fields.

Matthijs Vákár, http://arxiv.org/abs/1405.0033. Submitted to FoSSaCS2015.

Oherence space semantics.

With Samson Abramsky: draft ready.

Game semantics.

With Radha Jagadeesan and Samson Abramsky: draft ready.

Stable homotopy theory.

Planned. Related to Mike Shulman, http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html.

Quantum physics.

Planned. Related to Urs Schreiber, http://arxiv.org/abs/1402.7041

Motivation Programme of research

Programme of research

- Combining linear and dependent types,
 - syntactically and semantically,
 - in sufficient generality to admit models from a variety of fields.

Matthijs Vákár, http://arxiv.org/abs/1405.0033. Submitted to FoSSaCS2015.

Coherence space semantics.

With Samson Abramsky: draft ready.

Game semantics.

With Radha Jagadeesan and Samson Abramsky: draft ready.

Stable homotopy theory.

Planned. Related to Mike Shulman, http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html.

Quantum physics.

Planned. Related to Urs Schreiber, http://arxiv.org/abs/1402.7041

Judgements Structural rules Logical rules Some metatheorems

Syntax

- Primarily designed as very straightforward blend of
 - (intuitionistic) dependent type theory, as in Hofman, Syntax and semantics of dependent types
 - intuitionistic linear type theory, as in *Barber, Dual Intuitionistic Linear Logic.*
- Very similar to Cervesato and Pfenning's LLF plus Σ-types (although developed independently). By constrast, not focussed on specific computational implementation, but meant to be general through modularity.

Judgements Structural rules Logical rules Some metatheorems

Syntax

- Primarily designed as very straightforward blend of
 - (intuitionistic) dependent type theory, as in Hofman, Syntax and semantics of dependent types
 - intuitionistic linear type theory, as in *Barber, Dual Intuitionistic Linear Logic.*
- Very similar to Cervesato and Pfenning's LLF plus Σ-types (although developed independently). By constrast, not focussed on specific computational implementation, but meant to be general through modularity.
- Very similar to upcoming Krishnaswami, Pradic, Benton, which appears to be a conservative extension.

Judgements Structural rules Logical rules Some metatheorems

Syntax

- Primarily designed as very straightforward blend of
 - (intuitionistic) dependent type theory, as in Hofman, Syntax and semantics of dependent types
 - intuitionistic linear type theory, as in *Barber, Dual Intuitionistic Linear Logic.*
- Very similar to Cervesato and Pfenning's LLF plus Σ-types (although developed independently). By constrast, not focussed on specific computational implementation, but meant to be general through modularity.
- Very similar to upcoming Krishnaswami, Pradic, Benton, which appears to be a conservative extension.

Judgements Structural rules Logical rules Some metatheorems

Judgements

Contexts $\Delta; \Xi$ consist of intuitionistic region Δ and linear region Ξ . (Intuitionistic and linear) types in context can depend on **intuitionistic context** to their left.

 $\vdash \Delta; \equiv \text{ctxt}$ $\Delta; \cdot \vdash A \text{ type}$ $\Delta; \equiv \vdash a : A$

 $\Delta; \Xi$ is a valid context A is a type in (intuitionistic) context Δ a is a term of type A in context $\Delta; \Xi$

Judgements Structural rules Logical rules Some metatheorems

Judgements

Contexts Δ ; Ξ consist of intuitionistic region Δ and linear region Ξ . (Intuitionistic and linear) types in context can depend on intuitionistic context to their left.

 $\vdash \Delta : \Xi \text{ ctxt}$ Δ ; $\cdot \vdash A$ type $\Delta: \Xi \vdash a: A$

 Δ : Ξ is a valid context A is a type in (intuitionistic) context Δ a is a term of type A in context $\Delta; \Xi$

 Δ : · $\vdash A \equiv B$ type

 $\Delta: \Xi \vdash a \equiv a': A$

 $\vdash \Delta; \Xi \equiv \Delta'; \Xi' \text{ ctxt} \quad \Delta; \Xi \text{ and } \Delta'; \Xi' \text{ are judgementally equal contexts}$ A and B are judgementally equal types a and a' are judgementally equal terms of type A in context Δ ; Ξ

Judgements Structural rules Logical rules Some metatheorems

Judgements

Contexts Δ ; Ξ consist of intuitionistic region Δ and linear region Ξ . (Intuitionistic and linear) types in context can depend on **intuitionistic context** to their left.

 $\vdash \Delta; \equiv \text{ctxt}$ $\Delta; \cdot \vdash A \text{ type}$ $\Delta; \equiv \vdash a : A$

- Δ ; \equiv is a valid context *A* is a type in (intuitionistic) context Δ *a* is a term of type *A* in context Δ ; \equiv
- $\vdash \Delta; \Xi \equiv \Delta'; \Xi' \text{ ctxt} \\ \Delta; \cdot \vdash A \equiv B \text{ type}$
- $\Delta; \Xi \vdash a \equiv a' : A$
- $\Delta; \equiv$ and $\Delta'; \equiv'$ are judgementally equal contexts A and B are judgementally equal types in (intuitionistic) context Δ a and a' are judgementally equal terms of type A in context $\Delta; \equiv$

・ロト ・日ト ・ヨト ・ヨト

Judgements Structural rules Logical rules Some metatheorems

Structural rules

Rules for context formation:

-; · ctxt C-Emp

 $\begin{array}{c|c} \vdash \Delta; \Xi \operatorname{ctxt} & \Delta; \cdot \vdash A \operatorname{type} \\ \hline \vdash \Delta, x : A; \Xi \operatorname{ctxt} & \operatorname{Int-C-Ext} \\ \hline \vdash \Delta; \Xi \operatorname{ctxt} & \Delta; \cdot \vdash A \operatorname{type} \\ \hline \vdash \Delta; \Xi, x : A \operatorname{ctxt} & \operatorname{Lin-C-Ext} \end{array}$

Variable/axiom rules:

$$\frac{\Delta, x : A, \Delta'; \cdot \operatorname{ctxt}}{\Delta, x : A, \Delta'; \cdot \vdash x : A} \operatorname{Int-Var} \quad \frac{\Delta; x : A \operatorname{ctxt}}{\Delta; x : A \vdash x : A} \operatorname{Lin-Var}$$

・ロト ・回ト ・ヨト ・ヨト

臣

Judgements Structural rules Logical rules Some metatheorems

Structural rules

Rules for context formation:

·; · ctxt C-Emp

 $\begin{array}{c} \vdash \Delta; \equiv \operatorname{ctxt} & \Delta; \cdot \vdash A \operatorname{type} \\ \hline \vdash \Delta, x : A; \equiv \operatorname{ctxt} \end{array} \text{ Int-C-Ext} \\ \\ \hline \begin{array}{c} \vdash \Delta; \equiv \operatorname{ctxt} & \Delta; \cdot \vdash A \operatorname{type} \\ \hline \vdash \Delta; \equiv, x : A \operatorname{ctxt} \end{array} \end{array} \text{ Lin-C-Ext} \end{array}$

Variable/axiom rules:

$$\frac{\Delta, x : A, \Delta'; \cdot \operatorname{ctxt}}{\Delta, x : A, \Delta'; \cdot \vdash x : A} \operatorname{Int-Var} \quad \frac{\Delta; x : A \operatorname{ctxt}}{\Delta; x : A \vdash x : A} \operatorname{Lin-Var}$$

・ロト ・回ト ・ヨト ・ヨト

E

Judgements Structural rules Logical rules Some metatheorems

Weakening:

$$\frac{\Delta, \Delta'; \Xi \vdash \mathcal{J} \quad \Delta; \cdot \vdash A \text{ type}}{\Delta, x : A, \Delta'; \Xi \vdash \mathcal{J}} \text{ Int-Weak}$$

Exchange: the obvious rules in both the Int- and Lin-regions

・ロト ・日ト ・ヨト ・ヨト

E

590

Introduction Judg Syntax Stru Categorical Semantics Logi Some models Som

Judgements Structural rules Logical rules Some metatheorems

Weakening:
$$\frac{\Delta, \Delta'; \Xi \vdash \mathcal{J} \quad \Delta; \cdot \vdash A \text{ type}}{\Delta, x : A, \Delta'; \Xi \vdash \mathcal{J}} \text{ Int-Weak}$$

Exchange: the obvious rules in both the Int- and Lin-regions

Substitution:

$$\frac{\Delta, x : A, \Delta'; \vdash B \text{ type} \qquad \Delta; \vdash a : A}{\Delta, \Delta'[a/x]; \vdash B[a/x] \text{ type}} \text{ Int-Ty-Subst}$$

$$\frac{\Delta, x : A, \Delta'; \Xi \vdash b : B \qquad \Delta; \vdash a : A}{\Delta, \Delta'[a/x]; \Xi[a/x] \vdash b[a/x] : B[a/x]} \text{ Int-Tm-Subst}$$

$$\frac{\Delta; \Xi, x : A \vdash b : B \qquad \Delta; \Xi' \vdash a : A}{\Delta; \Xi, \Xi' \vdash b[a/x] : B} \text{ Lin-Tm-Subst}$$

・ロト ・回ト ・ヨト ・ヨト

Ξ

590

Introduction Judge Syntax Struc Categorical Semantics Logic Some models Some

Judgements Structural rules Logical rules Some metatheorems

Weakening:
$$\frac{\Delta, \Delta'; \Xi \vdash \mathcal{J} \quad \Delta; \cdot \vdash A \text{ type}}{\Delta, x : A, \Delta'; \Xi \vdash \mathcal{J}} \text{ Int-Weak}$$

Exchange: the obvious rules in both the Int- and Lin-regions

$$\frac{\Delta, x : A, \Delta'; \cdot \vdash B \text{ type } \Delta; \cdot \vdash a : A}{\Delta, \Delta'[a/x]; \cdot \vdash B[a/x] \text{ type}} \text{ Int-Ty-Subst}$$
Substitution:
$$\frac{\Delta, x : A, \Delta'; \Xi \vdash b : B \Delta; \cdot \vdash a : A}{\Delta, \Delta'[a/x]; \Xi[a/x] \vdash b[a/x] : B[a/x]} \text{ Int-Tm-Subst}$$

$$\frac{\Delta; \Xi, x : A \vdash b : B \Delta; \Xi' \vdash a : A}{\Delta; \Xi, \Xi' \vdash b[a/x] : B} \text{ Lin-Tm-Subst}$$

and all the obvious rules for judgemental equality...

イロト イヨト イヨト イヨト

臣

Introduction Judgements Syntax Structural rules Categorical Semantics Logical rules Some models Some metatheorems

Weakening:
$$\Delta, \Delta$$

$$\frac{\Delta'; \equiv \vdash \mathcal{J} \qquad \Delta; \cdot \vdash A \text{ type}}{\Delta, x : A, \Delta'; \equiv \vdash \mathcal{J}} \text{ Int-Weak}$$

Exchange: the obvious rules in both the Int- and Lin-regions

$$\frac{\Delta, x : A, \Delta'; \cdot \vdash B \text{ type } \Delta; \cdot \vdash a : A}{\Delta, \Delta'[a/x]; \cdot \vdash B[a/x] \text{ type }} \text{ Int-Ty-Subst}$$
Substitution:
$$\frac{\Delta, x : A, \Delta'; \Xi \vdash b : B \Delta; \cdot \vdash a : A}{\Delta, \Delta'[a/x]; \Xi[a/x] \vdash b[a/x] : B[a/x]} \text{ Int-Tm-Subst}$$

$$\frac{\Delta; \Xi, x : A \vdash b : B \Delta; \Xi' \vdash a : A}{\Delta; \Xi, \Xi' \vdash b[a/x] : B} \text{ Lin-Tm-Subst}$$

and all the obvious rules for judgemental equality...

・ロト ・日ト ・ヨト ・ヨト

臣

Judgements Structural rules Logical rules Some metatheorems

Logical rules

Optional natural deduction style (F-, I-, E-, C-, and U-) rules for

- standard type formers from linear logic, in each intuitionistic context: *I*, ⊗, −∞, !, ⊤, &, 0, ⊕,
- (multiplicative) linear variants of Σ -, Π -, and $\mathrm{Id}\text{-types}$ from dependent type theory,

with all the commutative conversions one would expect.

 $\Sigma, \ \Pi, \ \text{and} \ \operatorname{Id}$ are the ones that require some thought.

Judgements Structural rules Logical rules Some metatheorems

Logical rules

Optional natural deduction style (F-, I-, E-, C-, and U-) rules for

- standard type formers from linear logic, in each intuitionistic context: *I*, ⊗, −∞, !, ⊤, &, 0, ⊕,
- (multiplicative) linear variants of Σ -, Π -, and $\operatorname{Id-types}$ from dependent type theory,

with all the commutative conversions one would expect.

 $\Sigma, \ \Pi, \ \text{and} \ \operatorname{Id}$ are the ones that require some thought.

Obvious additive $\Sigma\text{-types}$ and $\operatorname{Id-types}$ 'boring' as forced to be intuitionistic.

・ロト ・日ト ・ヨト ・ヨト

Judgements Structural rules Logical rules Some metatheorems

Logical rules

Optional natural deduction style (F-, I-, E-, C-, and U-) rules for

- standard type formers from linear logic, in each intuitionistic context: *I*, ⊗, −∞, !, ⊤, &, 0, ⊕,
- (multiplicative) linear variants of Σ -, Π -, and $\operatorname{Id-types}$ from dependent type theory,

with all the commutative conversions one would expect.

 $\Sigma, \ \Pi, \ \text{and} \ \operatorname{Id}$ are the ones that require some thought.

Obvious additive $\Sigma\text{-types}$ and $\mathrm{Id}\text{-types}$ 'boring' as forced to be intuitionistic.

Judgements Structural rules Logical rules Some metatheorems

Multiplicative Σ -types:

•

$$\frac{\Delta, x : A; \vdash B \text{ type}}{\Delta; \vdash \Sigma_{1x:1A}B \text{ type}} \Sigma \text{-} \mathsf{F}$$

$$\frac{\Delta; \vdash A : A \quad \Delta; \Xi \vdash b : B[a/x]}{\Delta; \Xi \vdash ! a \otimes b : \Sigma_{1x:1A}B} \Sigma \text{-} \mathsf{I} \qquad \begin{array}{c} \Delta; \cdot \vdash C \text{ type} \\ \Delta; \Xi \vdash t : \Sigma_{1x:1A}B \\ \Delta, x : A; \Xi', y : B \vdash c : C \\ \overline{\Delta; \Xi, \Xi' \vdash \text{let } t \text{ be } ! x \otimes y \text{ in } c : C} \end{array} \Sigma \text{-} \mathsf{E}$$

and the obvious C- and U- rules.

・ロト ・回ト ・ヨト ・ヨト

Ξ

590

Judgements Structural rules Logical rules Some metatheorems

Multiplicative Π-types:

 $\frac{\Delta, x : A; \cdot \vdash B \text{ type}}{\Delta; \cdot \vdash \Pi_{!x:!A}B \text{ type}} \Pi \text{-} \mathsf{F}$

$$\frac{\Delta, x : A; \Xi \vdash b : B}{\Delta; \Xi \vdash \lambda_{lx:lA}b : \prod_{lx:lA}B} \prod I = I \qquad \frac{\Delta; \cdot \vdash a : A \quad \Delta; \Xi \vdash f : \prod_{lx:lA}B}{\Delta; \Xi \vdash f(!a) : B[a/x]} \prod I = E$$

and the obvious C- and U-rules.

・ロト ・日ト ・ヨト ・ヨト

臣

Judgements Structural rules Logical rules Some metatheorems

Multiplicative Id-types:

and the obvious C- and U-rules.

・ロト ・回ト ・ヨト ・ヨト

Ξ

590

Judgements Structural rules Logical rules Some metatheorems

Some metatheorems

Theorem (Consistency)

The full calculus with all logical rules is consistent, both as a logic and type theory, as we have (several) non-trivial models.

<ロト < 団 > < 巨 > < 巨 > -

Judgements Structural rules Logical rules Some metatheorems

Theorem (Interdefinable connectives)

If x : A is not free in B, then

 $\Sigma_{!x:!A}B = !A \otimes B,$

 $\Pi_{!x:!A}B = !A \multimap B.$

In particular,

 $\Sigma_{!x:!A}I = !A.$

臣

Judgements Structural rules Logical rules Some metatheorems

Theorem (Interdefinable connectives)

If x : A is not free in B, then

 $\Sigma_{!x:!A}B = !A \otimes B$,

 $\Pi_{!x:!A}B = !A \multimap B.$

In particular,

 $\Sigma_{!x:!A}I = !A.$

If 2 is a type of Booleans with dependent elimination rule, then

 $\Sigma_{!x:!2}B = B(\mathrm{tt}) \oplus B(\mathrm{ff}),$

 $\Pi_{!x:!2}B = B(tt)\&B(ff).$

Judgements Structural rules Logical rules Some metatheorems

Theorem (Interdefinable connectives)

If x : A is not free in B, then

$$\Sigma_{!x:!A}B = !A \otimes B,$$

$$\Pi_{!x:!A}B = !A \multimap B.$$

In particular,

$$\Sigma_{!x:!A}I = !A.$$

If 2 is a type of Booleans with dependent elimination rule, then

$$\Sigma_{!x:!2}B = B(\mathrm{tt}) \oplus B(\mathrm{ff}),$$

$$\Pi_{!x:!2}B = B(tt)\&B(ff).$$

イロト イポト イヨト イヨト

E

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Categorical Semantics

First sound and complete categorical semantics for linear dependent types. It fits in with existing traditions.

Designed to be a mixture of (c.f. syntax)

- Benton's linear-non-linear adjunction [semantics for linear types],
- Split comprehension categories, viewed as indexed categories [semantics for dependent types].

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Categorical Semantics

First sound and complete categorical semantics for linear dependent types. It fits in with existing traditions.

Designed to be a mixture of (c.f. syntax)

- Benton's linear-non-linear adjunction [semantics for linear types],
- Split comprehension categories, viewed as indexed categories [semantics for dependent types].

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Recall: semantics of (intuitionistic) linear types

syntax	semantics
structural core	symmetric multicategory ${\cal D}$
<i>I</i> - and ⊗-types	${\mathcal D}$ equivalent to symmetric monoidal category
	${\mathcal D}$ symmetric monoidal closed
op- and &-types	finite products in ${\cal D}$
0- and \oplus -types	finite distributive coproducts in ${\cal D}$
!-types	linear exponential comonad † $(!, \mathrm{der}, \delta)$ on $\mathcal D$,

† i.e. ! is a comonad that arises from a linear-non-linear adjunction: monoidal adjunction to a cartesian monoidal category.

$$(\mathcal{C},1,\times) \xrightarrow{L} (\mathcal{D},I,\otimes)$$

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Recall: semantics of (intuitionistic) linear types

syntax	semantics
structural core	symmetric multicategory ${\cal D}$
<i>I</i> - and ⊗-types	${\mathcal D}$ equivalent to symmetric monoidal category
	${\mathcal D}$ symmetric monoidal closed
op- and &-types	finite products in ${\cal D}$
0- and \oplus -types	finite distributive coproducts in ${\cal D}$
!-types	linear exponential comonad † $(!, \mathrm{der}, \delta)$ on $\mathcal D$,

† i.e. ! is a comonad that arises from a linear-non-linear adjunction: monoidal adjunction to a cartesian monoidal category.

$$(\mathcal{C},1,\times) \xrightarrow{L} (\mathcal{D},I,\otimes)$$

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Recall: semantics of dependent types

Use an equivalent of categories with families:

syntax	semantics
structural core	(strict) indexed cartesian multicategory
	$\cdot \in \mathcal{C}^{op} \xrightarrow{\mathcal{I}} \mathrm{CMultCat} (-\{f\} := \mathcal{I}(f))$
	with fully faithful comprehension [†] (\mathbf{p}, \mathbf{v})
1- and $ imes$ -types	${\mathcal I}$ factoring over CMCat
	(i.e. $\mathcal I$ indexed cartesian monoidal category)
\rightarrow -types	${\mathcal I}$ factoring over CCCat

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Recall: semantics of dependent types

Use an equivalent of categories with families:

syntax	semantics
structural core	(strict) indexed cartesian multicategory
	$\cdot \in \mathcal{C}^{op} \xrightarrow{\mathcal{I}} \mathrm{CMultCat} (-\{f\} := \mathcal{I}(f))$
	with <i>fully faithful</i> comprehension [†] (\mathbf{p}, \mathbf{v})
1- and $ imes$ -types	${\mathcal I}$ factoring over CMCat
	(i.e. \mathcal{I} indexed cartesian monoidal category)
ightarrow-types	${\mathcal I}$ factoring over CCCat
(extensional) Σ-types	left adjoints to $-\{{f p}\}$ satisfying
	Beck-Chevalley and Frobenius reciprocity
(extensional) П-types	right adjoints to $-\{\mathbf{p}\}$ satisfying BC
(extensional) Id-types	left adjoints to $-\{ ext{diag}\}$ satisfying BC

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Recall: semantics of dependent types

Use an equivalent of categories with families:

syntax	semantics
structural core	(strict) indexed cartesian multicategory
	$\cdot \in \mathcal{C}^{op} \xrightarrow{\mathcal{I}} \mathrm{CMultCat} (-\{f\} := \mathcal{I}(f))$
	with <i>fully faithful</i> comprehension [†] (\mathbf{p}, \mathbf{v})
1- and $ imes$ -types	${\mathcal I}$ factoring over CMCat
	(i.e. \mathcal{I} indexed cartesian monoidal category)
\rightarrow -types	${\mathcal I}$ factoring over CCCat
(extensional) Σ -types	left adjoints to $-\{\mathbf{p}\}$ satisfying
	Beck-Chevalley and Frobenius reciprocity
(extensional) П-types	right adjoints to $-\{\mathbf{p}\}$ satisfying BC
(extensional) Id -types	left adjoints to $-\{ ext{diag}\}$ satisfying BC

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

†: we say $C^{op} \xrightarrow{\mathcal{I}} CMultCat$ satisfies *comprehension axiom* if for all $\Delta \in ob(C)$, $A \in ob(\mathcal{I}(\Delta))$

$$(\mathcal{C}/\Delta)^{op} \longrightarrow Set$$

 $f \longmapsto \mathcal{I}(\operatorname{dom}(f))(\cdot, A\{f\})$

is representable: $\mathcal{I}(\operatorname{dom}(f))(\cdot, A\{f\}) \stackrel{\cong}{\longrightarrow} \mathcal{C}/\Delta(f, \mathbf{p}_{\Delta, A}).$

Call *fully faithful* if $A \mapsto \mathbf{p}_{\Delta,A}$ defines fully faithful functor.

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

†: we say $\mathcal{C}^{op} \xrightarrow{\mathcal{I}} CMultCat$ satisfies *comprehension axiom* if for all $\Delta \in ob(\mathcal{C})$, $A \in ob(\mathcal{I}(\Delta))$

$$(\mathcal{C}/\Delta)^{op} \longrightarrow Set$$

$$f \longmapsto \mathcal{I}(\operatorname{dom}(f))(\cdot, A\{f\})$$

is representable: $\mathcal{I}(\operatorname{dom}(f))(\cdot, A\{f\}) \stackrel{\cong}{\longrightarrow} \mathcal{C}/\Delta(f, \mathbf{p}_{\Delta, A}).$

Call *fully faithful* if $A \mapsto \mathbf{p}_{\Delta,A}$ defines fully faithful functor.

Equivalently, by Yoneda, we have

- a representing object $\mathbf{p}_{\Delta,A}$ (projection)
- a universal element $\mathbf{v}_{\Delta,A}$ (diagonal).

Introduction Syntax Rec Categorical Semantics Ser Some models Sou

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

†: we say $\mathcal{C}^{op} \xrightarrow{\mathcal{I}} CMultCat$ satisfies *comprehension axiom* if for all $\Delta \in ob(\mathcal{C})$, $A \in ob(\mathcal{I}(\Delta))$

$$(\mathcal{C}/\Delta)^{op} \longrightarrow Set$$

$$f \longmapsto \mathcal{I}(\operatorname{dom}(f))(\cdot, A\{f\})$$

is representable: $\mathcal{I}(\operatorname{dom}(f))(\cdot, A\{f\}) \stackrel{\cong}{\longrightarrow} \mathcal{C}/\Delta(f, \mathbf{p}_{\Delta, A}).$

Call *fully faithful* if $A \mapsto \mathbf{p}_{\Delta,A}$ defines fully faithful functor.

Equivalently, by Yoneda, we have

- a representing object $\mathbf{p}_{\Delta,A}$ (projection)
- a universal element $\mathbf{v}_{\Delta,A}$ (diagonal).

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Semantics of linear dependent types

Nothing surprising here ...

syntax	semantics
structural core	(strict) indexed symmetric multicategory
	$\cdot \in \mathcal{C}^{op} \xrightarrow{\mathcal{L}} \mathrm{SMultCat} (-\{f\} := \mathcal{L}(f))$
	with comprehension [†] (\mathbf{p}, \mathbf{v})
<i>I</i> - and ⊗-types	${\cal L}$ factoring over ${ m SMCat}$
	(i.e. \mathcal{L} indexed symmetric monoidal category)
	$\mathcal L$ factoring over SMCCat

イロト イボト イヨト イヨト

臣

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Semantics of linear dependent types

Nothing surprising here ...

syntax	semantics
structural core	(strict) indexed symmetric multicategory
	$\cdot \in \mathcal{C}^{op} \xrightarrow{\mathcal{L}} \mathrm{SMultCat} (-\{f\} := \mathcal{L}(f))$
	with comprehension [†] (\mathbf{p}, \mathbf{v})
<i>I</i> - and ⊗-types	${\cal L}$ factoring over ${ m SMCat}$
	(i.e. \mathcal{L} indexed symmetric monoidal category)
	${\cal L}$ factoring over ${ m SMCCat}$
op- and &-types	${\cal L}$ factoring over ${ m CMCat}$
0- and \oplus -types	$\mathcal L$ factoring over distr.coCMCat

イロト イボト イヨト イヨト

臣

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Semantics of linear dependent types

Nothing surprising here ...

syntax	semantics
structural core	(strict) indexed symmetric multicategory
	$\cdot \in \mathcal{C}^{op} \xrightarrow{\mathcal{L}} \mathrm{SMultCat} (-\{f\} := \mathcal{L}(f))$
	with comprehension [†] (\mathbf{p}, \mathbf{v})
<i>I</i> - and ⊗-types	${\cal L}$ factoring over ${ m SMCat}$
	(i.e. \mathcal{L} indexed symmetric monoidal category)
—∘-types	${\cal L}$ factoring over ${ m SMCCat}$
op- and &-types	${\cal L}$ factoring over ${ m CMCat}$
0- and \oplus -types	${\cal L}$ factoring over ${ m distr.coCMCat}$
(ext.) mult. Σ -types	left adjoints to $-\{\mathbf{p}\}$ satisfying BC and Frob.
(ext.) mult. П-types	right adjoints to $-\{\mathbf{p}\}$ satisfying BC
(ext.) mult. Id-types	left adjoints to $-{\text{diag}}$ satisfying BC

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Semantics of linear dependent types

Nothing surprising here ...

syntax	semantics
structural core	(strict) indexed symmetric multicategory
	$\cdot \in \mathcal{C}^{op} \xrightarrow{\mathcal{L}} \mathrm{SMultCat} (-\{f\} := \mathcal{L}(f))$
	with comprehension [†] (\mathbf{p}, \mathbf{v})
<i>I</i> - and ⊗-types	${\cal L}$ factoring over ${ m SMCat}$
	(i.e. \mathcal{L} indexed symmetric monoidal category)
	${\cal L}$ factoring over ${ m SMCCat}$
op- and &-types	${\cal L}$ factoring over ${ m CMCat}$
0- and \oplus -types	${\cal L}$ factoring over ${ m distr.coCMCat}$
(ext.) mult. Σ -types	left adjoints to $-\{\mathbf{p}\}$ satisfying BC and Frob.
(ext.) mult. П-types	right adjoints to $-\{\mathbf{p}\}$ satisfying BC
(ext.) mult. Id-types	left adjoints to $-{\text{diag}}$ satisfying BC
	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

...except

syntax	semantics
!-types	comprehension induces unique linear
	exponential comonad on each fibre $\mathcal{L}(\Delta)$.

Recall, comprehension defines morphism of indexed categories onto $\mathcal{I} \subset_{\rm full} \mathcal{C}/-$ (equivalence earlier; now monoidal adjunction!)

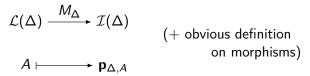
Introduction Syntax Reca Categorical Semantics Some models Sources

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

...except

syntax	semantics
!-types	comprehension induces unique linear
	exponential comonad on each fibre $\mathcal{L}(\Delta)$.

Recall, comprehension defines morphism of indexed categories onto $\mathcal{I} \subset_{full} \mathcal{C}/-$ (equivalence earlier; now monoidal adjunction!)



!-types iff this has strong monoidal left adjoint L_{Δ} : linear-non-linear adjunction $L \dashv M : \mathcal{L} \longrightarrow \mathcal{I}$ of indexed categories.

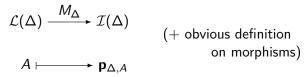
Introduction Syntax Recal Categorical Semantics Some models Source

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

...except

syntax	semantics
!-types	comprehension induces unique linear
	exponential comonad on each fibre $\mathcal{L}(\Delta)$.

Recall, comprehension defines morphism of indexed categories onto $\mathcal{I} \subset_{full} \mathcal{C}/-$ (equivalence earlier; now monoidal adjunction!)



!-types iff this has strong monoidal left adjoint L_{Δ} : linear-non-linear adjunction $L \dashv M : \mathcal{L} \longrightarrow \mathcal{I}$ of indexed categories.

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Dependent Seely Isomorphisms?

Theorem (Type Formers in $\mathcal I$ and Dependent Seely Isomorphisms)

The intuitionistic type formers in \mathcal{I} relate to the linear ones in \mathcal{L} as follows (where $L \dashv M$ induces !):

$$\begin{split} \Sigma_{!A}!B &\cong L(\Sigma_{MA}MB) \qquad M\Pi_{!B}C \cong \Pi_{MB}MC \\ \mathrm{Id}_{!A}(!B) &\cong L\mathrm{Id}_{MA}(MB). \end{split}$$

 \mathcal{I} supports Σ - respectively Id-types iff we have "additive" Σ - resp. Id-types, that is $\Sigma^{\&}_{A}B$, $\mathrm{Id}^{\&}_{A}(B) \in \mathrm{ob}(\mathcal{L})$ s.t.

 $M\Sigma_A^{\&}B \cong \Sigma_{MA}MB$ and hence $!\Sigma_A^{\&}B \cong \Sigma_{!A}^{\otimes}!B$ resp. $M\mathrm{Id}_A^{\&}(B) \cong \mathrm{Id}_{MA}(MB)$ and hence $!\mathrm{Id}_A^{\&}(B) \cong \mathrm{Id}_{!A}^{\otimes}(!B).$

In this situation when modelling DTT in co-Kleisli category $\mathcal{L}(\cdot)_{!}$.

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Dependent Seely Isomorphisms?

Theorem (Type Formers in $\mathcal I$ and Dependent Seely Isomorphisms)

The intuitionistic type formers in \mathcal{I} relate to the linear ones in \mathcal{L} as follows (where $L \dashv M$ induces !):

 $\Sigma_{!A}!B \cong L(\Sigma_{MA}MB) \qquad M\Pi_{!B}C \cong \Pi_{MB}MC$ $\mathrm{Id}_{!A}(!B) \cong L\mathrm{Id}_{MA}(MB).$

 \mathcal{I} supports Σ - respectively Id-types iff we have "additive" Σ - resp. Id-types, that is $\Sigma^{\&}_{A}B$, $\mathrm{Id}^{\&}_{A}(B) \in \mathrm{ob}(\mathcal{L})$ s.t.

 $M\Sigma_A^{\&}B \cong \Sigma_{MA}MB$ and hence $!\Sigma_A^{\&}B \cong \Sigma_{!A}^{\otimes}!B$ resp. $M\mathrm{Id}_A^{\&}(B) \cong \mathrm{Id}_{MA}(MB)$ and hence $!\mathrm{Id}_A^{\&}(B) \cong \mathrm{Id}_{!A}^{\otimes}(!B)$.

In this situation when modelling DTT in co-Kleisli category $\mathcal{L}(\cdot)_{!}$.

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Dependent Seely Isomorphisms?

Theorem (Type Formers in ${\mathcal I}$ and Dependent Seely Isomorphisms)

The intuitionistic type formers in \mathcal{I} relate to the linear ones in \mathcal{L} as follows (where $L \dashv M$ induces !):

 $\Sigma_{!A}!B \cong L(\Sigma_{MA}MB) \qquad M\Pi_{!B}C \cong \Pi_{MB}MC$ $\mathrm{Id}_{!A}(!B) \cong L\mathrm{Id}_{MA}(MB).$

 \mathcal{I} supports Σ - respectively Id-types iff we have "additive" Σ - resp. Id-types, that is $\Sigma^{\&}_{A}B$, $\mathrm{Id}^{\&}_{A}(B) \in \mathrm{ob}(\mathcal{L})$ s.t.

 $M\Sigma_A^{\&}B \cong \Sigma_{MA}MB$ and hence $!\Sigma_A^{\&}B \cong \Sigma_{!A}^{\otimes}!B$ resp. $M\mathrm{Id}_A^{\&}(B) \cong \mathrm{Id}_{MA}(MB)$ and hence $!\mathrm{Id}_A^{\&}(B) \cong \mathrm{Id}_{!A}^{\otimes}(!B)$.

In this situation when modelling DTT in co-Kleisli category $\mathcal{L}(\cdot)_!$.

Recall: semantics of linear types Recall: semantics of dependent types Semantics of linear dependent types Soundness & completeness

Soundness & completeness

Theorem (Soundness & Completeness)

The semantics presented is both sound and complete.

Theorem (Failure of Definability)

In line with the tradition of categorical semantics of dependent types, definability fails. This choice was made to fit in smoothly with convention.

Corollary (Restoring Definability)

By a slight modification, either by extending the syntax or restricting the semantics, though, we can easily obtain the situation of a real internal language.

イロト イボト イヨト イヨト

3

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Cofree type dependency

Theorem

Id-types

The forgetful functor $\operatorname{SMCat}_{\operatorname{compr}}^{\operatorname{Set}^{op}} \xrightarrow{\operatorname{ev}_1} \operatorname{SMCat}$ has a right adjoint $\operatorname{Fam} : \mathcal{V} \mapsto \operatorname{Cat}(-, \mathcal{V}).$

- *Type formers in* $Fam(\mathcal{V})$ *:*
 - Σ -types \mathcal{V} small coproducts that distribute over \otimes
 - V small products
 - ${\mathcal V}$ with initial object (${\mathcal V}$ also has 1 \Rightarrow only if)
 - $\mathcal V$ monoidal closed (note \otimes then distributes)
 - 0- and \oplus -types \mathcal{V} finite distributive coproducts
 - op and &-types $\mathcal V$ finite products
 - ${\cal V}$ has small distributive sums of I

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Cofree type dependency

Theorem

The forgetful functor $\operatorname{SMCat}_{\operatorname{compr}}^{\operatorname{Set}^{op}} \xrightarrow{\operatorname{ev}_1} \operatorname{SMCat}$ has a right adjoint $\operatorname{Fam} : \mathcal{V} \mapsto \operatorname{Cat}(-, \mathcal{V}).$

- *Type formers in* $Fam(\mathcal{V})$ *:*
- $\begin{array}{lll} \Sigma\mbox{-types} & \mathcal{V} \mbox{ small coproducts that distribute over }\otimes \\ \Pi\mbox{-types} & \mathcal{V} \mbox{ small products} \\ \mbox{Id-types} & \mathcal{V} \mbox{ with initial object (}\mathcal{V} \mbox{ also has 1} \Rightarrow \mbox{only if}) \\ \mbox{-} \mbox{-} \mbox{-types} & \mathcal{V} \mbox{ monoidal closed (note }\otimes \mbox{ then distributes}) \\ \mbox{0- and } \oplus\mbox{-types} & \mathcal{V} \mbox{ finite distributive coproducts} \\ \mbox{T- and } \&\mbox{-types} & \mathcal{V} \mbox{ finite products} \\ \mbox{!-types} & \mathcal{V} \mbox{ has small distributive sums of I} \end{array}$

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Dependency in Coherence Spaces and Games

Theorem (Work with Samson Abramsky and Radha Jagadeesan)

The usual models of linear logic in coherence spaces and games come with a completely natural notion of dependent type, as well as Σ -, Π -, and Id-type (extensional if total functions).

Comprehension is not satisfied, however, over co-Kleisli category, as we don't have additive Σ -types $\Sigma^{\&}_{A}B$.

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Dependency in Coherence Spaces and Games

Theorem (Work with Samson Abramsky and Radha Jagadeesan)

The usual models of linear logic in coherence spaces and games come with a completely natural notion of dependent type, as well as Σ -, Π -, and Id-type (extensional if total functions).

Comprehension is not satisfied, however, over co-Kleisli category, as we don't have additive Σ -types $\Sigma_A^{\&}B$.

2 (equivalent) options to get an actual model:

- use (fragment of) co-Eilenberg-Moore as category of contexts;
- add extra structure to objects so we get additive Σ-types and get model over modified co-Kleisli.

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Dependency in Coherence Spaces and Games

Theorem (Work with Samson Abramsky and Radha Jagadeesan)

The usual models of linear logic in coherence spaces and games come with a completely natural notion of dependent type, as well as Σ -, Π -, and Id-type (extensional if total functions).

Comprehension is not satisfied, however, over co-Kleisli category, as we don't have additive Σ -types $\Sigma_A^{\&}B$.

2 (equivalent) options to get an actual model:

- use (fragment of) co-Eilenberg-Moore as category of contexts;
- add extra structure to objects so we get additive Σ-types and get model over modified co-Kleisli.

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Further directions

Questions:

- Intensional ILDTT? Lack of dependent E-rules a problem?
- Should we expect natural models in !-co-Kleisli categories? If not, should we re-evaluate its status as canonical model of intuitionistic logic?

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Further directions

Questions:

- Intensional ILDTT? Lack of dependent E-rules a problem?
- Should we expect natural models in !-co-Kleisli categories? If not, should we re-evaluate its status as canonical model of intuitionistic logic?
- Can we make sense of additive Σ and Id-types syntactically?

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Further directions

Questions:

- Intensional ILDTT? Lack of dependent E-rules a problem?
- Should we expect natural models in !-co-Kleisli categories? If not, should we re-evaluate its status as canonical model of intuitionistic logic?
- Can we make sense of additive Σ and Id-types syntactically?
- Relationship with linear predicate logic?

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Further directions

Questions:

- Intensional ILDTT? Lack of dependent E-rules a problem?
- Should we expect natural models in !-co-Kleisli categories? If not, should we re-evaluate its status as canonical model of intuitionistic logic?
- \bullet Can we make sense of additive $\Sigma\text{-}$ and $\operatorname{Id-types}$ syntactically?
- Relationship with linear predicate logic?

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Further directions

Further models:

• Models related to quantum theory.

Hope

We can construct a model of ILDTT to represent quantum information theory parametrised by classical information theory.

• Models in stable homotopy theory.

Hope

Spectra parametrised over spaces form a model of (intensional) ILDTT, with $\Sigma, \Pi, \mathrm{Id}, !, I, \otimes, -\infty, \top, \&, 0, \oplus$ -types. Here, $! = \Sigma^{\infty} \Omega^{\infty}$. Connections with the Goodwillie calculus?

Cofree type dependency Dependency in Coherence Spaces and Games Further directions

Further directions

Further models:

• Models related to quantum theory.

Hope

We can construct a model of ILDTT to represent quantum information theory parametrised by classical information theory.

• Models in stable homotopy theory.

Hope

Spectra parametrised over spaces form a model of (intensional) ILDTT, with $\Sigma, \Pi, \mathrm{Id}, !, I, \otimes, -\infty, \top, \&, 0, \oplus$ -types. Here, $! = \Sigma^{\infty} \Omega^{\infty}$. Connections with the Goodwillie calculus?