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ABRSTRACT

This book is addressed to those readers who are already familiar with the
elements of the theory but wish to go further. Wwhile some aspects, e.g. tensor
products, are sunmarized without proof, others are dealt with in all detail.
Numerous examples have been included and I have also appended an extensive list

of references.
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§1, BASIC FACTS

Iet A be a complex Banach algebra, *:A -~ A an involution — then the pair

(A,%) is =3id ®© be a C*-algebra if v & € A,

lia*sal} = |{al]”.
N.B. It is automatic that ||a*|| = |[A||, Hms the involution *:A » A is
continuous.
1.1 IERMMA ¥V A € A,
l|al} = r @)/,

r the spectral radius.

1.2 REMARK If (4, ||-|]) is a C*-algebra and if

[+1]" is a subrul tipli-
cative norm satisfying the C*—condition, viz.,

Hasal [t = ([[a]192 @e ),
then

JINRIEIP

[Note: It is not asammed that (A,

{*) is complete, i.e., (A,|[|-|1") is

merely a pre~C*-algebra. ]

1.3 FEXAMPLE Given a camplex Hilbert space H, denote by B(H) the set of
bounded linear operators on H —— then B(H) is a C*-algebra. Furthermore, any
*—aibalgebra A of B(H) which is closad in the norm tomology is a C*-algebra. E.g.:
This is the case of A = L (H), the nomm closed *-ideal in B(H) consisting of the

compact operators.



1.4 EXMPIE Take H = C" and identify B(C") with M_(C), the algebra of

n-by-n matrices over C. Equip M L (©) with the induced operator norm and let the
involution *:M () + Mn (C) be "conjugate transpose" —- then with these stipulations,
M (©) is a C*-algebra. More generally, if n = (nl,. .- ,np) is a p—tuple of pogitive
integers, then

P
M© = 8 M (©
2 k=1

is a C*~algebra. Here

P
|Ikg1 Al = = Ha [ @y € M, ©)
or still,
P
!I}:lAkH =f_i?;§p}‘k’
2

where Xk is the largest eigenvalue of A]?k

[Note: Every finite dimensional C*-algebra A is s-isomorphic to an Mn {C)
for some n and n is uniquely determined by A up to a permutation. If B is another

finite dimensional C*-algebra with associated g-tuple m = (ml,... ,mq) , then A and

B are *—isomorphic iff p = q and 3 a permutation ¢ of {1,...,p} such thatmk = Ny k)

k=1,...,p).]

1.5 EXAMPIE Fix a C*-algebra A and let X be a compact Hausdorff space. Equip
C{X,A) with pointwise operations and define the involution by f*{(x) = £{x)* {x € X).

Put

»

e} = swp |1£6x)
x€X



Then C(X,A) is a C*-algebra.

1.6 NOTATION C*AlG is the category whose objects are the C*-algebras and

whose morphians are the »~homomorphiams.
[Note: An isomorphiasm is a bijective morphism.]

N.B. Let A,B be C*-algebras —— then a linear map ¢:A » B is a *-homomorphism

iff

¢(A1A2) = ¢(Al)®(A2) & G(A*) = P(A)*,

1.7 IBEVMMA A »—homomorphism 9:A + B is necessarily norm decreasing, i.e.,

vAEA, |[le@]] = |[a

1.8 LEMMA An injective #-hamomorphism ¢:A » B is necessarily isametric, i.e.,

vAae A, |fe@||l= 1A

-

Suppose that 7 < A is a closed ideal — then T is a *-ideal. Equip A/T

with the quotient norm, thus

|1a + 7|| = inf ||a + 1{},
1T
and let
A+ TY* =a% + 17,

Then A/T is a C*-algebra and the projection m:4 + A/T is a *~homomorphism with
kernel 1.

N.B. If 0:A » B is a #-homomorphism, then the kernel of ¢ is a closed ideal



in A ard the image of ¢ is a C*~subalgebra of B:A/Ker ¢ = 9(A).

[Note: The tem "C*-subalgebra" means a norm closed subalgebra which is

invariant under the *-operation.]

1.9 EXAMPIE Tf X is a compact Hausdorff space and if T < C(X) is a closed

ideal, then 3 a unicque closed subset Y < X such that
1 ={f€cCc:£|y =0}

Moreover, the C*-algebra C(X)/1 is *-isomorphic to C(¥Y)} via the map induced by the

arrow of restriction C{X) - C(Y).

A C*-algebra A is simple if it has no nontrivial closed ideals. E.g.: L_(H)
is simple (but B(H)} is not simple if H is infinite dimensional).

A C*=algebra A is unital if A has a unit 1A; otherwise, A is nommital.

1.10 iFMMA If A is unital, then every maximal ideal in A is closed.

A simple unital C*-algebra has no nontrivial ideals. On the other hand, a
nonunital simple C*-algehra may very well have nontrivial ideals (e.g., L (M) if
H is infinite dimensional).

A closed ideal T in a C*-algebra A is essential if AT = 0 => A = 0 (equiv~

alently, JA = 0 => A = 0). In particular: A is essential in itself.

1.11 IEMMA A closed ideal T < A is essential iff T n J = 0 for all nonzero

closed ideals J in A.



1.12 EXAMPLE Suppose that H is a complex Hilbert space — then L_(#)

is an essential ideal in B(f).

A unitization of a C*-glgebra A is a pair (U,i), where U is a unital C*-
algebra and i:A + U is an injective *~hawomorphism such that the image i(A) is an

essential ideal in (.

1.13 REMARK If A is unital to begin with, then the only unitization of A is
A itself., Proof: Identify A and i(A) and, assuming that U = A, fixUe U - A —

thenUlAEAandU—UlA=0. Mearwhile, v A € A,

(U--U].A)A=UA—U1AA=UA—UA= 0.

1.14 CONSTRUCTION Given a nonunital C*-algebra A, put AF=4e C (vector

space direct sum) ~— then with the operations

(A, 2) (B,yu)

(3B + AB + uA,iu)

@A, * = (a%,2),

'y acquires the structure of a unital s-algebra (1 + = (0,1}). Moreover, the
A
prescription

H@ay ] = Sulf |iax + x| |
| %] <1

is a C*—nomm on A+. Proof: It suffices to cobserve that
a0 *@ A || = |13+ 3a + a0 ||

= sup {||A*AX + AAX + MA*X + X[ [}
x| <1



IV

| [Su};|> { | |K*A*AX + AX*AX + AXMA*X + JOX*X| |}
X| <1 .

|

_ suﬁ) {]] (X + 2X)*(AX + X} ] |
RESRESS

sup  {||AX + x| 12}
P[x]]<1

a2,

Denote now by i the arrow A - A’ that sends A to (A,0) — then the pair (A',i) is
a unitization of A. Indeed, i{A) is a closed ideal in A+, thus one only has to
check that it is essential. So suppose that (A,M)i(A) =0, i.e., AB+ AB =0
¥vBEA, Claim: A= 0and A = 0. This being obviocus if X = 0, assume that X} = 0:
v B e A,

AB + XB = 0

{%A)B+B=0

B¥ (3 A)* + B* = 0

|
o

m%m*+5-

GRAGEA*+ (FA* =0

1 1 -
GAGA*+ (A =0



Therefore - %A is an identity for A. But A is nonunital, from which a contra-
diction.

[Note: The quotient A'/i(A) is s—isomorphic to C ((&,)) + A).]

1.15 EXAMPLE Let X be a noncompact locally compact Hausdorff smce, C _(X)

the algebra of complex valued contimuous functions on X that vanish at infinity.

Equip C (X} with the sup norm and let the involution be camplex conjugation —- then
C,{X) is a nonunital C*-algebra ard cm(x)+ = C(X+) . X+ { = X U {=}) the one point

compactification of X.

[Note: Explicated, the relevant arrow
+ +
ColX) =+ C(X)

is the assignment

{(f,2) ~ £+ A,
(£ + X (=) = A1

Given C*-algebras A and B, their direct sum A & B is the ordinary *-algebra

direct sum with norm

|1 @,8) || = max{}|a|],|{B]]}-
This is a C*~-norm. Proof:
| @B*@,B) || = || @*a,BB]|
= maxc{ | [a%a] |, | [B*B] |}

2 2
= max{ | |Al |7, [[B][7}



max(|1a] ], | |B]|}*

I

@B | |2

N.B. A @ B contains A and B as nonessential ideals and

i

(A& B)/A B

(A @& B)/B

i
=

= (1,,1p)).

In addition, A ® B is unital iff A and B are unital {(in which case lA&B

1.16 REMARK Take A unital —— then one can form A+ exactly as in 1.14 and

the arrow c:A+ + A @ C that sends (A,}) to (A + AlA,)\] is a unital *~iscmorvhism.

1.17 LEMMA Let A,B be C*-algebras and let ¢:A > B be a *-homomorphism —-

then ¢ admits a unique extension to a unital *-homomorphism <I>+:A+ + B+, viz,

@M = (90,0,

1.18 NOTATION UNC*ALG is the category whose objects are the unital C*-alge-

bras and whose morphisms are the unital *-hamoncrphisms.

[Note: An isomorphism is a bijective morphism. ]

N.B. The assignment

is functorial, i.e., defines a functor



C*ALG ~ UNC*ALG.

1.19 RAPPEL Let A be a Banach algeora - then an approximate unit per A

is a norm bounded net {ei:i € T} such that v A € A,

lim ||e,A -Al| =0
ier *
lim ||ae, - al| = 0.

ier

1.20 LEMMA Every C*-algebra A has an approximate unit {e;:i € I} such that

T e, 20
i

v i viz< . £ e,.
’ andlj,el e:J

eIl <1

C*-algebras having a countable approximate unit are said to be o-unital.

1.21 REMARK Every unital C*-algebra is og-unital. FEvery semarable C*-algebra
is o-unital but there are nonseparable nonunital c-unital C*-algebras.

[Note: Not all C*-algebras are c-unital.]

1.22 EXAMPLE Take H semrable and infinite dimensional. Fix an orthonormal

basis {en:n € N} and let P, be the orthogonal mrojection onto Cep + -=+ + gen —
then the sequence {Pn} is an approximate unit per L _(H), hence L _(H) is o-unital.

[Note: L _(H) is separable (but B(H) is not separable).]



10.

1.23 EXAMPLE Let X be a noncampect locally compact Hausdorff space — then

C_(X) is g-unital iff X is g-compact.

Let A be a C*-algebra.

'ASA ig the collection of all selfadjoint elements in A, i.e.,

= AR =
ASA {A € A:A a).

* A, is the collection of all positive elements in A, i.e.,

- a2,
A+ = {A":A € ASA}
or still,
A+ = {a*Aa:A c Al.

1.24 1EMMA The set A+ is a closed convex cone in A with the property that
A, 0 (- A) = {0}

Given A,B € ASA’ onewrites A z B {(or Bs A) iff A - B € A+.

1.25 LEMMA If A 2B 20, then ||a|| 2 ||B|

1.26 I¥MA If A >B 20, then v X € 4,

X*AX > X*BX = O.
PROOF SinceA - B ¢ ALy 3CEAA-B= C*C. Therefore
X*AY - X*BX = X*(A - B)X



11.

= X*C*CX

{CX)*CX € A+.

N.B. If A is unital, then

aeA = 0zacx |{aff1,.

If A is nonunital, then

_ +
A, =AN (A,

+
and
A€A = 0shAx HA”lA‘L.-
So, in either situation, ¥ X € A,
0 < X*aX < |[a||X*X.

1.27 REMARK Every positive A has a unique pesitive square root Al/z, thus

a= @32,

2,1/2

1.28 LEMMA Given A € A, mut [A] = (A and let

a = (|a| T ay/2.

B €A, A=A -A AA =0

Moreover, A are the unique posgitive elements with these properties.

-



12,

N.B. Every A € A is the sum of two selfadjoint elements:

A=ReA+ /~1 ImaAa,

where

A + A* A - A%

Re A= > , Im A =
2 /-1

lIRe al], [lmal] < [[a]].

Therefore every A € A can be written as a linear combination of four positive

elements.

Sup;osethatAisunital——thmanelanthEAisunit_agifU*UﬂUU*=1A.
If A€ Ay, and [[a]] s 1, then

A= (U +U)}/2.
Here

.. 2.1/2
U+~Ai/-_—I(lA-—A)

are unitary. Therefore evary A € A can be written as a linear combination of four

unitary elaments.

1.29 REMARK If ||al| <1 - Z, then there are unitaries U U_ such that

17

U1+ e +UI'1

A= .
n

Consequently, the convex hull of the set of unitary elements includes the open unit

ball in A, thus its closure is the closed unit ball in A.



13.

A= (ac A:||a]} = 13
1.30 LEMMA A C*-algebra A is unital iff Al has an extreme point.

1.31 EXaMPIE If A ig unital, then 1, is an extreme point of Al.



§2. THE COMMUTATIVE CASE

A character of a commutative C*-algebra A is a nonzero homomorghism w:A + C

of algebras. The set of all characters of A is called the structure space of A

and is denoted by A(A).
N.B. We have
A(A) =98 (A ={0D)
AA) = 8 (A= {OD.

2.1 ILRMA Let w € A(A) — then v is necessarily bounded and, in fact,
llwl| = 1. Mrever, if A isunital, then
1= w(lA}

amd if A is ronunital, then

1 =1lim w(ei) .
ieT
Given A € A, define
A:b(A) > C
by stipulating that
A{w) = w().

Equip A(A) with the initial topology determined by the A, i.e., emuip A(A) with

the relativisad ‘weak* topology.

2.2 IFRMMA A(A) is a locally compact Hausdorff space. Furthemore, A(A)

is compact iff A is unital.



2.3 LEMMA Fix a commitative C* algebra A.
eIf A is unital, then A € C(A(A)) and the arrow
T A > ClA(A))
_ A->A
is a unital #-isomorphiam.
» If A is nomnital, then 33 € C_(A(A)}) and the arrow
A > C_(A(A))

A->A

is a *—isomorphism.

N.B. If A = {0}, then A(A) = # and there exists exactly onemap @ ~ C,
namely the empty function (# = g x C), which we shall take to be 6.

2.4 REMPRK It suffices to establish 2.3 in the unital case. Thus suppose
that A is nonunital — then each w € A(A) extends to an element o' e A(AY) via the

prescription af(A,)\) = w(d) + ) and

MATY = {w e AT U T,
vhere y_(A,}) =}, s ﬁ(_A+) is homeomorphic to &(A)+, the one point compactification
of A(A}. But A’ is unital, hence

&~ coa zcuamwh
=>

A = C_(A(A}).



2.5 LEMMA Fix a locally compact Hausdorff space X.

» If X is cammact, then v x € X, the Dirac measure (Sx € A(C(X)) and the
arrow

X+ A(C(X))

X -

is a homesmworphiaa.
e If X is noncompact, then v x € X, the Dirac measure 6x € &(Cm(X)) and
the arrow

TOX > A(C, ()

is a homeomorphiam.

2.6 REMARK It suffices to establish 2.5 in the compact case. Thus suppose

that X is noncompact — then X" is compact, hence

X = acE
or still,

X"z a0
or still,

x" = ac, .
Therefore

X T AIC (X)),

2.7 RAPPEL Let C and D be categories — then a functor F:C ~ D is an



equivalence if thare exists a functor G:D » C such that G o F = idc and
FeGzx idD, the symbol = standing for natural isomorphism.

[Note: The texrm coeguivalence is used when F is a cofunctor: v f € Mor(X,Y),

Ff € Mor (FY,FX).]

N.B. ‘A functor F:C » D is an equivalence iff it is full, faithful, and has

a representative image (i.e., for any Y € Ob D, there exists an X € Ob C such that

FX is isomorphic to Y).

2.8 RAPPEL Categories C and D are said to be egquivalent (coeguivalent) pro-

vided there is an equivalence (coeguivalence) F:C » D. The object isomorphism types

of equivalent {coequivalent) categories are in a one-to-tne correspondence.

Let X and Y be compact Hausdorff spaces. Suppose that ¢:X =+ Y is a continuous
function — then ¢ induces a unital *~homomorphism

¢*:C(Y} »~ C(X),

viz. ¢*(f) = £ o ¢. Therefore the association C that sends X to C(X} is a cofunctor
from the category of compact Hausdorff spaces and contimuous functions to the cat~
egory of unital commitative C*—algebras and unital #~homomorphisms.

Let A ardd B be unital commtative C*—algebras. Suppose that ©:A > B is a

unital x~homomorphism — then ¢ induces a continuous function
o*:A(B) > A(A),

viz. o*(w} = w ° §. Therefore the association A that sends A to A{A) is a cofunctor



from the category of unital commutative C*-algebras and unital «—homomorphians

to the category of compact Hausdorff spaces and contimous functions.

2.9 THEOREM The cateagory of campact Hausdorff spaces and contimious
functions is coequivalent to the category of unital commtative C*-algebras and
unital »=homomorrhisms.

PROOF Define

Bk > AC(X))

by the rule Z_(x) = 8 — then =, is a homeamorphism and there is a commtative

X X
diagram
EX
X —— AC{X))
" j l .
Y ———— AC(Y)).
Y
Define

by the rule Eg {A) = A — then N is a unital *-isomorphism and there is a coammtative

diagram
A A L caan
& l ox*
+
B
Therefore
T idz Ao C
id = C o A.




The situation for noncompact locally compact Hausdorff spaces and nonunital
canmitative C*-algebras is slightly more complicated. One immediate and obvious
difficulty is that a continuous ¢:X - Y need not induce a map ¢p*:C_(Y) » C_(X).

E.g.: Take X = ¥ = R and let

However, the rescolution turns cut to be simple enough: Impose the restriction that
¢:X + ¥ be proper.
[Note: let ¢:X +~ Y be continuous —— then ¢ is proper iff its canonical
+

extension ¢>+:X+ 'Y (¢ (=

X) = ooY) 1s continuous.,

2.10 IFMMA A proper ¢:¥ - Y induces a #-hamomorphism

$*:C_(¥) » C_(X).

There is also a problem on the algebraic side, namely if A and B are nomunital
commutative C*—algebras, then a x-homanorphism ¢:A -+ B need not induce a map
P*:A(B) » A(A), the point being that w ° ¢ might very well be zero. To get around
this, call ¢ proper if for any approximate unit {ei:i € I} per A, {®(ei) :1 € I} is
an approximate unit per B (cf. 1.20).

[Note: A surjective ¢ is proper. To see this, chocse an approximate unit

{ei:iEI}perA-—thanVAEA,

eiA+ A => tb(ei)fb(A) > $(A).]

2.11 ILFMA A proper $:A -+ B induces a continuous function



*:A(B) > A(A).

[v A €A,
O% (w) (A*A) = w(¢(A)*®(B)) = 0.
Therefore ?*{w) is a positive linear functional, hence v w € A(B),

o*(w) || = lim &* (w) (e;)
i€T

1im w(d (ei))
i€l

[l

ol = 0.1
N.B. The ¢* figuring in 2.10 is proper and the ¢* figquring in 2.]11 is proper.

2.12 THEOREM The category of noncompact locally compact Hausdorff spaces
and proper continuous functions is coequivalent to the category of nonunital
caommitative C*—algebhras and proper *-homomorphisms.

PROOF Replace the cawmtative diagrams in 2.9 by

™

X —2 . AMC_(X)

-

Y AC_ (D)
Y

A—A ey

¢ | | ax

B —e—— C_(A(B)).



§3. CATEGORICAL CONSTDERATIONS

We shall first review some standard terminology.

3.1 RAPPEL Let C be a category.

oA source in C is a collection of morphisms fi:X + Xi indexed by a set

I and having a common damain. An n-source is a source for which #(I) = n.

* A sink in C is a collection of morphisms fi:xi +~ X indexed by a set I

and having a common codomain. An n-sink is a sink for which #(I) = n.

A diagram in a category C is a functor A:I > C, where I is a small category,

the indexing category. To facilitate the introduction of sources and sinks associ-

ated with A, we shall write ‘ﬁi for the image in Ob C of i € Ob I.

3.2 LIMITS Let A:T » C be a diagram —— then a source {f;:X -~ A/} is said

)
to be natural if for each § € Mor I, sayi*j,&éofi=fj. A limit of A is a

natural source {Ei:L * ;’,\.i} with the property that if {fi:X -+ ﬂi} is a natural
source, then there exists a unique morphism ¢:X + L such that fi = i’.i o ¢ for all

i€ Ob 1. Limits are essentially unique. Notation: L = lim; A(or lim A).

3.3 COLIMITS Let A:I -+ C be a diagram — then a sink {f;:A; > X} is said

8
to be natural if for each § € Mor I, say i + j, fi=fj°A6. A colimit of A is



a natural sink {Ki:ﬁi + L} with the property that if {fi:ﬂ.i + X} is a natural sink,
then there exists a unique morphism ¢:L + X such that fi =¢ o Ei for all i € Ob I.

Colimits are essentially unique. Notation: L = c:ol:i.n'lI Afor colim A}.

There are a mumber of basic constructions that can be viewed as a limit or

colimit of a suitable diagram.

3.4 PRODUCTS let I be a set; let I be the discrete category with Ob I = I.

1l
]

Given a collection {Xi:i € I} of objects in C, define a diagram A:I > C by ﬁi

{i € I) — then a limit {fli:L + &i} of A is said to be a product of the X,

Notation: L = T;T Xi {or XI if Xi = X for all i), Ki = Prjq the projection from

1iTxi to X, .

3.5 LEMMA C*ALG has products.

PROOF Let {Ai:i € I} be a collection of objects in C*ALG. Consider the set

A of all functions A fram T to U A, such that v i € T, A(1) € A, and
ier

Al = sup | [Aa) ][] < .
i€l

Take the sum, product, and involution pointwise — then A is a C*-algebra and

v i€ I, there is an arrow pr;:A - A;, viz.

pri(é) = é(i) .



We claim that the natural source {mizé - Ai} is the product of the Ai. For suppose
that {clai:A - Ai} is another natural source — then v i,
1o, @Y} s LAl (ef. 1.7,

thus the function

d(A):I » U A,
ie1

that sends i to s (A) belongs to A. Moreover, the diagram

obviously camutes, from which the claim.

[Note: A is not the cartesian product of the Ai if I is infinite.]
E.g.: Take Ai = C V i — then the mroduct in this case is simply £ .

3.6 COPRODXCTS Let I be a set; let I be the discrete category with Ob I = 1.
Given a collection {X;:1 € I} of objects in ¢, define a diagram A:T + C by
&i = xi (1 € I) — then a colimit {Ki:ﬁi ~ L} of A is said to be a comoduct of

the X;. Notation: L = _|_|_ X; (or I-X if X, =X for all i), Ki = in,, the injection
i

from X; to jiin.

‘3.7 ILEMVMA C*ALG has corroducts.




PROOF lLet {Ai;i € I} be a collection of objects in C*ALG -~ then their

coproduct can be realized as the free product C*-algebra *Ai, i.e., the completion

of the free *—algebra generated by the Ai w.r.t, the largest C*-norm whose

restriction to each Ai is the original norm.

3.8 REMARK Let 0 be the category with no objects and no arrows -~ then the

limit of a diagram having 0 for its indexing category is a final object in C and

the colimit of a diagram baving § for its indexing category is an initial cbiject

mg.

[Mote: The zero C*-algebra is both a final and initial object in C*ALG.]

a b
3.9 PULIBACKS Let I be thecategory L e —s @ <« @2, Given a
T a 3
f g
2-sink X » 2 <« Y in C, define a diagram A:I -+ C by
A1=X
T ha=f
ﬂ2=Y &
b =g.
B ﬁ3-—Z
Then a camutative diagram
n
P ¥

X ——r 2



t

'
issaidtobeaglllbacksquareifforany%smrcexf’: p' 0 v withfo £' =

g o n' there exists a unique morphism ¢:P' + P such that £

The 2-source X E p v is called a rullback of the 2-~sink X E Z E Y. Notation:

P =X X, Y. Limits of A are pullback squares and conversely.

3.10 IEMMA C*ALG has pallbacks.

PROOF GivenaZ-sinkAECﬁB, let

P={{(a,B) € A& B:9(A) = ¥(B)}.

a b
3.11 PUSHOUTS Iet I be the category 1 ¢ «— ® — @2, Givena
3

2-source X 4f- z 9 vin C, define a diagram A:I + C by

Alz-X
T Ma=f
L\.2=Y &
_ Mb=gqg.
B A3=Z
Then a commutative diagram
g
Z—YX
|
£ ¢ "
X —m->P
g

T L3
is said to be a pushout square if for any 2-sink X 3 P* & Y with

Eodadn' =n o ¢.



E' o £ = n' o g there exists a unique morphism ¢:2 + P! such that £' = ¢ » £ and

- £
nt =4¢ o n. ’IheZ—-siIkXEPEYJ.Scalledap;shm1tofthe2—sourcex4-zEY.

Notation: P = X || Y. Colimits of A are pushout squares and conversely.
Z

3.12 IEMMA  C*ALG has pushouts.

i y
PROOF Given a 2-source A « C » B, let

the amalgamated free product.

[Note: Spelled out, P is the quotient of the free product C*-algebra A * B
by the closed ideal generated by the set

{9(C) - ¥(C):C € C}.]

A category C is said to be camplete if for each small category I, every
diagram A:I » C has a limit.

3.13 CRITERION C is camplete iff C has products and pullbacks.

A category C is said to be cocomplete if for each small categorv I, every

diagram A:I > C has a colimit.
3.14 CRITERION C is cocomplete iff C has coproducts and pushouts.

What has been said above can thus be stmmarized as follows.



3.15 THEOREM C*AIG is both complete and cocamnplete,

Let (I,<) be an up-directed poset — then the pair (I,<) glwves rise to a
small category:
(1,7) if 1 < j
obI=1I, Mor(i,]) = ’ idi = (i,1),
g otherwise
camposition heing
(,kK)o(1,3) = (i,k} {i <3 <k).

This said, let C be a category — then by definition, a filtered colimit is the

colimit of a diagram A:I - C.

3.16 IFMMA C*ALG has Filtered colimits.

[On the basis of 3.15, this is clear. However, it is not difficult to proceed
directly. Indeed, to specify a diagram A:I + C*ALG amounts to specifying a
collection

{(Ai,¢ij):i,j € I,i<q},
where the Ai are C*~algebras and tbi i is a *-hoaromorphism fram Ai to Aj with
¢>ik=¢jk° Qij for i < j = k.
Each clﬁij is norm decreasing, so on the algebraic filtered colimit, the prescription

l1a|] = inf H@ij(A)II (A € A)

is a C*-seminorm. Dividing out the elaments of seminorm 0 and campleting then leads



to a C*-algehra, written

Lin(4;,9; 5},

which in fact is a realization of the filtered colimit,]
[Note: Put

Then strictly speaking, the filtered colimit is the natural sink {@i:'Ai + A},

where @i:Ai + A is the *~homomorphism defined by

o, (A) (1) = A,@i(A) {3} = q)ij (R) (i< 3},
rIJi(A) {1} = 0 otherwise.]

3.17 EXAMPLE Iet I =N -- then a filtered colimit of a sequence of finite

dimengional C*-algebras is called an AF-algebra. E.g.: Take An = .Nh(g) and let

O M (© >

n,nt ©

Mn+k
be the *-homomorphism obtained by adding k rows and colums of zeros -— then

}E(Mn(g) ’(Dn,n+k)

is *-isamorphic to ;.m(ﬂz) .

3.18 1LEMMA Let

A= Lim(Ag,0; ) .

Assume: Vv i, Ai is simple - then A is simple.



3.19 REMARK ILet I be a set and let {Ai:i € I} be a collection of objects

in C*ALG. Form the categorical product A as in 3.5 and denote by & Ai the closure
i

inéofthealgebraicdirectsm——thenée?Aiiffvs>0,

${1i:

A ] 2 €} < =,
To realize @ Ai as a filtered colimit, let F be the set of finite subsets of I
i

directed by inclusion and for each F € F, put

=6 A (=TT A).
0 A T A

If P < G, define
%.ch > A

by setting the additional coordinates equal to zero — then
M(AF,QF’G) ~ ? A,

[Note: Take A; = CV 1 — then (i) C can be identified with c,(I).]

The setting for filtered colimits is an up-directed poset I. Dually, the

setting for cofiltered limits is a down-directed poset I. E.g.: If I = N, then

a diagram A:I + C is essentially a sequence

£

n
i &

of morphisms in C, where

_ n
Afn+ 1 -+n) = XI'H"]. > Xno



lo.

3.20 IEMMA C*AIG has cofiltered limits.

Let C, D be categories and let F:C -~ D be a functor.
*F is sid to preserve a limit {f;:L » A (colimit {£;:8; > L}) of a
diagram A:I + C if {F£;:FL » FA,} ({F{;:FA; ~ FL}) isa limit (colimit) of the
diagram F ¢ A:I > D.

¢ F is sid to preserve limits (colimits) over an indexing category I if

F preserves all limits (colimits) of diagrams A:I - C.

e F is mid to preserve limits (colimits) if F preserves limits (colimits)

over all indexing categories I.

102
o

0
4

L)

3.21 ADJOINTS Given categories

, funciors are said to be

D

%
o
¥+
1)

an adjpint pair if the functors

Mor o (FE x id )

Mor e (idOPXG)

- C
from QOP x D to SET are naturally isomorphic, i.e., if it is possible to assign to
T XeobC
each ordered pair a bijective map
Y € Cb D

EX'Y:M::r (F{,Y) -» Mor (X,GY)
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which is functorial in X and ¥. When this is =0, F is a left adjoint for G and

G is a right adjint for F.

Write [I,C! for the category whoss objects are the diagrams A:I > C and whose

morphisms are the natiiral transformations Nat(A,A') from A to A'.

3.22 EXAMPLE Let K:C » [I,C] be the diaganal functor, thus v X € Cb C,

8
KX) (1) = X, (KX}(1i~>3) = idx
and v fe D{br(X,Y) ’
Kf € Nat(KX,KY)

is the natural transformation

—_
-

(KK) (1) —=r (KY) (4)
(KX) (8) l l (KY) (5)

KX () — (D) (3)
3

defined by the commtative diagram

f

X" 5 ¥
| |
XTrY .
Assume now that C is both complete and cocomplete — then K has a left adjoint, viz.

colim: [I,C] » C,
and a right adjoint, viz.

lim:[I,C] ~ C.



12,

3.23 REMARK TIf C is both complete and cocomplete, then the same holds for

[1.Cl-

[Note: Limits and colimits in [I,C] are cawputed "object by cbhject".]

3.24 THEOREM Left adjoints preserve cclimits and right adjoints preserve
limits.
3.25 RAPPEL Let C be a category —- then a morphism f:X + Y is said to be

a monamorphism if for any pair of morphisms A © X such that £ e u = £ o v, there

<y 4E

follows u = v,

3.26 IEMMA TIn C*ALG, a *-homomorphism ¢:A + B is a monomorphism iff it is
injective.
PROOF An injective *-homomorphism ¢:A + B is trivially a monaomorphism. As

for the converse, consider

i 4]
Ker ¢ > A > B
0 $
_ Ker ¢ > A > B,
Then
poi=0¢e¢0=>1i=0=>Ker &={0}.
3.27 RAPPEL Let C be a category —- then a morphism f:X + Y is said to be
. C . i L
an sm if for any pair of morphisms Y _ B such that u o £ = v o f, there

v
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follows u = v.

3.28 LEMMA In C*AIG, a *~hawmomorphism ¢:A +~ B is an epimorphism iff it is

surjective'k.

¥ Archiv d. Math. 20 (1969), 48-53; see also Inventiones Math. 9 (1970},

295-307.



§4. HILBERT A-MODULES

let A be a camplex Banach algebra -- then a left Banach A-module is a complex

Banach gpace E equipped with a left action {A,x) - Ax such that for some constant
K> 0,

[ax|| < x|[a]] |]xl] @eAxeR).
[Note: Right Banach A-modules are defined analogously. ]
N.B. If A is nonunital, form A" as in §1 (but with ||, 0| = |A]] + (A} —-
then E becomes a left Banach A'-module via the prescription
A+ Ax=ax+xx (AN = A+ A).

[Note: We have

e (=1, = 0]

4.1 RAPPEL A left approximate unit per A is a norm bounded net {ei:i € It

in A soch thateiA+Afor all A € A.

4.2 THEOREM Suppose that A has a left approximate unit {ei:i € It and let
E be a left Banach A-module — then the set

AE = {Ax:A € A,x € E}

is a clos=d linear subspace of E.

The assertion is twrivial if A is unital =0 take A nonunital and fix M > Qs

lle;il =™ G eD.



4.3 LEMMA IetEObethe closed linear span of AE --= then

EO = {x € E:lim e.x = x}.
i€l

PROOF The RHS is certainly contained in the IHS. On the other hand, AE
is contained in the RHS as is its linear span [AE]. With this in mind, take an

and given € > 0, choose y € [AE]:

arbitrary x € E |x = y|| < e. Next, choose

0

iOEI:

iziy= [legy-vyl] <e
and write

ex-x=ex-y +{y-x + (e5y -y}
Then v i 2i0,

llegx = x| < K||eg [ {ix = y[] + Iy = x| + [{egy - v/

£ (KM + 2)e.

4.4 RAPPEL Iet X € A" and suppose that Ix]] <1 — then (X - %)L exists

and there is a norm convergent cxpansion

I-K T eI +X+8+ -en .

Iet p=1M—thenviel,

- M s
I l+ue:|.

is invertible, hence the same is true of

1+ - uey

as well. And



(L+WI-pe) ™ = Q+wr+a

for some Ai € A.

4.5 ITEMMA Fix XO e E0 - then 3 a sequence {ei {= en)} in {e.l:i & I} such
n
thnt
+ -1 -1
An = ({1 + I uen) eee ({1 +W)I uel)

-n
(1 +ul) "T+A

1

converges in A+ to a limit A € A and X, = (A;)_ X

converges in EO to an element x.

Admit 4.5 for the moment —— then

+
|larx, - ax||

Atk - Ax o+ Ax - Ax]|

A

ey - mx ]+ Ak, - =]

1

K{la) - af] [lx |1+ &}lal] |lx, - x|]

+ 0 (n-;-oo}.
So
+ , +
X, = = lim A x = Ax.
0 nxh n+wnn
Therefore
xoem.

TPurming to the proof of 4.5, set A

+ . .
0= 0, AO =TI and choose the en indquctively



subiject to
1% = gl < AT @ v ™
and
lle A ~ A || <M+ @™
Since
A -a >0,

to prove that {A;} is convergent, it suffices to prove that {Ah} is Cauchy.

First

1B~ B!

_ -1 -n-1
= [+ WI —pe ) W@+ e g tue A - A

But
-1
1A+ 0T = ve )]
c@+w?t L -]
1 -u(l+w Hen+1||
c 1
1+u-ulle 1!
= M,
|judl + u)'“'len+l|| < @+ w™d,
and

e q® —wall < @ w



Therefore
1A - A |l < 2mQ + ™
So, for m > n,
A, = Al
< |]a. - A

n T AT B = A i+ e+ Ay - A

i

2M{1 + u)_n—l(l + (1 + u)—l + e + (1 + u)n_Ml)

MM+ DA+ w50 @),

1A

which implies that {An} is Cauchy.

It remains to deal with x = (A;) _1x0. For this purpose, note that
R |
X1 = B1) %

(A;)_l((l + I - uen+l)x0,

thus

+. -1
Hstpay = %011 = T1@) " Gexg — vep %) ||

1A

+, =1
uK| | Ay || | IXO - em.]_xol |

{1 + w _'n“l-

548

Proceeding as above, we then conclude that {xn} is Cauchy, thereby finishing the
proof of 4.5.



4.6 EXARMPIE Iet A € A -~ then AA is a left Banach A-module. Since A € A3,

it follows fram 4.2 that 3 B€ A, C € AA such that A = BC.

Maintain the assumption that A has a left approximate unit {ei:i € I}.

4.7 LEMMA Let X be a conmpact subset of E, — then 3 A € A and a continuous

0
function £f:X > E. such that

0
x=Af(x) vxXx€X.
PROOF Define a left action of A on the Banach space C(X,EO) (sup norm} by

(Af) (x) = Af(x) (x € X).

Then
[|af]| = sup || (Af) (x) ||
*EX
= sup | [Af () ||
XEX
< [al] I£]].

Therefore C(X,EO) is a left Banach A~module. 2And here

Accordingly, thanks to 4.2, V fO € C(X,EO), JAcAand f € C(X,EO):
f0 = Af.

Conclude by applying this to the particular choice J‘E0 x) =x (x€X).



4.8 EXAMPLE Suppose that {xn} is a sequence in EO which converges to 0.

Ir]4a7' takex= {O;Xl,xz,...}, arld pllt ynmf(xn) “—tl'ETIAYn=Xn, Af(O) =0'

andyn—»-f(O). So, 1ettingx]:|=yn—-f(0), wehaveA;%=xn and xr'1+ 0.

4.9 SCHOLIIM Iet A,B be complex Banach algebras. Iet ¢:A - B be a homo-

morphign. Assume:

1. 3K>0:VAEA, |[|[e@]]| < K|{a]

2. {ei:i € I} is a left approximate unit per A.

3. {%(e;):i € I} is a left approximate unit per B.
Define a left action of A on B by
aB = ¢{A)B.

Then B is a left Banach A-module and
B = AB.
[In 4.2, take E = B — then
Bo = {B € B:lim ¢(e,)B = B}.
. i
1€T

But BO = AB.]

Iet A be a C*-algebra. let E be a right A-module — then an A-valued

pre-inner product on E is a function < , >:E X E » A suwh that v x,v,2 € &,

VAEA VXIeC:

(1) <X, v + 2> = <x,y> + <x,2>;

(i1) <X, dy> = A<xX,v>;



(1il) <x,vA> = <x,y>A;
(iv) <x,y>* = <y,x>;
(v} <,x> 20 (=> <,x> € A+) .

I
<H, x> = 0 =>x=0,

then < , > is called an A-valued inner product.

[Note: < , > is "comjugate linear"” in the first variable: <xA,y> = A%<x,y>.]

A pre-Hilbert A-module is a right A~module E equipped with an A-valued pre-

inner product < , >.

N.B. Tacitly E is a complex vector space with compatible scalar multipli-

cation: M(A) = (xX)A = x{(AA).

4.10 IEMMA Suppose that E is a pre-Hilbert A-module — then vV x,y € E,
<X, y>*<x,y> = 1 !{Xrl‘{)l I<ny>-
PROOF Assume that |l<x,x>|| = 1 and let A € A:

0 < <xA - ¥,xA - y>

A¥<x,xX>A - <y, ,x>A — A¥<X,y> + <y,y>

14

| |[<x,%> | |IA*A = <y, x>A - A*<x,y> + <y, y>
= A*A - <y,X>A - A¥<H,y> + <y,y>.
Now take A = <x,y> to get

0 = <X, y>*<X,y> — <Y, XX, P> - <X, X,y + <y, Y



or still,
<YXP<K,¥> £ <Y, ¥Y>
or stiil,
<X, y>*<x,y> £ <Y,¥>.
Put

1/2

%] | = |[<x,%> ] (x € E).

Then 4.10 implies that

| is a seminorm on E:

|2+ vl < [|xi] + ||vl]

=[] < A} (1=

Moreover,

-

| is a norm if the pre-irmer product is actually an inner product.

Definition: E is said i be a Hilbert A-module if the seminorm is a norm and

E is complete (hence is a Banach space).

4.11 EXAMPLE Take A = C —— then the Hilbert C-modules are the complex

Hilbert spaces.

4.12 EXAMPIE Iet E be a hermitian vector bundle over a compact space X.
Denote by I'(Z) the space of continuous sections of & ~-— then I'(E) is a right
C ) —module and the rule

<g,0'>(x) = <o(x},c" (x)>x

equips T'(5) with the structure of a Hilbert C(X)-module.
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Iet

Ng = {x € E:|[x[]| = 0}.
ThanNEisambA—nDduleofEandthepre—innerproductandsanjnomdroptom

inner product and norm on the quotient A-module E/NE

4,13 1EMMA The campletion of E/NE is a Hilbert A-module.

A Hilbert A-module E is a right Banach A-module. Proof:

1/2

| [xal] = |j<xaxa>]]

1/2

| |a*<x,x>A] |

1/2 1/2 1/2
2% ] |72 | <x, 00| 12 | [a] )Y

1A

n

[1=[ ] Al

4.14 LEMMA ILet E be a Hilbert A-module -~ then E = EA.
PROOF (ne has only to show that EA is dense in E (cf. 4.2). But

< - . - .
X - X8, ,X - Xe;

< -e,< > =< e, + e.< .
XX {XX X,¥>e; + <X, x>e;

[Note: If A is wnital, then x = xlA.]

Here are three examples of Hilbert A-modules which are "internal® to A,
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4.15 EXAMPIE View A itself as a right A-module and put

<A,B> = A*B (A,B e A).

Then A is a2 Hilbert Aamwdule.

4.16 EXAMPIE Given n € N, let AM=re - 9 A View AD as a right

A~module in the obvious way and put

<Al D oens $An, Bl o --- 0 Bn> = Z Pj’:Bk.

Then A" is a Hilbert A-module.

4.17 EXAMPIE Let H, stand for the subset of 7] A consisting of those A
k=1

o0

sach that I AR B = Ak)) converges in A, View HA as a right A-module in the
k=1

obvipus way and put

Then HA is a Hilbert A-module.

3]
4.18 REMARK Iet Hi stand for the subset of || A consisting of those A

k=1
sich that || ||° <» @& =2aK) — then
J=1
2
HACHA
and
Ha = fiy
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iff A is finite dimensional. E.g.: H, = 22,

Let H be a complex Hilbert space, E a Hilbert A-module ~- then their algebraic
btensor product H @ E carries an A~valued inner product given on elementary tensors

by

<€ 8 x,n B ¥y> = <E,n><x,¥>.

Tts completion H & E is therefore a Hilbert A-module (cf. 4.13).

4,19 EXAMPLE Suppose that H is separable and infinite dimensional — then

H&Aand H, are isamorphic as Hilbert A-modules.

4.20 EXAMPLE Let X be a campact Hausdorff gpace —— then C(X,H) is a Hilbert
C (X) ~module and

HeCX) = CEKH.
[Consider the map

H& CX) ~ C{X,H)
that sends £ @ £ to the finction x ~ f(X). It preserves C{X)-valued inner products

and has a dense range. ]

4,21 COONSTRUCTION Suppose that E and F are Hilbert A-modules ~— then E @ F

is a right A-module in the obvious way and the prescription
<(X,¥) (X", ¥")> = x,x"> + <y, y'>

is an A-valued inner product cn E ® F. Since the completeness of E and F implies
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that of E® F, it follows that E @ F is a Hilbert A-module,

One difference between Hilbert A-modules and Hilbert spaces lies in the

properties of orthogonal complements. This let F ¢ E be a closed aib A=module
of the Hilbert A-module E. Put

Ft = {x € E:<F,x> = 0}.

Then F* is also a closed sub A~module but in general, E isnot equal o F @ FL

4.22 EXAMPLE Take A = C[0,1] = E and let F = {g € E:g(0} = 0} — then

F'=1{0}, s F®F'=E

Iet E and F be Hilbert A-modules -- then by chmA {E,F}) we shall understand
the subset of B(E,F) wlpse elements are the T:E - F which are A-linear:

T(xA) = (Tx)A (x EE, A€ A).

N.B. I-bmA(E,F) is a closed aubspace of B(E,F), hence is a Banach space.

4.23 IEMMA Vv T € HomA{E,F), we have

<Tx,Tx> < ||T] |2<x,x> (x € E).

et T € HomA(E,F) -~ then T is said to be adjointable if 3 an operator
T € Hom, (F,E) such that
<Tx,y> = <x,T*y>

for all x € B, y€ F.
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[Note: T* is wmnique and T** = T.,]

Wite Homx (E,F) for the subset of Hom, (E,F) consisting of those T which are
adjointable —— then HOIHK(E,F} is a Banach space.

[Note: The containment

Hom*

A(EI,F) c HcmA(E,F)

is, in general, proper (cf. infra}.]

4.24 EXAMPIE Take A = C[0,1] = E and let F = {g € E:g(0) = 0} {(cf. 4.22).

Define T:E 8 F ~ E & F by T{f,g) = {g,0} — then

T € Homy (E ® F,E & F) but T ¢ Hom}(E & F,E & F).

4,25 LEMMA HOmK(E,E) is a wmital C*-algebra.

[Note: I-ImnA (E,E} is a unital Banach algebra.]

4.26 REMARK Iet T € HomX(E,E) — then T € I-me(E,E)_'_ iff v x € E,

<Px,x> = 0.

4.27 NOTATION H*MOD, is the category whose objects are the Hilbert A-modules

with

Mor (B,F) = Homz (E,F}.

N.B. H*MOD, is a s—category in the sense that it comes equipped with an

involutive, identity-on-objects, cofunctor

. 5 H*
*.H*PDD§ H*™MOD, .
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4.28 EXAMPIE Iet HILB be the category whose objects are the complex

Hilbert spaces and whoee morphisns are the bounded linear operators -—— then

HILB = H*MOD,

*:Nbr(leHZ) = B(leHz)

- 3 31 ¥ .
send s T.Hl > H2 to its adpint T .H2 + Hl.

4,29 IFEMMA I-Icmz(E,F) is a Hilbert chni(E,E)-—nDdule.

PROCF The right action
I-k:mI(E,F) X Homi(E,E) - Hcmz(E,F)
is precompogition and the Homx (E,BE)-valued inner product
< . >:HomK(E,F) X HanK(E,F) > Homi(E,E)
is
<T,8> = T*S,

Note: The induced nom on Hcmz (8,F) is the operator norm.]

Iet E be a Hilbert Amodule. Given x € E, define x:E + A by

;i(y.) = <X,y>
and define LX:A + E by
L (8) = xA.
Then
X € Ham, (E,A)

Lx € HmnA (A,E).



<X (y) ,A>

Therefore

Then E is a right A-module:

() *

16'

<<K,Y> A
= <x,y>*A
= Y,X>A

= <y, xA>

= <y,LX(A}>.

1
=

x € Hom, (E, A)

LX € Homx (AE).

|
I\

HomA(E,A) .

(TA)x = A™I).

4.30 IEMMA The arrow

is an isometric conjugate linear map of right A-modules.

One then calls E selfdual if this arrow is surjective,

thus
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chnA{E,A) = HanK(E,A) .

4.31 EXAMPIE A is selfdual iff A is unital.

4,32 EXAMPLE HA is slfdual iff A is finite dimensional.

4,33 1EMMA Suppose that E is selfdual -- then v Hilbert A-module F,

HomA (E,F) = rlomi E,F).

4.34 REMARK Suppose that A is a Wk—algebra and let E be a selfdual Hilbert

A-module -- then it can be shown that the unital C*-algebra fbsmz (E,E) is a Wr-algebra.

xeE
Let E and F be Hilbert A-modules. Giwven , define Gy X:]i‘. + P by
¥
yEF
E)y’x(x') = yx, n'>,
Then
118y o1 = vl il
and

t = 1 - t = '
@y,x {x'3) = y<x,x'A> = y<x,x'>A Gy,x{x 1A,
E.g.: Take E = F = A and suppose that A is unital — then

e - i-d L



is.

* -
4.35 I1EMMA @y'x S HCﬂnA(E,F) :

¥ = .
eer BX:Y

Write L (E,F) for the closed linear subspace of Homi(E,F) spanned by the Gy <

4.36 EXAMPIE The image of the arrow in 4.30 is L (E,A). In fact,

i
GA,X = XA*,

Accordingly, when E is selfdual,

L (E,A) = Hom (E,A) .

So, e.qg., if A is umital, then

L (A,A) = Homt(A,A),

but if A is nonunital, then Hcmz(A,A) is in general much larger than I.ix,(A'A)
(cf. 85).

4.37 REMARK If A is unital and if E is a Hilbert A-module, then

L, (E,A) = Hom} (E,A).

Thus let T € Hcmi{E,A) and put % = T*(lA) ~— then
;((Y) = <X,¥y>
= <Tk(lA) Y
= <1A’TY>

13Ty

.
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Take E = F — then

@x,yeu,v - G)x<y,,u>,v - E)x,,\mu.,y;-

4.38 LEVMA }_‘w(E,E) is a closed ideal in I—bmz(E,E).

(Note: Therefore L _(E,E) is a C*-algebra.)

More is true: L_(E,E) is an essential ideal in I«th(E,E).

we shall need a techical preliminary.

4.39 IEMMA V x € E,

x = lim x<x,x> (<x,x> + s)_l.

£+0

To prove this,

Bearing in mind 1.1l, let J < chnx (E,E) be a closed ideal such that

JﬂLm(E,E)m{O}. FixJ &€ J — then v x € E, J© = ) and
= X,X

J{lim x<x, x> (<x,x> + E)-l)

>0

U

Jx

1im Jiéx<x,x> (<> + €)_l)
£+0

1

I

lim J@X’x(x) (<x,x> + €)
e-+0
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lim O(<x, x> + e)_l
e0

I.e.: 1= {03,

4.40 EXAMPIE The C*-algebra L (A,A) is s-isomorphic to A. To see this,

define LA:A + A by LB = AB -- then
(LA)* =L . => L, € Homz(A,A) .
A
But
gl = T[]
Therefore the range of

L:A ~» HomX(A,A)
is a C*-subalgebra of Homx {A,A}). On the other hand,

= = X =
OA, B ) A<B,C> = AB*C LAB*C '

from which it follows that
LA = L_(AA).
[Note: The pair
(I-Iom‘i(A, A) L)
is a unitization of A. Indeed, the image LA is L (A,A), which is an essential

ideal in HOI'&K(A,A) .1

4,41 EREMARK Ilet Mh(A) be the set of n-by-n matrices with entries fram A —
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then Mn (A) is a x—algebra but it is not a priori obvicus that M (A) is a C*-algebra

(if n > 1). Here is one way to proceed. Introduce A per 4.16 — then the map

* o *
AlBl Aan

S]
Alﬂi'”&)Ah,BlGJ"-GBn—P . .

implements a +—iscmoyphism

L (A%, A7) > M (A).

Therefore M (A) becomes a C*-algebra via transport of structure.

[Note: 'The involution *:Mn(A) + Mn (A) is

[Ag 1% = (A1)



§5. MULTIPLIERS and DOUBLE CENTRALIZERS

Given a C*-algebra A, put

M(A) = Homz(A,A) .

Then M(A) is a unital C*-algebra, the multiplier algebra of A. Abbreviate L (A,A)

to L _{A), thus L.W(A) is an essential ideal in M(A) and there is a *-isomorphiam

L:A > L_(A) (cf. 4.40).

fNote: Recall that
L_(A) = M(A)
if A is wnital (cf. 4.37).]
Iet E be a left Banach A-module — then according to 4.2, the st
AE = {Ax:A € A,x € E}
is a closed linear subspace of E, which can be characterized as
{x € Elm ex = x},
1Y

dencted by EO in 4.3.

N.B. E can, of course, be viewed as a left Banach L.m(A) -module by writing

LAx=Ax.

5.1 THEOREM Assume: E = AE —- then the prescription
MAx) = ML,)x (M € M(A))

iw welldefined and serves to equip E with the structure of a left Banach M{A)-module.



PROOF Cbserve first that

2 the RHS makes sense. To check that matters are welldefined, suppose that

By¥) = Ay, == then

But

ML, € L (A),

Qﬁphl)xl

| M(ax) | |

Il(me_)ij |

M

A

14

(M lim L )
jer eBy L

lim
ieT

lim (ML )x
ier eilhl 1

(ML, }x
eiA1 1

lim (M, )A x
ier %i M%1

lim (ML_ )
ier &1 A%

Uﬂphz)xﬁ.

[ 0Ly x| ]

||Lim ML )Ax] |
ier %4

lim || (M, )2x||.

1eX i

i b, 11 e

K] M} | lILeiH Hax| |

R M[| 18] ]



Therefore E is a left Banach M{A)—+podule.

Given C*-algebras A and B, a *-homomorphian ¢:4 - B is =said t be proper
if for any approximate unit {ei:i € I} per A, {@(ei) 11 € T} is an approximate unit

per B.

5.2 THEOREM Supprose that ¢:A + B is proper - then there is a unique unital
*~homomorphism ©:M(A) ~ M(B) extending ¢_:

{af

MA) ———— M{(B).

PROOF It is a question of applying 5.1. Thus view B as a left Banach

A-module per 4.9 — then B = AB. This said, given M € M{A), define (M) € M(B) by

3 (6(A)B) = o_(ML,)B.
Then
3L _(A) = o_.
In fact, vV B’ € A,
L ) (¢@B) = ¢ (L L,)B
Al Al
=& (L B

A'A


http:approxirna.te
http:awroxima.te

=L B
(Aa'2)

=L L B
(A") o(a)

L {¢(a)B)
(A}

¢ (L ) (®(A)B).
AI

5.3 NOTATION PRC*ALG ig the category whose objects are the C*-algebras

and whose morphiams are the proper *-homomorphisms,

N.B. The assignment
A > M(A)

® > ¢

is functorial, i.e., defines a functor

PRC*ALG + UNC*ALG.

Suppose that {U,1) is a wmitization of A — then (U,i) is said to be maximal
if for every embedding j:A + V as an essential ideal of a C*-algebra V, there exists

a *-homomorphism 7:V -~ U such that ¢ © j

i:

-2

(W
T e e

ﬁ l
=
.



5.4 BREMARK ¢ is necessarily injective (j(A) being essential) and, in fact,
is unique.
[Note: If
(U ,ip)

are maximal unitizations of A, then there exists a x-iscmorphism @:Ul - U2 such

that ¢ « 1, = 1

1= 1,1

5.5 IEMMA The pair (M(A),L) is a maximal unitization of A.

5.6 EXaMPLE Iet X be a noncawpact locally compact Hausdorff space and let
BC(X) be the C*-algebra of complex valued bounded continuous functions on X -- then

C_(X) sits inside BC(X) as an essential ideal, hence there is a cammutative diagram

C (X)) ——— c ()

BC(X) —— M(C, (X)),
z

where, as pointed out above, I is injective. But here ¢ is also surjective, i.e.,

is a *-isomorphism.

Given a Hilbert A-mpdule E, denote by <E,E> the linear span of the set
{<x,y>:x,y € E} —- then the closure <E,E> of <E,E> is an ideal in A. Working with

an approximate unit from <E,E>, one finds that E<E,E> is dense in E.



Abbreviate
Hanz (E,E} to Homi {E)

L,(E,E) to L (E}.

Then Hcmi(E) is a unital C*-algebra containing L (E) as an essential ideal.

5.7 IEFMMA View E as a left Banach EW(E) ~-mdule —— then

L (E)E = E,

PROOF Iet {ei:i € I} be an approximate unit per L (E) -- then it need only
be shown that X *XVXEE {cf. 4.2 and 4.3). And for this, it suffices to prove

that e;x > x ¥ x € E<E,E>. 50 suppose that

X = y<u,v>.

eiey,u > ey,u in L _(E)

(eiey,u) v) + OY u(V) in E

r

ei(ey'u(v)) > @y'u(\r) in B

eix+x in E.

5.8 THEQOREM We have

M(L_(E)) = Hom (B).



PROOF Iet
i:L (E) » Hcmi(E)
be the inclusion -- then the pair

(Hom (E) , 1)

is a unitization of L (E), which we claim is maximal. To see this, consider an
embedding j:L_(E) - V as an essential ideal of a C*-algebra V. Imitating the

procedure utilized in 5.1, define Z:V HQmX{E) by

clviTe = (vi(T))lz (x€E, TeL (E).

And so forth... .

5.9 EXAMPLE Take A = C —- then the Hilbert C-modules are the complex Hilbert
spaces H, thus
M(L,_(H)) = HanE(H) = B{H).

5.10 REMARK The relation
M{A) = Hcmi(A)

is a definition. On the cther hand,
L (A) = A

ML, (A)) = Homf (A) .

5.11 EXAMPIE Y n €N,

LAY ZM (A (cf. 4.41)



H

M@, (AM) = MM (A)

il

M (M (A))

Hcmi (An) .

it

[Note: ¥ n €N,

MOA™) = MeAY™. ]

5.12 EXAMPLE Suppose that H is separable and infinite dimensional —- then

He A {cE., 4.19)

=
oy
0

=
%ﬂ""ﬂ
£
>\-U—’
0

L,(H 8 A)

¥

the symbol R in standing for the minimal tensor product (cf. 86).

[Note: L (H) is nuclear, so there is only one C*-normon L_(H) & A.]

There is another approach to M(A) based on purely algebraic tenets.

Assume for the moment that A is just a complex algebra —— then a

left centralizer

of A

right centralizer




is a linear map

L:A » A
R:A » A

such that v A,B € A,

L{AB)

L{A)B

R(AB) = AR(B)

and a double centralizer of A is a palr (L,R), where

L is a left centralizer

R is a right centralizer

such that v A,B € A,

AL(B) = R{A)B.

Write DE(A} for the set of double centralizers of A —- then PC(A) is a camplex

algebra under pointwise linear operations, multiplication being defined by
(L1 ,Ry) (L, Ry) = (LqL,,RoR; ).
Since
{(id ,idA) € DC(A},

it follows that PC(A) is wnital.
Given A € A, define

LA:A + A

F%:A*A

L, {B)

R, (B)

]
&

i
Z
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Then the pair
(LA,%) € DC(A)
and the map
~ A > DC(A)
1y
~ A7 (Ly,R,)

is a homomorphism whose kernel is called the annihilator of A: Amn A,

5.13 1EMMA 1 is surjective iff A is unital.

N.B. Therefore 14 is an iscmorphism iff A is unital.

5.14 IFMMA VY A,B € A and v (L,R) € DE(A), we have

LAL(B) = AL(B) = R(A)B = LpaB
RR, (B) = R(BA) = BR(A) = Roa) B
LL, (B) = L(AB) = L(A)B = Ly (B
RAR(B) = R{B)A = BL(A) = RL(A)B.

Consequently, 1A(A) iz an ideal in DC(A) and

Ly Ry (LeR) = (g 1Rp () -
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Put
- Arm.LA={AEA:AB=OVBEA}
_ AmA={AeA:BA=0VBEA}L
Then
PamA=A1mLAﬂAnn.RA.

Now specialize and assume that A is a complex Banach algebra.

5.15 IEMMA Suppoge that

AnnLA = {0} and AnnRA = {0}.
et (L,R) € DC({A) — then L and R are bounded:

L,R € B(A).
PROOF et {A } be a sequence which converges to 0 with {L{p )} converging

to B (say) —- then v C € A,

B
i

¢{ lim L(An))

n-—+ =

[

lim CL LAn)

n +» «

]

1lim R((‘:)An

n -«

Therefore

{0}.

]

B EAnnRA

So, by the closed graph theorem, L is bounded. The argument for R is analogous.




120

5.16 PREMARK The existence of a

" right approximate unit per A => AnnLA = {0}

left approximate unit per A => AnnRA = {0}.

[Note: In particular, these conditions are met by a C*-algebra. ]

Maintaining the suppositions of 5.15, place a norm on PC(A) by stipulating
that
|| @R[ = max{]|L||,||R]]}.
Then PC(A) is a unital Banach algebra and

1A:A + DC(A)

18 contractive.

5.17 EXAMPLE Let G be a locally compact topological group (Hausdorff is

assumed) . Take A = L1 {G) (left Haar measure) — then v £,g9 € Ll (G),

i

A

T LIl = supl|[£x0l ] ]0] < 1}

I

supl|[¢=g||:|[¢]] = 1}.

a
1

Therefore

Given u € M(G), define

e 8L (@)


http:approxima.te

13.

by
- Luf=u*f
~ Ruf=f*u.
Then
RN

1
. (Lu,Ru) € pe(L (@),

R, = 1l

and a classical thecgrem dve to Wendel says that the arrow

T M@ - pelia)
_ - (Lu'Ru)

is an isometric iscamorphiam.
Assune henceforth that A is a C*-algebra.

5.18 IEMMA Let (L,R) € D€(A) ~- then

il = {ir]1.
PROOF Since
Han®) || = [[rR@B]| < |[[R{| [I&a]] {[B]].
we have
L) || = swp ||aL®) ]| < |[R]] ||B]]
Al l=
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Ditto:
IRl < []L]f.

[Note: v X € A,

|} = = s -]
| x]] ||§'ﬁ’£lll>ﬁ’|| ||Y]ﬁ]s]_|IYX|I

Define an involution
#:1DC(A) ~ DE(A)
by -

{L,R* = (R*,1L*),

where T*(A) = T{(A*)*,

5.19 THFOREM Under the multiplication, norm, and involution defined above,

DC(A) is a unital C*-algebra.

PRXOF To check that

H@R*CR ] = || @ |2,

note that v A € A of norm = 1,

lo@ |12 = || @E)*nm ]|

| |[L* (a*)La) | |

HarrR*(L(a)) | |

i

[ax[] |ir* @) ||

1A

|1 R*L) (3) [
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1A

| {R*L | |

| | (,R)*(L,R} ||

2
@R | |? = {|n]}?

i

I

2
s | ln(ay ||
IIAﬁsl

< || @R*EL,R) ||
< @R |12
It is clear that v A € A,
||y Ry) |1 = [1a]}
L,,R)*= (L ,R ).
( ~ RA) { - A*)
Therefore
A > DEA)
1A:
AT @Ry
ig an isometric x-homomo: igm.

5.20 IFEMMA The ideal ‘LA(A) is essential in PC(A).
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PROOF If v A € A,

(LRI, (A) = 0 = 1, (A) (LR,

then
T, ay Rra)’ = 0= Tpepy Rriay)

S0

L{A} = 0 = R{A)

=>
{L:R) = {0:0).
(Note: The quotient
C{A) = DC(A)/IA(A)

is called the corona algebra of A.]

The pair (DC{A) ,IA) is thus a unitization of A, which we claim is maximal.

To see this, consider an embedding j:4 -~ V as an essential ideal of a C*-algebra

V —— then the problem is to construct a *-howomorphism z:V + DC{A) such that

L oij= 4t

A A

L

v —— DE(A).

[

Definition:

o) = (LR,
where

T = ihwia)
R () = 3 ().
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The computation

L, (88) = 57 (vj(@aB))

371 (w3 (a)5(B))

1l

575 @B

I

LV (a)B

shows that L, is a left centralizer of A. Analcgously, R, is a right centralizer
of A. And

AN w @) = 5@ e = NG vy o)

| AL, (B

57 G mvi ).

H

@B = 57 E @ @)

RV(A) B

Therefore the pair {LV,RV) is a double centralizer of A. That I is a *-homomorphism
is likewise immediate. Finally,

But
L., (B) = i rE@I3E) = 5 H5aB) = AB = L, (B)
7 (A) ] ] 7 ] | ‘N
R, (B) = 371 (5®3(A) = $2(5(BA)) = BA = R (B)
=>
s ) Ry@y? = TarRy) = 1,3
I.e

L o j = IA.
[Note: The construction of ¥ uses only the fact that j(A) is a closed ideal

in V.]
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5.21 THEOREM The C*-algebras M(A) and DC(A) are »-iscmorphic. Moreover,

there is a commitative diagram

A —— DE(A).

[This is because maximal unitizations are unique up to *-iscmorphism. ]

[Note: One can therefore realize the corona algebra of A as the quotient

M(A) /L(A) . ]

5.22 REMARK Iet E be a Hilbert A-module —- then according to 5.8,

M(T;.OO(E)) = Hcmz &),
so by 5.21,
HomK(E) * DE(L (E)).
This can be explicated, viz. define
®:Homy (E) *+ DE(L,(E})

by assigning to T € Homz(E) the pair (LI,,RI,} . where

|

T o 9

- L ()

(b €L (B).

Il
<
@
+3

R, ($)

Then ¢ is a *-iscmorphism.
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[Note: V X,v,Z €E,

‘ T o Q_ (2} = Tx<y,2z> = Om'ytz)

X<T*y, 2> = 0 {z2).]
X, T*y

0
[+]
o
Lk
[

Let A,B be C*-algebras -- then an extension of A by B is a C*-algebra £ and
a short exact sequence
i m
0+A »~E +»B~+0.
So: 1 is injective, 7 is surjective, and Im 1 = Ker w.

N.B. there is a commutative diagram
A —— A

Lo

E — DE{A)
a

but ¢ need mot be injective (since the closed ideal 1(A) need not be essential).

5.23 EXAMPIE The unitization extension is

1 T
0+A-> AT+ ¢coo,

where 1(A) = (1,0} and ©w(Aa,%) = A.

Two extensions
— ‘1 M

tc+A——E s B>

1

0+A—~+E2——a+8+0
— ) T
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of A by B are said to be isomorphic if 3 a x-isomorphism Y:El > E2 rendering the
diagram
‘1 ™
0 A > El > B ——= 0
2 2

cammitative.
[Note: This notion of "isomorphic" is an equivalence relation and we write
Ext{A,B) for the corresponding set of equivalence classes.]

Suppose that

1 ™
0+A— E~= B=>0

is an extension of A by B. Postcompose o:E + DC{A) with the projection pr:-
DE(A) » C(A} to get a s»-homomorphism T from E/1(A) = B to C{A), the so—_called

Busby invariant of the extension.

N.B. The diagram

1 ™
g -— A » E + B > 0

IR

0 —> A —= DC(A) —> C{A) — O
1
A

is commutative.

5.24 LEMMA There is a pullback square

DEC(A) XC(A)B — B

T
DE(A} —— C{A},
pr
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a =-isamorphiasm I:E » DE(A) XC(A? , and a commtative diagram
1 T
0 ~ A +~ E > B > 0
I |

0 —— A -+ DC{A) XC(A)E +B —— 0.

Two extensions

of A by B with respective Busby imvariants T, anmd T, are iscmorphic iff Ty = T,

Therefore the Busby imwvariant determines the isomorphism class of an extension,

thus there is an injection
Ext(A,B) » Mor(B,C(A)),

that, in fact, is a bijection. Proof: Let 1 € Mor(B,C(A)) —-- then the Bushy

invariant of the extension
0 - A+ DT(A) XC(MB—» B-+0

is T itself.

5.25 EXAMPLE Take A = C_{(]0,1[), B = C - then wp to isomorphism there are

four extensions of A by B:

1. E

c_(10,1D

93]

£ =cC(fo,1])

)
™
H

c_{10,11) 4. E=c_(10,1]) & C.
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5.26 IEMMA let T1:5 - C{A) be the Busby irwariant of the extension

1 m
0+A—E-—B~+0.

Then T = ¢ iff E is ax—~isamorphic to A @ B.

5.27 REMARX If A is unital, then C{A) is trivial and, up to iscmorphism,

there is only one extension of A by B, viz.

0+-A>A®B~+B~+0.



86. TENSOR PRODUCTS

A monoidal category is a category C equipped with a functor ®:C x C + C

(the multiplication) and an object e € Cb C (the unit), together with matural

isomorphisms R, L, and A, where
T RaX@e=X

Lx:eﬁX"*X

AX X8 (YRZ) »~XayY) &2,
X2
subject to the following assumptions.

MC,) The diagram

A A
Xe{ye{Zew)) »Xey)e (2W) ~ ((XQY) @2Z) aW
idBAJ IAﬁid
X ((YQZ) W » (X@ (YQ2Z)) aw
A
camutes,
(MCZ} The diagram
A
X eQY) »~(XQe) Y
id@Ll lRﬁid
X8Y ———— XQY
comites.

[Note: The "coherency" principle then asserts that "all" diagrams built up

from instances of R, I, A (or their inverses}), and id by repeated application of &



necessarily commute. In particular, the diagrams

A A

e (XaY) > (e@X} &Y Xa (YQe) » XRY) Qe
Ll lLﬂid idﬂRl lR
Xevy XY XY — Xavy

cmrruteandLe=Re:e@e+e.]

N.B. Technically, the categories
cx(CcxQ

€xQ xc

are not the same so it deoesn't gquite make sense to say that the functors
(x,(¢,2)) ~x8 {Y @ 2)
s Cx(CxQ) >C

(f,(g,h)) ~ £ a (gah)

((X,Y),2) » (XY} @z

e (CxC) xC>C

({(f,9),h) ~ {(f & g) @ h
are naturally iscmorphic. However, there is an obvious iscmorphism
1

CricxQ »(ExQ xg

and the assumption is that A:F > G ¢ 1 is a natural iscmorphism, where



Accordingly,
v (X,(¥,2)) E0bC x (C xC)
and
v (£,{g/h)) eMor C x (C xQC),
the square
v,z
XR (Y az) Xay) ez
fR (geh l l(fﬂg)@h
X'e (Y' 2" X'eay") &z
AX',Y',Z‘
cammtes.

6.1 EXAaMPIE Let VEC be the category whose abjects are the vector spaces
over C and whose morphisms are the lirear transformations -- then VEC is monoidal:

Take X 8 Y to be the algebralc tensor product and let e be C.

Note: If

£:X + X'
g:¥Y - Y',
then

Q@ (f,9) =f@q:XRY > X' QY'

sends X ® v to £(x) & gly).]

6.2 EXAMPLE Yet ALG be the category whose objects are the algebras over C



and whose morphisms are the multiplicative linear transformations —— then ALG is

monoidal: Take A ® B to be the algebraic tensor product and let e be C.

[Note: If

A,B € Ob ALG,

then the multiplication in A 8 B on elementary tensors is given by

(Al 2 Bl) (Az ® B2} = AR, 2 Ble.]

6.3 EXAaMPIE Let *ALG be the category whose objects are the *x-algebras over
C and whose morphisms are the multiplicative x-linear transformations -- then *ALG

is monoidal: Take A 8 B to be the algebraic tensor product and let e be C.
[Note: To say that $:A > B is *-linear means that

b(a*)y = o{A)*

for all & € A.]

6.4 REMARK Each of these three categories alsco admits another monoidal
structure: Take for the multiplication the direct sum & and take for the unit the

zero object {0}.

Let fl and K be complex Hilbert spaces —- then their algebraic tensor product

# ® K can be equipped with an inner product given on elementary tensors by
X BY X BYy> = Ry, Xp><Y0¥yp?

and its completion H @ K is a complex Hilbert space.



N.B. If

A € B(H M)

B € B(Kl,Kz) ,
then

ABB:Hl@Kl-*HzaKz
extends by contimiity to a bounded linear operator

AR B:Hl e Kl - H2 Q KZ'

Recall now that HIIB is the category whose objects are the complex Hilbert

spaces and whose morphisms are the bounded linear operators (cf. 4.28).

6.5 LEMMA HIIB is a moridal category.

PROOF Define a functor

&:HIiB x HILB ~+ HILB

by
QH,K) =H @K
and
A B
(H, »Hy,K >K) =ARB

and let e be C.

A symmetry for a monoidal category C is a natural isomorphism 7, where

T ot
xyXRY>YRY,

such that

TY,X ° TX,Y:XQY +>XRY



is the identity, Rx = LX ° Ty o ard the diagram
r

A T
X R {Y¥RE —m— (XY RZ — »ZRAX2Y)

wa] A

XR(ZAY) —— (XRZ)RY —— (ZRX) RY
A T @ id

comutes. A symmetric monoidal category is a monoidal category C endowed with a

symmetry T. A monoidal category can have more than one symmetry {(or none at all).

[Note: The "coherency™ principle then asserts that "all" diagrams built up
from instances of R, L, A, T (or their inverses) and id by repeated application of
@ necessarily cammte. ]

N.B. lLet

BigxgrgxC

be the interchange ~- then f is an isamorphism and v:8 ~ @ ¢ ¥ is a natural iso-
orphism,

It is clear that VEC, AlG, and *ALG are symmetric monoidal, as is HILSB.

6.6 IEMMA Let H and K be complex Hilbert spaces — then the linear map

B:B(H) @& B(K}) > B(H g K)
induced by the bilinear map
B(H) »x B{(K) -~ B(H & K)

(T,8) » T &S

is an injective *-hanomorphism.



From the definitions, C*AIG is a full subcategory of *ALG and while *ALG

is symetric monoidal, it is definitely not automatic that the same is true of
C*AIG (the algebraic tensor product of two C*-algebras is not, in general, a
C*-algebra) .

Suppose that A and B are C¥*-algebras —— then a C*-norm on their algebraic

tensor product A @ B is a norm | |- |, which is submultiplicative, i.e.,

el s lxl, [l
and satisfies the C*—condition, i.e.,
2
x|, = 1] ]2

[Note: The pair (A@ B, ||| |0t) is a pre-C*-algebra and its completion
A @, B is a C*-algebra.]

Definition: A norm

| on A @ B is said to be a cross norm if ¥ A € A,
v B e B,

-

|laeBl| = [la}] {IB

6.7 LEMMA Every C*-rormon A 8 B is a cross nom,

6.8 EXAMPIE Given X € A & B, let

%01 = anf L2 {Ing i} |18y ]

X =% By ﬁBi}.

s

Then |- 1| is a submultiplicative cross norm on A 8 B and the completion A @ B

o~

is a Banach t-algebra. Still, ||-|| is rarely a C*-norm.

6.9 RAPPEL Every C*-algebra is isometrically s-isomorphic to a norm closed



x—gubalgebra of B{ff} for sawe H, or in different but equivalent terminology, every

C*-algebra admits a faithful *-representation on some cawplex Hilbert space {cf.
10.37).

6.10 IEMMA Suppose that

d:A > C

Y:B > D

are x-hamomorphisms of C*~-algebras -~ then there is a unique x-homomorphism

PRY:AB8-C8a?D

of algebraic tensor products such that

(o ¥i(aaB) = 3n) & ¥Y(B)

for all A € A, B € B. And

P injective
=> ¢ @ ¥ injective.

¥ injective

Given C*-algebras , let
B

d:A =+ B(H)

Y:8 -+ B{K)

be faithful x-representations -- then the composition



@y 8
AgB —— BU) @ BK -~ BH QK

is an injective *~homomorphism. One can therefore place a C*-norm on A @ B by
writing

Iy, = HBeoen || (xeAas,

6.11 1A ||| |m:.n is independent of the choice of ¢ and V.
[Note: If in the above ¢ and ¥ are arbitrary *-representations, then

g eoeawn&|| < |1x]];,.]

One terms |||} .

min £he minimal C*-norm on A @ B. Denote its campletion by

AﬂminBmﬁcallA@minBthemnmltensorproductoanrldB.

6.12 EXAMPIE Fix a C*-algebra A. Given X € Mn(g) f A, write

Then the Aij are unique and the map

X > [Aij]
defines a x—iscmorphism

Mn(C_l) 2 A Mn(A) .

But M (A) is a C*-algebra (cf. 4.41), hence M (C) @ A is a C*-algebra w.r.t. the

norm that it gets fram Mn(A). Owing to 1.2, this norm must then be

s %

.
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M(C)RA=M(© &, A

[Note: One can show directly that M_(C) & A is complete pex ||| |m1n

For if {Xk} is Cauchy and if

then for each pair (i,j), {A}j{_j} is Cauchy in A, thus

. k oo
lim A, = A.., say.
K oow 13 T Pige S
Now put
X = L E..RA..
® g4 i i3

and cbserve that

- N k
< T | [A:, - A];. I

i,j ] 3
+0 (k> =,

Consecuently matters can be turned around: The *-isomorphism
Mn((_Z) QA Mn(A)

can be used to place the structure of a C*-algebra on Mh{A} .l

6.13 EXaMPLE Suppose that X and Y are compact Hausdorff spaces -- then

cxX @“ﬁ_n c{Yy) = C{X x Y}.
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[Note: If instead, X and Y are noncampact locally campact Hausdorff spaces,
then

C.iX @ .. C) =C KX x¥).]

6.14 EXAMPIE Fix a C*-algebra A and suppose that X is a compact Hausdorff

space -— then
c{x,A) = Cc{X) R in A,
[Note: If instead, X is a noncampact locally compact Hausdorff space, then

C.X,A) ZC () /. Al

6.15 IEMMA If A and B are simple, then A Q.. B is simple.

6.16 EXAMPIE Suppose that H and K are camplex Hilbert spaces — then
L) & . LK)
is simple and

L 8. LK L ¢eck.

6.17 ILEMMA Suppose that

§:A -+ C

¥:B =+ 7

are »-hammorphisms of C*-algebras -- then

% V:ARB~>CQ7D
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extends by continuity to a %-homomorphism

@Qmin‘}'

A&mnB+CﬂmD.

6.18 REMARK Here
¢ injective
=> & Qmin Y injective.
¥ injective
E.g.: 1If A is a C*-subalgebra of C and if B is a C*-subalgebra of D, then there
is an embedding

AﬁminB-rCQminD.

[Note: This is false in general if ﬁmin is replaced by "®  ax (cf£. infra).]

There are canonical iscomorphisms

RgAQ . C(=ARC »A

LyCR . A(=CgA) >4,

-  min

Ba,B, 0 iy B O > Al B e, C

TA'B:A Qmin B-+8B amin A,

which are evidently natural.
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6.19 SCHOLIUM Equipped with the minimal tensor product, C*ALG is a symmetric
monoidal category.
[Define a functor

R:C*AIG » C*ALG

by
and
oo ¥
R(A > C,B>1) =¢ﬁminq’

and let e be C.]

6.20 THEOREM Ilet | -||ubeac*—mmonA@B--thenVXEA&B,

xl s 1],

[Note: This result is the origin of the term "minimal tensor product”.]

6.21 LEMMA If A is nonunital, then any C*-norm ||Ha on A& B can be
extended to a C*-rorm on A’ @ B.
[Note: Therefore if both A and B are nonunital, then any C*-nomm | |- ||, on

A @ B can be extended to a C*-norm on A+ ] B+.]

6.22 LEMMA If A@ B is simple for same C*-norm [|||05 on A @ B, then

. = |l . arnd A and B are simple (cf. 6.15).
o min

Given C*-algebras A and B, define the maximal C*-norm on A & B by

)|, = sup {{InG0 |1,
k)
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sup being taken over all *-representations of A @ B. Iet A L. B be the completion
il

of A® B w.r.t.

.||max—-thenAﬁmaxBistlemaximltensorproducthAandB

and
A@ B ~Ct(Aa B,
max

where C*(A @ B) is the enveloping C*-algebra of A @ B (cf. §9), hence there is an

axXecw

AQB-»AQMB.

6.23 1EMMA If $:A® B + C is a s-homomorphism, then there is a unique

*=homomorphi sm @max:A 8 B + C which extends ¢.

6.24 THEOREM lLet ||-|{ beaC*normon A@B --thenvXcA®B,
xl ]y < 1]
PROOF Thanks to 6.23, there is a surjective *-hancmorphism

AR B+Ag@a B,
max o

xdl s

for all X € A @ B.

6.25 REMARK Equipped with the maximal tensor product, C*ALG is a symetric

monoidal category (cf. 6.19).
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A C*-algebra A is nuclear if there is anly one C*-norm on A & B for every

C*-algebra B. So, if A is nuclear, then ||-|| on A& B and we write

min = |1 lpax
AgB for

6.26 EXAMPIE V¥V n = 1, the C*-algebra Mn(g) is nuclear (ef. 6.12).

[Note: More generally, every finite dimensional C*-algebra is nuclear
(use 1.4}.]

6.27 EXAMPLE If H is an infinite dimensional complex Hilbert space, then
B{H} is not nuclear.

[There are a mmber of ways to see this, none of them obvious. One method is
to show that

B(H) & . B{H) = B(H) R ax B(H).1]

6.28 THEQREM Every comutative C*-algebra is nuclear.

6£.29 THEOREM A filtered ceolimit of nuclear C*-algebras is nuclear.

6.30 EXAMPLE Every AF-algebra is nuclear (cf. 3.17).

6.31 EXAMPLE Suppose that H is an infinite dimensional camplex Hilbert
space — then L_(H) is nuclear.

Note: Recall that

M(L_(H) = B(H)  (cf. 5.9).
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Since B{H) is not nuclear, it follows that the multiplier algebra of a nuclear

C*.algebra need not be nuclear.]

6.32 LEMMA The minimal tensor product A a .. B is nuclear iff both A and
B are nuclear.

PROCF If B is not nuclear and if C is a C*-algebra for which |[-|] _ =
-1 |rer on B & ¢, then the surjective *-homcmorphism

B&mC+BﬁminC

has a nontrivial kernel, thus the same is true of the camposition

(AQminB) ﬁmc-*AQmin (BﬁmaxC)

—»Aﬁmin (Eﬁmin C)

= (A  in B) 2 .in C.

Therefore A & . B is not nuclear. Conversely, if A and B are nuclear, then for

any C, we have

il

(Ag . B & Cx (A @ B) R C

Ag (B g C)

Y

2

Ag (B Qmin Q)

Bag. O

1
3>
=
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6.33 EXAMPLE If A is nuclear, then v n 2 1, Mn(A) is nuclear. In fact,

tl

M (A S M (© 8 A

n

M(C) e, A (cf. 6.12).

6.34 EXAMPIE TIf ff and K are complex Hilbert spaces, then

L0 & . L (K

iz nuclear and, in fact, is s-isagmorphic to

L (&K (cf. 6.16).

6.35 REMARK Write NUCC*ALG for the full subcategory of C*AlG whose cbjects
are the nuclear C*-algebras equipped with the minimal tensor product ~- then NUCC*ALG

is a sympetric monoidal category.

A C*-algebra A is said to be stable if A Z A 2 ;_.m(ﬂz) (= Em(HA) {ef. 5.12)).

6.36 EXAMPIE L_({%) is stable:

0? @ 2%z 42
=
2 2, . 2 2
(9 e, 1.(0% =1, )
2

3
£
~
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6.37 EXAMPLE If A is stable, then vn = 1, Mn(A) ~ A. Proof:

HE

M (A =M e, A

13

2
MO R, (Ae . L ()

n

2
AR M (C) @ . L (%))

t

2
Ag . (L,CH e, L)

i
>
®
3
15
®
]

2
5
B

=

=

¥
&

Two C*-algebras A and B are stably isomorphic if

2, 2
AR L) zBa. L (9.

6.38 EXAMPIE C and ;_.m{ﬂz) are stably isamorphic.

6.39 IEMMA If A is nuclear and if A and B are stably isomorphic, then B is
nuclear.

PROOF For
A nuclear => A amin EW{AE?‘) nuclear (cf. 6.32)
2
=> B @min L_{£") nuclear

=> B nuclear {cf. 6.32).
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It is false in general that a C*-subalgebra of a miclear C*-algebra is

nmuclear. Still, there are properties of permanence.

6.40 IEMMA If A is nuclear and if 7 < A is a closed ideal, then I is

nuclear.

6.41 ILEMMA If A is nuclear and if T c A is a closed ideal, then A/T is

nuclear.

6.42 THEOREM Suppose that T < A is a closed ideal. Assume: I and A/T

are nuclear -- then A is nuclear.

If

0->J->B-+B/J~+0

is a short exact sequence of C*-algebras and if A is a C*-algebra, then
0+AﬁmJ+AQmB'+AQmB/J+O

is again short exact. On the other hand, this need not he true if "max" is replaced
by "min", leading thereby to the following definition.
A C*-algebra A is said to be exact if it has the property that A R in

preserves short exact seguences.
6.43 LEMMA Every nuclear C*-algebra is exact.

6.44 REMARK There are C*-algebras which are not exact and there are exact
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C*-algebras which are not nuclear.

6.45 LEMMA Every C*-gubalgebra of an exact C*-algebra is exact.
[Note: Thus every C*-subalgebra of a nuclear C*-algebra is exact (but not

necessarily nuclear).]

The quotient of an exact C*-algebra is exact. Filtered colimits of exact
C*-algebras are exact bhut extensions of exact C*-algebras are in general not exact.
N.B. It is a famous theorem due to Kirchberg that ewvery separable exact

C*-algebra can be embedded as a C*-subalgebra of a separable nuclear C*-algebra.

6.46 LEMMA If A and B are exact C*-algebras, then so is A R in B.

6.47 REMARK Write EXC*ALG for the full subcategory of C*ALG whose objects
are the exact C*-algebras equipped with the minimal tensor product -- then EXC*ALG

is a symmetric monoidal category containing NUCC*ALG as a full subcategory.



§7. STATES

Iet A,B be C*-algebras —-— then a linear map 9:A > B is said to be positive

if @(A+) < B+.

7.1 LEMMA Suppose that 9:A -+ B is positive -— then v B, /B, € A,

@(Af_AZ)* = ¢(A§Al) .
[Note: Since A = A2, it follows that

d(ay* = o(a*) (A€ A).]

7.2 EXAMPLE A *-homamorphism ®:A -+ B is positive:

b(axp) = o(a*)0(R) = ¢(A)*0(R) € B,

7.3 IEMMA Suppose that ¢:A »+ B is positive — then ¢ is bounded.

More can be said in the unital situation.

7.4 1EMMA If A and B are unital and if ¢:A - B is positive, then ||¢|| =
ey 1.

[Note: Accordingly, if ¢ is in addition unital, then |[?|| = 1.1

7.5 EXPMPLE Take A = B = Mz(g) and let ¢ be the linear map defined by



11 12 411 %2
ol ) =

a

21 2 0 0

Then ||ef| = ||®(1,) || = 1 and &(1,) = 0. Still, ¢ is not positive.

7.6 IrMMa If A and B are unital and if &:A + B is a unital bounded linear

map such that |]¢]|| = 1, then ¢ is positive.

Specialize now and take B = C — then a linear functional w:A + C is said to
be positive if
Az20=>w(a) =0.

N.B. Positive linear functicnals are necessarily continuous (cf. 7.3).

7.7 LEMMA Let w:A + C be a positive linear functional —- then ¥V A € A,

w (A%}

wi(A

o (a) |2

1A

| {o| |w(a*a).

7.8 LEMMA Let w:A + C be a positive linear functional -- then Vv A,B € A,

lw@#B) |2 < w(a*n)w(B*B).

Fix an approximate unit {ei:i € T} for A per 1.20.



7.9 LEMMA Let w:A > C be a positive linear functional —- then

i€l

In particular: If A is unital and if w:A > C is positive, then ||u|]| =

w(ly) (cf. 7.4).

[Note: This can be turned around. In other words, if w:A > C is a bounded

linear functional such that ||w|| = w(l,), then w is positive (cf. 7.6)

W
(T ) = 1)

If

are positive linear functionals, then their sum W+ @, is a positive linear

functional. And:

ay + w0 = Tog ]+ Tl .

Proof:

1 Iml + W Lim (0, (e,) + w,le;))

N
2 ier

= lim ®, (e.} + lim w, (e,)
jer T ¥ jeg 201

g 11+ Ly 1.

Suppose that A is nonunital. Given a positive linear functional w:A ~ C,



define a linear functional w' on A" by

o (AN = w®) + Al lw]].

Then w+ is positive. In fact,
+
w ({A,N)*(A,N)

= u)+(A*A + M+ )\A*,Xl)

|A|2 Hol| + w@) + w(dar) + w{@a*).

But
Rom) + xa@) + 23] |ul [V o
> () + ) + 23] lo@]|  (cf. 7.7)
2 0.
Therefore

AN @) = (4] Nel [Y? - s@n %2 s o,

N.B. We have

+
w (lA"')

™|

"

w (0,1 = |jul}.

7.10 IEMMA Iet w:A > C be a bounded linear functional.
w(A*} = w(h).

Then 3 unique positive linear functicnals

Assume:

¥ A E A4,



w, A > C

w A >C
such that

W= w, - W
and

o] |

I|LU+” + llw_il'

7.11 REMARK Let w:A - C be a bounded linear functional. Define w*:A + C

by
w¥ (A} = w(a¥)
and put
- W+ wk
Be W= 5
- 54
Imw= 2=,
_ 2/-1
Then
w=Re w+ V-1 Im w.
Since

Re w{A*) = Re wi{d)

T w(A¥*)

Im w{a),

it follows fram 7.10 that every bounded linear functional on A can be written as

a linear combination of four positive linear functionals.



A gtate on A is a positive linear functional w of norm 1. The state space

S{A) of A is the set of states of A.

E.g.: S(C ® C) can be identified with [0,1] and S(M2 {C)) can be identified

with g2

7.12 EXAMPLE Fix a locally compact Hausdorff space X.
o If X is campact, then the dual C{X)* of C(X) can be identified with

M(X), the space of complex Radon measures on X:
1Bl Iu ' Iu(f) = fx fau.
Here
||ul| = ll-ll(x);

u| the total variation of p. Therefore S(C(X)) = M; (X), the Radon probability

measures on X.

e If X is noncampact, then the dual Cm(X)* of cm(x) can be identified with
M({X), the space of corplex Radon measures on X:
u - IU' Iu(f) = IX fdyu.
Here
el = u| ),

|4} the total variation of p. Therefore S(C_(X)) = M'I (X), the Radon probability

measures on X.

7.13 EXAMPIE Given a caomplex Hilbert space fH, denote by W(H) the set of

density operators (i.e. the set of positive trace class operators W with tr{W) = 1) -




then the arrow
WH)y - S{Em(H))

that serds W to Wye where
w AT = tr(Wr) (T € L ()
is bijective.
[Note: It is clear that
S(L, () =« S(B{H),

the inclusion being proper if # is infinite dimensiomal.]

7.14 IEMMA S(A) is a ronempty convex subset of A*.

7.15 1EMMA S(A) is weak* closed iff A is unital.
[Note: So, if A is unital, then S(A) is weak* compact (Alaocglu), thus is the

weak* closed convex hull of its extreme points (Krein-Milman).]

If

wz:A + C

are positive linear furnctionals, write W oz w, if by = Wy is positive.

Now let w € S(A). Dempte by [0,w] the set of all positive lirear furnctionals
w'sw = w' —— then [0,w] is a convex set ard w is said to be pure if [0,w] =

{tw:0 = t < 1}. Write P(A) for the set of pure states of A.


http:fumtiona.1s

7.16 EXAMPIE If X is a locally compact Hausdorff space, then

PIC(X)) = {8 :x € X} (X compact)

am
PIC (X)) = {5, :x € X} (X noncampact) .
7.17 EXAMPIE Suppose that H is a complex Hilbert space —— then
PL () = {wx: flx|] = 13.
Here
w (T) = <x,Tx>
or still,

H

W, (T} tr(PxT) ’
P the orthogonal projection onto Cx.

[Note: Iet PH be projective Hilbert space (the quotient of the unit sphere
in H by the canonical action of U(1)). Give PH the quotient topology =- then

P(L_ () supplied with the relativised weak* topology is homeamorphic to PH.]

N.B. The wx(llxl] = 1) are the so-called vector states.

7.18 1EMMA If A is unital, then the extreme points of S(A) are the pure

states:

ex S{A) = P(A).

7.19 EREMARK For any A {unital or nomunital), let 5(A) stand for the set



of positive linear functionals of norm £ 1 —— then .E(A) is convex, weak* campact,

and

7.20 1LEMMA Every multiplicative state is pure.
7.21 LEMMA Every pure state is multiplicative on the center of A.

7.22 SCHOLIUM If A is a comwutative C*-algebra, then

P(A) = A(A).

Suppose that A is nomanital. Given a state w € S{A), define as before a

linear functiocnal w+ on A" by

+

w (A, = wl@d + X (||o]] = 1).
Then w+ € S{A+). Moreover,

w e P{A) <= w+ e P(A+).

7.23 THEQREM If A' is a C*-subalgebra of A, then every state w' on A' can
be extended to a state w on A.
PROOF It suffices to establish this when both A and A' are unital with

]‘A =1 . S0 let w' € S{A'). Owing to the Hahn-Banach theorem, 3 a bounded linear
Al‘

functional w € A* that extends o' and is of the same norm. But

L= Jlol] = o' || =@ ) =wl,).
Ai
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Therefore w is positive (cf. 7.6), hence w € S{A).

7.24 THEOREM If A' is a C*-subalgebra of A, then every pure state w' on A'
can be extended to a pure state w on A.

PROOF Let S (A) be the subset of S{A) oconsisting of those states that
ml

extend w' —— then $§ (A) is not empty (cf. 7.23). On the other hand, S (A) is a
' wt

weak* camact face of S(A), thus

ex S (A = p (Krein-Milman) .

w
But
ex S (A) c ex S(H).
w" -
pite's |
weEex S (A => w=0=>wc PA) {cf. 7.19).
wl

7.25 LEMMA Let A € A, —- then 3 w € P(A): lo@) | = | 1A},

PROOF The C*-subalgebra C* () generated by A is commutative. Choose a
character w, € A(C*(A)): |wA(A) | = ||a]| and extend w, to a pure state w on A
{cf. 7.24).

Here is a corollary: If w(A) = 0 v w € P{A), then A = 0. In fact,

v w € P{A),
w{Re D) = 0
=> Re A=1Im A = Q.
w({Im &) =0
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7.26 IEMMA Iet A € A — thenAEASA iff w(d) € R for all w € P(A).

7.27 1IEMMA Iet A€ A - thenAEA+ iff w(a) € R, for all w & P(A),

=0

A weight on A is a function w:»f’\+ + [0,=] such that

w{A + B) = w(aA) + w{B) {A,B € A+)

w0 =0, wia) =w{@) (3 >0, A€ A+).

E.g.: The prescription w(0) =0, w{d) == (A € A+,A # 0) is a weight, albeit
a not very interesting ore.

Every positive linear functional is, of course, a weight. More generally, any
sum of positive lirear functiomals is a weight (in fact, any sum of weights is a

weight) .

7.28 EXAMPLE Let H be a complex Hilbert space. Fix an orthonormal basis
{ei:i € I} for H and define

tl':B(H)+ + [Orm]

by

tr{a) = X <ei,Aei>.
ier

Then tr is a weight.
[Note: Recall that tr is welldefined in the sense that it is independent of

the choice of orthonormal basis.]

7.29 EXAMPLE Take X = I_{n -- then the Riesz representation theorem identifies


http:fun:::tio:n.3.ls
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the positive linear functionals on Co (I_{n) with the Radon measures and the positive
linear functionals on Cw(f_{n] with the finite Radon measures. Therefore every Radon

measure y such that u(l_‘x:n} = o determines a weight on Cmtgn) which is not a positive

linear functional {e.qg., U = Lebesgue megasure).
[Note: Recall that a positive linear functional on C c(ljn} is a linear

functional I:Cc(ljn) > C such that I{f) =z 0 whenever £ 2 0.]

Given a weight w on A, let

W — A+ ={A € A+:w(A) < o},

7.30 IEMMA IfA 2B 20a:ﬂifAGw—A+,t11enBEw-A+.

PROOF Write

A= (A—B) + B.

o > wi{a) = w(A - B) + w(B).

Lw = {& € A;w(a*n) < o},

[Note: In general,

w(A*A) < = #> w(AA¥) < ]

7.31 IEMMA Lw is a left ideal.
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PROOF There are two points. First, vV A,B € A,

A+ B)*(A+B) + (A-B)*@A - B) = 2(A*A + B*B)

A+ BY*{a + B) < Z(A*A + B*B) .,
Second, ¥ X € LW&VAEA,

(AX) *AX = X*A*AX

1A

| 1a*a | |x*x

| |a ] 2x*x.

7.32 IFMMA The linear spanw — A of w ~ A+ is the set of elarents of the
form
n
{ T ¥*X.:X.,¥. €L},
i=1 11 1 1 W
i.e., is

L*f .
Wow
PROOF If X,Y € LW, then

4Y*X = VDR x ¢ (FDrx + CD R,

3
z
k=0

which implies that

LI <cw - A,
W oW

1/2

In the cther direction, if A € w - A+, then A € Lw’ thus

1/2

= (/2
A= (AT € XL .
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N.B. It follows that w - A is a s#-subalgebra of A with
w=-ANA =w-A.
Given A € w - A, we can write
A=A -2 ¢ /:fA3—¢:TA4,
where Al,Az,A3,A4 are in w - A+. If
A=Al -2+ /Tay - /1A
is another such decomposition, then

Al—A2=Ai—A;'3andA3—A4=Aé—-A:1.

w(Al) + w(Ai) = W{Ai) + w(AZ) and w{A3) + W(A};) = w(Aé) + w(A4)

wia,) - wa) + /-TW(A3) - /:fw(A4)

= w(a]) - win)) + AL way - /~1lway.
Therefore the prescription
w(@) = wa) - wn) + /ST w@dy) - /1wy

urlaxnbigllouslyexterldswfmw—A+tow—A.

7.33 REMARK Ifw——A+=A+,thenw—A:AandtheextensionofwtoAis

a positive linear functional, hence w is continuocus.
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A trace on A is a weight w satisfying the condition

w{A¥R) = w(AA¥)
for all A € A,

N.B. If A is commtative, then every weight is a trace.

7.34 REMARK If w is a trace, then LW is a x-ideal, thus the same is true

of w~ A (cf., 7.32).

7.35 EXAaMPLE If H is a camplex Hilbert space, then
tr:B(fﬂI)+ > [0,]

is a trace and

tr - B(H) = L (H).

A tracial state on A is a state w which is a trace.

N.B. If A is commtative, then every state is a tracial state.
7.36 EXAMPLE Take A = l\gn(g) ~— then the assignment
@il » 2 ¢
13 noy Sk

is a tracial state on Mn (C) (and there are no others}.

7.37 EXAMPIE Iet H be an infinite dimensional complex Hilbert space --

then L () does not admit a tracial state. To see this, assume the opposite and
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suppose that o € S(L_(H)) is a tracial state, hence w has the same constant value

t > 0 on all rank one orthogonal projections {(any two such being unitarily equiv-

alent). Let {ei:i € 1} be an orthonormal basis for H. Given €5 seans®y
1 n

, let Pn

be the orthogonal projection onto their closed linear span -- then

1A

e )| < Vel = 1.

On the other hand,

1A
L

}m(Pn) | =nt=>nt <1=>n

il

fram which the obvious contradiction.




§8. REPRESENTATIONS OF ALGEBRAS

N.B. 1TIn what follows, the underlying scalar field is C.

Iet E be a linear space, L{E) the linear maps from E to E — then L(E) is
an algebra {miltiplication being composition).

Let A be an algebra —— then a representation of A on E is a hanamorphism
mA + L(E).

[Note: A remesentation m:A + L(E} defines a left A-module structure on E

(viz. Ax = 7{A)x) and conversely. ]

8.1 TERMINOLOGY
e T is faithful if ™ is injective,
e T is trivial if w(a} = 0 ¥ A € A,

e T is algebraically irreducible if 7 is not trival and {0} and E are the

only m-invariant subspaces.

e 1 is algebraically cyclic if 3 x € E such that {w(A)x:A € A} = E.

8.2 REMARK The definition of algebraically irreducible explicitly excludes
trivial representations. If they were not excluded, then the trivial representation

on a zero or cne dimensional space would qualify.

8.3 LEMMA Let T be a representation of Aon E # 0 — then m is algebraically

irreducible iff every nonzero vector in E is algebraically cyeclic.

8.4 THEOREM Let w be an algebraically irreducible representation of A on E.



Suppose that 7 = A is a nonzero ideal -- then the restriction 7|l is either trivial
or an algebraically irreducible representation of 1. Furthermore, every algebra-

ically irreducible representation of I arises by restriction from same algebraically

irreducible representation of A.
[Note: If 1 ¢ Ker 7, then T drops to an algebraically irreducible represent-

ation of A/T and every algebraically irreducible representation of A/1 is obtained
in this fashion.]

8.5 ILEMMA Let 7 be an algebraically irreducible representation of A on E.
Suppose that A € AnnLA —- then w(Aa) = 0.

PROOF Fix y € E:y # 0, thus {r(B)y:B € A} = E. And
T{A)w(B}y = w{AB)y

= 7{0)y = 0.

Consequently,

An.nLA c Ker .

Since AnnLA is an ideal, it follows that the induced homomorphism

A/pon A > L(E)

is an algebraically irreducible representation of A/AnnLA.

8.6 THEOREM Let T be an algebraically irreducible representation of A an
E — then 7 can be extended to an algebraically irreducible representation T of

DE(A} on E. Moreover, 7 is unique.



PROOF Suppose that
m{X)x = n(¥)y (X,¥ € A, x,v € E).
Then VA€ A & ¥ (L,R) &€ DC(A),

m(A) (LX) )}x - T{LY)}y)

T(AL({X))x - T{AL(Y))y

T(R{A)X)x - T(R(A)Y)y

T(R@A)) (X)) x - 7(¥}y)

= 00
But 7 is irreducible, hence

TLEX))x = 7(L{¥))y.

Accordingly, if e € E and if

T omX)x
e =
_T(¥)y,
then the prescription
(LX) ) x
T({L,R))e = =
L))y

makes sense and defines an algebraically irreducible representation of Pe(A) on E.

Finally, v A € A,

T((Ly Ry))e = ML, (0)x

7 (AX) %



= m{A)m(X)x

m(A)e.

Given a representation m of A on E, let

T{A)' = {T € L{E):T1(na) = n(A)T{A € A) }.

8.7 IEMMA Let T be an algebraically irreducible representation of A on
E == then w(A)' is a division algebra.
[Note: In other words, w(A)' is a unital algebra in which every nonzero

element has an inverse,]

8.8 REMARK The converse is false, i.e., it may very well be the case that

m{A)' is a division algebra, yet m is not algebraically irreducible. E.g.: ILet
A be the algebra of all N-by-N matrices which have only finitely many nonzero
entries, let E be the vector space of all camplex sequences, and let T be the
canonical representation of A on E —- then m(A)' can be identified with C, yet the

subspace of E consisting of those sequences that are finitely supported is w-invariant.

Iet ™ be a representation of Aon E = 0 — then 7 is totally algebraically

irreducible if v T € L(E) and every finite dimensional subspace V < E, 3 A € A:

T(AJx = ™ V X € BE.

N.B. Evidently,

"totally algebraically irreducible” => "algebraically irreducible”.



8.9 LEMMA If wm:A » L(E) is totally algebraically irreducible, then
mA)' = ¢ id.

PROOF ILet T € w{A)' and suppose that for some x € E, x and Tx are linearly
independent. Since 7 is totally algebraically irreducible, 3 A € A:

T(A)x = x

m{A)Tx = 0.

But then

0 =1A)Tx = TT(A)x

)

Tx,
a contradiction, So, VX €E, 3 cxeg:Tx=cxx. Ifxio,yxo,andcxzcy,

then x + y and T{x + y) would be linearly independent. This being an impossibility,

the conclusion is that 3 ¢ € C:Tx = cx (x € E) or still, T = c(idE) .

8.10 LEMMA If mA > L(B) is algebraically irreducible and if w(A)°

It
0
8
of"

then 7 is totally algebraically irreducible,

8.11 RAPPEL The only finite dimensional division algebra over C is C itself.

Let 7 be an algebraically irreducible representation of A cn E. Assume:
dim E < ® -— then T is totally algebraically irreducible. Proof: m{A)?! is a finite

dimensional division algebra, thus T(A)' = C idE. Now quote 8.10.

8.12 EXAMPLE If A is commutative, then every finite dimensional algebraically

irreducible representation m:A > L(B) of A is one dimensional.



[Suppose that E has two linearly independent vectors x and y. Choose

ABE Asmdx=x, m(A)y = 0, 7{B)x =y — then

T(AB)x

T(A)T(BYx = n{A)y

il
o

m{BA) X

T(B)T(A)% = m{B)x

1
'S

But AB = BA, so we have a contradiction.]
[Note: The assumption dim E < « implies that 7 is totally algebraically
irreducible and this is all that is needed. Spelled out: If A is commtative,

then every totally algebraically irreducible representation of A is one dimensional.]

8.13 REMARK ILet 7 be an algebraically irreducible representation of A on E.

Assume: VYV A € A, 7(A}) is of finite rank -- then 7 is totally algebraically irre-
ducible.

Tet m and 7, be representations of A on E, and E,.

e An algebraic equivalence is a linear bijection :E, > E, such that

emy (A) = (e (A€ A).

e An algebraic intertwining operator is a linear map T:E

1+Ezsuchthat

T'lTl(A) = nzfA)t A €A.

3.14 IFMMA Suppose that ™ and m, are algebraically irreducible representa-
tions of A on Eq and E, - then all nonzero algebraic intertwining operators

between T and T, are algebraic equivalences.



Iet 7 be an algebraically irreducible representation of Aon E. Fix x 2 0 -~
then 7 = {A € A:w(A)x = 0} is a modular maximal left ideal and the arrow A + w(A)x
implements a linear bijection Z:A/1 > E that sets up an algebraic equivalence be-
tween the canonical representation L of A on A/T and 7.

[Note: To check modularity, choose e € As;mi{e})x = x -~ then ¥ A € A,

m(ae -~ A)x = n(A)n(e)x - w(A)x = 7{A)x - w(A)x = O.
Therefore
2Ze~A€l (Ac€A.

I.e.: 1 is modular.}

* & k % * %k %

Assume henceforth that A is a Banach algebra and that E is a Banach space --

then in this context a representation of A on E is a homomorphism 7:A + B(E), where

B(E) is the Banach algebra whose elements are the bounded linear maps fram E o E.

8.15 TERMINOLOGY
e 7T is faithful if m is injective.
e T ig trivial if w(A) = 0 v A € A,

e T is topologically irreducible if 7 is not trivial and {0} and E are the

only closed m-invariant subspaces.

e 7 is topologically cyclic if 3 x € E such that {n(A)x:A € Al is dense in E.

N.B. It is clear that the notions "topologically irreducible™ and "topologically

cyclic”" are weaker than their purely algebraic counterparts.



8.16 LEMMA Let w be a representation of Aon E = 0 — then 7 is topologically

irreducible iff every nonzero vector in E is topologically cyclic (ef. 8.3).

8.17 EEMARK Suppose that T ¢ A is a nonzero closed ideal -- then the re-
striction to T of a topologically irreducible representation of A is either trivial
or a topologically irreducible representation of I {cf. 8.4).

[Note: Tt is not claimed, however, that every topologically irreducible repre-

sentation of I can be extended to a topologically irreducible representation of A.]

8.18 RAPPEL A normed division algebra D is one dimensional: 0 = C.

8.19 THEOREM Iet T be an algebraically irreducible representation of A on
E — then 7 is totally algebraically irreducible.

PROOF Recall first that w{A)' is a division algebra (cf. 8.7). Accordingly,
in view of 8.10, it suffices to show that 7n({A}' is normed. To this end, fix a

nonzero x € BE. Given T € n{A}', put

[T} ], = inf{| |7 @) [|:a € A, m(A)x = Tx}.

Since T is algebraically irreducible, the RHS is not empty (cf. 8.3) and

0 < ||T11x<w. Nesct

g
Il
=
2]
L
iA

[te@ 1] |1l

sl | |l=l7

1A

7],
Therefore

Tl =0=>]]mx|] =0



=> Tx = 0,

S0 T = 0 (otherwise T Tx = 0 => x = 0). The verification that |- 1], is a norm
is straightforward.

[Note: The commutant 7{A)' of n(A) is computed in L(E) (not B(E)).]

8.20 REMARK Maomentarily drcp the assumption that E is a Banach space {(but
retain the assumption that A is a Banach algebra). Consider an algebraically
irreducible representation m of A on E —- then 7 is necessarily totally alge-
hraically irrveducible. To see this, recall that w is algebraically equivalent to
the canonical representation L of A on A/T for some modular maximal left ideal

I <« A. But A/1 is a Banach space (I being closed) and the operator LA:A/I > A/T

which sends B+ 7 to AB + I is continuous (indeed, HI‘AH < {[al]). One may there-
fore apply 8.19.
[Note: It is thus a corollary that an algebraically irreducible representation

of a cammutative Banach algebra is one dimensional (cf. 8.12).]

8.21 EXAMPIE If m is an algebraically irreducible representation of A on E,

then T{A}' =C idE {cf. supra) but this is false if "algebraically irreducible" is

replaced by "topologically irreducible". Thus take for E a Banach space with the
property that 3 T € B(E) which has no nontrivial closed invariant subspaces
(Enflo) -— then the identity representation 7 of the cammutative unital subalgebra
A of B(E} generated by T is a topologically irreducible representation. But

Aca{A)'... .

If 7 is a representation of A on E, then 7 is continuous if 3 K > 0 such that
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e || sK|[1a]] &eA.

Mote: If in the terminology of §4, E is a left Banach A-module, then the

associated representation m of A on E is continuous:

[[may=|] = {|ax]]

18

KAl {1x(]
=%

[ ||

1A

K| |al].]

8.22 IEMMA Suppose that Vv x € E, the map

A->E
T
X
_ Ao (A (= ma)x)
is continuous —~ then 7 is continuous.

PROOF Consider the set
{nz]lxf| = 11 = B(A,E).
s [|m @] < Jlw@ || (@& €A,
Tl s ®

50, by the uniform boundedness principle, 3 K > 0O:
s lIml] < x
| Ix] |1

and this implies that

@] = sw  |jraxl] = @ 1] < x| 1al].
Tl 122 T
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8.23 THEOREM Suppose that 7 is an algebraically irreducible representation
of Aon E -- then 1 is continuous.
PROOF In the notation of 8.22, the algebraic irreducibility of v implies

that there are two possibilities: 1. V x, Ty is continuous; 2. v x = 0, T,

is discontinuous. This said, the idea then is to assume that the second possibility
obtains and fram there derive a contradiction. So take E infinite dimensional and
start by fixing a sequence of linearly independent elements x € E (! |xn| | = 1).
Next, choose a sequence A € A with the following properties:

. -n

@ [la fl <275

(ii) Tr(AI_l)xl = s = TT(An)xn = 0;

-1

(iii) Hﬂ{p‘n)xn” >n + ||'n(A1)xn+ oo Tr(An__l)xn”.

That such a constyuction is possible will be detailed below. Proceeding, let

Then v k € N,

I

Hragx || = [[na)g + -0 + a(a)x ||

[\

r@) % || = [lr@px, + -+ + 1A% ||

2k =kl|xg .
But 'n(AO) € B(E), from which a contradiction.
[Note: The existence of the A can be established by induction if one can

prove: Y e >0, vM>0, vm€EN, there is an A € A such that
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al] < e m@)xy = oo = w@)x =0, |[va)x || > M.

To this end, let

Il = {A € A:ﬂ(A)xl = 0},...,Im {Ac A:n(A)xm = Q}.

Ot the basis of 8.19, 3 Xm € A:

lI

Tr(xm}xl = ﬂr(Xm}xm—l =0 TT(xrnh{m =

Thas

Xme Il N <<= nN Im—l' Xmg Im

Ilﬂ-" nIm_l+Im=A,

Im being maximal., Therefore addition defines a continuous linear map of

Iln nIm_leIm

onto A. By the open mapping theorem, 3 § > 0 such that for any C € A with
Hel} < ée,

3AEIlﬂ«-- ﬂIm_l,BEIm
such that

C=a+Band ||a|| <¢, ||B]} < e.

icl| < 8 and ||rr(c)xm|1 > M.

Since the map 7 is discontinuous, ane can find a C:

For this choice of C, the corresponding A satisfies the required conditions.]

et My and T, be representations of A on El and E,.

e A topological equivalence is a linear homeomorphism G:E; ~ E, such that
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CTrl(A) = ﬂztA)C (a € A).

» A topological intertwining operator is a bounded linear map T:El + E2

such that

Tmy (A} = m, AT (A € A).

8.24 IEMMA Suppose that ™ and T, are algebraically irreducible represen-
tations of A on E; and B, — then every algebraic equivalence L:E, + B, is a

topological equivalence.

PROOF 1In view of 18.23, Ty and m, are continuous., Fix x, € El (xl # 0) and

1
let

1=1{ac¢ A:nl(A)xl = 0}.

Put X, = Cxl «— then

—i
H

0}.

a €A (A)x,

Since the arrows

A

+

T~ nl(A)xl

A+ 1> TTZ(A)xz

are topological equivalences between

Llandwl

L2 and Tor

the arrow

Ty (a) X T T, (A)x2
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is a linear hameomorphism. But

glmy BIx) = m, (@) gz,

= TTZ{A)X .

Therefore 7 is a topological eguivalence.

The radical of A is the intersection of the kernels of all the algebraically
irreducible representations of A, thus is an ideal. Notation: rad A.

[Note: A priori, this is a purely algebraic notion, i.e., the representation
space E of an algebraically irreducible representation m of A is merely a linear
space, not a Banach space. However, as was pointed out in 8.20, one can always
place a norm on E w,r.t. which E is a Banach space, the m{a) (A € A) are bounded,

and m:A -+ B(E} is continuous.]

8.25 ILEMMA The radical of A is the intersection of the modular maximal left
ideals in A, hence is a closed ideal.

[Note: One can replace “"left" by "right".]

8.26 EREMARK A modular maximal left ideal in A is closed but in general,
maximal left ideals need not be closed. E.g.: Take A to be an infinite dimensional
Banach space thought of as a Banach algebra with trivial multiplication (3B = 0
¥ A,B € A) and let 1 be any dense linear subspace of codimension 1.

[Note: If A has a right (left) approximate unit (cf. 4.1), then every maximal

left (right) ideal is closed.]
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MN.B. If r:A > 1320 is the spectral radius, then

[H
o
L

rirad A =

8.27 IEMMA Iet T c A be a closed ideal - then rad T = T N rad A.

[This is a trivial consequence of 8.4.]

If rad A = {0}, then A is said to be semisimple.

N.B. The gquotient A/rad A is a semisimple Banach algebra:
rad(A/rad A) = {Ql.

[The algebraically irreducible representations of A are of the form 7 ° pr,
where pr:A +~ A/rad A is the projection and 7 is an algebraically irreducible re-

presentation of A/rad A.]

8.28 EXAMPIE Every C*-algebra is semisimple. Proof: ITet A € rad A —- then

A*A € rad A => r{a*d) = 0.
But

Hall = r(A*A)l/z

{cf. 1.1).
Therefore A = 0.

[Note: Not all Banach algebras are semisimple and there are plenty of
instances at the extreme end, viz. those equal to their radical (hence having no

algebraically irreducible representations whatsoever).]

8.29 THEQREM Iet A and B be Banach algebras. Assume: A is semisimple and

let ¥:B + A be a surjective homomorphism —— then ¥ is continuous.
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PROOF Suppose that ¥ is not continuous —— then 3 a sequence {Bn} in B such
that Bn + 0 and ‘P(Bn} -~ A =2 0, Since A is semisimple, 3 an algebraically irre-

ducible representation m of A on a Banach space E such that w{A} = 0 with 7 con-
tinuous. Because ¥ is surjective, 7 ¢ ¥:8 > B(E) is also algebraically irreducible,

thus is continmaous (cf£. 8.23). Therefore
T(¥(B)) = (T o ¥)(B) > (1 e ¥)(0) = 0.
Mearwhile, thanks to the contimuity of =,
Tf(‘l‘(Bn)) > m{A) = 0.

Contradiction.

8.30 REMARK If A is in addition commutative, then it can be shown that any

homomorphism ¥Y:8 » A is continuous.
8.31 THEOREM Any two complete norms on a semisimple Banach algebra are

equivalent.
[Apply 8.29 to idA:A > A.]



§9. #-REPRESENTATIONS OF *-ALGEBRAS

N.B. In what follows, the underlying scalar field is C.

let E be a Hilbert space, B(E) the bounded linear operators from E to E ~—
then B(E) is a C*-algebra.

Let A be a *-algebra — then a *-representation of A on E is a *-homomorphism

m:A +~ B(E).

9.1 LEMMA Let W be a *-representation of A on E. Suppose that E,cEisa

T-invariant linear subspace of E —— then E_0 and E{J)- are closed fT-invariant linear

subspaces of E and

[Note: Let Py:E > E, be the orthogonal projection — then

Py € m{A) '.]

9.2 RAPPEL A subset S < E is total if the linear span of S is dense in E.

Let m be a *—representation of A on E — then 7 is nondegenerate if the set

AE = {n(A)x:A € A, x € E}
is total.
[Note: The trivial s-representation of A on a zero dimensional space is non-
degenerate. ]

E.g.: If 7 is topologically cyclic, then 7 is nondegenerate.
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9.3 IEMMA ILet T be a #-representation of A on E —— then 7 is nondegenerate

iff ¥y nonzero x € E, 3 A € A:m(A}x = 0.

9.4 LEMMA Ilet 7 be a *-representation of A on E «- then 7 is nondegenerate

iff v X € E,

x € {m{a)x:A € A} .

Given a x-representation ™ of A on E, let E, be the closed linear span of AE --
then E_ is m-invariant and the restriction of 7 to E_ is a nondegenerate *-repre-
sentation of A. Write

E=E_®E.
Then ETJ; is m-invariant and the restriction of m to E?"T‘ is a trivial x-representation
of A:

E-= 1 Rer m{a).
AEA

=

9.5 THEOREM Suppose that T is a nondegenerate *-representation of A on E ~-

then there is an orthogonal decomposition

where vV i € I, E, is a closed T-invariant subspace and the restriction of 71 to Ei

is a topologically cyclic *-representation of A.

PROOF Order the set of sets of mutually orthogonal, topologically cyclic, closed

m-invariant subspaces of E by inclusion and, via Zorn, consider a maximal element



{Ei:i eI},

Let m and Ty be %-representations of A on By and E,.

# A unitary equivalence is a unitary operator U:E, + E, such that

UTrl(A) = 1T2(A)U A e A.

9.6 REMARK Let c:El > E, be a topological equivalence.

{polar decomposition) -- then ¥ A € A,

()2 1@ = 1 @ e

UTTl (a) TT2 {A)U.
Therefore

Ty Ty topologically equivalent

T 17y unitarily equivalent,

[To begin with,

Z*m., {n)

o, (%) *

(my (B%) 5) %

(zmy (a%))*

]

Ty (n) g*

Write § = U(Z*7)

1/2



C*C'ﬂl @) = c*'nz nc = m (A) L*¢

@0 @ = o w.
And then
or, @ (02 = v 2 1 o)
= Lm, (A)
= FZ(A)Q
= m, @V (zrg) 72,

But the range of (£*Z) 172 is dense, so

LY (a) = T, (a)u.]

9.7 LEMMA Let m, and 7, be *-representations of A on E, and E,. Assupe:

., is topologically cyclic with a topologically cyclic vector X, e 132 - then ™

is wnitarily equivalent to Ty iff Ty is topologically cyclic with a topologically

cyclic vector € El such that

1
X1, (A)xl> = <X, T, (A)x2> (€ A).

MNote: One can always arrange matters so as to ensure that le = xz.]

In §8,

A "= {Te LE):T1@) = w{A)T (A€ A)l.



I.e.: The camutant of T was computed in L(E}). However, for the purposes at hand,
it is best to let

(A}t = {T € B(E):Tn{d)

k

(AT (A€ A L.

9.8 ILEMMA Let w be a #-representation of A on E = 0 -— then m is topologic-

ally irreducible iff 7 is not trivial and n(A}' = C idE.

9.9 LEMMA Let 7 be a *-representation of A on E » 0 —— then 7 is topologic-
ally irreducible iff w is not trivial and w(A)' containg no nonzero orthogonal pro-
jections except for the identity map on E.

PROOF Assume that 7 is not trivial and that the condition on m(A)' obtains.
To get a contradiction, suppose that 7 is not topologically irreducible. Let

By * E be a nonzero closed m-invariant subspace and let Py be the orthogonal pro-

jectionoonntoEO -- then Vv & € A,
POTT (A)PO = TT(A)PO.
Therefore
= % *
POW(A} (m (A )PD)
= (Bym(A%)P)*
= POTT (A)PO
= TT(A}PO
=>
P, € (A},



Let ‘ni:A > Ei (1 € I) be a *~representation. Assume: VYV A € A, 3 MA >0
such that

sup ||, (A) < M.,
wp {7y @[] <,

Form the (Hilbert) direct sum

e E' -
iex

Then v 2 € A,

@ m.{a) €B(® E,)
ier 1 jer 1

and the assignment
A~> @ m (2)
icl
defines a *-representation of Aon & Ei’ the (Hilbert) direct sum of the LI
iex
[Note: It is clear that

& .
ier

is nondegenerate iff v i € I, M is nondegenerate. ]
N.B. If 7 is a x—representation of A on E and if o= TY¥i€I, then the
*=representation

& .
jer 1

is denoted by I7 (I the cardinality of I). Under the identification
2
® BEzE® £7(L),
i€T -

Im becames © & id.



Note: Any s-representation which is topologically equivalent to a

*~representation of this type is called a multiple or amplification of 7 by I.]

The definitions and results that follow can be formulated for arbitrary
s-representations but matters simplify if we restrict to nondegenerate *-repre-
sentations which is not an essential loss of generality.

Iet . and 7

1 - then

5 be nondegenerate *-representations of A on E, and E,

m, and T, are disjoint if no nonzero sub *-representation of ™ is topologically
equivalent to a nonzero sub *-representation of Toe

[Note: Therefore two topologically irreducible #-representations of A are

disjoint iff they are not topologically eguivalent., ]

9.10 EXAMPLE Every nontrivial nondegenerate *-representation of A on a finite
dimensional Hilbert space is the finite direct sum of topologically irreducible sub
x-representations (these are unique up to topological equivalence while their multi-
plicities are unique period). So, if Ty and T, are two such, then to say ™, and

., are disjoint means that the "same" topologically irreducible *-representation

cannot. appear in the decompositions of T and T, into topologically irreducible sub

*~representations.

Iet Ty and Ty be nondegenerate »-representations of A on Ey and E, -~ then

m, and 7, are geometrically equivalent if no nonzero sub #*-representation of 1. is

1

disjoint fram . and no nonzero sub x-representation of T, is disjoint from e



9.11 EXaMPIE In the finite dimensional case {(cf. 9.10), ™ is geometrically
equivalent to T, iff the “"same" topologically irreducible *-representations occur

in their respective decompositions into topologically irreducible camponents but

not necessarily with the same multiplicity.

9.12 IEMMA Nondegenerate *-representations m .M, are gecmetrically equivalent
iff ™ is unitarily equivalent to a sub *-representation of a multiple of m and

vice versa.
{Note: Therefore a given nondegenerate #=representation is geometrically

equivalent to any of its multiples.]

In particular:

"unitary equivalence" => “geometric equivalence”.

9.13 REMARK If m is topologically irreducible and s is geometrically equiv-
alent to Tys then Ty is wnitarily equivalent to a multiple of . Thus if oy is

also topologically irreducible, then T and T, are unitarily ecquivalent.

9.14 IEMMA Nondegenerate *-representations T /T, are gecmetrically eguivalent
iff 3 a cardinal number n such that nmy is unitarily equivalent to o7,.
[To establish sufficiency, let 7 be a nonzero sub *-representation of n, -—-

1

then 7 is not disjoint fram nm, hence is not disjoint from nn,, or still, is



not disjoint from Toye It remains only to reverse the roles of 'le,‘ﬁ‘z.]

N.B. One says that T is weakly equivalent to m, if Ker m, = Ker m,. So, as

a corollary to 9.14,

"geametric equivalence” => "weak eguivalence”,

9.15 REMARK Let Rep A be the set of all nondegenerate *-representations of
A -~ then in Rep A there are four standard notions of ejuivalence:

l. unitary eguivalence;

2. topological equivalence;

3. geometric equivalence;

4. weak eguivalence.

All are eguivalence relations and we have 1 <=> 2 => 3 => 4, Moreover, these

implications are not reversible {except in certain special situwations}.

5.16 LEMMA Nondegenerate #*-representations Ty: Ty are disjoint iff they have

no geonetrically equivalent nonzero sub *~representations.

A nondegenerate *-representation T of A on E is primary if every nonzero sub
*-representation of 7 is geometrically ejquivalent to .

BE.g.: Tf © is topologically irreducible, then 7 is primary {as is 7™ @ 7T which,
of course, is not topologically irreducible).

{Note: Arbitrary multiples of a topologically irreducible *-representation are

primary. ]
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9.17 LEMMA Nondegenerate primary *-representations T, T, are either disjoint

or geametrically equivalent.

PROOF Suppose that m /T, are not disjoint -~ then I nonzero sub *-represen-

0
1

0
2

tations n. of e 'rrg of L with 17?_ geometrically ecuivalent to m, {(cf. 9.16). But

0

ng is geometrically equivalent to ™ and 'frg is geometrically equivalent to Moo

Therefore Ty is geometrically equivalent to oo

* & k& k¥ * k& %k

Assume henceforth that A is a Banach *-algebra (but maintain the assumption
that E is a Hilbert space).

9.18 REMARK There is no universally agreed to definition of the term "Banach
*-algebra". Here, it simply means that A is a Banach algebra supplied with an
involution. In particular: The involution is not necessarily continuocus.

[Note: In my book POSITIVITY, the involution was tacitly taken to be iscmetric
(i.e., |Ia*}] = ||a]| for all A € A) which, of course, implies its continuity. Let

us also remind ourselves that this is autcmatic for C*~-algebras. ]

9.19 EXAMPIE Let A be an infinite dimensional Banach space. Fix a Hamel

basis E = {e} for A subject to ||e|| =1V e € E. Let {e } be a sequence of distinct

elements of € and put

1
d = * g
€51 = Neyr © o

ot ©on e 1 in=1,2,--.).

For all remaining elements of £, put e* = e and then extend *:E + £ to A by
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conjugate linearity. Taking now the multiplication in A to be trivial (AR = 0

v A,B € A} thus gives rise to a Banach x-algebra with a discontinucus involution.

9.20 REMBRK If A is a Banach *-algebra, then the map

DC(A) + DC{A)

(I.,R) + (R*,L*),

where T* () = T{A*}*, is an involution, hence DC(A) is a x-algebra. If in addition,

amn A = {0} and 2amn A = {0},
then 5.15 (and subsequent discussion} implies that DE{A) is a unital Banach *-alge~
bra, in which case
1 A:A > DE(A)
is contractive.

[Note: In the presence of the involution,

Ann A = {0} <=> AnnRA = {0}.
Therefore DPC(A} is a Banach *-algebra if A admits a right or left approximate unit
(cf. 5.16).]

9.21 LEMMA Suppose that A is semisimple -- then the involution #:A > A is
continuous.

PROOF Denote a nom ||+ |[* by ||A|[* = | |n*|| - then the pair (A,||-|[") is
a Banach algebra. But according to 8.3, ||-]1| and |]|-||* are equivalent, from
which the assertion.
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9.22 REMARK The image of a left ideal under the involution is a right ideal.
Therefore rad A is a closed x-ideal (cf. 8.25), thus A/rad A is a semisimple Banach

*-algebra and itg involution is continuous w.r.t. the quotient norm.

A sx-representation of A on E is a *-hoanamorphism m:4 + B(E).

N.B. If the involution is isometric, then every #-representation is continuous,

a fact that persists in general {cf. 9.25).

[Note; A #-homomorphism from a Banach #*-algebra with isametric involution to

a C*-algebra is continuous (indeed, contractive).]

9.23 EXAMPIE Iet H be a complex Hilbert space. Take A= B(H), E= EZ(H)
{the *-ideal in B(H) consisting of the Hilbert-Schmidt operators) — then the left
regular representation w of B{H) on Ez (H} is a *-representation:
T(A)T =AT (A € B(H), T € -L—Z(H”'
[Note:
T(a) € B{L, (M) (|[r@ || = [[a|].

Moreover, ¥ T,T' € I;.Z(H) .

<STVL,ATS, = <ARTY,T> ) = <7 (A%}, T>
f L

2 2

<D, AT>

2 <T',1?(A)T>2 = <1r(A)*T','I‘>2

T{A*) = 7(A)*.]
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9.24 IEMA ILet T be a *~subalgebra of B(E) which is a Banach algebra under

an auxiliary nom ||-||, == then 3 M > 0:

0

il <mjpell, @em.

9.25 THEOREM ILet T be a s#-representation of A on E — then 7 is continuous.

PROOF The image m(A) is a #-subalgebra of B(E) (hence is semisimple) and the

kernel Ker 7 is a closed *-~ideal of A:
m(Ker ) < rad w(A) = {0} => Ker 7 c Ker .
Therefore m(A) is a Banach algebra via transport of structure:
A/Rer 7 = m{A),

the auxiliary norm ||||0 being given by

@) [l = in€ (][B]|:n® = 1@},

@ [1g = 11all.
Tt remains only to take T = w{A} and apply 9.24:
[In@) || < M| |n@ ||, <] la][.

[Note:

X € rad w{A) = X*¥ € rad w(A).

The spectrum of X*X thus consists of {0} alone, so the spectral radius r(X*X)

camputed in B(£) must vanish. But

%1% = £(x*K) = 0 = X = 0.]
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9.26 RAPPEL In a unital *-algebra A, an element U € A is unitary if U*U =

Uo* =1,. Inan arbitrary *-algebra A, an element V € A is quasiunitary if Vv =

VW =V + V¥,

[Note: If A is unital, then the map & + 1, = A induces a bijection between

the unitary elements and the quasiunitary elements, ]

9.27 LEMMA Suppose that A is a Banach *-algebra —— then every element of A is
a linear combination of quasiunitary elements.
[Note: This is a wellknown structural fact (its proof depends on Ford's famous

"square root lewmma").]

Iet A € A — then

It
A= I AV (A, €Q,
» 1 s
ie=1
where the v, are quasiunitary.
n
[Note: Since 0 is quasiunitary, one can always assume that I }\i =0.]
i=1
Put
n n
qd) =inf { £ |A;|: £ A, = 0}
. ile, i
i=1 i=]1

9.28 LEMMA q:A -+ R.g is a submultiplicative seminorm such that g (a*) = g{a)

for all A € A.

9.29 REMARK If A= rad A, let B{A) = 1 but if A = rad A, let B(A) be the
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norm of *:A/rad A - A/rad A, i.e., let

B(A) =sup{HA*+radAH : A€ A-rad A}
[|1a + rag Al
Then it can be slown that
q@) < 1+ 8(AN|[al]l (&€ A.

Iet 1 < A be a nonzero *-ideal (it is not assumed that I is closed). Suppose
that m:I » B(E} is a »-representation -~ then we claim that 7 can be extended to a
s-representation T:A +~ B(E). To see this, recall that on general grounds there is

an orthogonal decomposition
_ L
E=E ®E,
where B T is the closed linear span of IE and the restriction of 7 to E; is a trivial

r-representation of 1. One can certainly extend the latter to a trivial *-repre-
sentation of A. So, to settle the extension gquestion, one can assume that 7 is
nondegenerate.
n o -
1if 3‘_21 'IT{Ii) Xy is a typical element in the linear span E of IE and if 7 is an

extension of 7, then v A € A,

i
£

n
TA) (L W(Ii)xi)

T(a) (I, )x,
i=1 i=1 i

= I m@aml)x,

= I TAL)x,
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n
= z 'rr(AIi) X
i=1

Since m(A) € B(E) and gince IE is total, it follows that if 7 exists, then 7 is
unigue.
One can also use this recipe to establish existence. For suppose that
n

I mI)x, = 0.
=t

o 2
IIKil T(AL )% ||

n n
= x I <1T(AIi)xi,1r(AI.)x.>
i=1 3=1 1)
Il n
= £ I <x,,TAI,)*T(AT,)x.>
i=1 =1 * * )
n n
= £ I <X, T(IYA*AT .} x.>
i=1 j=1 3
I It
= ¥ I <p{I,)x.,m(A*AI.)x.>
i=lj=1 1t 1
n n
= ¥ <I mIx,,7@A*AI.)x.>
jm1 4=l b3 13
= 0,
The prescription
- n n
'rT(A)(‘Z W(Ii)xi) = I W(Mi)xi

i=1 i=1
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is thus a welldefined linear operator on E.

9.30 RAPPEL Suppose that E is a pre-Hilbert space. Let T:E -+ E be a linear

map -~ then a linear map T :E > E is a formal adjoint of T if v %,y € E,

<Tx, > = <x,Try>.
Formal adjoints are unique and the subset

LB < LE

consisting of those T that have a formal adjoint is a unital *-algebra.
[Note: The mere existence of a formal adjoint does not imply boundedness.

If, however, U is a unitary element of L, (E), then U is bounded:

<6x,ay> = <ﬁ*6x,y> = <X,y>

= [[Bx] 1% = ||x]|% = 118x|| = ||x]| => }IT]] = 1.

Incidentally, if E is a dense linear subspace of a Hilbert space E, then the formal

adjoint is the restriction to E of the Hilbert space adjoint. ]

Next, T(A) has a formal adjoint, viz. T(A*). Proof:

m . n
<L mJIJNy.,TA(E m{I,)x.,)>
=1 77 =1t 7
m n
= I ¥ <n@yv.,m{AI.Ix,>
j=1 i=1 3] 1
m n
= I I <y, m(I%)n{Al.)x:>
j=1 =1 3 3 1
m n

I I <y.,®{J%AL,)x.>.
R e b
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On the other hand,

. m n
FEM (L TIy.), LTI >
=1 373 AR

m n
z Y oar(a*3 )y, (. )x. >
LA ( j)yj, (l} 3

m n
= I I <y, T{AXI )*{I.)x>
sm1 101 3T

m I
I I <y.,T(J*AT.)x.>.
j=1i=1 J J * 7

i

Therefore

T(A)* = T(A%),

N.B. The definitions imply that T:A + L(E) is a *~homcmorphi sm.

9.31 IEMMA If V € A is quasiunitary, then

id_ - T(V) € L(E)
B

is unitary.

PROCF We have

TW* (A - 7))
E

(id

i

id_ - TVF) - (V) + TV TV
E

It

id_ + 7{- V¥ - V + V)
E

= id .
E




Ditto
(id
E
Therefore
id
E
is bounded (cf. 9.30).
Now write
a
Then
T(a)

1.

7)) (dd_ - TV))* = id .
B E

TV} € L(E)

n n

5OAV, (D A, = 0).

=1 *t =1 %

n e

'El Ai'fr(vi)

n » n

ZoAmMV,) - A, id

i=1 + 1 =t ' E

n
LA (T(V,) - id),
=t + E

so T(A) is bounded, thus can be extended by continuity to a bounded operator

T{a) € B(E) and the resulting map T:A » B(E) is a nondegenerate *-representation

of A which extends m.

N.B. If A is merely a *-algebra, then it need not be true that a *-repre-

sentation m:1 -~ B(E) is extendible to a *-representation m:A + B(E).

9.32 LEMMA With the notation and assunptions being as above, T is topologic-

ally cyclic iff # is topologically cyclic and 7 is topologically irreducible iff

7 is topologically irreducible.
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9.33 EXAMPLE Suppose that A is a C*¥-algebra and let m:A + B(E} be a non-
degenerate *-representation -~ then 3 a unique nondegenerate x-representation T of

DC(A) on E such that v A € A, (L 'Ry} = (A}, Assume further that 7 is topologically
irreducible. Since the same holds for 7, given any Z in the center Z(A) of DC(A),
there exists a complex number Cy {m} :

m(Z) = CZ(Tr}idE (cf. 9.8).

[Note: Let us keep in mind that D€(A) is a unital C*-algebra and #(A) is a

unital commutative C*-algebra. ]

The x~radical of A is the intersection of the kermels of all the topologically
irreducible x-representations of A, thus a closed *-ideal. Notation: +#-rad A.

If *-rad A = {0}, then A is said to be *-semisimple.

N.B. The quotient Af*-rad A is a *~-semisimple Banach *-algebra.

9.34 THFEOREM The x-radical of A is the intersection of the kernels of all the
*-representations of A.

[This will emerge from the machinery developed in §10 (cf. 10.29).]

Accordingly, if A admits a faithful x-representation, then A is *-semisimple.

E.g.: Every C*-algebra is #*-semisimple {(cf. 10.36)}.

9.35 EXAMPLE Consider Ll (G {(cf. 5.17) — then Ll(G) is a Banach #*-algebra

with isametric involution but it is not a C*-algebra unless G is a singleton. Still,

Lt (G) is *-samisimple.
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[The 1lift to Ll (G) of the left regular representation of G on L2 (G) is a

faithful *-representation of L‘-IL {G).]

9.36 EXAMPLE Let D = {z € C:{z| < 1} ~~ then by A(D) we shall understand the
algebra of all continuous ccmplex valued functions on D that are holamorphic in
int D. Since A{D) < C(D) is closed in the supremum norm, it follows that A(D) is

a unital commutative Banach *-algebra, the involution being given by the rule

f*(z) = £(z).
Define a #-representation m of A{D) on L2(|z| = 1) by
m(f)¢ = £¢ (pointwise product).

Then 7 is faithful, thus A(D) is *-semisimple.

[Note: A(D) is not a C*-algebra (consider 1 + /-1 z).]

9.37 IEMMA Iet 7 be a s-representation of Aon E —— then vV A € A,

Hr@) || < r(A*A}l/z,

r the spectral radius.

9,38 ILEMMA We have
rad A < x—rad A,
hence

A x-senisimple => A semisimple.
FROOF Let A € rad A —— then

2%y £ rad A => r{a*a) = 0
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[|7@) || =0 (v M => A €Ker n{v m

A € *=rad A,

[Note: It can happen that rad A = {0} but *-rad A # {0}.]

Define v:A -+ 520 by

YR = sup ||w@&)|],
m

where 1 ranges over the *-representations of A.

[Note: Y A € A,

y@ < r@m Y2 (e 9.37).
But

1/2 1/2.

r (A*A) < ||a*a] |

If now %:A >~ A is continuous, then 3 C, > 0:||a%]] sci l1a]], so
Y@ = c, [[all,

which proves that y is contimwpus w.r.t. ||-|| (see below for the general case).]

9.39 LEMMA VY A € A,
Y{A) < g(A).
n n
PROOF If m is a x-representation of Aon E and if A= I AyVe {(Z A =0),

i=1 =3 *

then idE - 'TT(Vi) is unitary. Therefore



n
| liil AT (Vi)xl |

| |7 ®)x| |

n
|| = Ai(w(vi) - idE)xH

i=1

1A

£ DIkl
(Z A D | |x
j=1 1

=> |[r@) || £ q@) = v(a) s ga).

[Note: It is true (but not cbvious) that v = q.]

9.40 THEOREM Y & € A,

y(&) < (L + BA) ||Al]  (ef. 9.29).

9,41 REMARK Here is a different approach to the continuity of y w.r.t.

11-1]:¥ & € A,

r (B*n) r(A*A + rad A)

1

| [a*A + rad Al

1A

[la* + rad Al| |ja + rad A||

A

B(A) ||a + rad A||®

BeA) | a] 2

1A

12

1A

y{a) < B(A) 1y

-

In turn, this leads to another proof of 9.25 and also shows that
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v(&) < m(A) |[{al],

where
1/2
mA) = supEBBR T a4 - {0}
&l |
< 8 (A2,
[Note:
[A + rad A|| = B(A) | |a* + rad Al |
< 82| |a + rad Al
=
1 s R(A).

If *:A > A is isametric, then #*:A/rad A > A/rad A is isometric, hence in this case,

B{A) = 1.]

Tt is clear that Y is a submultiplicative seminorm and

Y2 @ A.

Y (A*A)

w-rad A = v ({o}).

Therefore vy induces a C*-norm on the quotient A/x-rad A. Denote the completion

of A/x-rad A by C*(A), the enveloping C*—algebra of A, and write Py for the canon-

ical *-homomorphism A - C*{A).

9.42 EXAMPLE Take A = Ll(G) {cf. 9.35) —- then C*(G) = C* (Ll (G)) is called

the group C*-algebra of G.
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[Note: Since L:L (G) is *-semisimple, it can be viewed as a dense *-subalgebra

of C*(G).]

9.43 LEMMA If B is a C*-algebra and if ¢:A -+ B is a *-~homomorphism, then

there is a unigue *-homomorphism $:C* (A) ~ B such that ¢ = § o Py

9.44 SCHOLIUM Themap T + 7 = T o Dy Sets up a bijection between the set of

all sx-representations 7 of C*{A) and the set of all *-representations m of A. This
correspondence preserves the following properties: trivial, nondegenerate, topo-
logically cyclic, topologically irreducible, unitary equivalence, geometric equiv-

alence.

9.45 REMARK It may very well be the case that 7 is faithful yet 7 is not
faithful.

Note: It is also possible that 7, and 7, are weakly equivalent but 7, and

1

?rz are not weakly equivalent.]

The *-representation theory of Banach *-algebras, hard one to say the least,
simplifies enormously when specialized to C*-algebras. Further evidence for this
is supplied by 9.48 infra, a swprise if there ever was one. Its proof depends on
the two pillars of Wr-algebra theory.

9.46 THEOREM Suppose that A is a nondegenerate *-subalgebra of B(E) — then

the weak closure of A is A" (= (AY)'").
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[Note: In this context, to say that A is nondegenerate means that the set
AE = {Ax:A € A,x € E}

is total, i.e., A is nondegenerate in the sense used at the beginning per the

identity representation of A on E.]

9.47 THEQREM Suppose that A is a *-subalgebra of B{E) and let T be an element
in the weak closure of A —- then 3 a net T, in A such that v i, |l’I‘l|| < |lr|] and

Ti -+ T strongly.

[Note: 1If T is selfadjoint, then one can take the T.l selfadjoint.]

9.48 THEOREM Let A be a C*-algebra and let m:A » B(E) be a *-representation.
Assume: T is topologically irreducible —-— then 7 is algebraically irreducible.

PRXOF Since A is a C*-algebra, the image w(A) is a norm closed *-subalgebra
of B(E). So, to establish algebraic irreducibility, we can replace A by w{A}, the

claim being that ¥ x # 0, the set
{A%:a € A}
equals B {cf. 8.3). To this end, note first that A is nondegenerate and
''=C idy {cf. 92.8) => A" = B(E).
Therefore the weak closure of A is B(E). Now fix x = 0, y in E. To construct an
A € A such that Ax = y, normalize the situation and take ||x|| =1, ||y]| =1 and

for any z € E, let

P, = <z (7, 1= lz]] |IxID.
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Accordingly, ||p, 11=1, so3a) € A:fja || <1and
-1
||Py'xx-Alx|| < 2
or still,
IlY'Alxll 52_1.
-1 1
Next, let y) =y - Ajx —- then HPYl"‘H <27, s0 3R, € A:|la, ] 5 27 ana
-2
||PY ,xx—Asz <2
1
or still,
2

[y - agx = 2] <272

Proceeding, 3 A € A:||A || £ 27 such that

n -1l
[ly = = ax[| =27,
i=1
Put
o
A= I A.
=1 o

Then A € A and Ax = vy.
[Note: It is thus a corollary that every topologically irreducible *-repre—

sentation of a C*-algebra is totally algebraically irreducible {(cf. 8.19).]

let A be a C*-algebra and let 7:A - B(E) be a topologically irreducible
*—representation. Suppose given

Xl,...,xn e E

ylr*--ryn €E,
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where the x; are linearly independent.

9.49 ILEMMA 3JA € A

N(A}xl = Yqee-- ,W(A)xn = Yy

9.50 IEMMA Assume that

for some selfadjoint T:E > E -—- then 3 a selfadjoint A € A:

Tr{A)xl = yl,...,w(A)xn = Y-

9.51 LEMMA Take A unital and assume that

vxl=Y1’...'Wn=yn

for same unitary V:E > E — then 3 g unitary U € A:
Tr(U)xl = yl,,...,,1T(L'l):»:n = Yy

PROOF It suffices to establish this uwnder the additicnal supposition that

the x; are orthonormal, herwe that the Yy are also orthonormal. Let EO be the

linear span of Kypooo R o¥yreees¥pe Extend

XKyre-o %, to an orthonormal basis Xypeeo X for E,

Yyr---1¥y to an orthonormal bhasis YyreeerYp for EO‘

Choose a unitary VO:EO +EO such that Voxj = Yj {(=1,...m. Iet €s.--08y
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be an orthonormal basis for E.:

0
V. = e, (. €¢, 0] =1,
0%5 JeJ(J ""ljl )
V=1 t,
Write Ay =e 7 (t; € R) and put
m
T= I t.P.,
j=1 11

where Pj is the orthogonal projection of E onto gej — then T:E + E is selfadjoint

and Tej = tjej‘ Accordingly, 3 a selfadjoint A € A;

T{A)e. = t.e. cE, 9.50).
():| 55 ( )

LetU=e/:TA--thenUeAisunitaryand

(1) ej 'rr(e'/—_f A)ej

Y—1 T(A)
e ey

Vl}ej .

Therefore 7(U) equals VO on EO' thus

TT(U}xi = Voxi =Yy

as desired.

9.52 REMARK Let A be a C*-algebra -- then every algebraically irreducible
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regresentation of A is algebraically equivalent to a topologically irreducible

*—representation of A.

9.53 LEMMA Let A be a C*-algebra. Suprose that T and T, are algebraically

equivalent torologically irreducible *-representations of A on E, and E, — then

Ty and T, are unitarily eqivalent.

PROOF Since 7, and ™, are algebraically irreducible (cf. 9.48), if :E > E,

is the algebraic equivalence at issue, then 7 must be a topological equivalence

{cf. 8.24), so ™ and m, are unitarily equivalent (cf. 9.6).

One of the objectives of the theory is the classification of all the non-
degenerate »-representations of a given C*-algebra A, the simplest situation being
when A is commutative.

Notation:

® Bor A{A): The o-algebra of Borel subsets of A(A).
® Pro E: The lattice of orthogonal projections of E.
Suppose that

P:Bor A(A}) + Pro E

is a spectral measure. Let

@) = £, AWE@W (A€ A).

xn
Then
|mpl | = [1all,

and the assigrment A > 7,(3) is a unital x-representation of A on E.
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[This is a simple consequence of the generalities that govern spectral

integrals. 1In fact,

~
m, (AB} = J’A(A)AB(m)dP(w)

IA(A) w(A)w(B) AP (w)

w(B)AP (w))

(75 BB @) Uy 4

= 1, (), (B)

A(w)dP () ) *

TrP(A)* (fa(A)

= IA(A)A(w)dP(w)

=1y (A) w (&) aP(w)

= IMA)w(A*)dP(m)

N.B. If A is unital, then

5 (1) = IMA)w(lA)dP(m) = IMA)ldP(w) = id..

Terminology: P is regular if V S € Bor A(A),

P(S) = sup{P(K):K < S, K compact}.
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[Note: This is "inner" regularity. It forces "outer" regularity:
P{S) = inf{P(U):U > 8, U open}.]

We then claim that iy is nondegenerate if P is regular. Proof: There are
two points.
(i} First, by reqularity,

id, = P(A(A})) = sup P(X).
dE KA (A}

Therefore
{P(K}x:K = A(A),x € E}
is total.
(ii) Second, if £ = 1 on K « A{A) (f € C(A(A)} (A unital) or £ € C_(A(A))

(A nomunital}), then

IMA)fodP

]

= (IMA)fdP)P(K)

Ran P{K) < Ran fap.

A(A)
Therefore

{(I&(A}MP)X:A € A,X € E}

is total, i.e., 7, is nondegenerate.

p
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We thus have a map P - o from the set of regular E~valued spectral measures

on A{A) to the set of nondegenerate *~representations of A on E.

9.54 S5NAG The map P + s is bijective,

The details are relatively straightforward. Given X,y € E, set

ux’y(S) = <x,P{S)y> (S € Bor A(A)).

Then ux,y is a complex Radon measure on A{A).

If now P and Q are reqular and if 7m_ =

D = s
P TTQ, then I Q. Thus define \Jx y per

r

Q: VAEA,

Tan P,y = S TpA)y>

<x,TTQ(A)y>

- IMA)M“x,y

=
i

V ¥V x B
%y = Vxy VXY EB

P(S) = Q(8S) (v § € Bor A{A))

P =4g.

Therefore the map P s is injective.

To prove surjectivity, assume initially that A is unital (so A(A) is compact)
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and let w:A + B(E) be a nondegenerate *-representation (so n(lA) = idE) -~ then

by the Riesz representation theorem, V %X,y € E, one can find a unique complex Radon

measure M y on A{A) such that v A € A,

r

Taqay iy, y = <X, TR)Y>.

Since ¥V S € Bor A{A),

i

2
qu'y(S)I My x (SIH L (8)

Yy

kA

ux'x(&(A))uy'y(MA))

2 2
=l Ty l1%,
there exists a unique operator P{S) € B{E) such that

ux,y (5) = <x,P(S)y>.

It is clear that P(S} is selfadjoint and idempotent, i.e., P(S) is an orthogonal
projection. Moreover, the assigmment

Bor A(A) =+ Pro E

8 =+ P(8)

is a regular spectral measure on A{A)}. Finally, Vv A € A,
<x,TTP(A)y> = <x, (I&(A)AdP)W

~

= fﬂ(A)Mux,y

<x,m(AYy>,

implying thereby that Ty = T,
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Tt remains to consider a norunital A. So let n:A - B(E) be a nondegenerate

*-representation. Extend T to At by writing

aTa,N = @) + A idg.

Then 1T+:A+ » B(E) is a nondegenerate *-representation, thus 3 a regular spectral

negsliire
phBor AN > Pro E
such that # 4+ = 'n+. But
p
AAYY z oyt (e, s52).
And
P ({=h T
A
= f X1 AP
syt
=0
=
PH{{=}) =0
=5
Pty = et - oh

Al T - (=) U {ed)

praw ™

id.
If now P = B |A(A), then

P:Bor A{A) ~ Pro E
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is a regular spectral measure such that Ty = .

9.55 EXAMPLE Let A be a cumutative C*-algebra. Suppose that i € M) (A(A))
(f. 7.12). Take E = LZ(A(A),1) and define ™ @) by
(M, @) @ = AWEW (£ €8,
Then m is a nondegenerate sx-representation of A on E and its associated spectral
measure Pu is the prescription

PU(S)f = )(Sf (S € Bor A{A)).

Let

P:Bor A(A} + Pro E

be a reqular spectral measure —— then the support of P, deroted spt P, is the set
of all w € A(A) such that P(U} = 0 vV open neighborhood of w.
[Note: The support of P is a closed subset of A(A).]

N.B. If L then spt P is called the spectrum of 7.

9.56 LEMMA Suppose that m:A + B(E) is a nondegenerate *-representation of A —

then K T consists of those A € A such that A vanishes on the spectiim of 7.

[Note: 7 is faithful iff its gpectrum is all of A(A).]

9.57 REMARK The machinery asseambled for the proof of 9.54 and its conseguences

provides a direct route to the spectral theorem for normal operators.



§10. OGNS

Let A be a Banach *-algebra —- then a linear functiomal w:A + C is positive

if v A € A, w(a*a) =z 0.

10.1 LEMMA Let w:A + C be a positive linear functional —- then v A,B € A,

w (A*B) = w (B*A)

and
o a*B) 2 < w (A*A)w (BB) .
N.B. Suppose that A is unital — then V A € A,
w@Er) = w(A)
ard

lw (a) 12 < w (1w @*A).
[Note: Therefore

w(lA] =0 =>» = 0,]

10.2 EXAMPLE There are Banach x-algebras that have no nonzero positive linear
functionals. Thus take any unital Banach algebra A = {0} and form the cartesian

product A x A, Introduce operations and norm by #,,B)) + (Ay,By) = (A

1+A

2!’
B +B)), A(B,B) = OAXB, &,B))-(A,B) = AA,B8), A B*= (B2), and

|| &,B) || =max(|]al], |B]]) — then A x A is a Bamach *—algebra with unit

Tawa = gdp)



Since
(lAr_lA)*(lAr—lA) =- (1 'lA)'
it follows that every positive linear functional on A X A must vanish at (lA'lA)"

hence from the above, must vanish identically.

If A is a C*-algebra, then positive linear functionals are continuous {cf. 7.3)

but if A is just a Ranach *-algebra, this need not be true.

10.3 EXAMPLE Let A be the Banach space C[0,1], take the multiplication to
be trivial (fg =0 v £f,g) and set f* = f —- then A is a Bamach *-algebra and every
linear functional w:A - C is positive. On the other hand, A is infinite dimensional,

thus admits a discontinuous linear functional.

Let w:A > C be a positive linear functional. Given B € A, define wB:A + C by

WwP@) = wE*AB) (A € A).

10.4 IEMMA ¥e have

[P @ | < w(EB) @) < (@B |[a}].

[Locking ahead, the computation

W@ 12 = wean) 2

1A

w{B*B) w (B*A*AB)

w(B*B) o (B*A)

ghows that wB satisfies conditicon H with



1| ], < w(B*B).
Therefore uF is representable (cf. 10.10), hence (cf. 10.12)

1B @) |

1A

162 | iy

1A

w(B*B) vy A).]

let wiA +~ C be a positive linear functionmal. Given B,C € A, define

B:C )

w (B*aL) (a € A).

10.5 IEMMA We have

WPl | < o@e) Y ey m

1A

o @B Y %0 c*) Y 2n) [ a]].

1A

PROOF In fact,

P C @ |7 = |wmac 2

A

w (B*B) ©o {C*A*AC) {cf. 10.1)

w (BXB) " (A*2)

H

1/2.C 1/2

|mB,C @) I

1A

w {B* B) (A*A)

1/2 1/2 1/2

1A

w (B*B) ~ “w (C*C) 7 “v (A*A)

= w(B*B) 1/2w {C*C} 172 {y(@®) 2) 1/2

w{B*B) 1/2, {C*C) l/ZY (a)



< w(B*B) %0 )Y %0 4) b Al .

N.B. Recall from 9.41 that

Y@ <@ [[al] @€ A.

10.6 THEOREM Suppose that A has a left approximate unit (cf. 4.1) -- then

all positive linear functionals on A are continuous.

PROOF Let w:A + C be a positive linear functional.

Step 1: w|x-rad A = 0. Thus let A € *-rad A and using 4.6, write A = B*C,
where B € A, C € AA ¢ #-rad A. Repeat and write C* = E*D*, where EB* € A,
D* € AC* ¢ *=rad A, so C = OF, where D € AC** c *-rad A, E € A. Therefore A = B*DE
and

w@) |2 = |w(B*DE) |?

!wB'E(D) |2

1/2 1/2

ih

w(B*B} 7 “w (E*E) ™ "y (D)

1/2

w(®*B) 2, &*E) /% = 0.

Step 2: Since w drops to A/*-rad A, it can be assumed that A is *-semisimple,
hence semisimple {cf. 9.38). In particular: The involution *:A » A is continuous

(cf. 9.21).

Step 3: Let A € Abe a sequence in A such that A, » 0. Claim: w(@®) +0
{(=> w is continuous). To see this, use 4.8 to first write A = A*B;, where B; + 0.
But then, thanks to the continuity of the involution, Bn + 0, thus by a second

application of 4.8, we can write Bn = B*C;, where CI’; > 0, so An = A*CnB and Cn + 0.


http:approx:in1a.te

Therefore

2
|w(A*CnB) |

|m(An} |

0

lwA,B(Cn) 2

A

e EBn@W | o |

>0 (n-roo).

10.7 IEMMA Suppose that A is unital -- then all positive linear functiomals

on A are continuous. Moreover, if w:A -~ C is cne such, then

| fw]] = wilim(A).

PROOF Y A = 0,

]w (A) l _ _lw (leA) I
[[all | iad]

[ 128

w (L) 12, (1) Y20 4

]

1A

m(lA]m(A) .

[Note: If »:A > A is isometric, then B{A) = 1 (cf. 9.41) and

(&) = B2 =1



£
1M

w(lA)

which can be improved to

loi| = vy

when A is a C*-algebra {(cf. 7.4).]

10.8 EXAMPIE It is not always true that | |w|] < w(ly. Thus let A = B(gz),

where 92 has the norm

= |zg | + tlz,| (£ >2).

22"

Represent the elements of A as 2-hy-2 complex matrices [lij] and put [lij]* =
[)_\j i] — then A is a Banach *-algebra with a continuous (but not isometric) invo-

lution. Define w:A » C by w([lij]) = I kij — then w is a positive linear
i,]

functional on A such that w(lA) =2, If

then




>t>2=w(lA).

n
10.9 REMARK Write A_I_ for the set of all finite sums of the form T AIAi ——
i=1

then the linear span of A+ is AQ (a.k.a. the linear span of the A*B). Proof:
3
z

A*B = % (V=1 "'k(A + (E)kB)*m + (/—-l)kB) .

k=0

If AZ is not closed or is closed but not of finite codimensicn, then one can use a
Hamel basis for A to construct a discontinuous linear functional w that vanishes on

A2. Such an w is necessarily positive.

Note: [It therefore follows that a necessary condition for the continuity of

all positive linear functicnals on a Banach »-algebra A is that A% be closed of

finite codimension. ]

Let w:A +~ C be a positive linear functional.

¢ w is said to be representable if I a topologically cyclic *—representation

7 of A on E with a topologically cyclic vector x € E such that

wia) = <x,7{A)x> (@B EA).

o (3 is said to satisfy condition H if

| |H = sup{ |w(a) Iz:w{A*A) £ 1} < o,



10.10 THEOREM TIet w:A - C be a positive linear functional -~ then w is

representable iff o satisfies condtion H.

N.B. The equivalences in 10.10 are of central importance for the theory. One

direction is immediate, viz.:

10.11 IEMMA Suppose that w:A + C is representable — then « satisfies con-
dition H.
PROOF By definition,
w@) = <x,na)x> (A e A,

where x € E is topologically cyclic. Therefore

o) |2 = |<x,m8)x>|?
< (|x]] |lm@x|[)?
2
= ||x]]° <r@)x,7A) x>
2
= 1x|]? <x,7@*n) %
= | |x} 2wt
=
'leH < ||X|lz.

I.e.: w satisfies condition H.

[Note: Since x € E is topologically cyclic, we have

|1 % = [ ],y-



In fact,

2
| 1=/

2
supl |<x,y>| s | |y|] < 1]

1l

sup{ [<x, 7 (A)x>]2: Hr@x|| < 13

sap{ |w @) ’Z:w(A*A) <1}

Il

B

o]

10.12 REMARK In view of 9.25, a representable w is necessarily continuous.

[Note: This can be pimnned down in that

@ 12 < {x)1? | vy ||
< Hx|l4 v (A%A)
= |1x]1* vy ?
=
o | < ||zl 1% v
= Tl Iy vt
< lwily ma) [1af]
=
[w]] =

o] [,y meAY -]

10.13 LEMMA Suppose that w:A + C is representable — then w is hexrmitian:

VY A E A,
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PROOF 1In fact,

wlA*)

<x,T{A*)x>

<x,T{A) *x>

<m{A)x,x>

<X, T (B)X>

= w{A).

The proof that

"ocondition H" => "representable"

is a special case of the Kolmogorov construction. However, proceeding to the
details, we shall first look for conditions on a Banach x-algebra that are sufficient

to ensure that all its positive linear fimctionals satisfy condition H.

10.14 IEMMA If A is unital, then every positive linear functional w:A > C

satisfies condition H and ||of|; = w(1,).
PROOF To begin with,
= L1 = P14 = (L1D* = 13 = 1.

Accordingly,

w{A*)

w(A*lA)

w(lA*A) {cE. 10.1)

il

w@ .
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Therefore

lw(a) |2 2

| Ay |

lw@*) |2

I

2
lm(A*lA) I

1A

w (A*A) w (lKlA) (cf. 10.1)

w (A*A) w (lA)

£
s
1A

LU(lA) .

On the other hand,

=
P
—~
-
S
!

< Vol g

Il

o] (1,

.

[P

w(lA)

[Note: If w(lA) = 0, then w is the zero functional and matters are trivial.]

10.15 LEMMA If A is a C*-algebra, then every positive linear functional

w:A ~ C satisfies condition H and ||w|lg = |]u||.

PROOF VWork with an approximate unit {ei:i €I} per 1.20: vV A € A,

@ |2 = lim ol 2
jex
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Lim |w(e?n) |2
i€l

1A

1im inf wle*e.)w(a*n) {cf. 10.1)
. i7i
i€l

= 1im inf w(e?_)w(A*A)
ier

A

< | o] o ara)

[ollg = [Holl.
On the other hand,

ek ei
w( y <1
1/2 1/2
ol 172 (el |

="
2
e, wie,)
2 L
[l 2 w5 =
H 1/2
TRS ol |
=2
wle)?
ol 2 Lim
ier ||w]|

2
= M {cf. 7.9)
|l

o]}

The preceding lemmas are special cases of the following result.
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10.16 THEOREM Suppose that A has a left approximate unit {cf. 4.1) -~ then
every positive linear functional w:A -+ C satisfies condition H.

PROOF There is no loss of generality in taking A x-samisimple (see the proof

of 10.6), so the involution *:A + A is continuous {(cf. 9.21)., If now {ei:i € 1}

is a left approximate unit per A and 1f M > O:]fe;|| <M (1 € T), then arguing as

in 10.15 (earing in mind that w is continuous (cf£. 10.6)), v A € A, we have

lw@) |? = lim |wlea) |2

ier

il

1

Lin Jw((ep) *a |2
ier

38

lim inf wie.e,*}w{A*A)
. i7i
i€l

1A

lim inf fle;e;*|| |lw]|u(a*a)
i€T

1A

vim inf [le; |1 [leg*|| [l Juta)
ier

i

Lim inf |le, |1? 804 | fo] Joarn)
icT

b

M2B (A) | ] |w(aa)

=>
ol Iy < ¥28(A) .

[Note: Here B{A) is the norm of the involution *:A »~ A (cf. 9.29).]

Returning to 10.10, assume that w satisfies condition H and put

w —
& = AA
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where Aw is the left ideal

(A € A;w(A*a) = 0}  (cof. 10.1).

~ AcA — A T A+ A
Given , Write in place of -~ then the prescription
BcA B” B+ A
- — - w
—_ LM 1]
<, >w;A X A > C

<Aw.Bw>w = u(A*B)

1/2

equips A” with the structure of a pre-Hilbert space (=> ||a”] [, = w5,

Define 7 by
(a)B” = (aB)®.

Then
1A > L, (AY)

is a %- ism.
N.B. 'ITw(A) has a formal adjoint, viz. TFw(A*)- Proof:
< (a) 13“’,(:‘”>Uj = <(AB) “’,c‘”>w

w( (AB) *C)

il

fl

w{B*A*C)

<B”, (A*C) w>w

< 7 ar) e

@) * = 10 @Y.
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10.17 IEMMA Y A € A, 7°(a) is bounded.

PROOF This is because TI‘w(A) can be written as a finite linear cambination

of unitary elements of L, (AY) (cf. 9.31 and subsequent discussion).

[Note: It is thus a corollary that Vv A € A,

sup{w (B*A*AB) :B € A,w(B*B) < 1} < «].

Let E be the Hilbert space coampletion of A® —— then 7 extends by continuity
t0 a *-representation of A on Bw, denoted still by ™. Since w satisfies condition

H, it vanishes on Aw’ hence induces a linear functional on A” which is continuous

w.Ir.t.

|- 1], thus extends to E” with the same bound, namely |1m|1é/2: Y A EA,
1/2 1/2 1/2
w@ | s ol [ Pa@n 2 = (o] 172]2°]],.

Owing to the Riesz representation theorem, 3 a unique vector X, e £ such that

w(a) = <xw'Aw>m'
Here
2
[ = el g
10.18 IEMMA v A € A,
w !
T (A)xw = A .
PROOF V¥ B € A,
<’ (n) X, = Aw,Bw>w

w

= <x o (a)*BYs - ¥ BY
w @
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I

Draxig®s  — *
<xm,ﬂ' {A*}B >w w (A*B)

1l

<x,,, (A*B) “’>w - w(A*B)

w(A*B} - w{a*B)

= 0.

To summarize: ©° is a topologically cyclic *-representation of A on £ with
topologically cyclic vector X, € B such that
- W
wlA) = <K T (A)xm%‘J (aeA.
Therefore w is representable, which campletes the proof of 10.10.

[Note: 7™ is called the NS representation attached to w.]

10.19 EXAMPIE Take A unital -- then vV A € A,
T (A1, = A%,
S0 1{2 is topologically cyclic. BAnd
w W 3t}
<1A,'I'T (A) 1A>w

W QW
= <Ay,

wl( (1‘{;) *2)

w(h)
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10.20 LEMMA Suppose that 71 is a topologically cyclic *-representation of A

on E with topologically cyclic vector x € E — then 7 is wnitarily equivalent to

7 for some w satisfying condition H.

PROOF Define w:A + C by

w(d) = <x, 7T@A)x> (@A €A).
Then w is representable, hence satisfies condition H (cf. 10.11), so
ul
wln) = <X o (A}xw>w (A e A).
Now quote 9.7,
[Note: The trivial *-representatian on the zero dimensional Hilbert space

L1 j-sﬂ 1Tw=o

-]
10.2]1 LEMMA Suppose that 7 is a nondegencrate *-representation of Aon E —

then 3 a set Q of representable positive linear functionals w onh A such that 7 is

unitarily equivalent to @ ' and V A € A,
wes

r@ |] = sw |7 @) |].
wen

[This is an immediate consequence of 9.5 and 10.20.]

Suppose that w:A + C is a positive linear functicnal which satisfies condition

H -- then w is said to be a state if |lw||H=l.

[Note: This terminology is consistent with that used for C*-algebras (cf. 10.15}.]

If @ 2 0 satisfies condition H, then v t > 0, tw satisfies condition H:

el gy = €]l |y
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Also V A € A,

w (A)

1] 1]
<X, (A)x >
W W

tw(A)

</E ¥, 7% () vE X >

and T ig unitarily equivalent to i via the arrow EX > E® that sends 2™ to

VE AP € A).

10.22 THEOREM Every nontrivial topologically cyclic *-representation of A is
unitarily equivalent to 7 far some state w (cf. 10.20).

PROOF If w = (, then

W
[l ],
is a state.
If
wl:A —*g
m2:A +C

are positive linear functionals satisfying condition H, write Wy Z W, if Wy = W,

is positive.

10.23 IEMMA If w,w':A -~ C satisfy condition H and if w = w', then 3

TEﬂw{A)‘ {0 < T < I) such that

w' () = <xw,1rw(A)wa>w (acA.
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PROOF Noting that

w 2w =>A A,
) !

put

A% B% =y (a*B).
w'

1A

|0 a*B) | = w' (A%A)w' (B*R)

738

w (A*A) w (B*B)

1l

w2 wy 2
122112 1812
Therefore < , > can be extended to EX x EY, FixTEB{Ew):

UJ'

w' (A%B) = <A“’,TBw>w.

And v A,B,C,

¥, 'I'Bm>m

< (C*)Aw,TBw>w

i

<(cxp)” ,TBw>w

w! (A*CB)

i

a”, 1B >

<", r* (c) B>
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T € T0(A) ',

Finally, choose a sequence {An} in A such that Aﬁ X3

o (AAn - A) |2

1A

o' ], @ (A - By * @A - &)

1A

ety wlaa, - 0* @, - )

2

ot [y [1aa, ~ 2

Hot Tl @ @ = x) 112 (of. 10.18)

2
12

1A

' (w 2 w
ot Ty TIe°@ 117 1A - %

-+ {) (n—>oo)

w'(A) = lim o’ (AAn)

n+00

Lim ' ((A*)*A )

n+m

: w
lim <(A*)w,'1‘ >
n -+ o P’

<(am®,rx >

i

0 e
<m (A )xw,wa>w (cf. 10.18)

H

Vi)
<x A (a) wa>w.
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[Note:

1/2

T e 1A => T7° ¢ 1)

w' (A)

<x 1) T >
w w w

<X ,TTw (A) Tl/ 2'[‘1/ 2}: >
w W

M O T 25 )

Suppose that w = 0 satisfies condition H — then w is said to be pure if

wozw = e = tw (3 £ 20).

10.24 LEMMA If 1" is topologically irreducible, then w is pure.

PROOF Assuming that w 2> w', produce T € nw(A)‘ per 10.23:

0=T=<I=T=+I (0 <t < 1) (cf. 9.8).
So, VAEA,

w' (A)

Ik

[11]
<xw,1r (n) (ﬂ)xw>w

t<x ,"nw(A)x >
W ww

Il

tw(B) .

10.25 IEMMA If w is pure, then ™ is topologically irreducible.
PROOF Iet P € Trm(A) ' be a nonzero orthogonal projection. Define w':A » C by

w' (A) = <wa,Tr‘” APx > (AE€A.
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2
|w* (&) | |<wa,1rw{m me>m|2

1A

2 W 2
[px, |12 1@ e | |2

|

2 Wy
e 117 <ex ,m axa)px >

ERIESCS S

Therefore ' satisfies condition H. And

w(A*A) = Hﬂw(A)wai
2 |pr @, |12
= [|[™@ex | |2
= ' (A*A)
=>
Wz w',

But w is pure and w' is nonzero, hence w' = tw (3 t > 0). So, ¥ A € A,

0 = w' (A*A) -~ tw(A*A)

<A, (P - tI) A“’:»m.

since A is dense in EY, it follows that P= tI => t = 1, thus ° is topologically

irxreducible (cf. 9.9).

10.26 THEOREM Suppose that w # 0 satisfies condtion H —- then ™ is topo-

logically irreducible iff w is pure,
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PROOF Combine 10.24 and 10.25.

10.27 THEOREM Every topologically irreducible *-representation of A is
unitarily equivalent to 7 for some pure state w (cf. 10.22).

PROOF If w is pure, then

!
ol |
is & pure state. Proof:
W
1 aw'—>u-—1|w|[Hu>'
ol

= | o] [yt = t

10.28 EXAMPLE Take A = L_(H) (H a complex Hilbert space ) -- then the pure

states are the w_(|[x|| = 1), where
mx(T) = <x,Tx> {(cf., 7.11.
Since the identity representation 7 of Em(H) on H is a topologically irreducible

*-representation (cf. 9.8 (w (L _(H))' =C idH)) , it follows that v x, w_ is unitarily

w
equivalent to w %, on the other hand, an arbitrary topologically irreducible

w
+-representation T of L _(H) is unitarily equivalent to some w X (cf. 10.27). There-

fore m is unitarily equivalent to 7_.
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[Note: Every nondegenerate *-representation of L (H) is unitarily equivalent

to a direct sum of copies of T _.]

10.29 THEODREM The *-radical of A is the intersection of the kernels of all

the sx-representations of A {cf. 9.34).

The proof requires same ancillary considerations. Thus given a nordegenerate
»~representation m of A, let

o@ = ||na) ||
and for any w satisfying condition H, put

@) = 7@

10.3¢ LEMMA 3 a set {i of pure states with the property that Vv A € A,

o{a) = sup (@),
e

T
Grant this temporarily —- then
10.30 => 10.29,

For in the first place, it is obvious that

NKer m c x-rad A,
.

where N is taken over all the *-representations n of A. Conversely, let
m™

A € x-rad A — then A is annihilated by all the 7 (w pure). In particular: Given 7,
VwER, o¥(a) = 0 => 9(A) = 0 => A € Ker 7.

Therefore

N Ker w = *=rad A.
i
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Proceeding:
s Write S(A) for the set of positiwve linear functionals w on A that

satisfy condition H subject to |{w| |g = 1 and write S(A,0) for the subset of
§(A) consisting of those w such that s° < o.
® Write P(A) for the set of pure states w on A and write P(A,0) for the

subset of P{A) consisting of those w such that & < a.

N.B. S(A) and S(A,0) are convex sets.

[Note: TIf Wy s Wy both satisfy condition H, then so does w + w, and

g + iy = Vgl + oyl

Therefore S(A) is convex. Suppose further that wy 0, € S(A,0) and let 0 £ X £ 1 —-
then

J\wl + {1-2) w, }Lwl (- w

sup{oc ~,0 2

o]

[

Il
0
=
T
=
G
‘I—‘
Q
B
[

A
(@]
[

10.31 IEMMA Suppose that w:A - C satisfies condition H —— then w is a pure

state iff » is a nonzero extreme point of S(A} {cf. 7.19).

10.32 IEMMA P(A,0) is the set of nonzero extreme points of S(A,0) and

P(A,0) U {0} is the set of all extreme points of S{A,0).

BEquip S{A,0) with the topology of pointwise convergence -~ then the image of
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S(A,0) in [ o(d)D (product topology) under the natural embedding
- AEA -

w » {w{A):A € A}
is closed, hence S{A,0) is cowpact.

[Note: Recall that ¥ A € A,

w(A) = <xw,7rw(A) X >
=
lo@ | < [7@ ] |x |12
Y] ¥}
= @) {[wl |y,

@) < ola).]

[

10.33 LEMMA The closed convex hull of P(A,0) U {0} is S$(4,0).

PROOF 2Apply the Krein-~Milman theorem.

let us pass now to the proof of 10.30 —- then 3 a set { of representable

positive linear functicnals w on A such that v A € A,

og(a) = swp o¥(A) (cf. 10.21)
WES
and we ¢laim that
o{a) = sup Gw(A),
WeR_

where RTF = P{A,0).

To this end, fix A € A and € > 0 — then it suffices to produce w € P(A,0)

such that

ow(A) > d{pA) - €.
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ChoosewEGQ:

ME
g “(a) > o(a) - e.

tw W
Because ¢ ~ =g © (t > 0), we can assume than:wE is a state, henceweeg(A,o).

Using 10.33, choose a et by (i € I} that converges to w.s where each 0, is a convex

cambination of elements from P(A,0) U {0} — then 3 i, € I:

0
“o
g (A » g(a) - ¢ (m(J Zw, ).
i
0O
lat Wyreeo W be the elaments of P(A,0) which occur with nonzero coefficients in

the expression of Wy as a convex cavbination per the above. Since

Wy + o+ +
1 wn
yig

is unitarily equivalent to a sub *-representation of

w W
Trl@...@'n'n

W F e W wy w
g ﬁSLlP{U peeesC }r

there is an index k € {1,...,n}:

“%

g Ay » oA - el
Therefore

w
o= sup ¢

PA, )

as claimed.

10.34 REMARK It is false in general that a nondegenerate *-representation 7
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decamposes into a direct sum of topologically irreducible *-representations.

However, on the basis of the preceding discussion, v A € A,

Ha@ ] = 1] & 7°@]].
=1
™
Set
Trm=ew‘”,
1]

where u ranges over those positive linear functionals that satisfy condition H

(meaningful since vV A € A, |[7°(@) || < y(&)) - then Myg 1S @ nondegenerate

*~representation of A. It is "universal” in the sense that every nordegenerate

*—representation of A is unitarily equivalent to a sub #*-representation of a multiple

of '.'TUN.

N.B. We hawve

*=rad A

Ker T

and v A € A,

Y{R)

gy @ 1.

Therefore the extension EUN of T t0 a *-representation of C*(A} is iscmetric

(cf. 9.44), so the image
Trpg (C* (A))

is a nomm closed *-subalgebra of Egy = @ ol
w

[Note: Suppose that A is *-semisimple:

#—rad A = {0}.
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Then Ty 15 @ faithful *-representation of A.]

10.35 RAPPEL. If A is a C*-algebra, then every positive linear functional

wiA - € satisfies condition H (cf. 10.15).

10.36 LEMMA Suppose that A is a C*-algebra and let A € A be nonzero — then

3 a topologically irreducible x-representation 1 of A such that

Hr@ ] = 1[a[],
hence A is *-semisimple.
PROOF Choose w € P(A) :
2y 2
w(@*A) ) = [ (& °|]  (cf. 7.25)
4
= |a[]".
Then
18112 = wl@m )2
1/2

w{{(a*a) (A*n))

w
@]

i

[ {n” @ a?| |
w

3 w
[ @]

1

W [FV]
TSRS

RERCNETR TR
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But
| 12%] |, = @@ 1/2
< |l 12 ||a*a] M2
< |[a]l.
Therefore
all < e @ }].
On the other hand,
7@ || < e Y2 (ce. 9.37)
= |a|| (ef. 1.1,
So
@ || = |[a]],

thus it remains only to recall that ™ is a topologically irreducible *—-representation

of A {cf. 10.26).

Put
TFAT = @ 'nw.
weEP (A)
Then 1G.36 implies that m _ is a faithful x-representation of A ongk, = @ E”,

AT AT

WEP (A}

10.37 SCHOLIUM Every C*-algebra is iscmetrically s—isamorphic to a norm closed
*=-subalgebra of the bounded linear operators on same complex Hilbert space.

[Note: Every separable C*-algebra is isametrically *x-isamorphic to a norm
closed x-subalgebra of the bounded linear operators on same separable complex Hilbert

space. ]
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If I ¢ A is a nonzero x-ideal (not necessarily closed), then every mondegen-
erate x-representation n:! - B(E) can be extended to a rondegenerate x-represen-
tation T:A > B(E) (see the discussion leading up to 9.32).

{Note: Recall that
T topologically irreducible => 7 topologically irreducible. ]

Suppose now that A' ¢ A is a C*-subalgebra — then a *-representation
m:A > B(E) is said to be an extension of a x~representation 7':A' » B(E') if 3
a closed subspace X < E which is imvariant under 7|A' and has the property that

the sub representation
w|AT:AY > B{X)

is unitarily equivalent to 7'.

10.38 LEMMA Every topologically irreducible s-representation n':A' - B(E')

has a topologically irreducible extension to A.
r
PROOF Take T = 1o , where ' is pure (cf. 10.27). Using 7.24, extend w' to

a pure state w on A and let X be the closure of

{(r’(a)x :B" € A’}
in E® — then X is invariant under ﬁwlA' and if x(:) is the orthogomal projection of
xw onto X, we have

'nw(A')xw = Ww(A')xt'o (' e AY),

S0 x&; is topologically cyclic for the sub representation of wwlA' on X.



Finally, V A' € A',

w
<! wo(AY)x'>
w w o m

{1}
<x .7 (A')x >
w w W

wi{a")

o' (AY)

Therefore 'rrwlA' on X is unitarily equivalent to ' (cE. 9.7).

[Note: The same kind of argument shows that every topologically cyelic
*x-representation 7':A' > B(E') has a topologically cyclic extension to A, thus
every nondegenerate x-representation n':A' + B(E') has a nondegenerate extension

to A {cf. 9.5).]

10.39 IEMMA Suppose that A' c A is a commtative C*-subalgebra -- then
v w' € A(A"), 3 a topologically irreducible x-representation n:A + B(E) and a nonzero

vector x € E such that v A' € AY,

m{A")x = w' (A*)x.

{This is a special case of 10.38.}

10.40 REMARK The analog of 10.38 for Banach x-algebras is false in general.

{Consider an A whose only *-representations are trivial.]

Let H be an infinite dimensional complex Hilbert space — then B{H) is a unital
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C*~algebra but its representation theory is far more complicated than that of
L () (ef. 10.28).

10.41 DICHOTOMY PRINCIPLE Suppose that m is a topologically irreducible

#—representation of B(#) -- then either
W(EW(H)) = {0}

or

7 is unitarily equivalent to the identity representation of B(H) on f.

(The point is that if w is a pure state on B(H), then either w|§m(H) = {0}

or w =w (3 %:||x|| = 1.1

10.42 REMARK Every ronmdegererate x-representation of B(H) is unitarily
equivalent to one of the form

m & (@ Tri) .
where Ty is nordegererate and vanishes on L_(H) ard M is unpitarily equivalent to

the identity representation of B(H) on H.

W

10.43 1=MMAa If @, ,w, are pure states on B(H), then 7 1 is unitarily equiv-

W
alenttow2iffElaunita.ryU:H+HsuchthatVA€B{H),

-1
ml(A) = w2(U ALY .

PROOF If there is a U € U(H) with the stated mroperty, then v A € B(H),


http:cf.10.28
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®1
<xw ;T (A% >w
1 Wy ®y

w
<X, T 2(U-]7-‘mU)

= X >
2 Wa @3
[} [ 1M
= < 2(U}xw i 2(A)1T Z(U)xw >m .
2 2 2

w w
Therefore 1 and 7 2 are unitarily equivalent (cf. 9.7). Comversely, suppose that

UJl l'.02 UJl UJ2
T~ and 7 © are unitarily equivalent ard let W:E ~ -+ E © be a unitary operator such

that
“1 )
Wr (A =1 “(A)W (A € B{H)).
Wy Wy
Choose a unitary V:E © + E BV o=Wx - then 3 U € U{H):
2 1
)
i) (U)xw = Wx (cf. 9.51).
2 ¥
So, V A € B(#),
o]
wy(A) = <x ,7 "(A)x >
1 wl Wy Wy
[y
= <x W tn Z(A}me >
l 171
)
= dﬂxw ;T (A)wa >
1 172

W W w
= <7 2(U)xw T 2(A}’IT Z(U)xw >

2 2 ¥

2
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A
<X, 2(U ]hU)x >
W W w

2 2

w, w iy .

I

10.44 EBXAMPLE If H is a separable infinite dimensional complex Hilbert space,

c
then there are 2  unitary equivalence classes of topologically irreducible x-repre-
sentations of B(#).

[This is a counting argument.

1. The cardinality of B(H) is c.

C
2. The cardinality of P(B(H)) is 2.
3. The cardinality of U(H) is c.

Now let k be the cardinality of the set of unitary equivalence classes of topo-

logically irreducible *-representations of B(H). Stipulate that pure states w,,w

172

are equivalent (denoted w, ~ w,) iff 3 a unitary U:H + H such that v A € B{H),

1
W, (A) = w (U'lAU)
1 2 *
Then in view of 10.43,

$(P(B(H)) /~).

~
i

But each equivalence class of pure states has at least one and at most ¢ members.

Therefore

c
K < #(P(H)) = 27 = ke = max(k,c).

c c
Since ¢ < 27, it follows that k = 27.]



§11. STRUCTURE THEORY

Given a C*-algebra A, denote by A the set of umitary equivalence classes [w]
of topologically irreducible x-representations 7 of A —— then A is called the

structure space of A.

E.g.: If A is commutative, then

~

A <> A(A).

11.1 EXAMPLE Let H be a coamplex Hilbert space. Take A = L_(H) - then

B(A) =1 (cf. 10.28).

11.2 DICHOTOMY PRINCIPIE Iet m:A + B(E) be a topologically irreducible

¥-representation -~ then either

m(A) > L_(E)
or
m(A) n L (E) = {0]}.

11.3 EXAMPLE Ilet

‘!Tl:A -+ B(El)

TTzzA > B(Ez)

be topologically irreducible x-representations of A such that Ker Ty = Ker m,.

Assume:

m (A n L) = {0].



Then T and T, are mitarily equivalent.

[Note; Therefore a topologically irreducible x-representation m of A is
determined by its kernel to within unitary egquivalence provided m(A) contains a

nonzero compact operator. But all bets are off if n(A} n L _(E) = {0} (cf. 11.11).]

11.4 1IEMMA If #(R) = 1, then 7 is faithful ([w] € 2) and A is simple.

PROOF Vv A =0,

[Hw@) |} = ||al] >0  {(cE. 10.36).

Therefore Ker m = {0}. If I < A is a proper closed ideal, then T = {0}. This is
because A/I, being a C*-algebra, admits a topologically irreducible s-representation

the lift of which to A is unitarily equivalent to 7, so I « Rer w = {0}.

A Ck-algebra A is said to be elementary if A is #-isamorphic to L_(H) for some

complex Hilbert space f.

11.5 IEMMA Let m:A - B(E) be a *-representation. Assume: 7 is nondegenerate
ard (A} c QN(E) — then T is discretely decomposable, i.e., there is an orthogonal
decamposition

E= & E,
iex
where each Ei is a closed m-invariant subspace of E on which 7 acts irreducibly.

(Note: To be completely precise, v i € I, the assigmment

A - B(Ei)

A -+ m(a) |Ei



is a topologically irreducible s-representation of A on Ei"]

11.6 THEOREM Suppose that A is s—isaworphic to a C*-subalgebra of an
elementary C*-algebra -~ then A is *-isomorphic to a (C*) direct sum @ Ai (cf. 3.19)

1
of elementary C*-algebras Ai.

If A is elementary, then #(A) = 1 {cf. 11.1) and this can be reversed provided

A is separable.

11.7 TEOREM Suppose that A is separable and #(A) = 1 — then A is elementary.

PROOF The rontrivial arqument is lengthy and bhest broken up into pieces.

Step 1: Take m per 11.4, say m:A + B(E) -- then E is separable. Thus fix
Xx# 0 inE and let D ¢ A be a countable dense subset of A —- then m(D)x is dense
in 7{A)x, which is dense in E.

Step 2: Let A' c A be a maximal commutative C*-subalgebra —- then A(A') is
countable. In fact, ¥ w' € A(A'), 3 a unit vector x{w') € E:¥ A' € A",

m{AY I x{w') = w' (A" x{(w') (cf. 10.39).
. . .
Given w:‘L ® W, 3 A' € AE';A'
w:'L(A') 2 wé(A').

Therefore

mé {ar) <x(w]'_) ,x(wé) >

< (w

i) ,wé (A')x(wé) >

<x (wi) ,'n(A')x(uJé) >



< (A')x{w]'_) ,x(wé) >

It

<wi (A')x(mi) .x(wé) >

it

wi (A')<x(wi) ,x(wﬁ) >

<x(w:'|_) ,x(mé)> = 0.

So if A(A') was uncountable, then E would have urcountably many mutually orthogonal
unit vectors contradicting its separability.
Step 3: A(A") is a countable locally compact Hausdorff space, hence by the

Baire cateqory theorem, has at least one isolated point mc']. On the other hand,

A' = C_(A(A")),
so there is a projection P in A' (P = P* = Pz) such that mé(P) =1anmd w'(P) = 0
for w' = m('). Moreover, every element A' € A' decamposes as

Al AP + B',

Il

where ) € C and B'P = PB' = 0,
Step 4: Ict A € A = then

A" {(PAP)

u

(AP + B") (PAP)

= APAP

AFAP + PAPB’

PAP (AP + B')

I

= {PAP)A'.



But A' is maximal:
PAP € A" => PAP c AT,

Step 5: Since 7 is faithful, n(P) = 0. Therefore Ran 7(P) is a nonzero
closed linear subspace of E which is invariant under the commitative x-algebra

PAP. Derote by o the associated x-representation

PAP - 7(PAP) |Ran m(P) (A € A).
Then u, is topologically irreducible. Proof: Let x,y € Ran n(P) with x # 0 and
choose a net {Ai:i € I} in A:

n(A)x +y  (cf. 8.16)

=

k) (PAiP) x

T{P) T (Ai) T{P)x

Tr(P)Tr(Ai)x
-+ 7{P)y = vy.
That 7, is topologically irreducible follows upon citing 8.16 once again.
Step 6: Due to the topological irreducibility of m,, the Ty {(PAP) (A € A)

are scalar operators (cf. 9.8). In turn, this forces Ran 7{P} to be one dimensiomal,

i.e., ©(P}) is rark 1. Accordimgly,

m(A) NnL_(B) = {0}

TA) > L (E) (cf. 11.2).

Step 7: The inverse image T L(L_(E)) is a nonzero closed ideal in A, so, as A

is simple (cf. 11.4),

L (B)) = A.



Therefore

A > L (E)

is a s-isamorphism or still, A is elamentary.

11.8 REMARK Consult N(ﬁnam-Weaver+ for a discussion of the situation when

A is nonseparable (but #(R] = 1).

11.9 RAPPEL A primitive ideal of A is an ideal which is the kernel of a

topologically irreducible *-representation of A.

Write Prim A for the set of primitive ideals of A and equip it with the hull-

kernel topology -- then Prim A is Ty-

The cbhviocus arrow

R + Prim A

[#] » Her =

is surjective (but, in general, is not injective). Therefore the hull-kerrel
topology on Prim A can be pulled back to Ex to give what is called the regional
topologqy on ;\

[Note: A subset S c R is open in the regional topology iff it is of the form
{[n} € ;\:Ker T € 0} for same subset O ¢ Prim A which is open in the hull-kernel
topology. ]

N.B. In general, A need not be 'I‘0 but if it is TO' it need not be T, but if

1

+Proc. Natl. Acad. Sci. USA, 101 (2004), 7522-7525.



it is T,, it need not be T, (cf£. infra).

11.10 IEMMA The following conditions are equdvalent: (i)A is Toi (ii) Two
topologically irreducible #-representations of A with the same kernel are unitarily
equivalent; (iii) The carvnical map A - Prim A is a homeomorphism.

[This is a simple deduction from the definitions.]

11.11 EXAMPLE Suppose that A is sinple -- then Prim A = {0}. So, if A has

more than one element, then A will not be TO'

[Note: There are simple A for which A is uncountable ("Glimm algebras"}.]

11.12 EXAMPIE Let H be an infinite dimensional complex Hilbert space. Take

A= Em(H)+ —-— then #(A) = 2, say ;u= {Wl,ﬁz}. Here Rer n. = {0}, Ker m, =L_(#},

1 2

s0 A is Ty- But A is not le [Trl] is a dense open point ([n'2] is a closed point}.

11.13 EXAMPIE Let

A 0
A= {f € Clo,1],M,(C)) :£(0) = 3ruedl.
_ 0 L
Then
A=10,11 U {m,m,},
where
t <> £{(t) (0 <t <1}
and

TTl(f) = f(O)ll’ TTz(f) = f(0)22.



Topologically, 10,11 has its usual topology and sets of the form {Trl} u Jo,el,

{1T2} U 10,¢[ are also open. Therefore A is T;- Still, it is not T,:

1
= >
n

>0 &

=3

S

11.14 1EMMA Tet S ¢ A —= then
[f] €S <=> N Rer S < Ker 7.
[slcs

E.g.: If S= {[s]} and Ker S = {0}, then =3\.

11.15 THEOREM Suppose that A is separable -~ then for a given [7] € A,

the following conditions are equivalent: (i) In] is closed in A; (ii) w(A) = L (E).
PROOF Assume (i) — then
{[7'] € AsKer 7 c Ker 7'}

is a one element set {cf. 11.14), so the C*-algebra w(A) is elementary (cf. 11.7),
hence 1 a *-isamorphism &:m(A) + L _(H) (H a complex Hilbert space). But the identity
representation of m(A) on E is topologically irreducible, thus 3 a unitary operator
UsH + E such that Vv & € A,

U@(n(A))U‘l = m{a).
I.e.:

UL, (U = (4)
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L _(E} = w(A).

Assume (ii) and consider a [1T0] € [w], thus Ker 7 c Ker Ty (cf. 11.14), so

there is a topologically irreducible *-representation w' of L_(E) on E' such that
Ty = m' o 7, Bearing in mind 10.28, fix a unitary operator U:E + E' with the prop-
erty that v A € A,

1

H

Um(A}y mr(m{a)y (= e {B}).

Then obviously

[770] = [TT],

which establishes that [7] is closed in A.
[Note: The proof of the implication (ii) => (i} does not use the assumption

that A is separable.]

A C*-algebra A is said to be liminal if for every topologically irreducible

*~representation m:A + B(E), we have n(A) =1 (E}.

11.16 EXaMPLE Every cammutative C*-algebra is limimal.

11.17 EXaMPIE Every finite dimensional C*-algebra is liminal.

11.18 EXAMPIE Every elementary C*-algebra is liminal,

N.B. If H is an infinite dimensional complex Hilbert space, then B(H) is not
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liminal (just consider the identity representation of B{H) on H).

11.19 IEMMA Suppose that A is liminal —— then its C*-subalgebras are liminal

(in particular, its closed ideals are liminal).

fOne has only to apply 10.38 (restrictions of campact operators are campact).]

11.20 ILEMMA Suppose that A is liminal — then v closed ideal 1 ¢ A, the

quotient A/T is liminal.

If A is unital and liminal, then its topologically irreducible x-representations

are necessarily finite dimensional (v T‘I',’n'(lA) = idE) . 'This said, let Hf be an infinite

dimensional complex Hilbert space -~ then EW(H)"- is not liminal (consider w(a,)) =

A+ )\idH) . §till, L _(H) is a liminal closed ideal of EW(H)-F and the quotient

L_(H¥/L_(#) = C is liminal as well.

11.21 IEMMA If A is liminal, then A is T,, the converse being valid if in

1!

addition A is separable {(cf. 11.15).

11.22 EXAMPIE Suppose that A is x-isomorphic to a C*-subalgebra of an ele-
mentary C*-algebra —— then A is liminal (cf. 11.19), hence A is Ty and, in fact,

A is discrete.

A C*-algebra A is said to be postliminal if for every topclogically irreducible

x—representation 7:A > BE), we have n({A) > L (E).
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Trivially,

"liminal® => "postliminal®.

11.23 EXAMPIE Iet H be an infinite dimensional complex Hilbert space — then

L_(H)" is postliminal (but not liminal).

11.24 IEMMA Suppose that A is postliminal -- then its C*-subalgebras are

postliminal (in particular, its closed ideals are postliminal).

11.25 1EMMA Suppose that A is postliminal —— then V closed ideal T c A,
the quotient A/T is postliminal.

11.26 ILEMAR Iet T c A be a closed ideal, Assume: T and A/] are postliminal --
then A is postliminal.
Note: If I and A/T are liminal, then A is postliminal (but, as cbserved

above (and will be seen again below), A need not be liminal).]

11.27 EXAMPLE Take H = £2 with its usual orthonormal basis {en} ard let S

be the unilateral shift characterized by Sen =g

]l then the Toeplitz algebra

T is the C*-subalgebra of B(f) generated by S. It is wellkmxwm that T properly
contains L (H) and T/L_{H) = C(T). Since L_(H) and C(T) are liminal, hence post-
liminal, it follows fram 11.26 that T is postliminal. WNevertheless, T is not
liminal: The identity representaticon is topologically irreducible and T properly

contains QW(H) .
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N.B. One consequence of 11.25 and 11.26 is this: Suppose that A is non-
unital — then A is postliminal iff A" is postliminal.

11.28 IEMMA Suppose that A is postliminal. Let
Trl:A - B(Ell

‘n2:A + B(EZ)

be topologically irreducible x-representations of A such that Ker M= Ker T, ==

then

['lTl} = [112} (cf. 11.3).

Therefore A is T0 and the canonical map A + Prim A is a homeamorphism (cf.
11.10).

Mote: A is Ty if A is liminal (cf. 11.21).]

11.29 REMARK It is a fact that if A is separable and A is Tor then A is post-

liminal.

[Note: This is definitely not cbvious. ]

11.30 LFMMA Suppose that A is simple and postliminal —- then A is elementary.
PROOF ILet m:A - B(E) be a topologically irreducible s-representation --— then

m(A) o L_(E). But 'n_l(gw(E)) is a closed ideal, thus A = "rr-l(gm(E)) . At the same

time, 7 is faithful. Therefore m:A - L (E) is a *-isomorphism, so A is elementary.
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An elementary C*-algebra is unital iff it is finite dimensional. Combining
this with 11.30, we conclude that an infinite dimensional unital sinple C*-algebra

is not postliminal.

11.31 EXAMPIE TIet H be a separable infinite dimensional complex Hilbert
space — then the quotient B{H)/L_(H) is not postliminal, hence B({) is not post-
limimal either (cf. 11.25).

[Note: For the record, Prim B(H) = {0,L (H)} (cf. 10.41), while

~ c
$(B(H) ) = 20 (cf. 10.44).]

11.32 THEOREM Suppose that A is postliminal — then every primary *-represen-
tation of A is geametrically equivalent to a topologically irreducible s-representation
of A or still, is unitarily equivalent to a multiple of a topologically irreducible

*—representation of A.

11.33 IEMMA Iet A and B be C*-algebras and suppose that A is postliminal., Fix

a C*-roxm |{-]| on A @B - then every topologically irreducible *-representation
r of A @a B is unitarily equivalent to one of the form 7 & ¢, where [n] € A and

(] € B.

PROOF On elementary general grounds, there are nondegenerate *-representations

CA:A + B(E}

(g:A e B + B(E))
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such that vA € A, v B € B,

T4 (a) tg (B)

(A @& B} =

CB(B) CA{A).

Both ¢, and gy are primary. But A is also postliminal, so 23 a topologically irre-
ducible #-representation 7 of A such that [ A is unitarily equivalent to Ir = 7 & id
(cf. 11.32). And, under this equivalence, R takes the form id & n, where n is a

topologically irreducible *-representation of B.

11,34 THEOREM Suppose that A is postliminal — then A is nuclear.

PROOF Iet B be a C*-algebra ard let X € A& B (X = 0). Given a C*-norm

»

|, on A @ B, choose a topologically irreducible *-representation r of A @ B

such that

[xll, = [z |1 (cf. 10.36).
Then

[xll, = lltw@m || (ef. 11.33).
But

Hman || < x|, (£ 6.1
=
Hxll, = Fxly,

] = Tl

Therefore A is nuclear.
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11.35 BEMARY It can be shown that

A,B postliminal => A @ B postliminal.

11.36 EXAMPIE Let # be an infinite dimensicnal complex Hilbert space ——
then 8(H} is not postliminal.

[In fact, B(H) is not nuclear (cf. 6.27}.]

[Note: If H is not separable, then for each cardinal € < dim H there is a

closed ideal I'< c B(H) containing L _(H), hence B(H)/L_(H) is not simple.]

11.37 IEMMA TFix A € A — then the function

[7] + |[wa)]]

is lower semicontinuous on A.
PROOF Fix € > 0. Given a topologically irreducible *-representation

msA + B(E), choose unit vectors x,y € E:

[<x,m@)y>| > [|r@)[] - % .

Then 3 a neighborhood U of [w] such that v [#') € U, there are unit vectors x',y'

in E' for which

<x', ' A)y'> - <X,1T(A)Y>| < §2~ ,

|t ym (By'>| > [T ] - e

[Har@y || > ||n@) || - e.
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Suppose now that {[Wi] :ti € T} is a net in A

[w,1 =+ [7].

Then [‘ITi] is eventually in U, so

lim inf ||m, @) ][ 2 [[v@®) ][] - ¢
ieT
or still,
Lim inf [|r. @ ] 2 [[r@) || (e ~0).

i€r

11.38 REMARK In general, the function

[r] > ||r@)]]
is not continuous on A but it will be if A is T2 (see the next lemma) {(a campact

subset of a Hausdorff space is closed).

[Note: The continuity of the function
] + ||r@)]]|

¥ A € A is equivalent to the condition that A he Tz.]

11.39 IEMMA Fix A€ Aand r > 0 — then
S = {Im € A:llr@ || = x)
is a compact subset of 1.
PROOF Let {Si:i € I} be a decreasing net of relatively closed nonempty subsets
of Sr(A) -- then it will be enough to prove that ig]: Si z #. To this end, let

Ii = N Ker 7.
[ﬂ]eSi
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Claims
lla+ 1.|| 2 .
1
In fact,
[1a+ ;]| = suwp ||+ Ker 7|].
[ﬂ]ESi
But
|[a + Rer w|{ = inf ||a + B|].
BeKer w
And v B € Ker 7,
r<|ir@|| = |[mr@a+ B ||
< [[=]] []a + B}
< ||a+ B|l.
Continuing, put
I=(U 13-_);
ieT
80
[1a+ T[] 2.

Since A/T is a C*-algebra, I a topologically irreducible x-representation m of A:

ITcrRermg [n@a+ D[] =|la+1|| (c£. 10.36).
Therefore
[n] ESr(A)-
But v i €1,

7. cKer w
1

inl € 3; (cf. 11.14)
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n S, = @4

jer *

11.40 THEOREM A is locally campact.

PROOF Fix {'no] € A == then the claim is that [TTO] has a basis of campact

neighborhoods, Thus let U be an open neighborhood of [110] . Since S = »1 - U is
closed, 3 A € A:

TrO(A) # 0 and S (A) 0v [8] €S {cf. 11.14).

Choose r > 0:r < [[my(A) || —- then

P

{In] € A:}|m@) || > r}

is open (cf. 11.37), so

{in] € R:HTT(A)H > r}

is a compact neighborhood of [TTO] {cf. 11.39) which is contained in U.

11.41 REMARK If A is unital, then A is compact. Proof:
{Ir] € A:] |w(1A) |} = 1}

is a campact subset of A. But

[r@ ] = Jliag]]  (w:A > B(E))

= l.
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[Note: The converse is false: If H is an infinite dimensional complex

Hilbert space and if A = L_(H), then #(fi\.) =1 {cf. 11.1}, yet idH g L _(H.]

N.B. The preceding considerations imply that Prim A is locally campact,
Prim A being compact if A is unital.
Using the notation of 9.33, each Z in the center Z(A) of DC(A) determines

a bounded continuous complex valued function
XZ:K > C
via the prescription
xz([ﬂ]) = CZ(’IT).
If instead, we hold [7] fixed and let Z vary, then the assignment
Z + g (Im]}
defines a character gy of 2{A}) (note that
Orp] Upeay? = V-

In suwnary:

Xg € BC (A)

Wi € A(Z(A)}.

11.42 RAPPEL An element Z € Z{A) is a pair (Z,C) such that V¥ A,B € A,

c(A)B = 7 (AB) = AL(B).


http:stm:JTta.ry

20.

11.43 IEMMA v [7] € A,

Ker o 1 = {2 € 2(A):z{A) c Ker T7}.

[

[One has only to recall that by construction (cf. 9.32),

n n
T{Z) (iil w(Ai)xi) = 'El W(C(Ai))xi.]

It follows that e depends only on Kexr m, so there is a continuous function

¢:Prim A > A{Z(A))
such that v 7,

$(Ker m = Wrnl

11.44 THEOREM The map

£(A) » BC(Prim A)
Z2+4° 9
is a »-isomorphism.

[Note: We hawve

(Z o ¢) (Ker m) Z(w[ﬂ])

= Wy (2

Xy ([T1).]

The only issue is surjectivity and for that we'll need a couple of lemmas, the

first of which is standard fare.
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11.45 1AMA let I, < A (k = 0,1,...,n) be closed ideals. Suppose that

AeIO+Il+...+In,

Then v € > 0, BAkE Ik:
A=Aj+A + .-« +A and la 1] = 2 + e [{a]].
PROOF Proceed by induction, the statement being trivial if n = 0. To pass
fram n to n + 1, choose

BEIO+ Il+"'+In
such that A-B e I . Since
n+l

(IO + .-+ In—i—l)/In+l

= (IO + e+ ‘In)/(I0 + e 4+ In) 0 Im_l,

one can assure that

[1Bl] < @+ en|iall,

where €' > 0 will be specified below. ILet &£" be another positive parameter which
will also be specified below —- then the induction hypothesis applied to the pair

(B,e") gives rise to a decomposition

B=A +2 +'--+An (AkEIk)

0 1
with
||Ak|[ < {2+ ¢ |[B]].
Put
An-!-l=A-B'
Then



22,

=A +A +000+A

0 1 ntl
=
[agll = @+ e [|Bl] < 2+ em @+ e ][a]l
a1l = @+ en][B]| < 2+ &)1+ e ]all
ol s LAl + 1Bl s @+ enlia]l.
Now take €',c" small enough to force
2e' + " + €"g"* 2 £,

N.B. Take € = 1 to get the estimate

a1 = 311801

To simplify the writing, let P stand for a generic element of Prim A and let

prp:A + A/P be the quotient map — then

N Ker prj = {0}.
P

11.46 IEMMA Fix £ > 0 and A € A, Iet £ € BC(Prim A) —-thenElBEEAsuch

that ¥ P € Prim A,

HPrP(BE) - £(P)pr, (A) || < €.

PROOF 2ssume for sake of argument that £:Prim A + [0,1]. Fix n and define
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open sets
. k-1 k+1
Ok = {P € Prim A:T < £{P) <« T} {k = 0,1,...
Obvicusly,
n
Prim A= U Ok
k=0

and each P € Prim A belongs to at most two of the Ok‘ let

Ik= n{P € Prim A:P & ok}.

peok<=>rk¢9

IO+Il+---+In=A.

By 11.45, 3 A€ I :

A=Ay + A + - +A and ||af] < 3}[al].
let
n
Bn= L I%Ak
k=0

Then v P € Prim A,

| lprp B) - £(®)pr, @) ||

n
k
2 Gep®y - £@)pr, A ||

2k
2 G- EeNps B ]

6
=% Lall.
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Choose n > > 0:

and pat

N.B. If Bé also has the stated property, then

||B. - B < 2¢.
€ £

Proof:
lIB. - Bl = suwp [|r(B, -BYI
[m]EA
= sup | lpr,(B) - pr (B! ]
PEPrim A P BoE
< sup (Hpr (B) - £(P)pr,(a) ||
P<Prim A bre P

+ | |f{P)prP(A) - pr,(B}) |1
< 2.
The sequence {Bz_n} generated per 1l.46 is therefore Cauchy, hence converges
t0 an element T(f,A) € A, and ¥ P € Prim A,

prp(T(f,n)) = £(P)pr; (B},
an equation that characterizes T(f,A) (since N Ker pr, = {0}).
P
ILet

Cf(A) = T(f,n) (A e A).
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Then c;f:A + A is linear.

[Note:
tg=tg=>f=g
Proof: ¥ P € Prim A,
pry, (T(£,A)) = pry {T{g,n))
=>
f (P)}_:»rP (&) = g(P)prP {a)
->
£(P) = g(p} (3 A:prP(A) z 0}.]

11.47 IEMMA Vv A,B € A,

Cf(A)B = cf(AB} = Agf(B).

PROOF V P € Prim A,

PTrp (P(f,A)B) = 2 (T(f,n) )prP (B)

I

f (P} Fp (a) Pry (B)

li

£(P) Bp (AB)

= pry (T(£,AB)).

Put

Zf = {Efr Cf) B
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Zf € Z(A) (cf. 11.42)
and we claim that
Zf o b= fr

thereby establishing surjectivity in 11.44.

First,v m & V A,

Tr(cf(A)) = E(zf)w(A)
= Xz(["T])TF(A)
= (2, ° ¢ (Ker M),
But
w{C, an
Te o ¢
= M{Z, A) - (Zf o ¢) {(Ker m)A + (zf o ¢) {(Ker m)A)
Zg © $
= w{z, (A) - (Ef o ¢§) {Ker mA) + w((gf o ) (Ker m)A)
Z_o P
f

= 1@y © 0,B) - (3, o §) (Ker MA) + T((Z, o ¢) (Ker TA)

(2 o 0) (Ker ™A

~

(Zf o ) {Kexr )7 (A).

So v m& ¥ A,

TE ) =T, @)
Zf e ¢
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el =z, ()
Zf o ¢
=
Le =1
f ~
Zf o ¢
=>
f = Zf o ¢.

11.48 REMARK One can work with A rather than Prim A provided A is Ty
(cf. 11.10}, in which case

Z(A) = BC(A).

11.4% I1EMMA The map
Prim A » Prim DC(A)
that sends

Ker % to Ker 7

is a continuous injection with a dense range.

[The closure of the image of Prim A in Prim DE{A) consists of those Q:

0> 0 Ker 7.1
m

Since DC{(A} is a unital C*-algebra, Prim D€{A) is conpact. 2And, as will be
seen momentarily, cne can assign to each

f € C{Prim DC(A})
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an element
§(f) € BC(Prim A)
with the property that

?(£) (Ker 7) = £{Ker w).

11,50 THEOREM The map

"’ C{Prim P£(A)) -+ BC(Prim A}

£+ o(f)

is a #-isomorphism.
PROOF Injectivity is implied by 11.49, leaving surjectivity. To deal with it,
note that the arrow

‘_ Prim A + Prim Z(A)

Ker m » Ker 7|Z(A)

factors as

Prim A + Prim DE(A) - Prim Z(A)

fram which an induced map

C{Prim 2(A)) - C{Prim dL{A)) E B (Prim A).

C(Brim Z(A))

]

C{A(Z(A)))

1l

Z(A),
so from 11.44, the arrcow
C(Prim Z(A)) - BC(Prim A)

is bijective, hence ¢ is surjective.



29.

11.51 RAPPEL Let X be a toplogical space —— then a Stone-Cech campact-

ification of X is a compact Hausdorff space BX and a continuous map BX:X -+ BX

such that for every compact Hausdorff space Y and every continuous function £:X » ¥

there is a wnique continuous function £':8X >~ Y with £ = £' o BX.

[Note: It is not assumed that X is Hausdorff. Still, BX always exists
(cf. 11.53) and is essentially unique. Incidentally, the image of X in BX is dense

and is all of PX if X is campact.]

11.52 REMARK Iet TOP be the category of tepologicalspaces and continuous
functions and let CPT,, be the full subcategory of TOP whose objects are the compact
Hausdorff spaces -- then the Stone-Cech compactification determines a functor

B:TOP - CPT,,.
Indeed, if X,Y are topological spaces and if f:X + Y is a continuous function then

there is a comwutative diagram

X — Y

Wl s

SX I BY !
BE

Bf being the unique filler for

BX ~--->BY .
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On the other hand, there is a forgetful functor

ceT, > TOP

and B is its left adjoint, so B preserves colimits (cf. 3.24). E.g.: If {Xi:i €1}

is a collection of campact Hausdorff spaces, then its coproduct in (':P’i’2 is

BU x.).
i

11.53 ILEMMA Iet X be a topological space. Define €:X » Prim BC(X) by e(x) =

Ker €t where €y is evaluation at x — then the pair
(Prim BC(X),€)

is "the" Stone-Cech compactification of X.
[Note: BC(X) is a unital commmitative C*-algebra, hence Prim BC(X) is a compact

Hausdorff space.]

E.g.: Tracing through the various identifications, we have

Prim BC(Prim A)

i

B Prim A

it

Prim Z (A} (cf. 11.44).



§12. W*-ALGEBRAS

Iet H be a complex Hilbert space -~ then a s-subalgebra A < B{H) is non-

degenerate if the linear span of the set

AH = {Ax:A € A,x € H}
is dense in H, i.e., if AH is total.

[Note: A unital x-subalgebra A ¢ B{f) is automatically nondegenerate. ]

12.1 REMARK If A c B(H) is a C*-subalgebra, then H is a left Hilbert
A-modute (||ax|| = ||&|[| ||x||), hence in this situation, AH is a closed linear

subspace of H (cf. 4.2), thus H = AH if A is nondegenerate.

12.2 RAPPEL The arrow

B(H) ~ Ly (i)

that sends A to AA (A € B(H)}, where

A () = tr(aT) (T € Ly (M),

is an isometric isomorphism, thus B(H) can be equipped with the weak* topology
arising from this identification.
{Note: Accordimgly, the weak* topology on B(H) is generated by the seminorms

Hallp = [erma)y] (T € L (H).]

12.3 THEOREM Suppose that A is a nondegenerate *-subalgebra of B{H) -- then

A is dense in A" per the weak, the strong, and the weak* topologies.



So, as a corollary, if A « B{#) is a nondegenerate x-subalgebra, then the

following conditions are equivalent:
1. A=A";
2. A is weakly closed;
3. A is strongly closed;
4, A is weak* closed.

N.B. Therefore A is necessarily unital,

A von Neumamn algebra is a *-subalgebra A < B{#) such that A = A".

E.g.: A' is a von Neumamn algebra. In fact, (A'}" = A''' =AY,

12.4 REMARK A von Neumann algebra A is weakly closed, hence norm closed, so
A is a unital C*-algebra.

[Note: Suppose that A is a weakly closed C*-subalgebra of B{(H). Let

H0= N Ker A.
AEA

Then Hs is A-invariant and A|H$ is a weakly closed nondegenerate x-subalgebra of

B(HE}L} ; hence is a von Neumann algebra. ]

12,5 EXAMPLE B(H) is a von Neumann algebra. On the other hand, L _(H) is not
a von Neammam algebra if H is infinite dimemsional. To see this, fix an orthonormal

basis {ei:i € I} for H. Write P, for the orthogonal projection onto Ce; and given

a finite subset F <« I, put



Then the net {PF} is strongly convergent to idH' But idH gL _(H).

12.6 1LevMMa If § is a subset of B{H) which is closed under the x-operation,

then §" is the smallest von Neumann algebra containing $ (the von Neumann algebra

gererated by S).

12.7 RAPPEL Suppose that {A,:i € I} is a bounded increasing net of self-
adjoint operators on H =~ then

sup A, € B(H)
ier * Sh

exists, call it A. So, v i, A; <A and if B € B(H)g, has the property that v i,
AisB,thenAsB.

Note: We have
1. Ai + A weakly;
2. Ai + A strongly;

3. Ai + A weak*.]

If A c B{(ff} is a von Neumann algebra and if {Ai:i €1} c ASA is a bounded

increasing net, then it is clear that

A, € .
?EJ{I) i ASl"-\

Conversely:

12.8 THEOREM Iet A c B(H) be a unital C*-algebra. Assume: V bounded



increasing net {Ai:J. €1} c ASA'

T By € Agp-

Then A is a von Nemmann algebra.

A C*—algebra A is monotone coamplete if every bounded increasing net {Ai:i €I}

in ASA has a supramm in ASA'

E.qg.: Ewvery von Neumann algebra is monotone camplete.

12.9 IEMMA Suppose that A is monotone camplete —— then A is unital.

PROOF lLet {ei:i € I} be an approximate unit per A (cf. 1.20). Put

e = sup e,
ier

and let m:A + B(E) be a faithful *-representation of A (cf. 10.37) — then, due
to the nondegeneracy of m, 7(e;) + id, strongly. But v i € I, m(e;) < m{e), thus
idE < nle), so mle) is invertible in B(E) or still, is invertible in w{A) + C idE.

Accardingly, YA E A, VcEC,

eI mle) (@A) + ¢ idy) = T(A) + ¢ id.
Write
me) ™l = niay) + o idy

and take A =0, ¢ =1 to get

m{e) (‘n(Ae) +c, idE) idE = :i.dE,



i.e.,

Tr(e.Ae + cee) = :i_dE

id; € m(A}.

Therefore A is unital.

12,10 REMARK Let A be a unital cormutative C*-algebra -- then A is monotone

complete 1ff A(A) is a compact extreamely disconrected Hausdorff space.
[Note: The term "extremely disconnected" means that the closure of every

open set is open, ]

A W*-algebra is a C*-algebra A which is *-isomorphic to a von Neumann algebra.

N.B. A W¥-algebra is unital and monotone complete.

12.11 REMARK Let A be a unital commtative C*-algebra —- then A is a
Wr-algebra iff there exists a locally compact Bausdorff space X equipped with a
positive Radon measure y such that A is isometrically *-iscmorphic to the algebra
” (X, 1) of essentially bounded p-measurable functions on X.

[Note: The pair (X,u) is not unique.]

If A and B are monotone complete C*-algebras, then a positive linear map
¢:A » B is said to be normal if for every bounded increasing net {Ai:i €I} c ASA'
we have

®(sup A;) = sup 2(A,).
icT ier
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12,12 1EMMA A *-isamorphism between monotone complete C*-algebras is normal.

Take B = C — then it makes sense to consider normal positive linear function-

als on A, in particular nmormal states on A:Sn(A) c S(A).

12.13 IEMMA Suppose that A is a von Neumann algebra. Let w:A +Cbhe a

positive linear functional -- then w is normal iff w is weak* continuous.

12.14 THEOREM Suppose that A c B(H) is a von Neumann algebra. Let

w € S(A) - then w is normal iff 3 a density operator W € W(H) such that Vv A € A,

w(A)} = tr(Wa).

[Note: Recall that a density operator is a positive trace class operator W

with tr@) =1 (ef. 7.13).]

N.B. It is thus immediate that the normal states separate the points of A,

i.e., VA20, 3w €E Sn(A):w(A) z 0.
[Note: Consequently, YA =2 0, 3 w € Sn(A):TTw(A) z 0.]

Suppose that
A c B{H)

B c B(K)

are van Neumann algebras.

12.15 IEMMA Iet ¢:A - B be a positive linear map —— then ¢ is rormal iff

$ is weak* contimpus.



12.16 THEOREM Iet 9:A - B be a *~hamomorphism. Assume: ¢ is normal -- then

Ker ¢ is weak®* closed and Ran ¢ is weak* closed.

[Note: It follows that Ran ¢ is a von Neumann algebra if ¢ is unital.)

12.17 EXAMPLE Let w € S(A) and consider its GNS representation 7~ -- then
1:A > B(EY) is a wnital *~haucmorphism. Moreover,
!

w hormal => 7 normal,

hence ww(A) < B(Ew} is a von Neumann algebra.

A projection in the center of A is called a central projection.

12.18 ILEMMA Suppose that I < A is a weak* closed ideal —- then 3 a unique

central projection P such that T = PA (= AP) ard ¥ A € A,

0

PA = P(PA) = P(AP) = (PA)P = BAP.
[Note: We have

PA ® PTA.]

.
il

12.19 REMARK In the context of 12.16, one can thus say that there exists
a unicque central projection P such that Ker ¢ = PA ard ¢ is a *-isomorphism of BrA

ontc Ran ¢.

Suppose that A is a Wr-algebra —- then A is monotone complete and the normal
states separate the points of A. Corwversely, as we shall now see, these properties

are characteristic.
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[Note: If Ao c B(HO) is a von Neumann algebra and if ¢:A -+ AO is a *—iso-
morphism, then ¢ is normal {(cf. 12.12). So, v wy € Sn(AO), by © d e Sn(A).

Bat Sn(AO) separates the points of AO. Therefore Sn(A) separates the points of A.]

12.20 IEMMA Suppose that A is monotone camplete. Tet w be a normal positive

linear functional on A — then for any bounded increasing net {Ai:i €1} < ASA’

ﬂm(Ai) converges strongly to 1(A) (A = sup Ay).
ier

PROOF Iet U € A be unitary — then

v = sup LIAiU_l

i€l

UJ w w
< {U)x (A)w (U)Xw>m

<X ,'Ifw(U—lAU)X >
w W w
= w(U_lAU)

= S‘Up {U(U_lAiU)
igr

_ WL
= fg X T (U AiU)xw>w

w W,y W
= < .
% ks (U)xw,Tr (Al)'n‘ (U’}xw>{Jj

Lim |1 (@ - 7)) Y

2
nx ||
ier W

= 0,



Since the finite linear combinations of unitary elements exhaust A and since

nm(A)xw iz Jdense in Em, it follows that

@@ - e

converges strorgly to zero, which implies that 1> {Ai) converges strongly to T (A).

12.21 THEOREM Iet A be a C*-algebra. Assume: A is momotone complete and

the normal states separate the points of A — then A is a W*-algebra.

PROOF Iet

W
™

T i)
NOR
E(A)

Then ™o is a fajthful s-representation of A on

134
Fyor = @ EY,
wWESn(A)
so
HNOR:A - '”NOR(A)

is a x-isomorphism, thus to prove that A is a Wr-algebra, it suffices to prove that
'rrNOR(A) c B(ENOR)

is a von Neumann algebra and for this, we shall appeal to 12.8 (TrNOR(A) is unital
{cf. 12.9)}. Ilet {A,:1 €I} c ASA be a bounded ircreasing net and put A = sup A, --
1 iEI 1

_ w w
then v w € SE(A) , T (Ai) converges strorgly to 7 (&) (cf. 12.20), hence TrNOR(Ai)

converges strongly to mg.o (3). Mearwhile
(A »sup m _(A,)
NOR™ 1 ieT NOR "1

strongly. Therefore



lo.

P MorBi) = Tor'A) € Myop(A) -

I.e.: WNOR(A) is monotone camplete.

12.22 REMARK There are examples of momotone complete C*~algebras As

S (A) = {0}. Such an A canmot be a Wr-algebra.

The predual of a von Neumann algebra A is the set of all weak* continuous

linear functionals on A.

50, e.g.,

Notation: A,.

Bif)y = Ly (1},

12.23 IEMMA Iet w:A > C be a weak* contimwus linear functional.

v AE A,

w(d*) = (@),

Then 3 unique weak* continuous positive linear functionals

such that

w, A+ C

*

Heoll = T [1+ [

Assume:



11.

[Note: It is a corollary that every element of A, can be written as a linear

canbination of four weak* contimious pesitive linear functionals {(cf. 7.11).]
12.24 1R A, is a norm closed subspace of A*.
Therefore A, is a Banach space.

12.25 THEQOREM Let A be a von Neumann algebra -- then the arrow TI':A » (A)*
defined by the rule

I'(A) (W) = wd) (A e A, we A
is an isometric isomorphism,
[Note: T is also a homeomorphism if A and (A,)* are endowed with their re-

spective weak* topologies, thus the closed unit ball Al of A is weak* compact.]

Let X be a camplex Banach space — then a cawplex Banach space Y is called a
predual of X if X is isawetrically isemorphic to V*.

[Note; If X is reflexive, then X = (X*)*, thus the dual X* is a predual.]

E.g.: Take X =4, ¥ = A_,

12.26 IEMMA Tet A be a C*-algebra ~- then up to isometric isomorphism, A

admits at most one predual.

12.27 EXAMPIE In general, preduals are not unique: Take H = JEl and let
TY. =cC

-- then c is not iscmetrically isamorphic to Cys Yet c* and ca are
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both iscmetrically isomorphic to 2t

12.28 THEOREM Iet A be a C*-algcbra. Suppose that A has a predual  —
then A is a W*-algebra.

Because the proof is samewhat involved, it will be convenient to proceed via
a series of lemmas, the goal being to finesse the matter by an application of 12.21.
So let A be a C*-algebra with a predual V — then by definition, there is an
isametric iscmorphism ¢:A -+ V%, Use ¢ to transfer the weak* topology on * to A
and call it the V*-topology. This done, given v € U/, define wv:A + C by

wv(A) = <y, p(A}> (A € A).
Then the set

{mv:v £ V3

is the subset of A* consisting of those linear functionals that are continuous per
the V*~topology.

[Note: To say that A, + A in the W~topology means that vV v € ¥,

w, (Ai) > W, (a}.]

12,29 IEMMA A is unital.

PROOF The closed unit ball Al of A is compact in the V*-topology (Alacglu),

hence has an extreme point (Krein-Milman). Therefore A is unital (cf. 1.30).

12.30 RAPPEL (Krein-Smlian) Iet F be a complex Banach space; let E* be its

dual and let B* be the closed unit ball in E* — then a comvex subset S < E* is
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weak* closed iff each of the sets S n ¥rB* {r > 0} is weak* closed.

[Note: Here is an application. Suppose that w:E* > C is a linear functional --
then © is weak* continuous iff the restriction w|B* is weak* contimous. Proof:
Ker w N B* is weak* closed, thus Ker w is weak* closed, which implies that w is

weak* continuous. ]

12,31 LEMMA ASA is closed in the V*—topology.
PROOF It is enough to prove that

1 _ 1
ASA—-ASAHA

is closed in the V*—topology (Krein-Smulian). So let {Ai:i € I} be a V*—convergent
ret in A;‘Aandwrite the limit as X + v=-1 ¥ {X,Y € Agp) » the claim being that Y = 0.

To establish this, note that v n € N, {Ai + /=1 nlA} is V*—convergent to X + /=1
(nlA + Y). And then

(1 + n2) 1/2

'

lla; + /=1 n1,||

1+ n2) 1/2

v

lim inf | |a. + ./Z“i'nlAll
ier *

I

[ 1x + V-1 (n1A+Y)l|

'

.

||nlA+Y|
If Y is not zero, one can assume that its spectrum contains same r > 0 (otherwise
work with {- A;:ie 1I}), thus vy n € N,

r+n s ||nlA+Y|| < 1+ nA?
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or still,

r2+2rn+n251+n2,

an impossibility. Therefore Y = 0, as claimed.

12.32 ILEMMA A+ is closed in the V*-topology.
PROOF It is enough to prove that

A=A n Al
is closed in the W*-topology {Krein-Smulian). But
1

=3 gy *

12.33 ILEMMA A is monotone camplete.

PROOF Let {Ai:i € I} be a bounded increasing net in ASA Because A;'A is
compact in the V*~topology, there is a subnet {Aj:j € J} which is comwergent to an
elanent A € ASA' But v Ai, Aj is 2 Ai eventually, hence A = Ai {A+ being closed in
the V*-topology (cf. 12.32)). On the other harmd, if B € ASA and if B > A, for all i,

then B aAj for all j, so B z A. Therefore

= supA
ieT

which proves that A is monotone complete.

Bearing in mirmd 12.21, to finish the proof of 12.28, we have to show that the
rormal states separate the points of A. And for this, samne additiomal preparation

ig required.
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12.34 RAPPEL (Uryschn) Iet X be a topological space. Suppose that {xi}
is a ret in X — then lim x, = x iff every subnet {xj} has a subnet {x } such that
lim X = X.

[1f X does rot corwverge to x, then 3 a reighborhood U of x with the following
property: v i, 3§ = i:xj # U. But the subnet {xj} has a subnet {xk} such that

the % are eventually in U.]

12.35 IEMMR The involution *:A > A is V-contimpous.

PROOF The V*-topology is the initial topology per the linear furctionals
A~ wv(A) (vew.
So, to conclude that the inyolution *:A + A is V*—continuous, it suffices to prove
that ¥ v € V, the arrow
A > o (%)
is V*-continuous and for this, it can be assumed that ||A]| < 1 {cf. 12.30).
Accordingly, fix v € V and suppose that A, ~ 0 in the W-topology —- then the
contention is that w (A%) > 0. Consider an arbitrary subnet {wv(Ag) }. Since
[agfl = liaghl = 1,
it follows fram the V*-campactness of AL that the et {AS.'} has a V*-convergent
subnet {A]’é}:

A]:-*B.

Claim: B = 0., To see this, note that
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- A](+A1’;+O+BEASA
- B
By Ak“"ie’*s;w
V-1 V=1

B*—B, {..Ml.?’_..)*=_.._§_
V=1 V=1
=>
/=1 -/ /I /T
ﬂ
B = (.

Therefore

Now apply 12.34 to get

wv(Ajf) -+ 0.

12.36 IEMMA If &y is positive, then w, is rormal,

PROOF In the notation of 12.33,

A > Ai => wv(A)

v

w, (Ai)

N

=> wv(A) > itg wv(Ai) .

w (a.) = sup w (A4,)
v jer Vv &
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w, {8) = 1lim w_{(A.) < sup w_ {A.}.
v 67 YV 3 qexr V1

[Note: Recall that Aj + A in the V*-topology and wv:A + C is contimous in

the #*-topology.]

12.37 RAPFEL {Halm-Banach) ILet E be a real Hausdorff ICIVS. Let S ¢ E be
a closed convex cone -—— then ¥V X € E - §, 3 a continuous linear furctional 8:FE + R

such that 6(x) < 0 and 8|S = 0.

E.g.: Take E = ASA' S= A+ and work with the -topology ~- then
v A€ ASA - A+, 3 a W—contimicus linear functional G:ASA ~ R such that 8(a) < 0

and 6fA_ 2 0.

N.B. Extend & to a linear functional w on all of A by writing

w(X + V=1 Y) = 8(X} + /-1 6(Y) (X,Y € ASA).

Then w is V*-continuous {cf. 12.35) and, by construction, is positive, hence normal

{cf. 12.36).

12.38 IEMA Iet A € A and assume that mv(A) = 0 for all V*-—continuous
positive lirear functionals W, on A —— then A = 0.

PROQF Write

A=PRe A+ v-1 ImA.
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and fram this we want to conclude that A = 0, which will be the case if

il
o

Re A

Im A

it
<

Consider Re A:

Re A = (Re D), - (Re A) .
Suppose that Re A ¢ A+ => (Re A) _ = 0) - then 3 W3
wv{Re a) <0 (cf. supra).

As this can't be, it follows that (Re A) = 0. ZAnalcogous considerations apply to

Im A, thus (Im A)_ = 0. Therefore

A= (ReA)++/:f(ImA)+

and v wv,
w, ((Re A),) =0
~ w ((Im A),) = 0.
Consider (Re A)+. If (Re A)+ # 0, then
- (Re A) € ASA - A (cf. 1.24),

S0 3w
v
wv( - (Red)) <0 (ef. supra),

a contradiction, hence (Re A)+ = 0. Similarly, (Im A)+ = ¢, Therefore A = Q.

The upshot, then, is that the normal states separate the points of A, which

completes the proof of 12.28,
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12.39 EREMARK Write A, for the subspace of A* spanned by the normal positive

linear fumctionals -—- then

A, = {wv:v e VI

Suppose that A is a von Neumann algebra.

® Write Pro{A} for the set of all projections P in A.

® Write Fn(A) for the set of all norm closed faces P in Sn(A) .

e Write IL(A) for the set of all weak* closed left ideals I in A.

Equip each of these entities with their natural ordering.

12.40 THEOREM

¢ There is an order preserving bijection

b:Pro(A) + FE(A) .

® There is an order reversing bijection
¥:Pro(A} - IE(M .

» There is an order reversing bijection
G:FE(A) > IE'(A) .

[The relevant definitions are as follows.
: ILet

o) = {w e Sn(A):w(P) = 1}.

Then @)—l(F) = P, where P is the smallest projection such that w(P) = 1 for all w € F.
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B

¥(®) = {A € A:AP = Q}.
Then LP_l(I) = P, where P is the wnique projection such that T = AP.

@: Take Q=Y o d:-l -- then

OF) = {A € A:w(A*A) = 0 V w € F}

ol = (we S (A):w(a*a) = 0 v A€ 1}.]

Given P € Pro(A), let

Fp = 9(P),
Fp = {u € SE(A):w(P) = 1}.

12,41 I1EMMA EveryyintheconvexhullofFPUFlcanbewrittenasaLmique
P

convex carnbination
Yy=i0+ {1 - AT,

where UEFP, T EFP*-

Let F, < Sn (A) be a norm closed face —— then Fp is said to be a gplit face if

the convex hull of FP UPFr is all of S (A).
Pt 2

12.42 LEMMA Fp is a split face iff P is a central projection.
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{Note: Suppose that P is a central projection — then

w € FP <=> VY A € A, wPA) = w(a).]

let w € S_(A) and fom wP as in 10.4:

wo(A) = w(B*AB) (A € A)
or still,
B oy ]
w (A) = <B7,m (A)B >w.
If w(B*B) = 0, then
B w w
w oA B o5 ) B - >
w (B*B) w(B*B) w (B*B)
But
|82}, = w2 (cf. 510).
Therefore
B
g F —
w (B*RB)

is a vector state which, moreover, is normal (cf. 12.17).

12.43 1EMMA Tet Fp © Sn(A) be a split face. Fix w € Fp and suppose that

w(B*B) = 0 w-— thent EFP.

PROOF We have

(H

Fp = {w € SE(A) 1w(P) = 1},

Since FP is a split face, P is central, so



w(B*B) uy e

=2 U_}(Pl) =0

22,

wB (PJ')

w{B*P'B)

w{ (B*B)P)

w(3*B) 2, (1)

1A

1= (1) = w@+ P

= w(P) + w(eh

1+ weh

=> w (P = 0 => wy(P) =1

1/2

(cf. 7.8).

=> .
wEFP



§13, THE DOUBLE DUAL

Given a C*-algecbra A, let

[IV)

m = m .

©
weS (A)
Then 7 is faithful. Moreover, the image A = T(A) is a nondegenerate r—subalgebra

of B(E) (E= @ EY). Therefore A is dense in A" per the weak, the strang,
wES (A)

and the weak* topologies (cf. 12.3).

13.1 IEMMA Each w € S(A) has a mique extension to an element w € Sn(x”):
W=wa T.
PROOF Uniqueness follows from 12.13. As for existence, view x € £° as an

element :_:m of E and let » be the restriction to E' ' of the vector state w_ =— then
X
¥ A E A, W

w(A)

w
< s >
xw ;0 (8) Xun w

i

<x ,7{a)x >
xw,w(A)xw

= w_ (7))
X
w

= (0 e m(a).

N.B. The procedure is exhaustive in that every elewent of sn(ﬁ- '} arises in

this way.

13.2 REMARK On A'’, the weak and the weak* topologies coincide.



[Every normal state on Z" is a vector state.l]

13.3 THEOREM The map

S(A) ~ SQ(A”)

0w

is an affine isaomorphism and extends to an iscmetric isomorphism

A > (Rrry,

Ww—" w.

PROOF The only thing that has to be checked is the fact that
[Hall = [lwll (e A%.

However, according to 9.47, the closed unit ball AL (= T{A)) is weakly dense in

the closed unit ball of A''. But © is weakly continuous (cf. 13.2), so

Hall

= sup |(w o M (A}
acAl

= sup |w(a)|
acAt

= ||wi}.

13.4 REMARK The dual of the arrow
A* (ZH)*
is an isometric isomorphism

(AT )% > Axx,



Therefore (Z")* is a predual of A**, BAs it will be shown below that A** is a

C*-algebra (cf. 13.20}, this means that A** is actually a Wr-algebra (cf. 12.28).

There is an arrow
;I‘u ,1; ((Ktl}*}*’
viz.
T(A) () = w(B) (cf. 12.25).

Denote by A the composite
- T -_
Avr 3 (AT l)*)* - Akk

Then v A € A'', A(A) is that element of A** which sends w to w(A) and by construction,
A is an isometric isomorphism.

N.B. The diagram

- A

V. \LL ——\ T

I
T

camutes. For let A € A — then on the one hand, ﬁ(m) = w(A}, vhile on the other,
MT @A)} W) = w(T{A) = (0 o T {A) = wd).

To proceed further, it will be convenient to introduce some formalities.
So let A be a Banach algebra.

e Given A € A, define linear maps A > A by

LA(B) AB

BA.

R, (B)



e Given w € A*, define

e Given £ € A**, define

LEAY - A%

REGAY -+ A%,

*
wAEA

w e A*

Wy = (L;;) {w)

W= (R;) {w) .

waA*

wEEA*

£0 {A) f (wA)

wf(A) = f(Am) .

13.5 ARENS PRODUCT Given f,g € A** define

xx
fLXgEA

£x g€ AR



13.6

13.7

13.8

13.9

(£ . % 9 ()

*

(f

We have

= Ylugll = 1wl 1Al

gl 1< ol D 1Al
We have
(wA)B = Wppr (’Aw)B = A{u)B), A(Bou)
We have

el = [wl] 1]

 Hegll s el | 1€
We have

{gw) o = glon)

| A(mf) = {Aw)f'

~ aB

f (gm)

R g) (@) = g(wf) .

.



13.10 IEMMA Ve have

[£1] Hall

h
(
X
a
A

< |1£1} iHgll.

Y
X
=
a
I

13.11 ILEMMA We have

rh
X
=
I
M
)
g

Now bring in the canonical injection

A > A¥x¥
_A-na
13.12 IEMMA We have
oW = L0
a A
W, = W,.
13.13 IFMMA We have
—_ ~ =A _ o
Afo AXRf (LA)(f)
£_xa=1fx z’i—-

y R A= (REX) (£).



13.14 THEOREM Either Arens product makes A** into a Banach algebra and the

arrow A > A** is an injective hamomorphism w.r.t. both:

_/\ ~ A
ALXB= {AR)
~ e A
AXRB— (AB) .

{Note: If A is unital, then 1A is a unit for either Arens product.]

X _ coincide {in

Definition: A is Arens regular if the two products L% *g

which case we simply write £ x g).
13.15 EXAMPLE Take G per 5.17 -- then Ll(G) is Arens regular iff G is finite.

—-thenc*:!llarxic**:/ﬁm. Here . X = X

13.16 FEXAMPLE Take A = Cy 0 0 1, R

and is just the elementwise multiplication on 2",

Suppose in addition that A is a Banach x-algebra. Assume: The involution

*:A + A is continuous.
*Given w € A*, define w*:A + C by
w* (A} = wia*).

Then w* € A*, the map w » w* is a linear imvolution on A*, and

0

(0s%)

*
(mA) ax

(w*) .

{ Au.\) * ax



* Given £ € A**, define f*:A* » C by

f*(w) = £(w*).

Then £* € A**, the map £ + f* is a lirnear imwelution on A**, and

(w*)

—

g
*
it

£*

(w*) .
f*

3
rh"-—f
*

f

13.17 EXAMPIE Take A to be a C*-algebra - then
BiA" > AR
is #=linear: v & € A",
AA*) = AAY*.

In fact, v w € A*,

AB*) (w) = w(B*),
while
A@Y* (w) = A(R) (w*)
= (0*) (&)
= (W*(B)
= 3(E*) .

13.18 IEMMA We hawve



Then

(fog)*=g* fo*

* = k% *
_ (fXRg) =g fo.

Consequently, if A is Arens regular, then A** is a Banach x-algebra.

13.19 THEOREM Suppose that A is a C*-algebra —~ then A is Arens regular.

PROOF Given X,V € E, define w_ _ by

w_ (T) = <x,Ty> (T € B(E)).

) o T € A*

and v £ € A**, the expression

flw__ o )
XY

is conjugate linear in X, linear in y, and

[Ew__em| s [ [fu_ _ o]
/Y =Yy

< HEL Tixl] 1yl

50 3 a unique operator

such

Qp € B(E)
that

£ (w o ) = <J_c,,§2f§>.

%,y
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The map
T A¥* 5 B(E)
R
~ £f— Qf
is norm preserving (| |$‘2f|| = ||£|]) and vV A € 4, Q(ﬁ) = w(A), i.e., there is a
commutative diagram
y: G——. U]
3 R
B(E) — B(E).
Lastly:
> <%0 L X9 e
=fog(w§,§°m
= f{g(wﬁ,fr o m})
=flw_  _o°om
X,ng
= <§,ang§>.
. <§,Qf o q V>
=f x5 g(w;!d_’ o )

]

a

] IE
Q
A
l-hv
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i

[+]
2

glw _ _
Okx,y

1l

<§,Qfﬂg§>

Fpxg=txgpa

[Note: It is clear that the span of the w_ _ ° 7 is all of A* but more is
XY

true; Every w € A* "is" anw_ _ © 7.]
XY

N.B. We have

[To check the second point, write

XK, ¥o>=fr(w_ _ o w)
f* X,y

= £((w__ o m*

f
n
——
£
L]
2

|
:
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13.20 IEMMA Suppose that A is a C*-algebra -- then A** ig a C*-algebra.

PROOF V £ € Ak*,

[[£% x £ = |2

f* x £

N 0
o9

| 1920 ||

2
= |l9g]]

2
[E]]".

Maintaining the supposition that A is a C*-algebra, note that (A**) = Am

and consider the composite A o Q:

£ A

for > R0 o Aw,

Then v £ € Ax*,

(8 o 9 (£) = AR

M) (w_ _ o )
XY

i
E
1
=

|
Py
E'QI
o
'—h
|
v

I
'—h
e

'
=]
=X
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Therefore

Ae £2=14
Ax®

13.21 1IFMMA A is a »—isomorphism.
PROOF We already know that A is an isametric isamorphism which, moreover,

is s—linear (cf. 13.17), thus one has only to show that

A(BB) = A(R) x A(B) (B,B € A").
But
A(RB) = A(ang) (A =g, B= Qg)
= Mag g)
= f x> g

ﬁ(Qf) bS &(Qg)

AR) x A(BY.

N.B. Therefore A is normal (cf. 12.12).

[Note: Recall that A** is a W*-algebra (cf. 13.4), hence is monotone complete. ]

13.22 EXaMPIE Iet H be a camplex Hilbert space -- then

MOL

4

L, ()

L, (#*

HE

B{H) .
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And the isometric isomorphism B(H) + L (H}** arising therefram is a »-isomorphism,

where L {H)** carries the Arens product.

13.23 IEMMA Iet 7 be a nondegenerate s-representation of A on E — then
there is a unique normal #-] ism ™ of A" onto m(A)" such that ™ o T = T

T
A—0s An

T

m{A}" — T{A)".

PROOF Take for 7" the composite

_ A A
An > A** —_— (H{A)ll)**

inc*

3

(T (A)") ) *

Here

(MA)™), —— (w(A)")*

inc*
{m(A)")** —((m(A}") ) *.

X € n(A)" => ;{ € (m(A)")*=*



15.

P"l o inc*(X) = X.
There remains the claim that 7" ¢ T = 7. So let A € A;
A(m{a)) = A
~ ~ A

T** (A) = A o 7* = r(A)

-1 ., N
' " e inc*(m(A)) = w(A).

[Note: " is necessarily weak* continuous (cf. 12,.15).]

Now specialize and assume further that A < B(H) is a von Neumann algebra.
Let m:A » B(H) be the identity map -~ then 3 a unique central projection P in A"
such that Ker " = PA" and 1" is a *~igomorphism of P'A" onto A {cf. 12.19}.

N.B. VAEA,

™ (n(a)) = 7(A) = A,

s0
™ @R @A) = " EhHrFG)
= lAA
= A.
Therefore
P = BHA

ard 7 is a x-isamorphism of P'A onto A.
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Definition: S{A) is the convex direct sum of convex subsets 81,32 c S(A)

if each w € S(A) admits a unique decamposition

w = kwl+ (1 - J\)wz (ml ESl,wzesz, 0 xs ).
Notation:
S{A) =Sl o 32.
cvx

A norm closed face F c S(A) is said to be a split face if there is a face
F' < S(A) such that S(A) is the convex direct sum of F and F:

S(A =F ® F'.
VX

[Note: ¥ is norm closed and is uniquely determined by F.]

13.24 LEMMA Sn(A) is a split face of S{A).

PROCE let

FPl c SI_)(A“)

be the split face corresponding to Pt per 12,40, thus

FPJ_ = {ne sg(?i"):acpﬁ = 1},

Taking into account the identification
S(A) <—> 8 (A")  (ef. 13.3),
let

F<—>F ,
PJ.

the contention being that

P o= SQ(A).
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Thus let » € S_(A) and consider w o 7" € sn(E"J — then

and
w o T (Pt = w(ly) = 1.
Therefore
SE(A) c F.
As for the other direction, let w € F, sow=o o 7 (GEFL). To verify that
P
weS (A, let {a,:1 € I} ¢ AL, be a bounded increasing net and put A = sup A, --
n 1 SA i€T i
+then
P(a) 4 PR
==
SR 4 BETA)
=
5(%(Ai)) + oma))  (cf. 12.42)
=>
w(Ai) + wla)
=
w € Sr_l(A) .
Therefore

P c SQIA).
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Consequently,

S(A) = S (A © S (AL
1

N.B. The elements of Sn(A}J‘ are said to be singular.

E.g.: A pure state is either normal or singular.

13.25 FREMARK We have

F

SE(A") =F P

&
PT cvx

T F <> S (A
pt o

L
FP <—> S‘J(A) .

13.26 IEMMA Fix Wy € S(A) — then Wy is singular iff there is no nonzero

weak* continuous positive linear functional w on A such that w < g

PROOF Write Wy

=X+ (1-NT (GES (A, € sn(A)l). If wy is not singular,
then X0 is a nonzero weak* continuous positive linear functional on 4 such that

Ao < Woe Suppose, conversely, that there is such an w. Introduce

(o
a
=t
il
&£

- 5, -

by (cf. 13.3).

21
£1
[
£
]
£

Since w > 0 is weak* continuous,

sty = |[Gl] > o,
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hence

ao(p*) > ot >0

Wy Z FP.

Therefore e is not singular.

13.27 EXAMPLE Suppose that H is an infinite dimensional complex Hilbert space.

Let w € S(B(H))}) -- then w is singular iff m|ém(H) = 0,

13.28 REMARK let w € B{H)* —- then w is weak* continuous iff ||w]| =

-

| o[, (H)




§14. FOLIA

Suppose that A is a C*-algebra. Let w be a nondegenerate #-representation of
A on E. Take 7" as in 13.23 (so 1" o v = w) —— then 3 a unique central projection

P{m) in A" such that Ker 7" = P(ﬁ)z" (ef. 12.19). Now put

c(r) = p(m*

and call C{n} the central cover of 7.

N.B. 7" is a s—iscmorphism of C(m) A" onto m(A})" (cf. 12.19).

14,1 1EMMA Iet T and s be nondegenerate #*-representations of A on E, and
E2 — then
—_— — L | I L1]
C(TTl) = C(n‘z} <=> Ker m = Ker ™
[This is trivial:
Ker m = C(n )J'I"
1 1
Rer m = C{m,) A".]
r = C{w, .

14.2 RAPPEI. Suppose that A is a #-algebra. Iet m™ and T, be nondegenerate

*-representations of A on E, and E, - then m and n, are gecmetrically equivalent

2
iff 3 a x-isawrphism

@:Trl(A} "o Trz(A)"
such that ¥ A € A,
<I>(1rl(A)) = My ().




14.3 I1EMMA let ™ and m, be nondegenerate s-representations of A on E, and

E2 —— then Ty and T, are geametrically equivalent iff C(nl) = C(Tr2) .

PROOF Suppose first that Ty and m, are geametrically equivalent and take ¢

as in 14.2 —— then ¢ is normal (cf. 12.12), hence is weak* continuous (cf.

and V A € A,

@(ﬂl(}\)) =, (A}

or still,

da(ﬂi(ﬁ(h))) = WE(E(A)}.
But A = T(A) is dense in A" per the weak* topology, so

e(ni(R)) = n3(A) (A€ A",

Therefore

Ker wi = Ker 115,
i.e.,

C(T‘.‘l) = C(?TZ) .
Conversely,

C(nl) = C(TTZ) => Ker 11']'_ = Ker T'.‘a,

thus the prescription
d(mi(A) = my@) (A€ A"

makes sense.

12.15),

14.4 SCHOLIUM Tet Rep A be the set of all nondegenerate x-~representations

of A (cf. 9.15) and let C(A) be the set of all central projections in A" -- then



Rep A/~ <—> C(A)

{r] < C(m).

E.g.: C{m) = 0 corresponds to m:A > {0].

Given T sTy € REP A, write M < if Ty is geametrically equivalent to a

2 2

sub x~representation of e

14.5 IEMMA We have T, ST, iff c(wl) < c(wz).

E.g.: YVTERepA, ™= T

14.6 REMARK T and T, are disjoint iff C('nl)c('rrz) = 0.

Definition: A folium F is a norm closed convex subset of S(A) which is
"invariant" in the sense that if w € F and if w(B*B) = 0, then wy € F.

[Note: Here

B
o @) = B _ w(EAB)

B w(B*B) @ (B*B)

Given a nondegenerate x-representation w:A -~ B(E), put

ATT = m(A"
and let

Fim) = {w o M € SE(A,”)}.

14.7 IEMMA F(T) is a folium.



[To check invariance, suppose that

(w o M (B*B) = 0

and then write

w(m(B*AB) ) - wlr(BY*r{Ayw(B))
w{m(B*B})} w{m (B} *w(B))
= UJTI_(B) (W(A} )

= (ww(B) o ) (A).

But w

m(B) € SE(A’IT) (see the discussion prefacing 12.43).1]

14.8 ILEMMA Y T € Rep A,

Ker 7 = P Ker w o ™.
weSE(AW)

[The normal states separate the points of AT[.]

14.9 THEOREM ILet 7, and T, be nondegererate x-representations of A in E

1 1

and E, -- then 7, and 7, are geametrically equivalent iff F(nl) = F(Trz) .
PROOF Suppose first that m and T, are geametrically equivalent and take ¢ per

14.2. Since ® and ¢ 1 are weak* continwous, the arrow

SplAy ) > Sy(AL)

2 1

> w, ¢

Wy = Wy

is bijective, thus F(Trl) = F(Tl‘z) . Turming to the converse,



F(‘lTl) = F('rrz) => Ker n, = Ker 7 {cf. 14.8),

1 2

from which a *-isomorphism

¢:ﬂ1(A) + ﬁz(A)

dJ(‘!Tl(A}) = Trz(A) (A e A.

Next, ¥ W, S bn(ATr ),

}
&

Wy o My € F(‘nz) = F('FTl)

Wy o My = g © Ty (3 ©; € SE(Aﬂl))

(m2 o ¢} (ﬂl(A)) = “’2(“2 (a)) = wl(Trl(A)).

Therefore Wy © o {= ml) is weak* continuous. But every weak* continuous linear

functional on 'rrz(A} is a linear cambination of (restrictions) of elements of

SH(ATr ). Accordingly, from the very definition of the weak* topology as an initial
- 2

topology, ¢ (and its inverse) must be weak* continuous, so 3 a weak* continuous

»—1somorphism @:Aﬁl > Aﬁz such that ¢|A = ¢. Now quote 14.2 to conclude that ™

and T, are gecmetrically equivalent,
The following generality was tacitly used above.

14.10 IEMMA Let H and K be complex Hilbert spaces. Suppose that A < B(H)

is a C*—gubalgebra and ¢:A - B(K} is a linear map. Assume: ¢ is weak* continuous —



then ¢ extends uniquely to a weak* continuous linear map ¢:A" -~ B(K). Moreover, if
¢ is a x»-homomorphism (hence ¢(A) is a C*-subalgebra of B(K)}, then ¢ is a x-homo-
morphism and $(A") = $(A)".

[Note: In particular, every weak* continuous linear functional w:A -+ C

extends uniquely to a weak®* continucus linear functional w: A" > C.1

14,11 IEMMA We have m s T, iff F(nl) c F(wz) .

E.g.: VW ERep A, F(m) < F(M (= S(A)).

14.12 REMARK w, and T, are disjoint iff F('ﬂ'l) n F(Trz) = f.

1

Glven w € S(A), let
Flw) = F(ry.
Then
w € Flw).

Proof: VY A € A,

1]
UJ(A) - <xw;Tr (A) xw>f.0.

On the other hand, the orthogonal projection Pw of EX onto gxw is a density operator

and the assignment
A~ tr(PwTrw(A)) = w(a)

is an element of F(mY).

N.B. F{w) is the smallest folium containing w.



14,13 IEMMA If F is a folium in S{A), then 3 a 7 € Rep A, determined up
o geometric equivalence, such that F(m) = F.

[One has only to take for m the direct sum of the ™ (we F.]

The folia in S{A) are thus in a one-to-one correspondence with the geametric
equivalence classes in Rep A.

[Note: Conventionally, the empty foliim corresponds to nwid + {0}.]



§15, C*-CATEGORIES

Given a category C, denote by Ob C its class of cbjects and by Mor C its class
of morphisms. If X,Y € Ob C is an ordered pair of objects, then Mor(X,Y) is the set
of morphisms (or arrows) fram X to Y. An element £ € Mor (X,Y) is said to have

damain X and codomain Y., One writes £:X > Y or X £y
We shall now impose a series of conditions which in total lead to the notion of
C*-category.
1. v X,Y € 0b C, Mor(X,Y) is a camplex vector space and composition
Mor (X,Y) x Mor(Y,2) - Mor(X,Z),
denoted by (f,9) ~ g o £, is bilinear.

2. ¥ XX € 0bC, Mr(X,Y) is a Banach space and

f € Mor (X,Y)

v e lg e €] = flal] [1£}]-

g € Mor(Y,2)
3. 3 an involutive, identity on cbjects, cofunctor

®#:C ~»

12

Spelled out (in superscript notation):

vX€EObC, X*=X

v X,Y € 0b C, *:Mor(X,Y) = Mor(Y,X)

subject to
(af + by)* = af* + bg* (a,b € O).



In addition,

frx = f

(g o £)* = f* o g*.

4. VXY € 0bCsf € Mr(XY),

2
HEN" = [[£* o £]]
and
Summing up: C is said to be a C*-category if conditions 1,2,3,4 are satisfied.
N.B. v X € 0b C, Mor(X,X} is a unital C*-algebra.
[Note: Every unital C*-algebra A can be viewed as a C*-cateogory with one
object.]

15.1 EXAMPIE Take C = HILB (cf. 4.28) — then C is a C*-category.

15.2 EXAMPIE Iet A be a C*-algebra and take € = H*MOD, (cf. 4.27) —- then C

is a C*—category (use 4.26).

15.3 EXaMPIE ILet A be a unital C*-algebra —— then by End A we shall understand

the C*-category whose cobjects are the unital x-hamomorphisms ¢:4 ~ A and whose arrows

¢ » ¥ are the intertwiners, i.e.,

Mor(¢,¥) = {T € A:T¢(a) = Y(A)T v A € A}.
Here, the composition of arraws, when defined, is given by the product in A and
lA € Mor(?,%) is 1¢. As for

+:End A >~ End A,



take it to be the identity on objects and then define

*:Mor(9,9) - Mor (¥, ®)

by sending T to T*.

15.4 EXAMPIE Given a C*=-algebra A, there is a C*-category whose objects

are the elements m of Rep A (cf. 9.15) and whose morphisms w are the topo-

17 T2
logical intertwining operators, i.e.,
Mor (7 ,m,) = {T ¢ B(E),E,}:Tm (A} = m,(RA)T V A € A}.
[Note: .MOI‘(TTl,TTZ) is a nonempty closed subspace of B(Elez) which, moreover,

is trivial iff Ty and T, are disjoint. ]

15.5 EXAMPLE Iet A be a unital C*-algebra —-- then by Mat A we shall understand
the category whose cbijects are the natural numbers and whose morphisms n + m are the

n=by-m matrices with entries in A (cf. 4.41). Here, conposition of
T A € Mor(n,m)
B & Mor (m,p)
is the prescription
B Q A. = ABf
where AB is the usual multiplication of matrices, and idn is the unit diagonal
n-by-n matrix, i.e., i = diag 1. As for

x:Mat A > Mat A,
take it to be the identity on objects and then define

*x:Mor{n,m) - Mor{(m,n)



by sending [Aij] to [A;.‘i].

15.6 REMARK The technical regquirement

f* o £

is not an automatic consequence of the other
category with two objects X and ¥, where

Mor{X,X) =

Mor{X,Y} =

and camposition is maltiplication of complex
jz| and define » by
X* = X, Y*

and

N

that
£ Mor{X,X) +

conditions. To see this, consider the

Mor (Y,Y) =

|
17

Mor(Y,X) =

l
0

nurbers. Take the norm of z € € to be

if z € Mor(¥X,X} or Mor(Y,Y)

- z if z € Mor(X,¥) or Mor(Y,X).

Then ¥ z € Mar(X,Y),

z*¥ 0 2 = (= 2){2) = - |z|2 Em(x,x}+.

Let C and D be C*-categories -- then a functor F:C -~ D is said to be a

C*~functor if v X,¥ € Cb C,

F:Mor (X,Y) - Mor (FX,FY)

is linear and v f € Mor{X,Y),



F(f*) = (FL)*.

N.B. Vv X € 0bC, the map

Mor (X,X) - Mor (FX,FX)
ig a unital x~hanomorphism.
15.7 IEMMA Suppose that F:C -~ D is a C*~functor —— then v £ € Mor(X,Y),

lEEl] < VTIE]]-

PROOF By hypothesis, 3 A € Mor(X,X) such that

£f* o £ = p%* o A,
But
| |F(a* o AY|] < ||a* o A]| (cf. 1.7).
Therefore
| |F(E* o £}|| < ||£* o £]|]
=>
|| (FEY* o FE|| < ||£* o £]]|
=>
leg] |2 < | €] ]2

Accordingly, if F:C + D is a C*-functor, then the linear maps

Mor {X,¥) - Mor{FX,FY)

are continuous.

15.8 IEMMA Suppose that F:C + D is a C*-functor. Assume: F is faithful --

then v £ € Mor(X,Y),



HPE] = | 1f

PROOF V X € Ob C, the map

Mor (X,X) -+ Mor (FX,FX)

is injective (F being faithful), hence v A € Mor(X,X),

[|[F(a* o A)[| = ||A* o A]| (cE. 1.8).

Now repeat the arqument of 15.7.

Iet C be a C*~category — then a representation of C is a C*-functor

m:C - HILB.

15.9 THEOREM Fix X € Ob C and let w € S(Mor(X,X)) -- then there is a rep-
resentation ww:g + HILB and an element xw £ *rrwx of norm 1 such that
wl{f) = <x¢ Trw(f)x >
w’ W

for all £ € Mor(X,X).

{This is a straightforward extension of the standard GNS construction.]

15.10 THEOREM Suppose that C is small -- then C admits a faithful repre-
sentation m:C - HILB.
PROOF Fix X € Ob C and let gx be the full subcategory of C consisting of those

Y € Ob C such that Mor (X,Y) = {0}. Given w € $(Mor(X,X)), choose w”’:cx - HILB

per 15.9 and set


http:faithf.ul

where ® is taken over S{Mor(X,%¥)). Claim: wx is faithful., For let g € Mor(Y,Z)
w

and choose £ € Mor({X,Y):

|£]| = 1 == then 3 A € Mor(X,X) such that

{gof)* o {(gof) =A% oA,

thus
[1al]? = g » £]12.
But 3 w € S{Mor{X,X)):
w@* o &) = ||a]|%  (cE. 7.25),
S0
wl(g o )% o (go£) =||go£]]%
from which
IEXCHIIENIEHE
Therefore ‘JTX is faithful. Now put
T= @ '!TX.
XeobC

Then m:C + HIIB is faithful.

15.11 RAPPEL let C, D be categories and let

1
(Jw

-
.

¥
G

15
1w

be functors -- then a natural transformation Z from F to G is a function that assigns

toeachXEdaganelamtEXENbr(FX,GX) such that v £ € Mor(X,Y) the square




[1]

X
FX — GX
Ff l l GE
FY - GXY
:Y
comnutes.
Let C, D be C*—categories and let
T FiC oD
_ Gi¢ D

I

be C*~functors. Given a natural transformation ¥ € Nat(F,G), put

2l = swp |IZ,]]
X€0bC

and call = bounded if

[EL] < «.

15.12 REMARK A natural transformation Z:F - G need not be bounded. Thus let
C = D be the C*-category whose objects are the positive integers 1,2,... with
Mor (n,m} = C, composition being induced by multiplication in € with involution

canplex conjugation. Take F = idc and define E:idC -+ idC by specifying that

En:n+nsendsztonz-thenEisnotbounded.

15.13 LEMMA Iet C, D be C*-categories -— then the category [C,D]*whose objects

are the C*-functors F:C -+ D and whose morphisms are the bounded natural transformations

[1}

:F > G is a C*-category.



[To define
*:Ig;]:_)]* > [gft_)]*l
take it to be the identity on objects and given 5:F + G, specify Z*:G -+ F in the

obwious way, viz.

Z, € Mor (FX,GX) => % € Mor(GX,FX).

X X
Then v £ € Mor(X,Y), the square
ok
X
GX > FX
Gfl l}?f
GY > FY
ik
4

comutes. Indeed,

o Sk = *% =k
Ff F(f**} o e

X
= F(£%)* o X
= (Eg o F(f¥))*

= (G(f*) o Z,)*

o G(f*)*

W

1]

= % o G(f**)

= E§ o Gf.

Moreover, =* € Mor(G,F}, i.e., is bounded:

- 2 - -
12212 = |15, » 22|



10.

SRIENIRIEY

IR IR EHIEES

[Note: Strictly speaking, [C,D]* is a metacategory, not a category.]

E.g.: The objects of [C,HIIB]* are the representaticns of C.



§16. THE CATEGORY OF CATEGORIES

Iet i:A + Y, p:X > B be morphisms in a category C -~ then i is said to have

the left lifting property with respect to p (LIP w.r.t. p) and p is said to have

the right lifting property with respect to i (RIP w.r.t. i) if for all w:A » X,

vwY>Bsuchthat peu=voei, thereisaw:Y>Xsuchthat woe i1 =1u, pow=uwv,

Schematically: The commitative diagram

u
A —>X
i e
Y ——> B
v

admits a filler w:¥ > X,

Consider a category C equipped with three camposition closed classes of mor-

phisms termed weak equivalences, cofibrations, and fibrations, each containing the

isamorphisms of C. Agreeing to call a morphism which is both a weak equivalence

and a cofibration (fibration) an acyclic cofibration (acyclic fibration), € is said

to be a model category provided that the following axioms are satisfied.

{MC-1) C is finitely complete and finitely cocamplete.
(MC-2) Given composable morphisms f£,g, if any two of £,g, g ¢ £ are weak
equivalences, so is the third.
(MC-3) Every retract of a weak equivalence, cofibration, or fibration is
again a weak equivalence, cofibration, or fibration.
[Note: To say that £:X > Y is a retract of g:W »> Z means that there exist
morphisms i:X » W, rsW-+ X, ;Y > Z, 8:2 +Ywithgoi=7jef, for=s-e9g,

reis= idx, s 0 j= idY, thus there is a commtative diagram



i r
X—> W — X

d o
Y —> 7 — ¥,
J S
Fact: A retract of an isaworphism is an isamorphism.)
(MC-4) Every cofibraticon has the LIP w.r.t. every acyclic fibration and
every fibration has the RIP w.r.t. every acyclic cofibration.
(MC~5) Every morphism can be written as the camposite of a cofibration and
an acyclic fibration and the composite of an acyclic cofibration and a fibration.
N.B. For a systematic introduction to model category theory (with numerous

examples), see Chapter 12 of my book TOPICS IN TOPOLOGY AND HOMOTOPY THECRY.
16.1 REMARK A model category C has an initial object (denoted $¥) and a final
object (denoted #). BAn object X in C is said to be cofibrant if @ + X is a cofibra-

tion and fibrant if ¥ -+ % is a fibration,

16.2 NOTATION CAT is the category whose objects are the small categories and

whose morphisms are the functors.

Definition: Given small categories C, D, a functor F:C + D is a cofibration
if the map

ObC~0ObD
X + FX
is injective,

Definition: Given small categories C, D, a functor F:C - D is a fibration



if ¥V X € Ob C and Vv isomorphism y:FX - ¥ in D, 3 an isamorphism ¢:X + X' in C
such that F¢ = ¢.

16.3 THEOREM CAT is a model category if weak equivalence = equivalence,

the cofibrations and fibrations being as above.

The first step is the verification of MC-1 which, being of independent interest,
will be isolated.

16.4 THEOREM CAT is finitely camplete and finitely cocamplete.

16.5 RAPPEL The following conditions on a category C are equivalent.

(1) ¢ is finitely camplete.
(2) C has finite products and equalizers.
(3) C has finite products and pullbacks.

(4) € has a final cbject and pullbacks.

Iet 1 be the category with one cbject and one arrow —— then 1 is a final object

in CAT.

Finite Products Given objects C, D in CAT, their (binary) product is the

category C x D defined by
Ob(C x D) = 0b C x Ob D,

Mor ({X,Y),(X',Y"))

il

Mor (X,X'} x Mor{Y,¥")

idy vy = idyg x idy,



with composition
{£',9') o (£,9) = (£' » £,g' o g}.
[Note: If a category has a final object and (binary) products, then it has
finite products.]
Equalizers Given objects C, D in CAT and morphisms ¥, G:C + D in CAT, their

equalizer eq(F,G) is the inclusion inc of the subcategory of C on which F, G

coincide:
inc F 5
eq(F,G) > C . D
G
where
Ob eq(F,G} = {X € Gb C:FX = GX}
Mor eg(F,G) = {f € Mor C:Ff = Gf}.
T S
Pullbacks Suppose that A ~ C + B is a 2-gink in . Form the product
pr pr
a<—2 axp —>=»
and note that
T e prA
>
A x B c.
>
S ° pry
Iet

(F=
*
I
I
a
o
o
H
e
t
-]
e
@’



Pry © inc

ped

X
=

v
1o

pry ° inc l ‘ S
3 > C
T
is a pullback square. I.e.: The 2-source
pr, o inc pry ° inc
A<—— A% B ——>B

T
is a pullback of the 2-sink A + C

+ Wn

E.

[Note: In SET, there is a pullback sguare

ObéXObQObE > 0b B
l |s
ob A > Ob C.]

T

16.6 RAPPEL The following conditions on a category C are equivalent.

(1) C is finitely cocamplete.
(2} C has finite coproducts and coequalizers.
(3} C has finite coproducts and pushouts.

(4} € has an initial object and pushouts.

Let 0 be the category with no cbjects and no arrows -— then 0 is an initial

object in CAT.



Finite Coproducts Given objects C, D in CAT, their (binary} coproduct is the

category € || D defined by

Ob(C |[[D)=0ObC || ObD

Mor(C || B} = Mor C || Mor D,

the coproducts on the RHS being taken in SET with the obvious camposition of mor-
phisams.
[Note: If a category has an initial object and (binary} coproducts, then it

has finite coproducts.]

Coequalizers Given cbjects C, D in CAT and morphisms F, G:C = D in CAT, con-
sider the smallest equivalence relation on Gb D w.r.t. which FX and GX are equivalent

for all ¥ € Ob C and let SF c be the set of pairs (Ff,Gf), where the domain and co-

r

domain are equivalent. Denote by ~ the principal congruence on D generated by this

pro
data and form the quotient D/x (cf.T ) == then D —> D/~ is a coequalizer of F,G:
F
: pro
C D > coeq(F,G).
G
T S
Pushouts Suppose that A <« C + B is a 2-source in CAT. Form the coproduct
:L'ﬂA JIIB
A——>3 || B<—B

and note that

" Theory Appl. Categ. 5 (1999), 266-280.



1)
v

i

| I

I_

1

in.BOS
Iet
AJELB=coeq(mA°T,mB°S).
Then the commutative diagram
]
C > B
T lmeinB
A > 2 || B
pro o in, " °C
is a pushout square. I.e.: The Z-sink
prOOinA pmoinB
p— T
C

T 8
is a pushout of the 2-source A « C - B.

[Note: In SET, there is a pushout square

S

S
102
&
o

g

H
I

1



There remains the verification of MC-2, MC-3, MC-4, and MC-5.

16.7 LEMMA If F:C + D and G:D ~ E are equivalences, then G < F:C + E is an

equivalence.

16.8 LEMMA Suppose that F:C +~ D and G:D » E are functors. Assume: F and

G o F are equivalences — then G is an equivalence.

PROOF  Choose F':Q+C_:suchthat

FOF':idD

' s
F OFHJ.dC.

Choose H:E -~ C such that

GoF oH

il
-
of

BHEeGeF id..

LetG'=F°H——thenG°G'zidEa.rxi

|
|
o

G' o G=FoHoG

H°G°idD

Ho GoF v F'

L4
=
[

idg e !

1
i |
o

16.9 LEMMA Suppose that FiC ~ D and G:D ~ E are functors. Assume: G and



G ° F are equivalences — then F is an equivalence.

Therefore MC-2 is satisfied.

16.10 IEMMA A retract of an equivalence is an equivalence.

PROOF Consider a commitative diagram

i r
C —>K —>¢
Pl oa] e
D —>L —> D,
j -]

whereroi=idc,soj=idD,andhisanequivalence—uthmtheclaj.misthat
F is an equivalence. Thus fix A':L » K such that

Ao Al

it

L

At o A ::idK.

Then
refp'ojoeF=rocjA"oecpoeidi
:roid.Koi
=roi=idc
and

FOrOA'oj&SQAOA'Qj

:sc’idLOj
=saj=idD.
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16.11 IFMMA A retract of a cofibration is a cofibration.

PROOF Consider a commutative diagram

i r
C —>K —>¢C
JENT Y
D —>L —>D,

i 5
where r o i = idc, s 0= id.D, and A is injective on objects -- then the claim is

that F is injective on objects. So suppose that

X = FY (X;YEOb(_:).

Then
JFX = JFY => AiX = ALY
=> i¥ = iy
=» ri¥ = ri¥ => X = ¥.
o
N.B. Let I denote the category with objects a,b and arrows ida' idb, a-rb,
B8

b+a, where g o B = idb' B oa= ida —-- then F:C »D is a fibration iff every

commutative diagram

admits a filler p:I » C, i.e.,

pom

|
=

Fop

i
=
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16.12 IEMMA A retract of a fibration is a fibration.

PROOF Consider a comwutative diagram

u i r

{3 ol
v
10
v
1=
v
10

A4

=
.é...,.,_
Lo |
13—
=
It
|
10—

=
v

whererc'i:idc,s°j=idD,andhisafibration——thenﬂ A:l -+ K such that

so 1f p = r o A:I >~ C, we have

©
o
=
il

rojixom=yreioeny

Il
&
Q
©
It

=

Forojl=5o0foolk

e
o
k=
|l
Il
(4]
a

.
a
<
]

a}.]l:
o
<
n
<

L]

Therefore MC-3 is satisfied.

16.13 ILEMMA Every cofibration has the ILIP w.r.t. every acyclic fibration.

PROOF Consider the camutative diagram
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where F is a cofibration and A is an acyclic fibration —— then the claim is that
FWD>Kswhthat We F=1T, A e W=V, Since A is an eqguivalence, it has a
representative image, hence, being in addition a fibration, it is surjective on
objects. Accordingly, define W on obijects by first demanding that WEX = UX

(X € Ob C) (F is injective on objects, thus this makes sense}. Next, given

Y € ObC, chwose A € Ob K such that AA = V¥ and put WY = A, all the while main-
taining the relation WFX = UX (possible, as VFX = AUX). Turning to morphisms,

there is an arrow

Mor(Y,Y') » Mor(Vy,vY').
On the other hand,
Mor (WY, WY") = Mox (AWY, AWY') = Mor(VY,VY').
So the data at hand does indeed give rise to a functor W:D + K with the chosen

object map such that We F=U, A o W= V.

16.14 IFMMA Every fibration has the RLP w.r.t. every acyclic cofibration.

PROOF Consider the commtative diagram

where F is an acyclic cofibration and A is a fibration -- then the claim is that 3
W:D+>Ksuchthat We F=U, A e W= V. The initial step is to construct F':D + C

subject to

- F' » F = id

19}

FoPF'=z

v:F;
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which can be done by the usual procedure, viz. given Y € Cb D, choose an object
F'Y € Ob C and an isamorphism FF'Y + ¥, where if Y = FX, we take F'FX = X (per-
missible, F being injective on objects). As regards the natural iscmorphism

E'F o ! +idD, matters can be arranged so that ¥ X € b C,

E;“x’FF'EX * idpy

is ide. With this preparation, we shall start by defining W on objects, observing

first that v Y € Ob D,

V“:‘_'K.:VFF'Y -+ V¥,

thus, since A is a fibration, 3 an object WY € Ob K and an isamorphism ¢ :UF'Y + WY

with “
Az;Y = V& (WY = vy).

We can further assume that
CFX = J'.dUX {(WFX = UX) .

Passing to morphisms, let g € Mor(Y,Y') and define Wg € Mor (WY, WY') by

-1
Wg = Up? .

Then W:D -~ K is a functor with the desired properties.

Therefore MC-4 is satisfied.
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16.15 LEMMA Every morphism can be written as the composite of a cofibration

and an acyclic fibration.

PROOF Suppose that F:C > D is a morphism in CAT. Iet D' be the category with

ObD'=0CbC ||ObD

and for
X,X'€0bC

Y,Y' € Ob D,
viewed as objects in D', let
Mor (¥,X') = Mor (FX,FX'), Mor(X,Y'} = Mor{FX,Y')

Mor {Y,X') = Mor(Y,FX"), Mor(Y,¥') = Mor (Y,Y').

Define a functor U:C -+ D' by
X=X (X€0bQ

uf

il

Ff (f € Mor(X,X")).

Then U is injective on objects, hence is a cofibration. Define a functor V:D' + D

by

VX=FX (X€O0bQ

and on each of the four possibilities for morphisms, take V to be the identity, thus
V ig fully faithful and surjective on objects, so V is an acyclic fibration. And

fram the definitions, F =V o U,

16.16 IFMMA Every morphism can be written as the comosite of an acyclic
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cofibration and a fibration.

PROOF Suppese that F:C ~ D is a morphism in CAT. Iet C' be the category
whose objects are the triplés (X,E,Y), where X €0b C, Y €E0b D, and E:FX + ¥
is an isamorphism. Put

Mor{(X,E,Y), (X',8',Y")) = Mor(X,X").

Define a functor U:C + C' by
WX = (X,id,FX)
Uf = £ (£:X ~X").
Then it is clear that U is an acyclic cofibration. Define a functor V:C'+ D by

ViX,Z,Y) =Y

VE = E' o Ff o T F

[T

In this connection, note that

VE:V(X,E,Y) > V(X',E', YY),

i.e.,
VE:sY » ¥'.
Meanwhile, E' o Pf o =1 ig the camposition
-1
¥ > FX
l P
E'
FX! > ¥,

(Vo U)(F) = id o Ff o id . = Pf.
- ey
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To verify that V is a fibration, let

Y:V(X,E,¥) + ¥
be an iscmorphism — then we want to produce an iscamorphism
¢: (X,5,Y) ~ (X',5',¥")
such that V¢ = ¢. To this end, take
X'=X% E' =79 o E
and let

¢ = id, € Mor((X,Z,Y), (X, o Z,¥")).

=1

ﬁOidFXO:'

b3
Il
-
o
[1

05_1=1,b°idY=w.

I
=
[+]
11l

Therefore MC-5 is satisfied.

16.17 REMARK In CAT, all objects are both cofibrant and fibrant.

In addition to the categories 0 and 1, let 2 be the category with two cbjects

and cne arrow not the identity, let d2 be the discrete category with two cbjects,

and let p2 be the category with two objects and two parallel arrows -- then the

canonical functors
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are cofibrations, hence every acyclic fibration has the RIP w.r.t. each of them

{cf. MC-4), a property that turns out to be characteristic,

16.18 LEMMA Let F:C ~ D be a morphism in CAT.

(u) F has the REP w.r.t. u iff P is surjective on cobjects,
(v) F has the RIP w.r.t. v iff F is full.

(w) F has the RIP w.r.t. w iff F is faithful,

Consequently, if F:iC * D has the RLP w.r.t. u,v,w, then F is an acyclic
fibration. Proof: F is surjective on objects and fully faithful,
[Wote: By comparison, recall that F:C + D is a fibration iff F has the RLP

w.r.t. m:l » I {which is an acyclic cofibration).]

16.19 IEMMA ILet

F':C* - D'

be ocofibrations. Consider the diagram

FXidC,
¢ xc > Db x¢
id, x ¥ C x D' | D x ¢! idy x P!
C - T exwe O T D
¢ -
v
C x D' D X D'.

FXidD'
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Then F || F' is a cofibration.

[Note: Working in SET, suppose that X ¢ ¥, X' ¢ ¥' — then

XxX'"= (X xY')n (Y xxX"

and the diagram

XIX' > ¥ x X!
A %Y —m s (X x¥Y") U (¥ x XY

is a pushout square, thus trivially the arrow

xY") D (¥xX") »¥yx¥Y

is one-to-one. ]

N.B. If in addition, either F or F' is an eguivalence, then so is F LI_ Fr.

16.20 RAPPEL A category ¢ with finite products is said to be cartesian closed

provided that each of the functors — X Y:C > C has a right adjoint Z » ZY, S0

Mor (X % Y,2) = Mor(X,2Y).

The cbject 2% is called an exponential object. The evaluation morphism ev,
¥

YZII..S

therrorphismzYXY+Z such that for every arrow ¢:X X Y ~ Z there is a unique
Y _ .
arrow A¢:X - 27 such that ¢ = Vy g © {Ap x id,) .
[Note: Each Y € Ob C determines a functor F:C - C defined on objects by

£
FZ=ZYandonmrphismsZ+be

Ff = )‘«(f e evY'z)l'
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Ff:ZY > XY.

On the other hand, each X € Ob C determines a functor G:QOP—»(_;definedonobjects
WY : g
by GY = X* and on morphisms Z 3 Y by

Gg = )\(evY’X o idXY % g,

Gg:XY - XZ.]

Punctor Categories Given small categories C,D, [C,D] is the small category

whose objects are the functors F:C »+ D and whose morphisns are the patural trans-

formations Nat(F,3) from P to G.

16.21 LEMMA CAT is cartesian closed:

D
Mor(C x D,E) = Mor(C,E ),

D
where E = [D,El.

16.22 REMARK The product operation

x 3 CAT x CAT » CAT

equips CAT with the structure of a symmetric monoidal category (here, e = 1).

16.23 LEMMA Let F:C -+ D be a cofibration and let A:K -~ L be a fibration.
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Consider the diagram

D D
K > L~
\ |
c D
K x oL
/E
c c
X > L

Then [ is a fibration.

PROOF One has merely to show that every comwutative diagram of the form

l r (m{x) = a)
X

I~ —

|L—'“:j

IL“IO

D
admits a filler p:I + K, i.e.,

©
a
|
Il
=

cx1 1l px1 > K
cxl

FJ_LT‘I‘J ‘A
EXE >I_..
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Since 7 is an acyclic cofibration, the same holds for F J_|_ m. Therefore A has

the RLP w.r.t. F || n (cf. MC-4), fram which the assertion.

N.B. If in addition, either F or A is an equivalence, then so is T.

16.24 NOTATION GRD is the full subcategory of CAT whose objects are the

groupoids, i.e., the small categories in which every morphism is invertible.

16.25 EREMARK GRD is a model category if the cofibrations, fibrations, and

weak equivalences are defined per CAT.

16.26 RAPPEL Iet iso:CAT > GRD be the functor that sends C to iso C, the
groupoid whose objects are those of C and whose morphisms are the invertible mor-
phisms -~ then iso is a right adjoint for the inclusion 1:GRD - CAT. lLet

:CAT ~ GRD be the functor that sends C towl{g), the fundamental groupoid of C

M
(a.k.a. the localization of C at Mor C} — then T is a left adjoint for the

inclusion 1:GRD - CAT.

16.27 NOTATION SISET is the category of simplicial sets.

16.28 RAPPEL There is a functor

C:SISET ~ CAT

that assigns to each simplicial set X its categorical realization cX and there is

a functor

ner:CAT -~ SISET




§17. THE UNITARY MODEL STRUCTURE

In this § we shall take up the C*-analogs of the purely categorical results
that were cbtained in 816.

17.1 NOTATION C*CAT is the category whose objects are the small C*—categories

armd whose morphiams are the C*-functors.

N.B. 0 is an initial object in C*CAT and 1 is a fimal object in C*CAT.

17.2 THEOREM C*CAT is finitely coamplete and finitely cocarmplete.

[Note: The inclusion

UNC*ALG + C*CAT

preserves finite limits (cbvious) but does not preserve finite colimits (as can

be seen by considering binary coproducts).]

Let C,D be small C*-categories -—~ then their algebraic tensor product C 8 D
is the category defined by

and
Mor ((X,Y), X', ¥Y"}) = Mor(X,X") ﬁc Mor (Y,Y"')

equipped with the involution

(]f 2, (£, & g ))* = ]i: z (£ @ gt).
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Consider the diagram

o
10

K > L
r .
< D
K x gk
L

k4 J,
¢ ¢
K > L

Then I is a fibration.

PROOF One has merely to show that every comutative diagram of the form

b D
1 > K
l JI‘ (F(&) =
C D
I K %L
L

D
aduits a filler p:I + K, i.e.,

=
o
3
i
=

—
[
k>
il
<

But this lifting problem is equivalent to a lifting problem for the diagram

CxI
<

1

e
1 :

o
v
£



2L

Since 7 is an acyclic cofibration, the same holds for F ﬂ 7. Therefore A has

the RLP w.r.t. F || n (cf. MC-4), from which the assertion.

N.B. If in addition, either F or A is an equivalence, then so is T.

16.24 NOTATION GRD is the full subcategory of CAT whose objects are the

groupoids, i.e., the small categories in which every morphism is invertible.

16.25 REMARK GRD is a model category if the cofibrations, fibrations, and

weak equivalences are defined per CAT.

16.26 RAPPEL Iet iso:CAT - GRD be the functor that sends C to iso C, the
groupoid whose objects are those of C and whose morphisms are the invertible mor-
phisms -~ then iso is a right adjoint for the inclusion 1:GRD -~ CAT. ILet

:CAT ~ GRD be the functor that sends C to ﬂl(g), the fundamental groupoid of C

M
(a.k.a. the localization of C at Mor C) -- then my is a left adjoint for the

inclusion 1:GRD —+ CAT.

16.27 NOTATICN SISET is the category of simplicial sets.

16.28 RAPPEL There is a functor
C¢:SISET -+ CAT

that assigns to each simplicial set X its categorical realization cX and there is

a functor

ner ;CAT -+ SISET
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that assigns to each small category C its nerve ner C.

Fact: c¢ is a left adjoint for ner.

Ietﬂ=nloc«—the11
TT:SISET + GRD

is a functor that sends a simplicial set X to its fundamental groupoid Tl'x.

16.29 1EMMA The functor

1 o [[:SISET + CAT

is a left adjoint for the functor

ner o 1 ¢ iso:CAT -+ SISET.

PROOF v X & Vv C, we have

Mor { (1

-]

T x),€) = Mor (1 (T]X),C)

H

Mor(1l e ™ (cX),C)

tt

Mor (TTl (cX) ,iso C)

it

Mor (cX, 1 (igo C))

44

Mor (X,ner i(iso C)).

Take SISET in its canonical model category structure —— then it can be shown
that 1 o || preserves cofibrations and acyclic cofibrations while ner ¢ 1 ¢ iso

preserves fibrations and acyclic fibrations.



§17. THE UNITARY MODEL STRUCTURE

In this § we shall take up the C*-analogs of the purely categorical results

that were obtained in §l6.

17.1 NOTATION C*CAT is the category whose objects are the small C*—categories

arnd whose morphisms are the C*-functors.

N.B. 0 is an initial object in C*CAT amd 1 is a fimal object in C*CAT.

17.2 THEQREM C*CAT is finitely complete and finitely cocomplete.

[Note: The inclusion

UNC*ALG + C*CAT

preserves finite limits (obvious) but does not preserve finite colimits {as can

be seen by considering binary coproducts).]

Let C,D be small C*-categories —- then their algebraic tensor product C ® D

is the category defined by

Mor ((X,¥), (X',¥")) = Mor(X,X') @, Mor(Y,Y")
equipped with the imvolution

(Zz (£ @ g))* =1z (£fagh.
k k




This said, there are small C*-categories

ce, D
C & 3
-‘Im—

which reduce to the usual minimal and maximal tensor products of C*-algebras
{details left to the reader).

N.B. The canonical functors

10

2D —>gﬁ.

g

are faithful.

17.3 LEMMA C*CAT is a symretric monoidal category per

8, *C*CAT x C*CAT - CCAT,

the unit e being the camplex numbers (viewed as a C*-category).

17.4 REMARK The functor — 2 D admits a right adjoint, viz.

E > [Q:E] *,

tt

Mor(C® . D/E) = Mor(C,ID,E]*)

or still,

[c® _ DE* = [C,[D,EI*I*.



In any C*—category, an arrow £:X + ¥ is unitary if £*f = idx and ff* = idY'

Definition: Let C,D be cbjects in C*CAT -~ then a C*~furctor F:C + D is a

unitary equivalerce if 3 a C*-functor G:D -+ C and natural isomorphisms

— u‘
G°F+ld§

V)
FOG*i,dD

such that

vXeOb(C, Uy € Mor (GFX,X} is unitary

¥ YeObd(, vy € Mor (FGY,Y) is unitary.

[Note: An isomorphism C + D is necessarily unitary.]

17.5 LEMMA A functor F:C + D is a unitary equivalence iff it is fully

faithful and v Y e b D, 3 X € (b C and a unitary isomorphism FX —+ Y.

Definition: Given small C*-categories C,D, a functor F:C + D is a cofibration
if the map
ObC+0bD
X +¥FX
is injective on objects.
Definition: Given small C*-~categories C,D, a functor F:C - D is a fibration
if v X € (b € and vV unitary isomorphism ¢:FX -+ Y in D, 3 a unitary iscmorphism

$:X + X' in C such that F$ = .



17.6 THEOREM C*CAT is a model category if weak equivalence = unitary

equivalence, the cofibrations and fibrations being as above.

[The proof is similar to but not identical with that of 16.3.]
let G be a small groupoid, i.e., let G € Cb GRD ~- then by fr G we shall
understand the category whose objects are those of G but
Morfr g (X,Y)

is the free complex vector space generated by MDrG (X,Y}, thus the elements of

l\brfr G X,Y)
are the formal finite linear coambinations
n
i=1 =
with composition law
n m n,m
z D L oduapl) = z Ao, .
(i=l C;94) ° (j=l Jlbj) 1,51 CH j)fbl o IIJJ
17.7 IEMA The prescription
n n -1
(T c.h.)*= T &,0.
i=] 1% iz1 i¥i

generates an involutive, identity on cobjects, cofunctor
x:fr G ~ fr G.

[Note: Vv ¢ € Mor, (X,¥), ¢* = cp_l.]



A representation of fr G is a *-preserving linear functor m:fr G -+ HILB.

[Note: In particular, the elements of 7 ({ G (X,Y)) are unitary operators

fram nX to nY.}

Given £ € Pbrfr a X, v), let

HEH e = sup ey |1,

where the sup is taken over the representations 7 of fr G —- then | |£| Imax < w,

Proof: v m,

n
HmEY [ = 72 e o)
i=1
n n
Ees| o= £ ey <=,
=1 * * i=1 t

It is therefore clear that fr G is a pre~C*-category, hemce its completion is a

*_ i *
C*-category, call it C*__(G}.

17.8 EXAMPLE Take ¢ =I as in §16 and form C;Bx(}_) (= fr I here) -~ then

o
a - b is unitary and for every small C*—category C, the C*-functors C;BX(E) +C

are in a ore-to-ore correspondence with the unitary elements of Mor C.

17.9 LEMMA The association G + C*_ (G} defines a functor

C* _:GRD - C*CAT.
max e | I

PROOF Let G,H be small groupoids and let F:G + H be a functor -~ then F induces



in the evident manner a functor fr F:fr ¢ + fr H (on morphisms

n n
fr F(iil cid)i) = iil cinoi) .

Accordingly, one has only to show that ¥ X,¥Y € Cb G,
fr F:Morfr G (X,Y) » Morfr i {FX,FY)

is continuous. But for any representation w of fr H, m o fr F is a representation

of fr G, so v £ € Mor {(x,Y),

fr G

[[m o £r PYE|| < JHE]|

12 B0 g = 11E]

N.B. Cp . takes equivalences to unitary equivalences.

Let uni:C*CAT + GRD be the functor that sends C to uni C, the groupoid whose

objects are those of C and whose morphisms are the unitary morphisms -- then uni is

a right adjoint for c;;)ax:
Mor (Cx_ (G} ,C) = Mor(G,uni C).

Indeed, to proceed fram the IHS to the RHS send
F:C*_{G) ~C
max - =

to the composition




17.10 LEMMA We have

uni [C*__(@),C1* = [G,uni C].

PROOF The bijection on ocbjects is the gist of the preceding observations.
Suppose mow that F,F‘:C;Ex(g) + £ are C*-functors amd let %:F - F' be a unitary
mtural isoorphism, so

VXeEObCt (G =0bg,

3 a unitary arrow 5.:FX > FX' in Camd V £:X > Y in Mor C*__(G), there is a

commtative diagram

X
FX > F'X
o
FY > FP'Y.
E.Y

It is thus immediate that the data gererates a natural isamorphism Fp -+ F'p.

17.11 EXAMPIE Iet Gq,G. be small groupoids and let C be a small C*-category --
then there is a string of isomorphisms of categories:

4]

G, x Gyuni C]

12

133

G, rmilCh_ (G,),C1%]

3




o~ 1 * *
L [Cmax((-;l) Cnax Cmax () /1™

[Note: Tt follows that

2!

C;'sax((—;l x 92) C;ax{(—;'l) Qma.x C;rrax(gz)‘]

Iet

17.12 1IFEMMA ‘The functor

* *
I :1SISET -~ C*CAT

is a left adjoint for the functor

ner o 1 ¢ wni:C*CAT - SISET.

PROOF ¥ X & V C, we have (cf. 16.29)

Mor(l'[mx(x) ,C) = bbr(Cr’;Ex(HX) ,C)

1

Mor {TIX,uni. C)

Mor (7, (eX) ,uni C)

it

Mor (cX, t{(uni C))

1t

Mor {X,ner 1(uni C)).
Take SISET in its canonical model category structure — then it can be shown

that me preserves cofibrations and acyclic cofibrations while ner ¢ 1 ¢ uni

preserves fibrations and acyclic fibrations.
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