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Abstract

Branes play an important role in String Theory as dynamical, extended objects
where open strings can attach their endpoints. An effective description of
string theory at low energies is provided by supergravity. By looking at the
effective description, the branes become very massive and they appear as non-
perturbative objects, no longer partaking in any of the dynamics and only
playing a role in shaping the background. In this thesis we look at two different
aspects of branes in supergravity.

First, we will consider a D3-brane world-volume set in various supergravity
backgrounds. Because the brane world-volume inherits part of the symmetries
of the background as global symmetries, different backgrounds lead to different
world-volume theories. Our motivation for studying these set-ups stems from the
study of higher derivative terms in supergravity and their construction. Recently,
the D3-brane world-volume theory embedded in a ten-dimensional Minkowski
background was studied and used to construct supersymmetric higher invariants.
This was done by deforming the action and supersymmetry transformation rules
of the D = 4, N = 4 Maxwell multiplet. The resulting theory has 16 deformed
Maxwell multiplet supersymmetries and 16 Volkov-Akulov type non-linear
supersymmetries. To extend this rigid supersymmetric result to supergravity
one would like to use superconformal methods, however, in order to use these
methods, we need to determine the superconformal transformation rules of the
deformed Maxwell multiplet. An interesting question that arises immediately
is how the Volkov-Akulov supersymmetry of the deformed 16 + 16 Maxwell
multiplet are related to the S-supersymmetry of the conformal Maxwell multiplet.
The superconformal transformation rules can be obtained by embedding the
world-volume in an AdS5 × S5 background. We investigate and establish this
relation, and, in addition, propose a method for constructing higher-derivative
invariants by using this relation between S-supersymmetry and Volkov-Akulov
symmetry.

Secondly, we consider the effect of branes on their background. Our motivation
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vi ABSTRACT

originates in applying the AdS/CFT correspondence and other gauge/gravity
dualities. They provide an excellent framework to study strongly coupled
quantum field theories in terms of their (weakly coupled) gravitational duals.
Recent work, in the context of 5-dimensional gauge theories and their gravity
duals, has compared the partition function of the gauge theory with the result
from the gravity dual, as well as the vacuum expectation value of the half-BPS
Wilson line for totally symmetric and anti-symmetric representations. In either
case the vacuum expectation value on the gravity side can be well approximated
by probe branes, branes that do not affect their background. To go further
than the probe approximation, one must include the effect of the branes on
the background, their backreaction. In terms of branes, the background 5-
dimensional gauge theory arises as the low energy limit of a configuration of
branes consisting of D4-branes and D8-branes along with an O8 orientifold
projection. Introducing a Wilson line in the fundamental representation
corresponds to introducing a fundamental string perpendicular to the D4/D8-
brane system. Rank M symmetric representations arise from introducing an
additional D4-brane and stretching M fundamental strings between the D4-
brane and the D4/D8-brane stack. Rank M anti-symmetric representations
arise by introducing a perpendicular D4-brane and M fundamental strings.
In general, the BPS-Wilson line reduces the superconformal symmetry of the
5-dimensional gauge theory from F (4; 2)×SU(2) to D(2, 1; 2; 1)×SO(4). With
the task of finding backreacted geometries describing these Wilson lines in mind,
we study general solutions of massive IIA supergravity with D(2, 1; γ; 1)×SO(4)
symmetry. We give a partial reduction and integration of the BPS equations,
including obtaining algebraic expressions for the metric factors in terms of
spinor bilinears as well as solutions in special cases of symmetry enhancement.



Beknopte samenvatting

Branen spelen een belangrijke rol in snaartheorie als dynamische objecten waar
open snaren op kunnen eindigen. Een effectieve beschrijving van snaartheorie
wordt gegeven door supergravitatie. Door een effectieve beschrijving te
beschouwen worden de branen zeer massief en komen ze voor in supergravitatie
als niet-perturbatieve objecten. Branen nemen niet langer deel aan de dynamica
van de theorie maar geven wel nog vorm aan de achtergrond. In deze thesis
kijken we naar twee verschillende aspecten van branen in supergravitatie. We
beginnen echter met de introductie van wat achtergrond materiaal.

We beschrijven p-branen als supergravitatie-oplossingen, de acties van hun
wereldvolume en de relatie tussen hun inbedding in de achtergrond en het
behoud van een deel van de symmetrieën van de achtergrond op het wereldvolume.
We beschouwen de constructie van doorkruisende braan configuraties, in het
bijzonder het D4/D8-braan systeem dat we verderop in deze thesis bestuderen.
Deze supergravitatie theorieën bestaan in tien of elf ruimte-tijd dimensies. We
zullen kort in gaan op de relatie tussen deze theorieën en snaartheorie, zodat
we in staat zijn om de AdS/CFT-correspondentie te formuleren in zijn originele
vorm: een dualiteit tussen type IIB snaartheorie op AdS5 × S5 en D = 4,
N = 4 super Yang Mills theorie met ijkgroep SU(N). Het doel hier is om
een aantal concepten van de AdS/CFT-correspondentie te introduceren door
een paar voorbeelden te bekijken. We formuleren de algemenere ijk/gravitatie
correspondentie, inclusief de identificatie van velden en operatoren, en bij
wijze van voorbeeld berekenen we de 2-punts functie van een veldentheorie
gebruikmakende van de duale gravitatie theorie. Tot slot, bespreken we Wilson-
lijnen omdat deze een cruciaal deel uit maken van de motivatie voor een deel
van het werk dat verderop gepresenteerd wordt.

Zoals hierboven vermeld zijn we geïnteresserd in twee verschillende aspecten
van branen in supergravitatie. Eerst zullen we D3-branen in verschillende
supergravitatie achtergronden beschouwen. Omdat het wereldvolume van
het braan een deel van de symmetrieën van het braan overneemt als
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globale symmetrieën, leiden de verschillende achtergronden tot verschillende
wereldvolume theorieën. Onze motivatie voor het bestuderen van deze set-up
vind zijn oorsprong in het bestuderen van hogere orde afgeleide termen in
supergravitatie en hun constructie. Recent werd het D3-braan wereldvolume
bestudeerd in een tien-dimensionale Minkowski achtergrond en gebruikt om
supersymmetrische hogere orde invarianten te construeren door de actie en
de supersymmetrietransformaties van het D = 4, N = 4 Maxwell multiplet
te vervormen. De resulterende theorie heeft 16 vervormde Maxwell multiplet
supersymmetrieën en 16 niet-lineaire supersymmetrieën van het Volkov-Akulov
type. Om deze rigide resultaten uit te breiden naar supergravitatie zou men
superconforme methoden willen gebruiken. Maar om deze methoden te gebruiken
hebben we de superconforme transformatie-regels nodig van het vervormde
Maxwell multiplet. Een interessante vraag die meteen opduikt is hoe de
Volkov-Akulov supersymmetrie van het vervormde 16+16 Maxwell multiplet
gerelateerd is met de S-supersymmetrie van het conforme Maxwell multiplet.
De superconforme transformatieregels kunnen we vinden door het wereldvolume
van het braan in een AdS5 × S5 achtergrond te plaatsen. We bestuderen en
vinden dit verband, en gebaseerd op dit verband tussen S-supersymmetrie
en Volkov-Akulov symmetrie, stellen ook een methode voor om hogere-orde
invarianten te construeren.

Hiernaast beschouwen we ook het effect van branen op hun achtergrond. Onze
motivatie kadert in de toepassing van de AdS/CFT-correspondentie en andere
ijk/gravitatie theorieën. Deze geven een ideale toolkit om sterk gekoppelde
kwantumveldentheorieën te bestuderen in termen van hun (zwak gekoppelde)
duale gravitatie-theorieën. Recent werk in de context van 5-dimensionale
ijktheorieën en hun duale gravitatie-theorieën vergelijkt de partitie functie van
de ijktheorie met het resultaat van de gravitatie-theorie. Ook de vacuüm-
verwachtingswaarde van de half-BPS Wilson lijn voor totaal symmetrische en
totaal antisymmetrische representaties zijn met succes vergeleken. In beide
gevallen kan de vacuum verwachtingswaarde aan de gravitationele kant goed
benaderd worden door het gebruik van probe-branen, branen die geen invloed
hebben op hun achtergrond. Om een exacter resultaat te verkrijgen moet
men rekening houden met de invloed van de branen op de achtergrond, de
backreaction. In termen van branen verkrijgen we de 5-dimensionale ijktheorie
als de lage energie limiet van een configuratie van branen die bestaat uit D4-
branen en D8-branen samen met een O8-oriëntifold projectie. De introductie
van een Wilson lijn in de fundamentele representatie correspondeert met
de introductie van een fundamentele snaar loodrecht op het D4/D8-braan
systeem. Rang M symmetrische representaties ontstaan door het introduceren
van een extra D4-braan en dan M fundamentele snaren op te spannen tussen
dit D4-braan en het D4/D8-braan systeem. De rang M antisymmetrische
representaties verkrijgen we door de introductie van D4-braan dat loodrecht
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staat op de D4/D8 configuratie en dan hiertussen M fundamentele snaren op
te spannen. In het algemeen reduceert de introductie van de Wilson lijn de
superconforme symmetrie van de 5-dimensionale ijktheorie van F (4; 2)× SU(2)
naar D(2, 1; 2; 1) × SO(4). Met de taak van het zoeken naar achtergronden
die de backreaction van deze configuraties bevatten in het achterhoofd,
bestuderen we algemene oplossingen van massieve IIA supergravitatie met
D(2, 1; γ; 1)× SO(4) symmetrie. We geven een partiële reductie en integratie
van de BPS vergelijkingen, inclusief algebraïsche uitdrukkingen voor de factoren
in de metriek in termen van spinor bilineairen en oplossingen in speciale gevallen
van versterkte symmetrie.
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Chapter 1

Introduction

1.1 Twentieth Century Physics

In the twentieth century, physicists have been extremely successful in formulating
physical theories that are capable of describing, explaining and predicting
physical phenomena, ranging from the subatomic scale to the scale of galaxies
and our universe. The formulation of General Relativity by Einstein, as a more
complete picture of Newtonian gravity in the first half of the century, changed
the way we view time and space by combining them in a geometric picture. The
discovery and development of Quantum Mechanics, inspired by the need for
quantised energy in studies of black body radiation and the photo-electric effect,
followed not long after. Motivated by the unification of the electric and magnetic
forces by Maxwell, physicists set out to unify the four fundamental forces of
nature. Of these four fundamental forces, gravity and electromagnetism are the
most familiar to everyday life. Gravity is well known to all of us, after all it
keeps us sticking to this lump of matter we call earth, and electromagnetism is
crucial in all sorts of everyday appliances that make life easier. The remaining
two fundamental forces are lesser known. The weak interaction governs the
radioactive decay of particles, while the strong interaction regulates interactions
at the level of the nucleus and ensures the stability of ordinary matter. Quantum
Mechanics was combined with notions of special relativity to form relativistic
quantum field theories. Electromagnetism was the first fundamental force to
be realised as a quantum field theory, Quantum Electro Dynamics (QED),
with great success. Calculations in QED made extremely accurate predictions
of quantities like the anomalous magnetic moment of the electron and the
Lamb shift of the energy levels of hydrogen, the former being confirmed to
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2 INTRODUCTION

within ten parts in a billion, making this one of the most precise physical
theories ever. It was found that QED could be unified with the weak interaction
within the framework of quantum field theories, to form an electro-weak theory.
Subsequently the strong interaction was incorporated with the electroweak
theory, culminating in the Standard Model of physics. Together the Standard
Model and General Relativity represent the pinnacle of twentieth century physics.
These theories are able to describe the universe in terms of a remarkable small
number of elementary particles and the four fundamental interactions between
them. Both theories have been verified to extreme high accuracies, they have
explained observed phenomena and in turn predicted new phenomena that
were later observed. Our thirst for unification has not been sated yet though.
Both theories and in particular attempts at combining both viewpoints run into
questions and problems that beg for an overarching theory, unifying gravity
and the three other fundamental forces. To understand why, we first discuss
both theories in some more detail.

The Standard Model of Physics

The Standard Model (SM) describes the interaction of particles under the three
fundamental forces: electromagnetism, the weak interaction and the strong
interaction. The fundamental objects are quantum fields, and hence the SM is
called a Quantum Field Theory (QFT). Particles are represented by fluctuations
of these fields. Every type of fundamental particle corresponds to a quantum
field and the propagation of these fields through spacetime is described by
the QFT Lagrangian. Interactions between these particles are represented by
interaction terms for the fields in the QFT Lagrangian.

Combining the principles of special relativity and quantum mechanics leads to
the idea that particles can only interact with each other by exchanging other
particles. The elementary particles can be classified into matter particles and
force carriers. The force carriers are exchanged by interacting matter particles.
The matter particles are fermions, carrying fractional spin 1/2, while the force
carriers have spin 1 and are bosons.

A major realisation in the formulation of the SM was that the fundamental
interactions correspond to symmetries of the QFT Lagrangian, called gauge
symmetries. These gauge symmetries are symmetries that are realised locally,
meaning that they can act independently at every point in spacetime. Every
gauge symmetry has a corresponding set of gauge fields, or in the terminology
above, force carriers. Each fundamental interaction is determined by a specific
symmetry and so mediated by their own force carriers. Electromagnetism is
represented by the emission and absorption of a photon, the weak interaction
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is governed by the massive W± and Z bosons, while the strong interaction is
mediated by a set of 8 gauge fields, the gluons.

The SM has a gauge symmetry group SU(3)× SU(2)×U(1), where the SU(3)-
factor represents the symmetry group of the strong interaction, while SU(2)×
U(1) encompasses the unified electro-weak interactions. This last group is
broken to a U(1) by the mechanism of spontaneous symmetry breaking, giving
rise to QED. Matter particles are incorporated in the SM as a set of quantum
fields that sit in a specific representation of the gauge group. Each representation
transforms in a particular way under the action of the gauge group and this
transformation determines how the particles corresponding to the fields interact
by exchanging gauge particles. The matter particles are split into two groups.
The particles that couple to gluons are referred to as the quarks, and particles
that do not interact with gluons are called the leptons. Each of these two
branches then consists of three generations of two particles. The quarks are the
matter particles that constitute for instance the proton and neutron, whereas
the leptons contain the electrons. With the discovery of the Brout-Englert-Higgs
particle in 2012 at the LHC1 in CERN [1], all of the particles in the SM have
been experimentally observed.

Gravity

While the SM describes how particles interact (quantum mechanically) at small
scales, General Relativity describes effects at large scales. Gravity is quite
different from the other fundamental forces. For one, as counter-intuitive as
it seems at first glance, it is far weaker than the other forces. Imagine picking
up a small metal ball using a magnet. The magnetic force of the magnet
exerted on the ball overcomes the gravitational force exerted on the ball by
the entire earth! To make this more precise we can consider the ratio of the
gravitational attraction to the electric force between two electrons. This ratio
is an astonishingly small number of the order 10−43.

Even though it is so weak, gravity still plays a major role in our lives due to its
shear abundance. Gravity is universal, and by that we mean that all forms of
matter, the other gauge fields and even the gravitational field itself, interact
gravitationally. This happens because the charge to which gravity couples is
energy, and everything of physical relevance carries energy. This is in sharp
contrast with the other forces, where we know that they couple to a certain
number of fields while they don’t interact with others. For example, quarks are
charged under the strong interaction and so they interact with each other by

1The world’s largest and most powerful particle accelerator.
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exchanging gluons, while an electron is not charged under the strong interaction
and consequently does not interact with other particles by exchanging gluons.

A second feature that enhances the influence of gravity is that it is always
attractive. Contrary to gravity, electromagnetic (and even more so for the strong
force) sources align themselves in neutral combinations. For electromagnetism
this is the attraction between opposite charges, for the strong interaction this
is known as confinement. Furthermore, the fields that mediate the weak force
are massive, making the weak force exponentially smaller with distance. So
in spite of its weakness with respect to the other fundamental forces, at large
enough scales, gravity is the only relevant force, as on this scale all objects are
neutral to the other forces. Combine this with the universality and it is clear
that gravity dominates the large scale interactions.

In the early twentieth century, Einstein altered the way we consider space and
time in his theory of special relativity, they are no longer to be considered as
separate concepts but are combined in a unified geometrical picture, spacetime.
A few years after his formulation of special relativity, he made a connection
between gravity and the structure of spacetime in his theory of General Relativity
(GR), hereby generalising Newton’s law of gravitation. In connecting space
and time in a unified picture also energy and mass became related, leading to
the famous equation E = mc2. Einstein’s equations form a set of non-linear
differential equations that determine the relation between the dynamical field
of general relativity (the metric) and the content of spacetime (the matter).
The metric is a classical field and determines the way we measure distances in
space and time, as well as the concept of a straight line (called geodesics) in
spacetime. The matter enters these field equations through an object called the
stress-energy tensor and is seen as arising from a different theory. In textbooks
many examples for the stress-energy tensor are given such as perfect fluids,
non-interacting matter distributions, etc. The field equations show how matter
curves spacetime (the stress-energy tensor determines the metric) and, in turn
spacetime tells matter how to move (the metric determines the geodesics).

Trouble in paradise

At first glance we seem to have two highly successful theories that describe
the world as we know it to a satisfactory level, however, we are left with some
questions and problems. From the SM perspective some of the questions that
we would like to see explained are why there are three generations and why
the gauge group is SU(3) × SU(2) × U(1). The SM has 19 free parameters
that have to be fixed experimentally, such as the relative masses of leptons
and quarks, and the relative interaction strengths of the fundamental forces.
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This is still quite a large number for a ’fundamental’ theory.2 Furthermore it
does not provide an explanation for matter/antimatter asymmetry or the dark
matter/dark energy content observations of the universe, and we seem to have a
fine-tuning problem related to the lightness of the Higgs particle.3 Finally, the
SM does not incorporate gravity, which is reinforced by the separation of the
internal symmetries from the spacetime symmetries. This separation of internal
and spacetime symmetries is enforced by the Coleman-Mandula theorem[2]
which can be formulated under some standard physical assumptions (locality,
causality,...).

A more fundamental problem has to do with the quantisation of gravity. At
first glance it seems unclear why we would need a quantum theory of gravity
since it is negligible at microscopic scales. Indeed, at energy scales that are
available to present day accelerators gravity is so weak compared to the other
forces that its effects can be ignored. However, at higher and higher energies,
gravity is expected to become more important. This is related to the running
of the coupling of the gauge theories in the SM. The coupling constants of
the fundamental forces in the SM are not really constants, they depend on
the energy scale used to probe the theory, and it is found that they roughly
converge at energy scales of 1016 GeV. A similar analysis can be done for gravity,
by studying perturbations on the metric called gravitons. It is found that the
strength of the gravitational interaction becomes comparable to the strengths of
the SM interactions at the Planck scale corresponding to energies of 1019 GeV.
This means that at this scale we can no longer neglect gravitational effects, and
we would need a quantum theory of gravity. Furthermore, one could think of
other situations where quantum gravity effects would become important such as
the very early stages of the universe or in black holes, where strong gravitational
effects take place on very small scales.

Developing a theory of quantum gravity runs into some problems. It seems
that gravity unlike the SM is non-renormalisable. In both quantum theories
there are divergences that arise in computations of loop integrals. In the SM
one can reabsorb these infinities by a renormalisation procedure, where one
redefines a finite number of parameters. To do the same for gravity one would

2Although one could argue we are doing quite well compared to the parameters one needs
as input for Chemistry. Each atom requires several parameters describing for example the
mass, ionisation energy, electron affinity, and electro-negativity. Just counting the number of
atoms, this already leads to a much larger set of parameters than we need for the SM.

3It seems that quantum corrections to the Higgs mass pile up to be very large. Since the
observed Higgs-mass is relatively small, we would need a very large bare mass for the Higgs
particle such that the difference between the bare mass and the quantum corrections is a very
small (observable) number. Since we are subtracting two enormous numbers to get a very
precise small result, it looks there is an awful (and suspicious) lot of fine-tuning needed to
make this happen exactly the way we observe it.
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need to introduce an infinite number of parameters, and in the process lose all
predictability.

It is clear that the SM and the theory of general relativity are incomplete,
and cannot be fundamental theories, instead we consider them to be effective
theories. An effective theory is a theory that is valid up to a certain energy
scale. It masks the microscopic details by considering coarse grained variables
in their regime of validity. As an example consider Newtonian mechanics. This
is a valid theory for velocities that are small compared to the speed of light.
When the velocity approaches the speed of light, we need to add corrections,
and a better description is found in special relativity. In this picture, Newtonian
mechanics form an effective theory and special relativity provides the overarching
framework. One can go one step further and considers what happens when
we allow for large masses. Special relativity is now to be considered as an
effective theory, valid for small masses or energies, whereas the corrections one
needs for large energies are described by GR. Considering a theory of quantum
gravity as the overarching theory means that it should provide us with the
quantum corrections to GR, as well as the gravitational corrections to the SM.
Since we seem unable to construct a quantum theory of gravity by directly
quantizing gravity like we did for the other forces, the question remains what
this overarching theory could be.

1.2 Enter string theory

The prime candidate for a theory of quantum gravity is String Theory. An early
version was originally developed in the early 1970s as a quantum field theory to
describe the strong interaction, but it was cast aside with the advent of Quantum
Chromo Dynamics (QCD). It regained interest not long after as a possible theory
of quantum gravity. String theory replaces the notion of point particles with
those of tiny one-dimensional objects, strings. The observed particles in nature
are then just different vibrational patterns of the fundamental string. The
obvious advantage is that there may be many elementary particles, but there
is only one fundamental string, whose various excitations could reproduce the
entire particle zoo. In fact, studying the spectrum of closed strings one finds a
massless spin 2 particle, the graviton. Aside from the graviton, the spectrum of
open strings also contains massless spin-1 particles, suggesting that the theory
might be able to unify gravity and the other SM forces. Indeed, the endpoints
of an open string can join to form a closed string, and so open string theories
cannot exist without also including closed strings. Which in turn implies that
string theories automatically include the graviton, and by extension gravity.
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Similar to point particles living on a world-line in spacetime, the time evolution
of a string sweeps out a 2-dimensional surface called a world-sheet in a higher
dimensional spacetime. As the strings are extended objects they have a
characteristic length-scale associated to them, called the string length ls. The
string length sets the tension of the strings and this is the only parameter of the
theory. As we expect a quantum theory of gravity to live at the Planck scale,
we can estimate the stringy effects and strings to appear at lengths comparable
to the Planck length. This sets the string length at about 10−35m, let us give
up the compact, scientific notation for a moment, write this number out in full

lS ∼ 0.000 000 000 000 000 000 000 000 000 000 000 1m,

and see that it is an astonishingly small number. The energy scale associated
to the string length is Mp ∼ 1019GeV, much higher than the energies probed at
current accelerators (104GeV). Hence, the accelerators only see point particles,
explaining the amazing success of QFTs. Only at higher energies the particle
description breaks down by the appearance of stringy effects, and we need a
description in terms of a theory of quantum gravity.

The interaction between various strings can be envisioned by their world-sheets
joining and then splitting (figure 1.1(b) ). The strength of the interactions is
set by the string coupling gs. The string coupling is related to a massless scalar
string excitation called the dilaton gs = eφ. This is an important point because
it means that the string coupling is not an adjustable (dimensionless) parameter
since the dilaton is a dynamical field of the theory. An interacting string
reduces to the theory of two-dimensional Riemann surfaces and the interactions
are determined by different topologies of free strings. The smoothness of this
interaction means that strings tend to smear out the short-distance behaviour
of Feynman diagrams in QFT (figure 1.1), giving the hope of a theory free of
UV divergencies.

These advantages come at a price, however, and it is not possible to formulate a
consistent theory of strings in four spacetime dimensions (three space dimensions
plus one time dimension), one needs to include another six dimensions, bringing
the total to ten dimensions. This means that we have to find a way to deal
with these six extra dimensions. A scheme for this exists in terms of Kaluza-
Klein compactifications. We consider the six extra dimensions to be very small
and compact, and the remaining four should correspond to a four-dimensional
Minkowski spacetime. In this way, the extra six dimensions are not directly
visible to an observer in the four-dimensional theory. The effect of these compact
dimensions is visible in the presence of the Fourier modes of the ten-dimensional
fields along the compactified dimensions. They are observed as a tower of
massive fields in the four-dimensional theory, their masses inversely related to
the size of the compact directions. The size of these extra dimensions then
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(a) (b)

Figure 1.1: Depicted in (a) is a Feynman diagram of interacting point-particles.
In (b) we have two strings joining and splitting, effectively smearing out the
interaction.

has to be sufficiently small to explain why these massive modes have not been
observed in experiment.

Supersymmetry and supergravity

A crucial ingredient for the consistency of string theory is the introduction of
supersymmetry. Supersymmetry is a spacetime symmetry that connects bosonic
and fermionic states. The anti-commuting generators of supersymmetry are
necessary to cure the theory of unphysical tachyonic modes in the spectrum of
the bosonic string.

Supersymmetry had been considered independent of the string theory context
in the early 1970s. A number of people considered the possibility of a
supersymmetry as global spacetime symmetry in four-dimensional quantum
field theories. Incorporating supersymmetry in the SM introduces superpartners
for each particle (named sleptons, squarks and gauginos), which has the benefit
of removing the hierarchy problem because contributions of particles and their
superpartners to the quantum corrections of the Higgs mass cancel, eliminating
the need for a large bare mass and the corresponding fine-tuning. Additionally,
it provides natural candidates for dark matter particles4 and has a favourable
influence on the unification of the SM coupling constants.

However, supersymmetry cannot be realised as an unbroken symmetry.
Unbroken supersymmetry would imply that for every bosonic particle there
is a corresponding fermionic particle of the same mass and vice versa. Since

4The lightest superpartner would be a stable particle, only interacting gravitationally with
the particle content of the SM.
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these superpartners are not observed, supersymmetry has to be broken at the
scale of current detectors. The mechanism for symmetry breaking associates a
particle to a broken global symmetry. A bosonic global symmetry gives rise to
a massless Goldstone particle (a boson), while broken global supersymmetry
gives rise to a massless fermion, the Goldstino. Since no such particles haven
observed either, supersymmetry cannot be realised as a broken global symmetry.
Instead, we should consider a local realisation of supersymmetry. A broken
gauge symmetry does not lead to a massless Goldstone particle, instead, the
corresponding gauge field becomes massive. In the case of supersymmetry, this
leads to a massive vector-spinor field (spin 3/2). If the supersymmetry breaking
scale is well above the SM scale this could explain why no such particle has
been observed yet.

Field theories in which supersymmetry is realised as a gauge theory were first
constructed in [3]. A remarkable effect of requiring supersymmetry to be local is
the automatic inclusion of gravity. This is due to the appearance of translations
in the supersymmetry algebra, which means that a theory that is invariant
under local supersymmetry has to be invariant under local translations. Local
translations correspond to the principle of general covariance of GR, and so
a theory with local supersymmetry automatically includes gravity. For this
reason the field theories in which supersymmetry is realised locally are called
supergravity theories. Furthermore, with the help of the fermionic generators
of supersymmetry, supergravity theories manage to circumvent the Coleman-
Mandula theorem and allow for the unification of Poincaré spacetime group and
the internal symmetry group. One of the main motivations to study supergravity
theories was the hope that these theories would be renormalisable and could
provide a theory of quantum gravity. However, soon enough it was realised that
the problems remained. The divergences in the loop integrals were softened but
were still present and so supergravity could not be the final answer.

Our understanding of string theory is currently incomplete, in part due to the
complications of the massive modes5 that appear at the Planck scale. However,
there are interesting features that appear when considering low energies. The
spectrum of quantised strings contains a number of massless particles. For the
closed string one finds the metric gµν , an antisymmetric tensor Bµν and the
dilaton φ, while for the open string one encounters gauge vectors Aµ. The
massive modes have masses proportional to 1/lS . Since lS is of the order of
the Planck length, the lowest energy modes are already extremely massive and
thus can be ignored in an effective description well below the Planck scale.
The effective field theory describing the massless modes of superstring theory
is a 10-dimensional supergravity theory, and in fact, string compactifications

5These modes appear due to the quantisation of the string action, and are not to be
confused with the tower of massive states obtained by compactification.
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can effectively be described by supergravity theories in dimensions lower than
10. This provides a strong connection between string theory and supergravity
theories, and motivates the study of supergravity theories.

Nevertheless, there is great merit to studying supergravity theories an sich
and not just consider them as low energy, effective actions for string theory. It
turns out that the inclusion of supersymmetry is quite restrictive, limiting the
spacetime dimensions in which one can construct gravity theories to a maximum
of D = 11. Supergravity theories can be classified according to the number
of spacetime dimensions D and the amount of supersymmetry N realised in
the theory. Basic supergravity theories are theories for which the action only
consists of kinetic terms plus interaction terms that are completely determined
by supersymmetry. These undeformed supergravity theories are determined
completely by supersymmetry if they have more than 16 supersymmetries.
Undeformed theories with less than 16 supersymmetries leave some wriggle
room and depend on the number of matter multiplets that are coupled to
the theory. A complete classification of these undeformed theories has been
obtained, and we refer to [4] for a review.

It is more interesting to look at the deformed theories. A possible deformation
which is of interest to this thesis is the addition of higher derivative terms. In
standard supergravity theories, the maximum number of spacetime derivatives
in a term appearing in the action is two. Allowing terms with more than
two derivatives allows for the inclusion of next to leading order terms in
the low energy effective action of string theory. They are also important
as counterterms for UV divergences that appear when studying the quantum
behaviour of supergravity theories. The incorporation of higher derivative
terms in a supersymmetric framework is highly non-trivial, and a complete
classification of such higher derivative supergravities is still a long way off. Part
of the research presented in this thesis investigates the construction of such
higher derivative terms.

Branes and dualities

Before the mid 1990s most of the research in string theory involved perturbative
calculations, using the string coupling gS as a small parameter. However, since
gS is dynamical and corresponds to the expectation value of the dilaton, there
is no reason to assume that it would be small, and so we cannot neglect non-
perturbative effects in the full string theory. Furthermore, there was not just
one string theory, but five different versions, a rather uncomfortable situation
for a ’fundamental theory’. There are type IIA and type IIB string theory
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containing 32 supercharges, whereas type I string theory, the heterotic SO(32)
and heterotic E8 × E8 string theory only contain 16 supercharges.

A resolution of these issues came with the realisation that string theory is
not just a theory of strings. A more careful description of open strings shows
the existence of higher dimensional generalisations of strings. Like the string
generalises the point-particle by adding an extra dimension, we can add extra
dimensions to a string and consider the resulting branes. Collectively these
objects are referred to as p-branes, and a specific type of p-branes are the D-
branes6. At zero string coupling, gs = 0, these D-branes are rigid hypersurfaces
in spacetime on which the endpoints of open strings are restricted to move on.
When gs becomes non-zero these objects become dynamical through the strings
that end on them. They behave as very heavy objects with a mass of order
1/gs. At large gs where the perturbative treatment of strings breaks down,
these objects become light and should provide the right perturbative degrees
of freedom. The full string theory should then incorporate both strings and
branes, and the perturbative use of strings to describe the full theory is only
valid in a specific regime of the theory.

The above example represents a duality in the theory. When two theories that
seemingly describe different physics turn out to describe the same physics but
in different regimes we call them dual. The concept of duality is not specific
to string theory and indeed, there exists the more familiar electromagnetic
duality in Maxwell theory. The electromagnetic duality leaves the free Maxwell
equations invariant under the interchange of electric and magnetic fields

~E → ~B, ~B → − ~E. (1.1)

In the presence of electric sources qe this invariance is lost, unless one accepts
the existence of magnetic monopoles qm. In a consistent quantum mechanical
picture they have to satisfy the Dirac quantisation condition

qeqm = 2π~n, n ∈ N, (1.2)

and one needs to include dionic solutions, carrying both electric and magnetic
charge. Magnetic monopoles appear naturally in supersymmetric Yang-Mills
theories, they are solitonic solutions of the classical field equations with localised
energy. Their mass goes like the inverse of the coupling constant (electric charge
in this case). In other words, they are very heavy in the perturbative regime
but become relevant when one deals with non-perturbative effects.

As the non-perturbative effects and dualities in string theory were better
understood it was realised that there was an intricate web of dualities relating

6The D stands for Dirichlet and stems from the fact that strings ending on these branes
have Dirichlet boundary conditions in directions transverse to the brane, effectively restricting
the movement of the endpoints to the world-volume of the brane.
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the five string theories. The simplest example of these dualities is T-duality.
T-duality relates strings on a background of flat space where one direction is
compactified with radiusR with strings on a background that is now compactified
on a circle with radius l2S/R. T-duality relates type IIA and type IIB as well as
heterotic SO(32) and heterotic E8 × E8. The existence of the various dualities
has led to the idea that the five different string theories are just different
descriptions of one fundamental theory, called M-theory. What M-theory
precisely is remains an open question.

1.3 Overview of this thesis

Personal work

In this thesis we will consider two slightly different topics. Both of them are
related to D-branes and both are treated in a supergravity context.

Higher derivative terms in supergravity and their construction are an interesting
topic. Recently in [5], the D3-brane world-volume theory embedded in a ten-
dimensional Minkowski background was studied, and it was used to construct
supersymmetric higher derivative invariants by deforming the action and
supersymmetry transformation rules of the D = 4, N = 4 Maxwell multiplet.
The resulting theory has 16 deformed Maxwell multiplet supersymmetries
and 16 Volkov-Akulov type non-linear supersymmetries. To extend this rigid
supersymmetric result to supergravity one would like to use superconformal
methods [6, 7, 8, 9, 10, 4]. In order to use these methods, we need to determine
the superconformal transformation rules of the deformed Maxwell multiplet.
An interesting question that arises immediately is how the Volkov-Akulov
supersymmetry of the deformed 16+16 Maxwell multiplet are related to the
S-supersymmetry of the conformal Maxwell multiplet. The superconformal
transformation rules can be obtained by embedding the world-volume in an
AdS5 × S5 background. We investigate and establish this relation, and in
addition propose a method for constructing higher-derivative invariants by
using this relation between S-supersymmetry and VA-symmetry. This work was
presented in [11] and was performed in collaboration with Frederik Coomans.
It forms the topic of chapter 4.

The AdS/CFT correspondence and other gauge/gravity dualities provide an
excellent framework to study strongly coupled quantum field theories in terms
of their (weakly coupled) gravitational duals. Of particular interest is the
study of defects, interfaces or boundaries in field theories that can lead to
many interesting phenomena. For example, by adding a boundary in a system
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describing a superconductor one can study boundary superconductivity through
the addition of a defect in the dual supergravity theory. Similarly, a Wilson
line operator, which measures the interaction energy or self-energy of charged
particles, can also be considered as a defect. Recent work, in the context
of 5-dimensional gauge theories and their gravity duals, has compared the
partition function of the gauge theory with the result from the gravity dual
[12], as well as the vacuum expectation value of the half-BPS Wilson line
for totally symmetric and anti-symmetric representations [13]. In either case
the vacuum expectation value on the gravity side can be well approximated
by probe branes. To go further, one must include the backreaction of the
probe branes. In terms of branes, the background 5-dimensional gauge theory
arises as the low energy limit of a configuration of branes consisting of D4-
branes and D8-branes along with an O8 orientifold projection. Introducing
a Wilson line in the fundamental representation corresponds to introducing
a fundamental string perpendicular to the D4/D8-brane system. Rank M
symmetric representations arise from introducing an additional D4-brane and
stretching M fundamental strings between the D4-brane and the D4/D8-
brane stack. Rank M anti-symmetric representations arise by introducing
a perpendicular D4-brane and M fundamental strings. In general, the BPS-
Wilson line reduces the superconformal symmetry of the 5-dimensional gauge
theory from F (4; 2)× SU(2) to D(2, 1; 2; 1)× SO(4). With the task of finding
backreacted geometries describing these Wilson lines in mind, we study general
solutions of massive IIA supergravity with D(2, 1; γ; 1) × SO(4) symmetry.
We give a partial reduction and integration of the BPS equations, including
obtaining algebraic expressions for the metric factors in terms of spinor bilinears
as well as solutions in special cases of symmetry enhancement. This work forms
the topic of chapter 5 and was performed in [14] in collaboration with John
Estes and Darya Krym.

Note: Aside from the work presented in this thesis, the author has also
contributed to research on an effective description of charged black branes. In
collaboration with Marco M. Caldarelli and Roberto Emparan, the blackfold
approach [15, 16, 17] was extended to study new classes of higher-dimensional
rotating black holes with electric and magnetic charges in theories of gravity
coupled to a 2-form or 3-form field strength and to a dilaton with arbitrary
coupling. This work was performed in [18].

Overview of the following chapters

In chapter 2, we will describe p-brane solutions in the context of supergravity.
We take a brief look at supersymmetry and supergravity before introducing
the theories in which we will consider these p-branes. These theories are
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supergravity theories in ten or eleven spacetime dimensions, and they are
(related to) low energy effective theories of string theory. We will briefly touch
upon their relation with string theory, in a way that will allow us to formulate
the AdS/CFT correspondence in its original form in the following chapter.
We discuss the p-brane solutions and their world-volume actions as well as
the relation between their embedding and the conservation of some of the
background symmetry. We consider the construction of intersecting branes and
discuss the construction of the D4/D8-brane system with fundamental strings
that is of interest to this thesis.

The AdS/CFT correspondence is introduced in chapter 3. We use the discussion
of the previous chapter to introduce the form it was originally formulated in, a
duality between type IIB string theory on AdS5 × S5 and D = 4, N = 4 super
Yang Mills theory with gauge group SU(N). The goal of this chapter is to
introduce some of the concepts associated with the AdS/CFT correspondence
by considering a few small examples. We formulate the statement of the more
general gauge/gravity correspondence, including the identification of fields and
operators, and as an example we use this to calculate the two-point function of
the field theory using the gravity dual. We discuss Wilson loops as they form
an intricate part of the motivation for some of the work presented in this thesis.
We end the chapter with a discussion of five-dimensional gauge theories and
their gravity duals, the checks that have been performed, and recent work that
further motivates our work in chapter 5.

In chapter 4, we consider the embedding of a D3-brane in two different
backgrounds, ten-dimensional Minkowski spacetime and its own near-horizon
geometry AdS5 × S5 spacetime. Embedded in the Minkowski background the
world-volume theory inherits a different symmetry group than the embedding in
AdS5 × S5, this is made explicit by a coset construction of the transformation
rules. Furthermore, a relation between these different sets of transformation
rules is established by considering a large R-limit of the AdS5 × S5 background.
A connection is established with the VA symmetry of [5] and finally a proposal
for the construction of higher derivative invariants using this connection is
formulated. To make the steps in this chapter more clear, we have moved some
of the constructions and calculations for this chapter to the appendices.

Chapter 5 discusses the construction of solutions to massive type IIA
supergravity with symmetry group D(2, 1; γ; 1)× SO(4). An invariant metric
ansatz is formulated and with this ansatz the BPS-equations are reduced to a
two-dimensional system, including algebraic expressions for the warpfactors in
terms of the spinor bilinears. In order to better understand the structure of
the BPS system, we study the special cases of enhanced supersymmetry, which
corresponds to setting certain fluxes to zero and setting γ to specific values.
In general there are two distinct cases of enhanced supersymmetry, one given



OVERVIEW OF THIS THESIS 15

by setting γ = −1/2,−2 and the second given by setting γ = 1. In the first
case, we show the most general solution is given by the AdS6 geometries of
[19], which is simply the dual of the 5-dimensional gauge theory without the
half-BPS Wilson line. The second case corresponds to fundamental strings
ending on D8-branes.7 We identify three types of solutions. The first, given in
section 5.3.1, we interpret as a stack of fundamental strings in the presence of
D8-branes, i.e. in a background with F(0) 6= 0. The other two solutions, given in
section 5.3.2, we interpret as fundamental strings ending on a stack of D8-branes
or an O8-plane. In all three cases the geometry contains an asymptotically flat
region. Naively, the geometry does not admit a decoupling limit. However, we
note that the string coupling goes to zero in the asymptotically flat regions,
which may be sufficient for a valid decoupling limit. We also consider solutions
where F(0) is allowed to jump across an interface, corresponding to the presence
of a stack of D8-branes. This allows for a large family of solutions, parametrised
by the number of such jumps. However, we find that there is no way to glue
D8-brane caps or O8-plane caps together. Consequently, we argue that there
are no solutions dual to 1 + 0-dimensional CFTs.

The thesis is also supplemented by several appendices. Appendix A contains
a small summary of Clifford algebras and presents the various algebras used
throughout the thesis. Appendix B presents the SU(2, 2|4) superalgebra and
its decomposition in terms of AdS-variables on the one hand and conformal
variables on the other hand. It also presents the relation between these two
decompositions. In appendix C we consider AdS5 × S5 as a coset space and
derive the isometries using a coset construction. Appendix D provides a sample
calculation of the coset construction for transformation rules in chapter 4.
Appendix E collects elements of the reduction of BPS-equations omitted in
chapter 5. We also partially solve these reduced equations and show that this
solution is indeed a solution to the equations of motion.

7We note this system was studied in [20] without the assumption of conformal symmetry.



Chapter 2

Supergravity and p-branes

First we give a brief introduction to what supersymmetry and supergravity are,
and we outline a general strategy to find supersymmetric solutions in section
2.1. In section 2.2, we introduce eleven-dimensional supergravity and some
of its ten-dimensional incarnations, type IIA, massive type IIA and type IIB.
We discuss p-branes as solutions to supergravity as well as their symmetries
in section 2.3. We also take a brief look at the near-horizon geometries of D3-,
M2- and M5-branes. Next, in section 2.4, we define the D-brane world-volume
actions that couple to a supergravity background and use a probe brane to revisit
the symmetries of D-branes. We make contact with a stringy interpretation
of the branes by discussing the world-volume field theory. Finally, section 2.5
concludes this chapter with a discussion of intersecting branes. We investigate
the preserved supersymmetry of intersecting brane configurations as well as
the construction of a class of intersecting brane solutions using the harmonic
function rule. We finish by discussing a particular configuration of intersecting
D4/D8-branes, the configuration of interest in chapter 5.

2.1 What is supergravity?

To answer the question what is supergravity, we have to start by introducing
supersymmetry. Supersymmetry is defined as a Fermion-Boson symmetry, i.e.
transformations that mix bosonic and fermionic degrees of freedom and leave the
physics invariant. An excellent introduction to supersymmetry and supergravity
can be found in the book [4], as well as the review [21].

16



WHAT IS SUPERGRAVITY? 17

A theorem by Coleman and Mandula states [2, 22] that if both Poincaré (Lorentz
symmetry plus translations) and internal symmetry are present, they must have
a trivial mixing, i.e. the full symmetry group should be a direct product of
both (and the algebra would be their direct sum). However, superalgebras
circumvent some of the hypothesis in the Coleman-Mandula theorem, instead
being governed by the Haag-Łopuszańsky-Sohnius theorem [23, 22]. The
algebra of symmetries now admits spinor charges1 QIα, and the number (N ) of
spinor charges determines which kind of (extended) supersymmetry one deals
with. Supersymmetric theories realise the most symmetry possible within the
framework of these theorems, as well as uniting bosons and fermions, the two
classes of particles found in nature.

The supersymmetry algebra can schematically be written as

[P, P ] = 0, [P,M ] = P, [M,M ] = M,

[P,QI ] = 0, [M,QI ] = QI ,

{QI , Q̄J} = PδIJ , {QI , QJ} = ZIJ , {Q̄I , Q̄J} = ZIJ , (2.1)

where the P stand for translations, M for Lorentz generators, QI and Q̄I for
the supersymmetry generators, and ZIJ are the central charges.2 The indices
I, J = 1, . . . ,N label different sets of supersymmetry generators.

The supersymmetry generators transform as (spin 1/2) spinors under Lorentz
transformations and, as a consequence, we have that under a supersymmetry
transformation bosons transform into fermions and vice versa. Additionally,
an irreducible representation of a supersymmetry algebra will correspond to
several particles (including both bosons and fermions), forming what is called
a supermultiplet. It can be shown that a supermultiplet always contains the
same number of bosonic and fermionic degrees of freedom. Furthermore, as
supersymmetry transformations commute with momentum generators, we have
in particular that [P 2, Q] = 0, and consequently, that all particles in the same
supermultiplet must have the same mass. At this point one might think that
supersymmetry is far from reality because if there were supersymmetric particles
with the same mass as the usual ones, we would have certainly observed them
by now. The only way out is to say that if supersymmetry exists, it has to be
broken at a scale of energy at least as high as the energies probed in current
accelerators.

1We will often neglect writing the spinor index α throughout this thesis.
2Central charges are operators which commute with all other operators and are therefore

simply numbers.
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We see from the superalgebra (2.1) that local supersymmetry transformations
lead to local translations and Lorentz transformations. Hence a gauge theory
of supersymmetry will include gravity (the gauge theory for translations). For
this reason a gauge theory of supersymmetry is called supergravity, and it will
include the metric gMN and a set of N Rarita-Schwinger fields, the gravitini
ψM , that act as the gauge fields for supersymmetry.

The precise field content of supergravity theories depends strongly on the
number of spacetime dimensions. Conventional supergravities cannot exist in
more than 11 dimensions. The reason for this is that the smallest Lorentz
spinor in 11 dimensions has 32 components, while in higher dimensions it will
necessarily have more components. Through dimensional reduction arguments
this minimal spinor in eleven dimensions corresponds to eight 4-component
spinors in four dimensions. A supermultiplet in four dimensions with this
amount of supersymmetry (N = 8) contains the metric, gravitini, gauge fields,
spinors and scalars. We can have a maximum of 8 gravitini if we want a
finite number of interacting fields, requiring more supersymmetry will result
in a supermultiplet containing higher spin fields (spin > 2). These fields
cannot consistently couple to themselves. If we consider spinors with more
than 32 components in higher dimensions, we obtain a contradiction if we
view things from a four-dimensional point of view (for instance by considering
only a dependency on four coordinates). The 32-component spinor in higher
dimensions would imply particles with spin > 2 in four dimensions. The bosonic
fields of supergravity comprise the graviton field through the metric tensor, a
number of antisymmetric gauge fields ((p+ 1)-forms), and a set of scalar fields.
The fermionic content of the supergravity theory consist of one or more (N )
gravitino fields and a number of ordinary Lorentz spinors.

One of the advantages of including supersymmetry in gravity theories is that
they simplify the process of finding (supersymmetric) solutions. Finding
solutions in general relativity requires solving a set of non-linear, second order
differential equations, which in general is a very complicated system of equations.
Supersymmetry simplifies this greatly. Instead of having to solve this set of
second order equations, they present us with a system of first order equations
which automatically solve the second order problem. Supersymmetric solutions
will always satisfy such a first order system (of course there exist also non-
supersymmetric solutions that cannot be found following this strategy). We
will illustrate how this process works.

We will look for classical configurations. This means that the expectation value
of the fermionic fields should be zero (otherwise, a Lorentz symmetry would not
conserve the vacuum). As explained earlier, supercharges are spin 1/2 fields



SUPERGRAVITY ACTIONS AND SUPERSYMMETRY TRANSFORMATIONS 19

and they turn bosons into fermions and vice versa. Schematically we have

δSUSYF = f(B), δSUSYB = g(F ), (2.2)

where f(B) and g(F ) are some functions of the bosonic and fermionic fields
respectively, and δSUSY represents our supersymmetry transformation. As the
fermions are zero (which implies g(F ) = 0), the invariance of the bosonic fields
describing the solutions is guaranteed (δSUSYB = 0). In order to preserve
supersymmetry, the fermionic fields should also not vary (δSUSYF = 0), hence

f(B) = 0, (2.3)

which gives a system of equations, first order in derivatives.

The strategy to solve this set of first order equations is to start with an ansatz
for the bosonic fields. Then, (2.3) leads to a set of equations from which the
functions in the ansatz can be computed. Usually for these equations to be
solvable, one must impose some projections on the spinor that parametrises
the transformation. When this happens, not all the supercharges present in
the supergravity theory are preserved by the solution. These projections are of
the type ε = Pε (P being some function of the gamma matrices depending on
the solution). Generally, each independent projection reduces the number of
preserved supercharges by half.

In the following sections we will describe several supergravity theories and a
particular solution to these theories, brane solutions.

2.2 Supergravity actions and supersymmetry trans-
formations

In this section we gather expressions for several supergravity theories that
will be used throughout the thesis. We will mostly be interested in bosonic
supersymmetric configurations, so the only sector of the action we will need
is the bosonic sector. We also give the supersymmetry transformations of
the fermionic fields, which, as mentioned in the previous section, can be used
to find supersymmetric solutions. A review on eleven- and ten-dimensional
supergravities, the relation among them, solutions from branes and many other
topics on gravity and its relation with strings can be found in [24]. We refer
to chapter 12 of [4] for a review of the basic supergravity theories and their
deformations.
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D = 11, N = 1 supergravity

The unique eleven-dimensional supergravity theory was first constructed in [25].
It is the low-energy effective description of strongly coupled string theory in 11
dimensions. The number of supercharges is 32, corresponding to one Majorana
spinor.

The bosonic content of the theory includes the metric gMN , and a 3-form3

potential C(3), with a 4-form field strength F(4) = dC(3). The bosonic part of
the action of these fields is

S11D = 1
2κ2

(11)

∫
d11x
√
−g
[
R− 1

2 · 4!FMNPQF
MNPQ

]

+ 1
2κ2

(11)

∫ 1
6F(4) ∧ F(4) ∧ C(3), (2.5)

where κ(11) is related to the 11-dimensional Newton’s constant by 2κ2
(11) =

16πG11.

The only fermionic degrees of freedom are those corresponding to a Rarita-
Schwinger field, the gravitino ψM . Its supersymmetry variation is given by

δψM = DM ε+ 1
288F

(4)
M1...M4

(
Γ M1...M4
M − 8δM1

M ΓM2...M4
)
ε. (2.6)

D = 10, type IIA supergravity

Eleven-dimensional supergravity can be dimensionally reduced yielding a
maximal non-chiral supergravity in ten dimensions. The resulting theory is
called type IIA supergravity [26, 27, 28] and it is the low energy limit of type
IIA string theory.

The Kaluza-Klein reduction ansatz for the metric is

ds2
11 = e−

2
3φds2

10 + e
4
3φ
(
R11dψ + C(1)

)2
, (2.7)

3Througout the text we will denote forms by both their components as well as their full
form. These are related by

ω(p) =
1
p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp . (2.4)
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where ψ has period 2π. One also has to reduce the eleven-dimensional three-form
(or equivalently the four form field strength),

F
(11D)
(4) = F(4) +R11H(3) ∧ dψ (2.8)

which generates a three-form and a two-form in ten dimensions, depending on
whether or not the reduction direction is part of the original form. Therefore
the bosonic content of this theory consists of a metric gMN , a dilaton φ and a
Ramond-Ramond (RR) one-form C(1) coming from the reduction of the metric,
and a Neveu-Schwarz (NS) two-form B(2) and an RR three-form C(3) coming
from the reduction of the three-form. The supergravity action in string-frame
takes the from4

SIIA = 1
2κ2

(10)

∫
d10x
√
−g
[
e−2φ

(
R+ 4|∇φ|2 − 1

2 · 3!H
2
(3)

)

−1
2
∑
n=2,4

1
n!F

2
(n)

]
+ 1

2κ2
(10)

∫ 1
2dC(3) ∧ dC(3) ∧B(2), (2.9)

where

H(3) = dB(2), F(2) = dC(1), F(4) = dC(3) + C(1) ∧H(3). (2.10)

We can write this action in the more familiar Einstein-frame5 where the
gravitational part takes the standard Einstein-Hilbert form by rescaling the
string-frame metric gMN . In terms of the Einstein-frame metric

g
(E)
MN ≡ e

− 1
2φgMN , (2.11)

the string action takes the form

SIIA = 1
2κ2

(10)

∫
d10x

√
−g(E)

[
R− 1

2 |∇φ|
2 − 1

2 · 3!e
−φH2

(3) (2.12)

−1
2
∑
n=2,4

1
n!e

5−n
2 φF 2

(n)

]
+ 1

2κ2
(10)

∫ 1
2dC(3) ∧ dC(3) ∧B(2),

where all quantities (e.g. R and F 2
(n)) are now calculated using the Einstein-

frame metric.
4κ2

(11) = κ2
(10)R11

5In the Einstein-frame the Lagrangian contains the gravitational term
√
−gR, whereas in

the string-frame the gravitational term in the Lagrangian is
√
−ge−2φR.
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The fermionic content of the theory comprises two Majorana-spinors: a gravitino
ψµ and a dilatino λ, each decomposable into two Majorana-Weyl components.
Their supersymmetry variations are (Einstein-frame)

δλ = 1
2
√

2
DMφΓMΓ11ε+ 3

16
√

2
e

3φ
4 F

(2)
M1M2

ΓM1M2ε

+ i

24
√

2
e−

φ
2H

(3)
M1...M3

ΓM1...M3ε− i

192
√

2
e
φ
4 F (4)M1 . . .M4ΓM1...M4ε,

δψM = DM ε+ 1
64e

3φ
4 F

(2)
M1M2

(
Γ M1M2
M − 14δM1

M ΓM2
)

Γ11ε

+ 1
96e
−φ2H

(3)
M1...M3

(
Γ M1...M3
M − 9δM1

M ΓM2M3
)

Γ11ε

+ i

256e
φ
4 F

(4)
M1...M4

(
Γ M1...M4
M − 20

3 δ
M1
M ΓM2...M4

)
Γ11ε, (2.13)

where the chirality operator Γ11 is defined as Γ11 = iΓ0Γ1 . . .Γ9.

D = 10, massive type IIA supergravity

Massive type IIA supergravity was first discovered by Romans in [29]. The
bosonic field content of massive type IIA supergravity consists of the metric
gMN , a dilaton φ, a NSNS two-form B(2) and an RR three-form C(3).

The action of massive type IIA supergravity is6

SmIIA = 1
2κ2

(10)

∫
d10x
√
−g
[
R− 1

2 |∇φ|
2 − 1

2 · 3!e
−φH2

(3)

− 1
2 · 4!e

φ/2F 2
(4) −

F 2
(0)

4 e
3φ
2 B2

(2) −
F 2

(0)

2 e
5φ
2

]

(2.14)
6We follow the conventions of [29], with the following replacements φ→ −φ/2, ξ → e−φ/4,

GMNP → HMNP /2, FMNPQ → FMNPQ/2 and m→ F(0).
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+ 1
4κ2

(10)

∫ (
dC(3) ∧ dC(3) ∧B(2)

+1
3F(0)dC(3) ∧B(2) ∧B(2) ∧B(2)

+ 1
20F

2
(0)B(2) ∧B(2) ∧B(2) ∧B(2) ∧B(2)

)
. (2.15)

F(0) is a constant called the Romans mass and the field strengths are related to
the gauge potentials by

H(3) = dB(2), F(4) = dC(3) +
F(0)

2 B(2) ∧B(2), (2.16)

with Bianchi-identities

dH(3) = 0, dF(4) = F(0)B(2) ∧H(3). (2.17)

The fermionic field content of the theory is the same as in the previous section,
two Majorana-spinors: a gravitino ψµ and a dilatino λ, each decomposable into
two Majorana-Weyl components. Their supersymmetry variations in Einstein-
frame are given by

δλ =
[
(DMφ)ΓM + 5

4F(0)e
5
4φ + 1

96e
φ
4 (F (4)

MNPQΓMNPQ)

− 3
8F(0)e

3φ
4 B

(2)
MNΓMNΓ11 −

1
12e
−φ2H

(3)
MNPΓMNPΓ11

]
ε ,

δψM =
[
DM −

1
32F(0)e

5
4φΓM + 1

128
e
φ
4

2 F
(4)
NPQR(ΓMNPQR − 20

3 δM
NΓPQR)

− 1
32F(0)

e
3φ
4

2 B
(2)
NP (ΓMNP − 14δMNΓP )Γ11

+ 1
48
e−

φ
2

2 H
(3)
NPQ(ΓMNPQ − 9δMNΓPQ)Γ11

]
ε . (2.18)

Since the B(2) field has a mass in massive IIA supergravity, the theory is no
longer invariant under gauge transformations of B(2). In [29], this fact has been
used to absorb the Ramond-Ramond 2-form, F(2) into the definition of B(2).
In order to connect back to the massless IIA supergravity, we make the field
redefinitions

B(2) → B(2) − F−1
(0)F(2), C(3) → C(3) − (2F(0))−1A(1) ∧ F(2), (2.19)
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with dF(2) = 0 and F(2) = dA(1). Note that F(4) is invariant under these
combined transformations. The theory then enjoys the symmetry

B(2) → B(2) + dΛ , F(2) → F(2) + F(0) dΛ ,

C(3) → 2Λ ∧ F(2) + 2C(1) ∧ dΛ + 2F(0) Λ ∧ dΛ , (2.20)

where Λ is a 1-form. To obtain massless IIA supergravity, we simply take
F(0) = 0.

D = 10, type IIB supergravity

There is another maximal supergravity that can be constructed in ten dimensions.
This type IIB supergravity theory [30, 31, 32] is chiral and cannot be obtained
by dimensional reduction from eleven dimensions. However, it is related to type
IIA supergravity by T-duality, specifically, type IIA theory compactified on a
circle of radius R is T-dual to the IIB theory compactified on a circle of radius
1/R. This duality is rooted in the uniqueness of the D = 9, N = 2 theory,
both the IIA and IIB theory are mapped to the same theory in D = 9. Duality
between the IIA and IIB theories can be treated in a ’democratic’ formulation,
where all the fields are introduced together with their magnetic duals [33, 34],
but we will not consider this here.

The bosonic degrees of freedom are the metric gMN , the dilaton φ, a NSNS
two-form B(2), an RR scalar C(0), two-form C(2)) and four-form C(4). The
action for these fields reads7

SIIB = 1
2κ2

(10)

∫
d10x
√
−g
[
R− 1

2 |∇φ|
2 − 1

2 · 3!e
−φH2

(3)

−1
2e

2φ|∇C(0)|2 −
1

2 · 3!e
φF 2

(3) −
1

2 · 5!e
φF 2

(5)

]

+ 1
2κ2

(10)

∫ 1
2dC(4) ∧ F(3) ∧H(3), (2.22)

7The term action is a misnomer for type IIB supergravity. In fact the self-duality of the
five-form causes a bit of a problem, the term

F 2
(5) ∼ F(5) ∧ ?F(5) (2.21)

vanishes identically since F(5) = ?F(5), and F(5) ∧ F(5) = 0. One should really consider the
action (2.22) as a tool for deriving the equations of motion as follows. Use (2.22) to vary with
respect to the fields and obtain the field equations, after which we impose the self-duality
constraint.
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where
H(3) = dB(2), F(3) = dC(2) − C(0)H(3), (2.23)

and,
F(5) = dC(4) + C(2) ∧H(3). (2.24)

One also has to impose the self-duality condition8 F(5) = ?F(5).

The fermionic content again comprises two spinors, a dilatino λ and a gravitino
ψM . As mentioned before, type IIB supergravity is a chiral theory. The spinor
ε is composed by two Majorana-Weyl spinors εL1 and εL2 of well-defined ten-
dimensional chirality. We can arrange these two chiralities as a two-component
vector in the form

ε =
(
εL1
εL2

)
, (2.26)

but we can also use complex spinors instead of the real spinor of (2.26). The
complex spinor is simply

ε = εL1 + iεL2. (2.27)

To pass from one notation to the other we use

ε∗ ↔ σ3ε, iε∗ ↔ σ1ε, iε↔ −iσ2ε, (2.28)

where σi are the Pauli matrices. In the complex notation, the transformation
rules for the fermions are

δλ = iPMΓM ε∗ − i

24FM1...M3ΓM1...M3ε

δψM = DM ε−
i

1920F
(5)
M1...M5

ΓM1...M5ΓM ε

+ 1
96FM1...M3

(
ΓM1...M3
M − 9δM1

M ΓM2M3
)
ε∗, (2.29)

where PM and FM1...M3 are given by

PM = 1
2∂Mφ+ i

2e
φ∂MC(0),

FM1...M3 = e−
φ
2H

(3)
M1...M3

+ ie
φ
2 F

(3)
M1...M3

. (2.30)
8The Hodge-dual of a p-form is a (D − p)-form, defined as

? ω(p) =
√
−g

p!(D − p)!
εµp+1...µDµ1...µpg

µ1ν1 . . . gµpνpων1...νpdx
µp+1 ∧ . . . dxµD , (2.25)

where D is the dimension of spacetime and εµp+1...µDµ1...µp is the totally anti-symmetric
Levi-Civita tensor in D-dimensions.
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2.3 Supersymmetric solutions: p-branes

We start out by considering the description of parallel branes as supersymmetric
solutions of supergravity. We describe a few of the simplest cases here in detail.
Next, we consider the conserved supersymmetry by the brane solutions and
we end the section by looking at the near-horizon geometry of D3-branes, as
well as M2 and M5-branes. For a detailed derivation of the p-brane solutions
and other details from the supergravity perspective we refer to the review [35].
For more details about D-branes in string theory we recommend consulting the
lecture notes [36, 37, 38].

2.3.1 Brane solutions in supergravity

We have seen that the various supergravity theories include (p+ 1)-form gauge
potentials. These gauge potentials couple naturally to (p + 1)-dimensional
objects and thus produce electric branes that are charged with respect to the
(p+ 2)-form field strength F(p+2). As time will be a direction tangent to this
(p+ 1)-dimensional object, we can consider this object to be the world-volume
of a p-dimensional brane, and hence we will call them p-branes.

If the brane carries no other charges then it is a solution of an Einstein-Maxwell-
type gravity theory with action

S = 1
2κ2

D

∫
dDx
√
−g
(
R− 1

2(p+ 2)!F
2
(p+2)

)
(2.31)

where κD is related to the D-dimensional Newton’s constant GD and Planck
length lP by

2κ2
D = 16πGD = (2π)D−3lD−2

P . (2.32)

For D = 11 and p = 2 this is the bosonic part of the eleven-dimensional
supergravity action (2.5) (apart from the Chern-Simons term in the last line).

In order to obtain a (supersymmetric) solution, one usually makes some
simplifying assumptions about it. Since we would like to retain some
supersymmetries we will also need (some) translational symmetry (as imposed
by the algebra) along the brane. Finally we will require isotropy in the directions
transverse to the brane. Together this leads to a bosonic symmetry group of
the form Poincarép+1 × SO(D − p− 1). We will not derive the solution here9
but rather just present the solutions obtained using this ansatz.

9For a detailed derivation we refer to [35].
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A solution to the equations of motion of the action (2.31) is

ds2 = H
−D−p−3

D−2 dx2
(1,p) +H

p+1
D−2 dx2

(D−p−1),

F(p+2) = c (dH) ∧ ω(1,p),

H = 1 + cpN

rD−p−3 , (2.33)

where dx2
(1,p) is the (p + 1)-dimensional Minkowski metric with volume form

ω(1,p), and
dx2

(D−p−1) = dr2 + r2dΩ2
(D−p−2) (2.34)

is the (D − p− 1)-dimensional Euclidian metric with radial coordinate r. This
solution is interpreted as N coincident branes with a (p + 1)-dimensional
Minkowski world-volume located at r = 0. Branes and anti-branes differ in the
sign (c = ±1) of F(p+2).

The equations of motion reduce to the condition that H satisfies the Laplace
equation in the transverse space with a source term at r = 0. These source
terms can be understood as coming from the coupling of a p-brane action (see
section 2.4, later in this chapter) to the supergravity action

S = Ssupergravity + Sp-brane. (2.35)

This leads to a relation between the constant cp appearing in the harmonic
function H and the p-brane tension Tp (for the case of M2-branes see [39])

cp = 2κ2
DTp

(D − p− 3)V (SD−p−2) , (2.36)

where V (SD−p−2) is the volume of a (D − p− 2) unit-sphere.

We can also consider magnetic (D−p−4)-brane solutions which are magnetically
charged under F(p+2). At the classical level we can consider either F(p+2)
or its Hodge dual F(D−p−2) ≡ ?F(p+2) to be the fundamental field strength.
Conventionally, F(p+2) with (p+ 2) ≤ D/2 is considered to be the fundamental
field strength. Other than this, there is no distinction between electric and
magnetic solutions at the level of classical solutions of supergravity. As with
electric particles and magnetic monopoles in four dimensions, there is a Dirac
quantisation condition relating the charges (and tensions) of electric and
magnetic branes charged under the same field strength. In terms of the brane
tensions this takes the form [40]

2κ2
DTpTD−p−4 = 2πn, n ∈ Z. (2.37)

This is satisfied for the branes we consider with n = 1.
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Brane solutions in eleven-dimensional supergravity

For eleven-dimensional supergravity there is only one field strength, F(4). This
means that the only brane solutions are electric 2-branes (p = 2, called M2-
branes) or magnetic 5-branes (p = 5, called M5-branes). The tensions of
these branes are related by the Dirac quantisation condition (2.37). Due to
the absense of a dilaton, the M2-brane tension can be fixed in terms of the
eleven-dimensional Planck length [41]

TM2 = 1
4π2l3P

. (2.38)

Having reviewed the possible p-branes in eleven-dimensional supergravity, we
turn to ten-dimensional type IIA and type IIB supergravity theories.

Brane solutions in ten-dimensional supergravity

In type IIA supergravity we have the RR field strengths F(2) and F(4). The
field strength F(2) allows for electric 0-branes (called D0-branes) and magnetic
6-branes (D6-branes), while F(4) allows for magnetic 2-branes (D2-branes) and
electric 4-branes (D4-branes).

Type IIB supergravity contains the RR field strengths F(1) = dC(0), F(3) and
the self-dual five-form F(5). They lead to electric −1-branes (D(−1)-branes
and magnetic 7-branes (D7-branes), electric 1-branes (D1-branes) and magnetic
5-branes (D5-branes), and, 3-branes (D3-branes) which are both electric and
magnetic due to the self-duality of the five-form. The D(−1)-brane is a solution
localised at a point in spacetime.

From a string theory point of view Dp-branes in type IIA and type IIB are (p+1)-
dimensional submanifolds on which open strings can end.10 As a consequence,
a (p+ 1)-dimensional gauge theory describes the low energy dynamics of Dp-
branes. The tension of a Dp-brane can be calculated from a 1-loop open string
amplitude [42]

TDp = 1
(2π)pgslp+1

s

. (2.39)

There are also non-dynamical RR-charged objects known as orientifold p-planes
(as opposed to D-branes, which are dynamical objects). These are fixed planes
of a Z2 action which consists of a reflection of the 9− p transverse directions

10In fact, Dirichlet boundary conditions for the strings in the directions transverse to the
brane fix the endpoints to stick to the world-volume of the brane. These Dirichlet boundary
conditions lend their name to the branes, D-branes.
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together with a reversal of the orientation of the string worldsheet. The charge
and tension of these orientifold p-planes is given by

TOp = ±2p−5TDp. (2.40)

In both type IIA and type IIB there is also a NS-NS three-form field strength
H(3), and so there are also electric 1-brane and magnetic 5-brane solutions
associated to this. The 1-branes correspond to fundamental strings and are
referred to as F1-branes (or NS1-branes). The 5-branes are called NS5-branes.
These objects are not D-branes (they are not endpoints of open strings). The
tension of the fundamental string

TF1 = 1
2πl2s

, (2.41)

defines the string length ls =
√
α′. This string length is related to the ten-

dimensional Newton’s constant by

2κ2
10 = (2π)7g2

s l
8
s , (2.42)

where also the string coupling constant gs appears. The string coupling constant
gs ≡ eφ∞ is related to the asymptotic value of the dilaton. The dilaton can be
shifted to vanish at infinity, bringing out explicit factors of gs.

Finally, there also exist D8-branes which are domain walls in ten dimensions.
These are solutions of massive IIA supergravity and they are predicted to exist
in string theory by T-duality from other D-branes, however it is unclear how
they are related to an eleven-dimensional theory. T-duality changes Dirichlet
with Neumann boundary conditions and vice versa, this means that if we
perform T-duality in a direction transverse or tangent to a Dp-brane we obtain
a D(p+ 1)- or D(p− 1) brane respectively. This then also implies the existence
of space-filling D9-branes in the type IIB theory.

Since type IIA supergravity is related to eleven-dimensional supergravity by a
Kaluza-Klein reduction on a circle of radius R11, there are relations between the
types of branes in both theories. Fundamental strings and D2-branes are simply
M2-branes wrapped or not wrapped on the eleventh dimension, while D4-branes
and NS5-branes both correspond to M5-branes in eleven dimensions. The field
strength F(2) is the Kaluza-Klein gauge field strength and so D0 branes are
Kaluza-Klein particles while D6-branes are Kaluza-Klein monopoles.

We now present the supergravity solutions to equations of motion derived from
the actions (2.9) or the string-frame version of (2.22). The solution for N
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coincident Dp-branes is (string-frame)

ds2 = H−1/2dx2
(1,p) +H1/2dx2

(9−p),

F(p+2) = −d(H−1) ∧ ω(1,p),

eφ = H
3−p

4 ,

H = 1 + cpN

r7−p , (2.43)

for fundamental strings

ds2 = H−1dx2
(1,1) + dx2

(8),

H(3) = −d(H−1) ∧ ω(1,1),

eφ = H−
1
2 ,

H = 1 + 25π2g2
s l

6
sN

r6 , (2.44)

and for NS5-branes

ds2 = dx2
(1,5) +Hdx2

(4),

H(3) = ?
(
d(lnH) ∧ ω(1,5)

)
,

eφ = H
1
2 ,

H = 1 + l2sN

r2 . (2.45)

In each case r is the radial coordinate in the directions transverse to the branes.
In all cases the brane solution is determined by a harmonic function H.

As a final remark, we can also describe multi-centred brane solutions, solutions
consisting of separated parallel branes. They are the same as in equations
(2.33), (2.43), (2.44) or (2.45), but with H replaced by a multi-centred harmonic
function

Hm.c. = 1 +
N∑
i=1

K(p)
|~r − ~ri|∆(p) , (2.46)

where ~r and ~ri are vectors in the transverse space, and the constants K(p) and
∆(p) depend on the type of brane we consider. For Dp-branes K(p) = cp and
∆(p) = 7− p. The solutions correspond to N parallel branes, where the i-th
brane is centered at ~ri in the transverse space.
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2.3.2 Supersymmetry of brane solutions

An important property of the brane solutions is that they preserve half the
supersymmetry of the supergravity theory. To see this explicitely we need to
consider the form of the supersymmetry transformations in the appropriate
supergravity theory. In all cases, since we are considering bosonic solutions, the
supersymmetry transformations of all bosonic fields vanish. We are left with
the supersymmetry transformations of the fermionic fields. The symmetries
preserved by the solution are given by the subset of all allowed transformations
which vanish for this particular solution. We will use eleven-dimensional
supergravity from section 2.2 as an example. The supersymmetry transformation
of the gravitino was given in equation (2.6). It can be easily checked that for
the M2- and M5-brane solutions of the previous section, these supersymmetry
variations vanish with an arbitrary choice of half of the components of the
spinor ε. More precisely, in each case these supersymmetry variations vanish
when ε is some specific function multiplying a constant spinor ε0

ε = f(r)ε0, (2.47)

which satisfies a projection condition that depends on the brane under
consideration.

For an M2-brane (equation (2.33) with p = 2) the solution admits Killing spinors
of the form (2.47) and

Γ̂012ε0 = cε0 c = ±1, (2.48)

where Γ̂0...p = Γ̂0 . . . Γ̂p is the product of p + 1 distinct Gamma matrices in

an orthonormal frame. Using that
(

Γ̂012

)2
= 1 and Tr

(
Γ̂012

)
= 0, we see

that the projection eliminates half of the spinor-components. We conclude
that the M2-brane solution has 16 Killing spinors and preserves half of the
supersymmetry.

Similarly, the M5-brane solution allows for Killing spinors satisfying

Γ̂0...5ε0 = cε0, (2.49)

for M5-branes with world-volume directions 012345. Because of the tracelessness
and the unipotency of Γ̂0...5, there are again 16 Killing spinors and thus the
solution preserves half of the supersymmetry.

Similar results hold for the brane solutions of type IIA and type IIB supergravity.
We will make this a bit more formal in section 2.4, where we discuss the use of
a probe brane to identify the remaining supersymmetry.
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2.3.3 Asymptotic and near-horizon geometries of M2, M5 and
D3-branes

In this section we take a closer look at the geometries of D3-branes as well as
M2- and M5-branes. We will particularly be interested in the symmetry group
associated with the near-horizon regions of their geometries. All of these have a
near-horizon geometry of the form AdS×Sphere.

All of the solutions presented in section 2.3.1 are supergravity solutions, which
means that they are valid as long as their typical length scale is much larger than
the string scale ls. For Dp-branes this length scale is defined by R7−p

p = cpN
and is found in the harmonic function of the solution. Requiring supergravity
to be a valid limit of string theory then imposes Rp/ls � 1 (or equivalently
gsN � 1).

Now consider the regime where r � Rp. In this regime the harmonic functions
approaches unity H ' 1 and the metric reduces to that of a flat space plus
small corrections of the order (Rp/r)7−p. We can write(

Rp
r

)7−p
∼ gsNα

′7−p

r7−p ∼ GNM

r7−p , (2.50)

where we defined M = Nτp and τp is the tension of a single Dp-brane. The
gravitational effect of N Dp-branes is similar to that of a point particle of
mass M in 9− p dimensions. We see that the radius Rp sets the range of the
gravitational influence of N Dp branes. This regime is called the asymptotic
limit of the geometry.

The metric of the D3-brane was given in (2.43), which we repeat here, for p = 3

ds2 = H−1/2dx2
(1,3) +H1/2dx2

(6),

F = − 1
H
∂r(H)dr ∧ ω(1,3),

eφ = 1,

H = 1 + c3N

r4 . (2.51)

Note that the dilaton vanishes. The typical length scale for the case p = 3 is
defined by R4

3 = Nc3 ∼ gsNα′2.
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Gravitational effects are strong in the region where r/R3 � 1. In this limit, the
metric in (2.51) reduces to

ds2 =
(
r

R3

)2
dx2

(1,3) +
(
R3

r

)2 (
dr2 + r2dΩ2

(5)

)
. (2.52)

This geometry describes AdS5 × S5, where the AdS-factor is expressed in
coordinates (3.26) (explained in section 3.2 later on in this thesis), and it has
the same radius for the AdS and sphere factors. Since r is small compared to
the characteristic length scale R3 this limit is called the near-horizon limit of
the geometry (2.51).

We have found two asymptotic regions that are connected by an infinite throat
and the solution interpolates between flat space at r →∞ and a geometry that
asymptotically tends to AdS5 × S5 near the horizon, r → 0. Furthermore, it
turns out that there is an enhancement of supersymmetry in the asymptotic
regions and both regions are maximally supersymmetric solutions to type IIB
supergravity having 32 real supercharges. Hence, the D3-brane solution is a half
BPS solution that interpolates between two maximally supersymmetric solutions,
ten-dimensional Minkowski-space and AdS5 × S5. The bosonic symmetry of
the near-horizon region is given by the product of the symmetry groups of
the constituent factors of the metric, an SO(2, 4)-factor for AdS5 and a factor
SO(6) for the S5.

The energy Er as measured by an observer at fixed radial position r is not the
same as the energy E∞ measured at infinity, in the asymptotically flat region.
The two are related by a red-shift factor E∞ = Er/H

1/4 due to the curvature
of the geometry. As seen by an observer in the bulk, there are two kinds of
closed string excitations that remain in the low energy limit. The first group of
excitations is given by massless excitations that propagate in the asymptotic
flat region. The second group consists of the full spectrum of closed type IIB
string excitations in the near-horizon part of the geometry r/R3 → 0. In fact,
the closer the excitations are to the horizon, the higher their energy Er can be
while keeping E∞ = Err/R3 fixed.

Let us express all energy and lengths in string units by introducing factors of α′
and then take the low-energy limit α′ → 0. We find that Er

√
α′ = E∞

√
α′R3/r.

Taking the low-energy limit α′ → 0, while keeping E∞, R3 and r/
√
α′ fixed

shows that the excitations of arbitrary finite energy Er
√
α′ are allowed in the

near-horizon region. Furthermore, these excitations with finite energy cannot
escape to the asymptotic region due to the shape of the gravitational potential.
The massless excitations that propagate in the near-horizon region and the
asymptotically flat region cannot interact and decouple in the limit α′ → 0.
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A similar story holds for the M2-and M5-branes, the near-horizon geometry is
given by

ds2 =
( r
R

)2ω
dx2

(1,p) +
(
R

r

)2
dr2 +R2dΩ2

(D−p−2), (2.53)

where for the M2-branes R = (c2N)1/6 and ω = 2, and for the M5-branes
R = (c2N)1/3 and ω = 1/2. With a coordinate change ρ =

(
r
R

)ω one obtains
the horospherical form

ds2 = ρ2dx2
(1,p) +

(
R

ω

)2
dρ2

ρ2 +R2dΩ2
(D−p−2), (2.54)

such that in the case of M2-branes we have an AdS4 × S7-geometry with radii
of curvature 2RAdS = R = RS , and for the case of M5-branes we have an
AdS7 × S4-geometry with radii of curvature 1

2RAdS = R = RS . Both these
near-horizon geometries have enhanced supersymmetry and allow for 32 real
supercharges. The M2-brane has a bosonic symmetry group SO(2, 3)× SO(8)
while the M5-branes near-horizon geometry has a symmetry SO(2, 6)× SO(5).

2.4 D-brane actions

The (bosonic) world-volume action of a generic probe Dp-brane consists of two
parts, the (p+ 1)-dimensional Dirac-Born-Infeld (DBI) action

SDBI = −TDp
∫
dp+1σe−φ

√
−det(Gµν + Fµν) , (2.55)

together with Wess-Zumino couplings

SWZ = TDp

∫ ∑
n

Ĉ(n) ∧ eF . (2.56)

The world-volumeM(p+1) is parametrised by p+1 coordinates σµ. The functions
XM (σ) describe the embedding and shape of the Dp-brane world-volume in
spacetime. A frequent choice of coordinates σ is the static gauge in which
σµ = Xµ. SDBI contains the induced metric

Gµν = ∂µX
M∂νX

NgMN , (2.57)

and F = 2πl2sF − B̂(2) is a linear combination of the pullback of the background
NS-NS 2-form potential B(2) and a world-volume 2-form field strength F . In
the WZ terms, Ĉ(n) is the pullback of C(n) onto the brane world-volume, n is to
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be understood to run over all RR-potentials present in the given supergravity
theory and the integral includes only wedge products that have support on the
wordvolume of the brane ((p+ 1)-forms). In particular note that SWZ always
contains a term of the form

∫
C(p+1), thus the Dp-brane is a source for F(p+2)

as we claimed before. The full Dp-brane action is

SDp = SDBI + SWZ. (2.58)

The two terms in (2.58) describe the coupling of the probe brane to the two
parts of the background geometry. SDBI describes the ‘gravitational’ coupling
to the background metric and SWZ describes the ‘electromagnetic’ coupling to
the background forms. We first continue the discussion on the supersymmetry
preserved by the branes and then comment on a few simple limits of the brane
action.

2.4.1 World-volume (super)symmetry

Let us consider a D-brane as a probe brane, a brane placed in a fixed background
as a test brane. This means that the backreaction of the brane on the background
is ignored. If the background is generated by the same type and orientation
of branes, then we expect that the probe brane does not break any of the
(super)symmetries that are preserved by the background. We look at the
case of N + 1 parallel branes where we consider one to be a probe brane.
The backreaction is an O

( 1
N

)
-effect but the supersymmetries preserved are

independent of N and so should not be affected by neglecting the backreaction
of this one brane. A convenient way to work with supersymmetry is given
by superspace. In a superspace, the usual spacetime-geometry is extended
by supplementing the bosonic coordinates with a set of fermionic coordinates.
Coordinate transformations can now mix bosonic and fermionic coordinates in
this superspace, hence the name ’super’. The supersymmetric extension of (2.58)
can be obtained by embedding the brane world-volume in superspace. This
superspace has 10 or 11 bosonic spacetime coordinates XM and 32 fermionic
coordinates Θ. The background coordinates XM become fields XM (σ) on the
world-volume and describe the bosonic embedding of the brane in spacetime,
similarly the fermionic supercoordinates Θ on the world-volume are now also
fields Θ(σ). By construction the probe brane actions are invariant under the
background superisometries. These symmetries are now symmetries acting
on fields, i.e. they depend on the world-volume coordinates σµ through
{XM (σ),Θ(σ)}, and act as global symmetries.

In order to have world-volume supersymmetry the number of on-shell degrees
of freedom in the bosonic and fermionic sector must match. This requires a
(local) fermionic symmetry of the world-volume action linking the two, called
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κ-symmetry [43, 44]. This κ-symmetry will project out half of the components
of Θ on the brane world-volume. κ-symmetry is very similar to supersymmetry
and we just need to find a way to link this κ-symmetry on the world-volume to
the supersymmetry of the background. The κ-symmetry transformations take
the form

δκΘ = 1
2 (1 + Γ)κ, (2.59)

while the supersymmetry transformation on the background is

δεΘ = ε. (2.60)

The form of Γ depends on the type of brane, but it always satisfies Γ2 = 1 such
that we can construct projection operators P± = 1

2 (1± Γ). Also Γ is traceless
such that each projection operator projects out exactly half the components of
an arbitrary spinor. Decomposing Θ under these projections we find

δκ (P−Θ) = 0, δκ (P+Θ) = P+κ, (2.61)

and
δε (P−Θ) = P−ε, δε (P+Θ) = P+ε. (2.62)

We see that we can consistently set (1 + Γ) Θ = 0 to fix κ-symmetry, leaving P−Θ
as the world-volume fermionic degrees of freedom. The gauge fixing procedure
boils down to setting (1 + Γ) Θ = 0 and then preserving this gauge choice under
symmetry transformations by compensating a supersymmetry transformation
with a κ-symmetry transformation with parameter κ(ε) = −P+ε. This last
equality is called a decomposition law and tells us that the κ-symmetry is
now a composite symmetry. Having removed P+Θ, leaves us just P−Θ with
supersymmetry transformation δε (P−Θ) = P−ε. Requiring preservation of the
world-volume supersymmetry is then δε (P−Θ) = 0, or

Γε = ε. (2.63)

Since Γ depends on the world-volume fields we see that the brane locally
preserves half of the background global supersymmetries. The brane preserves
at most 16 supersymmetries.

2.4.2 (Non-Abelian) Gauge theories on D-branes

We choose a Minkowski background spacetime (G = η, B = 0, φ = 0) and we
consider the brane to be an infinite extended brane by taking the static gauge

σµ = δµMX
M . (2.64)
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With these choices the DBI action reduces to the Born-Infeld action

SBI = −TDp
∫
dp+1x

√
−det (ηµν + ∂µXi∂νXi + 2πα′Fµν), (2.65)

where i = 1, . . . 9−p runs over the transverse directions. Expanding it at second
order in derivatives11

SBI ' −TDp
∫
dp+1x

[
1 + 1

2(2πα′)2∂µφ
i∂µφi + 1

4(2πα′)2FµνF
µν

]
, (2.66)

we recover the standard kinetic terms for 9− p scalars living on the Dp-brane
world-volume (we defined Xi = 2πα′φi). Similarly, the quadratic term in Fµν
is the kinetic term of the gauge vector Aµ.

When we consider the presence of more than one Dp-brane, there emerges a
fundamental aspect from the string theory perspective related to the presence
of open strings. In presence of multiple D-branes, the endpoints of a string
can still lie on a single brane, however, the string can also stretch between two
different branes. When the string stretches between two non-coincident branes
it has a minimum finite length and, because of its tension, gives rise to modes
with finite mass.

Let us consider the case of two-branes. Strings with endpoints on the same
brane give rise to two U(1)-gauge fields (Aµ) 1

1 and (Aµ) 2
2 , where the indices

indicate on which brane the string starts and ends. Open strings connecting
different branes give rise to another two additional vector fields (Aµ) 1

2 and
(Aµ) 2

1 , whose mass is proportional to the distance between the branes. If
the Dp-branes are brought on top of each other the modes related to strings
stretching between the branes become massless. Altogether, they constitute the
gauge field of a non-abelian U(2) gauge group. Similarly, the scalars can be
grouped in a matrix (~φ) mn , which transforms in the adjoint representation of
the U(2) gauge group. The case of two branes is easily generalised to a stack
of N coincident Dp-branes. In this case the symmetry is enhanced to U(N).
Moving branes apart corresponds to a symmetry breaking from U(N) to U(1)N ,
with the off-diagonal degrees of freedom in Aµ becoming massive.

It turns out that it is a highly non-trivial problem to generalise the Dp-brane
action (2.58) to multiple Dp-branes and only the first few orders in α′ of the
non-Abelian extension of the full action have been obtained. In Minkowski
spacetime with no background fields, the leading order of the effective action is
the dimensional reduction to (p+ 1) dimensions of the ten-dimensional super

11Note that this is an expansion in α′.
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Yang-Mills action. At the two derivative level, the bosonic sector reads

S = − 1
g2
YM

∫
dp+1xTr

(
1
4FµνF

µν + 1
2Dµφ

iDµφi − 1
2 [φi, φj ][φi, φj ]

)
,

(2.67)
where

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], vDµφ
i = ∂µφ

i + i[Aµ, φi]. (2.68)

Comparing with (2.66) shows that the Yang-Mills coupling constant is

g2
YM = 1

2π(α′2)TDp
. (2.69)

The vacuum structure of the theory matches the Dp-brane picture above. The
scalar field potential in (2.67) is a sum of squares and its vacua are given by
configurations that satisfy [φi, φj ] = 0. Both Aµ and φi are N×N matrices, and,
if commuting they can be simultaneously diagonalised by a gauge transformation.
In the vacuum, the commuting scalar fields can take on an expectation value.
The diagonal entries of the scalar fields φi = diag(φi1, . . . φiN ) are interpreted as
the position of the N Dp-branes in spacetime. When the eigenvalues differ, the
gauge group U(N) is broken by the Brout-Englert-Higgs mechanism to U(1)N
since the diagonal components of the Aµ remain massless, while the off-diagonal
ones pick up a mass through the terms Tr[Aµ, φi]2. This matches the D-brane
picture above where the diagonal gauge fields corresponded to strings with both
endpoints on the same brane and off-diagonal ones to open strings stretching
between different branes. The diagonal U(1) subgroup of U(N) describes the
motion of the centre of mass of the whole rigid system of N branes. Because of
translational invariance, its dynamics decouples from the internal dynamics of
the N D-branes, and the gauge group reduces to SU(N).

The low energy effective action (2.67) receives higher derivative corrections
suppressed by α′E2, at energy scale E.12 The full type IIB String Theory also
contains closed strings which propagate and interact between themselves as well
as with the open strings in the ten-dimensional space. The interaction strength
of closed strings is set by Newton’s constant (which has dimension of length to
the power 8 in ten dimensions), or equivalently, by a dimensionless coupling
GNE

8 ∝ g2
s(α′E2)4. This dimensionless coupling vanishes in the IR, and closed

strings become non-interacting as expected from a theory of gravity. Since
gravity couples universally to all forms of matter, the same parameter should
control the interactions with open strings, and this in turn means that the
open and closed string sectors decouple at low energies. The higher derivative

12An easy way to see this, is by noting that it is the generalisation of (2.66), which is an
expansion in α′
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corrections vanish as well in this limit and we are left with N = 4 SU(N) SYM
in 3 + 1 dimensions on the world-volume of the brane.

As an example we present the non-abelian gauge theory obtained from a stack of
N D3-branes. The action is given by (2.67) with p = 3. The field content of the
theory consists of a vectorfield Aµ, six scalars φi and four Weyl fermions, all of
which are in the adjoint representation of U(N). At the two derivative level, the
world-volume theory is N = 4 super Yang-Mills in 3 + 1 dimensions with U(N)
gauge group. The N = 4 signals that it is a supersymmetric theory with 16 real
supercharges in 4 dimensions. The branes preserve a global SO(1, 3)× SO(6)
symmetry, matching the Lorentz group on the brane world-volume and the
R-symmetry group of the theory SO(6) ∼ SU(4). Four-dimensional N = 4
SYM is also conformal. The full symmetry of the theory is the superconformal
group SU(2, 2|4), which has bosonic subgroup SU(2, 2)× SU(4). The 16 real
supercharges combine with another 16 conformal supercharges, which are needed
to close the algebra, to obtain 32 real supersymmetry generators.

2.5 Intersecting branes

In this section we discuss properties of intersecting branes and branes ending on
branes. In particular, we want to touch upon the supersymmetry preserved by
intersecting branes. We briefly discuss more general configurations of intersecting
branes. Finally, we conclude with a discussion of an M2/M5 brane-configuration
in M-theory, as well as a related D4/D8-brane configuration that will motivate
the brane configuration considered in chapter 5. For a more detailed discussion
of intersecting branes we refer to the reviews [45, 46].

2.5.1 Supersymmetry of orthogonally intersecting branes

All essential features of orthogonally intersecting branes can be understood by
looking at two intersecting branes (or two intersecting stacks of branes). Let us
consider a (p+ q1)-brane and a (p+ q2)-brane embedded in a D-dimensional
space as displayed in table 2.1. Here d = D − p− q1 − q2 − 1 is the dimension

p+ 1 q1 q2 d

(p+ q1)-brane X X
(p+ q2)-brane X X

Table 2.1: Intersecting (p+ q1) and (p+ q2)-branes.
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of the space transverse to both branes. The two branes have a common (p+ 1)-
dimensional world-volume when they intersect, i.e. when they are at the same
position in the transverse d-dimensional space. The branes will not actually
intersect unless they are at the same location in the overall transverse space,
although we will refer to all configurations containing non-parallel branes as
intersecting brane configurations. The important features are related to the
structure of the relative transverse space, comprised of the directions labelled
by q1 and q2. We will now consider the amount of supersymmetry preserved by
such a configuration and discover it is the orientation and not the position of
the branes that plays a role here.

We know which supersymmetries are preserved by a single brane (or a single
stack of branes). For two branes we simply have to see which supersymmetries
survive both projection conditions. For the first brane we have the projection
condition Γ(1)ε = ε and the second brane has condition Γ(2)ε = ε. The matrices
Γ(1) and Γ(2) are a product of Γ-matrices, with specific expressions determined
by the supergravity theory and the brane under consideration. There are two
options, either Γ(1)Γ(2) = Γ(2)Γ(1) or Γ(1)Γ(2) = −Γ(2)Γ(1) (there is a third
option where Γ(1) = Γ(2) which preserves half the supersymmetry). In both
cases we have Tr

(
Γ(1)Γ(2)) = 0. In the case where Γ(1) and Γ(2) anti-commute,

we have
ε = Γ(1)ε = Γ(1)Γ(2)ε = −Γ(2)Γ(1)ε = −Γ(1)ε = −ε, (2.70)

so no supersymmetry is preserved. In the case where the projections commute,
we have that one quarter supersymmetry is preserved. This can be seen as
follows. Because Γ(1) and Γ(2) commute they can be simultaneously diagonalised,
and because both are traceless and square to one they have equal numbers of +1
and −1 eigenvalues (16 each). If we denote by n+− the amount of simultaneous
eigenstates of Γ(1) and Γ(2) with eigenvalues +1 and −1 respectively, and
similarly n++, n−− and n−+ we have

n++ + n+− = n−+ + n−− = n+− + n−− = n−+ + n++ = 16. (2.71)

Since Γ(1)Γ(2) is traceless it also has equal numbers of eigenvalues +1 and −1

n++ + n−− = n+− + n−+ = 16, (2.72)

such that
n−− = n++ = n+− = n−+ = 8, (2.73)

and the number of preserved supersymmetries is 8, one quarter of the original
32 supersymmetries.

If we have more than two types of orthogonally intersecting branes then we can
analyse the amount of supersymmetry preserved in a similar manner. The result
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will depend on the type and orientation of the branes. If the whole configuration
of m orthogonally intersecting branes is to preserve any supersymmetry, then
a necessary condition is that each pair of branes must preserve one quarter
supersymmetry. By doing a similar analysis of the simultaneous eigenstates
of the m operators Γ(i), provided the product of any number of these distinct
operators is traceless, then precisely 1/2m supersymmetry is preserved. It is
possible that some product of these operators is plus or minus the identity
instead of a traceless product of Γ-matrices. In the case of a plus sign, one of
the projection conditions is already imposed by the others and does not further
break supersymmetry. The case with a minus sign breaks all supersymmetry,
but the sign can be changed by reversing the orientation of one of the branes.

Examples of orthogonally intersecting branes

We start by considering the D-branes in type IIA or type IIB theories. For any
two branes we have that the relative transverse space has a dimension q1 + q2
which is a multiple of two. There are two distinct cases for intersecting branes
and they have

[Γ(1),Γ(2)] = 0 if q1 + q2 = 0 (mod 4),

{Γ(1),Γ(2)} = 0 if q1 + q2 = 2 (mod 4). (2.74)

So we see that the condition for preserving one quarter supersymmetry is that
the branes have 0, 4 or 8 transverse directions.

As a second example we consider three sets of orthogonally intersecting branes,
two M2-branes and one M5-brane. We take the orientations to be in the 012345,
016 and 027 hyperplanes. This solution is a special triple intersection. The
product of the three Gamma-matrix projections gives another projection

Γ̂012345Γ̂016Γ̂027 = −Γ̂034567, (2.75)

corresponding to an M5-brane in the directions 034567. This means we can
obtain an intersection of an M2-brane with another M2-brane and two (non-
parallel) M5-branes that preserves 1/8 supersymmetry (and not 1/16 as one
might expect for 4 intersecting branes) as long as we choose the polarisation of
the fourth brane (M5-brane number two) to be determined by the polarisations
of the others.
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2.5.2 Smeared intersections

In section 2.3.1 we saw that solutions for parallel branes are described by
harmonic functions with singularties at the location of the branes. It turns
out that a large class of intersecting brane solutions can be described in a
similar fashion by following a set of rules for combining the harmonic functions
associated to each type of brane, called the harmonic function rule. As a
guiding example we will consider the case of intersecting M2-branes. We will
consider a set of parallel M2-branes with world-volume directions 012 intersecting
with another set of parallel M2-branes with world-volume directions 034. The
constituent parallel branes (with world-volume directions either 012 or 034)
would be described in terms of harmonic functions H(1) and H(2), respectively,
as
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3
(1) dt
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3
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dx2
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and

ds2 = −H
− 2

3
(2) dt

2 +H
1
3
(2)
(
dx2

1 + dx2
2
)

+H
− 2

3
(2)
(
dx2

3 + dx2
4
)

+H
1
3
(2)dx

2
⊥,

F = −d(H−1
(2) ) ∧ dt ∧ dx3 ∧ dx4. (2.77)

The solution for the intersecting M2-branes is simply given by multiplying the
metric factors and adding the field strengths
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The equations of motion for F are satisfied provided that H(1) and H(2) are
harmonic funtions of the coordinates transverse to both types of M2-branes.
From the perspective of the 012 M2-branes we can interpret the form of H(1) as
describing a continuous distribution of M2-branes in the 34 directions. We say
that these branes are smeared in the 34 directions. So the solution corresponds
to the intersection of M2-branes oriented in the 012 and 034 directions, smeared
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over their relative transverse directions. In general, a brane solution whose
harmonic function is independent of a number of transverse coordinates is said
to be delocalised, averaged or smeared over those directions.

The generalisation of the above example is very obvious. The constituent brane
solutions each have a harmonic function associated to them. To construct the
intersecting solution we simply combine the solutions like we did in the M2-brane
example. For every constituent brane we add together the field strengths and
multiply the components of the diagonal metric. When we are dealing with
branes in type IIA or IIB supergravity there is also a dilaton, which for the
intersecting solution is given as the sum of the constituent solutions for the
dilaton. This procedure provides a solution describing intersecting branes on the
condition that the configuration of the intersecting branes is supersymmetric.

In general, when one checks the equations of motion for such an ansatz, one
finds that for each pair of (sets of parallel) branes, at least one of them needs
to be smeared over the world-volume directions of the other. This gives several
choices for the smearing and the choice of this smearing determines on which
coordinates each harmonic function can depend. These harmonic functions then
have to satisfy the curved-space Laplace equation following from d ? F = 0,
with appropriate source terms. There is an exception to this rule, when two
branes intersect with eight relative transverse dimensions. In this case one can
allow the harmonic function to depend on the relative transverse coordinates
provided they are independent of the overall transverse direction.

The curved-space harmonic functions improve the localisation of the branes,
even allowing full localisation in some cases, but usually it is not possible to
find explicit solutions. However, taking a near-horizon limit makes the problem
more tractable and explicit solutions can often be found, examples include
[47, 48, 49], and the geometry of the near-horizon limits of several semi-localised
solutions was studied in [50]. The smeared solutions constructed with the
harmonic function rule are all of the same general form, but it is not clear
whether the different fully localised solutions will have such a similar description.
It is still unclear what the properties of such localised solutions are for general
(supersymmetric) configurations of branes, even in the near-horizon limit.

General intersections

So far we have only considered orthogonally intersecting branes, but one could
ask what the most general configuration of intersecting branes is that preserves
some of the supersymmetry. The problem essentially is a more complicated
version of what we discussed here. A large class of intersecting brane solutions
can be described in a similar way by combining harmonic functions following
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the simple rules of the previous section and then relate them to non-orthogonal
intersections by performing boosts and dualities [51]. For example, consider
the case of two planar M5-branes, with one of them having directions 012345.
The embedding of the second M5-brane is related to the first by a rotation of
the spatial 5-plane in the ten-dimensional space. This can be parametrised in
terms of angles describing the rotations in each of the 2-planes spanning e.g.
directions 16, 27, . . . The supersymmetry projection conditions can be analysed
with the result that for various constraints on the angles the possible fractions
of supersymmetry which can be preserved are [52]

1
32 ,

1
16 ,

3
32 ,

1
8 ,

5
32 ,

3
16 ,

1
4 ,

1
2 . (2.79)

Application to Black Holes

The harmonic function rules above provide a method of constructing large
classes of solutions, which are related to intersecting branes. However, the
smearing of the branes over the relative transverse directions means that it is
not obvious what happens at the intersection and there are important features
that cannot be described by these solutions, such as the relative separations of
the branes in directions over which they are smeared. These parameters are
important for intersecting brane configurations that describe gauge theories.

The smearing of the branes is not important when we want to compactify
the directions along which the branes are smeared. When we perform such a
reduction we end up with a p-brane solution of a lower dimensional supergravity,
where p+1 is the number of common world-volume dimensions of the intersecting
branes. We can further compactify some or all of these p directions, and when we
compactify all p directions we end up with a particle. These solutions describe
black holes with various charges specified by the constituent intersecting branes.

The advantage of constructing black hole solutions from intersecting branes is
that we automatically have a string theory interpretation. In particular, the
interpretation of a black hole as a particular configuration of branes allows us
to calculate the entropy of the black hole by considering the number of massless
degrees of freedom in string theory. Comparing this to the area of the lower
dimensional black hole horizon provides a microscopic derivation [53] of the
Bekenstein-Hawking black hole entropy. This is quite a large subject and we will
not consider it any further. For the interested reader, we refer to [54, 55, 56, 57]
for a review.
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Gauge theories and intersecting branes

Intersecting branes that preserve supersymmetry can be used to study the infra-
red dynamics of supersymmetric gauge theories [58, 59]. One considers different
types of branes intersecting in some chosen arrangement. The low-energy
dynamics on the world-volume of one type of brane is then associated with a
supersymmetric quantum field theory that one wishes to study. By considering
the low-energy dynamics from the point of view of different branes and allowing
the branes to move around, enables one to determine the low-energy effective
dynamics of the field theory in some cases. This brings us in the domain of
the AdS/CFT correspondence and other gauge-gravity dualities. This is the
subject of the next chapter and we will come back to this subject there. We will
mention here that often the gauge theory is used to determine the symmetries
of the intersecting brane solution. One starts with the most general form of the
metric and fields that adhere to these symmetries, and then use the conditions
for preservation of supersymmetry to constrain the metric and fields further and
obtain a supergravity solution describing an intersecting brane configuration.
Once a solution has been obtained, one can then try to describe the gravity
dual of the field theory.

2.5.3 Intersecting M2/M5 branes and intersecting D4/D8-
branes

We have seen that we can construct configurations of branes that intersect
and still preserve some supersymmetry. In their near-horizon geometry these
configurations often have a bosonic symmetry enhancement wherein a conformal
subgroup appears, allowing for an AdS-factor in the geometry, as well as
supersymmetry enhancement, restoring some of the supersymmetry lost due to
the addition of branes.13

Intersecting M2/M5-branes

We consider intersecting M2-branes and M5-branes, with the configuration
given in table 2.2. From the discussion above we know that we are more
likely to solve the system of equations and find a localised solution if we look
at the near-horizon geometry of this configuration. We will assume there is
a conformal symmetry enhancement in this limit, i.e. there is a conformal
factor that appears as a subgroup of the bosonic symmetry. The intersection

13i.e. the D3-brane configuration in their near-horizon limit of section 2.3.3.
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preserves 16 Poincaré supersymmetries.14 The counting goes as follows. The
original eleven-dimensional supergravity has 32 supersymmetries. The addition
of the stacks of M2- and M5-branes halves the amount of supersymmetry
each. However, the projector of the M5’ stack is not independent of the others,
and does not reduce the amount of supersymmetry further, leaving us with 8
supersymmetries.15 These 8 supersymmetries are then enhanced to 16 in the
near-horizon limit. The bosonic symmetry preserved by the brane configuration
is ISO(1, 1)× SO(4)× SO(4) and is enhanced to SO(2, 2)× SO(4)× SO(4) in
the conformal limit.16 The corresponding superconformal group with SO(2, 2)×
SO(4) × SO(4) bosonic symmetry and 16 conformal supersymmetries is not
unique but comes in a one-parameter family, D(2, 1; γ; 1)×D(2, 1; γ; 1).

0 1 2 3 4 5 6 7 8 9 10
M2 X X X
M5 X X X X X X
M5’ X X X X X X

Table 2.2: Intersecting M2/M5-branes, preserving half of the maximal number
of supersymmetries.

In [60], the problem of finding solutions of M-theory with D(2, 1; γ; 1) ×
D(2, 1; γ; 1) symmetry was reduced to a single linear partial differential equation.
At three special points, the D(2, 1; γ; 1) supergroup reduces to a classical

14The origin of the name Poincaré supersymmetry is found in the fact that we only have
a Poincaré supergroup in the original eleven-dimensional theory, the only supersymmetry
generators are the generators Q, which are sometimes referred to as Poincaré supersymmetry
generators. If we had a superconformal supergroup, we would have both Q- and S-
supersymmetry, counting both is referred to as conformal supersymmetry, counting only the
Q-supersymmetry is referred to as Poincaré supersymmetry.

15The symmetry projections of the branes in Tabel 2.2 are given by

M2-brane ε = Γ23456789ε, M5-brane ε = Γ16789ε, M5’-brane ε = Γ12345ε. (2.80)

16We refer to the conformal limit as a near-horizon limit where we assume the appearance
of a conformal factor in the symmetry group. In terms of the AdS/CFT correspondence
of chapter 3 this corresponds to having an IR fixed point in the field theory dual, which
necessitates conformal symmetry, or in terms of the gravity side, an AdS-factor. Some brane
configurations will admit such an enhancement and others will not, whether we are dealing
with the former or the latter will be a result of solving the BPS equations and obtaining
a solution that realises this conformal symmetry. It turns out that in this case such an
enhancement is possible.
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0 1 2 3 4 5 6 7 8 9
F1 X X
D4 X X X X X
D4’ X X X X X

O8/D8 X X X X X X X X X
D0 X

Table 2.3: Intersecting D4-branes and F1-strings, preserving half of the maximal
number of supersymmetries.

supergroup

D(2, 1; γ; 1) = OSp(4∗|2) γ = −1/2,−2 ,

D(2, 1; γ; 1) = OSp(4|2,R) γ = 1 . (2.81)

Furthermore, at each of these three special points, the superconformal group
becomes a subgroup of a larger superconformal group. This group structure
leads to a large and interesting family of solutions.

We consider first the special values γ = −1/2,−2. In this case we
have D(2, 1;−1/2, 0) × D(2, 1;−1/2; 0) ⊂ OSp(8∗|4) and D(2, 1;−2; 0) ×
D(2, 1;−2; 0) ⊂ OSp(8∗|4). The extended symmetry OSp(8∗|4) corresponds to
having only a single stack of M5-branes and is realised as the superisometry
group of the near-horizon geometry AdS7 × S4. For the special value γ = 1,
the extended symmetry is OSp(8|4,R) and corresponds to having a stack of
M2-branes, whose near-horizon geometry is AdS4 × S7.

The general M-theory solutions with D(2, 1; γ; 1)×D(2, 1; γ; 1) symmetry were
constructed in [60, 61].

Intersecting D4/D8-branes

The above story can be reduced to type IIA string theory after compactifying
and dimensionally reducing along the 10-direction. The resulting type IIA brane
configuration is given in the top half of table 2.3. The M2-branes become a
fundamental string, while the M5-branes become D4-branes.
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2.5.4 Intersecting F1/D4/D8-branes in massive type IIA
supergravity

We now introduce the system of interest to this thesis (chapter 5). Starting
with the above IIA configuration, we introduce D8-branes17, along with an
orientifold projection, as in the lower half of table 2.3.18 The D8-branes/O8-
plane reduce the supersymmetry further and only 8 supersymmetries remain.
The D8-branes are magnetically charged under the Romans mass and signal
that we now work in the massive version of type IIA supergravity. Note that
we may also introduce D0-branes without further reducing the symmetry. The
bosonic symmetry in the conformal limit is given by SO(1, 2)× SO(4)× SO(4).
The corresponding superconformal group again comes in a one parameter family,
D(2, 1; γ; 1)× SO(4), where we have an extra bosonic symmetry which is not
part of the supergroup. As in M-theory, for three special values of γ, we find
that D(2, 1; γ; 1)× SO(4) is a subgroup of an extended supergroup:

D(2, 1; γ; 1)× SO(4) ⊂ F (4; 2)× SO(3) γ = −1/2,−2 ,

D(2, 1; γ; 1)× SO(4) ⊂ OSp(8|2,R) γ = 1 . (2.82)

We see a group structure analogous to the one encountered for M-theory and it
is a natural question to ask what the enhanced symmetry points correspond to
this time.

For the special values γ = −1/2,−2, the extended symmetry F (4; 2)× SO(3)
corresponds to a single stack of D4-branes in addition to the D8-branes/O8-
plane. These solutions of massive IIA supergravity have been constructed in
[63, 19].

We now consider what happens when we introduce the fundamental strings.
Introducing the fundamental string reduces the supersymmetry by half. The

17As we shall see later, the D8-branes and O8-plane are important in the AdS/CFT
correspondence where it was argued in [62] that their presence is necessary to have a five-
dimensional fixed point.

18The symmetry projections of the branes given in table 2.3 are given by

F1− string ε = Γ23456789ε , D4− brane ε = Γ16789ε ,

D4′ − brane ε = Γ12345ε , D8− brane ε = Γ1ε ,

D0− brane ε = Γ123456789ε .

The fundamental string projection breaks the number of supersymmetries from 32 to 16, while
the D4-brane projection further breaks the number of supersymmetries to 8. Introducing the
D8-branes again reduces the supersymmetries by half, so that the resulting theory preserves
4 Poincaré supersymmetries. In the conformal limit, the total number of supersymmetries
doubles to 8.
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superconformal symmetry is broken to OSp(4∗|2) ⊂ F (4; 2), while the SO(3)
bosonic symmetry remains unbroken. These supergravity solutions have yet to
be constructed but fall within the ansatz studied in chapter 5 of this thesis.

The special value of γ = 1 corresponds to the extended symmetry OSp(8|2,R).
This symmetry arises as the superconformal symmetry associated with
fundamental strings ending on or intersecting the D8-branes/O8-plane. This
can be seen in table 2.3, where the SO(8) symmetry acts on the directions 2
through 8, while Sp(2,R) ∼ SO(1, 2) arises as the superconformal group of
time translations. Additionally, we may include the D0-branes without loss of
symmetry. In this case, the fundamental strings can be stretched between the
D8-branes and the D0-branes.

The configuration and discussion presented in this section will form the basis
of chapter 5. We will use the symmetry considerations discussed here to
formulate an ansatz for the solutions. Using this ansatz we will then solve the
BPS-equations for the cases of enhanced symmetry.



Chapter 3

AdS/CFT correspondence

In this chapter we will give a concise introduction to the AdS/CFT
correspondence focusing on basic examples to explain some of the key ideas.
These ideas hold in a more general context but the details are more involved.
We will try to avoid these unnecessary details, instead trying to focus on the
notions that will help elucidate the results that motivate the research presented
in chapter 5.

Let’s start with some terminology. What is the AdS/CFT correspondence
and why is it interesting? The AdS/CFT correspondence is a conjectured
duality between two theories, a string theory and a gauge theory. The prototype
example of the correspondence was first conjectured by Maldacena in a historical
paper [64]. It postulates the exact equivalence of type IIB string theory on
AdS5 × S5 and N = 4 super Yang-Mills theory in four-dimensional Minkowski
spacetime. The name of the correspondence, AdS/CFT, originates from the
simplest examples which involve a duality between AdS-spaces and Conformal
Field Theories (CFT). Since then, many other examples of the correspondence
have been found, including gravity theories without AdS-spaces and gauge
theories that are not conformal, leading to the general name gauge/gravity
duality. On the one side of the duality, the gauge theory is a quantum field
theory in d dimensions, while on the other side we have a gravity theory in d+ 1
dimensions that has an asymptotic boundary that is d-dimensional. Describing
a (d + 1)-dimensional gravity theory in terms of a lower dimensional system
reminds us of an optical hologram that stores a three-dimensional image on a
two-dimensional photographic plate. For this reason, the correspondence is also
referred to as a holographic correspondence.

50
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The idea of holography [65, 66] has its origin in the study of the thermodynamics
of black holes. It was shown by Bekenstein and Hawking that black holes can
be viewed as thermodynamical systems with a temperature and an entropy
[67, 68, 69]. The temperature is related to the black body radiation emitted by
the black hole while the entropy is given by the Bekenstein-Hawking entropy
formula

SBH = Ah
4GN

, (3.1)

where Ah denotes the surface area of the event horizon of a black hole. Since in
statistical physics entropy is a measure for the number of degrees of freedom in a
theory, it is quite surprising to see that the entropy of a black hole is proportional
to the area of the horizon. One would have expected a proportionality to the
volume. A consistent picture is reached if gravity in d dimensions is somehow
equivalent to a local field theory in d − 1 dimensions. Both would have an
entropy proportional to the area in d dimensions, which corresponds to a volume
in d− 1 dimensions. The AdS/CFT correspondence is a concrete realisation of
this.

The correspondence in its full generality has not been proven, one of the reasons
being that it would require a complete understanding of string theory. A weaker
form of the AdS/CFT correspondence is obtained by restricting to low energies
at the string theory side. At low-energies type IIB string theory on AdS5 × S5

reduces to type IIB supergravity on AdS5 × S5. On the gauge theory side
one has to take the corresponding limit and the gauge theory side has a large
effective coupling λ and N limit, where N is the rank of the U(N) gauge group.
It is important to note that the gravity theory cannot cover the entire gauge
theory but only a certain regime. This weaker form of the equivalence has been
well tested by now, for instance, by matching correlation functions on both
sides of the correspondence (see [70] for a discussion). The general attitude,
is to assume that the correspondence holds, as long as it does not lead to
contradictions.

An interesting property of the AdS/CFT correspondence is that the duality
is a strong/weak duality. Both theories describe the same physics through a
dictionary that relates quantities in one theory to the quantities in the other,
so both can be used to calculate the same physical quantities. But, since one of
the theories is strongly coupled and the other theory is weakly coupled, this
allows for calculating quantities in a strongly coupled regime of one theory by
doing a calculation of the desired dual quantity in the weakly coupled regime of
the other theory.

A famous example is the calculation of the viscosity to entropy density ratio
for N = 4 SYM with gauge group SU(N) in the limit of strong coupling [71],
the result of the gravity calculation was found to be η

s = 1
4π . This limit is a
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lower bound for the ratio in strongly coupled field theories [72], and actually it
is subject to a few corrections due to the inclusion of higher derivative terms,
modifying the value slightly [73, 74, 75, 76]. Measurements at the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, where two heavy
atomic nuclei are collided in order to produce a quark-gluon plasma just above
the confinement scale, place the viscosity to entropy density ratio of the QCD
plasma (a strongly coupled system) within the range 1/4π ' 0.08 < η

s < 0.3
[77, 78].

There are two viewpoints towards the AdS/CFT correspondence. The
first involves string theory constructions. In this case, we have alternative
descriptions of the same object (such as D3-branes) and the AdS/CFT
correspondence follows from string theory. Here, we typically have a precise
duality between two theories. In the second case, we think of the AdS/CFT
correspondence as giving some effective description of the system (similar to
effective fields theories like Landau-Ginzburg theory describing superconductors).
In this case, either the effective description is good or not. More precisely, we
could define a QFT by its gravitational dual description and then use the
AdS/CFT correspondence to calculate all that we wish to know about the QFT
without ever needing an explicit expression from the QFT.

It is clear that the AdS/CFT correspondence and its generalisations provide a
perfect tool to study strongly coupled field theories through their gravity duals,
in fact, it has been used to describe field theories which show behaviours similar
to superconductors [79, 80], including a critical temperature and evidence for
pair formation.

We will start this chapter by stating some facts about the basic building blocks
of the AdS/CFT correspondence, conformal field theories and AdS-spaces. We
consider the arguments that led Maldacena to formulate the correspondence
between type IIB string theory on AdS5 × S5 and N = 4 super Yang-Mills,
and show that by comparing the parameters of the dual theories we indeed
obtain a strong/weak duality. This will involve a comparison of the two pictures
of D3-branes discussed in chapter 2, the closed string picture provided by
the near-horizon geometry of D3-branes and the open string picture provided
by the world-volume theory of D3-branes. Having introduced some relevant
terminology and facts, we give a general formulation of the correspondence.
We will consider a few of the possible checks of the correspondence one could
perform, and as an example we will calculate the 2-point function of an operator
in the field theory side, using a computation on the gravity side. We introduce
Wilson loops, and discuss their relation with branes. Finally, we turn to a
discussion of the papers that motivate the work in chapter 5.
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For more detailed discussions on the AdS/CFT correspondence we refer to the
original papers [64, 81, 82] and the reviews [83, 84, 70].

3.1 Conformal Field theories

In this section we will introduce some concepts related to conformal field theories.
A review of conformal field theories can be found in the review [83], book [85],
and lecture notes [86].

A conformal transformation from the point of a view of a D-dimensional
spacetime is a change of coordinates that rescales the metric as

gµν → Ω2(x)gµν . (3.2)

In particular this rescaling of the metric rescales length in spacetime but
preserves angles and thus the conformal structure of spacetime. As a consequence
lengths have no meaning and we have a scale invariant spacetime.

A simple example of scale invariance occurs in fractals. Zooming in or out
on a fractal configuration will give exactly the same configuration, the length-
scale at which we study the fractal system is irrelevant. Another (field theory)
example of a scale invariant theory is the massless scalar field with only quartic
interaction

S = −
∫
dx4 1

2∂µφ∂
µφ+ g

4!φ
4. (3.3)

Due to the absence of scales (dimensionful parameters) the action is invariant
under a simultaneous rescaling of the spacetime coordinates (xµ → λxµ) and
the field with a specific weight

φ(x)→ λ−∆φ(λx), (3.4)

∆ is called the scaling dimension of the field, and here we have that ∆ = 1. The
same theory would not be invariant if we added a mass term. Also, classical
gauge theories in 4 dimensions are conformally invariant theories1.

Conformal transformations

In d > 2 dimensions the conformal transformations consist of translations

δxµ = aµ, (3.5)
1In particular, in the example of the correspondence that we will consider, the conformal

field theory is a supersymmetric gauge theory in 4 dimensions.
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with generators Pµ, and Lorentz transformations

δxµ = λ[µν]xν , (3.6)

with generators Mµν = −Mνµ. We note here the infinitesimal forms of the
transformations. Both translations and Lorentz transformations are conformal
transformations with Ω2 = 1. In addition, there are dilations

δxµ = αxµ, (3.7)

with generator D. They correspond to the transformation in example (3.3) with
Ω2 = e2α. Finally, there are special conformal transformations

δxµ = x2cµ − 2xµ(c · x) (3.8)

with generators by Kµ.

The generators satisfy the following algebra (only the non-zero commutators
are shown)

[Mµν ,Mρσ] = 4η[µ[ρMσ]ν],

[Pµ,Mνρ] = 2ηµ[νPρ], [Kµ,Mνρ] = 2ηµ[νKρ],

[D,Pµ] = Pµ, [D,Kµ] = −Kµ,

[Pµ,Kν ] = 2ηµνD +Mµν .

The first line corresponds to the algebra of the Lorentz group SO(1, D − 1),
the second line states that Pµ and Kµ are vectors and D is a scalar (since it
commutes with the Lorentz generator), the third line establishes Pµ and Kµ as
ladder operators for D, increasing and decreasing its eigenvalue respectively,
and the last line states closure of the algebra. The number of generators (or
equivalently parameters) is (D + 1)(D + 2)/2. This coincides with the number
of generators of the group SO(D, 2), and indeed we can make the isomorphism
between the groups explicit by defining

MMN =

 Mµν
1
2 (Pµ −Kν) 1

2 (Pµ +Kν)
− 1

2 (Pµ −Kν) 0 −D
− 1

2 (Pµ +Kν) D 0

 , (3.9)

The generators MMN satisfy the SO(D, 2)-algebra

[MMN ,MPQ] = 4η[M [PMQ]N ], (3.10)
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with diagonal metric η = diag(−1, 1, . . . , 1,−1).

The conformal group can be enhanced to a supergroup by adding supercharges
QαI and the R-symmetry that rotates these supercharges. For consistency
(closure of the algebra) one then also needs to add conformal supercharges SαI .

Representations

Since the Casimir operator P 2 no longer commutes with all the operators in
the algebra (in particular with D), it makes little sense to use energy as an
identifying label for particles. Mass and energy can be rescaled by a conformal
transformation and so if a representation contains a state with a given energy,
it will contain states with arbitrary energy obtained by applying a succession
of dilation transformations. Instead of labelling our representations by their
energy, we will consider operators and fields that are eigenfunctions of the
dilation operator D with scaling (conformal) dimension ∆

O → λ−∆O. (3.11)

For gauge theories, the physical objects are gauge invariant operators with a
given conformal dimension. Since the generators Pµ and Kµ act as a raising and
a lowering operator for the conformal dimension, we can use them to construct
a tower of operators. We define a primary operator as an operator that is
annihilated by Kµ. We can then construct a representation by acting with Pµ
on a primary operator.

Constraints from conformal symmetry

Conformally invariant theories are constrained by the conformal symmetry.
In particular the stress-energy tensor is required to be conserved (due
to translations), symmetric (Lorentz transformations) and traceless (scale
invariance).

In addition, the high degree of symmetry completely determines some physical
quantities. Vacuum one-point functions vanish since a non-zero expectation
value would break dilation invariance. Vacuum two- and three-point functions
for operators Oi of scaling dimension ∆i are fixed as well. Two-point functions
have the form

〈OiOj〉 =
{

Ci
|x−y|2∆i ∆i = ∆j ,

0 ∆i 6= ∆j ,
(3.12)
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while three-point functions are restricted to2

〈OiOjOk〉 = Cijk
|x− y|∆i+∆j−∆k |y − z|∆j+∆k−∆i |z − x|∆k+∆i−∆j

. (3.13)

Conformal symmetry also strongly constrains the form of Green’s functions
involving the products of more operators, but it does not completely fix them.

In a quantum theory, conformal invariance is typically broken by the introduction
of a renormalisation scale. However, conformally invariant quantum theories can
arise in the infrared (IR) as fixed points in the renormalisation group flow, or,
as finite theories when the beta function vanishes for all values of the coupling.
A standard example of the latter is four-dimensional N = 4 SYM with gauge
group SU(N).

3.2 Anti-de Sitter spacetime

Anti-de Sitter spacetime is a maximally symmetric solution of the Einstein
equations with a cosmological constant. The Einstein-Hilbert action in D
dimensions with a cosmological constant is

S = 1
2κ2

D

∫
dxD
√
−g (R− Λ) , (3.14)

and its equations of motion are

Rµν −
R− Λ

2 gµν = 0. (3.15)

We write the cosmological constant as

Λ = − (D − 1)(D − 2)
R2 , (3.16)

where R has dimensions of length. The Ricci tensor is proportional to the
metric

Rµν = −D − 1
R2 gµν , (3.17)

2Actually, in principle, we can use conformal symmetry to relate higher point functions to
lower point functions. Thus if we were to give all the weights ∆i and coefficients Cijk, the
theory is uniquely determined. This works well if the system is finite, so there are a finite
number of operators and a finite number of Cijk. In practice everything is usually infinite, so
we cannot really explicitly determine everything.
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identifying the space as an Einstein space. Furthermore, AdS is an example of
a maximally symmetric spacetime. This means that the Riemann curvature
tensor can be written in terms of the metric gµν as

Rµνρσ = k (gµρgνσ − gµσgνρ) , (3.18)

where k is a constant of dimension 1/(length)2. For AdS this constant is
negative, k = −1/R2, and the overall scale of the spacetime is set by R. Note
that equation (3.17) automatically follows from equation (3.18).

In Euclidean signature, the maximally symmetric solution with positive
cosmological constant is the sphere SD with isometry SO(D + 1) and the
one with negative curvature is the hyperboloid HD with isometry SO(1, D). In
Minkowskian signature, the maximally symmetric solution with Λ > 0 is called
de-Sitter space (dSD) and the one with Λ < 0 is Anti-de Sitter space (AdSD).

A maximally symmetric spacetime of dimension D can be embedded as a
hyperboloid in flat spacetime of dimension D + 1. The metric gµν is then the
induced metric. We will discuss this in some more detail next but first we
provide some references. For standard expositions of AdS-spacetimes we refer
to the books [4, 87] and reviews [70, 83, 84].

AdSD from embedding in RD−1,2

Let us look at the embedding space with metric ηAB = diag(−+ + . . .+−) and
Cartesian coordinates Y A, A = 0, . . . , D. The hyperboloid that defines AdSD
is the surface

Y AηABY
B = −(Y 0)2 +

D−1∑
i=1

(Y i)2 − (Y D)2 = −R2. (3.19)

From this defining equation it is obvious that the isometry group of AdSD is
SO(2, D − 1), identical to the conformal group in D − 1 dimensions. Given a
parametrisation Y A(xµ) one finds the induced metric

gµν = ∂Y A

∂xµ
∂Y B

∂xν
ηAB . (3.20)

We will introduce several sets of coordinates that will be useful throughout the
following sections and the rest of the thesis.

We start with a set of coordinates defined by

Y 0 = R coshλ sin τ, Y D = R coshλ cos τ, Y i = R sinhλ x̂i, (3.21)
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with i = 1, . . . , D − 1 and
D−1∑
i=1

x̂2
i = 1, (3.22)

such that the x̂i will describe the embedding of a (D − 2)-sphere with unit
radius. The induced metric reads

ds2 = R2
(
− cosh2 λdτ2 + dλ2 + sinh2 λ dΩ2

(D−2)

)
, (3.23)

where dΩ2
(D−2) is the line element of a (D−2)-sphere. This coordinate system is

global, the entire hyperboloid is covered once as the radial variable varies in the
range 0 ≤ λ < ∞, the angular variables cover SD−2 and the time-coordinate
τ ranges between 0 ≤ τ ≤ 2πR. Note that time is periodic and therefore we
have closed time-like curves. To avoid this we take the universal cover, where
we allow −∞ < τ < +∞, and we also consider τ to be no longer related to the
Y A from before.3 We shall always refer to AdSD as the universal cover.

A second set of coordinates given by a (D − 1)-dimensional Lorentz vector xµ
and a final coordinate u, defined in terms of the embedding coordinates as

Y 0 = Rux0,

Y i = Ruxi, i = 1, . . . , D − 2,

Y D−1 = 1
2u
(
−1 + u2(R2 − x2)

)
,

Y D = 1
2u
(
1 + u2(R2 + x2)

)
,

x2 = −(x0)2 +
∑
i

(xi)2. (3.24)

The time coordinate x0 and the spatial coordinates xi range from −∞ to +∞
and 0 < u <∞. The induced metric is

ds2 = R2

[
du2

u2 + u2

(
−(dx0)2 +

∑
i

(dxi)2

)]
. (3.25)

This metric has slices isomorphic to (D − 1)-dimensional Minkowski spacetime,
and for this reason these coordinates are called Poincaré coordinates. The (D−1)-
dimensional space is foliated over u, and the Minkowski metric is multiplied by
a warpfactor u2 which means that an observer living on a Minkowski slice sees

3We consider the space to be described by τ and σ, and no longer by Y A.
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all lengths rescaled by a factor u according to its position in the u-direction.
The plane at u → ∞ is referred to as the boundary of AdSD. Note that for
u→∞ the metric blows up and mathematically speaking u→∞ is a conformal
boundary, i.e. it is the conformally equivalent metric ds̃2 = ds2/u2 that has a
boundary R1,D−1 at u→∞. The plane u = 0 is instead a horizon, the timelike
Killing vector ∂x0 has zero norm at u = 0. The Poincaré coordinates only
cover half of the hyperboloid and u = 0 does not correspond to a singularity
as the metric can be extended through the horizon (using for example global
coordinates).

There are other forms of the metric in Poincaré coordinates that are commonly
used. They all differ by a redefinition of the last coordinate u. We mention a
few examples. For the first example we define u = ρ

R to obtain

ds2 = R2 dρ
2

ρ2 + ρ2

R2

(
−(dx0)2 +

∑
i

(dxi)2

)
. (3.26)

A second and third example are related by u = 1/z = er

ds2 = R2
(
dz2 + dxµdx

µ

z2

)
= R2 (dr2 + e2rdxµdx

µ
)
. (3.27)

The boundary is now at z = 0 and r = ∞, and the horizon at z = ∞ and
r = −∞, respectively.

To conclude this section, we mention a particular coordinate choice that we
will use for an AdS6-space. We solve the constraint (3.19) by introducing the
coordinates

Y 0 = R
sinh(ψ)
sin(ρ) cosh(x),

Y 1 = R
cosh(ψ)
sinh(ρ) cosh(x),

Y i = R sinh(x)x̂i, i = 2, . . . 5,
∑
i

x̂i = 1,

Y 6 = R coth(ρ) cosh(x), (3.28)

where the x̂i describe a unit S3. The induced metric is

ds2 = R2
(

cosh2(x)
sinh2(ρ)

(dρ2 − dψ2) + sinh2(x)ds2
S3 + dx2

)
= R2 (cosh2(x)ds2

AdS2
+ sinh2(x)ds2

S3 + dx2) , (3.29)
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which represents an AdS2 × S3 slicing of the AdS6-space, where the AdS2-
and S3-parts in the metric are preceded by an x-dependent warpfactor. The
AdS2-factor is represented by the choice of embedding coordinates

Y 0
AdS2

= R sinh(ψ)
sin(ρ) , Y 1

AdS2
= R cosh(ψ)

sinh(ρ) , Y 2
AdS2

= R coth(ρ). (3.30)

It is worth noting that at the boundary at x→∞ the metric approaches

ds2
bdry = R2

4 e2x (ds2
AdS2

+ ds2
S3

)
+R2dx2. (3.31)

3.3 General aspects of the correspondence

In chapter 2, we saw how the low-energy limit α′ → 0 of the open and closed
string description of a stack of D3-branes leads two different systems. In section
2.4.2, we looked at D3-branes as hyperplanes in a flat background spacetime and
discussed the gauge theories arising on the world-volume of the brane due to the
presence of open strings in string theory. The low energy limit decouples this
open string picture from the closed string background and it reduces to a gauge
theory, in this case N = 4 SU(N) SYM. While in section 2.3.3, we considered
the closed string picture as we discussed the backreaction of the branes on
spacetime and the resulting geometry. The low energy limit consists of the type
IIB supergravity description on AdS5 × S5, the near-horizon geometry of the
branes.

The AdS/CFT correspondence formulated in its original incarnation by
Maldacena [64] conjectures the equivalence between the type IIB string theory
on AdS5×S5 and N = 4 super Yang-Mills theory in four-dimensional Minkowski
spacetime. Let us recall here some basics of the dictionary of this correspondence.
The SYM coupling and the string coupling are related by

g2
YM = 2πgs, (3.32)

the radii of the AdS5 × S5 factors in the metric are given by

R4
AdS5

∼ gsNα′2, (3.33)

and the rank of the gauge group is set by the five-form flux through the sphere∫
S5
?F5 ∼ N. (3.34)

In terms of the effective gauge theory coupling (the ’t Hooft coupling λ ≡ g2
YMN)

we have
2πgs = λ

N
,

RAdS5

ls
∼ λ1/4. (3.35)
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The two descriptions are useful to characterise different regimes. When λ� 1,
or equivalently RAdS5/ls � 1, the field theory in the picture of D3-branes in a
flat background is weakly coupled and a perturbative expansion of a non-abelian
gauge theory in terms of the ’t Hooft coupling λ is available. While in the
gravity picture, where the string scale is large, the theory becomes strongly
curved and one needs a string theory prescription. On the other hand, when
λ � 1, or equivalently RAdS5/ls � 1, the gravity picture suppresses higher
derivative terms and massive string modes. If we also suppress string loops by
gs → 0, type IIB string theory reduces to a far more tractable theory, type IIB
supergravity. On the gauge theory side this corresponds to a strong coupling
(λ � 1) regime and the large N limit, where a perturbative approach is not
available.

From the discussion above, it is clear that the AdS/CFT correspondence is a
weak/strong coupling duality. When the gauge theory is weakly coupled the
other side of the correspondence is strongly coupled (high curvature) and vice
versa, making the correspondence very useful to study strongly coupled regimes
in one theory using the weakly coupled regime of the other. The correspondence
is commonly used to study complicated interacting systems at strong coupling
by their dual treatment in terms of a theory of gravity in the weak curvature
regime4. However, it can also be used in the opposite sense to try and gain
some insight into the physics of strongly curved or even singular gravity through
perturbative field theory methods.

A basic consistency check for the correspondence is to match the symmetries
of the dual theories. For the example above, the matching of symmetries is as
follows. N = 4 SYM is a conformal theory in 3 + 1 dimensions. It has isometry
group SO(2, 4) which matches with the isometries of AdS5. The gauge theory is
maximally supersymmetric, meaning it has 16 Poincaré supercharges. These are
supplemented by 16 superconformal charges which make the theory invariant
under the superconformal group SU(2, 2|4), with 32 conformal supercharges.
The AdS5 × S5 background has the same amount of supersymmetry, it is a
maximally supersymmetric solution to type IIB supergravity, containing 32
supersymmetries. The supercharges of the gauge theory are rotated into each
other by an SU(4) R-symmetry. This symmetry is present in the string theory
side in the form of the isometry group of S5.

4I once attended a PhD school where a small course on the AdS/CFT correspondence
was given. The course concluded with a rough estimate of the amount of papers related to
proving the correspondence (10%), extending holography to different spacetimes and field
theories (10%), implications of holography for gravity (5-10%), and applying the AdS/CFT
correspondence to model strongly interacting QFTs (most of the papers).



62 ADS/CFT CORRESPONDENCE

UV/IR correspondence

An important aspect of the AdS/CFT dictionary is the identification of the
radial position in the bulk with the energy scale of the boundary theory. As we
saw in section 3.2, AdS5 in Poincaré coordinates (3.27)

ds2 =
R2
AdS5

z2

(
ηµνdx

µdxν + dz2) , (3.36)

has conformal boundary at z = 0 (obtained with the conformal rescaling
ds2 → z2/R2

AdS5
ds2 in the limit z → 0). The conformal boundary geometry

corresponds to the background geometry where the dual field theory lives, which
for this reason is referred to as the boundary theory. Similarly for any fixed
z slice in (3.36), the geometry is the same as the four-dimensional boundary
geometry, the only difference being the presence of the warpfactor R2

AdS5
/z2.

One can loosely think there is a copy of the boundary theory at any point along
the radial direction. The theory at z is then related to the boundary theory by
conformal rescaling

xµ → z

RAdS5

xµ, (3.37)

which means that a process with energy Ez taking place at z corresponds to a
process with energy

Eboundary = RAdS5

z
Ez (3.38)

on the boundary theory. Seen the other way around, the scaling xµ → uxµ

in the field theory, which connects a state of energy E to a state with energy
E/u corresponds to the SO(2, 4) transformation (z, xµ)→ (uz, uxµ) in the bulk
which sends a point close to the boundary z = 0, towards the interior.

In summary, we can identify a process involving energies up to a scale µ in
the boundary theory with a process that takes place at z ∼ 1

µ in the bulk.
The boundary region of AdS corresponds to the UV regime of the field theory.
Conversely, the physics far in the bulk interior is associated to the IR regime of
the gauge theory. Notice that in a conformal field theory there is no IR cut-off,
and excitations of arbitrarily low energy are present. This matches with the
fact that the bulk geometry extends all the way to z →∞. The correspondence
is holographic in the sense that the four xµ coordinates are identified with the
field theory ones, while the fifth coordinate z corresponds to the energy scale in
the CFT, parametrizing the renormalisation group flow of the boundary theory.

This relation is referred to as the UV/IR correspondence, since the high (low)
energy field theory regime is determined by the behavior of the bulk solution
near the boundary (interior).
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In this section we have described the realisation of the AdS/CFT correspondence
in its best known form, the duality between type IIB String Theory on AdS5×S5

and the superconformal field theory on the world-volume of the branes, N = 4
SYM with gauge group SU(N). Similar dualities hold between other theories.
We have seen in section 2.3.3 that the near-horizon geometries of a stack of
N M2-branes (M5-branes) correspond to a geometry AdS4 × S7 (AdS7 × S4).
These geometries would be the gravity duals of a superconformal field theory
on the world-volume of N M2-branes (M5-branes). For M2-branes the dual
gauge theory is a three-dimensional N = 8 superconformal field theory, while for
M5-branes the dual gauge theory is a six-dimensional N = (2, 0) theory. Each
time the symmetry group of the AdS factor matches the conformal symmetry
group of the gauge theory, the R-symmetry group that rotates the charges in the
dual gauge theory is the same group as the symmetry group of the sphere, and
there is a match of the supersymmetries. There is a plethora of correspondences,
involving all sorts of generalisations that not always deal with AdS-spaces or
CFTs. We refer to the review [83] for an overview.

3.4 General formulation of the correspondence

So far we have discussed the statement of the conjecture, the dictionary between
the parameters of the two theories, and the field theory interpretation of the
bulk dimension. However, since the two theories are equivalent, we have to be
more precise and describe the mapping between quantities in the bulk and in
the boundary theory. This will be the topic of this section. The AdS/CFT
correspondence in the form in which it was originally proposed [64] did not
provide a detailed map between the quantities in both theories. Such a map
was given in [81, 82], and relates fields in the gravity side to operators in the
gauge theory side.

3.4.1 Field/operator correspondence

We will refer to the fields in the gravity theory as bulk fields, and we assume
that their interaction is described by the String Theory action

SST(gµν , Aµ, φ, . . .) (3.39)

with an AdSd vacuum. The fields in the CFT are referred to as boundary fields
and we will call LCFT the Lagrangian of this theory. The spectrum of the CFT
is specified by a complete set of primary operators in the CFT.
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We consider a field φ(x, z) in the bulk with the boundary condition

φ(x, z)|z=0 ' φ0(x)z∆−d, (3.40)

where φ0(x) denotes the boundary value.

The field φ(x, z) is associated to an operator O in the CFT with the same
quantum numbers and they know about each other via boundary conditions.
The relation between the field in the bulk and the operator on the boundary is
made clear in the CFT point of view. The value of φ at the boundary (φ0) acts
as a source for the operator O

LCFT +
∫
ddxφ0(x)O(x). (3.41)

The partition function of the conformal field theory computed in presence of a
set of classical sources φ0(x), that are in one to one correspondence with the
gauge invariant conformal operators O(x) is

ZCFT[φ0(x)] = 〈e
∫
φ0(x)O(x)〉CFT (3.42)

A massive scalar field in AdS

We consider the Euclidean action for a massive scalar field

SEφ = −1
2

∫
d4xdz

√
g
(
∂µφ∂

µφ+m2φ2) , (3.43)

in the background metric (3.27). The equation of motion reads

∂z

(
1
z3 ∂zφ

)
+ ∂µ

(
1
z3 ∂

µφ

)
= 1
z5m

2φ. (3.44)

Let us first consider the z behaviour and look at a mode independent of xµ.
The equation reduces to

∂z

(
1
z3 ∂zφ

)
= 1
z5m

2φ. (3.45)

which has two independent power-like solutions5

z4−∆, and z∆, (3.46)
5For ∆ = 2, the independent power-like solutions presented here coincide. Instead we have

the following independent solutions: z2 (as expected) and the logarithmic solution z2 log z.
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with
m2 = ∆(∆− 4). (3.47)

Under a dilation z → λz and xµ → λxµ, ∆ corresponds to a scaling dimension
for the field and will be identified with the conformal dimension of the dual
operator O. This means that the conformal dimension of the operator O is set
by the mass of the dual scalar field by equation (3.47). Assuming that ∆ is the
larger of the two values ∆ and 4−∆, we can write the solution as

φ = φ1z
4−∆ + φ2z

∆. (3.48)

The coefficients φ1 and φ2 correspond to two linearly independent solutions of
the second order equation of motion, and can be distinguished by the fact that
the solution corresponding to φ1 is not normalisable at the boundary (z = 0)∫ z0

0
d4xdz

√
g|φ|2 =

∫ z0

0
z−5|φ1|2z8−2∆d4xdz =

∫ z0

0
z3−2∆|φ1|2d4xdz =∞,

(3.49)
while the one corresponding to φ2 is6.

Reinstating the xµ dependence modifies the previous behaviour to

φ(z, x) ∼ (φ1(x) +O(z)) z4−∆ + (φ2(x) +O(z)) z∆, (3.50)

where we can still identify the coefficients φ1(x) and φ2(x) of the two linearly
independent solutions, which still grow as z4−∆ and z∆ with corrections
depending on both z and xµ.

At the boundary the leading term of a solution of the equation of motion can
be singular if ∆ > 4 or vanishes if ∆ < 4. It approaches a constant only for the
case ∆ = 4. In order to have a consistent prescription we need to impose that
at the boundary (z = 0)

φ(z, x)→ z4−∆φ1(x). (3.51)

This identifies φ1(x) as the boundary value of our field, and also as the source
of the dual operator O. φ2(x) will be determined by the regularity conditions
at the center of AdS5 and by imposing the equations of motion as a functional
of φ1(x). Once the value of φ1(x) is specified, we have a unique regular solution
that extends to all of AdS5. Furthermore, the mode φ2(x) determines the
vacuum expectation value (vev) of the dual operator. Normally, the vev is not
something we get to specify and indeed this is true here. The relation between
the modes allows us to specify the source for the operator and then compute
the corresponding vev.

6The cases 1 ≤ ∆ ≤ 3 require special care. In these cases, one has to choose which mode
is to be identified with the source. The different choices correspond to different field theory
duals.
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3.4.2 Statement of the correspondence

Having established a relation between fields in the bulk and operators in the
boundary, we are now ready to make the fundamental identification between both
theories that allows for the comparison of physical quantities. The statement of
the correspondence is summarised in the formula

ZST[φ(x, z)|z=0] = ZCFT[φ0(x)], (3.52)

where ZST is the Euclidean string theory partition function of the bulk string
theory. In the λ� 1, large N limit, the left-hand side of this equation can be
evaluated in the saddle point approximation to be

ZST[φ(x, z)|z=0] → Zbulk[φ(x, z)|z=0] ' e−S
E
sugra[φEc ], (3.53)

in terms of the on-shell Euclidean supergravity action SEsugra, i.e. the classical
Euclidean action evaluated on the solution to its equations of motion φEc subject
to the boundary condition (3.40) and to appropriate regularity conditions in
the interior of spacetime. Since the knowledge of ZCFT[φ0(x)] for all possible
sources of composite operators determines the CFT completely, equation (3.52)
states the required equivalence between the CFT and the (d+ 1)-dimensional
theory. Note that the equivalence is between an off-shell d-dimensional theory
and an on-shell (d+ 1)-dimensional theory of gravity.

There is an important point that we have not mentioned so far. The partition
function, as well as the generating functional of the CFT are divergent quantities.
This is clear from the quantum field theory point of view, where it is known
that the action suffers from UV divergences that need to be regularised and
renormalised in order to give finite physical quantities. These UV divergences
on the boundary correspond to IR divergencies in the bulk on-shell gravitational
action, consistent with the UV/IR relation between the theories. The bulk suffers
from infinite volume effects due to integration close to the boundary of AdS. In
fact, in the (asymptotically) AdS geometry each point in the bulk is infinitely
distant from the boundary z = 0, as reflected in the warp factor 1/z2 of the
(asymptotic) metric. In order to have finite quantities on the two sides of (3.52)
(and (3.54) further down), one needs to work with renormalised quantities. The
interested reader can find more information on these renormalisation procedures
in [88].

Connected n-point functions of the gauge theory are obtained through

〈O(x1) . . .O(xn)〉 =
δnSEsugra[φEc ]

δφ0(x1) . . . δφ0(xn)

∣∣∣∣∣
φ0=0

. (3.54)
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Each variation, which brings down an insertion O, sends a particle in the
bulk. Correlation functions have been considered in great detail in the context
of the AdS/CFT correspondence [70]. They provide a way of checking the
correspondence by comparing results from both theories. There is a problem
in the sense that one is required to do a strong coupling computation on the
CFT side, and so the cases where one can actually make a comparison of results
are limited. The set of correlation functions that can be compared are the
ones that satisfy non-renormalisation theorems, so that the strong coupling
answer is a straightforward extrapolation of the weak coupling answer. Such
correlation functions have been compared to the string theory results (so far)
with great success. We will illustrate this by calculating a 2-point function
using the prescription defined by equations (3.52) and (3.54). We will perform
the calculation on the gravity side, expecting to reproduce the result (3.12),
which we know must hold for conformal invariant theories.

3.4.3 Example calculation of a 2-point function

Our aim is to calculate the two-point function of an operator O, dual to a bulk
scalar field. We want to show that we indeed reproduce the result (3.12). Since
we only need to take two functional derivatives of the Euclidean action to work
out the two-point function, we can neglect interactions and work with the scalar
field action (3.43). It is convenient to perform a Fourier decomposition of modes
on R4

φ(z, x) =
∫

d4p

(2π)4φp(z)e
ipx. (3.55)

The Fourier mode φp(z) has to satisfy the equation of motion

z5∂z
[
z−3∂zφp(z)

]
− p2z2φp(z) = m2φp(z) = ∆(∆− 4)φp(z) (3.56)

which, defining φp(z) = (pz)2y(pz), reduces to a Bessel equation

(pz)2 d2y

d(pz)2 + (pz) dy

d(pz) − ((pz)2 + (∆− 2)2)y = 0, (3.57)

whose general solution is y(pz) = ApI∆−2(pz) +BpK∆−2(pz). The asymptotic
behaviour of the Bessel functions is given by

Ia(x) ∼ xa + . . . , Ka(x) ∼ 1
xa

(
1 + . . .+ aax

2a + cax
2a log x+ . . .

)
(3.58)

for x→ 0, and

Ia(x) ∼ ex√
x
, Ka(x) ∼ e−x√

x
(3.59)
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for x→∞. Near the horizon we then have

φp ∼ Bp(1 + . . .) +Ap(z∆−2 + . . .) (3.60)

as expected from (3.50). K∆−2 is the non-normalisable solution and I∆−2 is the
normalisable one. Since I∆−2(pz) is exponentially growing for large z, regularity
of the solution in AdS5 requires Ap = 0, and we are left with K∆−2(pz) which
is exponentially small for large z.

In general computations in AdS5, various quantities diverge for z → 0 and it
is convenient to introduce a cut off and impose boundary conditions at z = ε
instead. At the end of the computation one sends ε to zero. This allows to keep
track of divergent pieces of the effective action and it is a general prescription for
computing correlation functions in AdS5. Equation (3.51) sets the asymptotic
value of the solution equal to φ1ε

∆−4. We impose

φp(z = ε) ≡ φ1
pε

4−∆, (3.61)

such that the solution is

φp(z) = (pz)2K∆−2(pz)
(pε)2K∆−2(pε) φ

1
pε

4−∆. (3.62)

We are now ready to compute the on-shell Euclidean action of the bulk. The
computation of the on-shell Euclidean action can be simplified using a standard
trick

SEφ = −1
2

∫
boundary

d4x
√
gφ∂nφ− 1

2

∫
d4xdz

√
gφ(−� +m2)φ (3.63)

the second term is zero on-shell, and the action reduces to a boundary
contribution. In our case,

SEφ
∣∣
on-shell = 1

2

∫
z=ε

d4x
√
ggzzφ(x, z)∂zφ(x, z)

= R3

2

∫
d4x

φ(x, z)∂zφ(x, z)
z3

∣∣∣∣
z=ε

= R3

2

∫
d4x

∫
d4p

(2π)4 e
ipx

∫
d4p′

(2π)4 e
ip′x φp(z)∂zφp(z)

z3

∣∣∣∣
z=ε

∼
∫
d4xd4pd4p′δ(4)(p+ p′)ε5−2∆φ1

pφ
1
p′
∂z
[
(pz)2K∆−2(pz)

]
(pε)2K∆−2(pε)

∣∣∣∣∣
z=ε

∼
∫
d4xd4pd4p′δ(4)(p+ p′)ε1−∆p∆−4φ1

pφ
1
p′ ∂z

[
(pz)2K∆−2(pz)

]∣∣
z=ε ,

(3.64)
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where we have inserted the solution of the equations of motion, and in the last
line we used that for small ε we have (pε)2K∆−2(pε) ∼ (pε)4−∆. We now focus
on the derivative term, it becomes

∂z
[
(pz)2K∆−2(pz)

]∣∣
z=ε

= ∂z

[
(pz)−(∆−4) . . .+ a∆−2(pz)∆ + c∆−2(pz)∆ log(pz) + . . .

]∣∣∣
z=ε

∼ p(pε)3−∆ + . . .+ p(pε)∆−1 + p(pε)∆−1 log(pε) + . . . (3.65)

where the final line is a schematic presentation of the terms. In the integral we
then get terms∑

k

1
εk

(polynomial in p) + p2∆−4 log(pε) + p2∆−4 +O(ε) (3.66)

We see that there are divergent terms in ε, terms going as 1/εk and a logarithmic
divergene log(pε). These divergent terms can be removed in a quantum field
theory by adding suitable counterterms [88]. In the ε → 0 limit the relevant
contribution is

〈O(p)O(p′)〉 ∼ δ(4)(p+ p′)p2∆−4, (3.67)

which after a Fourier transformation7 back to coordinate space becomes

〈O(x)O(x′)〉 ∼ 1
|x− x′|2∆ , (3.69)

in agreement with CFT expectations for an operator of conformal dimension ∆,
equation (3.12).

7The inverse Fourier transformation goes as∫
d4pd4p′δ(4)(p+ p′)e−ipx−ip

′yp2∆−4 ∼
∫

dp

∫ 1

−1
dξe−ip|x−y|ξp2∆−1

∼
∫

dp

∫ 1

−1
dξe−ip|x−y|ξp2∆−1

∼
∫ 1

−1

1
|x− y|2∆ξ2∆ dξ ∼

1
|x− y|2∆ , (3.68)

giving the desired result.
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3.5 Wilson loops

Another interesting quantity to compare is the vacuum expectation value of a
Wilson loop. This was first discussed in [89]. In the gauge theory, the Wilson
loop is defined for a closed contour C and a representation R of the gauge group
by the path ordered integral of the holonomy of the gauge field along C

WR(C) = TrRPexp
[
i

∫
C
AaµTadxµ

]
, (3.70)

where Ta are the generators in the representation R and P indicates the path
ordering.

A Wilson loop can be interpreted as follows. Given a pure gauge theory, we
introduce external massive sources (quarks) transforming in a representation
R of the gauge group. The loop C corresponds to the path of a quark and
antiquark from their creation to their annihilation and measures the free energy
of this configuration. For a rectangular Wilson loop in Euclidean space with
length L in space and height T →∞ in time,

WR(C) = e−TEI(L) (3.71)

where EI(L) is the energy of a pair of quarks at distance L. The Wilson loop
provides a natural tool for defining the gauge theory potential energy between
a pair of test charges in a gauge theory.

We can define an analogous quantity in AdS. An external source is inserted
at the boundary and we may attach it to a string. This is a very natural
thing to do in the explicit realisations of the AdS/CFT correspondence where
the gravitational background is embedded in a string vacuum. We are lead
to consider a string whose endpoints lies on a contour on the boundary. The
fundamental string is described by the Nambu-Goto action at the classical level
with fermions put to zero. The Nambu-Goto action is proportional to the area
of the world-sheet of the string

S ∼
∫
dσdτ

√
det (gMN∂aXM∂bXN ), (3.72)

where gMN is the background metric in string-frame, XM (τ, σ) are the
embedding coordinates, and, τ and σ are the coordinates on the string world-
sheet. We can now define a very natural observable in AdS

− log〈W (C)〉 = (minimal surface area with boundary C), (3.73)

giving a geometrical interpretation to the Wilson loop. This is then identified
with the expectation value of some Wilson loop in the dual CFT.
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The Wilson loop is a signal for confinement if it grows as the area of the loop C.
In a confining theory, external quarks have an energy which grows linearly with
distance E = mq +mq̄ +EI with EI = τL since they are connected by a colour
flux tube, or QCD string, with tension τ . It then follows that for a rectangular
loop W = e−TEI = e−τTL, and more generally

W (C) ∼ e−τA(C), (3.74)

where A(C) is the area of the loop, or equivalently the area of the world-sheet
for a propagating string. In this picture, the quarks are considered as external
non-dynamical sources (for example quarks with a very large mass) and W (C)
just captures the dynamics of the gauge fields in the theory.

In a flat spacetime, the surface of minimal area with rectangular C would
lie entirely on the boundary, giving an obvious confining behaviour S ∼ LT .
Things are different in AdS, however. Let us take the coordinates (3.25), where
the boundary is located at u = ∞. We see that the metric diverges on the
boundary and so it is energetically favourable for the string to enter inside AdS,
where the gravitational interaction is weaker.

Following [89], let’s perform a small calculation for a time invariant configuration
of two external sources separated by a distance L. We can choose coordinates
τ = t, σ = x, and we have that u(σ) = u(x). Let us also, for simplicity, set
R = 1. The Nambu-Goto action (3.72) becomes

S ∼
∫ L/2

−L/2

∫ T

0
dtdx

√
(∂xu)2 + u4 ∼ T

∫ L/2

−L/2
dx
√

(∂xu)2 + u4. (3.75)

Finding the minimal area is simply a classical exercise in Euler-Lagrange
equations. Since the action does not depend on x explicitely the solution
satisfies

u4√
(∂xu)2 + u4

= constant. (3.76)

Calling u0 the minimum value of u, which by symmetry is at x = 0, we have
u4√

(∂xu)2 + u4
= u2

0. (3.77)

Rewriting this equation then leads to a differential equation for u

u′ = u2

√
u4

u4
0
− 1, (3.78)

which can be easily solved by

x =
∫ x

0
dx = 1

u0

∫ u/u0

1

dy

y2
√
y4 − 1

, (3.79)
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where we defined y = u/u0. Note that at this point we can obtain a relation
between L and u0. At the boundary u =∞ and x = L/2 such that

L

2 = 1
u0

∫ ∞
1

dy

y2
√
y4 − 1

∼ 1
u0
. (3.80)

We can see from equation (3.80) that for large separation between the sources the
turning point u0 goes to the center of AdS. This has a very natural holographic
interpretation: probing large distances in quantum field theory means probing
the horizon. More generally, from L ∼ 1/u0, we see that the field theory UV
computations L� 1 take contributions from the region with large u, whereas IR
computations L� 1 get contributions from region with small u, in accordance
with the interpretation of u as an energy scale and the UV/IR duality.

We can evaluate the action on the solution by plugging equation (3.78) into the
action

S = 2u0T

∫ ∞
1

y2dy√
y4 − 1

. (3.81)

This integral is linearly divergent. This is to be expected as we are really
computing the energy of a pair of quarks, including their large renormalised
self-energy mq + mq̄ + EI . The energy of a single quark can be estimated
by a long linear string from u = ∞ to u = 0. We are only interested in the
potential energy of the quarks, and so we can subtract two linearly divergent
contributions and obtain a finite result

S = 2Tu0

∫ ∞
1

(
y2√
y4 − 1

− 1
)
dy ∼ Tu0 ∼

T

L
(3.82)

Note that the area of the string does not grow linearly as the distance between
the endpoints. This is consistent with the fact that the theory is conformal and
not confining. By dimensional reasons in absence of dimensionful parameters, the
potential energy should go like 1/L. If we restore the factors of the AdS radius
R and the tension τ of the string, the final result is EI ∼ τR2/L ∼ (λ)1/2/L.
Notice that the energy goes as λ1/2 indicating that it is a strong coupling result.
At weak coupling we would find E ∼ λ

L .

We have described the bulk description of a Wilson loop in the fundamental
representation of the gauge group. This was done in terms of a fundamental
string propagating in the bulk and ending at the boundary of AdS along the
curve C.

It has been shown that all half-BPS8 Wilson loop operators in N = 4 SYM have
a gravitational description in terms of D3-branes (or D5-branes) in AdS5 × S5

8The terminology half-BPS indicates that the object under consideration conserves half
of the supercharges of the background theory it is embedded in. The BPS-terminology
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[90]. It turns out that supersymmetry restricts the half-BPS Wilson line to
be a straight line, such that the Wilson line is solely determined by the choice
of irreducible representation of U(N). The choice of representation U(N) can
be summarised in a Young tableau. The data in this Young tableau can be
precisely encoded in the AdS bulk description by a certain configuration of D5-
or D3-branes. It can be shown that a configuration of D5-branes corresponds
to a half-BPS Wilson line in an antisymmetric product representation, while a
configuration of D3-branes corresponds to one in a symmetric representation.
We will sketch this relation between brane configurations and Young tableaux.

Brane configurations and Young tableaux

For higher rank representations we have to consider multiple fundamental strings.
These strings are identical particles and we can represent a configuration of
identical particles by a Young tableau. In general, irreducible representations
of groups are also represented by Young tableaux. Thus a Young tableaux
provides a map from irreducible representations of groups to configurations of
strings. In a Young tableau one can represent the symmetry or anti-symmetry
under exchange of the particles as follows, boxes in a same line indicate that the
representation is symmetric under the interchange of the corresponding particles,
while boxes in the same column indicate anti-symmetry under the interchange
of the corresponding particles. For example, the following configuration

1 2 3
4 5
6 , (3.83)

is symmetric under the interchange of 1,2 and 3, as well as 4 and 5, but
antisymmetric when interchanging 1, 4 and 6, or 2 and 5.

Let us consider the configuration in table 3.1 where we have a stack of N
D3-branes as well as a single D3-brane parallel to this stack (D3’) and a single
fundamental string stretching between the stack and the single brane. This
string introduces a 0 + 1 dimensional defect on the stack of N D3-branes. This
is a co-dimension 3 defect which corresponds to the Wilson line in the CFT.
In [90, 91] it was argued that when we integrate out the degrees of freedom
associated with the bulk D3-brane we can make the correspondence between
bulk branes and the Wilson loop-operator explicit. Integrating out the degrees

finds its origin in that supersymmetric objects, such as extremal black holes, satisfy some
kind of supersymmetric bound, in the case of black holes this extremality constraint is the
Bogomol’nyi–Prasad–Sommerfield (BPS) bound that relates the mass and charge of the black
hole.
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0 1 2 3 4 5 6 7 8 9
D3 X X X X
D3’ X X X X
D5 X X X X X X X

Table 3.1: Configuration of a stack of N D3-branes, a parallel D3-brane (D3’)
or an orthogonal D5-brane.

of freedom of this extra brane leaves us with some degrees of freedom localised
on the 0 + 1 dimensional defect that are in in the fundamental representation of
SU(N). This means that the representation for this string in terms of a Young
tableau would be a single box.

Now consider stretching not one but two fundamental strings between the stack
and single brane (figure 3.1(a)). We could wonder how to represent the strings
as a Young tableau. We would need two boxes, but would it be symmetric or
anti-symmetric arrangement of the boxes,

or ?

Things get slightly more complicated here as there is a unique option in
0 + 1 dimensions to choose how to quantise the local degrees of freedom.
Choosing to quantise the degrees of freedom as bosons, leading to the symmetric
representation turns out to correspond to a bulk D3-brane [90, 91]. Choosing to
quantise the degrees of freedom as fermions and obtaining the anti-symmetric
representations corresponds to stretching strings between a stack of N D3-branes
and a single D5-brane with a configuration as in table 3.1 (figure 3.1(b)).

The construction above gives a D-brane interpretation for Young tableaux. The
boxes are represented by strings stretched between a stack of N D3-branes
and parallel D3-branes or orthogonal D5-branes to form symmetric or anti-
symmetric representations respectively. We can also consider multiple extra
branes. For example, consider a stack of D3-branes with 3 extra, non-coinciding
D3-branes, and N1 strings stretching between the stack and the first of these
extra branes, N2 strings between the stack and the second brane, and N3 strings
between the stack and the third brane. This configuration is depicted in figure
3.1(c). Considering these extra branes to be probe branes and letting Ni � 3
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(i = 1, 2, 3), this configuration can be interpreted as a Young tableau

. . .

. . .

. . .

where the length Ni (i = 1, 2, 3) of the rows is much larger than the number
of rows. Similarly one could replace the extra D3-branes by extra D5-branes
to obtain Young tableaux for which the number of columns is much smaller
than their length. Wilson lines of these configurations (totally symmetric or
anti-symmetric representations) have been considered in [90]. To study Young
tableaux of arbitrary size, we need backreacted solutions where we no longer
consider the extra branes to be probe-branes.

We have established that we can obtain higher representations by considering
multiple strings. Using a single string stretched between a stack of branes and
an extra probe-brane will not be able to tell us if this probe-brane is a D3-brane
or D5-brane. However, stretching multiple strings between the stack and the
extra brane gives different representations depending on the extra brane being
either a D3-brane or D5-brane, and will allow us to see a difference in the value
for the Wilson-line. In the case of a single string we used the Nambu-Goto action
to do a gravity calculation. However, the Nambu-Goto action only describes a
single string. For multiple strings we use the DBI-action. This action encodes
the number of strings M through the flux on the brane, and whether we use a
symmetric or anti-symmetric representation is encoded in the choice of brane,
D3 versus D5. Of course, the brane has to intersect the boundary on a time-like
curve, defining the Wilson loop in the boundary field theory. The problem of
calculating higher representation Wilson loops through a gravity dual reduces
to finding an appropriate brane configuration that describes these Wilson loops.
The brane configuration needs to intersect the boundary in the time-like curve
related to the Wilson loop and needs to preserve the same symmetries in the
gravity theory as the Wilson loop does in the gauge theory. Using the brane
action instead of the Nambu-Goto action, we can then calculate the Wilson
loop in the desired representation.

3.6 Five-dimensional gauge theories and the Ad-
S/CFT correspondence

The version of the AdS/CFT correspondence that interests us in this thesis,
arises in the context of 5-dimensional gauge theories [19]. The superconformal
algebra in five dimensions is unique, and is given by F (4; 2)×SU(2) with bosonic
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(a) (b)

(c)

Figure 3.1: Sketch of strings stretching between a stack of D3 branes and (a) a
parallel D3-brane, (b) an orthogonal D5-brane, (c) multiple parallel D3 branes.

subgroup SO(2, 5)× SO(4). The dual gravity system is obtained as the near-
horizon geometry of a D4-D8 brane system in massive type IIA supergravity,
with a configuration of branes as in table 3.2. The near-horizon geometry
is a fibration of AdS6 over S4 and has the isometry group SO(2, 5) × SO(4).
Normally, a four-sphere has isometry group SO(5) but due to the warped
product structure of the geometry this is reduced to SO(4). The background
5-dimensional gauge theory arises as the low energy limit of the parallel D4-
branes and D8-branes along with an O8 orientifold projection. The D8-branes
and the O8-plane are a necessary ingredient to have a five-dimensional fixed
point [62]. The resulting AdS6 × S4 geometry is singular at the position of the
O8-plane.
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0 1 2 3 4 5 6 7 8 9
D4 X X X X X

D8/O8 X X X X X X X X X
F1 X X
D4’ X X X X X

Table 3.2: Intersecting D4/D8-brane configuration giving rise to a fibration
of AdS6 over S4 in the near-horizon geometry. The second part shows the
configuration of the perpendicular D4-brane (D4’) as well as the fundamental
strings stretching between the branes.

Dimensionally reducing the massive type IIA supergravity on the warped S4

gives F (4) gauged supergravity in 6 dimensions. Introducing a Wilson line in
the fundamental representation corresponds to introducing a fundamental string
perpendicular to the D4/D8-brane system. Rank M symmetric representations
arise from introducing an additional parallel D4-brane and stretching M
fundamental strings between the D4-brane and the D4/D8-brane stack. RankM
anti-symmetric representations arise by introducing a perpendicular D4-brane
and M fundamental strings. The brane configurations are summarised in table
3.2.

In general, the BPS-Wilson line reduces the superconformal symmetry9 of the
5-dimensional gauge theory from F (4; 2)× SU(2) to D(2, 1; 2; 1)× SO(4), with
bosonic subgroup SO(1, 2)× SO(4)× SO(4).

Intersecting M2/M5-branes

As discussed in section 2.5.3, an analogous system exists in M-theory
which consists of intersecting M2/M5-branes with supergroup D(2, 1; γ; 1) ×
D(2, 1; γ; 1). In fact, the M-theory system is the M-theory uplift of the above
configuration after removing the D8-branes and O8-plane. In this case the
5-dimensional gauge theory of the D4-branes becomes a 6-dimensional CFT
at the UV fixed point and the Wilson line operators in the gauge theory
become surface operators in the 6-dimensional CFT. As discussed in section
2.5.3, special values of γ = 1,−1/2,−2 correspond to cases of enhanced
symmetry. These special values have a nice interpretation in terms of brane
configurations, however, in general the precise relation between γ and the brane
configuration is unclear. We consider first the special values γ = −1/2,−2.
In this case we have D(2, 1;−1/2, 0) × D(2, 1;−1/2; 0) ⊂ OSp(8∗|4) and

9For supergroups, we follow the conventions of [92].
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D(2, 1;−2; 0)×D(2, 1;−2; 0) ⊂ OSp(8∗|4). The extended symmetry OSp(8∗|4)
corresponds to having only a single stack of M5-branes and is realised as the
superisometry group of the near-horizon geometry AdS7 × S4. It is conjectured
that the dual field theory is given by the 6d (2, 0) SCFT with OSp(8∗|4)
symmetry, although no completely satisfactory construction of this theory exists.
It is believed that this theory admits supersymmetric surface operators (also
known as the self-dual string), which preserve half of the supersymmetries and
break the symmetry to OSp(4∗|2) ⊕ OSp(4∗|2). These operators arise from
introducing the M2-branes of table 2.2. A single M2-brane produces a surface
operator in the fundamental representation of the gauge group, while multiple
M2-branes produce a surface operator in a higher rank representation. Dual
supergravity solutions describing the surface operators have been constructed
in [93].

For the special value γ = 1, the extended symmetry is OSp(8|4,R) and
corresponds to having a stack of M2-branes, whose near-horizon geometry
is AdS4 × S7. The dual field theory is given by a 3d N = 8 SCFT. A
Lagrangian description of this theory is given by ABJM theory, although only
N = 6 supersymmetry is manifest in the Lagrangian. Consider now the brane
configuration of table 2.2. Naively, the intersecting M5-branes give rise to a 2d
defect preserving half of the supersymmetries, although such a superconformal
defect has yet to be constructed either directly in the field theory or in the dual
supergravity solutions. Solutions corresponding to the effective theory on the
M2-branes were found, these correspond to the Janus solutions of [94, 95]

Instead of inserting the M5-branes as a defect, we can also consider the case
where the M2-branes end on the M5-branes. In the dual field theory, this
corresponds to putting ABJM theory on a half-space with supersymmetric
boundary conditions, possibly coupled to 2d degrees of freedom localised on the
boundary. Such supersymmetric boundary conditions were studied in [96, 97, 98]
and dual supergravity solutions were constructed in [99], although a precise
holographic dictionary has yet to be constructed. Since the M2-branes end on
the M5-branes, the supersymmetry does not necessarily need to be a subgroup
of OSp(8|4,R), as there is no way to remove the M5-branes and recover the full
M2-brane theory. Indeed the solutions of [99] have D(2, 1; γ, 0)×D(2, 1; γ, 0)
symmetry with γ < 0.

Intersecting F1/D4/D8-branes

We have discussed the relation of these configurations of M2/M5-branes to
configuration of F1/D4-branes in section 2.5.3. A natural question is whether
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there are analogous solutions after introducing the D8-branes and possibly the
O8-plane as in section 2.5.4.

For the special values γ = −1/2,−2, the extended symmetry F (4; 2)× SO(3)
corresponds to a single stack of D4-branes in addition to the D8-branes/O8-
plane. The low energy field theory consists of a 5-dimensional N = 2 gauge
theory with gauge group USp(2N), a single antisymmetric hypermultiplet
and Nf fundamental hypermultiplets, where there are 2N D4-branes and Nf
D8-branes.10 It is believed that this theory is ultraviolet complete with a
5d N = 2 ultraviolet superconformal fixed point. Field theory arguments
for this conjecture are given in [62, 100, 101]. Dual solutions of massive IIA
supergravity have been constructed in [63, 19], which provide further evidence
for the existence of the ultraviolet fixed point.

We now consider what happens when we introduce the fundamental strings.
Introducing the fundamental string reduces the supersymmetry by half and
in the field theory corresponds to introducing a half-BPS Wilson line. The
superconformal symmetry is broken to OSp(4∗|2) ⊂ F (4; 2), while the SO(3)
bosonic symmetry remains unbroken, since the Wilson line is neutral. To see this,
note that a time-like Wilson line preserves an SO(4) = SO(3)×SO(3) rotational
symmetry and translations in time, which in the conformal limit are enhanced
to SO(1, 2). This gives a full bosonic symmetry SO(1, 2) × SO(4) × SO(4),
which can be seen in table 3.2. The dual supergravity solutions have yet to be
constructed but fall within the anstaz studied in chapter 5.

The special value of γ = 1 corresponds to the extended symmetry OSp(8|2,R).
This symmetry arises as the superconformal symmetry associated with
fundamental strings ending on or intersecting the D8-branes/O8-plane. This
can be seen in table 3.2, where the SO(8) symmetry acts on the directions
2 through 9, while Sp(2,R) ∼ SO(1, 2) arises as the superconformal group
of time translations. The putative dual field theory would correspond to a
2-dimensional boundary or defect CFT and would be the massive IIA analogue
of the M2-brane near-horizon geometry. Additionally, we may include the
D0-branes without loss of symmetry. In this case, the fundamental strings can
be stretched between the D8-branes and the D0-branes.

With both the task of finding backreacted geometries describing these Wilson
lines, as well as determining the existence of a decoupling limit for γ = 1 in mind,
we study general solutions of massive IIA supergravity with D(2, 1; γ; 1)×SO(4)
symmetry in chapter 5.

10The antisymmetric hypermultiplets arise from D4-D4 strings stretched across the O8-plane,
while the Nf fundamental hypermultiplets come from D4-D8 strings.



Chapter 4

D3-brane world-volume
theories

Supergravities can be considered as gauge theories of the super-Poincaré group,
which for some combinations of dimension D and supersymmetry N is a
subgroup of a bigger supergroup, the superconformal group. The superconformal
group is much more restrictive than the super-Poincaré group and so it might
be useful to construct theories that are invariant under local superconformal
symmetry and then extract from these theories the super-Poincaré invariant ones.
This methodology was dubbed superconformal tensor calculus, and it was initially
developed for minimal D = 4 supergravity in [7, 8, 10, 9]. Extensions to other
theories are available for several theories with no more than 16 supersymmetries.
The interesting advantage of this method is that the super-Poincaré theories
obtained through the superconformal method are off-shell theories. This means
that their supersymmetry algebra closes on the fields without using the equations
of motion, as opposed to on-shell theories where this is a necessary evil. Some of
the fields that are needed for the superconformal formulation remain present in
the super-Poincaré theory as auxiliary fields, whose field equations are algebraic.
Without superconformal methods it is often very difficult to find the auxiliary
fields needed to make the algebra close off-shell.

The superconformal method is based on the gauge equivalence program [6].
This program requires the use of more symmetry for the construction of a
theory than one wants in the final theory. The extra symmetry is used as a tool
and is no longer present in the final theory. To start we define the symmetry
group Gf we want in our final theory. Together with the extra symmetries we
want to use throughout the procedure, these symmetries form a (super)group

80
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Gi. We introduce a gauge field for every generator in Gi. These fields form
a representation of Gi, which we will call the gauge multiplet.1 In general
this representation is reducible and one can impose curvature constraints to
obtain irreducibility of the gauge multiplet. One then introduces compensator
multiplets. These are matter multiplets defined in the background of the gauge
multiplet fields. These compensators are then used to construct actions that
are invariant under Gi using superconformal tensor calculus in the background
of the gauge multiplet. This construction boils down to a construction of (a
combination) of terms that transform into a total derivative under Gi, and thus
they can be used as a Lagrangian in the action of a theory with symmetry Gi
(provided the term has the right dimensions). In the final step Gi is broken to
Gf by fixing the values of (some of) the fields. In general these gauge fixings
introduce dependencies among the symmetry parameters (called decomposition
laws) and deform the transformation laws. One ends up with a theory that is
only invariant under Gf . A fairly simple example is the construction of the
Einstein-Hilbert action from a locally conformal action of a scalar field [10].
The initial symmetry group is the conformal group, whereas the final one only
has Poincaré symmetry. The scalar field represents the compensator, and gauge
fixing it will break dilation symmetry. Special conformal transformations are
broken by a gauge fixing within the Weyl multiplet and one is left with the
Einstein-Hilbert action. For an excellent description of the workings of this
process we refer to [4], where the construction of four-dimensional N = 1, 2
(gauged) supergravity theories using these superconformal methods is worked
out in great detail.

One can deform a basic supergravity theory, determining only kinetic terms of
the specified matter fields, in several ways. One can consider gauging (part of)
the internal symmetries which often leads to a potential for the scalar fields.
This process is determined by the embedding tensor formalism and unlike for
the basic theories, there is not a full classification of possible gauged theories
yet [102, 103, 104]. We will not be interested in deformations by gauging
internal symmetries here, but we will consider a different kind of deformation,
namely, the addition of higher derivative terms to the Lagrangian. Higher
derivative terms are terms that contain more than two derivatives if the term is
purely bosonic or more than one derivative if the term also contains fermions.
Higher derivative terms generically give rise to nonlinear terms in the field
equations, and incorporating them in a theory requires the introduction of a
dimensionful parameter such that the higher derivative term can have the right
mass dimension.

In the early days of supergravity it was hoped that the supergravity theories were
1In cases where Gi is the superconformal group this gauge multiplet is known as the Weyl

multiplet.
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renormalisable. However, rather quickly it was realised that even though the
UV divergencies were softened by the additional constraints provided by local
supersymmetry, supergravity theories were still non-renormalisable. Nowadays,
supergravity theories are considered as effective field theories, describing the
low energy physics of a full string theory. The divergent loop integrals no
longer pose any problems, since they can be cut off at an energy scale where
supergravity loses its validitiy and at which stringy effects become important.
Higher derivative terms appear as counterterms in the quantum effective action
of supergravities, and the corresponding dimensionful parameter is the inverse
of the cutoff scale in momentum space. The expansion of a (compactified)
string theory Lagrangian in powers of small α′ (low energies) amounts to a
supergravity Lagrangian at lowest order with extra higher derivative terms at
higher orders of α′. These extra terms are important to make the connection
between the microscopic description of string theory and the macroscopic
supergravity description. In light of the AdS/CFT correspondence these higher
derivative corrections parametrised by α′, introduce order O

( 1
N

)
effects in the

dual gauge theory. They can have significant consequences and are responsible
for the adjustment of the famous shear viscosity over entropy bound mentioned
in chapter 3 [73, 74, 75]. There is no complete catalogue of allowed higher
derivative deformations for a particular N and D, showing the importance
of studying the possibilities of higher derivative deformations of supergravity
theories.

In [5] new ways for constructing supersymmetric higher derivative invariants
were investigated in supergravity settings where there are no known off-shell
formulations. In particular, the action and supersymmetry transformation rules
of the D = 4, N = 4 Maxwell multiplet were deformed with higher derivative
terms. This was done in such a way that at each order of the deformation the
theory has 16 deformed Maxwell multiplet supersymmetries and 16 Volkov-
Akulov (VA) type non-linear supersymmetries. The results were obtained by
studying the world-volume theory of the gauge-fixed D3-superbrane in a ten-
dimensional flat background.

The world-volume theory of a brane embedded in a certain background inherits
some of the symmetry of the background (depending on the embedding).
We already saw how branes can preserve some of the supersymmetry of the
background in section 2.4.1. Depending on the symmetry of the background
and the embedding we can obtain different world-volume theories. It is known
that the world-volume theory of a brane in its own near-horizon background is
a superconformal theory [105, 106, 107]. Consider as an example a D3-brane in
its own near-horizon background. Studying the world-volume theory, we saw in
section 2.4.2 that it is indeed a superconformal theory.
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If we want to extend the rigid supersymmetric results of [5] to supergravity
by using superconformal methods [6, 7, 8, 9, 10, 4], we need to determine the
superconformal transformation rules of the deformed Maxwell multiplet. These
can be obtained by studying the D3 brane in an AdS5 × S5 background. As
a first step, it is an interesting question to find out how the S-supersymmetry
of the conformal Maxwell multiplet relates with the VA supersymmetry of
the 16 + 16 deformed Maxwell multiplet. Once the deformed superconformal
Maxwell multiplet is constructed, it could then be used as a compensator in
the superconformal construction of D = 4, N = 4 supergravity.

The topic of this chapter will be the relation between the S-supersymmetry of
the conformal Maxwell multiplet and the VA supersymmetry of the 16 + 16
deformed Maxwell multiplet, and presents the work of [11]. Since both cases
arise from the embedding of a D3-brane in a background, it is natural to
look at the relation between the backgrounds. One can obtain the Minkowski
background as a large R limit of the AdS5 × S5 background, where R is the
scale factor of the latter. This already suggests a possible relation between the
world-volume theories by carrying over this limiting procedure.

This chapter is organised as follows. At the end of this introduction we present
the conventions we used for the exposition of this chapter. There are a lot
of indices going around here and it is convenient to have a set of conventions
handy. In section 4.1 we introduce the tools of the trade for this chapter. We
aim to derive the world-volume transformation rules in a notation that allows
for an easy comparison between the different backgrounds such that a relation
might be deduced. The framework wherein we will derive these relations is
provided by Coset superspaces, and form the topic of this section. We will then
apply this machinery and derive the background vielbein and isometries for a
flat 10-dimensional superspace as well as an AdS5 × S5 superspace. We want
to embed a D3-brane in these backgrounds and then look at the symmetries
that are induced on the world-volume by these background geometries. A
discussion on the symmetries and embedding, as well as the presentation of
the resulting world-volume symmetries in both backgrounds is provided in
section 4.2. Section 4.3 provides the comparison of both sets of transformations.
We specify a limiting procedure to compare both backgrounds and establish a
relation between the transformation rules. Finally, section 4.4 presents some
conclusions and we formulate a proposal for the construction of higher derivative
invariants for the D3-brane in the Minkowski background.

In the interest of clarity, some of the finer details and calculations performed to
obtain the results in this chapter have been relegated to some of the Appendices.
They will be referred to where needed in the text.
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Notational conventions

We use the following conventions for indices

M̄ label for the coset generators in K

Ī label for the stability group generators in H

Λ = {M̄, Ī} label for generators of the superalgebra G = K⊕H

A label for the collection of bosonic generators in G

ã, b̃, c̃ = 0, . . . , 4 AdS5 tangent space index

a, b, c = 0, . . . , 3 part of the AdS5 tangent space index such that ã = {a, 4}

a′, b′, c′ = 5, . . . , 9 S5 tangent space index

A,B,C = 0, . . . , 9 10D tangent space index such that A = {ã, a′}

m̃, ñ, p̃ = 0, . . . , 4 5D spacetime index, associated with the AdS5 space

m,n, p = 0, . . . , 3 part of the 5D spacetime index such that m̃ = {m, 4}

m′, n′, p′ = 5, . . . , 9 5D spacetime index, associated with the S5 space

M,N,P = 0, . . . , 9 10D spacetime index such that {M = m̃,m′}

α, β, γ = 1, . . . , 4 so(2, 4) spinor index projected on RH chiral subspace (AdS5)

i, j, k = 1, . . . , 4 so(6) spinor index projected on RH chiral subspace (S5)

α̂, β̂, γ̂ = 1, . . . , 32 D = 10 Majorana-Weyl spinor index

I, J,K = 1, . . . 4 so(6) spinor index

µ = 0, . . . 3 coordinate index of the world-volume of the D3-brane

4.1 Coset superspaces

In this section we briefly recap the formalism of Cartan forms on coset
superspaces [108, 109, 110, 111]. We then use this formalism to write down the
superisometries of Minkowski superspace and AdS5 × S5 superspace.



COSET SUPERSPACES 85

We consider the coset manifold G/H, where G is a supergroup and H ⊂ G is a
subgroup. Each coset is represented by a coset representative G(Z), labelled by
super-coordinates ZM = {XM , θα}. Left-invariant Cartan 1-forms are defined
as

L(Z) ≡ G(Z)−1dG(Z). (4.1)

Since L(Z) is a group element close to the identity it is a G valued super 1-form

L(Z) = LΛTΛ = dZMLΛ
MTΛ, (4.2)

where TΛ are the generators of the superalgebra G associated to G.
We consider two decompositions which will be useful. First there is the coset
decomposition of the algebra, defined by G = K⊕H where H is the Lie-algebra
associated with the stability group H of G, G is the Lie-algebra of G, and
K collects the coset generators. We introduce the split of labels Λ = (M̄, Ī),
where M̄ are the directions in K and Ī are the directions in H. The second
decomposition that we consider is a boson-fermion split of the algebra G = B⊕F,
where B contains the bosonic generators BA and F the fermionic generators
Fα, and define the split of a G-valued object A as

A = AΛTΛ = AB +AF = AATA +AαFα. (4.3)

For the coset representative we choose the parametrisation G(Z) = g(X)eΘ,
where g(X) represents the bosonic coset representative of the coset space and

Θ = ΘαFα = θα̇e α
α̇ (X)Fα, (4.4)

where e α
α̇ (X) determines the choice of fermionic coordinates.

In [108, 109] the complete geometric superfields L(Z) and Killing superfields
Σ(Z) for a generic maximally supersymmetric superspace were constructed
independent of the choice of coordinates (to all orders in θ), we repeat
their results here. The Cartan 1-forms and the parameters Σ (defining the
superisometries) are split as follows

L =E + Ω = EM̄KM̄ + ΩĪHĪ ,

Σ =Ξ̂ + Λ̂ = Ξ̂M̄KM̄ + Λ̂ĪHĪ , (4.5)

where the parameters {Ξ̂M̄ , Λ̂Ī} are defined in terms of the superisometries
{ΞM ,ΛĪ} as

Ξ̂M̄ = ΞME M̄
M , Λ̂Ī = ΛĪ + ΞMΩ Ī

M . (4.6)
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We will be interested in maximally supersymmetric superspaces where F ⊂ K
or F ∩H = 0. Both the Minkowski and AdS5 × S5 backgrounds fall in this
category. The bosonic generators are split into B = {Pa,Mi}, with Pa ∈ K
and Mi ∈ H. We also consider the gravitino LF

0 = LF(θ = 0) to be vanishing.
Splitting M̄ into bosonic a and fermionic α, the supervielbein is given by
[108, 109]

E M̄
M =

(
e b
µ (X) 0

0 e β
α̇ (X)

)(
δ a
b + (UAY) a

b (UAB) α
b

(AY) a
β (AB) α

β

)
, (4.7)

where

A β
α =2

(
sinh2M/2
M2

) β

α

, B β
α = (M cothM/2) β

α ,

Y a
α =−Θδf a

δα , M β
α = f A

αγ ΘγΘδf β
δA , (4.8)

and f Γ
ΛΣ are the structure constants of the algebra G. The e a

µ form the vielbein
of the bosonic space and e α

α̇ is the matrix introduced in the boson-fermion
parametrisation of the coset representative. The matrix U α

a and Θα depend
on the spinorial gauge choice e β

α̇

U α
a = e µ

a

[
θα̇∂µe

α
α̇ + (LA0 )µθβ̇e β

β̇
f α
Aβ

]
. (4.9)

The superisometries, Σ(Z) = G−1(Z)Υ0G(Z), in general are determined
completely in terms of the θ = 0 Killing superfields ΣΛ

0 , which we denote
here by

ΣΛ
0 TΛ = ξ̃aPa + ε̃αFα + l̃iMi, (4.10)

where

ξ̃a = ξµe a
µ , ε̃α = εα̇e α

α̇ , l̃i = li + ξµω i
µ . (4.11)

In terms of the structure constants of G, one can show [108, 109] that the
superisometries are

Ξµ = ξµ + ε̃β(M−1 tanhM/2) α
β Y a

α eµa ,

Ξα̇ =
(
Θβ ξ̃af α

aβ + Θβ l̃if α
iβ − ξaU α

a

)
e α̇
α

+ ε̃β(M cothM) α
β e α̇

α − ε̃γ
(
M−1 tanhM/2

) β

γ
(YU) α

β e α̇
α . (4.12)

The variations of the superspace coordinates are given by

δXµ = −Ξµ, δθα̇ = −Ξα̇. (4.13)
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In the next subsections we will use equations (4.7) and (4.13) to write down the
supervielbein and superisometries of the Minkowski and AdS5×S5 background
superspaces.

4.1.1 Flat 10-dimensional superspace

As a warm-up we derive the isometries and vielbein of the Minkowski background.
We start from the super Poincaré group G. The algebra is given by

[MAB ,MCD] = ηA[CMD]B − ηB[CMD]A,

[PA,MBC ] = ηA[BPC],

[MAB , Qα̂] = −1
4(ΓABQ)α̂,

{Qα̂, Qβ̂} = (ΓA)α̂β̂PA. (4.14)

We make the split

H = {MAB}, and K = {PA, Qα̂}. (4.15)

This means that the indices of the previous section are chosen to be Λ =
{A, [AB], α̂}, A = {A, [AB]}, Ī = {[AB]}, and M̄ = {a, α̂}. The spacetime
fields are given by

eAM = δAM , ψM = 0, ωABM = 0, (4.16)

and the solutions to the spacetime Killing equations (θ = 0) are

ξM = aM + λMN
(M)xN , εα̂(x) = εα̂0 , lAB = λMN

(M) δ
A
Mδ

B
N , (4.17)

where aM , λMN
(M) and εα̂0 are constant parameters. The matrixM vanishes, and

the matrix e β̂
˙̂α = δ β̂

˙̂α . The supervielbein (4.7) is then given by

Eα̂ = dθα̂, EA = dxA + θ̄Γ̂Adθ, (4.18)

where we suppressed the spinor indices in θ̄Γ̂Adθ = θα(Γ̂A) β
α dθβ .

Plugging everything in (4.12), we obtain the well-known superisometries

δxM = −ΞM = −aM − λMN
(M)xN −

1
2(ε̄0Γ̂Mθ + h.c.),

δθα̂ = −Ξα̂ = −εα̂0 −
1
4λ

MN
(M) (Γ̂MNθ)α̂. (4.19)
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To facilitate things later, we introduce projectors PQ,S = 1
2 (1∓ γ5)⊗ I8 (this is

similar to what we will do for the AdS5 × S5 case (see also appendix B)) such
that

PQθ = θiα, PSθ = ϑiα, (4.20)

and we make a similar split for ε0 into εiα and ηiα respectively. In terms of these
refined variables, we have for the transformations

δxM = −aM − λMN
(M)xN −

1
2
[
(ε̄iγmθi + η̄iγ

mϑi)δMm + (ε̄iϑi − η̄iθi)δM4

+(ε̄iϑj + η̄iθ
j)
(
γ′m

′
) i

j
δMm′ + h.c.

]
,

δθi = −εi − 1
4λ

mn
(M)γmnθ

i − 1
4λ

m′n′

(M) (γ′m′n′) i
j θj + 1

2λ
m4
(M)γmϑ

i

− 1
2λ

m′4
(M) (γ′m′) i

j θj − 1
4λ

mn′

(M)γm (γ′n′) i
j ϑj ,

δϑi = −ηi − 1
4λ

mn
(M)γmnϑ

i − 1
4λ

m′n′

(M) (γ′m′n′) i
j ϑj − 1

2λ
m4
(M)γmθ

i

+ 1
2λ

m′4
(M) (γ′m′) i

j ϑj − 1
4λ

mn′

(M)γm (γ′n′) i
j θj . (4.21)

This form of the isometries will be used to compare with the large R limit
of the AdS5 × S5 isometries. For the AdS5 × S5 background, however, there
is no mixing between the first five and last five directions, this means that
λmn

′

(M) = λ4n′

(M) = 0. For this reason we will set these equal to zero from here on
out.

4.1.2 AdS5 × S5 superspace

To construct this superspace we start from the superconformal group G =
SU(2, 2|4), which has SO(4, 2) × SO(6) as its bosonic subgroup. The
superalgebra is presented in more detail in appendix B. For this supercoset the
stability group H is the product group SO(4, 1)×SO(5), which is purely bosonic.
The 30 + 32 generators of SU(2, 2|4) ⊃ SO(4, 2)× SO(6) are decomposed into
5+5 translations P̃m̃ and P ′m′ , 10+10 Lorentz generators M̃m̃ñ andM ′m′n′ , and
16 + 16 supersymmetries Q i

α and S i
α . This superspace has (10|32) coordinates

(5 coordinates xm̃ = {xm, ρ} of AdS, 5 coordinates zm′ of the sphere and 32
fermionic coordinates θα and ϑ i

α ). We have made the split

H = {M̃m̃ñ,M
′
m′n′}, K = {P̃m̃, P ′m′ , Q i

α , S
i
α }. (4.22)



COSET SUPERSPACES 89

This supercoset is an example of a maximally supersymmetric coset, i.e. all
fermionic generators are in K.

Some of the details and calculations (though important) for deriving the
supervielbein and superspace isometries would provide too much clutter and we
have moved some of these technical details to the appendices. In particular, we
refer to appendix C for a detailed discussion of the construction of the bosonic
part of the AdS5×S5 coset space. Appendix C also contains a discussion on the
choice of fermionic coordinates e β̂

˙̂α and the choice we make is given in equation
(C.23). The supervielbein and superspace isometries are found by using the
formulas (4.7) and (4.13) with the coset constructed in appendix C) and the
conformal decomposition of the SU(2, 2|4)-algebra presented in (B.17) as input.
We will give the resulting supervielbein and superspace isometries here. For an
example of the type of calculation involved in deriving these results, we refer to
appendix D where we calculate the supersymmetry transformation of xm.

The metric of AdS5 × S5 is given by the sum of (C.2) and (C.15)

ds2 = ρ2dx2 +
(
R

ρ

)2
dρ2 + 4R2

(1 + z2)2 dz
2. (4.23)

The supervielbein (4.5) of the geometry

E = EM̄KM̄ = EmP̃m + EρP̃ρ + Em
′
P ′m′ + (Q̄iEiQ + h.c.) + (S̄iEiS + h.c.),

(4.24)

has components

Em = ρ

[
dxn

(
δ m
n − 1

2

(
R

ρ

)2
ϑ̄iγnϑ

j ϑ̄jγ
mϑi

)
+
(

1
2dθ̄iγ

mθi

+1
4 θ̄idϑ

j θ̄jγ
mθi + h.c.

)
+
(
R

ρ

)2(1
2dϑ̄iγ

mϑi + 1
4 ϑ̄idθ

j ϑ̄jγ
mϑi + h.c.

)]

+O(θ ∧ ϑ),

Eρ = R

ρ

[
dρ− 1

2
(
dθ̄iϑ

i − dϑ̄iθi + h.c.
)
ρ

]
+O(θ ∧ ϑ),
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Em
′

= em
′
− R

2
(
dθ̄iϑ

j + dϑ̄iθ
j + dxmϑ̄iγmϑ

j + h.c.
) (
uγ′m

′
u−1

) i

j
+O(θ ∧ ϑ),

EiQ = ρ1/2
[
dθj − dxmγmϑj + 1

3θ
k
(
dϑ̄kθ

j − θ̄kdϑj
)]
u i
j +O(θ ∧ ϑ),

EiS = ρ−1/2
[
dϑj + 1

3
(
2dθ̄kϑj − ϑ̄kdθj

)
+ dxmϑkϑ̄kγmϑ

j

]
u i
j +O(θ ∧ ϑ).

(4.25)

Here O(θ ∧ ϑ) stands for terms containing both θi and ϑi. We do not include
these terms because they will drop out when we discuss the D3-brane embedding
and gauge-fixing in section 4.2, where our gauge choice will set θi = 0. We have
left the coordinates of the sphere unspecified here. They are coded in the coset
representative u and given in appendix C.2.
The superisometries for the various coordinates are

δxm = −ξmC (x)− 1
2
(
ε̄i(x)γmθi + h.c.

)
− 1

4
(
η̄iθ

j θ̄jγ
mθi + h.c.

)
−
(
R

ρ

)2 [
λm(K) + 1

2
(
η̄iγ

mϑi + h.c.
)

+ 1
4
(
ε̄i(x)ϑj ϑ̄jγmϑi + h.c.

)]
+O(θ ∧ ϑ),

δρ = ΛD(x)ρ− 1
2
(
ε̄i(x)ϑi − η̄iθi + h.c.

)
ρ+O(θ ∧ ϑ)

δzm
′

= −ξm
′
(z) + (1− z2)

4
(
ε̄i(x)ϑj + η̄iθ

j + h.c.
) (
uγ′m

′
u−1

) i

j
+O(θ ∧ ϑ),

δθi = −εi(x)− 1
2ΛD(x)θi − 1

4ΛM (x) · γθi − 1
4θ

jΛIJSO(6) (γ̂′IJ) i
j

−
(
R

ρ

)2 [
λm(K) + 1

2
(
η̄jγ

mϑj + h.c.
)

+ 1
4
(
ε̄j(x)ϑkϑ̄kγmϑj + h.c.

)]
γmϑ

i

− 2
3θ

j
(
2η̄jθi − θ̄jηi

)
+O(θ ∧ ϑ),

δϑi = −ηi + λm(K)γmθ
i + 1

2ΛD(x)ϑi − 1
4ΛM (x) · γϑi − 1

4ϑ
jΛIJSO(6) (γ̂′IJ) i

j

− 2
3ϑ

j
(
2ε̄j(x)ϑi − ϑ̄jεi(x)

)
+O(θ ∧ ϑ) (4.26)



D3-BRANE WORLD-VOLUME THEORY 91

These AdS5 × S5 isometries have been written in terms of x-dependent
combinations of the superconformal parameters am, λmn(M), λm(K) and λD as
defined in (C.10). We have defined

εi(x) = εi + xmγmη
i, (4.27)

and the supersymmetries and special supersymmetries are parametrised by ε
and η. ΛIJSO(6) are the parameters of the SO(6) R-symmetry, ξm′(z) is given in
(C.21), and γ̂′IJ are elements of the 6-dimensional Clifford algebra, realizing the
translation between SO(6) and SU(4),

ΛIJSO(6) = 1
2Λ j

SU(4)i (γ̂′IJ) i
j . (4.28)

4.2 D3-brane World-volume Theory

We already discussed the world-volume actions to some extent in section 2.4.
Here we will focus a little more on the symmetries the world-volume theory
inherits from its embedding in the background. Let us briefly recap some facts
about the world-volume theory. Recall that the world-volume action of a generic
super D3-brane probe consists of two parts [112, 43, 44]

S = SDBI + SWZ. (4.29)

The world-volumeM4 is parametrised by 4 coordinates σµ. The background
superspace coordinates are now fields on the world-volume ZM = ZM (σ).
Both terms of the brane action are by construction (separately) invariant under
the background superisometries. The background isometries are now symmetries
acting on the fields, i.e. they depend on the world-volume coordinates σ through
ZM (σ). Upon fixing the embedding of the brane in the background, the rigid
background isometries will be realised on the remaining world-volume fields.

Local symmetries of the world-volume actions

The D3-brane actions not only have global symmetries due to the background
isometries, they also come with local symmetries. The first set of local
symmetries of this action are the world-volume diffeomorphisms. They act as
Lie-derivatives on the fields

δloc.diff.Z
M = ζµ(σ)∂µZM , δloc.diff.Fµν = ζρ(σ)∂ρFµν − 2∂[µζ

ρ(σ)Fν]ρ.
(4.30)
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The second local symmetry is called κ-symmetry [43, 44], which is a local
fermionic symmetry. Its parameter is a 10-dimensional spinor κ, depending on
the world-volume coordinates. The variations δZM of the world-volume fields
are commonly defined in terms of the supervielbein, but by using the inverse
vielbein they can be inverted to obtain δκXµ and δκθα as [108, 109]

δκX
µ = −κβ

(
1 + ΓC

) α

β

(
M−1 tanhM2 Υ

) a

α

eµa ,

δκθ
α̇ = κγ

(
1 + ΓC

) β

γ

(
M sinh−1M+M−1 tanhM2 ΥU

) α

β

e α̇
α . (4.31)

The matrix Γ appears here as its charge conjugate ΓC and it is an element of the
10-dimensional Clifford algebra, satisfying Γ2 = 1, TrΓ = 0. It is a combination
of gamma matrices and depends on the world-volume fields. For the probe
D3-brane, Γ is given by

Γ =
(

0 β−
−β+ 0

)
, (4.32)

with

β− = 1√
−det(Gµν + αFµν)

( 2∑
k=0

(−α)k

2kk! γ
µ1ν1...µkνkFµ1ν1 . . .Fµkνk

)
ΓD3 ,

β+ = 1√
−det(Gµν + αFµν)

( 2∑
k=0

αk

2kk!γ
µ1ν1...µkνkFµ1ν1 . . .Fµkνk

)
ΓD3 ,

(4.33)

where ΓD3 = 1
4!ε

µνρσγµνρσ and γµ are the pullback of the 10-dimensional gamma
matrices.
Comparing (4.31) with (4.12) we see that they almost act as supersymmetries,
the difference being in the higher order fermion terms in δκθα̇.
The irreducible κ symmetries are defined by the algebraic constraint

(1− Γcl)κ = 0, (4.34)

where Γcl is the value of Γ at the classical value of the fields, compatible with
the gauge fixing and brane wave equations. We can write the irreducible κ
symmetries as

κ+ ≡ (1 + Γ)κ∗, (4.35)

where κ∗ is a solution to equation (4.34), (1− Γ)κ∗ = 0.
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The static gauge and the Q-gauge

The embedding of the brane in the background can be described by identifying
some of the world-volume coordinates with the spacetime coordinates of the
background. This ‘gauge fixing’ has to be admissible, which means that it has
to be compatible with the equations of motion derived from the probe-brane
action, the branewave equations. We will consider an infinite extended brane
and will therefore take the static gauge

σµ = δµmx
m, (4.36)

where xm are 4 coordinates of the background geometry. This gauge will only
yield a stable configuration in specific backgrounds [106]. Two examples are
the flat background and the AdS × S background where the xm have to be the
directions parallel to the boundary of AdS. The full transformation of the fields
ZM (σ) is

δZM = ζµ∂µZ
M + δglobalZ

M + δκZ
M , (4.37)

where δglobalZM are the transformations in (4.19) or (4.26). In order to preserve
the gauge choice (4.36) we need to impose the condition δxm = 0, leading to a
decomposition law for ζµ.
In fixing the κ-symmetry we will be guided by the effects of the AdS5 × S5

background. There are two natural ways to gauge-fix the κ-symmetry and get
rid of half of the fermionic gauge-degrees of freedom on the world-volume. We
can either set ϑi = 0 (S-gauge) or we can set θi = 0 (Q-gauge). However, the
S-gauge is not admissible for the infinite static branes in their own near-horizon
geometry. The classical values of the fields in the static gauge are xm = δmµ σ

µ,
ρ = constant, zm′ = constant, θi = ϑi = 0, Fµν = 0 leading to Γcl = γ̂ST ,
where this matrix γ̂ST is precisely the one used in the projector to define Q and
S supersymmetry (appendix B.2). This means that a gauge-fixing

0 = ϑi = 1
2 (1− γ̂ST ) Θi, (4.38)

will not affect the irreducible κ symmetry and is not admissible. Since we
are interested in the AdS5 × S5 background, this leaves us with the ’natural’
choice of the Q-gauge, θi = 0. Imposing this condition will leave us with a
decomposition law for κ+.
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4.2.1 D3-Brane world-volume in Minkowski Background

We consider the embedding of a D3-brane in a Minkowski background. The
κ-symmetry transformation rules (4.31) become

δκx
M = −1

2
[(
κ̄+Qiγ

mθi + κ̄+Siγ
mϑi

)
δMm + (κ̄+Qiϑ

i − κ̄+Siθ
i)δM4

+(κ̄+Qiϑ
j + κ̄+Siθ

j)
(
γ′m

′
) i

j
δMm′ + h.c.

]
,

δκθ
i = κi+Q, δκϑ = κi+S , (4.39)

where we have introduced the projections PQ,Sκ+ = κ+Q,S .
As discussed in the previous section, the condition δxm = 0, needed to preserve
the static gauge, and the Q-gauge condition θi = 0 (fixing the kappa gauge)
give us two decomposition laws (up to cubic fermion terms)

κi+Q = εi − 1
2λ

m4γmϑ
i, (4.40)

and

ζµ(σ) = aµ + λµN(M)xN −
1
2

[
ϑ̄iγ

µ

(
ηi − β+

(
εi − 1

2λ
n4γnϑ

i

))
+ h.c.

]
.

(4.41)

The remaining fields then have as transformation laws

δx4 = ξµ∂µx
4 − 1

2

[
ϑ̄iγ

µ

(
ηi − β+

(
εi − 1

2λ
n4γnϑ

i

))
+ h.c.

]
∂µx

4

− ξ4 −
[
ϑ̄i

(
εi − 1

4λ
m4γmϑ

i

)
+ h.c.

]
,

δxm
′

= ξµ∂µx
m′
− 1

2

[
ϑ̄iγ

µ

(
ηi − β+

(
εi − 1

2λ
n4γnϑ

i

))
+ h.c.

]
∂µx

m′

− ξm
′
−
[
(ϑ̄iεj −

1
4λ

m4ϑiγmϑ
j)
(
γm

′
) i

j
+ h.c.

]
, (4.42)

δϑi = ξµ∂µϑ
i − 1

2

[
ϑ̄jγ

µ

(
ηj − β+

(
εj − 1

2λ
n4γnϑ

j

))
+ h.c.

]
∂µϑ

i

− 1
4λ

mn
(M)γmnϑ

i − 1
4λ

m′n′

(M) (γ′m′n′) i
j ϑj −

[
ηi + β+

(
εi − 1

2λ
m4γmϑ

i

)]
,

where we used that κ+S = −β+κ+Q and defined ξM = aM + λMN
(M)xN .
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4.2.2 D3-Brane world-volume in AdS5 × S5 Background

In this section we consider the D3-brane embedded in its own near-horizon
background, AdS5 × S5. Embedding a D3-brane in this background, the
background coordinates are promoted to world-volume fields and their
transformations under κ symmetry (4.31) are given by

δκx
m = −1

2
(
κ̄+Qiγ

mθi + h.c.
)
− 1

4
(
κ̄+Siθ

j θ̄jγ
mθi + h.c.

)
−
(
R

ρ

)2 [1
2
(
κ̄+Siγ

mϑi + h.c.
)

+ 1
4
(
κ̄+Qiϑ

j ϑ̄jγ
mϑi + h.c.

)]
+O (θ ∧ ϑ) ,

δκθ
i = κi+Q −

(
R

ρ

)2 [1
2 κ̄+Sjγ

mϑj + 1
4 κ̄+Qjϑ

kϑ̄kγ
mϑj + h.c.

]
γmϑ

i

− 1
3θ

j
(
2κ̄+Sjθ

i − θ̄jκi+S
)

+O (θ ∧ ϑ) ,

δκϑ
i = κi+S −

1
3ϑ

j
(
2κ̄+Qjϑ

i − ϑ̄jκi+Q
)

+O (θ ∧ ϑ) ,

δκρ = −1
2
(
κ̄+Qiϑ

i − κ̄+Siθ
i
)
ρ+ h.c +O (θ ∧ ϑ) ,

δκz
m′

= (1− z2)
4

(
κ̄+Qiϑ

j + κ̄+Siθ
j − h.c

) (
uγ′m

′
u−1

) i

j
+O (θ ∧ ϑ) .

(4.43)

Again, the conditions δxm = 0 and θi = 0 imply two decomposition laws (up to
cubic fermion terms)

ζµ(σ) = ξµC(σ) + 1
2
(
ε̄i(σ)γµθi + h.c.

)
+
(
R

ρ

)2 [
λµ(K) + 1

2
(
η̄iγ

µϑi + h.c.
)]

+ 1
2
(
κ̄+Qiγ

µθi + h.c.
)

+
(
R

ρ

)2 [1
2
(
κ̄+Siγ

µϑi + h.c.
)]

+O (θ ∧ ϑ) ,

(4.44)

and,

κi+Q = εi(x) +
(
R

ρ

)2
λm(K)γmϑ

i . (4.45)
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The remaining world-volume fields are then ρ(σ), zm′(σ) and ϑ(σ) and their
transformation rules are the following (up to cubic fermion terms)

δϑi = ξ̂µC(σ)∂µϑi −
1
4ΛM (σ) · γϑi + 1

2ΛD(σ)ϑi − 1
4ϑ

jΛIJSO(6) (γ̂′IJ) i
j

− β+

R

(
R

ρ

)2
λm(K)γmϑ

i − β+

R
εi(σ)− ηi ,

δρ = ξ̂µC(σ)∂µρ+ ΛD(σ)ρ−
[
ϑ̄i

(
εi + 1

2

(
R

ρ

)2
λm(K)γmϑ

i

)
+ h.c

]
ρ

+ 1
2

(
R

ρ

)2
[
η̄iγ

µϑi + ϑ̄iγ
µ β+

R

(
εi(σ) +

(
R

ρ

)2
λm(K)γmϑ

i

)
+ h.c.

]
∂µρ,

δzm
′

= ξ̂µC(σ)∂µzm
′
− ξm

′
(z)

+ (1− z2)
2

[
ε̄i(σ)ϑj + 1

2

(
R

ρ

)2
ΛmK ϑ̄iγmϑj + h.c.

](
uγ′m

′
u−1

) i

j

+ 1
2

(
R

ρ

)2
[
η̄iγ

µϑi + ϑ̄iγ
µ β+

R

(
εi(σ) +

(
R

ρ

)2
ΛmKγmϑi

)
+ h.c.

]
∂µz

m′

(4.46)

where
ξ̂µC(σ) ≡ ξµC(σ) +

(R
ρ

)2
λµ(K) . (4.47)

4.3 From AdS5 × S5 to Minkowski: The Large R

limit

We want to compare the resulting world-volume transformations of the two
backgrounds discussed in the previous section. Our aim is to establish a
relation between the symmetries in AdS5 × S5 background and the Volkov-
Akulov supersymmetries in the Minkowski background of [5]. In order to make
an identification, we need to take a suitable large R limit of the AdS5 × S5

background. We start out with a discussion of the proper limit.
To take this limit, it is convenient to change (background) spacetime coordinates.
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We define

ρ = er/R, zm
′

= z̃m
′

2R . (4.48)

The metric (4.23) then becomes

ds2 = e2r/Rdxµηµνdx
ν + e−2r/Rdr2 + 1

(1 + z̃2/(4R2))2 dz̃
2 , (4.49)

which becomes Minkowski space in the limit R → ∞. We also need to
make some redefinitions in the algebra. The algebra we have used to derive
the transformation rules in the previous sections relied on the conformal
decomposition (appendix B.2), but the AdS-decomposition (appendix B.1)
is the one that we need for a reduction to a Poincaré sub-algebra. Equation
(B.19) gives the relation between the various decompositions and is to be used
to obtain the correct variables. In particular this means that we redefine

ϑ̃i = Rϑi, η̃i = Rηi and κ̃i+S = Rκi+S . (4.50)

Applying these redefinitions and taking the large R limit nicely reduces the
AdS5 × S5 supervielbein and isometries, (4.25) and (4.26), to their Minkowski
space equivalents, (4.18) and (4.19) (modulo the spacetime mixing requirement
λmn

′

(M) = λ4n′

(M) = 0). We now apply this to the transformations of the world-
volume fields in the AdS5 × S5 background, (4.46), and take the limit R→∞
to obtain

δr = ξµ∂µr −
1
2

[
¯̃ϑiγµ

(
η̃i − β+

(
εi − 1

2 Ã
mSγmϑ̃

i

))
+ h.c.

]
∂µr

− ÃS − ÃSnxn −
[

¯̃ϑi
(
εi − 1

4 Ã
mSγmϑ̃

i

)
+ h.c.

]
,

δz̃m
′

= ξµ∂µz̃
m′
− 1

2

[
¯̃ϑiγµ

(
η̃i − β+

(
εi − 1

2 Ã
mSγmϑ̃

i

))
+ h.c.

]
∂µz̃

m′

− ξ̃m
′
−
[(
ε̄i −

1
4 Ã

mS ¯̃ϑiγm
)
ϑ̃j(γ′m

′
) i
j + h.c.

]
,

δϑ̃i = ξµ∂µϑ̃
i − 1

4A
mn
(M)γmnϑ̃

i

− 1
4ΛIJSO(6)(γ̂′IJ) i

j ϑ̃
j −

[
η̃i + β+

(
εi − 1

2 Ã
mSγmϑ̃

i

)]
(4.51)
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where ξµ = Ãµ + rÃµS + Ãµnxn.
Making the identifications

x5
Mink = r, xm

′

Mink = z̃m
′
, ϑiMink = ϑ̃i,

λm4
Mink = ÃmS , ηiMink = η̃i, λmn(M),Mink = Ãmn(M), (4.52)

and

ξ4
Mink = ÃS + ÃSmxm, (4.53)

where the subscript Mink refers to the quantities in (4.42), we can compare
(4.51) with (4.42) and we find an exact match between the world-volume
transformation rules.
However, there seems to be no way to link Minkowski background symmetries
to the AdS5 × S5 symmetries without introducing a length scale, not at all
a surprising result. The reason for this is quite simple and can be found by
looking at the conformal algebra. The algebra corresponding to our AdS5 × S5

space was given in (B.17). We are interested in the anti-commutators of the
fermionic generators which we repeat here for convenience

{Q i
α , Q̄

β
j } = δ i

j (γa) β
α Pa, {S i

α , S̄
β
j } = δ i

j (γa) β
α Ka,

{Q i
α , S̄

β
j } = δ i

j δ
β
α D + δ i

j (γab) β
α Mab − 2δ β

α U i
j . (4.54)

Before we take the limit R→∞, we need to write these anticommutators in
the notation of the AdS decomposition. Using the relations in section B.2 we
find {(

PQQ̃
) i

α̂
,
(
PQQ̃

) β̂

j

}
= −1

2δ
i
j (PQγ̂aT ) β̂

α̂

(
P̃a + 2

R
M̃aS

)
,

{(
PSQ̃

) i

α̂
,
(
PSQ̃

) β̂

j

}
= −1

2δ
i
j (PS γ̂aT ) β̂

α̂

(
P̃a −

2
R
M̃aS

)
,

{(
PQQ̃

) i

α̂
,
(
PSQ̃

) β̂

j

}
= −1

2δ
i
j (PQ) β̂

α̂ P̃S + 1
2Rδ

i
j (PQγ̂ab) β̂

α̂ Mab

− 1
R

(PQ) β̂
α̂ U i

j . (4.55)

From these commutation relations it is clear that in the limit R→∞ the right
hand side of the first two commutators reduces to a translation. In other words,
the distinction between the operator Pa and the operator Ka disappears. The
conformal structure is an O

( 1
R

)
-effect, and requires a length scale used for
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separation to work.
In light of this it is also clear why the major difference of the Volkov-Akulov
supersymmetries of [5] and conformal supersymmetry rests in the Volkov-Akulov
supersymmetries anti-commuting into translations. There simply is no length
scale from the background available to make the distinction between translations
and special conformal transformations. Let us look at the relation with the
results from [5] a bit closer. In order to really compare with [5], we should write
our transformations in a form that looks like (only considering the fermionic
symmetries now)

δφI ∼
(
λ̄iΓµε2i + λ̄iΓµβ+ε

1i) ∂µφI ,
δλi ∼ ε2i + β+ε

1i. (4.56)

Looking at the transformations (4.51), we find

ε1i = εi − 1
2λ

n4γnϑ
i, ε2i = ηi + 2εi − 1

2λ
n4γnϑ

i. (4.57)

In order to make the appearance of the Volkov-Akulov symmetry apparent, we
define the parameters

εi = ε1i = εi − 1
2λ

n4γnϑ
i,

ζi = ε2i − ε1i = ηi + εi, (4.58)

suggesting that the generators for supersymmetry and Volkov-Akulov symmetry
will be

(QSUSY) i
α̂ =

(
PQQ̃

) i

α̂
, (QVA) i

α̂ =
(
PQQ̃

) i

α̂
+
(
PSQ̃

) i

α̂
. (4.59)

The corresponding algebra becomes{
(QSUSY) i

α̂ ,
(
QSUSY

) β̂

j

}
= −1

2δ
i
j (PQγ̂aT ) β̂

α̂ P̃a,

{
(QVA) i

α̂ ,
(
QVA

) β̂

j

}
= −1

2δ
i
j (γ̂aT ) β̂

α̂ P̃a −
1
2δ

i
j (δ) β̂

α̂ P̃S −
1
R

(δ) β̂
α̂ U i

j ,{
(QSUSY) i

α̂ ,
(
QVA

) β̂

j

}
= −1

2δ
i
j (PQγ̂aT ) β̂

α̂ P̃a −
1
2δ

i
j (PQ) β̂

α̂ P̃S

− 1
R

(PQ) β̂
α̂ U i

j , (4.60)

where we clearly see the appearance of translations and shift-symmetries of the
scalar fields in the anti-commutators of the Volkov-Akulov-symmetry.
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4.4 Conclusions

We compared the world-volume transformation rules of a D3-brane embedded
in a Minkowski background with those of a D3-brane embedded in an AdS5 ×
S5 background. We obtained a relation between the special supersymmetry
transformations induced by the AdS5 × S5 background and the Volkov-Akulov
symmetries related to the Minkowski background. In order to relate one to
the other, one needs to introduce a length scale, a result that is reaffirmed by
looking at the algebra. The existence of a length scale in the algebra associated
to the AdS5×S5 background allows for the distinction between translations and
special conformal translations as an O

( 1
R

)
-effect. When this effect is very small

(at large R) this distinction disappears, and it is therefore no surprise that in a
Minkowski background one only finds supersymmetry transformations that anti-
commute into translations and shift-symmetries (i.e. the 16 supersymmetries +
16 Volkov-Akulov symmetries of [5]).
The question remains then whether we can construct higher derivative invariants
coupled to supergravity in the D = 4, N = 4 setting with VA-type symmetries.
We will provide a tentative scheme for constructing these higher derivative
invariants. Having established a relation between the conformal symmetry
inherited by the AdS5×S5 background and the Volkov-Akulov symmetry due to
the Minkowski background, we can use this relation as a tool for the construction
of higher derivative invariants. The idea is to perform a construction of higher
derivative invariants using superconformal methods in the theory of the brane
embedded in AdS5 × S5, followed by making the redefinitions (4.48) and (4.50),
and then taking the limit necessary to obtain the Minkowski background. Our
gauge choice to fix κ-symmetry is special in the sense that it has an easy limit
to obtain the world-volume theory of a D3-brane in a Minkowski background.
However, it might not be practical for the application of superconformal methods.
Potentially there might be a different gauge choice that would give a realisation
of the conformal symmetry on the brane that is easier to work with in terms
of applying the superconformal methodology. The gauge choice we made in
this paper, however, makes the relation with the transformation rules in the
Minkowski background clear, and should be related to this unknown gauge
choice by field redefinitions. If we can find such a gauge choice to simplify
the construction of higher derivative invariants, we can modify the scheme by
starting from this case with (as of yet) unknown κ-symmetry gauge to construct
higher derivative invariants using superconformal methods. Once these are
constructed field redefinitions will transform these higher derivative invariants
to the gauge used in this paper, the Q-gauge. It is then only a matter of taking
the large R-limit to obtain higher derivative invariants in the desired D = 4,
N = 4 setting with VA-type symmetries.



Chapter 5

Intersecting D4/D8 branes in
massive type IIA supergravity

We saw in chapter 3 that the AdS/CFT correspondence allows one to study
strongly coupled field theory systems, by instead, studying weakly coupled dual
gravitational systems. A particularly interesting AdS/CFT correspondence
arises in the context of 5-dimensional gauge theories. In general, 5-dimensional
gauge theories are non-renormalisable and it is believed that additional degrees
of freedom must be added to make the theories well defined. One may even try
to argue that such theories are never well defined and this is one of the reasons
we live in 4-dimensions. However, a proposed counter-example to this argument
is provided by a class of 5-dimensional supersymmetric gauge theories which
are conjectured to be UV-complete [62, 100, 101]. Evidence for the existence of
a non-trivial UV fixed point is provided by the existence of a gravitational dual
[63, 19, 113].

This gravitational dual is obtained as the near-horizon geometry of a D4-D8
brane system in massive type IIA supergravity. The near-horizon geometry
is a fibration of AdS6 over S4. Dimensionally reducing the massive type IIA
supergravity on the warped S4 gives F (4) gauged supergravity in 6 dimensions.
Evidence that the 5-dimensional gauge theory captures the UV fixed point
physics has been provided by finding agreement between the S5 partition
function of the gauge theory and dual gravitational system [12]. It is still an
open question if the non-perturbative effects are sufficient to cure the UV-
divergences or if additional degrees of freedom are necessary.

Recently, the partition function result has been extended to comparing the

101
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vacuum expectation value of the half-BPS Wilson line for totally symmetric
and anti-symmetric representations [13]. In [114] this result was generalised to
squashed 5-spheres. In the cases considered, the vacuum expectation value can
be well approximated on the gravity side using probe branes, or, in terms of the
Young tableaux discussion of section 3.5, they correspond to Young tableaux
where the number of rows (or columns) is far smaller than their length. To go
further (representations with arbitrary Young tableaux sizes), one must include
the backreaction of the probe branes.

We have discussed in section 3.6 how these gauge theories are related to
intersections of the fundamental string and D4/D8-branes (section 2.5.4)
and their M-theory cousins of section 2.5.3. In this chapter we will look
for solutions that correspond to the configurations of section 2.5.4, with
supergroup D(2, 1; γ; 1)× SO(4). Our approach will be to make an ansatz for
the (supergravity) fields based on the symmetry considerations of section 2.5.4,
with the intent to look for fully localised solutions in a conformal near-horizon
limit. Using this ansatz we then reduce the BPS-equations to a two-dimensional
system, supplemented with algebraic expressions for the metric in terms of
spinor bilinears.

In general there are two distinct cases of enhanced supersymmetry, one given
by setting γ = −1/2,−2 and the second given by setting γ = 1. In the first
case, we show the most general solution is given by the AdS6 geometries of
[19], which is simply the dual of the 5-dimensional gauge theory without the
half-BPS Wilson line.

The second case corresponds to fundamental strings ending on D8-branes.1 We
identify three types of solutions. The first, given in section 5.3.1, we interpret as
a stack of fundamental strings in the presence of D8-branes, i.e. in a background
with F(0) 6= 0. The other two, given in section 5.3.2, we interpret as fundamental
strings ending on a stack of D8-branes or an O8-plane. In all three cases the
geometry contains an asymptotically flat region.

We also consider solutions where F(0) is allowed to jump across an interface,
corresponding to the presence of a stack of D8-branes. This allows for a large
family of solutions, parametrised by the number of such jumps. However, we
find that there is no way to glue D8-brane caps or O8-plane caps together.
Consequently, we argue that there are no solutions dual to 1 + 0-dimensional
CFTs.

This chapter is organised as follows. In section 5.1, we present our reduction
of the BPS system for D(2, 1; γ; 1)× SO(4) invariant geometries, including a
summary of the reduced equations. In section 5.2, we solve the BPS system

1We note this system was studied in [20] without the assumption of conformal symmetry.
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for the special case γ = −2 with enhanced supersymmetry. This corresponds
to the case of D4/D8-branes. In section 5.3, we solve the BPS system for the
special case γ = 1 with enhanced supersymmetry. This corresponds to the case
of fundamental strings ending on D8-branes or an O8-plane. We also discuss the
possibility of solutions with a jumping F(0). Finally, in section 5.4, we present
a discussion of the results. Additionally, the details of some of the calculations
in this chapter are presented in appendix E.

5.1 D(2, 1; γ; 1)× SO(4) invariant geometries

We consider first the most general solutions of massive IIA supergravity which
preserve the symmetry D(2, 1; γ; 1)× SO(4). The bosonic subalgebra so(1, 2)×
so(4)× so(4) is naturally realised on the 10-dimensional spacetime AdS2×S3×
S3 × Σ2, where Σ2 is a 2-dimensional space. The metric takes the form

ds2 = f2
1 ds

2
AdS2

+ f2
2 ds

2
S3 + f2

3 ds
2
S3 + ds2

Σ2
. (5.1)

The dilaton φ and the warp factors fi are restricted to be functions of Σ2. It
will be convenient to introduce the frames

em = f1ê
m m =0, 1, ei = f2ê

i i =2, 3, 4,

eĩ = f3ê
ĩ ĩ =5, 6, 7, ea a =8, 9, (5.2)

where êm are frames on the unit AdS2, êi and êĩ are frames on the two unit
S3’s and ea are frames on Σ2.

The 4-form flux takes the form

F(4) = h1e
0189 + hae

234a + gae
567a (5.3)

while the 2-form gauge potential and corresponding 3-form field strength take
the form2

B(2) =b0ê01 + b1e
89, H(3) =dB(2) = db0 ∧ ê01. (5.4)

The coefficients h1, ha, ga, b0 and b1 are all functions of Σ2.
2In principle one could allow for an H3-flux on either of the two three-spheres but the

Bianchi identities will then fix this flux to vanish.
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In order to preserve the supersymmetries, the supersymmetry variations of the
fermionic fields must vanish. From (2.18) we get the following BPS equations

0 =
[
(DMφ)ΓM + 5

4F(0)e
5
4φ + 1

96e
φ
4 (FMNPQΓMNPQ)

− 3
8F(0)e

3φ
4 BMNΓMNΓ11 −

1
12e
−φ2HMNPΓMNPΓ11

]
ε ,

0 =
[
DM −

1
32F(0)e

5
4φΓM + 1

128
e
φ
4

2 FNPQR(ΓMNPQR − 20
3 δM

NΓPQR)

− 1
32F(0)

e
3φ
4

2 BNP (ΓMNP − 14δMNΓP )Γ11

+ 1
48
e−

φ
2

2 HNPQ(ΓMNPQ − 9δMNΓPQ)Γ11

]
ε . (5.5)

The conventions for Γ-matrices are defined in appendix A.4. In order to obtain
massless IIA supergravity we perform the replacements (2.19) and take the
limit F(0) → 0.

Fluxes

The fluxes of our ansatz have the following interpretation in terms of the brane
constructions discussed in section 2.5.4. The ha and ga components of F(4)
correspond to the D4-brane and D4’-branes of table 2.3. In massless type
IIA theory, the fundamental string sources the NS-NS three form H(3), while
the D0-branes source the Ramond-Ramond two form F(2). In massive IIA
supergravity, the gauge transformation (2.20) mixes them. A related effect
occurs in the brane description. When one pulls a D0-brane through a D8-brane,
a fundamental string is created which stretches between the D8-brane and the
D0-brane [115]. The D8-branes can be interpreted as a magnetic source for the
scalar field strength F(0). Since we are interested in the brane configurations of
section 2.5.4 and the D4 brane sources the F(4) field strength only magnetically,
we set h1 to zero. Similarly, the fundamental string sources the B(2) gauge
potential only electrically so we set b1 to zero.

5.1.1 BPS equations

Our first step is to reduce the BPS equations (5.5) to a two-dimensional
system. This is carried out as follows. First the supersymmetry parameter, ε, is
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decomposed using a basis of Killing spinors for the symmetric spaces AdS2 and
S3. We denote by χη1,η2,η3 a basis of Killing spinors on AdS2 × S3 × S3,
where ηi = ±1. These can be explicitly constructed following [116] and
satisfy the Killing spinor equations (E.6). The basis, χη1,η2,η3 , is actually
overcomplete so without loss of generality, we impose the conditions χη1,η2,η3 =(
B(1) ⊗B(2) ⊗B(3)

)
χ∗η1,η2,η3

and χη1,η2,η3 = (σ3⊗I2⊗I2)χ−η1,η2,η3 . Note that
these conditions are consistent with the Killing spinor equations (E.6). We then
write the 10-dimensional supersymmetry parameter as

ε =
∑

η1,η2,η3

χη1,η2,η3 ⊗
[
ζη1,η2,η3 ⊗

(
1
0

)
+ ζ̂η1,η2,η3 ⊗

(
0
1

)]
, (5.6)

where the coefficients of the decomposition, ζη1,η2,η3 and ζ̂η1,η2,η3 , are collections
of two-component spinors. The type IIA reality condition ε∗ = Bε relates the
coefficients ζ and ζ̂ by ζ̂∗ = iσ2ζ. The BPS equations can then be written
as equations on ζ, the coefficients of the decomposition. This is carried out
explicitly for the first equation of (5.5) in appendix E.1. The final result is
summarised in equations (E.5)–(E.11). In giving these expressions, we have
written ζ as a single 16-component spinor with the ηi-labels corresponding to
spin indices. We also introduced the notation τ (ijk) = σi ⊗ σj ⊗ σk, where the
i-th Pauli matrix acts on the ηi index.

To simplify the problem, we first look for symmetries of the equations (E.5)–
(E.11). Both τ (030) and τ (003) commute with the BPS equations. In the
special case b1 = h1 = 0, τ (300)σ3 also commutes with the BPS equations.
We are interested in the brane configurations discussed in section 2.5.4 and
correspondingly set b1 = h1 = 0 throughout the rest of the paper. The reduced
BPS equations for general values of b1 and h1 are given in appendix E.2. As a
result of the three symmetries, we can impose the following projections on ζ
without loss of generality

ζ =ν1τ
(300)σ3ζ , ζ =ν2τ

(030)ζ , ζ =ν3τ
(003)ζ , (5.7)

where the νi are each a sign choice for the projection. The last two projections
simply project onto the components of ζη1,η2,η3 with η2 = ν2 and η3 = ν3. The
first projection is solved for the case ν1 = +1 by setting ζ−+ = ζ+− = 0, where
the first index corresponds to η1 and the second to the spinor index. In this
case, we may group the remaining components into a variable ξ = (ζ++, ζ−−).
In the case ν1 = −1, we have ζ++ = ζ−− = 0 and we group the remaining
components into a variable ξ = (ζ−+, ζ+−).
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After imposing the above projections, the BPS equation (E.5) reduces to

0 = 1
2
√

2
Dzφσ

3ξ∗ + 5
8
√

2
F(0)e

5φ/4iσ2ξ − 1
8
√

2
eφ/4(hzσ2ξ∗ + gzσ

1ξ∗)

+ 3
8
√

2
F(0)e

3φ/4 b0
f2

1
σ1ξ − 1

4
√

2
e−φ/2

Dzb0
f2

1
ξ∗ . (5.8)

The equations (E.7)–(E.9) reduce to

0 =− ν1

2f1
σ3ξ + 1

2Dz ln f1σ
1ξ∗ − 1

32F(0)e
5φ/4ξ + 3

16
eφ/4

2
(
ihzξ

∗ + gzσ
3ξ∗
)

+ 7
16F(0)

e3φ/4

2
b0
f2

1
σ3ξ + 3

8
e−φ/2

2
Dzb0
f2

1
iσ2ξ∗ ,

0 =− iν2

2f2
σ1ξ + 1

2Dz ln f2σ
1ξ∗ − 1

32F(0)e
5φ/4ξ + 3

16
eφ/4

2

(
gzσ

3ξ∗ − i53hzξ
∗
)

− 1
16F(0)

e3φ/4

2
b0
f2

1
σ3ξ − 1

8
e−φ/2

2
Dzb0
f2

1
iσ2ξ∗ ,

0 =− iν3

2f3
σ2ξ + 1

2Dz ln f3σ
1ξ∗ − 1

32F(0)e
5φ/4ξ + 3

16
eφ/4

2

(
ihzξ

∗ − 5
3gzσ

3ξ∗
)

− 1
16F(0)

e3φ/4

2
b0
f2

1
σ3ξ − 1

8
e−φ/2

2
Dzb0
f2

1
iσ2ξ∗ . (5.9)

Note that these equations are algebraic in ξ. The remaining equations (E.10)–
(E.11) reduce to

0 =Dzξ −
1
2Dz(ln ρ) ξ + 3

16
eφ/4

2

[
i
8
3hzσ

1ξ + i
8
3gzσ

2ξ

]
− 1

2
e−φ/2

2
Dzb0
f2

1
σ3ξ ,

0 =Dz̄ξ + 1
2Dz̄(ln ρ)ξ − 1

16F(0)e
5φ/4σ1ξ∗ + 3

16
eφ/4

2

[
i
2
3hz̄σ

1ξ + i
2
3gz̄σ

2ξ

]

+ i
1
8F(0)

e3φ/4

2
b0
f2

1
σ2ξ∗ − 1

4
e−φ/2

2
Dz̄b0
f2

1
σ3ξ ,

(5.10)

which are differential in ξ.

We now examine the number of supersymmetries present in the system. Each
χη1,η2,η3 has 8 parameters and leads to 8 supersymmetries. The projections
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(5.7) project onto specific values for η2 and η3 so that η2 = ν2 and η3 = ν3,
while the components with different values of η1 are related by the constraint
χη1,η2,η3 = (σ3 ⊗ I2 ⊗ I2)χ−η1,η2,η3 . Taking the background fields fixed, we
will have 8 supersymmetries for each independent solution of ξ to the above
equations. Generally we expect only one such solution. To look for cases with
enhanced supersymmetry, we first look for symmetries of the equations and
consider sending ξ →Mξ. Requiring M to commute or anti-commute with the
first two terms of (5.8) leads to the possibilities M = σ1, iσ2 and iσ3. As a
result we find the following three symmetries

ξ → σ1ξ b0 → −b0 gz → −gz ν1(3) → −ν1(3) ,

ξ → iσ2ξ b0 → −b0 hz → −hz ν1(2) → −ν1(2) ,

ξ → iσ3ξ gz → −gz hz → −hz ν2(3) → −ν2(3) . (5.11)

Note that in general these are not symmetries of the background fields, since we
are required to flip the signs of the fluxes. However, we can see that whenever
two of the fluxes vanish, we will double the number of supersymmetries. This
is in agreement with the brane discussion of section 2.5.4.

In appendix E.3, we carry out a further reduction of the equations. We first
integrate the equations of (5.9) which are differential in the fi. We obtain

f1 = ν1

c1
ξ†ξ , f2 = ν2

c2
ξ†σ2ξ , f3 = ν3

c3
ξ†σ1ξ , (5.12)

where the νi are sign choices and the ci are constants. Using the remaining
equations of (5.9), we obtain an algebraic constraint for the ci

c1 − 2c2 + 2c3 = 0 , (5.13)

and an expression for b0

b0 = 8ξ†ξ
F(0)c

2
1
e−3φ/4

(
1
2c1 −

3
4c2 + 3

4c3 + 1
8F(0)e

5φ/4ξ†σ3ξ

)
. (5.14)

We introduce the notation bz = Dzb0/f
2
1 and treat bz as an independent variable

from b0. We show that the BPS equations correctly enforce the differential
relation between them. The final summary of reduced equations is given in
section 5.1.2. There we denote the components of ξ by α and β.

Equations of motion and Bianchi identities

In general the BPS equations are not sufficient to determine a valid supergravity
solution. Namely, there can be additional constraints arising from the Bianchi
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identities and equations of motion. With this in mind, we first look at the
Bianchi identities. Since we give an anstaz directly for B(2), the Bianchi identity
for H(3) is automatic. The Bianchi identity for F(4) takes the form

dF(4) = 0 ⇒
{
∂z
(
f3

2 ρhz̄
)
− ∂z̄

(
f3

2 ρhz
)

= 0 ,
∂z
(
f3

3 ρgz̄
)
− ∂z̄

(
f3

3 ρgz
)

= 0 . (5.15)

We solve these equations by introducing the real functions ϕ1 and ϕ2 as ∂z̄ϕ1 =
ν2f

3
2 ρhz̄ and ∂z̄ϕ2 = ν3f

3
3 ρgz̄. The Bianchi identities then become integrability

conditions for the fields ϕi.

In appendix E.4 we check that the Bianchi identities together with the BPS
equations imply the equations of motion.

5.1.2 Summary of equations

With a partial reduction of the BPS-equations to a two-dimensional system
complete, it is time to summarise the remaining variables, BPS equations and
Bianchi identities. The quantities b0 and bz appear only algebraically and can
be eliminated. The remaining variables are then given by φ, ϕ1, ϕ2, ρ and the
two spinor components α and β. All of these are functions of the coordinates
(z, z̄). In total this gives 4 real variables and 2 complex variables.

The metric factors are determined in terms of the spinor components by

f1 =ν1

c1
(|α|2 + |β|2) , f2 = iν2

c2
(αβ∗ − α∗β) , f3 =ν3

c3
(αβ∗ + α∗β) . (5.16)

The constraint for the ci and the Bianchi identities are

c1 − 2c2 + 2c3 = 0 , hz = ν2

f3
2 ρ
∂zϕ1 , gz = ν3

f3
3 ρ
∂zϕ2 . (5.17)

The BPS-equations are reduced to eight coupled equations. There are three
equations algebraic in α and β

0 =−
F(0)

8 e3φ/4 b0
f2

1

(
|α|2 + |β|2

)
+ 1

2c1 −
3
4c2 + 3

4c3 + 1
8F(0)e

5φ/4 (|α|2 − |β|2) ,
0 =2 (c2 + c3) + eφ/4gz

(
(α∗)2 + (β∗)2)− ieφ/4hz ((α∗)2 − (β∗)2) ,

0 =− 1
4F(0)e

5φ/4 (|α|2 − |β|2)+ 3
4 (2c1 − 3c2 + 3c3)

− eφ/4

8
[
gz
(
(α∗)2 + (β∗)2)+ ihz

(
(α∗)2 − (β∗)2)]− e−φ/2

2 bzα
∗β∗.

(5.18)
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There is an equation involving the derivative of the dilaton

0 = 1
ρ
∂zφα

∗ + 5
4F(0)e

5φ/4β + i

4e
φ/4hzβ

∗ − 1
4e

φ/4gzβ
∗

+ 3
4F(0)e

3φ/4 b0
f2

1
β − 1

2e
−φ/2bzα

∗ . (5.19)

And finally, there are four equations which are differential in α and β

0 = 1
ρ
∂zα−

1
2
∂zρ

ρ2 α+ i

4e
φ/4hzβ + 1

4e
φ/4gzβ −

1
4e
−φ/2bzα,

0 = 1
ρ
∂zβ −

1
2
∂zρ

ρ2 β + i

4e
φ/4hzα−

1
4e

φ/4gzα+ 1
4e
−φ/2bzβ,

0 = 1
ρ
∂zα

∗ + 1
2
∂zρ

ρ2 α
∗ − 1

16F(0)e
5φ/4β − i

16e
φ/4hzβ

∗ + 1
16e

φ/4gzβ
∗

+ 1
16F(0)e

3φ/4 b0
f2

1
β − 1

8e
−φ/2bzα

∗,

0 = 1
ρ
∂zβ

∗ + 1
2
∂zρ

ρ2 β
∗ − 1

16F(0)e
5φ/4α− i

16e
φ/4hzα

∗ − 1
16e

φ/4gzα
∗

− 1
16F(0)e

3φ/4 b0
f2

1
α+ 1

8e
−φ/2bzβ

∗. (5.20)

The equations possess a conformal symmetry, with the following weighting

α, β : (1
4 ,−

1
4) ρ : (1

2 ,
1
2) gz, hz, bz : (1, 0) b0, φ, ϕ1, ϕ2 : (0, 0) . (5.21)

We also note that the equations have a real scaling symmetry under α→ λα,
β → λβ and ci → λ2ci, where λ is an arbitrary real number. This allows us to
fix one of the ci without loss of generality, by absorbing it into the definition of
α and β. There is also a symmetry under z → −z, ci → −ci and F(0) → −F(0).

The massless limit

Next we consider the case F(0) = 0. From the discussion in section 2.2 we know
that in order to make the massless limit F(0) = 0 well defined, we first make the
replacement (2.19), in particular B(2) → B(2) − F−1

(0)F(2). This introduces the
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closed two form3 F(2) = b1ê
01, where b1 is a constant. Note that A(1) ∧F(2) = 0

and so C(3) remains unmodified. Sending B(2) → B(2) − F(2)/F(0) amounts
to sending b0 → b0 − b1/F(0). The massless limit is then obtained by letting
F(0) → 0.

5.2 Enhanced supersymmetry: γ = −1/2,−2 and
D4-branes

We consider the case of supersymmetry enhancement which occurs by setting
hz = b0 = 0. By turning these functions off we preserve the symmetry in the
second line of (5.11) and we shall see that the supersymmetry is enhanced to
F (4; 2) × SO(3). Solutions that preserve the symmetry of the first line can
be found in a similar way to this case, by setting gz = hz = 0. The algebraic
equations (5.18) combine to give the constraint 5c1 − 7c2 + 8c3 = 0, which
together with c1 − 2c2 + 2c3 = 0, implies

c1 = −c2 = −2
3c3 . (5.22)

We combine α times the first equation of (5.20) with β times the second to
obtain

∂z

(
α2 + β2

ρ

)
= 0 , (5.23)

which implies the existence of a holomorphic (1,0)-function κ,

κ̄ = ρ

α2 + β2 . (5.24)

The first and second algebraic constraints in (5.18) are solved to give φ and gz

e5φ/4 = 2(c2 + c3)
5F(0)

1
|α|2 − |β|2

, gz = −2(c2 + c3)e−φ/4κ
ρ
. (5.25)

We now rewrite the four equations in (5.20) as follows. First we differentiate
the conjugate of (5.24) and use the last two equations of (5.20) to eliminate
derivatives of α∗ and β∗. This leads to a differential equation for ρ

1
κ
∂z ln ρ2

|κ|2
= c2 + c3

20
1

|α|2 − |β|2
c3f3

ν3
. (5.26)

3Recall that the D0-brane would act as a source for F(2). From the brane configuration in
table 2.3 we know that A(1) would have support along the 0-direction, leaving us with F(2)
having support along the 01-directions as the only symmetry-preserving option.
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Using this, as well as the equations (5.20), we find that the ∂zφ equation leads
to the constraint 5c1 − 7c2 + 8c3 = 0 and is automatically satisfied. We rewrite
the first two differential equations of (5.20) as

1
κ
∂z

(
αβ

ρ

)
= −1

2(c2 + c3)α
2 − β2

ρ
,

1
κ
∂z

(
α2 − β2

ρ

)
= 2(c2 + c3)αβ

ρ
. (5.27)

For the final equation we use the combination

∂z(|α|2 − |β|2) = 5
8(c2 + c3)c3κ

ν3
f3 . (5.28)

We now move on to solving the equations as follows. The strategy will be to
first introduce h and h̃ by (c2 + c3)κ = ∂zh̃ = i∂zh, such that everything is a
function of h and h̃ instead of z and z̄. Then integrate the equations (5.27)
and use their results to find expression for α and β. This will introduce a new
holomorphic function which we will fix in terms of h and h̃ through equations
(5.26) and (5.28). Finally, with α and β fully determined we can then write
down the full solution.

The general solution to (5.27) is given by

αβ

ρ
= −1

2F1 sin( h̃+ ih

2 ) + F2 cos( h̃+ ih

2 ) ,

α2 − β2

ρ
= F1 cos( h̃+ ih

2 ) + 2F2 sin( h̃+ ih

2 ) , (5.29)

where F1 and F2 are functions of z̄ only. For later convenience, we redefine

F1 = 1
2

(
ω̄

κ̄
+ 1
ω̄κ̄

)
, F2 = 1

4i

(
ω̄

κ̄
− 1
ω̄κ̄

)
, (5.30)

where ω and κ are arbitrary holomorphic functions. We will show below that
this definition is consistent with (5.24). It is convenient to work with the
complex combinations

α+ iβ = ρ1/2
(
ω̄

κ̄

)1/2
e
h−ih̃

4 , α− iβ = ρ1/2
(

1
ω̄κ̄

)1/2
e−

h−ih̃
4 . (5.31)

Multiplying these together reproduces (5.24). We are now ready to turn to
the differential equation for ρ, we will use this equation as well as ∂zω̄ = 0 to
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constrain the holomorphic function ω. Using the above expressions for α and β,
(5.26) becomes

1
κ
∂z ln ρ2

|κ|2
= i(c2 + c3)

20
ω − ω̄e−ih̃

ω + ω̄e−ih̃
. (5.32)

Differentiating this equation with respect to z̄, multiplying by κ and requiring
the result to be real leads to the condition

i
1
κ̄
∂z̄|ω|2 + i

1
κ
∂z|ω|2 = 4(c2 + c3)i∂h̃|ω| = 0 . (5.33)

The condition ∂h̃|ω| = 0 leads through ∂zω̄ = 0 also to ∂hθω = 0, where we
defined ω = |ω|eiθω .

Next we note that the differential equation for |α|2 − |β|2, (5.28), can be
combined with the ρ-equation, (5.26), to give

∂z ln
(
ρ2

|κ|2
(|α|2 − |β|2)−2/25

)
= 0 . (5.34)

This is easily integrated to give

ρ2

|κ|2
= A24/25(|α| − |β|2)2/25 = A cos1/12

(
θω + h̃

2

)
(5.35)

where A is a real constant. Turning to the differential equation for ρ, we require
(5.35) to be a solution. Plugging in we find that θω = 1

10 h̃ and also |ω| = e−
1
10h.

Note that we have absorbed integration constants into the definitions of h and
h̃.

We have now solved the system and give the final expressions for the supergravity
fields. The metric factors are given by

f1 = ν1

c1
A1/2 cos1/24( 3

5 h̃)1
2

(
e

2
5h + e−

2
5h
)
, f3 = −ν3

c3
A1/2 cos1/24( 3

5 h̃) sin( 3
5 h̃),

f2 = −ν2

c2
A1/2 cos1/24( 3

5 h̃)1
2

(
e

2
5h − e−

2
5h
)
,

ρ2

|κ|2
= cos1/24( 3

5 h̃).

(5.36)

The dilaton and flux are given by

e5φ/4 = 2
5
c2 + c3
F(0)

A−1/2 cos−25/24( 3
5 h̃),

ϕ2 = 5
2
A3/2

c33

(
2
5
c2 + c3
F(0)A1/2

)−1/5
cos4/3( 3

5 h̃) . (5.37)
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with gz = ν3(∂zϕ2)/f3
3 ρ.

This metric reproduces exactly the AdS6 solution of [19]. This can be seen by
introducing the new coordinates x and y by h = 5x/2 and h̃ = 5y/3. We also
introduce the overall radius R by A1/2 = 2

5 (c2 + c3)R. In these coordinates, the
metric is given by

ds2 = R2 cos 1
12 y

[(
dx2 + cosh2 x ds2

AdS2
+ sinh2 x ds2

S3

)
+ 4

9
(
dy2 + sin2 y ds2

S3

)]
. (5.38)

The terms in the first set of parenthesis combine into an AdS2 × S3 slicing of
AdS6, whereas the terms in the second set combine to make an S4. The dilaton
and flux in these coordinates are

eφ/4 = (RF(0))−1/5 cos−5/24 y, ϕ2 = 4
9R

3(RF(0))1/5 cos4/3 y. (5.39)

The case F(0) = 0

There are no solutions with F(0) = 0. To see this we first take the F(0) → 0
limit of the BPS equations of section 5.1.2. Since we are interested in solutions
with the only non-vanishing flux given by gz, we may simply take F(0) = 0. In
this case, the algebraic equations (5.18) become

0 = 2c1 − 3c2 + 3c3, (5.40)

0 = 2(c2 + c3) + eφ/4
(
(α∗)2 + (β∗)2)

0 = 6(2c1 − 3c2 + 3c3)− eφ/4
(
(α∗)2 + (β∗)2).

Along with the original constraints (5.17), we obtain a total of three constraints
on the ci

c2 + c3 = 0, 2c1 − 3c2 + 3c3 = 0, c1 − 2c2 + 2c3 = 0, (5.41)

from which it follows that ci = 0. This implies that the warpfactors fi are all
zero as well, and through this that our metric would be identically zero. Hence,
we conclude that there are no solutions with F(0) = 0.
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5.3 Enhanced supersymmetry: γ = 1 and funda-
mental strings

In this section we consider the case in which supersymmetry is enhanced by
setting gz = hz = 0. By turning these functions off we preserve the symmetry
in the third line of (5.11) and we shall see that the supersymmetry is enhanced
to OSp(8|2,R).

The second equation of (5.18) yields the condition c2 = −c3, which together
with the constraint c1 − 2c2 + 2c3 = 0, implies c1 = 4c2 = −4c3. Next, we
combine β times the first equation of (5.20) with α times the second to yield
the vanishing of a total derivative, ∂z ln (αβ/ρ) = 0. This implies the existence
of a holomorphic (1, 0)-function κ,

κ̄ = c2
ρ

αβ
. (5.42)

The factor of c2 has been chosen for convenience. We write the remaining three
independent equations of (5.20) as

∂zb0 =2f2
1 e
φ/2∂z ln

(
α

β

)
,

∂z ln
(
α(β∗)2√ρ

)
=1

8

(
1 + b0

f2
1
e−φ/2

)
F(0)e

5φ/4 ρα

β∗
,

∂z ln
(
β(α∗)2√ρ

)
=1

8

(
1− b0

f2
1
e−φ/2

)
F(0)e

5φ/4 ρβ

α∗
, (5.43)

where we have used bz = (∂zb0)/f2
1 ρ. We solve these equations to give b0 and φ

as functions of the remaining variables α, β and ρ. The remaining equation for
∂zb0 is then automatic. After substituting in the above solutions for b0 and φ
and eliminating β in terms of κ, the first equation of (5.18) becomes

0 = |κ|2 + 2κ̄
[
|κ|2|α|4

ρ2 ∂z ln
(

(α∗)2

α
ρ

3
2

)
− ρ2

|κ|2|α|4
∂z ln

(
α

κ2(α∗)2 ρ
5
2

)]
.

(5.44)

Next we take the sum of the first equation in (5.18) and third equation in (5.18)
and again eliminate b0, φ and β to obtain

0 = ∂z ln
(

α4

κ2(α∗)4

)
− 2κ . (5.45)

The final remaining equation is given by (5.19).
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We integrate (5.45) as follows. We parametrise the magnitude and phase of α
by the quantities A and θ as α = √c2ρA1/4eiθ/

√
κ̄. We also introduce a real

harmonic function h by i∂zh = κ. In terms of these quantities, (5.45) becomes

h = 4θ . (5.46)

With this we can write (5.44) as a differential equation for ρ in terms of A and
κ

∂z ln
(
ρ2

|κ|2

)
=− 1

4

(
3A2 − 2A+ 3

1−A2

)
κ+ 1

4

(
1 +A2

1−A2

)
∂z lnA . (5.47)

Using the above equation, we can eliminate ρ from the equations and cast the
remaining system as a pair of first order differential equations for φ and A.
The first is obtained the last two equations in (5.43) after eliminating b0. The
second is the differential equation (5.19). It will be slightly more convenient to
introduce a new variable G for the dilaton, defined by the equation

e
5φ
2 = |κ|

2

ρ2
AG2

F 2
(0)

. (5.48)

Note that G must have the same sign as the product ρF(0). In terms of G and
A the remaining first order system is given by

∂z ln (G) =− 5A+ 1
1−A2 ∂z ln(A)− A2 − 14A+ 1

1−A2 κ ,

κG =− 4
1−Aκ+ 2

1−A∂z ln(A) . (5.49)

Our approach will be to solve equations (5.49) to obtain expressions for A and
G. We then integrate (5.47) to obtain ρ. The metric factors, dilaton and fluxes
are then determined uniquely in terms G, A, ρ and h. The metric factors are

f2
1 = ρ2

16|κ|2A
(
1 +A−1)2 , f2

2 = 4ρ2

|κ|2
sin2

(
h

2

)
, f2

3 = 4ρ2

|κ|2
cos2

(
h

2

)
,

(5.50)

while the dilaton φ and flux b0 are given by

e
5φ
2 = |κ|

2

ρ2
AG2

F 2
(0)

, b0 = e−
3φ
4

4F(0)

ρ

|κ|

(
A−1/2 +A1/2

)(
1− 1−A

4 G

)
. (5.51)

From these expressions, we can see the presence of an SO(8) symmetry as follows.
By a conformal transformation, we may pick h as a coordinate. Introducing
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the dual coordinate h̃ as κ = ∂zh̃, this corresponds to the choice z = h̃ + ih
with κ = 1/2. With this choice of coordinates, the differential equations (5.49)
imply that A and G depend only on h̃. Similarly, (5.47) implies ρ only depends
on h̃. As a result, we find the metric is given by

ds2 = f2
1 ds

2
AdS2

+ 4ρ2dh̃2 + 16ρ2
[
dh2

4 + sin2
(
h

2

)
ds2

S3 + cos2
(
h

2

)
ds2

S3

]
.

(5.52)

The metric in brackets is that of 7-sphere with unit radius, whose isometry
group is SO(8). As a consequence, we find that the full symmetry group is
OSp(8|2,R), as advertised.

5.3.1 Linear dilaton

We present a simple solution to the equations (5.49) obtained by taking A
constant. Assuming A is constant leads to the condition A2 − 14A + 1 = 0.
This has two solutions A = 7 ± 4

√
3 with the corresponding G given by

G = −2± (4/
√

3). For constant A, the ρ equation (5.47) becomes

∂z ln
(
ρ2

|κ|2

)
= ± 5

4
√

3
κ. (5.53)

To integrate, we introduce h̃ so that κ = ∂zh̃. Integrating then gives ρ2 =
L2|κ|2e±

5
4

√
3
h̃, where L is an integration constant.

We are still free to make holomorphic transformations and by a local change of
coordinates, we can choose z = h̃+ ih. This corresponds to using a conformal
transformation to set κ = 1/2. Finally, it will be convenient to introduce the
rescaled variables x and θ for h̃ and h so that z = ±(4

√
3/5)x+ 2iθ.

The dilaton and flux are given by

e−5φ/2 = 3
4L

2F 2
(0)e

x , b0 = 33/10
(

2L
F(0)

)2/5
e

4
5x . (5.54)

The metric factors are given by

f2
1 = L2ex, f2

2 = 4L2 sin2(θ)ex, f2
3 = 4L2 cos2(θ)ex, (5.55)

and the metric becomes

ds2 = L2ex
(

48
25dx

2 + ds2
AdS2

+ 4 ds2
S7

)
. (5.56)
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As x→∞, the geometry becomes asymptotically flat and the string coupling
tends to zero. As x → −∞, the geometry becomes strongly curved and the
string coupling becomes large. Note that in (h̃, h)-coordinates, the two solutions
are simply mirrors of each other.

5.3.2 General solutions

In this section, we study general solutions to the system of equations (5.49). The
differential equations have singularities at A = 0, 1,∞. We start by analyzing
the solution in the neighborhood of each of these points.

We start by obtaining a solution to (5.49) in the large A limit. Using the second
equation of (5.49) to eliminate ∂z lnA in the first equation and then dropping
terms which are sub-leading in the large A limit, the equations reduce to

∂z ln(A) ∼ −A2 κG+ 2κ , ∂z lnG ∼ −5
2κG+ κ . (5.57)

The right equation can be easily integrated by again introducing h̃ as ∂zh̃ = κ,
to give

G ∼ 2 C1eh̃

1 + 5 C1eh̃
, (5.58)

where C1 is a real integration constant.

Turning now to the first equation, we first assume that G is finite in the large
A limit. In this case, we can neglect the second term on the left and side and
the equation is easily integrated to give

1
A
∼ 1

5 ln
(

1 + 5C1eh̃
)

+ C2, (5.59)

where C2 is another real integration constant. We introduce a new coordinate λ
by

h̃ = ln[
(
e5λ−5C2 − 1

)
/5C1]. (5.60)

Expanding around λ = 0 leads to the following asymptotic behavior

Case I : A ∼ λ−1 , G ∼ 6λ , (C2 = 0)

Case II : A ∼ λ−1 , G ∼ G0 , (C2 6= 0) (5.61)

where G0 = 2(1− e5C2)/5. For the case C2 = 0, we find that AG is of order one
and so we must keep the second term in the first equation of (5.57), which then
yields the correct factor of 6.
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By a local change of coordinates, we can again pick z = h̃+ ih, corresponding
to setting κ = 1/2. Expanding the differential equation (5.47) for ρ to leading
order and integrating, we find that the metric on Σ2 has the asymptotic form

Case I : 4ρ2(dh̃2 + dh2) ∼ L2 dλ
2

λ
+ L2λdh2 ,

Case II : 4ρ2(dh̃2 + dh2) ∼ L2λ
1
4

(
dh2 + 4

G2
0
dλ2
)
, (5.62)

where L is an integration constant. The warp factors behave as

Case I : f2
1 ∼

L2

16 , f2
2 ∼ 4L2λ sin2

(
h

2

)
, f2

3 ∼ 4L2λ cos2
(
h

2

)
,

Case II : f2
1 ∼

L2

16λ 3
4
, f2

2 ∼ 4L2λ
1
4 sin2

(
h

2

)
, f2

3 ∼ 4L2λ
1
4 cos2

(
h

2

)
.

(5.63)

For case I, we change coordinates to h = 2θ and λ = r2 and for case II, we
introduce h = 2θ. In these coordinates, the asymptotic metrics take the form

Case I : ds2 ∼ L2
(

1
16ds

2
AdS2

+ 4dr2 + 4r2ds2
S7

)
,

Case II : ds2 ∼ L2λ
1
4

(
1

16λds
2
AdS2

+ 4
G2

0
dλ2 + 4ds2

S7

)
. (5.64)

The asymptotic values of the dilaton and flux are given by

Case I : e
5φ
2 ∼ 36

L2F 2
(0)

, b0 ∼
5
8

(
L8

63F 2
(0)

) 1
5

,

Case II : e
5φ
2 ∼ G2

0

L2F 2
(0)λ

5
4
, b0 ∼

1
16λ

(
G2

0L
8

F 2
(0)

) 1
5

. (5.65)

For case I, we see that as r → 0 the geometry caps off smoothly. Furthermore,
the dilaton, φ, and flux, b0, both remain finite. For case II, the geometry is
singular as λ → 0, while the dilaton, φ, and flux, b0, both diverge. We note
that the metric is regular in string-frame, although the coupling still diverges.4

Next we examine the solution near A = 0. Assuming A ∼ 0 and eliminating G
in favor of a second order equation for A, we obtain the approximate equation

4This is easily seen by recalling that ds2string = eφ/2ds2Einstein.
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2A + ∂hA − ∂2
hA = 0, whose general solution is given by A ∼ C3e−h̃ + C4e2h̃.

Since we are in the A ∼ 0 approximation, this equation implies the following
allowed behaviors: A ∼ e2h̃ as h̃ → −∞, A ∼ e−h̃ as h̃ → ∞ or A has a first
order zero in h̃. The first case is an exact solution with G = 0. This leads to a
solution with eφ = 0 and a divergent b0. The other two cases have the following
asymptotics

Case III : A ∼ λ , G ∼ −6 ,
(
A ∼ e−h̃

)
Case IV : A ∼ λ , G ∼ G0λ

−1 ,

(
A ∼ G0

2 h̃− G0

2 h̃0

)
(5.66)

where for case III, we introduced λ by h̃ = − lnλ and for case IV, G0 and h̃0
are integration constants and we have introduced λ by λ = G0(h̃− h̃0)/2. It
turns out that the asymptotic geometry takes the same form as in the A ∼ ∞
cases. Namely case III leads to the same asymptotics given in (5.64) and (5.65)
for case I, while case IV leads to the same asymptotics for case II.

For the special point A = 1, we find that A admits a series expansion as a
polynomial in h. G can have one of either two behaviours. Either it admits
a regular series expansion, with the value of G arbitrary at A = 1 or G has a
linear divergence at A = 1 such that

Case V : A ∼ 1 , G ∼ 2
3λ
−1 , (5.67)

where λ = (h̃− h̃0) and h̃0 is the location of A = 1. For this case, we change
coordinates to h = 2θ and λ = 2r. In these coordinates, the asymptotic metrics
take the form

Case V : ds2 ∼ L2r
1
12
(
ds2
AdS2

+ 16dr2 + 16ds2
S7

)
. (5.68)

The asymptotic values of the dilaton and flux are given by

Case V : e
5φ
2 ∼ 1

26L2F 2
(0)r

25
12
, b0 ∼

5
4

(
63L8

F 2
(0)

) 1
5

r
2
3 . (5.69)

This solution is singular as r → 0. However, we observe that the singularity is
of the same type as that which occurs for the AdS6 solution given in (5.38) and
(5.39). In the AdS6 case, the singularity was attributed to the presence of an
O8-plane [19]. Since we observe the same singularity structure, we interpret this
solution as describing a fundamental string ending on an O8-plane. The first
type of behavior corresponds to a regular interior point and yields the behavior
given in figure 5.4 as we will see in the numerical analysis of the next section.
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The above analysis parallels nicely with the brane picture. We associate the
case I behavior with a string ending on a stack of D8-branes from the left,
where we have used κ to define the orientation. The case III behavior can be
associated with a fundamental string ending on a stack of D8-branes from the
right. The case V behavior contains two disconnected solutions. For the first,
we take h > h0 with G > 0, this corresponds to a string ending on an O8-plane
from the left and for the second we take h < h0 with G < 0, corresponding to a
string ending on an O8-plane from the right. Finally, we conjecture that the
simple solution of section 5.3.1 can be associated with an infinite string in the
presence of a non-zero Roman’s mass.

5.3.3 Numerics

For each of the cases in the previous section, one can work out the series solution
to any finite order in eh̃. However, we find the series expansion always breaks
down for some finite value of h̃. In order to understand the global structure
of the solutions, we therefore solve the differential equations numerically. To
do so, we first find approximate series solutions for each of the singular points,
corresponding to cases I-V of the previous section. We use these series solutions
to generate initial data for A and G away from the singular points. Finally, we
use this initial data to numerically solve the pair of differential equations given
in (5.49).

For case I, the differential equations admit the series solution

A = a−1e
−h̃ + a0 + a1e

h̃ + . . . =
∞∑

n=−1
ane

nh̃ ,

G = g1e
h̃ + g2e

2h̃ + . . . =
∞∑
n=1

gne
nh̃ , (5.70)

where the coefficients ai and gi are constants and by a choice of coordinates we
can set a−1 = 1. The equations (5.49) can be written as

0 =A(1−A2)∂h̃G+G(5A+ 1)∂h̃A+A(A2 − 14A+ 1)G ,

0 =A(1−A)G+ 4A− 2∂h̃A , (5.71)

where we have used ∂zh̃ = κ and dropped an overall factor of κ from the
equations. Plugging in the series expansion, one can recursively solve for all
the remaining coefficients in terms of a−1. Since the differential equations are
non-linear, it is difficult to obtain a closed form expression for the recurrence
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relation. However, one can explicitly solve for the coefficients to any given order.
We have used MATHEMATICA to solve for the first fifty coefficients, with the
first few given by

a−1 = 1, a0 = 15, a1 = −12, a2 = 144,

g1 = 6, g2 = −114 g3 = 2166 g4 = −41250. (5.72)

Near h̃ ∼ −3, the series expansion exhibits rapid oscillations and appears to
break down. To obtain the behavior beyond this point, we solve the equations
(5.71) numerically. We use the series expansion to generate the initial data.
Starting at h̃0 = −15, we find from the series solution that A(h̃0) = 3.27× 106

and G(h̃0) = 1.84×10−6. The result of this numerical solution is shown in figure
5.1. We see a nice agreement between the numerical solution and the series
solution up to h̃ ∼ −3. Beyond that we see the numerical solution smoothly
interpolates to the constant A and G solution of section 5.3.1. We conclude
that case I, provides a smooth, weakly curved geometry.
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Figure 5.1: Plot of A (left) and G (right) for case I. The solid line is the
numerically generated solution. The dot-dashed horizontal line is the constant
solution of section 5.3.1. The dashed line is the series solution (5.70) truncated
at order n = 2.

The remaining cases proceed in a similar manner. For case III, there is a unique
numerical solution as in case I. For case V, two numerical solutions can be
generated, one from taking data to the right of the A = 1 point and the other by
taking data from the left. The results of cases I, III and V are shown together
in figure 5.2. In all three cases, the solutions asymptote to the constant A and
G solution of section 5.3.1. Note that case III is a reflected version of case I,
while the left and right solutions of case V are reflections of each other.

For case II, there is a one parameter family of solutions, which are shown
in figure 5.3 for positive values of G0 and in figure 5.4 for negative values of
G0. Again, we observe that the solution asymptotes to the constant A and G
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Figure 5.2: Plot of A (left) and G (right) versus h̃. The black solid (dashed)
line corresponds to case I (III) while the blue solid (dashed) line corresponds
to the right (left) extension of case V. The dot-dashed horizontal line is the
constant solution of section 5.3.1.

solution. Case IV is a reflected version of case II. We note that cases II and IV
are both singular and do not necessarily have a brane interpretation.
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Figure 5.3: Plot of A (left) and G (right) versus h̃ for case II G0 =
(0.1, 0.2, 0.3, 0.6, 5). The dot-dashed horizontal line is the constant G solution
of section 5.3.1.

In all cases, we observe that the solutions asymptote to the constant A and
G solution. This is consistent with the brane interpretation of the previous
section. Namely, the fact that all the solutions asymptote to the constant A
and G solution corresponds to the fact that the fundamental strings are all
semi-infinite. As a result all the solutions are non-compact. From the analysis
of the previous section we also conclude that cases I and III are smooth while
the other cases have singularities.
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Figure 5.4: Plot of A (left) and G (right) versus h̃ for case II with G0 =
(−0.2,−1,−2,−5). The dot-dashed horizontal lines are the constant G solution
of section 5.3.1.

5.3.4 Patching solutions with jumping F(0)

In this section, we consider D8-brane domain walls, where the value of F(0)
jumps across the D8-brane. The physical fields are required to be continuous
across the D8-brane [117]. In particular, the metric and gauge potentials are
required to be continuous functions. We parametrise the jump with a real
parameter λ such that F−(0) = λF+

(0). Where F−(+)
(0) is the value of F(0) on the

left (right) side of the D8-branes. Assuming that ρ is continuous, the expressions
(5.50) for the fi are continuous if and only if A is continuous. For ρ, we note
that it is determined by the differential equation (5.47) and we may always
choose the integration constant so that ρ is continuous. The expression for the
dilaton in (5.51) is continuous if and only if we assume G jumps across the
domain wall so that G− = λG+.

At first sight, it seems that B cannot be made continuous across the interface.
However, this is due to our choice of gauge for the B field. We first introduce
a constant parameter b1 and make the gauge transformation given by sending
B(2) → B(2) − (b1/F(0))ê01 and F(2) → b1ê

01. This amounts to introducing F(2)
and taking

b0 = e−
3φ
4

4F(0)

ρ

|κ|

(
A−1/2 +A1/2

)(
1− 1−A

4 G

)
− b1
F(0)

(5.73)

Note that C(3) does not transform since A(1) ∧ F(2) = 0. Working in the h and
h̃ coordinates, we consider inserting the D8-brane at some value of h̃, which we
denote by h̃1. In order to obtain a solution with a continuous B(2) and F(2) we
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take

b1 = e−
3φ
4

4
ρ

|κ|

(
A−1/2 +A1/2

) ∣∣∣∣
h̃=h̃i

. (5.74)

We note that the presence of the D8-brane selects a particular gauge for B(2),
for which the fields are continuous.

An example for a type II solution with G0 = 1 is show in figure 5.5. We have
chosen λ > 0 so that the value of F(0) is the same on either side of the D8-brane.
We see that the solution always interpolates to the constant solution for any
value of the jump. This just means that we are gluing together two type II
solutions. In figure 5.6, we consider the same initial function but now take
negative values for λ. Note that since both G and F(0) are negative after the
jump, their product and more specifically, the sign of ρ, are positive. If ρ had
flipped signs across the jump, it would be discontinuous. In this case, we again
find that we are gluing together two type II solutions, now one with positive
G and one with negative G. In this case, the geometry does not approach the
asymptotically flat solution of section 5.3.1, but rather at each end the geometry
caps off as the asymptotic type II solution of (5.64).
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Figure 5.5: Plot of A (left) and G (right) versus h̃. The black line is a type
II solution with G0 = 1. We take F(0) to jump at h̃ = 0 with jump coefficient
λ = (0.1, 0, 5, 5, 10). The dot-dashed horizontal lines are the constant G solution
of section 5.3.1.

In general, one could also start with the type I solution or right type V solution
and introduce a jump. We encounter similar behavior with positive values of λ
yielding a geometry which asymptotes to the constant solution and negative
values of λ resulting in a type II cap. The type III, IV and left V geometries
yield reflected versions of the previous cases.

One may wonder whether we can construct solutions which interpolate from
the smooth cap of the type I solution to the smooth cap of the type III solution
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Figure 5.6: Plot of A (left) and G (right) versus h̃. The black line is a type
II solution with G0 = 1. We take F(0) to jump at h̃ = 0 with jump coefficient
λ = (−0.1,−0.2,−0.5,−1). The dot-dashed horizontal lines are the constant G
solution of section 5.3.1.

or to the O8-caps of the type V solutions. Unfortunately, this does not seem
possible. One necessary requirement to patch together two different solutions is
for their A values to overlap at some point. Examining figure 5.2, we observe
that the type I, III and V solutions are disconnected, with their A values never
overlapping. Thus there are no solutions which yield geometries of the form
AdS2 ×M8 withM8 compact.

5.3.5 The case F(0) = 0

It turns out there are no solutions with F(0) = 0. To see this we first take the
F(0) → 0 limit of the BPS equations of section 5.1.2. As discussed at the end of
the section, we send b0 → b0 − b1/F(0) and then take F(0) = 0. We solve (5.18)
to obtain expressions for b1 and bz:

b1 = −2e−3φ/4 f2
1

|α|2 + |β|2 (2c1 − 3c2 + 3c3) , bz = 3
2
eφ/2

α∗β∗
(2c1 − 3c2 + 3c3) ,

(5.75)

along with c3 = −c2. The differential equations (5.20) can be reduced as before
to yield κ̄ = ρ/αβ, bz = (2eφ/2/ρ)∂z ln (α/β) and

∂z ln
(
α(β∗)2√ρ

)
=− 1

8
b1
f2

1
e−φ/2e5φ/4 ρα

β∗
,

∂z ln
(
β(α∗)2√ρ

)
=1

8
b1
f2

1
e−φ/2e5φ/4 ρβ

α∗
. (5.76)
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We eliminate β using the definition of κ. Requiring b1 to be constant, we can
obtain algebraic expressions for ∂zα, ∂zα∗, ∂zρ and ∂zφ. Upon plugging these
expressions into (5.19), we obtain an algebraic equation which over constrains
the system. To exhibit this explicitly, it is convenient to pick local coordinates
so that κ = κ̄ = 1/2. Then (5.19) yields

4ρ2 + |α|4 = 0 , (5.77)

which has no solutions other than ρ = α = 0.

5.4 Summary

We studied D(2, 1; γ; 1)× SO(4) geometries in massive IIA supergravity and
reduced the BPS-equations to a two-dimensional system. This two-dimensional
system has three points of supersymmetry enhancement. Two of these lead
to the AdS6 solution of [19] which we rederived as the only solution. The
remaining point of supersymmetry enhancement leads to novel solutions.

In both cases, we identify a holomorphic (1, 0)-function, which is a ubiquitous
ingredient in half-BPS solutions. In almost all known solutions, the holomorphic
(1, 0)-function is a homogenous polynomial of the spinor variables. In the
current case, the degree of the polynomial is different for the two distinct
cases of enhanced symmetry. This means that for the general solutions, the
holomorphic (1, 0)-function, if it exists, is not a polynomial of the spinor variables.
This suggests that the resulting BPS structure is different than the analogous
M-theory system.

The new solutions correspond to fundamental strings ending on D8-branes.
We identify three types of solutions. The first, given in section 5.3.1, we
interpret as a stack of fundamental strings in the presence of D8-branes, i.e. in a
background with F(0) 6= 0. The second two, given in section 5.3.2, we interpret
as fundamental strings ending on a stack of D8-branes or an O8-plane. Case I
and III correspond to fundamental strings ending on D8-branes, while case V
corresponds to fundamental strings ending on an O8-plane. In all three cases
the geometry contains an asymptotically flat region.

We briefly discussed glueing solutions with different values of F(0) together using
D8-brane domain walls. In all cases there naively seems to be no decoupling
limit, as the geometries contain asymptotically flat regions. However, we note
that the string coupling tends to zero in these region, which may be sufficient
for a valid decoupling limit.



SUMMARY 127

The limiting case F(0) = 0 (regular ’massless’ IIA) admits no solutions in these
points of enhanced symmetry.

Finally, we find that there are no geometries of the form AdS2 ×M8 withM8
compact such that there are no solutions corresponding to 1 + 0-dimensional
CFTs.





Appendix A

Clifford algebras

For ease of use, we collect here a few of the relations for Clifford algebras and
spinors. In the subsections of this appendix we collect some of the realisations
for the Clifford algebras used in this thesis. For the two background cases
in chapter 4 we need Clifford matrices tailored to their needs. We start of
by constructing the algebra’s needed for the AdS5 × S5 case (SO(2, 4) and
SO(0, 6)) and include a compatible SO(1, 9) construction for the Minkowski
background. We conclude with a basis for ten-dimensional gamma matrices
that is suited for the SO(2, 1)× SO(4)× SO(4) isometry of chapter 5.

Gamma matrices

Gamma matrices in D dimensions satisfy the relation

γaγb + γbγa = ηabID. (A.1)

They are 2bD/2c × 2bD/2c-matrices in spinor space and an explicit basis for an
Euclidean signature can be constructed in terms of the Pauli matrices

γ1 = σ1 ⊗ I2 ⊗ I2 ⊗ . . . , γ2 = σ2 ⊗ I2 ⊗ I2 ⊗ . . . ,

γ3 = σ3 ⊗ σ1 ⊗ I2 ⊗ . . . , γ4 = σ3 ⊗ σ2 ⊗ I2 ⊗ . . . ,

γ5 = σ3 ⊗ σ3 ⊗ σ1 ⊗ . . . , γ6 = σ3 ⊗ σ3 ⊗ σ2⊗, . . .

. . . (A.2)

129
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These matrices are all hermitian and square to the appropriate identity matrix.
A construction for non-Euclidean signatures is obtained from this by multiplying
the desired gamma-matrices by a factor of i. Anti-symmetric products of these
gamma matrices are defined by

γa1...ar = γ[a1 · · · γar], (A.3)

where the anti-symmetrisation is with total weight one. The identity together
with the gamma matrices and their anti-symmetric products1 constitute a basis
of the D-dimensional Clifford algebra. For even dimensions (D = 2m) one can
define

γ∗ = (i)αγ1γ2 . . . γD, (A.4)

where α = 1
2d(d − 1) + smod, where s denotes the amount of minus signs in

the signature. It squares to one and can be used to define chiral projection
operators

PL = 1
2 (ID + γ∗) , PR = 1

2 (ID − γ∗) (A.5)

We have the following convenient relation between gamma matrices involving
the Levi-Civita tensor, for even D = 2m

γa1...arγ∗ = −(i)α(−)r(r−1)/2 1
(D − r)!ε

a1...ara(r+1)...aDγa(r+1)...aD , (A.6)

and for odd D = 2m+ 1 where one uses γ∗ as γ2m+1

γa1...ar = −(i)α(−)r(r−1)/2 1
(D − r)!ε

a1...ara(r+1)...aDγa(r+1)...aD . (A.7)

Spinors in various dimensions

A generic spinor ψα is a vector with 2bD/2c complex components, which are
anti-commuting Grassmann variables.

Majorana spinors satisfy the reality condition

ψ = ψC , (A.8)

where C indicates charge conjugation. Charge conjugation is defined by an
action of the charge conjugation matrix B

ψC = Bψ, γC = BγB−1. (A.9)
1Actually not all anti-symmetric products are needed, just an independent subset. See [4]
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Majorana conditions can be imposed in D = 2, 3, 4, 8, 9, 10, 11 and they reduce
the 2bD/2c complex components to 2bD/2c real components.

Using the projectors (A.5) one can split a spinor into its chiral parts

ψ = ψL + ψR = PLψ + PRψ (A.10)

defining the left and right handed spinors that satisfy

ψL = PLψL, ψR = PRψR. (A.11)

These conditions are called chirality conditions or Weyl conditions.

In general dimensions D the Majorana condition is not compatible with Weyl
conditions, and chiral components of a Majorana spinor are not Majorana. This
compatibility is only possible in D = 2, 10, where the minimal spinors are
Majorana-Weyl spinors and have 2bD/2c−1 real components.

For more details concerning Clifford algebras and spinors we refer to [4]. We
now describe several of the realisations of gamma matrices used throughout the
thesis.

A.1 The SO(2, 4) Clifford algebra

We extend the SO(1, 3) Clifford matrices by two more matrices as follows

Γ̂a = γa ⊗ σ1, Γ̂S = γ4 ⊗ σ1, Γ̂T = I4 ⊗ (−iσ2). (A.12)

The γa are the SO(1, 3) gamma matrices and γ4 = −iγ0γ1γ2γ3. We define

Γ̂∗ = −iΓ̂0Γ̂1 . . . Γ̂SΓ̂T = I ⊗ σ3. (A.13)

Since we are in 6 dimensions the minimal spinor is a Weyl spinor, the conformal
spinor in 4 dimensions. We will restrict to righthanded chiral spinors, Γ̂∗λ = −λ.
We restrict Γ̂ab to the righthanded chiral subspace2 (Γ̂→ γ̂)

γ̂ab = γab, γ̂aS = γaγ5, γ̂aT = −γa, γ̂ST = −γ5. (A.14)

These matrices satisfy the relations

(γ̂âb̂)
β̂
α̂ (γ̂âb̂) δ̂

γ̂ = 2δ β̂
α̂ δ δ̂

γ̂ − 8δ δ̂
α̂ δ

β̂
γ̂ , (γ̂âb̂)

β̂
α̂ (γ̂ ĉd̂) α̂

β̂
= −8δ ĉ

[â δ
d̂
b̂] , (A.15)

where for this section α̂ = 1, . . . 8 and â = {a, S, T}.
2This means that γ̂ãb̃ = Γ̂ãb̃

1
2

(
1− Γ̂∗

)
.
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A.2 The SO(6) Clifford algebra

We extend the SO(5) Clifford matrices by one more matrix

Γ̂
′

a′ = γ
′

a′ ⊗ σ2, Γ̂
′

S′ = γ
′

9 ⊗ σ2, Γ̂
′

T ′ = I4 ⊗ σ1, (A.16)

where γ′

a′ are the SO(4) gamma matrices and γ′

9 is given by γ′

9 = −γ′

5γ
′

6γ
′

7γ
′

8.
We define

Γ̂
′

∗ = −iΓ̂
′

5Γ̂
′

6 . . . Γ̂
′

S′ Γ̂
′

T ′ = I ⊗ σ3. (A.17)

Like before we will restrict to righthanded chiral spinors, and identify

γ̂
′

a′b′ = γ
′

a′b′ , γ̂
′

a′S′ = γ
′

a′γ
′

9, γ̂
′

a′T ′ = iγ
′

a′ , γ̂
′

S′T ′ = iγ
′

9. (A.18)

These matrices satisfy a similar relation as (A.15)

A.3 The SO(1, 9) Clifford algebra

We will use a decomposition of 10-dimensional γ-matrices Γ̂(10D)
M into the

SO(1, 4) and SO(5) matrices as follows

Γ̂(10D)
m̃ = γm̃ ⊗ I4 ⊗ σ1, Γ̂(10D)

m′ = I4 ⊗ γ
′

m′ ⊗ σ2. (A.19)

We define

Γ̂(10D)
∗ = −Γ̂(10D)

0 . . . Γ̂(10D)
9 = −I4 ⊗ I4 ⊗ σ3. (A.20)

We can write 10-dimensional spinors in this decomposition as

Ψ(10D) = ψ ⊗ ψ
′
⊗
(
a
b

)
, (A.21)

however, the type IIB chirality condition 1
2

(
1 + Γ̂(10D)

∗

)
Ψ(10D) = 0 implies that

0 = 1
2

(
1 + Γ̂(10D)

∗

)
Ψ(10D) = ψ ⊗ ψ

′
⊗
(

0
b

)
→ b = 0. (A.22)

Our 10-dimensional chiral spinor is then

Ψ i
α = ψα ⊗ ψ

′i ⊗
(

1
0

)
, (A.23)
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where we reabsorbed the constant a into the 4-dimensional spinors. By doing
this restriction to the right handed chiral subspace we can again define

Γm̂n̂ = Γ̂(10D)
m̂n̂

1
2

(
1 + Γ̂(10D)

∗

)
, (A.24)

and identify

Γm̃ñ = γm̃ñ ⊗ I4, Γm̃′ñ′ = I4 ⊗ γ
′

m̃′ñ′ , Γm̃ñ′ = γm̃ ⊗ γ
′

ñ′ . (A.25)

A.4 An SO(2, 1)× SO(4)× SO(4)-adapted basis for
ten-dimensional gamma matrices

We choose a basis for the Clifford algebra which is well-adapted to the AdS2 ×
S3 × S3 × Σ2 space.

Γm = γm ⊗ I2 ⊗ I2 ⊗ I4 m = 0, 1

Γi = σ3 ⊗ γi ⊗ I2 ⊗
(
σ1 ⊗ I2

)
i = 2, 3, 4

Γĩ = σ3 ⊗ I2 ⊗ γ ĩ ⊗
(
σ2 ⊗ I2

)
ĩ = 5, 6, 7

Γa = σ3 ⊗ I2 ⊗ I2 ⊗ γa a = 8, 9 , (A.26)

where a convenient basis for the lower Clifford algebras is as follows,

iγ0 = σ1 = γ2 = γ5 γ8 = σ3 ⊗ σ1

γ1 = σ2 = γ3 = γ6 γ9 = σ3 ⊗ σ2

σ3 = γ4 = γ7 . (A.27)

The 10-dimensional chirality matrix in this basis is given by

Γ11 = Γ0123456789 = σ3 ⊗ I2 ⊗ I2 ⊗ σ3 ⊗ σ3 . (A.28)

The complex conjugation matrices in each subspace are defined by

(γm)∗ = +B(1)γ
mB−1

(1) (B(1))∗B(1) = +I2 B(1) = σ3

(γi)∗ = −B(2)γ
iB−1

(2) (B(2))∗B(2) = −I2 B(2) = σ2

(γ ĩ)∗ = −B(3)γ
ĩB−1

(3) (B(3))∗B(3) = −I2 B(3) = σ2

(γa)∗ = +B(4)γ
aB−1

(4) (B(4))∗B(4) = +I2 B(4) = σ3 ⊗ σ1 , (A.29)
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where in the last column we have also listed the form of these matrices in our
particular basis. The 10-dimensional complex conjugation matrix B is defined
by (ΓM )∗ = BΓMB−1 and BB∗ = 1, and in this basis is given by

B = B(1) ⊗B(2) ⊗B(3) ⊗ σ2 ⊗ σ2 = σ3 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 . (A.30)



Appendix B

The SU(2, 2|4) algebra in
various forms

The SU(2, 2|4) algebra is

[V β̂
α̂ , V δ̂

γ̂ ] = δ β̂
γ̂ V δ̂

α̂ − δ δ̂
α̂ V

β̂
γ̂ , [U j

i , U l
k ] = δ l

i U
j

k − δ
j
k U

l
i

[V β̂
α̂ ,Q i

γ̂ ] = δ β̂
γ̂ Q

i
α̂ −

1
4δ

β̂
α̂ Q

i
γ̂ , [U j

i ,Q k
α̂ ] = δ k

i Q
j
α̂ −

1
4δ

j
i Q

k
α̂,

{Q i
α̂ , Q̄

β̂
j } = δ i

j V
β̂

α̂ − δ β̂
α̂ U i

j , (B.1)

with all other commutators vanishing. The index α̂ runs over the values 1, . . . 4
in this section.
We will relate the fundamental representation of SU(2, 2) to the spinor of
SO(2, 4). We rotate the generators V β̂

α̂ to M̂m̂n̂ by means of the γ̂âb̂ matrices
given in (A.14)

V β̂
α̂ = 1

2(γ̂âb̂) β̂
α̂ M̂âb̂, M̂âb̂ = −1

4(γ̂âb̂)
β̂
α̂ V α̂

β̂
. (B.2)

This is consistent by the fact that the V β̂
α̂ are traceless and (A.15). The other

bosonic subalgebra, generated by U will be considered as an internal group (an
R-symmetry) for the remainder of this section. The conjugate spinor charge
Q̄ α̂
i is defined as the four-dimensional Dirac conjugate spinor,

Q̄ α̂
i = i[(Qi)†γ0]α̂. (B.3)
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With this isomorphism realised, we have a superalgebra in terms of the generators

TΛ : M̂âb̂, U j
i , Q i

α̂ and Q̄ α̂
i . (B.4)

The super spacetime part of the algebra now gets the universal form

[M̂âb̂, M̂ĉd̂] = η̂â[ĉM̂d̂]b̂ − η̂b̂[ĉM̂d̂]â,

[M̂âb̂,Q
i
α̂ ] = −1

4(γ̂âb̂)
β̂
α̂ Q

i
β̂
,

{Q i
α̂ ,Q

β̂
j } ∼ δ

i
j (γ̂âb̂) β̂

α̂ M̂âb̂ + δ β̂
α̂ U j

i , (B.5)

and there is the internal part which involves the generators U j
i , which also

rotate the supercharges. The metric η̂ = diag(− + + + +−) is the (2,4) flat
metric and the indices â = {0, 1, 2, 3, S, T} where 0 and T are timelike directions.
Remark that we chose all generators in this formula to be dimensionless. In
general we define a G valued object A as

A = AΛTΛ. (B.6)

For the superalgebra above we have

A = Ââb̂M̂âb̂ + Â j
i U

i
j + ¯̂

A α̂
i Q i

α̂ + Q̄ α̂
i Â i

α̂ , (B.7)

where these objects can be viewed as matrices. Note that Q̄ α̂
i does not act on

Â i
α̂ in this notation.

We want to derive the generators of the AdS algebra and the conformal algebra
in their more familiar form. Starting from the generic form of the conformal
superalgebra in the SO(2, 4) basis (B.5), we will first decompose it into a form
which is appropriate to the AdS5 spacetime isometry algebra and then into a
form which is appropriate for the conformal isometries in 4 dimensions. We call
these the AdS decomposition and the conformal decomposition, respectively.
We will also discuss how quantities in these decompositions are related.

B.1 The AdS decomposition

The AdS5 space is a 5-dimensional manifold with structure group SO(2, 4),
in order to obtain this from the algebra we split the generators into SO(1, 4)
generators M̃m̃ñ and the remaining generators P̃m̃, defined through

P̃m̃ = 2
R
M̂m̃T , M̃m̃ñ = M̂m̃ñ, (B.8)
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where we have introduced the constant R, which has dimensions of a length to
give the translations P̃m̃ the canonical dimensions of L−1. It will be associated
with the radius of curvature of the AdS space. The S-direction will be associated
with the AdS bulk direction.
The supercharges Q i

α̂ are rescaled to have dimensions L−1/2,

Q̃ i
α̂ = R−1/2Q i

α̂ . (B.9)

This yields a superalgebra of the form

[M̃ãb̃, M̃c̃d̃] = η̃ã[c̃M̃d̃]b̃ − η̃b̃[c̃M̃d̃]ã,

[P̃ã, M̃b̃c̃] = η̃ã[b̃P̃c̃], [P̃ã, P̃b̃] = 2
R2 M̃ãb̃,

[M̃ãb̃, Q̃
i
α̂ ] = −1

4(γ̂ãb̃)
β̂
α̂ Q̃

i
β̂
, [P̃ã, Q̃ i

α̂ ] = 2
R

(γ̂ãT ) β̂
α̂ Q̃

i
β̂

{Q̃ i
α̂ , Q̃

β̂
j } ∼ δ

i
j (γ̂ãT ) β̂

α̂ P̃ã + 1
R
δ i
j (γ̂ãb̃) β̂

α̂ M̃ãb̃ + 1
R
δ β̂
α̂ U j

i , (B.10)

where η̃ = diag(−+ + + +) is the flat metric with signature (1,4).
It is interesting to note that this algebra contains the dimensionful constant
R, which can not be scaled away if we want the translations to have natural
dimension of a mass.
For the AdS superalgebra, we have the decomposition of a G-valued object

A = ÃãP̃ã + Ããb̃M̃ãb̃ + Ã j
i U

i
j + ¯̃A α̂

i Q̃ i
α̂ + ¯̃Q α̂

i Ã i
α̂ . (B.11)

From this we infer that

Ãã = RÂãT , Ããb̃ = Âãb̃, Ã j
i = Â j

i , Ã i
α̂ = R1/2Â i

α̂ . (B.12)

B.2 The Conformal decomposition

We now turn to the conformal decomposition of the superalgebra. We obtain
the conformal transformations (generators) in 4 dimensions, i.e. translations
(Pa), Lorentz transformations (Mab), dilations (D) and special conformal
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transformations (Ka), which also form the algebra SO(2,4), by

Pa = 2
R

(M̂aT + M̂aS) = P̃a + 2
R
M̃aS , [Pa] = L−1,

Mab = M̂ab = M̃ab, [Mab] = L0,

D = 2M̂TS = −RP̃S , [D] = L0,

Ka = 2R(M̂aT − M̂aS) = R2P̃a − 2RM̃aS , [Ka] = L, (B.13)

where we indicated the natural length dimensions L. The tangent directions have
now been split as â = {ã, T} = {a, S, T} and we introduce the 4-dimensional
Minkowski metric ηab = diag(−,+,+,+). It is natural to split the supercharge
Q i
α̂ into two Lorentz supercharges, the supersymmetry Q i

α and the conformal
supersymmetry S i

α . One way to distinguish between the two is that they
transform with opposite weight under the dilations. Consider the commutator

[D,Q i
α̂ ] = −1

2 γ̂TSQ
i
α̂ . (B.14)

Since γ̂2
TS = 1 and Tr γ̂TS = 0, we can define the projection operators

PQ,S = 1
2(1± γ̂ST ). (B.15)

We note that γ̂ST commutes with γ̂ab and therefore preserves the 4-dimensional
Lorentz spinors as desired. This leads us to the following identification

supersymmetry: Q i
α =

√
2R−1/2PQQ i

α̂ =
√

2PQQ̃ i
α̂ ,

special supersymmetry: S i
α =

√
2R1/2PSQ i

α̂ =
√

2RPSQ̃ i
α̂ , (B.16)

with [Q i
α ] = L−1/2 and [S i

α ] = L1/2. Bringing these decompositions into the
algebra (B.5) we obtain

[Mab,Mcd] = ηa[cMd]b − ηb[cMd]a, [Pa,Kb] == 2(ηabD + 2Mab),

[Pa,Mcd] = ηa[bPc], [Ka,Mcd] = ηa[bKc],

[D,Pa] = Pa, [D,Ka] = −Ka,

[Mab, Q
i
α ] = −1

4(γ̂abQi)α, [Mab, S
i
α ] = −1

4(γ̂abSi)α,

[Ka, Q
i
α ] = −(γ̂aTSi)α, [Pa, S i

α ] = −(γ̂aTQi)α, (B.17)
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[D,Q i
α ] = 1

2Q
i
α , [D,S i

α ] = −1
2S

i
α ,

{Q i
α , Q̄

β
j } = δ i

j (γ̂aT ) β
α Pa, {S i

α , S̄
β
j } = δ i

j (γ̂aT ) β
α Ka,

{Q i
α , S̄

β
j } = δ i

j (γ̂ab) β
α Mab + δ i

j δ
β
α D − 2δ β

α U i
j .

By having given appropriate dimensions to the generators, this algebra contains
no dimensionful constants as opposed to the AdS-decomposition where it was
unavoidable.
A superconformal object can be decomposed as follows

A = AaPPa +AabMMab +ADD +AaKKa +A j
i U

i
j +

(
Ā α
Qi Q

i
α + Ā α

Si S i
α + h.c.

)
,

(B.18)

and this yields the following relations

AaP = R

2 (ÂaT + ÂaS) = 1
2
(
Ãa +RÃaS

)
,

AabM = Âab = Ãab,

AD = ÂTS = −R−1ÃS ,

AaK = 1
2R (ÂaT − ÂaS) = 1

2R2 (Ãa −RÃaS)

A j
i = Â j

i = Ã j
i

Ā α
Qi = R1/2

√
2

¯̂
A β̂
i (PQ) α̂

β̂
= 1√

2
¯̃A β̂
i (PQ) α̂

β̂

Ā α
Si = R−1/2

√
2

¯̂
A β̂
i (PS) α̂

β̂
= 1√

2R
¯̃A β̂
i (PS) α̂

β̂
. (B.19)

It is interesting to note that the translations and the special conformal
transformations in the conformal decomposition mix the AdS translations
and structure group rotations.
To conclude this section we give the AdS objects in terms of their conformal
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counterparts.

Ãa = AaP +R2AaK ,

ÃS = −RAD,

ÃaS = R−1AaP −RAaK ,

Ãab = AabM ,

Ã i
α̂ =

√
2
(
A i
Qα

RA i
Sα

)
, (B.20)

where just for notational reasons we have a basis in which γ̂ST is diagonal.



Appendix C

AdS5 × S5 as a coset space

Our aim in this appendix is to construct the coset space AdS5 × S5. First we
consider AdS5 as a coset space and then we discuss the S5 coset space. We
conclude this appendix with a discussion of an appropriate choice of fermionic
coordinates for the coset superspace.

C.1 AdS5 as a coset space

The AdS5 space is the coset

AdS5 = SO(2, 4)
SO(1, 4) . (C.1)

The algebra to be considered is the bosonic part of the algebra in appendix B.1
(ignoring the internal part). We choose horospherical coordinates,

ds2 = ρ2dx2 +
(
R

ρ

)2
dρ2, (C.2)

where the boundary is parametrised by xm and is at ρ = ∞. The coset
representative for horospherical coordinates is given in the spinor representation
of SO(2, 4). It can be derived from the supergravity Killing spinor [108] and
can be written as

v(x̃m̃) = vconf(x)
(
ρ−1/2 1

2 (1− γ̂ST ) + ρ1/2 1
2 (1 + γ̂ST )

)
, (C.3)

141



142 ADS5 × S5 AS A COSET SPACE

where the γ-matrices are defined as in A.14 and vconf(x) is the coset
representative of the 4-dimensional conformal Minkowski space

vconf(x) = 1 + xm

R
γ̂mT

1
2(1 + γ̂ST ). (C.4)

The flat S direction is related to the bulk direction ρ of AdS5. Straightforward
computation gives the Cartan forms (4.1)

v−1dv ≡ LΛTΛ = em̃Pm̃ + ωm̃ñMm̃ñ, (C.5)

with non-vanishing components

ea = eamdx
m = ρδamdx

m, e4 = e4
ρdρ = R

ρ
dρ, ωaρ = δamdx

m ρ

R
. (C.6)

The Killing fields Σ0 (4.10) are determined by an x̃-independent SO(2, 4) object,

Υ = ãm̃P̃m̃ + λ̃m̃ñ(M)M̃m̃ñ. (C.7)

Using the AdS-decomposition

P̃m̃ = 2
R
M̂m̃T , M̃m̃ñ = M̂m̃ñ, (C.8)

yields the AdS5 Killing fields

Σm0 = ρξm(x) + R2

ρ
λm(K), Σρ0 = −ΛD(x)R,

Σmρ0 = ρ

R
ξm(x)− R

ρ
λm(K), Σmn0 = ΛmnM (x), (C.9)

with

ξm(x) = ξmC (x) + R2

ρ2 λ
m
(K),

ξmC (x) = am + λmn(M)xn + λDx
m + (x2λm(K) − 2xmx · λ(K)),

Λmn(M)(x) = λmn(M) − 4x[mλ
n]
(K),

ΛD(x) = λD − 2λ(K) · x. (C.10)

We have used (B.20) to write the Killing fields in terms of the conformal
parameters, where am, λmn(M), λD and λm(K) are the constant parameters of
translations, Lorentz rotations, dilations and special conformal transformations
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for the conformal space in four dimensions, spanned by the coordinates xm. We
included the C as a subscript for ξmC to stress that it is expressed in terms of
the conformal parameters. We obtain the isometries through (4.13) as

δxm = −ξmC (x)− R2

ρ2 λ
m
(K), δρ = ΛD(x)ρ. (C.11)

C.2 S5 as a coset space

The sphere is the coset space

S5 = SO(6)
SO(5) . (C.12)

The algebra to be considered is the SO(6) algebra

[M̂ ′m̂′n̂′ , M̂ ′p̂′q̂′ ] = δm̂′[p̂′M̂ ′q̂′]n̂′ − δn̂′[p̂′M̂ ′q̂′]m̂′ , (C.13)

where in the sphere decomposition

P̃ ′m′ = 2
R
M̂ ′m′S′ , M̃ ′m′n′ = M̂ ′m′n′ , (C.14)

with m′ the 5 flat tangent directions of the sphere.
We will work in stereographic coordinates zm′

ds2 = 4R2

(1 + z2)2 dz
2, (C.15)

where z2 = zm
′
ηm′n′zn

′ . The convenient coset representative for the sphere in
these coordinates is

u(zm
′
) = (1 + z2)−1/2(1 + zm

′
γ̂′m′S′), (C.16)

given in the spinor representation

M̂ ′m̂′n̂′ = 1
4 γ̂
′
m̂′n̂′ , (C.17)

where the matrices γ̂′m̂′n̂′ are elements of the SO(6) Clifford algebra.
Straightforward computation gives the Cartan forms (4.1)

u−1du = em
′
Pm′ + ωm

′n′
Mm′n′ , (C.18)
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with

em
′

= 2R dzm
′

1 + z2 , ωm
′n′

= 4z
[m′
dzn

′]

1 + z2 . (C.19)

We introduce the rigid SO(6)-valued parameter ΥS = Λm̂′n̂′
M̂ ′m̂′n̂′ and derive

the Killing field (4.12),

Σm
′

0 = 2R
1 + z2

(
1
2(1− z2)Λm

′S′
+ Λm

′n′
zn′ + zm

′
zn′Λn

′S′
)
,

Σm
′n′

0 = Λm
′n′

+ 4
1 + z2

(
z[m′

Λn
′]S′

+ z[m′
Λn

′]p′
zp′

)
, (C.20)

leading to the isometries

−δzm
′

= ξm
′

= 1
2(1− z2)Λ′m

′S′
+ Λ′m

′n′
zn′ + zm

′
zn′Λ′n

′S . (C.21)

C.3 AdS5 × S5 and adapted fermionic coordinates

The bosonic space is of a direct product form

AdS5 × S5. (C.22)

The bosonic coset representative g(X) then also takes the form of a direct
product g(X) = v ⊗ u, in terms of the bosonic representatives for AdS and S
obtained before. We can enlarge this bosonic space to a superspace by the coset
construction. We already derived the representatives for the bosonic subspaces.
The only thing that is lacking is the fermionic coordinate choice, encoded in
the matrix e α

α̇ .
The conformal structure of the AdS boundary and associated isometries is
most apparent in the horospherical coordinates. The coordinates xm, which
parametrise the directions parallel to the boundary ρ → ∞, can then be
identified with the coordinates xm of the conformal Minkowski space. To
continue this, we would like that half of the anti-commuting coordinates of the
AdS × S superspace can be identified with the θ’s of the conformal superspace.
This can be done by appropriately considering the relation between the AdS
and conformal decompositions. As a coordinate choice we will take

Θ = Θ̄iQi + Q̄iΘi (C.23)

= (u−1) j
i θ̄jρ

1/2Qi + (u−1) j
i ϑ̄jρ

−1/2Si + Q̄iρ
1/2θju i

j + S̄iρ
−1/2ϑju i

j .
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The two coordinates {θ, ϑ} together build up the anti-commuting coordinate of
the AdS × S superspace θ̃ by

θ̃iα̂ =
√

2
(
θiα
Rϑiα

)
. (C.24)

We will call these coordinates the super-horospherical coordinates

ZM = {xm, ρ, zm
′
, θi, ϑi}. (C.25)

The parametrisation for the fermionic symmetry parameter ε will be

ε̄αi = 1√
2

(u−1) j
i

[
Rρ−1/2η̄β̂j

1
2 (1− γ̂ST ) α

β̂

+ ρ1/2
(
ε̄ β̂
j + η̄ γ̂

j (γ̂mT ) β̂
γ̂ xm

) 1
2 (1 + γ̂ST ) α

β̂

]

= 1√
2

(u−1) j
i

[
Rρ−1/2η̄βj

1
2 (1 + γ5) α

β

+ρ1/2
(
ε̄ β
j − η̄

γ
j (γm) β

γ xm
) 1

2 (1− γ5) α
β

]
. (C.26)

This is determined by the Killing spinor equation and its solution [108, 118].
We can make the same super-horospherical decomposition for the κ-symmetry
parameter

κα+Kα =
(
ρ1/2uji Q̄jκ

i
+Q + h.c.

)
+
(
ρ−1/2uji S̄jκ

i
+S + h.c.

)
, (C.27)

and the relationship between its irreducible components is modified with factors
of R such that κ+Q = Rβ−κ+S , or equivalently, κ+S = − 1

Rβ+κ+Q.





Appendix D

Sample supercoset calculation
- AdS5 × S5 supersymmetry

We will calculate the supersymmetry part of δxm using (4.13), as well as the
choice for coset representative (C.23) and (C.26). We find for the fermionic
part of the transformation that1

δxm = −Ξm = −ε̃βi
(
M−1 tanhM/2

) iα

β j
Υ ja
α ema + h.c.. (D.1)

We know that ema = 1
ρδ
m
a from (4.23), to lowest order we have that

M−1 tanhM/2 ' 1
2 and finally we know that Υ ia

α = −Θjδf i a
jδβ . We

have

δxm = −1
ρ

[
1
2 ε̃
β
i

(
−Θjδf i a

jδβ

)
δma

]
+ h.c. = 1

2ρ ε̃
β
i f

i a
jδβ Θjδδma + h.c..

(D.2)

From the algebra (B.17), we find that2

f iα a
jβ = δij

[
1
2 (1− γ5) γa 1

2 (1 + γ5)
] α

β

+ δij

[
1
2 (1 + γ5) γa 1

2 (1− γ5)
] α

β

= δij

[
γa

1
2 (1 + γ5)

] α

β

+ δij

[
γa

1
2 (1− γ5)

] α

β

= δij (γa) α
β , (D.3)

1We need to add the hermitian conjugate because we split the spinor index used in (4.12)
into the indices (α, i).

2From the {Q, Q̄} and {S, S̄} anticommutators, reinstating the projection operators that
were omitted.

147



148 SAMPLE SUPERCOSET CALCULATION - ADS5 × S5 SUPERSYMMETRY

such that

δxm = 1
2ρ ε̃

β
i (γa) α

β Θαiδ
m
a + h.c. = 1

2ρ
¯̃εiγmΘi + h.c., (D.4)

where we have defined3 γm ≡ γaδma . We now use definitions (C.23) and (C.26)
to obtain

δxm = 1
2ρ

1√
2

(u−1) j
i

[
Rρ−1/2η̄βj

1
2 (1 + γ5) α

β

+ρ1/2
(
ε̄ β
j − η̄

γ
j (γn) β

γ xn
) 1

2 (1− γ5) α
β

]
(γm) γ

α u i
k

√
2

×
[
ρ1/2 1

2 (1 + γ5) δ
γ θkδ + ρ−1/2R

1
2 (1− γ5) δ

γ ϑkδ

]
+ h.c.

= 1
2 (ε̄i − η̄iγnxn) γmθi + 1

2
R2

ρ2 η̄iγ
mϑi + h.c.

= 1
2 ε̄i(x)γmθi + 1

2
R2

ρ2 η̄iγ
mϑi + h.c., (D.5)

where we defined ε̄i(x) = ε̄i − η̄iγnxn such that εi(x) = εi + xnγnη
i. Equation

(D.5) gives the supersymmetry part of the transformation of xm given in (4.26).

3Note that this is different from a definition using the vielbein γm 6= ema γ
a = 1

ρ
δma γ

a =
1
ρ
γm.



Appendix E

Reduction and partial solution
of BPS-equations

In this appendix we collect the details of the partial reduction of the BPS-
equations (5.5) to a two-dimensional system. We partially solve this reduced set
of equations and, finally, we perform a check on this partial solution by showing
that expressions we obtain for some of the fields supplemented by the remaining
reduced equations solve the equations of motion and the Maxwell equations.

E.1 Reduction of BPS equations to two dimensions

We introduce complex frames ez for the components along Σ2, defined so that
pz = p8 − ip9 and

paσ
a =

(
0 pz
pz̄ 0

)
. (E.1)

We begin by reducing the first BPS equation given in (5.5):

0 =
(

1
2
√

2DMφΓM + 5
8
√

2F0e
5φ/4 + 1

192
√

2e
φ/4FMNPQΓMNPQ

− 3
16
√

2F0e
3φ/4BMNΓMNΓ11 − 1

24
√

2e
−φ/2HMNPΓMNPΓ11

)
ε . (E.2)
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The first term is decomposed as

DMφΓM ε = DaφΓaε

= Daφ(σ3 ⊗ I2 ⊗ I2 ⊗ γa)
∑

η1,η2,η3

χη1,η2,η3 ⊗
[
ζη1,η3,η3 ⊗

(
1
0

)
+ ζ̂η1,η3,η3 ⊗

(
0
1

)]

=
∑

η1,η2,η3

χη1,η2,η3 ⊗
[
σ3ζ−η1,η3,η3 ⊗

(
Dz̄φ

0

)
+ σ3ζ̂−η1,η3,η3 ⊗

(
0

Dzφ

)]

=
∑

η1,η2,η3

χη1,η2,η3 ⊗
[
τ (100)σ3ζη1,η3,η3 ⊗

(
Dz̄φ

0

)
+ τ (100)σ3ζ̂η1,η3,η3 ⊗

(
0

Dzφ

)]

(E.3)

where we have written the expression so that χη1,η2,η3 is an overall coefficient.
In the last line, we have used the τ (ijk) notation introduced in section 5.1.1.
Proceeding in a similar manner for each term and requiring (E.2) to hold
independently for each χη1,η2,η3 yields two equations

0 = 1
2
√

2
Dzφτ

(100)σ3ζ̂ + 5
8
√

2
F0e

5φ/4ζ + 1
8
√

2
eφ/4(ih1τ

(100)ζ + hzσ
2ζ̂ − gzσ1ζ̂)

− 3
8
√

2
F0e

3φ/4
(
b0
f2

1
σ3ζ + ib1τ

(100)σ3ζ

)
+ 1

4
√

2
e−φ/2

Dzb0
f2

1
τ (100)ζ̂ ,

0 = 1
2
√

2
Dz̄φτ

(100)σ3ζ + 5
8
√

2
F0e

5φ/4ζ̂ + 1
8
√

2
eφ/4(−ih1τ

(100)ζ̂ + hz̄σ
2ζ − gz̄σ1ζ)

− 3
8
√

2
F0e

3φ/4
(
− b0
f2

1
σ3ζ̂ + ib1τ

(100)σ3ζ̂

)
− 1

4
√

2
e−φ/2

Dz̄b0
f2

1
τ (100)ζ .

(E.4)

Next we use the type IIA reality condition ζ̂∗ = iσ2ζ to eliminate ζ̂ from the
above two equations. After doing so, we find that the equations are complex
conjugates of each other, thus it is sufficient to keep only one. As a result, (E.2)
is equivalent to the single equation

0 = 1
2
√

2
Dzφτ

(100)σ3ζ∗ + 5
8
√

2
F0e

5φ/4iσ2ζ − 1
8
√

2
eφ/4(h1τ

(100)σ2ζ + hzσ
2ζ∗

+ gzσ
1ζ∗) + 3

8
√

2
F0e

3φ/4
(
b0
f2

1
σ1ζ + ib1τ

(100)σ1ζ

)
− 1

4
√

2
e−φ/2

Dzb0
f2

1
τ (100)ζ∗ .

(E.5)
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We proceed in a similar manner for the second equation of (5.5). Note in general
that this equation is differential in the spinor parameter ε. First we consider
when the index M is along the symmetric spaces. In this case, the equation
reduces to an algebraic equation in ε. This is achieved by making use of the
Killing spinor equations for the χη1,η2,η3

0 =
(
êµm∇̂µ −

η1

2 γm ⊗ I2 ⊗ I2
)
χη1,η2,η3 ,

0 =
(
êµi ∇̂µ − i

η2

2 I2 ⊗ γi ⊗ I2
)
χη1,η2,η3 ,

0 =
(
êµ
ĩ
∇̂µ − i

η3

2 I2 ⊗ I2 ⊗ γĩ
)
χη1,η2,η3 , (E.6)

and noting that ζ and ζ̂ only depend on Σ2. We use the relation between ζ and
ζ̂ to rewrite the equations in terms of ζ. The result is a reduction to a system
of three equations, one for each symmetric space,

0 =− 1
2f1

τ (300)ζ + 1
2Dz ln f1τ

(100)σ1ζ∗ − 1
32F0e

5φ/4ζ

+ 3
16
eφ/4

2

(
ihzζ

∗ + gzσ
3ζ∗ − i53h1τ

(100)ζ

)

− 1
16F0

e3φ/4

2

[
ib1σ

3τ (100)ζ − 7 b0
f2

1
σ3ζ

]
+ 3

8
e−φ/2

2
Dzb0
f2

1
τ (100)iσ2ζ∗ , (E.7)

0 =− i

2f2
σ1τ

(030)ζ + 1
2Dz ln f2τ

(100)σ1ζ∗ − 1
32F0e

5φ/4ζ

+ 3
16
eφ/4

2

(
ih1τ

(100)ζ + gzσ
3ζ∗ − i53hzζ

∗
)

− 1
16F0

e3φ/4

2

[
b0
f2

1
σ3ζ + ib1σ

3τ (100)ζ

]
− 1

8
e−φ/2

2
Dzb0
f2

1
τ (100)iσ2ζ∗ , (E.8)

0 =− i

2f3
σ2τ

(003)ζ + 1
2Dz ln f3τ

(100)σ1ζ∗ − 1
32F0e

5φ/4ζ

+ 3
16
eφ/4

2

(
ih1τ

(100)ζ + ihzζ
∗ − 5

3gzσ
3ζ∗
)

− 1
16F0

e3φ/4
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[
b0
f2

1
σ3ζ + ib1σ

3τ (100)ζ

]
− 1

8
e−φ/2

2
Dzb0
f2

1
τ (100)iσ2ζ∗ . (E.9)
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Finally, we reduce (5.5) for the components along Σ2. In this case, the equations
remain differential in ε and are given by

0 =Dzζ −
1
2Dz(ln ρ) ζ + 3

16
eφ/4

2

[
i
8
3hzσ

1τ (100)ζ + i
8
3gzσ

2τ (100)ζ

]

− 1
2
e−φ/2

2
Dzb0
f2

1
σ3ζ , (E.10)

0 =Dz̄ζ + 1
2Dz̄(ln ρ)ζ − 1

16F0e
5φ/4σ1τ (100)ζ∗ + 3

16
eφ/4

2

[
i
2
3hz̄σ

1τ (100)ζ

+i23gz̄σ
2τ (100)ζ + i

10
3 h1σ

1ζ∗
]

+ 1
8F0

e3φ/4

2

[
b0
f2

1
τ (100)iσ2ζ∗ − 7b1σ2ζ∗

]

− 1
4
e−φ/2

2
Dz̄b0
f2

1
σ3ζ . (E.11)

E.2 The general case

In the case when b1 or h1 no longer vanish, τ (300)σ3 no longer commutes with
the BPS equations. It is still useful to decompose the BPS equations in terms
of eigenstates of τ (300)σ3. We denote the two eigenstates by ξ±. The equations
then reduce to

0 = 1
2
√

2
Dzφσ

3ξ∗± + 5
8
√

2
F0e

5φ/4iσ2ξ± −
1

8
√

2
eφ/4(hzσ2ξ∗± + gzσ

1ξ∗±)

+ 3
8
√

2
F0e

3φ/4 b0
f2

1
σ1ξ± −

1
4
√

2
e−φ/2

Dzb0
f2

1
ξ∗± −

1
8
√

2
eφ/4h1σ

2ξ∓

+ 3
8
√

2
F0e

3φ/4ib1σ
1ξ∓ . (E.12)
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The gravitino equation reduces to the algebraic equations

0 =− (±1)
2f1

σ3ξ± + 1
2Dz ln f1σ

1ξ∗± −
1
32F0e

5φ/4ξ± + 3
16
eφ/4

2
(
ihzξ
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3ξ∗±
)

+ 7
16F0

e3φ/4

2
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1
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e−φ/2

2
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f2

1
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5
16
eφ/4

2 ih1ξ∓

− 1
16F0

e3φ/4

2 ib1σ
3ξ∓ ,

0 =− iν2

2f2
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1
32F0e
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16
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2
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±
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16
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3ξ∓ ,

0 =− iν3

2f3
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1
32F0e
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eφ/4
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(
ihzξ
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3gzσ

3ξ∗±
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16F0
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(E.13)

and the differential equations

0 =Dzξ± −
1
2Dz(ln ρ) ξ± + 3

16
eφ/4

2

[
i
8
3hzσ

1ξ± + i
8
3gzσ

2ξ±

]

− 1
2
e−φ/2

2
Dzb0
f2

1
σ3ξ± ,
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0 =Dz̄ξ± + 1
2Dz̄(ln ρ)ξ± −

1
16F0e

5φ/4σ1ξ∗± + 3
16
eφ/4

2

[
i
2
3hz̄σ

1ξ± + i
2
3gz̄σ

2ξ±

]

+ i
1
8F0

e3φ/4

2
b0
f2

1
σ2ξ∗± −

1
4
e−φ/2

2
Dz̄b0
f2

1
σ3ξ±

+ 5
8
eφ/4

2 ih1σ
1ξ∗∓ −

7
8F0

e3φ/4

2 b1σ
2ξ∗∓ .

(E.14)

E.3 Decoupling the BPS equations

In this appendix we further reduce the BPS equations (5.8), (5.9) and (5.10).
We obtain algebraic expressions for the metric factors fi. We obtain an algebraic
expression for b0 and show that no further constraints arise from differentiating
this expression. This allows us to treat b0 and Dzb0 as independent variables,
since the BPS equations will enforce the differential relation among them. We
find it convenient to introduce the notation bz = Dzb0/f

2
1 and treat b0 and bz

as independent. Finally we derive an algebraic constraint relating the ci. The
net result is the reduction of (5.8) and (5.9) to the expressions for the metric
factors (E.17), the four algebraic equations (E.19), (E.22), (E.24) and (E.25)
and a differential equation for the dilaton.

To solve for the metric factors, we first use (5.10) to compute the following
derivatives of spinor bilinears

Dz(ξ†ξ) = 1
16F0e

5φ/4ξtσ1ξ − 3
8
eφ/4

2
[
ihzξ

†σ1ξ + igzξ
†σ2ξ

]
+ 3

4
e−φ/2

2
Dzb0
f2

1
ξ†σ3ξ ,

Dz(ξ†σ2ξ) = i

16F0e
5φ/4ξtσ3ξ − 3

8
eφ/4

2
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5
3hzξ

†σ3ξ + igzξ
†ξ

]

+ i

8F0
e3φ/4

2
b0
f2

1
ξtξ + i

4
e−φ/2

2
Dzb0
f2

1
ξ†σ1ξ ,



DECOUPLING THE BPS EQUATIONS 155

Dz(ξ†σ1ξ) = 1
16F0e

5φ/4ξtξ − 3
8
eφ/4

2

[
ihzξ

†ξ − 5
3gzξ

†σ3ξ

]
+ 1

8F0
e3φ/4

2
b0
f2

1
ξtσ3ξ

− i

4
e−φ/2

2
Dzb0
f2

1
ξ†σ2ξ . (E.15)

To obtain equations involving only the metric factors, we multiply the three
equations given in (5.9) respectively by ξtσ1, −iξtσ3 and ξt. Combining the
resulting equations with the above equations yields

Dz(ξ†ξ) =Dz(ln f1)ξtξ∗ ,

Dz(ξ†σ2ξ) =Dz(ln f2)ξ†σ2ξ ,

Dz(ξ†σ1ξ) =Dz(ln f3)ξ†σ1ξ . (E.16)

These equations are integrated to give

f1 = ν1

c1
ξ†ξ , f2 = ν2

c2
ξ†σ2ξ , f3 = ν3

c3
ξ†σ1ξ , (E.17)

where the ci are real constants. The factors of νi have been introduced for
convenience.

We now move on to solving algebraically for b0. We start by combining the
first equation of (5.9) with three-halves of the second and third equations.
Multiplying the resulting equation by ξ†σ3 gives

0 = − ν1

2f1
ξ†ξ + 3

2
ν2

2f2
ξ†σ2ξ − 3

2
ν3

2f3
ξ†σ1ξ − 1

8F0e
5φ/4ξ†σ3ξ + 1

4F0
e3φ/4

2
b0
f2

1
ξ†ξ .

(E.18)

Using the above expressions for the metric factors, we solve this equation for b0

b0 = 8ξ†ξ
F0c21

e−3φ/4
(

1
2c1 −

3
4c2 + 3

4c3 + 1
8F0e

5φ/4ξ†σ3ξ

)
. (E.19)

Next we show that the derivative of b0 is automatically reproduced by the BPS
equations. To do so, we first differentiate the above expression

Dzb0 = 8
F0c21

Dz

(
ξ†ξe−3φ/4

)(1
2c1 −

3
4c2 + 3

4c3 + 1
8F0e

5φ/4ξ†σ3ξ

)

+ ξ†ξ

c21
e−3φ/4Dz

(
e5φ/4ξ†σ3ξ

)
. (E.20)
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Next we show that the BPS equations imply this equation is automatic. We
first use (5.8) and (5.10) to compute

Dz

(
e5φ/4ξ†σ3ξ

)
=e3φ/4Dzb0

f2
1
ξ†ξ − F0e

2φ b0
f2

1
ξtσ1ξ ,

Dz(ξ†ξe−3φ/4) =F0e
φ/2ξtσ1ξ . (E.21)

Using these expressions to eliminate Dz

(
e5φ/4ξ†σ3ξ

)
and Dz(ξ†ξe−3φ/4), as

well as the first equation of (E.15) and the expression (E.19) for b0, we find
that (E.20) is automatic. As a result, we may introduce bz as bz = Dzb0/f

2
1

and treat bz and b0 as independent variables. The BPS equations will correctly
enforce the relation between the two variables.

In total the system of equations (5.8) and (5.9) provides 7 algebraic equations
and one equation differential in φ. Three of these equations are used to solve
for the metric factors and a fourth equation gives b0. We exhibit the remaining
three equations as follows. We first obtain a simple equation relating gz and
hz. To do so, we first take the difference of the second and third equations
appearing in (5.9) and multiply the resulting expression by ξ†σ3 to obtain

0 = 2 (c2 + c3) + eφ/4gzξ
†ξ∗ − ieφ/4hzξ†σ3ξ∗ . (E.22)

Next, we use the BPS equations to obtain an algebraic constraint amongst the
ci. To do so, we multiply the first equation of (5.9) by ξ†σ3 and use (E.19) to
eliminate b0

0 =− 1
2c1 + 3

16F0e
5φ/4ξ†σ3ξ + 3

32e
φ/4 (gzξ†ξ∗ + ihzξ

†σ3ξ∗
)

+ 7
16 (2c1 − 3c2 + 3c3) + 3

16e
−φ/2bzξ

†σ1ξ∗ . (E.23)

Taking (5.8), multiplying by ξ†σ1 and using (E.19) to eliminate b0 gives

0 =− 1
4F0e

5φ/4ξ†σ3ξ + 3
4 (2c1 − 3c2 + 3c3)− eφ/4

8
(
gzξ
†ξ∗ + ihzξ

†σ3ξ∗
)

− e−φ/2

4 bzξ
†σ1ξ∗ .

(E.24)

Adding 4/3 of the first equation to the second equation then gives

c1 − 2c2 + 2c3 = 0 . (E.25)

Finally, we take (E.24) for the last algebraic equation. This constraint is similar
to the one encountered in [60] for M-theory, where the values of ci controlled
the D(2, 1; γ; 1) group parameter γ.
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E.4 Checking the equations of motion and Maxwell
equations

In [119], it was shown that supersymmetry, together with the Maxwell equations
and Bianchi identities imply that the dilaton equation and most of the Einstein
equations are automatically satisfied. More specifically, if we denote the Einstein
equations collectively by EMN , one finds that EMN = 0 provided E0M = 0 for
M 6= 0. Since our solution has an AdS2 isometry, we have Emn ∝ ηmn and
Emi = Emĩ = Ema = 0 and the condition is automatic. As a result, we need
only to check the Maxwell equations.

The Maxwell equations are given by

0 =∇P
(
e−φHPMN

)
− F 2

(0)e
3φ/2BMN − F(0)e

φ/4 1
2F

MNPQBPQ

+ 1
242

1
2ε
MNPQRSTUVWFPQRSFTUVW ,

0 =∇Q
(
eφ/2FQMNP

)
+ 1

72
1
2ε
MNPQRSTUVWFQRSTHUVW . (E.26)

Using our ansatz, these equations reduce to a set of three equations1

0 = Dzbz̄ +Dz̄bz −Dzφbz̄ −Dz̄φbz + ihz̄gze
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+bzDz̄ ln
(
f3
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3 ρ
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+ bz̄Dz ln
(
f3

2 f
3
3 ρ
)
− 2F 2

(0)
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f2

1
e5φ/2 ,

0 = Dzhz̄ +Dz̄hz + 1
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2Dz̄φhz + ibz̄gze
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+hzDz̄ ln
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3
3 ρ
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3
3 ρ
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,

0 = Dzgz̄ +Dz̄gz + 1
2Dzφgz̄ + 1

2Dz̄φgz − ibz̄hze−φ/2 + ibzhz̄e
−φ/2

+gzDz̄ ln
(
f2

1 f
3
2 ρ
)

+ gz̄Dz ln
(
f2

1 f
3
2 ρ
)
. (E.27)

To check these equations, we employ the following strategy. We use the algebraic
equations to eliminate gz, b0 and bz in terms of hz, α, β and φ. The Bianchi
identities, (5.15), are then used to obtain expressions for ∂zhz̄ and its complex
conjugate. Along with the BPS equations, (5.8) and (5.10), this allows us

1We are using the notation bz = Dzb0/f2
1 .
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to eliminate all derivative terms appearing in (E.27). The computations are
straightforward but tedious and we do not present them here. The net result,
once all derivatives have been eliminated is that the Maxwell equations are all
automatically satisfied. Thus in our case, it is sufficient to keep only the BPS
equations and Bianchi identities.
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