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1. Introduction

The quantum theory ofgravitation has been discussed in lectures by various
authors, notably Feynman in a course given at CalTec in the academic year
1962-1963, and De Witt, at the 1963 Les Houches school. Since then a cer-
tain amount of progress has been made, and it seems proper to emphasize the
recent developments in this course.

The progress mentioned stems basically from two facts. One, we now un-
derstand much better how to quantize a gauge theory, that is a theory with a
Lagrangian possessing an invariance with respect to certain local (i.e. space-
time dependent) transformations. Secondly, the dimensional regularization
method turns out to be a powerful tool in handling infinities, and since infini-
ties are plentiful in gravitation theory such a tool is indispensable.

In these lectures we will approach the theory ofgravitation from the point
ofview ofquantum field theory. This in itselfposes directly a restriction,
namely that we abandon from the start things like curved space and Mach's
principle. Of course, the theory that emerges is in the classical limit nothing
but Einstein's theory; but the interpretation is really quite different. We refer
to the book by Weinberg for the classical theory of gravitation developed
from this point of view.

Our starting point will be that gravitation is caused by a particle of spin two.
The reasons for that have been given at many occasions, and may be summa-
rized as follows:

(i) The gravitational field cannot be described by a vector field such as the
e.m. field because then particles and antiparticles would behave differently,
contrary to experiment.

(ii) The gravitational field cannot be described by a scalar field. The reason
for this is that we know that gravity couples to energy, which is not a scalar
quantity.

2. Free spin-2 particles

A particle of spin 2 is described by a symmetric two-index tensor field. We
must determine the propagator for such a particle, or equivalently, the part of
the Lagrangian quadratic in the tensor field. Consider a source emitting such a
particle on mass shell. There should be no way in which this particle at rest can
decay into a scalar or spin-1 particle of the same mass. The relevant Feynman
diagram is
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The corresponding expression is

(1)

where is the vertex function. In case of decay into a scalar particle it can
be proportional to corresponding to the interaction Lagrangian

where and represent the tensor and the scalar fields respectively. Since
(1) must be zero we must have

for

Similarly

from the forbiddenness of the interaction

where is a vector field. Finally, from the fact that the imaginary part of
the diagram

must be positive definite (since by unitarity it is equal to the probability of
emitting a spin-2 particle) we find

(2)
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We may perhaps mention that the requirement of positive defmiteness is

for any z. The quantity zaj3 is defined as the complex conjugate ofz, disre-
garding the i of the fourth component. Explicitly,

In the restframe where k = 0, £4 = im the expression for/Mirag becomes very
simply

The positive constant c will be determined to be one.
We must now find a set of symmetric polarization tensors such that

There are five independent tensors satisfying

In the k restframe they can be written down readily,

These are now normalized to 1 (i.e. e^ve^ = 1). Actually we thus find that
fu,vu,v must be equal to 5, for k2 = -m2 which fixes c = 1 in eq. (2).
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The Lagrangian corresponding to the propagator with the nominator of
eq. (2) is (apart from an overall factor of 2)

(3)

This follows by working out the inverse of the function in eq. (2). We
will do such an inversion in greater detail later on.

All this is straightforward and easy. But we are really interested in the
massless case, and then things are much more complicated. Evidently, the limit

in eq. (2) makes no sense. We can take the limit in the Lagrangian
of eq. (3); if we do that we cannot find a propagator, because the inverse of
the Fourier transform of this Lagrangian does not exist. Brief: the various re-
quirements that we started from do not allow a solution if

Thus, ifwe are to build a theory ofmassless spin-2 particles we must relax
our conditions. But we may relax them only insofar that no physically intoler-
able consequences result. Let us for a moment consider quantum electrody-
namics, where the same situation exists. For massive vector particles we have
the propagator

This satisfies the various requirements, such as positive definiteness of the nu-
merator. For a massless vector particle such as the photon one often employs
the propagator

The denominator is not positive definite: when multiplying with a "real" four-
vector (i.e. a vector with real space components and an imaginary fourth com-
ponent) we may get a negative result. However, the situation is saved by gauge
invariance. By requiring gauge invariant coupling of the photon to the rest of
the world the occurrence of negative probabilities is avoided.

Thus we must introduce some kind of gauge invariance. There are a number
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of requirements that may be written down, such as the fact that the gauge
transformations must form a group.

In quantum electrodynamics the gauge transformations are defined such
that a scalar component in the photon field decouples. One requires invariance
for the transformation

with arbitrary space-time dependent Similarly we require now invariance
with respect to a transformation that amounts to decoupling vector and scalar
parts in the tensor field. We will require invariance under the gauge transfor-
mation

(4)

where the are four arbitrary functions. It must be noted that we leave out
a term of the form such a term could be included and amounts, ulti-
mately, to a scale transformation (Weyl transformation).

Now that we have defined a gauge invariance we can proceed along the
lines known for gauge theories. We leave it to the reader to observe that the
Lagrangian in eq. (3) is invariant (up to a total derivative) for this trans-
formation. Next we must choose a convenient gauge breaking term, for exam-
ple,

with

With this choice of gauge we have

is defined in eq. (3). This may conveniently be written as

with

(5)

(6)

(7)

(8)

where
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3. The massIess spin-2 propagator

Let us now compute the propagator corresponding to eq. (6). To this pur-
pose we rename the ten independent components of into the ten compo-
nent quantities i = 1,..., 10. The index correspondence is

h 11 22 33 44 12 13 14 23 24 34

1 2 3 4 5 6 7 8 9 10. (9)

In terms of the the Lagrangian (6) becomes

This can be written as

with

The inverse of this 10 X 10 matrix V is

if

otherwise.

if

otherwise.
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This coincides with the matrix obtained from the expression

273

if we employ the same index correspondence for the pairs and as
given in eq. (9). The propagator corresponding to the Lagrangian (6) is there-
fore

(10)

It is interesting to note that there is a difference with the propagator for the
massive case even if is set to zero.

In spaces of dimensionality n instead of 4 as we have here the same proce-
dure leads to the propagator

(11)

Calculations are somewhat simplified if we introduce the unit matrix It is
given by

(12)

with again according to (9). Notice that

also in n-dimensional space, where the rule holds. Note furthermore
that the product of(8) and the expression in brackets in eq. (11) is precisely
the unit matrix given in eq. (12) also in n-dimensional space.

4. Unitarity

An urgent question is to what kind of physics the above procedure corre-
sponds. To this purpose we choose another gauge, the so-called Prentki gauge.
We take

(13)
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The propagator may now be computed again from
from eq. (3). We find

with

In the frame where and are zero we have, at the pole that
Then is non-zero only for In

four dimensions the residue at the pole (note: not is then given
by

if

(15)

(16)

with

(14)

Residue

otherwise.

Consider now the two polarization tensors

The expression(15) is precisely equal to
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Apart from the factor of 2 we see that the propagator corresponds to the
propagation of two polarization modes. The massless graviton has two spin
states, as we indeed know to be the correct situation. Note that these polari-
zation tensors are traceless.

We must now comment on the factor of 2. The situation can be cured if
we replace h by in the Lagrangian. This has no effect on the S-matrix
computed with the help of the Feynman rules. Unitarity however requires
that the polarization tensors employed are such that

5. Extension to non-Abelian group

Rather than using the gauge invariance under the transformations (4) we will
consider a more general possibility including a free parameter We will re-
quire invariance under the replacement

with infinitesimal These gauge transformations are acceptable if they form
a group. Since we work with infinitesimal the transformation shown differs
by terms of order and higher from the full gauge transformation. Let us
apply first a transformation with a function and next with a function
Writing only the terms containing both and we have

+ terms linear in (18)

where is the residue on-mass-shell of the propagator as given in eq. (15).
Using polarization tensors given by times those shown in eq. (16) leads to
the correct answers.

(17)
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This must be equal to a gauge transformation with a function given by

with structure constants Terms containing and arise from lowest or-
der or from terms in the gauge transformations, of which we do not
know the explicit form. However, the latter are symmetric in and and if
we restrict ourselves to terms antisymmetric in and they will not bother
us. We leave it to the reader to check that the gauge transformation (18) anti-
symmetrized in and equalsagaugetransformationoftheform(17),with
instead of the function

(20)

This also shows that we are dealing with structure constants containing deriv-
atives.

6. Finite gauge transformations

Consider the functions and Clearly a function of a function of
x is again a function of x,

(21)

(22)

be infinitesimally near to the unit function

We find

If we write

(23)

(19)

andLet now
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we have
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(24)

Antisymmetrizing this gives us indeed the result of eq. (20).
The finite form of which eq. (17) is the infinitesimal part is easily obtained.

We may rewrite

(25)

(26)

(27)

(28)

(29)

As a matter of convenience we will from now on write the index of the on
top. Thus eq. (27) becomes

(30)

where

Eliminating h altogether we find from eq. (25)

This is the infinitesimal form of

with

The inverse of the tensor will be denoted by it is an infinite series in
terms of We have

(31)
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The transformation properties of follow from those of

(32)

Note that we must in fact use the transposed of the inverse of the matrix X
defined above. In the infinitesimal form that leads to an exchange ofindices
on top of the minus sign. The infinitesimal form of the transformation is

(33)

The last term arises from the expansion of
It is interesting to note that if we define as in eq. (31) we would have

obtained another gauge transformation satisfying the group requirement and
equal to the starting point eq. (4) (with instead of

(34)
We leave it to the reader to check this last transformation against the result
obtained from eq. (31) using the transformation properties of

7. Invariants

We have already one invariant in the theory, namely

(35)

Ifwe consider eq. (28) then we see that matrices are arbitrary 4 X 4 ma-
trices without special properties except their reality properties. Their deter-
minant may be anything, except that we exclude determinant zero. The only
invariants that can be build up are then obviously quantities that transform
partly by X, partly by That indeed is the case with and It is
now easy to extend the procedure to include scalars, vectors, etc.

We must not forget what is the goal of our investigation. The idea is to
build up a gauge invariant Lagrangian (it may change only by a total deriva-
tive) giving the interaction of the gravitational field with itself and other fields.
Thus it is necessary to invent transformation properties for the other fields
such that gauge invariant expressions can be build up. It will not be possible
to work with invariant fields if we require the existence of one-graviton ex-
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change diagrams. And we really need those diagrams because they contain
Newton's law. Only one-graviton exchange can give behaviour. Now, this
requires a vertex of the form

(36)

containing only once the gravitational field. In here contains the other
fields, in particular there must be a quadratic term for every elementary par-
ticle.

Evidently, invariance of eq. (36) with invariant is not possible unless k
is taken zero in the transformation law (17). In that case we have

total derivative. (37)

If T is divergence free this is invariant (apart from the irrelevant total deriva-
tive). However, to make a divergence free is very difficult, because one is
not allowed to use equations ofmotion in the Lagrangian. For instance, the
traditional for a scalar field

(38)

is only divergence free because of the equation of motion

Transformation properties for the fields must be invented and assigned.
Following the discussion above, and considering the transformation (28) of
we can write down transformation properties for vectors such that invari-

ants result if these vectors are contracted with
Let there be given a vector field We assign the transformation law

(39)

with X from eq. (29). The infinitesimal form is

(40)

Here is called a covariant vector. Let be defined by
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(41)

We find for the transformation property of this as a consequence of the
transformation properties of and

Obviously transforms with will be called a contravariant vec-
tor.

By construction, it is clear that in transforming the quantity the
matrix X will cancel out. However, it is still not an invariant,

The infinitesimal form of this is

A field is therefore called a scalar field if the assigned transformation law
is

(43)

We have still no invariant. How can we construct something that changes at
most by a total derivative? Let us consider the transformation properties of
the determinant of We rewrite first the transformation law (30) for the

(44)

where we also absorbed into In brackets we have the unit matrix plus
something of order As is well known

where Tr stands for trace. We so find

(45)
to first order in

(42)



Gravitation 281

Next we compute the derivative of det g to an arbitrary power

Since

We so find

(46)

Eqs. (45) and (46) may be identified if the transformation of(det
following from (45) may be rewritten as

(47)

Thus changes by a total derivative under a gauge transformation.
However, there is more. Consider the product of and a scalar as
defined above. As a matter of notation we will write simply g instead of det g.
The transformation law is

(48)

Thus also the product of with a scalar changes only by a total derivative.
If we now construct a Lagrangian that behaves as a scalar and multiply sub-

sequently by we then have a gauge invariant expression.

8. Covariant derivatives

Consider the derivative of a vector field From eq. (40) we deduce its
transformation property,
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(49)

This is almost the transformation law for a tensor (compare eq. (30)) except
for the term We must devise something that eliminates this term. We
thus try to invent quantities such that

(50)

(51)

The first part shows transformation as a tensor. If we have such then

transforms as a tensor.
The problem therefore poses itselfas follows: find quantities such that

(52)

Such a cannot be constructed from a vector. But it can be constructed from
a two-tensor having an inverse, for which we can take for example up to
now the only two-tensor used. Consider

(53)
We find as above,

From this follows easily the behaviour (52) for the
The same quantities can be used to construct a covariant derivative of a

contravariant vector

(54)

which behaves as a mixed two-tensor.
In general
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defines a properly behaving tensor.
Some properties may now be quoted:
(i) is by construction symmetric in the lower indices

As a consequence

(55)

(56)

(57)

(ii) The covariant derivative of the tensor used for the construction of is
zero. Here we have taken g; we have

Use of the defining eq. (53) leads to

(58)

(iii) Similarly

(59)

(iv) The definition of covariant derivative obeys the chain rule. For example

(60)

From this, on multiplying with

which is in fact the rule for covariant differentiation of a scalar. Indeed, if
is a scalar, then transforms as a vector,
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(61)

is connected to det g. Indeed, from the definition (53) we have

(62)

where we used methods shown before.
(vi) Let be a contravariant vector. Then

total derivative. (63)

Indeed,

(64)

The properties (iv) and (vi) are very important because they tell us that we can
manipulate covariant derivatives in Lagrangiansjust as we were used to. For
example,

(65)

(66)

total derivative ,

In this connection it may be mentioned that

is called a density. From the above we see
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9. Riemann tensor

Meanwhile we have come in a strange situation. How can we build a gauge
invariant expression for the gravitational field alone? At our disposal is the
tensor and we must construct a scalar.

Unfortunately, covariant derivatives of g are zero. Let us therefore start
from the as a starting point. The transformation property of is very close
to that of a tensor (see eq. (52)); it makes sense to consider the covariant de-
rivative of and then symmetrize so that the non-covariant pieces cancel.

Thus consider the transformation of the covariant derivative of

(67)

Subtracting the same with and interchanged removes the third derivative
of We are left with

(68)
These terms have the precise structure of times the anomalous part in the
transformation and can therefore be cancelled away. Indeed

(69)

is already antisymmetric in and and the anomalous transformation proper-
ties are precisely those shown in eq. (68). Thus we now can write down a ten-
sor

(70)

This tensor is called the Riemann tensor. It is antisymmetric in and By
multiplication with one obtains a tensor with only lower indices,

(71)

It is antisymmetric in as well. Furthermore it is symmetric for the inter-
change

(72)
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Finally it obeys a cyclic symmetry in the last three indices

By multiplication with g a two-tensor and a scalar may be defined,

Note

(73)

(74)

(75)

10. Local choice of coordinates; Bianchi identities

In special relativity many equations can be proven easily by going to a par-
ticular coordinate system. Here that is also the case. One writes an equation
invariant under gauge transformations and then goes to a particular gauge. Ac-
tually, for a given point there exists a gauge such that

To see this we write an infinitesimal gauge transformation

(76)

(77)

The question is: can be chosen such that the right-hand side is zero in a par-
ticular point x for any h (obviously taken to be infinitesimal here). Similarly
for the derivative of this expression.

Now develop h and around this point With we have

(78)

Setting the right-hand side of(77) to zero leads to equations for the unknown
coefficients a in terms of the b. In the point we must have
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Evidently, for given we can find such that this holds. For the first de-
rivative we have

or, in the point

This is more tricky because b is symmetrical in the first two indices, and the a
in the last two. Nevertheless, this can, for given b, be solved for the a. Let

take some particular value, say v = 2 and There are three
independent b and three independent a. We must solve

This set of equations can be solved,

or, generally,

Thus an infinitesimal gauge transformation may be chosen such that an infi-
nitesimal and its first derivatives are eliminated in some point. Repeated
application may be used to remove finite h and its derivatives in that point.

Now choose some point The above shows that by a gauge transformation
one can arrive at a g such that

(79)

Obviously similar equations hold for In that point we then have also
vanishing but the derivatives of in general cannot be made zero. Further-
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more, in that point We leave it to the reader to check that in the
point we have the identity

(80)

In fact, in the point this equation reduces to

Since eq. (80) is gauge invariant it holds also before gauge transforming and is
therefore generally true. The eqs. (80) are called Bianchi identities. Note that
the tensor R depends on second derivatives and can in general not be made
zero by a gauge transformation. In the expansions (78) there are 100 indepen-
dent coefficients and 80 independent that can be chosen, but we
see that this leaves generally speaking 20 independent second derivatives.

The Bianchi identities (80) can also be proven directly without going to
this particular coordinate system. But the work is evidently much more cum-
bersome. It may be worthwhile to note that the gauge choice (79) is possible,
independent of the dimension of space-time. Thus the Bianchi identities hold
in arbitrary dimensions. There are other equations, to be considered later, that
hold only in a space of given dimensionality.

11. The Lagrangian for pure gravitation

Since there is only one tensor that can be constructed from the gravitational
field namely the Riemann tensor, the problem of finding a possible Lag-
rangian for the gravitational field is quite straightforward. The Lagrangian can
be a polynomial in the Riemann tensor; the first few possible terms can be
written easily,

Similarly The constants etc. are as yet arbitrary. We must 'work
out this inserting

Now the Riemann tensor contains second order derivatives, and the terms

(81)

(82)

Here is defined by
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quadratic in this tensor will produce terms of the form By the usual
procedure this will lead to a graviton propagator behaving like which
is maybe nice for the convergence of the diagrams, but is really unacceptable
because such propagators contain ghosts. In other words, allowing terms
leads eventually to negative probabilities or acausaI behaviour or other non-
sense. Unless we are forced to for one reason or the other, we must therefore
not allow such terms in the Lagrangian. We are left with two constants that
can be non-zero, namely and

In terms of the fields the Lagrangian is still very complicated. We must
first find the quadratic part to see that we get the correct propagator. To this
purpose we must expand g and R up to second order in h. It is of some advan-
tage not yet to specify that if h = 0. Instead we make the substitu-
tion

and develop everything to second order in h. Later we will set
replace h by k h. The comma denotes covariant differentiation:

(83)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

and

(84)

(92)
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Omitting total derivatives this leads to the Lagrangian

(93)

(94)

(95)

(96)

(97)

(98)

If we substitute now we get R = 0, and furthermore the covariant
derivative becomes the ordinary derivative. Also and
We get
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(99)

Here we should still make the substitution With and
this is then precisely the Lagrangian written down before (see eq. (3),
with a partial differentiation of the second term).

12. The cosmological term

The term is called the cosmological term. What are the experimental con-
sequences of this term? First of all, it leads to a contribution in the classical
equations ofgravity, and as such an experimental limit can be established. It is

(100)

In quantum theory a non-zero implies a contribution to the propagator and
the appearance of a tadpole. With the gauge breaking term C of eq. (5) the
Lagrangian becomes

(101)

This leads to almost the same propagator as before (see eq. (10)), except that
is replaced by This propagator therefore corresponds to the ex-

change of a particle with mass In first instance the gravitational force
becomes a Yukawa force with a range given by this mass. However, the theory
is not acceptable in this form because negative probability occurs. As is known
from the treatment ofgauge theories physical sources are those for which the
term

(102)

is invariant under gauge transformations. To zeroth order in K this means

(103)
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Now consider two such sources, and exchanging a graviton,

The corresponding expression is

(104)

with At the pole the residue must be positive definite.
In the k restframe we must have

or

Now take the following /:

(105)

all others zero .

The residue at the pole becomes

which is unacceptable.
However, we have not treated the tadpole, and since we know that tadpoles

may change masses this discussion is not complete. Usually, a tadpole is re-
moved by a substitution of the form

(107)

and is chosen in such a way that the terms linear in h cancel in the Lagran-
gian. In the a model, and other models with a spontaneous symmetry break-
down this may usually be achieved with constant a. Here this is impossible. If
we want the tadpoles to cancel we may fix from the Lagrangian given be-
fore. Now and the condition that there are no tadpoles be-
comes

(108)

(106)



Gravitation 293

Now, if g is a constant, then R = 0, and no solution exists for non-zero c0.
Thus a space-time dependent must be employed, and subsequently the
quantum theory must be considered with everywhere this c-number function
appearing. Up to now this has not been worked out, not even in the very sim-
ple case of a source only, as discussed above.

13. Scalar particles

Here and in the following we take the cosmological constant to be zero.
The next task is to try to construct gauge invariant interactions between gravi-
tons and other fields. We will start with scalar fields.

In case that no gravitation is present the Lagrangian for a free scalar field is
of the form

(109)

This is not a scalar in the sense of the gravitational gauge transformations, but
it is not difficult to write down an invariant Lagrangian that reduces to the
above in the case of zero gravitational field. We restrict ourselves to terms
quadratic in the fields, and will leave tadpole like terms (in out of consid-
eration

(110)

The field is assigned to be a scalar under general gauge transformations. Then

(111)

As a first step we will consider only the terms linear in the gravitational field
Also the b term and higher will not be considered, because they imply

more than two derivatives. With the help of equations given before we find
(setting ineqs.(83)-(96)):

(112)

The coupling of h to the scalar field can be written in the form
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with

(113)

We have now made the replacement is called the energy-momen-
tum tensor. It contains one free parameter.

The next step is to consider the scattering of scalar particles caused by the
exchange of a graviton. The Feynman rules are

(114)

(115)

(116)

Consider now the scattering of one scalar particle from another. If we take
two different scalar fields we have less diagrams. In fact, to order we have
only one diagram, see figure.

The second type of scalar is denoted by a dotted line, but couples otherwise
in the same manner. Its mass will be denoted by M. We are mainly interested
in large distance behaviour (i.e. small momentum transfer q) in the non-relati-



Gravitation 295

vistic limit. If we neglect k, p, k' and p' compared to m and M the vertex sim-
plifies greatly. We get, taking the dimension n = 4,

(117)

Note that is of the order so that is in good approximation
given by It is instructive to compare this with the scattering of two charged
particles exchanging a photon. The Lagrangian is

with now

The interaction becomes

The term quadratic in the photon field is of no importance here. The relevant
vertex is

The contribution of the relevant diagram is
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This has the opposite sign compared to the gravity case: there is repulsion in-
stead of attraction. Furthermore we see that in this approximation gravitation
can be obtained from electricity by replacing Notably Cou-
lomb's law

becomes Newton's law

From the comparison one obtains

(118)

No experiment in gravitation involves such that the constant a can be meas-
ured. In fact, we see that the terms involving a do not have long range (i.e.
behaviour.

From the above it may be observed that gauge invariance implies a unique
coupling between gravitons and scalar particles. This is unlike in the case of
electrodynamics, where the covariant derivative involves the
charge of the particle which is still arbitrary (otherwise stated, the constant e
is not related to something appearing already in the photon part of the Lag-
rangian). In the case of gravity gauge invariance forces all couplings to be given
by the same This is essentially the principle ofequivalence. Given the free
Lagrangian (i.e. the inertial mass of a particle) the coupling to the gravitational
field is fixed.

14. One-loop divergencies

We will now concentrate on the calculation ofone-loop divergencies. This
requires the discussion of some techniques due to 't Hooft. Important in this
connection is the background field method, introduced originally by De Witt.

Suppose we have a Lagrangian describing a set ofinteracting fields (some
of them can be the others scalar or vector fields, etc.):

(119)

From this Lagrangian Feynman rules can be deduced, and one loop diagrams
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can be computed. One loop diagrams contain vertices, and from each vertex
precisely two lines connect via propagators to other vertices:

Such one loop diagrams can therefore be generated also by means of a Lagran-
gian containing vertices involving only two fields (and c-number functions de-
scribing the external trees). We may therefore ask to construct next to the Lag-
rangian (119) a Lagrangian quadratic in the fields such that the same one
loop diagrams are generated. The answer to this question is very simple. Sub-
stitute in the Lagrangian (119) for the fields the sum The are c-
number functions and are called the background fields. Next develop up to
second order in the

The Lagrangian given by

is precisely the Lagrangian asked for. We leave it to the reader to check this
fact, for instance by considering a number of simple examples. We emphasize
that no reference is made as to whether the fields obey the classical equa-
tions of motion. Since tree diagrams with the outer legs on mass shell are de-
scribed by fields obeying the classical equations of motion the use of that
are such solutions is like going on mass shell with the external legs.

Let us now consider some Lagrangians. First

(120)

In here N and are antisymmetric and symmetric in the indices i and
j. M and N are classical functions ofspace time. Matters are simplified by
means of the so-called doubling trick. We add to this Lagrangian the identical
one but with other fields This clearly amounts to doubling the results since
the number of diagrams doubles. Writing now
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we obtain

Instead of (120) we will thus consider the Lagrangian

(121)

and to get the results in the case of the Lagrangian (120) we only need to di-
vide by two.

To limit the work as much as possible we rewrite this Lagrangian now as
follows:

with

This coincides with (121) if

(122)

(123)

Note that N and also P are taken to be antisymmetric in the indices i,j.
Formally, the Lagrangian (122) possesses a symmetry. It is invariant for the

infinitesimal transformation

(124)

For instance,



Gravitation 299

Obviously is invariant up to terms of order
Since the Lagrangian is invariant also the counterterms (the pole terms in

the dimensional regularization method) are invariant. Since these counter-
terms will be made up from the P and the Q it is therefore of help if we know
what invariants can be made.

First, if are quantities that transform like Q then also the pro-
duct ofthese quantities transforms like Q. The proofis simple; the finite form
of the transformation of Q is evidently

(125)

and the statement is obviously true. Furthermore, the trace of a quantity
transforming like Q is invariant because

The finite form of the transformation of the is

(126)

(127)

Indeed, if we substitute in this equation for P the same formula but with a
we get

with

and we see that this is again of the same form but with

instead of (128)
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Actually, all this is very much like in a Yang-Mills theory. In SU(2) for exam-
ple the finite form for the transformation of a Yang-Mills vector field is

(129)

where the 3 X 3 matrix is a rotation in isospin space depending on space
time. Ifwe introduce the 2 X 2 matrices

(130)

then we get very similar equations.
Turning back to our P and Q we now easily demonstrate that defined by

transforms like Q,

(131)

(132)

Furthermore, for any quantity transforming like Q we may define the covari-
ant derivative,

(133)

(134)

transforms like Q,

It is now an easy matter to write invariants

etc. (135)

Returning now to the Lagrangian (121) we have the following Feynman rules

(136)

Then
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(137)

We see that the counter Lagrangian is at most quadratic in M and quartic in N.
In terms of Q and P it must therefore be of the form

Note that

(138)

(139)

so that we need not consider
By computing the first and second diagrams it is easy to determine the co-

efficients and The first diagram leads to the expression

(140)

The divergent part is

(141)
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The corresponding counterterm is

(143)

(145)

The corresponding expression is

(146)

(148)

(142)

The factor is because a term in the Lagrangian gives the vertex

(144)

Thus the coefficient is now determined to be The coefficient can be
determined from the two N diagram

Developing the denominator and retaining only logarithmic divergencies

(147)

The corresponding term in is
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Eqs. (143) and (148) are sufficient to determine the coefficients and We
get for the counter Lagrangian

(149)

We need the counter Lagrangian for an even more general case, namely,

This is considerably more complicated. Again we define

We will no more write the indices i, j. Furthermore,

(150)

(151)

(152)

Now remember that is a covariant derivative in the sense of gravitational
gauge invariance. We may therefore partially integrate forgetting the factor

but treating as a covariant four-vector. Moreover, Thus we
get

Thus all invariance considerations hold as before. There is one difference:
there are now more invariants to be considered, namely the Riemann scalars,
etc. Now we can have things like

Moreover, will now contain a factor The answer is

(154)
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To prove this equation we must show the factors
No term of the form

needs to be considered, because in four-dimensional space it can be reduced

total derivative
(in four dimensions). (156)

This equation will be proven later.
The coefficient of the term QR can be determined readily by choosing a

particular g. We take

(157)

where/is an arbitrary function ofspace-time. The Lagrangian (150) may be
rewritten,

(158)

Now substitute This does not change anything in the diagrams.
Weget

(159)

This is precisely of the form studied with the substitution

We must now compute R and for this particular g. With

(160)

(161)

(155)

we find
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(162)

(163)

By contraction

(164)

(165)

(166)

Now for this g one verifies easily eq. (156). However, for this g also

(168)

(169)

We can therefore determine the counter Lagrangian only up to terms of this
kind.

Comparing the result eq. (149) with the substitutions (160) to the Lagran-
gian (155) with the appropriate expressions (166) and (168) for R and
shows that indeed in the combination the coefficient must be taken
as Moreover the term has the factor and we have determined up to
an expression of the form(169) (in principle one could have additional factors

Gravitation

(167)

total derivative .
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To determine the last unknown coefficient there is nothing to do but to
compute another diagram for some special case. We consider a Lagrangian
without M and N,

we must expand up to first order in h,

With

(170)

(171)

(172)

it will be sufficient to compute a graph with two s vertices. Terms of order
in the Lagrangian do not contribute for the following reason. We are working
to order in the counter Lagrangian, since no more is needed to determine
the last coefficient. Now a term in the Lagrangian is already of order
and the diagrams of order involving this vertex cannot involve any other
vertex and are therefore of the tadpole type

Such diagrams do not contain logarithmic divergencies, and may be taken to
be zero.

We must finally compute the divergence of the diagram with two s vertices

Vertex:

The diagram

gives rise to the integral

(173)

With



Gravitation

The resulting counter Lagrangian is

307

Next we must substitute eq. (172) and compare with terms
we must evaluate first these terms to second order in h,

(174)

The result is

which shows the correctness of the general counter Lagrangian(155).

(176)

(177)

(178)

(179)

15. Divergencies with external gravitational field

The results of the preceding section may be summarized as follows. To the
Lagrangian

(180)

(where and M are c-number functions of space-time) corresponds the
one-loop counter Lagrangian

(181)

(175)

where
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(182)

This suggests that the free constant a in sect. 13, eq. (112) should be taken as
This prevents the occurrence of new divergencies up to order The choice

of a = leads to an energy-momentum tensor that is often called the improved
energy-momentum tensor, and was in this context first proposed by Callan,
Coleman and Jackiw, A. of Phys. 59 (1972) 42.

However, to order we have still the combination This
represents divergencies in the theory ofgravitation caused by closed loops of
scalars. Now to order we also may get contributions from vector particles,
fermions and the gravitons themselves, so the consideration of these terms here
is not very meaningful.

As a first step in a more complete treatment we may now consider quan-
tized scalar and gravitational fields together. The case ofpure gravitation is
then easily deduced as well.

16. Divergencies with quantized gravitational field

We will consider the simplified case

(183)

Here is the covariant derivative involving Also R and are con-
structed from From this formula we can already draw some important
conclusions. Suppose that we consider a theory of scalar particles interacting
with themselves and with an external gravitational field. This external field is
represented by To zeroth order in the gravitational coupling

constantthedivergenciesaregivenby ofeq.(181),with R = = 0 and
To first order in K we have, from essentially the same divergencies

and there is a new divergence from the term QR, where R is worked out to
first order in K.

The very nice thing is now that this new divergence can be cancelled. If, in
eq. (180) M is replaced by then in eq. (181) the term
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The bar on the various quantities is for notational reasons. We have not em-
ployed the improved energy-momentum tensor, but that can be done rather
easily later. Furthermore we suppose units to be such that Effectively
this means that our unit of energy is given by a
rather large value. It shows in fact the irrelevance of gravitation for elemen-
tary particle physics insofar as no matters of principle are involved.

Before we get to computing the equivalent second order Lagrangian we
must discuss the question of gauge invariance. The first step is that we write
everywhere

(184)

where and are background fields.
The Lagrangian(183) with the substitution(184) is invariant for the gen-

eral gauge transformation

(185)

Again, D involves g, not The importance of introducing covariance
with respect to the background field g will become clear: the counter Lagran-
gian shall be invariant with respect to general gauge transformations of the
background fields g and simply because the second order by a properly
chosen gauge breaking term (to break the gauge invariances with respect to
the quantum fields eqs. (186), (187)) will possess that invariance. This is the
beauty of the background field method: it offers the possibility of directly
profiting from the symmetry of the theory.

The first and second order variation of the various quantities has been
given before. Simplifying things as much as possible using partial integration
(omitting total derivatives) one finally obtains on developing from eq. (183),

(188)

(187)

(186)

The replacement where D is constructed from g, not may be done:
all terms cancel. We so get, using eq. (184),

Similarly,
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(189)

Let us emphasize and clarify a number ofpoints:
(i) The original Lagrangian is invariant under gauge transformations of the

fields and This implies invariance of this Lagrangian with respect to the
gauge transformations (186), (187).

(ii) As a matter ofnotation, raising and lowering ofindices and covariant
differentiation in eq. (190) is understood with respect to the background field

(seeeq.(184)).
(iii)By inspection we see that and eqs. (189) and (190) are formally in-

variant under transformations whereby h, g, and transform as two tensors
and scalars. We emphasize the difference with respect to the original gauge in-
variance. The transformations(186), (187) derive from eqs. (184) if we keep g
and fixed, and assign tensor and scalar properties to and That is the orig-
inal gauge invariance of the theory. It will have to be broken by a gauge break-
ing term, and a ghost Lagrangian must be introduced. The Lagrangians and
are invariant if we assign transformation properties to g, h and for instance,

(191)

This invariance needs not to be broken by a gauge breaking term because the
classical functions g and are involved. The path integral

(192)

is finite because has no invariance with respect to variations of the quantum
fields only.

(190)
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We must now also introduce a gauge breaking term in the original Lagran-
gian and also find the corresponding ghost Lagrangian. This will give rise to
additions to and and we must be careful that things are done such that
the "new" invariance mentioned under (iii) remains true.

The following gauge breaking term does what we want:

where is defined by

We obtain

(193)

(194)

(195)

The ghost Lagrangian is obtained by subjecting from eq. (193) to the "orig-
inal" gauge transformations(186), (187):

(196)

(197)

(198)

We find, omitting terms containing h or

Thus

where now and represent the so-called Faddeev-Popov ghost field.
Without any consequence for the diagrams to be computed we may make

the replacement

(199)

provided t is non-singular. We so fmd
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(200)

This is invariant with respect to the "new" gauge transformations if we assign
vector type transformation properties to the ghost field

Ofcourse,in actual calculations we may always use instead of be-
cause the matrix g involved is of no consequence.

It is perhaps worthwhile to mention here that we will be interested only in
one-loop diagrams without external ghost lines. Therefore no term linear in
the ghost (for example terms of the form or need to be retained. That
is why terms containing h or have been omitted.

Since Cis quadratic in the quantum fields h, only the Lagrangian will
get a contribution from the term One finds

(201)

(202)

17. Evaluation of the divergencies

The evaluation of the counter Lagrangian to (201) is straightforward but
tedious. We must bring the Lagrangian in the form eq. (180), and after that we
can use the general formula eq. (181). The fields and are to be identified
with the of eq.(180);since in(180)the covariant derivative on the is
treated as if working on a scalar field we must separate, in eq. (201), the terms

from the terms containing
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As a first step we apply the doubling trick to the Lagrangian (201). We get

(203)

Let us consider the covariant derivatives. Let be a general tensor. We
have

with

Further,

(204)

In short,

(207)

Here is defined as the covariant derivative that "sees" only the indices and
v in eq. (206). From this we have for any tensor T,

(208)

Thus

(209)

(205)

(206)
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In the counter Lagrangian we will need

(210)

(211)

The reader may note the great similarity between and the Riemann tensor
(see eq. (70)) in case N is linear in the Indeed, one finds in the general

case,

(212)

Here we have only two terms. We must be careful to symmetrize in and
Thus,

For this we find

(213)

(214)

where in between square brackets the symmetrized expression from eq. (213)
must be used. Working this out gives

(215)

Due to the particular form of F, eqs. (209), (210), there are no more contribu-
tions from the covariant derivatives to the counter Lagrangian that indeed wiU
involveonly (compareeq.(182)).

The rest of the calculation is now straightforward. Enumerating the fields
by a single index going from 1 to 10, and assigning the scalar field to the

index value 11 we find that the matrix M takes the form

(216)

where
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(217)

The factors arise from the substitution We must now evalu-
ate

(218)

where R multiplies the 11 X 11 unit matrix. The various contributions can be
worked out,

(219)

The evaluation of the counter Lagrangian arising from the ghost loops is not
difficult. The contribution due to the covariant derivatives is (we have now a
single index field)

(220)

The minus sign is the well known minus sign for the ghost loops. From the
rest of the ghost Lagrangian (200) one finds

(221)

Together with the previous result (divided by 2, to undo doubling),
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Here we have used the identity

total derivative .

(222)

(223)

This identity will be proven later.

18. Equations of motion

From eq. (189) we see that tadpoles are absent ifg and obey the follow-
ing equations of motion,

(224)

(225)

Taking the trace of eq. (225),

Substituting this back gives then the equivalent set

(226)

Using thsse equations in the counter Lagrangian (222) gives

(scalar + gravity). (227)

For pure gravity R = 0, and

(gravity). (228)
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19. Riemann tensor identities

Two completely antisymmetric four-tensors can be identified in four dimen-
sions

(229)

= completely antisymmetric .

Under a gauge transformation we have (see eq. (47))

(230)

To see that the transforms indeed as tensors under a gauge transformation
we write down an identity valid in four dimensions. Ifindices can take the val-
ues 1, 2, 3 and 4 then obviously any object antisymmetric in five indices is
zero. Thus consider

(231)

where isanytensor.Thisisalreadyantisymmetricin and Ifwe
antisymmetrize in the first five indices we have zero,

(232)
Let us now see how behaves under a gauge transformation. We have

(233)

Applying the antisymmetry identity to the second term

(234)

for
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This is precisely the transformation law for a four-tensor. Similarly for
Let us now construct a scalar from two tensors and two Riemann tensors.

Because of the various symmetry properties there is only one non-zero combi-
nation,

(235)

then this quantity changes by a total

where the first order variations and have been given before (see
eqs. (84)-(97)). For our purposes we write somewhat more conveniently

(236)

where is the first order variation of This equation follows quite directly
from the definition ofthe Riemann tensor, eq. (70). Furthermore,

From this

We find

(237)

(238)

(239)

We will show that if
derivative. We have
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If we had worked in n-dimensional space we would have tensors with in-
dices, and the scalar combination of two with 4-index Riemann tensors
would have needed Riemann tensors. The coefficients of the last two terms
would have been -n and

Let us now apply the antisymmetrization identity to the last term with re-
spect to the indices and If we denote the last term of eq. (239)
by we find the identity

(240)

or

According to the Bianchi identities,

(241)

In the n-dimensional case we would have obtained the coefficient Insert-
ing this identity we are left with

(242)

(243)

Multiplying with we find three times the same thing, and consequently

(244)

Furthermore the covariant derivative of is easily seen to be zero,

(245)

This follows basically from the identity

(246)

We therefore may rewrite

(247)

since also the covariant derivative of is zero. Using
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(248)

we see indeed that the result is a total derivative.
As a last step we note that the product of two tensors can be expressed in

products of functions,

(249)

This expression is thus up to a constant a total derivative (in four dimensions)
and we need to consider only terms of the form and in the Lag-
rangian.

20. Fermions and gravitation

If one tries to include fermions into the theory of gravitation it turns out
to be quite difficult. The reason for this is that there exists no spinor represen-
tation ofthe group oftransformations ofgeneral relativity. For this reason one
is forced to introduce the Lorentz group once more, and treat the fermions
as scalars with respect to general relativity. This is an ugly aspect of the the-
ory of gravitation, but for the time being no alternative theory exists.

Let us now consider this problem explicitly. The Lagrangian for fermions
not in interaction with gravitons is given by

(250)

corresponds a matrix S in spinor spaceTo a given Lorentz transformation
that acts on the

and the important properties of S are (with

The summation goes over all permutations of the indices and
There are 24 terms. Using this identity to work out the combination
as appearing in eq. (235) one obtains
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Thus the S induce a Lorentz transformation of the matrices.
Now the most straightforward generalization of eq. (248) would seem to

be

(251)

This is acceptable if transforms as a contravariant vector. The problem
therefore arises: let there be given a gauge transformation characterized by
the functions Is it now possible to define a gauge transformation of the
fields in such a way that transforms as co- or contravariant vec-
tor? The answer to that is simply no.

For this reason we must now introduce the Lorentz group once more, ugly
as it is. We introduce two kinds of indices, and the first kind indicates gauge
transformation properties of general relativity, the other kind simply Lorentz
transformation properties.

The central quantities in our treatment will be the so-called vierbein fields
A general gauge transformation is characterized by four functions

and a Lorentz transformation is characterized by the six quantities
where Thus is simply an infinitesimal Lorentz transfor-
mation. The behaviour of the vierbein field under these transformations is
given by

(252)

Thus latin indices a, b, etc. indicate transformation with and greek indices
indicate transformation with

We must now construct covariant derivatives. Let there be given the four-
vector One has a gauge behaviour

We now want to define the covariant derivative such that transforms
like the vierbein field. This can be done quite precisely like in the foregoing.
Consider first

(253)
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(254)

Comparison of(254) and (253) shows that we must try to find quantities
such that under a gauge transformation

This is provided by

where we used the definitions

(255)

(256)

(257)

Thus the are no more the basic quantities of the theory, but rather the
The gravitational field is described by the difference between and unity,

(258)

We have, to first order in the h,

(259)

The gravitational field that we had before is the symmetrical part of the vier-
bein field.

Let us now go back to eq. (256). To see that this has the correct behaviour
one observes

(260)

(261)

(262)
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The rule for covariant differentiation is now clear. For example,

with the transformation properties that have been given before, eq. (255) and
eq. (52).

Let us first list some equations concerning the vierbein field. We have

transpose).

This is nothing but an abbreviated notation ofeq. (257). Now transposition
and inversion commute,

since

Consider now

We have

or

Furthermore, the are related to the One has by inspection

(264)

(265)

Using this one obtains (compare eq. (53))

(266)

(263)
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(267)

From this one may derive that the covariant derivative of the vierbein field is
zero,

Using eqs. (267) and (264) we get

(268)

(269)

21. Fermionfields

Under an infinitesimal Lorentz transformation a fermion field is custom-
arily supposed to transform according to

with

(270)

(271)

This is in fact the infinitesimal form of the transformations S mentioned be-
fore. The only difference with the usual treatment is now that the are space-
time dependent.

We must now define covariant differentiation of the We have evidently,
from eq. (270),

(272)

(273)

From this we infer that the correct definition of covariant derivative is

Now the Lagrangian for fermions interacting with gravitons can be written

(274)
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with The gravitational Lagrangian is constructed from
the as before. The main difference is that we now have instead
of which introduces some extra symmetrization in a number of places.
As an interesting trick we make the substitution

This gives (we ignore the mass term here)

This is symmetric in and v: interchange of and v can be obtained via partial
differentiation, using that De = 0. Therefore we get symmetry in a and b, and
we may substitute

We so find

22. Further invariants

Consider now the tensor defined by

One has

(275)

(276)

(277)
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Using equations such as

(278)

that follow from the definition eq. (271) one finds

(279)

which indeed is quite analogous to eq. (70). Obviously behaves as a ten-
sor, which can also be deduced directly, if we first rewrite

(280)

and then use the transformation properties of eq. (255).
The vierbein field can be used to "transform" a latin index into a greek in-

dex and vice versa. For instance

This may be seen as follows:

(281)

(282)

where we used the fact that the covariant derivative of the e is zero. We leave
it to the reader to work out further eq. (282).
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