Some Remarks on the
Quantomorphism Group

Cornelia Vizman

Abstract

If M is the quantizing manifold of N, the infinitesimal quantomorphism Lie
algebra is isomorphic to C*°(N,R) with the Poisson bracket and the universal
covering of the identity component of the quantomorphism group is a direct
Lie group product of the universal covering of the group of Hamiltonian diffeo-
morphisms on N with R. All the groups involved are ILH Lie groups as well as
regular convenient Lie groups (for the Frolicher-Kriegl differential calculus).

1 Introduction

A contact structure on a manifold M of dimension 2n + 1 is a maximally non-
integrable distribution of codimension one, which is also transversally orientable.
So £ = Kera for a 1-form a on M such that a A (da)™ # 0. Given a contact form
«, there exists a unique field X, on M, called the Reeb vector field, such that
i(Xq)da =0 and i(X,)a = 1.

A diffeomorphism ¢ on M is called a contactomorphism if it preserves the ori-
ented hyperplane field ¢ = Kera. This is equivalent to ¢p*a = e« for some
function h : M — R. A vector field X on M which satisfies Lxa = ga for some
function g : M — R is called a contact vector field. X is a contact vector field
if and only if there exists a function f : M — R such that i(X)a = —f and
i(X)da = df — X4(f)a, so there is a one-to-one correspondence between contact
vector fields and smooth functions.

The group of contact diffeomorphisms Diff (M, &) for compact M is an ILH Lie
group [O] with Lie algebra X' (M, ¢), the Lie algebra of contact vector fields. It is
also a regular convenient Lie group (i.e. for the Frolicher-Kriegl differential calculus
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on convenient vector spaces [FK]) with the space of compactly supported contact
vector fields as Lie algebra [KM].

The contact form « is called regular if the flow of the Reeb vector field defines a
free circle action ® on M. Then the quotient manifold N = M/S! is smooth and
carries a symplectic structure w, [w] € H*(N,Z) and 7*w = da where 7 : M — N
is the canonical projection. Under these assumptions © : M — N is a principal
S'-bundle, a a principal connection one-form and w its curvature two form. The
Reeb vector field X, generates the vertical bundle, the principal right action of
S on M is ® and ¢ = Ker « is the horizontal bundle. M is called the quantizing
manifold of N.

A diffeomorphism ¢ on M is called a quantomorphism if ¢ preserves the 1-form
a. We denote by Diff(M, ) the group of quantomorphisms. The infinitesimal
quantomorphisms are the vector fields on M which satisfy Lxa = 0. Let X' (M, «)
be the Lie algebra of infinitesimal quantomorphisms. Proposition 1 states that it is
isomorphic to C°° (N, R) with the Poisson bracket, the isomorphism being exactly
the restriction of the isomorphism above between X'(M,§) and C*°(M,R).

Two different proofs that the quantomorphism group Diff (M, «) for compact
M is an ILH Lie group with Lie algebra X (M, ) can be found in Omori [O] and
Ratiu-Schmid [RS]. It is shown in Proposition 4 that Diff (M, «) for compact M is
also a regular convenient Lie group.

2 The Lie algebra of infinitesimal quantomorphisms

Let (M, «) be a compact quantizing manifold of (N,w). Let Xg1(M) be the Lie
algebra of S'-invariant vector fields on M. Then

(1) 0 — C°(N,R) L X1 (M) 25 X(N) — 0.

is an exact sequence of Lie algebras, where on C°°(N,R) we consider the trivial
bracket. Here J(g) = (g o m)X, and P(X) = Y is the projection on N of the
invariant (hence projectable) vector field X. Every X € Xg: (M) decomposes into
its horizontal and vertical parts X = CY —(gom) X, where g € C*°(N,R) and CY is
the horizontal lift of Y = P(X). Indeed the vector field X = CY + f X, € X1 (M)
S [X, Xy =04 [CY,X,] = Xo(f)Xa © Xo(f) =0 < f = —gomn. From this
decomposition the exactness of the sequence follows immediately.

The restriction of the exact sequence (1) to the Lie algebra of infinitesimal quan-
tomorphisms gives a central extension of Lie algebras (i.e. the image of J is con-
tained in the center of X (M, a)):

Proposition 1. The central extension of Lie algebras
(2) 0—R-L X(M,a) 2 Xgam(N,w) — 0.

is trivial. The Lie algebra of infinitesimal quantomorphisms of (M, «) is isomorphic
to C>°(N,R) with the Poisson bracket.

Proof. All infinitesimal quantomorphisms have the form X = CH, — (g o m)X,
for some g € C*°(N, R) because in the decomposition X = CY — (gom) X, we have
the equivalences Lxa =0 < icyda=d(gon) & n'iyw =71*dg & Y = H,.
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We define a splitting of (2) by S : Xgem(N,w) - X(M,«a), S(Y) := CHy —
(g o m)X4, where g € C°(N,R) is the unique Hamiltonian with zero integral
fN gw™ = 0 of the Hamiltonian vector field Y = H,. Then S is really a Lie
algebra homomorphism:

[S(Hm)? S(ng)] = [CHQUCng] + (CH92 (gl o 7"')Xroz - CHgl (92 o 7T)Xa
= CHyg, g} + ((—w(Hy,, Hy,) + Hg,(91) — Hy, (g2)) o m) Xq

- CH{91792} - ({91,92} © ﬂ-)XOt = S([HgUng])'
Here the second step follows from the fact that w is the curvature form of the
principal connection o on M, the third step uses the definition of the Poisson
bracket {g1,92} = —w(Hy,,Hy,) = Hy, (92) = —Hgy,(g1), and the forth step relies
on the fact that every Poisson bracket has integral zero [ {g1,g2}w" = 0.
It follows that the Lie algebra of infinitesimal quantomorphisms of (M, «) is

isomorphic to the direct product of the Lie algebra of Hamiltonian vector fields
with R, hence it is isomorphic to C°*°(N,R) with the Poisson bracket. [

The isomorphism of Lie algebras constructed in the Proposition above,
A: (C®(N,R).{,}) = (X (M, ), [.])
A(g) =CHy — (gom) X, ,
fits into the following commutative diagram of Lie algebras:
X(M,a) 255 ¢=(N,R)
1l I
X (M, &) =% C®(M,R) .
Here we consider on C*° (M, R) the bracket induced from X' (M, §) by —a:

{fi, fata = X1(f2) + Xa(f1) f2

where X; is the unique vector field in X'(M, &) such that —a(X;) = f;. We have to
verify only that 7* becomes a Lie algebra morphism:

{giom, gzom}y = Xi(g20m) = (CHy, —(g910m) X o) (g20m) = Hy, (g2)om = {g1, g2 }or.

3 Exact sequences of regular convenient Lie groups

In this paragraph we show there are exact sequences of regular convenient Lie
groups which integrate the exact sequences (1) and (2) of Lie algebras. The con-
venient smooth manifolds are defined by gluing C*°-open sets in convenient vector
spaces via smooth diffeomorphisms (for the Frolicher-Kriegl differential calculus
[FK]. A locally convex vector space is said to be convenient if any Mackey-Cauchy-
sequence converges. The C'°°-topology of a locally convex vector space E is the
final topology with respect to all smooth curves into £. A mapping between locally
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convex vector spaces is called smooth if it takes smooth curves into smooth curves.
A convenient Lie group is a convenient smooth manifold and a group such that
the group operations are smooth. The Lie group G with Lie algebra g is called
regular if every smooth curve X € C*° (R, g) can be integrated to a smooth curve
g € C*(R,G) with g(0) = e and the evolution map evol : C*° (R, g) — G defined by
evol(X) = g(1) is smooth. For diffeomorphism groups the evolution operator is just
integration of time dependent vector fields with compact support. The reference
for regular convenient Lie groups is the book [KM].
An exact sequence of Lie groups integrating (1) is

(19 0 — C®(N, SY) -5 Diff g1 (M) -2 Diff(N) — 0.
Here j(s) = @4 and p(p) = ¢ where mop =1pom.

C*>(N, S1) is the gauge group of the principal bundle M over N. It is an ILH
Lie group and also a regular convenient Lie group [KM].

Let G be a compact Lie group acting smoothly on M. The group of G-equivariant
diffeomorphisms on M is

Diffg(M) = {¢ € DiIff (M) : p(gx) = gp(z),Yg € G}
and the Lie algebra of G-invariant vector fields on M is
Xeg(M)={X € X, (M) : g*X = X,Vg € G}.

For compact M the group Diffg(M) is an ILH Lie group with Lie algebra Xg (M)
[EM]. The next proposition shows it is also a regular convenient Lie group.

Proposition 2. Diffg(M) is a closed reqular convenient Lie subgroup of Diff (M)
with Lie algebra X, (M), the space of compactly supported G-invariant vector fields
on M.

Proof. Because GG is compact we can find G-invariant Riemannian metrics on M.
Let exp : TM O U — M be the associated exponential map defined on the open
neighborhood Uy of the zero section such that (mar,exp) : Uy =V C M x M is a
smooth diffeomorphism.

Let U be the open neighborhood of id in Diff (M) of those compactly supported
diffeomorphisms whose graph is contained in V and let v : U — X.(M) be the map
u(p)(r) = exp~(p(x)). The inverse of u is u™(X)(x) = exp, (X (z)).

We prove the pair (U, u) is a submanifold chart for Diff¢(M). This means to
prove the equivalence: X € X, g(M) if and only if ¢ := u=*(X) € Diffg(M). The
following equivalences for X = wu(p) end the proof that (U,u) is a submanifold
chart:

X=X TgX(x)=X(g(x)),YVre M
& g(exp X (z)) = exp(X(g2)), Ve € M
& go(r) = p(gr),Vo € M.
Here the second step follows from the fact that isometries move geodesics to
geodesics.
A submanifold chart in the neighborhood of an arbitrary ¢ € Diffg(M) is ob-
tained by translating the chart (U,u). Hence Diff (M) is a closed submanifold

of Diff(M) and a Lie group because composition and inversion are smooth (by
restriction). It is also regular because it is a group of diffeomorphisms. [J
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Proposition 3. [RS] An ezact sequence of ILH Lie groups corresponding to (2) is
0 — S* L Diff(M, a) 25 K — 0.

with j(s) = ®4 and p(p) = ¢ for mop = 1 ow. Here K, the group of those
symplectomorphisms of (N,w) that can be lifted to quantomorphisms of (M, ),
equals the group of those symplectomorphisms ¢ of (N,w) for which both parallel
transports along a piecewise smooth curve c and along its image oc are restrictions
of the same ®,, s € S'. The quantomorphism group is also a principal S*-fiber
bundle over K.

Taking the components of the identity we get the central extension
(2) 0 —» St —5 Diff(M, a)o 2 Ham(N,w) — 0

where Ham(N, w) is the group of Hamiltonian diffeomorphisms of (IV,w). Recall
that a symplectomorphism ¢ is called Hamiltonian if there is an isotopy t; from
0 = id to 91 = 1 such that ¢y € Ham(N,w) where

%wt = 77bt 1.

In [KM] it is shown that Ham(N,w) is a regular convenient Lie group.

Proposition 4. Let M be a compact quantizing manifold. Then Diff (M, «)q, the
identity component in the group of quantomorphisms, is a reqular convenient Lie
group with Lie algebra X (M, «).

Proof. First we define a principal bundle atlas. Every local section h : W — M
of the bundle 7 : M — N with W an open subset of N, together with a pair of
points xg € M, zy € N such that m(z¢) = 2o, define a local section ¢ of (2) and so
a principal bundle chart for Diff (M, «) like follows:

o:U={¢ € Ham(N,w) : ¥(29) € W} — Diff (M, )y,

o(1) is defined to be that lift ¢ of 1) whose value at zo is p(xg) = h(1(20)).
This definition is correct because all lifts of 1) differ by some ®,,s € S* and all
quantomorphisms commute with the circle action ®. The principal bundle chart is
U:U x St — Diff(M, a)o, U(1p,s) = o(tp) o ®s. The compatibility of the charts:
Let Uy, ¥y bundle charts defined by sections hi, hy and points (z1, 21), (22, 22).
Fix a piecewise smooth path in N from z; to zo. Let Pt(c) denote the parallel
transport along ¢ and 7 : M xy M — S! the transition map along the fibers
7(x1,72) = s iff x5 = s.xy. The quantomorphisms commute with the parallel
transport: ¢ o Pt(c) = Pt(¢ o ¢) o . Using this result we get:

Uy 0 U (3, 5) = (¢, T(Pt(c) (1), 22)7(h2(¥(22)), Pty 0 ¢) (hi(1h(21))))s),

hence a smooth dependence on 1) and s. The principal bundle structure given by the
atlas {¥} induces canonically a smooth manifold structure which makes Diff (M, «),
a convenient Lie group. Indeed, the group operations are smooth. This is shown
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by using again the commutativity of quantomorphisms with the parallel transport
and the smooth dependence of the parallel transport on the curve

Pt : COO(R,N) X (evp,m) M — M.

Finally, Diff (M, «)¢ is regular because it is a group of diffeomorphisms. [

All the groups involved in (1‘) and (2‘) are regular convenient Lie groups. The
same is true for the exact sequence of universal covering groups of (2°):

(3) 0 — R L5 Diff (M, a)o 2 Ham(N,w) — 0.

Theorem. [KM] Let G and H be Lie groups with Lie algebras g and b respectively.
Let f : g — b be a bounded Lie algebra homomorphism. If H is reqular and if G
s stmply connected then there exists a unique homomorphism f : G — H of Lie
groups with T.f = F.

There exists a unique homomorphism of Lie groups § : I-/I—f;r/n(N, w) — f)\l_f/f(M, a)o
such that T;48 = S. The explicit construction of 5 is: 5({t+}) = {p+} where the
isotopy ¢y is uniquely determined by ¢ = id and ¢y = S(1);). Applying the unicity
part in the theorem for PS = idy,,,, we get ps = idﬁ'am(N,w)’ so s is a splitting
section for (3).

Proposition 5. The universal covering of the identity component of the quanto-
morphism group is a direct Lie group product of the universal covering of the group
of Hamiltonian diffeomorphisms on N and R

Diff (M, a)o = Ham(N,w) x R.
Another restriction of the exact sequence (1°) is
0 — C®(N, SY) -1 Diff g1 (M, da) 25 Diff(N,w) —s 0
with the infinitesimal version
0 — C®(N,R) -1 X1 (M, da) 25 X(N,w) — 0,

where Diff g1 (M, da) is the group of those S'-equivariant diffeomorphisms which
preserve the 2-form da and Xgi1(M,da) is the Lie algebra of S'-invariant vector
fields X on M with Lxda = 0. This exact sequence of Lie groups is impor-

tant because there is an extension to Diff g1 (M, da) of the flux homomorphism on
Diff (N, w), see [B].
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