
Macquarie University,
New South Wales 2109,
Australia

May 8, 2009

Relating Descent Notions

Dear Urs,

It would seem to me that and understanding of the result you seek, regarding the relationship between the
descent notions in the related contexts of strict ω-categories and simplicially enriched categories, does indeed
arise quite naturally from the kinds of considerations you outline in your recent email to me on this subject.

However, we need to be careful here because a full answer to the question you asked does not arise from pure
enriched category theory alone. It has a homotopical component which must also be taken into account.

Having spent the last couple of days mulling over this issue, while recovering from a nasty spider bite, I believe
that I have a complete proof of the kind of result you seek. I will outline my full argument supporting this
analysis later in this letter, but I makes sense here to telegraph those results in the following capsule statement:

Notation 1. First let us fix some notation by taking ω−Catst to denote the category of all (small) strict ω-
categories and strict ω-functors between them. Furthermore, let ω−Gpdst, the category of all strict ω-groupoids,
be the full subcategory of ω−Catst whose objects are those ω-categories all of whose cells are equivalences in
some suitable sense.

Furthermore let N denote Street’s ω-categorical nerve functor

ω−Catst
N // Simp (1)

which (for the moment) carries each strict ω-category to a simplicial set. Also, from here on we will assume
that the category Simp implicitly carries the Kan model structure, under which inclusions are the cofibrations,
map possessing the right lifting property with respect to all horns are the fibrations and the weak equivalences
are those maps which induce isomorphisms of homotopy groups.

Finally let Descω−Catst
denote Street’s (lax) descent construction on strict ω categories. Correspondingly, let

DescSimp denote the standard descent construction on simplicial sets.

Theorem 2. Suppose that X : ∆ // ω−Catst is a functor into the category of strict ω-categories, then there
exists a canonical comparison map

N(Descω−Catst
(X)) � � // DescSimp(N ◦X) (2)

which is natural in X ∈ [∆, ω−Catst] and an inclusion of simplicial sets (that is to say a cofibration).

Assume further that on composing this functor with Street’s ω-categorical nerve functor N : ω−Catst // Simp
we obtain a fibrant object N ◦X : ∆ // Simp in the Reedy model structure on the functor category [∆,Simp].
Then, under this extra condition, the map in display (2) is also a weak equivalence of Kan complexes.

Notice here that I make no specific assumption here that the functor X : ∆ // ω−Catst whose descent is being
studied actually takes values in the full subcategory of strict ω-groupoids. However, my fibrancy assumption on
N ◦X implies, in particular, that the simplicial set N(X(n)) is a Kan complex for each object n ∈ obj(∆). Then,
in turn, it is a routine consequence of my work on strict complicial sets [8] that a strict ω-category C ∈ ω−Catst

is a strict ω-groupoid, in the sense alluded to above, if and only if its nerve N(C) is a Kan complex. So it
follows that if N ◦X : ∆ // Simp is Reedy fibrant in [∆,Simp] then the functor X : ∆ // ω−Catst factors
through the full subcategory of strict ω-groupoids ω−Gpdst in ω−Catst.

Now, before proving this theorem, I should point out that while your overall argument regarding the limits
possessed by the enriched categories whose bases are being changed is correct, the detail of your argument falls
a little short in two respects:

1. To make this kind of argument work it is important to identify exactly how Street’s descent construction
may be described as a weighted limit is some enriched category theory. It appears that your email



implicitly assumes that we should simply regard ω−Catst as a category enriched in itself relative to the
cartesian product on that category. On the other hand, Ross’ descent construction captures information
about lax structures and may thus only be regarded as an enriched limit in ω−Catst if we regard that
category as a base of enrichment with respect to its lax Gray tensor product ⊗.

2. As we will see later on, your intuition with regard to strong monoidality of F : ω−Catst
// Simp is quite

correct. To ensure that change of enrichment base change along a right adjoint functor like the nerve
functor N : ω−Catst

// Simp behaves well with respect to the colimits in ω−Catst-enriched categories
it is sufficient to know that its left adjoint is strong monoidal with respect to the chosen monoidal structures
on Simp (in this case cartesian product) and ω−Catst.
However, it is unfortunate in this case that this functor F : ω−Catst

// Simp is not strong monoidal
with respect to the cartesian product on Simp and either the cartesian product or the (lax) Gray tensor
product on ω−Catst. To see what fails here it is easiest simply to consider a simple example. Consider the
standard 1-simplex ∆1 in Simp and observe that maps under F to the strict ω-category consisting of two
0-cells with a single 1-cell between then (customarily drawn • // •). Now, it is a matter of straightforward
calculation to draw presentations of each of the three strict ω-categories F (∆1×∆1), F (∆1)×F (∆1) and
F (∆1)⊗ F (∆1).
Firstly, the simplicial set ∆1×∆1 maybe described as a pair of 2-simplices glued along their 1-dimensional
faces corresponding to the face operator δ0. So, since F preserves colimits we see that F (∆1 ×∆1) may
be constructed by gluing together two copies of the second oriental thus:

F (∆1 ×∆1) =

• //

�� ��????????? •

��
• // •

;C���
���

{� ���
��� (3)

On the other hand, the latter two structures may be presented as

F (∆1)× F (∆1) = {• // •} × {• // •} =

• //

��
=

•

��
• // •

(4)

and:

F (∆1)⊗ F (∆1) = {• // •} ⊗ {• // •} =

• //

��

•

��
• // •

:B~~~~
~~~~

(5)

It follows, therefore, that no pair of these strict ω-categories are isomorphic to each other.
Furthermore, things are not improved one iota by reflecting these strict ω-categories into strict ω-
groupoids, where they still remain stubbornly distinct. Although, in that context we may at least show
that the groupoidal reflections of the strict ω-categories in displays (3) and (5) are at least ω-categorically
equivalent to each other. It is this latter observation which will, eventually, lead us to proving the result
postulated in the statement of theorem 2.

So how might we fix things up here? The first of these points tells us that in order to capture Street’s descent
notion we should be careful to do our ω−Catst-enriched category theory with respect to the lax Gray tensor
product ⊗. The second tells us that this won’t give us a relationship between the simplicial and Street descent
constructions as a piece of pure enriched category theory, because the left adjoint to the nerve construction is
not strong monoidal with regard to cartesian product on Simp and lax Gray tensor on ω−Catst.

We can resolve this tension in one of two ways:

• If we wish to remain in the realm of enriched category theory alone we can pick a tensor product on
ω−Catst (or more properly ω−Gpdst) which makes the functor F : Simp // ω−Catst strong monoidal.
Indeed, there does exist just such a monoidal structure on ω−Catst, which we might think of as a kind
of Gray tensor with diagonals and whose definition is modelled upon higher dimensional versions of the
picture presented in display (3). By enriching over that tensor we obtain a descent notion, as a weighted
limit, which is indeed related to simplicial descent in precisely the sense that you gave in your email using
exactly the argument you outline there.
This sounds promising, and it is a trivial matter to establish this result using either direct calculation
or some abstract enriched category theory, but it does not actually answer the question you asked. As I
understand it you are specifically interested in Street’s descent notion, and this is quite distinct from the
notion you obtain using the Gray tensor with diagonals.
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• Concentrate upon understanding Street’s descent construction using the lax Gray tensor product on
ω−Catst and accept that we will need to do some homotopy theoretic heavy lifting here. I’ll take this
approach in the remainder of this letter, mainly just to give us some meat to chew on, and hope to convince
you of the voracity of the result I stated as theorem 2 above.

So how do we go about proving this result? Well, as a first step my general preference would be to move
away from working with strict ω-categories as quickly as possible and to do most of our work in the context
of simplicial sets. By doing so, we avoid having to fiddle about building an explicit homotopy theory for strict
ω-groupoids themselves. Furthermore, I generally find it much easier to work with the Gray tensor product in
the simplicial (or more precisely complicial) context where it admits a far more explicit presentation.

To make this first step, we may simply apply the kind of “change of enrichment base” argument that you
outlined in your email. In principle, the result to which you allude is well studied, although I suspect that it is
far less well known than it should be, mainly because the only full presentation of a general such result occurs
in my, as yet, unpublished thesis [6]. For reference purposes, I have attached a copy of my thesis as a DVI file
and you may be interested to hear that it will be published as a TAC reprint as soon as I have a chance to “tart
up” its typesetting.

I certainly wouldn’t suggest that you waste any time plowing through this work, since it tends to take an
exceedingly abstract approach to change of base problems. As a testament to the ridiculous level of abstract
attained, I believe that this is probably the very first place that Gray categories (or at least a bicategorical
generalisation of such) were applied in anger. Indeed this use predates the Gordon, Power and Street work on
tricategories [2] by 2 or 3 years.

Cutting through the abstraction of my thesis, for current purposes we might paraphrase its primary result on
the transformation of enriched limits under change of base (theorem 1.7.1 of [6]) as:

Theorem 3. Suppose (V,⊗, I) and (W,⊗′, I ′) are monoidal categories (not necessarily symmetric, braided or
closed but possessing small colimits which are preserved by tensoring by objects on either side) and that they are
related by an adjunction

V
U

22⊥ W
F

rr (6)

in which the left adjoint F is strong monoidal.

The strong monoidal structure of F (or more specifically its structure as a comonoidal functor) induces a
monoidal structure on its right adjoint U . So it follows that we may apply both of the functors U and F
“pointwise” to V-enriched (respectively W-enriched) categories, functors, profunctors, weights and so forth and
thereby construct corresponding W-enriched (respectively V-enriched) structures.

For example, if C is a V-category then U(C) is a W-category which has the same set of objects as C but which
has homsets given by U(C)(c, c′) def

= U(C(c, c′)). As another example, if W is a W-weight on a W category
D then F (W ) is a V-weight on the V-category F (D) whose value at an object d ∈ obj(F (D)) = obj(D) is
F (W (d)) ∈ V

Indeed these pointwise actions gives rise to a biadjunction (actually a 2-adjunction) between the 2-categories
of V-enriched and W-enriched categories and functors, and to a well behaved and closely interrelated local
adjunction between the bicategories of V-enriched and W-enriched categories and profunctors.

Now suppose that C is a V-enriched category, that W : D // W is a weight for a W-enriched limit and that
D : F (D) // C is a V-diagram in C. Suppose further that the W-diagram D̂ : D // U(C) is the adjoint
transpose of D under the biadjunction induced by F a U on 2-categories of enriched categories and functors.
Then:

• if the V-enriched weighted limit lim(F (W ), D) exists in C then the W-enriched weighted limit lim(W, D̂)
exists in U(C) and is canonically isomorphic to lim(F (W ), D) when this latter limit is regarded as an
object of U(C).

• under the further assumption that U is a full and faithful functor, we may strengthen this last result to
show that the V-enriched weighted limit lim(F (W ), D) exists in C if and only if the W-enriched weighted
limit lim(W, D̂) exists in U(C).

Proof. In its most abstract and general form this is just theorem 1.7.1 and lemma 1.7.7 of [6], but in the form
stated here this result can easily be verified by hand.
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But this isn’t quite the result we need, since the result you appealed to in your email actually looks to relate
enriched limits in the base categories V and W when regarded as enriched over themselves. For our purposes
here, we need to be a little careful about what it means to enrich these categories over themselves because
we have not placed any symmetry assumptions upon their tensors. This is a necessary generalisation since, as
discussed above, we will obtain Street’s descent construction as an enriched limit relative to the non-symmetric
Gray tensor on ω−Catst.

From here we will assume that V (and W for that matter) is closed on both sides of its tensor, in the sense
that for each object V ∈ obj(V) both of the functors V ⊗ −,− ⊗ V : V // V have right adjoints, denoted
clsl(V, ∗) and clsr(V, ∗) respectively. For the specific example of the lax Gray tensor on ω−Catst its left closure
laxl(C,D) is the strict ω-category whose cells are strict ω-functors (from C to D), lax natural transformations
between them, lax modifications between those and so forth. On the other hand, its right closure laxr(C,D)
is the corresponding strict ω-category of strict ω-functors, oplax natural transformations, oplax modifications
and so forth.

Now, given that we have two closures on V, we find that there are two distinct ways of enriching it to an
V-enriched category. The first uses the left closure clsl to give a V enriched category Vl whose homsets are given
by Vl(V, V ′) def= clsl(V, V ′) and whose composition is defined analogously to the symmetric case. The second uses
the right closure clsr giving another V enriched category Vr whose homsets are given by Vr(V, V ′) def= clsr(V, V ′).

As in the classical case, each of the V-enriched categories Vl and Vr will have all (small) V-enriched limits and
colimits so long as the underlying category V has all (small) limits and colimits in the usual sense. However
it is important to observe that the cotensors of these two V-categories are in general quite distinct, with that
of Vl being the left closure clsl whereas that of the dual V-enrichment Vr is the right closure clsr. It follows
therefore that if D is a (small) un-enriched category regarded as a V-enriched category in the usual way, W is
a V-weight on D, and D : D // V is a diagram in V then we may construct two quite distinct enriched limits
in V. The first is the V-enriched limit taken in Vl and given by the formula

limVl
(W,D) =

∫
d∈D

clsl(W (d), D(d)) (7)

and the second is the V-enriched limit taken in Vr and given by the formula:

limVr
(W,D) =

∫
d∈D

clsr(W (d), D(d)) (8)

In the particular case of Street’s lax descent construction, the weight for this limit is (as you suggested) the orien-
tals functorO : ∆ // ω−Catst and the descent category for a cosimplicial strict ω-categoryX : ∆ // ω−Catst

is simply the O-weighted limit of X relative to the lax Gray tensor. However, the lax Gray tensor is not sym-
metric or braided, so we actually obtain two distinct lax descent notions corresponding to the two, left handed
and right handed, ω−Catst-enrichments of ω−Catst relative to that tensor. The first of these is properly called
Street’s lax descent construction

Desclax(X) =
∫
n∈∆

laxl(On, Xn) (9)

whereas the second is the dual oplax descent construction:

Descoplax(X) =
∫
n∈∆

laxr(On, Xn) (10)

Notice here that when talking about cosimiplicial objects such as O or X I will tend to write superscripts such
as On and Xn, rather than using the possibly more standard evaluation notation O([n]) and U([n]). This allows
me to notationally distinguish cosimplicial and simplicial notions, by adopting the standard tensor convention
and writing subscripts for simplicial actions.

It is worth pointing out that these two descent notions will not coincide (be naturally isomorphic) even if we
restrict attention only to the full subcategory of strict ω-groupoids ω−Gpdst. However, it is the case that they
will at the least be equivalent in the obvious ω-categorical sense.

With these notational observations out of the way, we are now able to state and justify the following corollary
to the last theorem:

Corollary 4. Suppose that we are in the situation of theorem 2, without assuming the extra postulate that
U should be full and faithful. Then the functor U has an W-enrichment U : U(Vl) // Wl which possess a
W-enriched right adjoint derived from F .
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Suppose further that D is a W-category, W is a W-weight on D and D : F (D) // Vl is a diagram in the left
V-enrichment. Furthermore let D̂ denote the dual diagram D̂ : D // U(V)l. Then, under these conditions,
there exists a canonical isomorphism

U(lim(F (W ), D)) ∼= lim(W, D̂) (11)

in W.

Proof. Since F is strong monoidal, a routine calculation allows us to construct a canonical comparison map
U(clsl(A,B)) // cls′l(U(A), U(B)). So we may define the W-enrichment U : U(Vl) // Wl that we seek by
mapping each object A ∈ obj(U(Vl)) = obj(V) to U(A) ∈ obj(Wl) and acting on homsets using the canonical
comparison maps of the last sentence. Furthermore, the strong monoidality of F may also be used to establish
a canonical isomorphism U(clsl(F (W ), V )) ∼= cls′l(W,U(V )), which in turn tells us that F gives rise to a W-
enriched left adjoint to U : U(Vl) // Wl which maps each object W ∈ Wl to the object F (W ) ∈ U(Vl).

Now, in particular, the fact that the W-functor U : U(Vl) // Wl has an W-enriched left adjoint implies that
it preserves all W-enriched limits. Consequently the result we seek is simply a matter of applying theorem 2 to
obtain a relationship between enriched limits in the V-category Vl and theW-category U(Vl) and then applying
the W-limit preserving functor U : U(Vl) // Wl.

Alternatively, if this level of abstraction is still a little disquieting it is again possible to prove this result by a
direct calculation.

Now we are in a position, in one fell swoop, to translate our whole problem into a purely simplicial context.
More precisely we are going turn it into a problem in the theory of simplicial sets with thin elements, otherwise
called stratified simplicial sets in my various works on (weak) complicial sets.

My AMS Memoir [8] (or its archive variant [5]) on the topic of (strict) complicial sets provides a fairly thorough
introduction to the theory of stratified simplicial sets and a detailed analysis of their relationship to strict
ω-categories. For our purposes here, we can probably get away with knowing only the following factoids:

• A stratified simplicial set (X, tX) consists of a simplicial set X and a specified subset tX of its simplices.
The set tX is called a stratification and its elements are said to be thin. We ask that it contain no 0-
simplices and that it should contain (at least) all of the degenerate simplices of X. A stratified simplicial
map f : (X, tX) // (Y, tY ) is simply a simplicial map f : X // Y which preserves thinness in the sense
that f(tX) ⊆ tY .

• The forgetful functor ( ) : Strat // Simp which forgets stratifications has both a left adjoint and a right
adjoint. Its left adjoint min: Simp // Strat equips each simplicial set with a minimal stratification,
under which only degenerate simplices are taken as being thin, and its right adjoint max: Simp // Strat
equips each simplicial set with a maximal stratification, under which all simplices are taken as being thin.
Both of the adjoint min and max are full and faithful.

• We will identify the category Simp with its image in Strat under the minimal stratification functor min.
On doing so we will observe customary convention and regard the underlying simplicial set functor ( ) as
being the endo-functor of Strat which replaces the stratification on each stratified simplicial set by the
minimal stratification on its underlying set.

• Under this convention we will need to be a little careful to distinguish the simplicial and stratified simplicial
variants of many common constructions. For example, if we regard simplicial sets X and Y as minimally
stratified objects in Strat their product X×Y in there is not, generally, minimally stratified. Consequently
the cartesian products of these sets in Simp and Strat are distinct and should be distinguished in our
notation. Where necessary, we will use “barred” versions of operator symbols to denote simplicial, rather
than stratified simplicial, versions of such operator. So for example the cartesian product in Simp would
be denoted X ×̄ Y and the corresponding closure by hom(X,Z).

• Ross’ nerve construction [4] may be generalised slightly to give an adjoint pair of functors:

ω−Catst

N

11⊥ Strat
F

qq (12)

If C is a strict ω-category then the stratified simplicial set N(C) has as its n-simplices the functors
x : On // C from the nth oriental to C and stratification under which the simplex x is thin if and only
if it maps the unique non-trivial n-cell of On to a cell of dimension lower than n (an identity) in C.
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• The nerve functor N : ω−Catst
// Strat is full and faithful and a stratified simplicial set is in its replete

image if and only if it is strictly complicial. Here a stratified simplicial set A is strictly complicial if and
only if its thin 1-simplices are all degenerate, it possesses unique thin fillers for a certain class of complicial
horns and it satisfies a related thinness stability property called pre-compliciality. This theorem, often
referred to as the Street-Roberts conjecture, is the ultimate result theorem 266 of [8].

• There is a tensor product ⊗ on Strat which is the simplicial analogue of the lax Gray tensor on ω−Catst.
The tensor X ⊗ Y of stratified simplicial sets X,Y ∈ Strat has as its underlying simplicial set the
cartesian product of underlying simplicial sets and has a stratification which is defined in precise terms
in definition 128 of loc. cit. It is a routine consequence of theorem 255 of loc. cit. that the left adjoint
F : Strat // ω−Catst is strong monoidal with respect to this new tensor on Strat and the lax Gray
tensor on ω−Catst (as defined in [1]).

• The tensor ⊗ is not actually left or right closed as a tensor on Strat. To rectify this deficiency, we
introduce a full subcategory Pcs of pre-complicial sets in Strat (see definition 121 of [8]) is reflective in
there with reflector ( )� : Strat // Pcs which expands the tX stratification of each stratified simplicial
set X to a smallest pre-complicial stratification tX� containing tX. and we may define a tensor ⊗�
on Pcs by X ⊗� Y def= (X ⊗ Y )� which is both left and right closed on Pcs, with closures denoted by
laxl and laxr respectively. This category is large enough for all of our needs since it contains all strict
complicial sets along with all of the stratified simplicial sets in the image of the minimal stratification
functor min: Simp // Strat. It even contains the weak complicial sets studied in [9] and [7].

These last few results allow us to apply corollary 4 to give the following result relating Street’s lax descent
construction to a corresponding lax descent construction for Pcs-enriched categories.

Definition 5. Suppose that C is a category which is Pcs-enriched relative to the lax Gray tensor ⊗� and let
X : ∆ // C be a cosimplicial object in there. Furthermore, let ∆: ∆ // Pcs denote the Yoneda functor
which maps each object n ∈ ∆ to the standard n-simplex ∆n with its minimal stratification.

Then the lax pre-complicial descent object DescPcs(X) of X is defined to be Pcs-limit of X weighted by ∆ (if it
exists).

If C is actually the left handed (respectively right handed) enrichment Pcsl (respectively Pcsr) of Pcs then we
obtain the lax (respectively oplax) pre-complicial descent construction for cosimplicial objects in Pcs given by
the formulae

Desclax(X) =
∫
n∈∆

laxl(∆n, Xn) (13)

and
Descoplax(X) =

∫
n∈∆

laxr(∆n, Xn) (14)

Lemma 6. Suppose that X : ∆ // ω−Catst is a cosimplicial strict ω-category then there exists a canonical
isomorphism

N(DesclaxX) ∼= Desclax(N ◦X) (15)

in the category Pcs of pre-complicial sets. Dually there also exists a canonical isomorphism:

N(DescoplaxX) ∼= Descoplax(N ◦X) (16)

Proof. First, it is worth mentioning that the uses of the notation Desclax on either side of the isomorphism in
display (15) actually refer to distinct constructions. On the left it is applied to a cosimplicial strict ω-category
and thus refers to Streets lax descent construction for strict ω-categories. On the right, however, it is applied
to a cosimplicial object in Pcs and thus refers to the lax descent construction introduced in definition 5.

The proof here is straightforward. Nerves of strict ω-categories are pre-complicial, so we may restrict the nerve
adjunction in display (12) to the subcategory Pcs and thus obtain an adjunction between closed monoidal cate-
gories whose left adjoint is strong monoidal (with regard to the lax Gray tensors on either side). Consequently
we can apply corollary 4 to the specific example of Street’s lax descent construction. However, by definition,
the left adjoint F : Pcs // ω−Catst carries each standard simplex ∆n ∈ Pcs to the corresponding oriental
On ∈ ω−Catst. So it follows that if we apply F to the weight for the pre-complicial lax descent construction
introduced in definition 5 then we obtain the weight for Street’s lax descent construction and the stated result
follows from corollary 4.

This dispatches the part of this proof which is purely a matter of enriched category theory, so next we turn to
the homotopy theoretic content of theorem 2. Using the result of the last lemma we are at liberty to translate
our problem into a purely simplicial (or at least stratified simplicial) context.
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Actually we may restate this theorem in a slightly more general context than the strictly complicial one. For
technical reasons, it is a little easier to state it in terms of the corresponding weak ω-category theory of weak
complicial sets. This theory generalises that of the strict complicial sets by retaining pre-compliciality but
insisting only on existence, rather than unique existence, of thin fillers for our restricted class of complicial
horns. As described in [9], the category Strat of stratified simplicial sets admits a model category structure
for which the cofibrations are the inclusions (monomorphisms) of stratified simplicial sets (so all objects are
cofibrant there) and the fibrant objects are precisely these weak complicial sets. From here on we will assume
that the category Strat implicitly comes equipped with this complicial model structure.

Making this restatement, we obtain:

Theorem 7. Suppose that X : ∆ // Pcs is a cosimplicial object in Pcs and let X : ∆ // Simp denote the
cosimplicial object in Simp obtained by composing X with the underlying simplicial set functor ( ) : Strat // Simp.
Then there exists a canonical comparison map

Desclax(X) � � // Desc(X) (17)

in Simp which is natural in X and an inclusion (monomorphism) of simplicial sets. Here the use of Desclax on
the left refers to the lax pre-complicial descent construction introduced in definition 5 and the use of Desc on
the right refers to the usual simplicial descent construction.

Suppose further that X is fibrant in the Reedy model structure on [∆,Strat] and that X is fibrant in the Reedy
model structure on [∆,Simp]. Then under these extra assumptions, the simplicial map in display (17) is a weak
equivalence of Kan complexes.

On the whole, a simple application of lemma 6 to the statement of theorem 2 leads us directly to the statement
of this new theorem. The only wrinkle here is that we appear to have picked up an extra condition for which
there is no direct analogue in our original statement of theorem 2, that being the assumption that X is Reedy
fibrant in [∆,Strat].

However, this apparently extra condition is easily dispatched by the observation that in order to obtain theorem 2
we apply theorem 7 to the cosimplicial object obtained by applying the nerve functor N : ω−Catst

// Pcs to
the cosimplicial object of that former theorem. So for this particular X each Xn, for n ∈ ∆, is actually a strict
complicial set. Furthermore the category of strict complicial sets is a reflective full subcategory of Strat, so any
limit of a diagram whose nodes are all Xns will again be a strict complicial set and in particular it follows that
all matching objects and all pullbacks of matching objects along maps of X are strict complicial sets. So all of
the stratified sets involved in the fibrancy conditions which must hold in order for X to be Reedy fibrant are
actually strict complicial sets. So finally the Reedy fibrancy of X follows from the easy observation that any
stratified simplicial map between strict complicial sets is actually a fibration in the complicial model structure
on Strat.

This latter observation follows trivially from the fact that a map between weak complicial sets is a fibration of
the complicial model structure iff it has the RLP property with respect to the horns used to define weak (and
strict) complicial sets. So if f : X // Y is any stratified simplicial map between strict complicial sets then the
unique filler condition that they satisfy immediately allows us to lift any such horn simply by taking a (unique)
thin filler in X and appealing to uniqueness in Y to show that our filler maps to the chosen simplex in there.

To prove this theorem, we can start by giving explicit descriptions of the objects on either side of display (17).
Firstly, the simplicial descent of X may be given by the formula

Desc(X) ∼=
∫
n∈∆

hom(∆n, X
n
) (18)

in Simp. Here, as discussed above, hom(X, ∗) denotes the closure operation right adjoint to the cartesian
product endo-functor X ×̄ − on Simp.

Well actually this formula glosses over and important point which, in all honesty, I should really bring to light
at this point. In truth, the simplicial descent of X is usually defined to be its homotopy limit holim(X). This
in turn is traditionally taken to be the Simp-limit of X weighted by the functor which takes n ∈ ∆ to the
simplicial nerve N(∆ ↓ n) ∈ Simp or, in other words, it may be written as the end:

holim(X) ∼=
∫
n∈∆

hom(N(∆ ↓ n), X
n
) (19)

However, a well know result due to Bousfield-Kan (cf. Hirschhorn [3] theorem 18.7.4) tells us that the coends in
displays (19) and (18) are canonically weakly equivalent (in Simp) so long as X is Reedy fibrant (in [∆,Simp]).
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So given that theorem 7 explicitly assumes that X is Reedy fibrant, we take the liberty here of adopting the
formula of display (18) as our descent notion in Simp.

On the other hand the lax pre-complicial descent of X is given by the formula in display (13). Now we know
that the underlying simplicial set functor ( ) : Strat // Simp has a left adjoint and thus preserves all limits.
But Pcs is a reflective subcategory of Strat and is thus closed in there under all limits, so it follows that ( )
preserves the end in display (13) and thus we have

Desclax(X) ∼=
∫
n∈∆

laxl(∆n, Xn) (20)

So to construct the map in display (17) it is enough to construct a family of simplicial inclusions laxl(∆n, Y ) � � // hom(∆n, Y )
which are natural in n ∈ ∆ and Y ∈ Pcs. Given such a family, we could then construct a natural transformation
of those inclusions from the diagram whose limit is taken in display (20) to the diagram whose limit is taken in
display (18), which in turn would induce the required inclusion of their limits Desclax(X) and Desc(X).

Now observe that anm-simplex of hom(∆n, Y ) corresponds, by Yoneda’s lemma, to a simplicial map ∆m // hom(∆n, Y )
which in turn corresponds to a simplicial map ∆n ×̄ ∆m // Y and thus to a stratified simplicial map
∆n ×̄ ∆m // Y . On the other hand, an m-simplex of laxl(∆n, Y ) corresponds, again by Yoneda, to a
simplicial map ∆m // laxl(∆n, Y ) and thus to a stratified simplicial map ∆m // laxl(∆n, Y ) which in turn
corresponds to a stratified simplicial map ∆n ⊗∆m // Y .

Furthermore the stratified sets ∆n ×̄ ∆m and ∆n⊗∆m both have the same underlying simplicial set, this being
the simplicial cartesian product of these standard simplices, but they have different stratifications. However, by
definition, a simplex is thin in ∆n ×̄ ∆m iff it is degenerate which implies that it must also be thin in ∆n⊗∆m,
so it follows that ∆n ×̄ ∆m may be regarded as being a entire stratified simplicial subset of ∆n⊗∆M . In other
words, there is a inclusion map

∆n ×̄ ∆m � � ⊆e // ∆n ⊗∆m (21)

in Strat which acts as the identity on underlying simplicial sets. So given our description the simplices of
hom(∆n, Y ) and laxl(∆n, Y ) as stratified simplicial maps into Y from the stratified simplicial sets ∆n ×̄ ∆m

and ∆n ⊗ ∆m respectively, it follows that pre-composition with members of the natural family of maps in
display (21) gives rise to a canonical simplicial map

laxl(∆n, Y ) // hom(∆n, Y ) (22)

which is natural in n ∈ ∆ and Y ∈ Strat.

Finally to complete a proof of the first stanza of theorem 7 we must also prove that the map in display (22) is an
inclusion of simplicial sets. To do this, it is enough to remark that a stratified simplicial map is determined by
its action on underlying simplicial sets and thus that its is epimorphic whenever its underlying simplicial map
is epimorphic. Consequently the maps of display (21) are all epimorphisms, since their underlying simplicial
maps are identities, and it follows that pre-composition by those maps acts monomorphically and thus that the
map in display (22) is an inclusion as required.

To prove the second part of our theorem let us first examine one way of proving that the simplicial descent
construction is well behaved with respect to fibrations and pointwise weak equivalences. In particular, this
will allow us to prove that the descent object of a Reedy fibrant cosimplicial space X : ∆ // Simp is a Kan
complex.

So let X be an arbitrary cosimplicial space in [∆,Simp], then we know that its descent object may be constructed
as the end given in display (18) and this may, in turn, may be presented as a (Set-)limit weighted by the hom-
functor:

∆op ×∆ ∆ // Set
(n,m) � // ∆(n,m)

(23)

In turn, we may apply the Grothendieck construction to this weight to give a category G(∆) and a projection
functor π : G(∆) // ∆op ×∆ which allows us to reduce this weighted limit to a conical one:∫

n∈∆

hom(∆n, X
n
) ∼= lim(∆,hom(∆∗, X)) ∼= lim

G(∆)
(hom(∆∗, X) ◦ π) (24)

(Notice that this reduction of weighted limits to conical ones is a very specific property of the enrichment base
Set).

More explicitly, we may describe G(∆) as having:
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• Objects which are arrows α : n // m of ∆,

• Arrows (β, γ) : (α : n // m) // (α′ : n′ // m′) pairs of arrows β : n′ // n and γ : m // m′ (notice
the reversed orientation of β) such that the diagram

n

α

��

n′
βoo

γ

��
m

α′
// m′

(25)

commutes.

• Composition and identities given component-wise.

Now, given this description the following lemma is easily established:

Lemma 8. The category G(∆) is a Reedy category with

• Degree function deg(α : n // m) = n+m,

• Subcategory of “face maps”
−−−→
G(∆) consisting of those maps (β, γ) for which β is a degeneracy operator and

γ is a face operator in ∆.

• Subcategory of “degeneracy maps”
←−−−
G(∆) consisting of those maps (β, γ) for which β is a face operator and

γ is a degeneracy operator in ∆.

In other words, the Reedy category structure on G(∆) may be regarded as being constructed by “pulling back”
the product Reedy category structure of ∆op × ∆ along the projection π : G(∆) // ∆op × ∆, in the sense
that a map (β, γ) is in

−−−→
G(∆) (respectively

←−−−
G(∆)) iff when regarded as a map of ∆op × ∆ it is an arrow of

−−−−−−→
∆op ×∆ =

←−
∆op ×

−→
∆ (respectively

←−−−−−−
∆op ×∆ =

−→
∆op ×

←−
∆)

The latching and matching categories of G(∆) (cf. Hirschhorn [3] definition 15.2.3) have the following properties:

• The latching category ∂(
−−−→
G(∆) ↓ α) associated with an object α : n // m of G(∆) is either empty (if α

is an identity) or has an initial object constructed by taking the face-degeneracy factorisation of α in ∆.

• The matching category ∂(α ↓
←−−−
G(∆)) associated with an object α : n // m of G(∆) is isomorphic to

the matching category ∂((n,m) ↓
←−−−−−−
∆op ×∆) of the projection (n,m) of α to ∆op × ∆. This in turn is

isomorphic to the union of the subcategories ∂(
−→
∆ ↓ n)op × (m ↓

←−
∆) and (

−→
∆ ↓ n)op × ∂(m ↓

←−
∆) of

(n,m) ↓
←−−−−−−
∆op ×∆ ∼= (

−→
∆ ↓ n)op × (m ↓

←−
∆).

Notice that the properties of the latching categories of G(∆) given in the last lemma implies that G(∆) has
cofibrant constants (Hirschhorn [3] definition 15.10.1 and proposition 15.10.2). It follows that ifM is a Quillen
model category then the adjunction for limits of G(∆)-diagrams in M

[G(∆),M]
lim

11⊥ M
const

qq
(26)

is a Quillen pair with respect to the Reedy model structure on [G(∆),M] (Hirschhorn [3] theorem 15.10.9).

In particular it follows that if M is the category of simplicial sets Simp then this limit functor carries Reedy
fibrations, Reedy trivial fibrations, Reedy fibrant objects and weak equivalences of Reedy fibrant objects to Kan
fibrations, Kan trivial fibrations, Kan complexes and weak equivalences of Kan complexes respectively.

On the other hand, the property of the matching categories of G(∆) given in the last lemma immediately tells
us that if M is a Quillen model category and a map η : D // D′ of [∆op × ∆,M] is a Reedy fibration or
trivial fibration in there iff the map η ◦ π : D ◦ π // D′ ◦ π, obtained by pre-composing with the projection
π : G(∆) // ∆op ×∆, is a Reedy fibration or trivial fibration (respectively) of [G(∆),M].

Putting these facts together we immediately get the following result:

Corollary 9. If M is a Quillen model category then the end functor∫
n∈∆

: [∆op ×∆,M] //M (27)
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is a right Quillen functor with respect to the Reedy model structure on the left hand side. In particular, it
carries Reedy fibrations, Reedy trivial fibrations and weak equivalences of Reedy fibrant objects to fibrations,
trivial fibrations and weak equivalences of fibrant objects (respectively).

(Actually it might be worth observing that actually the arguments of the last couple of lemmas continue to
hold if we replace ∆ by any Reedy category C.)

To apply this theorem to the end for Desc(X) in display (18) we must show that the simplicial presheaf
hom(∆∗, X) : ∆op×∆ // Simp is Reedy fibrant in [∆op×∆,Simp]. This result, however, follows directly from
the following lemma which allows us to calculate the Reedy matching objects for a bifunctor like hom(∆∗, X):

Lemma 10. Suppose that N ,M and L are appropriately complete / cocomplete categories and that the bifunctor
cls : N op ×M // L possesses the following preservation properties:

• for each M ∈M the contravariant functor cls(∗,M) carries colimits of N to limits in L,

• for each N ∈ N the covariant functor cls(N, ∗) carries limits of M to limits in L,

Then if U : ∆ // N is object in [∆,N ] and X : ∆ //M is a object in [∆,M] then the matching objects of
the functor cls(U,X) : ∆op ×∆ // L are related to those of U and X by a canonical isomorphism:

M (n,m)(cls(U,X)) ∼= cls(Ln(U), Xm)×cls(Ln(U),Mm(X)) cls(Um,Mm(X)) (28)

It follows that the matching map µn,m cls(Un, Xm) // M (n,m)(cls(U,X)) is isomorphic to the corner closure
map

cls(Un, Xm)
clsc(ιn,µm) // cls(Ln(U), Xm)×cls(Ln(U),Mm(X)) cls(Un,Mm(X)) (29)

where ιn : Ln(U) // Un is the nth latching map of U and µm : Xm // Mm(X) is the mth matching map of
X.

Proof. This is essentially a standard result, and is a direct consequence of a simple calculation of limits / colimits
to identify the matching objects of the functor cls(U,X) : ∆op × ∆ // L. We have the following expression
for the matching object of this functor at (n,m) ∈ ∆op ×∆:

M (n,m)(cls(U,X)) ∼= lim
(α,β)∈∂((n,m)↓

←−−−−−
∆op×∆)

cls(Udom(α), Xcod(β)) (30)

But we know that (n,m) ↓
←−−−−−−
∆op ×∆ is isomorphic to (

−→
∆ ↓ n)op × (m ↓

←−
∆) and that ∂((n,m) ↓

←−−−−−−
∆op ×∆)

is isomorphic to the union of the subcategories ∂(
−→
∆ ↓ n)op × (m ↓

←−
∆) and (

−→
∆ ↓ n)op × ∂(m ↓

←−
∆) of

(
−→
∆ ↓ n)op × (m ↓

←−
∆).This union of categories is actually a pushout in Cat under the common subcategory

∂(
−→
∆ ↓ n)op × ∂(m ↓

←−
∆), so it follows that we may express the limit in display (30) may be expressed as a

pullback of limits taken over each of these categories.

Now applying the limit / colimit preservation properties of cls we may calculate the limit of cls(U,X) taken
over each of these subcategories:

lim
(α,β)∈∂(

−→
∆↓n)op×(m↓

←−
∆)

cls(Udom(α), Xcod(β)) ∼= lim
α∈∂(

−→
∆↓n)op

(
lim

β∈(m↓
←−
∆)

cls(Udom(α), Xcod(β))

)

∼= lim
α∈∂(

−→
∆↓n)op

cls

(
Udom(α), lim

β∈(m↓
←−
∆)

Xcod(β)

)

∼= cls

(
colim

α∈∂(
−→
∆↓n)op

Udom(α), lim
β∈(m↓

←−
∆)

Xcod(β)

)
∼= cls(Ln(U), Xm)

(31)

and by similar arguments

lim
(α,β)∈(

−→
∆↓n)op×∂(m↓

←−
∆)

cls(Udom(α), Xcod(β)) ∼= cls(Un,Mm(X))

lim
(α,β)∈∂(

−→
∆↓n)op×∂(m↓

←−
∆)

cls(Udom(α), Xcod(β)) ∼= cls(Ln(U),Mm(X))

(32)

whose pullback is the object given on the RHS of display (28) as required.
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Applying this to hom(∆∗, X) : ∆op ×∆ // Simp we get the following result:

Lemma 11. The functor hom(∆∗, X) : ∆op ×∆ // Simp is a Reedy fibrant object of [∆op ×∆,Simp] so it
follows that its end Desc(X) is a Kan complex.

Proof. The latching objects Ln(∆n) of the functor ∆∗ : ∆ // Simp are the simplex boundaries ∂∆n and their
latching maps ιn are the inclusions of those boundaries into the corresponding standard simplices ∆n, and the
cofibrations of Simp are precisely the inclusions. By assumption, X is Reedy fibrant so its matching maps
µm : X

m // Mm(X) are all fibrations in Simp.

Now the last lemma tells us that the matching maps of hom(∆∗, X) are precisely the corner maps

hom(∆n, X
m

)
hom

c
(ιn,µm) // hom(∂∆n, X

m
)×hom(∂∆n,Mm(X)) hom(∆n,Mm(X)) (33)

associated with hom. Furthermore the Kan model structure is monoidal with respect to cartesian products, so
it follows that hom possesses the usual homotopy orthogonality property by which this corner map is a fibration
in Simp, thus making hom(∆∗, X) Reedy fibrant as postulated. The rest follows by application of corollary 9
to the formula for Desc(X) in display (18).

A similar proof also gives us:

Lemma 12. Suppose that the cosimplicial object X : ∆ // Strat by the latter clause of the statement of
theorem 7. Then the functor laxl(∆∗, X) : ∆op ×∆ // Simp is a Reedy fibrant object of [∆op ×∆,Simp] and
it follows that its end Desclax(X) is a Kan complex.

Proof. This result may be established by much the same argument as the last one, once we have established
appropriate limit / colimit preservation properties and homotopy orthogonality properties for the bifunctor
laxl(∗,−).

The that end, it is established in [8] that laxl satisfies an appropriate limit / colimit preservation property as
a bifunctor on Stratop × Pcs. Furthermore, the underlying simplicial set functor ( ) has a left adjoint and so
preserves all limits, so the limit / colimit preservation properties of lemma 10 hold for their composite laxl(∗,−).

Notice that the matching maps of X possess two properties, they are fibrations in the complicial model structure
and their underlying simplicial maps are Kan fibrations. So to complete this theorem it is enough to show that
if i : U � � // V is an inclusion of simplicial sets and p : X // Y is a stratified simplicial map which is both a
fibration in the complicial model category and Kan fibration of underlying simplicial sets then the corner map

laxl(V,X)
laxc

l (i,p)
// laxl(U,X)×

laxl(U,Y )
laxl(V, Y ) (34)

is a Kan fibration.

It is enough to establish this result for only those inclusions which are simplex boundary inclusions i : ∂∆n � � // ∆n,
since all other simplicial inclusions are transfinite composites of pushouts of such boundary maps. Furthermore,
taking adjoint transposes this result is equivalent to demonstrating that any corner product

(∂∆n ⊗×∆m) ∪ (∆n ⊗ Λm,k) � � ⊆ // ∆n ⊗∆m (35)

has the left lifting property with respect to those p satisfying the fibration conditions of the last paragraph.

This latter result is a matter of a routine combinatorial construction, along the lines of lemmas 70-72 of [9].
However it should be pointed out that this result is not a direct consequence of lemma 72 of loc. cit. to which
it bears a considerable resemblance. The difference is that the horn Λm,k we are considering here is a plain
simplicial horn with minimal stratification (thus the over line to emphasise this fact) not the complicial horn
Λm,k of loc. cit. whose stratification is somewhat more elaborate.

However, to prove the result required here we may apply the proof of lemma 72 of loc. cit. upto and including
its third observation. Then in its fourth observation we must substitute a simplicial horns Λm+n,k for the
complicial horn used there. This final simplicial horn is still guaranteed to have the required lifting property
with respect to p by the assumption that its underlying simplicial set is a Kan fibration.

Finally, given that we have established the Reedy fibrancy of hom(∆∗, X) and laxl(∆∗, X) in the past two
lemmas we are now in an excellent position to establish the weak equivalence of their ends. Our approach
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is to show that the maps in display (22) are weak equivalences and thus that the natural transformation of
hom(∆∗, X) and laxl(∆∗, X) that they give is a Reedy weak equivalence. Then we can apply corollary 9 to
show that the induced map in display (17) is also a weak equivalence.

So to conclude the proof of theorem 7, all we need is the following:

Lemma 13. If the stratified simplicial set Y ∈ Strat is a weak complicial set and has underlying simplicial set
Y which is a Kan complex, then the simplicial map of display (17) is a weak equivalence.

Proof. Again this is a matter of a little combinatorial fiddling. We start by factoring the map in display (21)
by forming its mapping cylinder

∆n ×̄ ∆m � � i1 //
� _

⊆e

��

(∆n ×̄ ∆m)⊗∆1

� _

⊆e

��

∆n ×̄ ∆m? _
i0oo

iI

i0
wwnnnnnnnnnnnnnnn

∆n ⊗∆m � �

i1
// Cn,m

(36)

and writing it as a composite of the inclusion i0 : ∆n ×̄ ∆m � � // Cn,m and the collapsing map s : Cn,m // ∆n⊗
∆m which is right inverse to i1.

Now the construction Cn,m is functorial in n,m ∈ ∆, so we can define a simplicial set T (Y )n whose m-simplices
are stratified simplicial maps t : Cn,m // Y . Then pre-composition with the various maps i0, i1, s and so
forth provides us with a diagram of simplicial maps

T (Y )n
p1

yyssssssssssss
p0

%%KKKKKKKKKKKK

laxl(∆n, Y ) � �

i
//

f

99ssssssssssss
hom(∆n, Ȳ )

(37)

in which the bottom horizontal i is the inclusion of display (22), the composite of p0 and f is equal to i and f
is right inverse to p1. It follows therefore that we can demonstrate that i is a weak equivalence by showing that
p0 and p1 are trivial fibrations.

However, that latter result follows if we can show that each of the inclusions

∂lC
n,m ∪ (∆n ×̄ ∆m) � � // Cn,m

∂lC
n,m ∪ (∆n ⊗∆m) � � // Cn,m

(38)

(where ∂lCn,m is the mapping cylinder of the map ∂(∆n ×̄ ∆m) � � // ∂(∆n⊗∆m)) has the left lifting property
with respect to all stratified simplicial sets Y which are weakly complicial and have underlying simplicial sets
which are Kan complexes. But this result is again a matter of straightforward combinatorial computation using
lemmas 70-72 of [9] and taking a little care with thin simplices where necessary, much as in the last lemma.

In closing, I have thought a little about what would happen to theorem 7 if we were to replace its Reedy
fibrancy assumptions and replace them by weaker pointwise fibrancy assumptions. There are model categories
structures on our categories of cosimplicial objects which have such pointwise fibrant objects as their fibrant
objects, and one might hope that we could use those to replace our reliance upon the Reedy model structure
in our arguments. However, after a few hours of thought I am not sure that I can push through a more general
result of this kind. Under these weakened conditions we must return to using the homotopy limit description
of descent for simplicial object, which only takes us further from a clear relationship with Street’s descent
construction.

In the end, it could well be that Ross’ purely categorical description of the descent construction does not tell
the whole strict n-categorical descent story. As Ezra Getzler pointed out to me last year, usually something a
little more elaborate, like a fibrant replacement step, is required. In this case, maybe he should have insisted
on taking Reedy fibrant replacements relative to the folkloric Quillen model structure on strict ω-groupoids
(categories) before applying his construction.
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I hope these ramblings have been a help.

Kind Regards

Dom Verity
Centre of Australian Category Theory
Faculty of Science

References

[1] S. Crans. On Combinatorial Models for Higher Dimensional Homotopies. PhD thesis, Universiteit Utrecht,
1995.

[2] Robert Gordon, A. John Power, and Ross H. Street. Coherence for Tricategories, volume 117 of Memoirs.
American Mathematical Society, 1995.

[3] P. Hirschhorn. Model Categories and their Localizations. Number 99 in Mathematical Surveys and Mono-
graphs. American Mathematical Society, 2003.

[4] Ross H. Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49:283–335, 1987.

[5] D. Verity. Complicial sets. e-print arXiv:math.CT/0410412, Macquarie University,
http://arxiv.org/abs/math.CT/0410412, 2004.

[6] D. Verity. Enriched categories, internal categories and change of base (PhD thesis, University of Cambridge
1992). Theory and Application of Categories (Reprints Series), to appear, 2008.

[7] Dominic Verity. Weak complicial sets II, nerves of complicial Gray-categories. In A. Davydov, editor, Cat-
egories in Algebra, Geometry and Mathematical Physics (StreetFest), volume 431 of Contemporary Mathe-
matics, pages 441–467. American Mathematical Society, 2007.

[8] Dominic Verity. Complicial Sets, Characterising the Simplicial Nerves of Strict ω-Categories, volume 193 of
Memoirs of the AMS. American Mathematical Society, May 2008.

[9] Dominic Verity. Weak complicial sets I, basic homotopy theory. Advances in Mathematics, 219:1081–1149,
September 2008.

13


