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ABSTRAcr 

This Jxx:)k is addressed to those readers who are already familiar with the 

elements of the theory but wish to go further. vmle sorre aspects, e.g. tensor 

products, are sun:marized without proof, others are dealt with in all detail. 

Numerous examples have been included and I have also app:nded an ext9lSive list 

of referen:es. 
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§1. BASIC FACTS 

ret A be a complex Banach algebra, *:A -+ A an involution -- then the pair 

(A, *) is s:tid tn be a C*-algebra if V A E A, 

.... 
I IA *A II == IIA II'" . 

N.B. It is automatic tJ:at IIA* II IIAII I tlms the involution *:A -+ A is 

continuous. 

1.1 ~ V A E A, 

r the spectral radius. 

1. 2 REMARK If (A I II· Il> is a C*-algebra and if II· II' is a alhnul tipli-

cative nonn s:ttisfying tIE C*-condition , viz., 

(A E A), 

tJ1E!1 I I· I I' == I I· I I· 
[tbte: It is not ass.tmed tJ:at (A, II· II') is complete, i. e. I (A, II· III) is 

nerelya pre-C*-algebra.] 

1. 3 EXAMPLE Given a complex Hilbert s:p3.ce H, denote by B (H) tIE ret of 

l:oundErl linear operatnrs on H -- then B (H) is a C*-algebra. Furtherrrore , any 

*-SJbalgebra A of B (H) which is closed in tIE nonn tOIDlogy is a C*-algebra. E.g.: 

This is tIE case of A == L (H), the nonn closed *-ideal in B (H) consisting of the 
-x> 

compact op:;!ratnrs. 
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1. 4 EXAMPIE Take H ::: c? and identify B (c?) with M (e), the algebra of 
- - n -

n-by-n ma.trices over e. Equip M (e) with t:h:! induced operator nonn and let the 
- n -

involution *:M (e) -+ M (e) be "conjugate transr:ose" -- then with t:h:!re stipulations, n - n -

Mn (~) is a e*-algebra. M:>re generally, if n = (nl , ••• ,np ) is a p-tuple of p:>sitive 

integer s, tl:en 

is a e*-algebra. Here 

or still, 

p 

M (e) n-

p 
= e M (e) 

k=l ~-

II e "KII = ffi3X \:, 
k=l l$k~p 

where ~ is the largest eigenvalue of ~"K' 

[NOte: Every finite d.imensional e*-algebra A is *-isorrorphic to an M (e) 
n -

for some !! and !! is uniquely detennined by A up to a penrutation. If B is another 

finite dinensional e*-algebra with associated q-tuple m = (m., ••• ,m ), tl"l:m. A and 
- .1. q 

B are *-isorrorphic iff p = q and :I a pen:rRltation cr of {I, •.• ,p} such that ~ = ncr (k) 

(k::: 1, •.• ,p).] 

1. 5 EXAMPIE Fix a e*-algebra A and let X be a compact Hausdorff space. Equip 

e(x,A) with p:>intwise operations and define the involution by f*(x) = f(x)* (x E X). 

Put 

II f II = sup II f (x) II. 
xEX 
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Then C(x,A) is a C*-algebra. 

1.6 N'Ol'ATION C*AIG is the cate;pIY whose obja:::ts are the C*-algebras and 

whose :n:oqilisns are the *-hom:m:Jq:hisns. 

[Note: An isom:::>qilisn is a bija:::tive :n:oq:hl.sm.] 

N.B. Let A,B be C*-algebras -- then a linear map 4l:A -+ B is a *-h.c:m:Jtrorfhism 

iff 

1. 7 LEMMA A *-hom:m:Jrfhisn <I>: A -+ B is na:::essaril y norm da:::reasing, L e. , 

V A E A, II <I> (A) I I ~ I IA I I· 

loB LEMMA An injective *-hc:ro:::norfhism 4l:A -+ B is necessarily isanetric, Le., 

V A E A, II ¢ (A) II = I IA I I· 

Supp:>se tbat I c A is a closErl ideal -- then I is a *-ideal. Equip All 

with the quotient norm, thus 

and let 

IIA + I II = inf IIA + I II , 
lEI 

(A + I)* = A* + I. 

Then All is a C*-algebra and the projection 'IT:A -+ All is a *-horrorrorfhism with 

kernel I. 

N.B. If <I>:A -+ B is a *-harrpnprJ?h,ism, then the kernel of <I> is a closErl ideal 
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in A and the image of <P is a C*-subalgebra of B:A/Ker- <P :::: <p(A). 

[Note: The term "C*-subalgebra" means a nonn close:l subalgebra which is 

invariant under- the *-operation.] 

1.9 EXAMPLE If X is a compact Hausdorff space and if I c C(X) is a close:l 

idool, then :3 a unique close:l subset Y c X such that 

I = {f E C(X) :fly = oJ. 

M::>reover-, the C*-algebra C (X) /1 is *-isarorphic to C (Y) via the map inducErl by the 

arrCM of restriction C (X) -+ C (Y) . 

A C*-algebra A is simple if it has no nontrivial close:l idools. .E.g.: ~(H) 

is simple (but B (H) is not simple if H is infinite dimensional) • 

A C*-algebra A is unital if A has a unit 1 A i otherwise, A is nonunital. 

1.10 I...Elf1A If A is unital, then eJ'ery maximal idool in A is closErl. 

A simple unital C*-algebra has no nontrivial idools. On the other hand, a 

non unital simple C*-algEiJra may very well have nontrivial idools (e.g., !!oo(H) if 

H is infinite dimensional) • 

A close:l ideal I in a C*-algebra A is essential if AI = 0 => A = 0 (8:llliv­

alently, IA = 0 => A = 0). In particular: A is essential in itself. 

1.11 ~ A closErl idool I c A is essential iff I n J 7 0 for all nonzero 

close:1 ideals J in A. 
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1.12 EXAMPLE Sup:r;nse that H is a canplex Hilbert sp;l.ce -- then L (H) 
-00 

is an essential ideal in B (H) • 

A unitization of a C*-algebra A is a pair (U,i) , where U is a unital C*-

algebra and. i:A -+ U is an injective *-hcm:xroq::hism such that the image i(A) is an 

essential ideal in U. 

1.13 REMARK If A is unital to be:rin with, then the only unitization of A is 

A itself. Proof: Identify A and. i(A) and. , assuming that U ~ A, fix U E U - A -­

then UIA E A and. U - UIA ~ O. Heanwhile, V A E A, 

+ 1.14 CONSTRUGrION Given a nonunital C*-algebra A, }?Jt A = A (9 g (vector 

space direct sum) - then with the operations 

(A,A) (B,~) = (AB + AB + ~,A~) 

and. 

-(A,A) * = (A* ,A), 

A+ acquires the structure of a unital *-algebra (1 = (0,1». tbreover-, the 
A+ 

prescri ption 

II (A,A) II == sul? I lAX + xxii 
Ilxll~l 

is a C*-norm on A+. Proof: It suffices to observe that 

II (.1\, A) * (A, A) II = II (A*A + ~ + AA* SA) II 

= sul? {\\A*AX + AAx + AA*X + ~AX\\} 
Ilxllsl 
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;::: sup {IIX*A*AX + 'Uc*AX + AX*A*X + );:AX*xll} 
I [XI lsI 

= sup { II (AX + AX) * (AX + AX) II 
IIXllsl 

= sup { I lAX + XX 112} 
IIXllsl 

Denote now by i the arrow A ...,.. A+ that sends A to (A,O) -- then the :pa.ir (A+,i) is 

a unitization of A. IndeErl, i (A) is a closed ideal in A+, thus one only has to 

che::k that it is essential. So suppose that (A,X)i{A) = 0, Le., AB + XB = 0 

V B EA. Claim: A = 0 and X = O. This being obvious if A = 0, assume that A ;t 0: 

V B E A, 

=> 

=> 

=> 

=> 

AB+AB=O 

(~A)B + B = 0 
A 

B(~ A)* + B = 0 

(1 A) (1 A) * + (~ A) * = 0 A A 1\ 

=> 
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Therefore - 1 A is an idmtity for A. But A is nonunital, from which a contra-

diction. 

[Note: The quotient A+ Ii (A) is *-is::m::>r:r;:hic to C «A, A) -+ A) .] 

1.15 EXA.1I@LE Let X be a noncoup3.ct locally canpict Hausdorff spice, C <xJX) 

the algebra of coupleK valued continuous functions on X that vanish at infinity. 

Equip C (X) with the sup nonn and let the involution be canplex conjugation - then 00 

C (X) is a nonuni tal C*-algebra and C (X) + :::: C (X +), X + ( = X U {oo}) the one mint 00 00 ~ 

CaTIp3.ctification of X. 

[Note: Explicata:l, the rele\Tant arrOW' 

is the assignmmt 

(f,A) -+ f + A, 

where 

(f + A) (00) = A.] 

Given C*-algebras A and B, their dirECt sum A ED B is the ordinary *-algebra 

dirECt sum with nonn 

II (A,B) II = nax{ I IA II, liB II }. 
This is a C*-nonn. Proof: 

II (A,B) * (A,B) II = II (A.*A,B*B II 

= max{ IIA*A II I IIB*B II } 
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N.B. A tD B contains A and. B as nonessential ideals and. 

(A tD B)/A :::: B 

{A tD B)/B :::: A. 

In addition, A tD B is unital iff A and. B are unital {in '\Nhich case lAtDB = (lA,lB)). 

1.16 REMARK Take A unital -- then one can fonn A+ exactly as in 1.14 and. 

+ the arrow I;;:A -+ A tD ~ that sE!1ds (A,A) to (A + AlA,A) is a unital *-isarorphism. 

1.17 LEMMA Let A,B be C*-algebras and let <P:A -+ B be a *-hom:m::>rphism -

then <P admits a unique extension to a unital *-'h.aocxrorphism <p+ :A+ -+ B+, viz. 

<P+(A,A) = (<P(A) ,A). 

1.18 NOl'ATION UNC*AIG is the catBJory whose objects are the unital C*-alge­

bras and. whose norphisms are the unital *-ham::rnorphisms. 

[Note: An isarorphism is a bijective norphism.] 

N.B. The assignment 

+ A-+A 

is functorial, L e., defines a functor 
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C*AI.G -+ UNC*AI.G. 

1.19 RAPPEL Let A be a Banach algebra - thm an approximate unit per A 

is a nonn bounded net {ei : i E I} such that 'if A E A, 

lim II eiA - All = 0 
iEI 

lim IIAe.; -All = O. 
iEI .... 

1.20 LEMMA Every C*-algrora A has an appr:oxiluate unit {ei:i E I} such that 

'if i, 

lie. II ::; 1 
~ 

and 'if i ::; j, e. ::; e .. 
~ J 

C*-algEbras having a countable app:oximate unit are said to be a-unital. 

1.21 REMA.~ Every unital C*-algEbra is a-unital. Every sep:rrable C*-algebra 

is a-unital but there are nonsep:rrable nonunital a-unital C*-algEbras. 

[Note: Not all C*-algroras are a-unital.] 

1.22 EXA.~LE Take H sep:rrable and infinite dimffiSional. Fix an ort.."'lonorIlli3.l 

basis {e :n E N} and let P be the orthogonal pr:oja::tion onto Ce.. + .•. + Ce --n - n -.1 -n 

thm the se:}Uence {Pn } is an approximate unit per 1x,(H), hmce 1x,(H) is a-unital. 

[Note: !:oo (H) is sep:rrable (but B (H) is not seprrable).] 
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1. 23 EXA'MPLE Let X be a noncam:r:act locally cam:r:act Hausdorff sIECe - thm 

C (X) is a-unital iff X is a-camp3.ct. 
00 

Let A be a C*-algebra • 

• ASA is the colla:::tion of all selfadjoint elemmts in A, i. e., 

ASA {A E A:A* = A}. 

• A+ is the collection of all p:Jsi ti ve elemmts in A, i. e. , 

or still, 

A+ = {A*A:A E A}. 

1. 24 LEMrv1A The set A+ is a closa:l convex: cone in A with t.~e p:operty that 

A+ n (- A+) = {OJ. 

Given A,B E A
SA

' one writes .A. ?:! B (or B :s; A) iff A - B E A+. 

1. 25 I.£M.1A If A ?:! B ?:! 0, then I I A I I ?:! I I B I ! • 

1. 26 I..a1MA. If.?\. ~ B 2: 0, t.~en V X E A, 

X*AX ~ X*BX ?:! O. 

PRCX:>F Since A - B E A+, :3 C E A:A - B = C*C. Therefore 

X*AX - X*BX = X*(A -B)X 
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= X*C*CX 

= (CX)*CX E A+" 

N" B. If A is unital, then 

If A is nonunital, thEn 

and 

A E A+ => 0 :;;; A:;;; IIA III +. 
A 

So, in either situation, V X E A, 

o :;;; X*A..,{:;;; IIA Ilx*x. 

1 27 . t . ha . . . 1/2 th • RH1AR.K Every p:>S1 J.ve A s a unJ.que p:>sJ.tJ.ve square root A , us 

A+ = <lAI ± A)/2. 

ThEn 

M:>rEDVer, A+ are the unique p)sitive elemmts with these p::operties. 
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N.B. Every A E A is the sum of two selfadjoint elenmts: 

where 

and 

A = Re A + r-r Irn A, 

Re A = A + A* , Do. A = A - A* I 

2 r-r 

I I Re A I I , I I Irn A I I s I IA I I· 

Therefore eJ'ery A E A can be writtm as a linear combination of four :pJsitive 

elenmts. 

SUp:pJse that A is unital -- then an elenent U E A is unitary if U*U = UU* = IA' 

If A E ASA and I IA II s I I then 

A = (U+ + UJ/2. 

Here 

are unitary. Therefore eJ'ery A E A can be written as a line:rr combination of four 

unitary elenmts. 

1. 29 REMARK If IIAII < I - ~, then t.."'lere are unitaries Ul"" 'Un such that 

U + .•. + U 
A = In. 

n 

Conse:;ruently, the conV€!K hull of the set of unitary elenmts includes the oFEfl unit 

ball in A, thus its closure is the close::l unit ball in A. 
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Put 

1.30 LEMMA A C*-algebra A is unital iff Al has an extrema point. 

1. 31 EXAMPLE If A is unital, then 1 A is an extrema point of AI
. 
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§2. THE COMMUTATIVE CASE 

A character of a camutative C*-algEbra A is a nonzero oom::noq::hisn w:A -)- ~ 

of algebras. The set of all characters of A is called the structure sp9.ce of A 

am is deroted by !J. (A) • 

N.B. We have 

!J.(A) = ~ (A = {OJ) 

!J. (A) "/! ~ (A"/! {O}). 

2.1 W,1M..l>,. Let w E MA) - tha:l w is ne::=essrrily rounded am, in fact, 

llw II = 1. t'breovEr, if A is unital, tha:l 

1 = w(lA) 

am if A is nonunital, tha:l 

1 = l:im w(e.). 
iEI 3. 

Given A E A, define 
A 

A:MAl -)- C 

by stip.llating tlat 

'" A(w) = weAl. 

A 

Equip !J.(A) with the initial top:>logy determined by the A, i. e. I equip !J.(A) with 

the relativiserl-we3.k* to};Ology. 

2.2 LEM1A !J. (Al is a locally camf8ct Haus:lorff Sf8ce. Furthernore,!J. (A) 

is camf8ct iff A is unital. 
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2.3 LEMMA Fix a ccmnutative C* algebra A. 

"-

• If A is unital, thal A E C (l\ (A» and. the arrow 

A -+ C (.t, (A» 

A -+A 

is a unital *-isom:::>rp}:risn. 

A 

• If A is norn.mital, thal A E C (l\(A)) and. the arrow 
00 

A -+ C (l\(A)) 
co 

A-+A 

is a *-is::rrorp}:risn. 

N.B. If A = {O}, then l\ (A) = ~ and b"1.ere edsts exactly one ma.p ~ -+ £, 
A 

namely the anp:y function (t' = ~ x C), which we shall take to be O. 

2.4 REMARK It suffices to establis."1. 2.3 in the unital case. Tlrus supp:>se 

that A is nonunital - ... then Each W E l\ (A) extelds to an element w + E l\(A+) via the 

'lillhere w (A, :AJ = It, so l\ fA +) is hamEDlTOrpric to fdA) +, the one roint COInp:l.ctification 
00 

of /::,.(A). But A+ is unital, hence 

=> 
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2.5 LEMMA Fix a locally COInp3.ct Haus:lorff Sp3.ce X • 

• If X is COInp3.ct, thm V x E X, the Dirac me.sure 0 E {). (C (X» and the 
x 

arrow 

is a hane:::m:nqilisn • 

X + /)'(C(X» 

x + 0 x 

• If X is nonca:np3..ct, thm V x E X, the Dirac mea.sure 0 E {). (C (X» and x 00 

the arrow 

is a hcma:xroq::hi su. 

X + {)'(C (X» 
00 

x+o x 

2.6 REMARK It Slffices to establifh 2.5 in the COInp3.ct case. Thus sup:tOse 

that X is nonca:np3.ct -- then x+ is COInp3.ct, hence 

or still, 

or still, 

Therefore 

X :: {). (C (X». 
00 

2.7 RAPPEL Let g and Q be catSJOries --- then a functor F:g + E is an 



4. 

equivalence if thEre ed.sts a functor G:~ -+ S ruch that G 0 F :::: ide and 

FOG ;:; i~, the &yml:x:>l ;:; standing for natural isorrorpusm. 

[Note: The term coe.g,uivalence is userl when F is a cofunctor: V f E }\Dr (X, Y) , 

Ff E }\Dr (FY ,FX) .] 

N.B. A functor F;S -+ Q is an equivalence iff it is full, faithful, and has 

a repr-esEntative image (i.e., for any Y E Ob Dr there edsts an X E Ob e such that ,.... 

FX is is'JIIOrp:ric to Y) • 

2.8 RAPPEL cate::;ories S and ~ are said to be equivalent (co equivalent} pr-o­

viderl there is an equivalEnce (coa:pivalence) F:S -+ Q. The obja:::t is::morpusn types 

of e::ruivalent (coequivalEnt) catS30ries are in a one-to-one corresIDndence. 

Let X and Y be contact Hausdorff sp3ces. SU:ppJse that <P:X -+ Y is a continuous 

function - then <p induces a unital *-h.cm:m:>rpusm 

<p*:e(Y} -+ e(X}, 

viz. <P* (f) = f 0 <p. Therefore the association e that sends X to e (X) is a cofunctor 

from the catS3Qry of contact Hausdorff sp3ces and continuous functions to the cat-

egory of unital corrmutative e*-algebras and unital *-hcm::nDr:r;flisms. 

Let A and B be unital conmutative e*-algebras. Sup{DSe that <1>: A -+ B is a 

unital *-haronor:r;flism - then <1> induces a continuous function 

<1>*: fl (B) -+ fleA), 

viz. <1>* (w) = w 0 <1>. Therefore the association fl that sends A to ileA) is a cofunctor 
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from the cat~ory of unital conmutative e*,...algebras and unital *-hon:ororpus:ns 

to the cat~ry of comp3.ct Haus:1orff sp3.ces and continuous functions. 

2.9 THFDREt·l The cat~ory of CClffip3.ct Hausdorff Sp3.ces and continuous 

functions is coequivalent to the cat~ry of unital conmutative e*-algebras and 

unital *-hOlI'Oll'Orpu s:ns. 

PRCX)F Define 

:::x:X -+ t:. (e (X) ) 

by the rule ~(x) = 0 -- then 3v i.s a homeorrorlirlsm and there is a com:nutati ve x A -

diagram 

x 
~x 

----;.-;. Me (X) 

~ 1 1 ~** 
y ----;:,----+ t:. (e (Y» • 

Define 

"-

by the rule ~A (A) = A -- then ~A is a unital *-isarorpus:n and there is a coomutative 

diagram 

Therefore 

A 

~ i 
'" B 

r e (MA» 

1 ~** 
--;::,-----;.-;. e (t:. (B» • 

::B 

id :::: t:. 0 e 

id :::: e 0 t:.. 
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The situation for noncompact locally compact Hausd.orff spaces and nonuni tal 

carmutative C*-algebras is slightly rrore canplicata:i. One inmediate and obvious 

difficulty is that a continuous 4>:X -+ Y neal not induce a map 4>*:C (Y) -+ C (X). 
00 00 

E. g. : Take X = Y = R and let 

4>(t) 27TH t 
= e 

However, the resolution turns out to be simple enough: I:rrq;lose the restriction that 

4>:X -+ Y be proper. 

[Note: Let 4>:X -+ Y be continuous -- then 4> is proper iff its canonical 

t . ~+ + + (~+() )' t' ex: ens10n 't' :X -+ Y 't' oox = ooY 1S con muous. 

2.10 LEMMA. A proper 4>:X -+ Y induces a *-homamorphism 

4>*:C (y) -+ C (X). 
00 co 

There is also a problem on the algebraic side, namely if A and B are non unital 

carmutative C*-algebras, then a *-hanarorphism <»:A -+ B neal not induce a map 

<»*:[\(B) -+ [\(A), the point being that w 0 <» might very well be zero. To get around 

this, call <» proper if for any approximate unit {ei : i E I} per A, {<» (ei ) : i E I} is 

an approximate unit per B (cf. 1. 20) . 

[Note: A surjective <» is proper. To see this, ch::x>se an approximate unit 

{ei:i E I} per A - then V A E A, 

2.11 LEMMA A proper <»: A -+ B induces a continuous function 
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<1>*:6 (B) -+ 6(A) • 

[v A E A, 

<I>*(w) (A*A) = w(<I>{A)*<I>(A» ~ o. 

Therefore <I>*{w) is a p::>sitive linear filllctional , hence V w E 6(B) I 

II <1>* (w) II = lim <1>* (w) (e.) 
iEI 1 

= lim w(¢(e.» 
iEI 1 

= I lw II ;I! 0.] 

N.B. The ¢* figuring in 2.10 is proper and the <1>* figuring in 2.11 is pro};X:'!r. 

2.12 THEOREM The category of noncanract locally canract Hausdorff spaces 

and pro};X:'!r continuous functions is coequi valent to the catepry of nonillli tal 

ccmnutative C*-algebras and proper *-hcm::xoc>rphisms. 

PROOF Replace the canmutative diagrams in 2.9 by 

x -x ) 6(e (X» 
00 

¢ 1 1 ¢** 

Y ) 6 (C (Y» 
M 00 -y 

and 

A 
=A 

) e (6 (A) ) 
00 

¢ t 1 ¢** 

B e (6(B». 
00 
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§3. CATEGORICAL CONSIVERATIONS 

We shall first review s::me standard terminology. 

3.1 RAPPEL Let g be a cat6:JOry . 

• A rource in C_ is a collection of IIDq:hisms f.:X + X. indexEd by a set 
]. ]. 

I ana. having a ca:mon domain. An n-source is a source for which #: (I) = n. 

• A sink in C is a collection of IIDq:hisms f. :X. + X indexEd by a set I -- - ]. ]. 

ana. having a com:ron codomain. An n-sink is a sink for which #: (I) = n. 

A diagram in a cat810ry g is a functor !J.:! + £, where ! is a small cat81ory, 

the indexing cat81ory. To facilitate the introduction of sources and sinks associ­

ated with !J., we shall write !J.. for the image in Ob C of i E Ob 1. 
]. -

3.2 LIMITS Let!J.: I + C be a diagram - then a source {f.:X + !J..} is said - - ]. ]. 

8 
to be natural if for each 8 E M:>r !, say i + j, !J.8 0 f. ::: f.. A limit of !J. is a 

]. J 

natural rource {t.:L + !J..} with the property that if {f.:X + !J..} is a natural 
]. ]. ]. ]. 

source, then there exists a unique IIDrI;his:n <p:X + L such that f. = L 0 <p for all 
]. ]. 

i E Ob 1. Limits are essentially unique. Notation: L = l~ !J. (or lim M . 

3.3 COLIMITS Let!J.: I + C be a diagram -- then a sink {f.:!J.. + X} is said - - ]. ]. 

8 
to be natural if for each 8 E )\Ibr !, say i + j, = fj 0 !J.8. A colimit of !J. is 
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a natural sink te.:6.. -+ L} with the property that if {f.:6.. -+ x} is a natural sink, 
1 1 1 1 

then there exists a unique rrorphism <p:L -+ X such that f. = <p 0 t. for all i E Ob I. 
11-

Colimits are essentially unique. Notation: L = colirrI 6. (or colim 6.) • 

There are a number of basic constructions that can be viewed as a limit or 

colimit of a suitable diagram. 

3.4 PRODUcrS Let I be a set; let f be the discrete category with Ob ! = 1. 

Given a collection {X.:i E I} of objects in C, define a diagram 6.:1 -+ C by 6.. = X. 
1 - - -- 11 

(i E I) -- then a limit te.:L -+ 6..} of 6. is said to be a, product of the X .• 
1 1 1 

Notation: L = IT X. {or xr if x. = X for all i}, t. = pr., the projection fran 
. 1 1. 1 1 
1 

IT x. to x .. 
. 1 1 
1 

3.5 L'EM'1A C*AI.G has products. 

PRCOF Let {A.:i E I} be a collection of objects in C*AI.G. Consider the set 
1 

A of all functions A fran I to u A. such that ViE I, ~(i) E A. and 
- - iEI 1.. 1.. 

II~II = sup 11~(i) II < 00. 

iEI 

Take the sum, product, and involution pointwise - then ~ is a C*-a.lgebra and 

ViE I, t."1.ere is an arrow pri:~ -+ Ai' viz. 
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We claim that the natural source {pr.: A -+ A.} is the product of the A.. For supp:>se 
1 - 1 1 

that {<p.: A -+ A.} is another natural s::rurce - then Vi, 
1 J. 

thus the fLmction 

<p (A) : I -+ U A . 
iEI 1 

(cf. 1.7), 

that sends i to <Pi (A) belongs to ~. M::>reover, the diagram 

A 

A 

A 

---...,.A. 
1 

obviously carmutes, from which the claim. 

[Note: A is not the cartesian product of the A. if I is infinite.] 
- 1 

E.g.: Take Ai = g V i-then the pr:oduct in this case is simply .too (I) . 

3.6 COPIDDUCTS Let I be a set; let ]; be the discrete category with Qb ! = I. 

Given a colla::::tion {x.:i E I} of objects in C, define a diagram 11:1 -+ C by 
1 - - -

~i = Xi (i E I) - then a colimit {Ii :~i -+ L} of ~ is said to be a copr:oduct of 

the Xi. Notation: 

from X. to lL X .• 
1 . 1 

1 

L = lL X. (or I·X if X. = X for all i), f... = in., t..'1e inja::::tion 
. 1 1 1 1 
1 

. 3. 7 LEMMA C*ALG has coproducts '" 
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PP!X>F Let {Ai;i E I} be a collection of objects in C*ALG -- then their 

coproduct can be reliza:1 as t.."'1e free product C*-algebra *A., i.e., the canpletion 
~ 

of the free *-algebra generatEd by the Ai \v.r.t. the largest C*-nonn whose 

restriction to ech A. is the original nann. 
~ . 

3.8 REMARK Let Q be the cateqOr'l..! with no objects and no arrows - then the 

limit of a diagram having Q for its indexing category is a final object in g and 

the colimit of a diagram having Q for its indexing cateqory is an initial object 

in C. 

[Note: The zero C*-algebra is both a final and initial object in C*ALG.] 

a 
3.9 PULLBACKS Let! be the cateqory 1 • ---+ 

f g 

b 
• '*- .2. Given a 
3 

2-sink X -+ Z + Y in g, define a diagram f::..:! -+ g by 

Then a conmutati ve diagram 

f::.. = X 1 

f::..a = f 

f::.. = Y & 2 

f::.. - Z 3 -

f::..b = g. 

n 
P-+Y 

X-+Z 
f 
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is said to be a p.lllbacksgpare if for any 2-source X r p' .2.' Y with f 0 s' = 

g 0 n' there exists a unique JIDqilism ¢:P f -+ P such that s' = s 0 ¢ and n' = n 0 ¢. 

'lhe 2-source X £ P .2. Y is called a pullback of the 2-sink X ! z 2- Y. Notation: 

P = X Xz Y. Limits of ./J. are pullback squares and conversely. 

3.10 LEMMA C*ALG has pullbacks. 

PROOF Given a 2-sink A ! C ! B, let 

P = {(A,B) E A $ B:~(A) = ~(B)}. 

a b 
3.11 PUSHOIJrS Let! be the category 1. +-- • 

3 

2-source X ! z <.I Y in g, define a diagram 1::.:! -+ £; by 

Then a carmutati ve diagram 

/J. = X 
1 

/J. = y & 2 

/J. - Z 3 -

g 
z-----+Y 

t:.a = f 

Llli = g. 

---+ .2. Given a 

Sf I' 
is said to be a pushOut square if for: any 2 .... sink X -+ p' !! Y with 
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~ , 0 f = n' 0 g there exist..c:; a unique rrorp:ri.sm ¢: P -+ P' such that ~' = ¢ 0 ~ and 

n' = ¢ 0 n. rrhe 2-sink X ~ P ~ Y is callErl a pushout of the 2-source X ! z ~ Y. 

Notation: P = X J1 Y. Colimits of !:J. are pushout squares and conversely. 
Z 

3.12 LEMMA C*AIJ3 has p.1Shouts. 

. ~ ~ 
PROOF G~ven a 2-source A +- C -+ B, let 

P = A *C B, 

the amalgamatErl free product. 

[Note: SpellErl out, P is the quotient of t.1Le free product C*-algebra A * B 

by the closErl ideal generatErl by the set 

{~(C) ,... ~(c) :C E C}.] 

A cate:JOry g is said to be complete if for eac..l1. small cate;rory !, ellery 

diagram !:J.:! -+ g has a limit. 

3.13 CRITERION C is canplete iff C has nroducts and pullbacks. ,... - ~ 

A category g is said to be cocomplete if for each small cate;rory !, every 

diagram !:J.:! -+ g has a colimit. 

3.14 CRITERION g is cocornplete iff g has coproducts and plshouts. 

'What has been. said above can thus be SllllIllB.rizErl as follows. 
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3.15 THEOREM C*AI1'} is both complete and cocomplete. 

Let (I,::;) be an up-directErl p:::>set - then the pair (I,::;) gives rise to a 

small category: 

ob ! = I, Mor(i,j) = 

canposi tion being 

(j,k)o(i,j) = (i,k) 

- (i,j) if i ::; j 

~ othe.rw.i.se 

(i ::; j ::; k). 

id. = (i,i), 
1 

This said, let s: be a category -- then by definition, a filterErl colimit is the 

colimi t of a diagram t.:! + s:. 

3.16 LEMMA C*AI1'} has filterErl colimits. 

[On the basis of 3.15, this is clear. However, it is not difficult to proceErl 

directly. IndeErl, to specify a diagram t.:! + C*AI..G arrounts to specifying a 

collection 

{ (A. ,!P. .) : i, j E I, i ::; j}, 
1 1J 

where the A. are C*-algebras and !P •• is a *-hancm::>rphism fran A. to A. with 
1 1J 1 J 

!Pik = !P'k 0 !P • • for i ::; j ::; k. 
J 1) 

Each !P •• is norm decreasing, so on the algebraic filterErl colimit, the prescription 
1J 

I I·A.I I = inf 11!p·· (A) I I 
'>' 1J J 1 

(A E A.) 
1 

is a C*-serninorm. Dividing out the elenents of serninorm 0 and completing then leads 



to a C*-algebra, written 

lim (A. , Il>, .) , 
-- 1 1J 

8. 

which in fact is a realization of the filtered colimit.] 

[Note: Put 

A = lim(A. ,Il> •• ) • 
-- 1 1J 

Then strictly speaking, the filtere:1 colimit is the natural sink {<p. :A. -+ A}, 
1 1 

where <P. : A. -+ A is the *-h.om::m:>r.....h; sm define:1 h", 1 1 ~~ ~l 

and 

<p. (A) (i) = A/<P. (A) (j) = <P. , (A) 
1· 1 ~ 

<p, (A) (j) = 0 otherwise.] 
1 

(i < j), 

3.17 EXAMPLE Let I = ~ - then a filtere:1 colimit of a sa:;ruence of finite 

dimensional C*-algebras is calle:1 an AF-algebra. E.g.: Take A = ~1 (C) and let 
n n-

Il> +k:M (C) -+ M +k(C) n,n n - n-

be the *-h.arorroqhism obtaine:1 by adding k rows and colUITIllS of zeros -- then 

3.18 LEMMA Let 

lim(M (C),<p +k) 
--r n - n,n 

A = lim(A. ,<P, .) • 
--r 1 1J 

AsSL:J:Ire: Vi, A. is simple - then A is simple. 
1 
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3.19 REMARK let I be a set and let {A.:i E I} be a collection of objects 
1 

in C*AI.G. Fonn the categorical product A as in 3.5 and denote by e A. the closure 
- i 1 

in A of the algebraic direct sum - then A E $ A. iff V E: > 0, 
- - 1 1 

#{i: 11~(i) II ~ d < 00. 

'Ib realize e A. as a filtered col:L-rnit, let F be the set of finite subsets of I 
i 1 

directed by inclusion and for each F E F, put 

A = e A. (= 1T A.). 
'F iEF 1 iEF 1 

If PeG, define 

by setting the additional coordinates equal to zero - then 

[Note: 

lim(A '¢p G) ~ ~ A .• --+ 'F, 1 1 

Take A. = C V i -- then $ C can be identified with Co(I).] 
1 - 1 -

The setting for filtered colimits is an up-directed p:lset I. Dually, the 

setting for cofiltered limits is a down-directed p:lset I. E.g.: If I = ~OP, then 

a diagram f::.:! -+ ~ is essentially a sequence 

of rrorphisms in ~, where 

f 
···-+X 1 nX-+ n+ -+ n 
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3.20 LEMMA C*AIG has cofil tered limits. 

Let g, ~ be categories and let F:g -+ ~ be a ftmctor. 

-F is S3.id to preeerve a limit {l.:L -+ 6.} (colimit {t.:6. -+ L}) of a 
1 1 1 1 

diagram 6:I -+ C if {Ft.:FL -+ F6.} ({Ft.:F6. -+ FL}) is a limit (colimit) of the 
- - 1 111 

diagram F 0 £I,:! -+ ~. 

- F is S3.id to preserve limits (colimits) over an indexing category! if 

F preserves all limits (colimits) of diagrams £I,:! -+ g . 

• F is S3.id to prererve limits (colimits) if F preserves limits (colimits) 

over all .indexing categories I. 

C 
3.21 ADJOINTS Given categories , ftmctors 

an adj?int fS.ir if the ftmctors 

D 

OP 
rvk>r 0 (F x i~) 

rvk>r 0 (id OP x G) 
C 

F:C -+ D 
are said to be 

G:D -+ C 

from cOP x ~ to SET are naturally iSJIIDrphic, Le., if it is possible to assign to 

each ordered piir 
X E Ob g 

Y E Ob D 
a bijective rrap 

3X,y:Mbr(FX,Y) -+ rvk>r(X,GY) 
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which is functorial in X and Y. wten this is SJ, F is a left adjoint for G and 

G is a right adjoint for F. 

Write [!.,g] for the category whore objects are tIE diagrams t.:!. -+ g and whose 

norphisns are the nabJral transfonrations Nat (t.,t.') fram t. to t.'. 

3.22 EXAMPLE let K:g -+ [!.,g] be the diagonal functor, thus V X E Ob g, 

o 
(KX) (i) = X, (KX) (i -+ j) = i~ 

and V f E Mbr(X,Y), 

Kf E Nat(KX,KY) 

is the na bJral transfonration 

(KX) (i) 

(KX) (0) 1 
~(KY) (i) 

1 (KY) (0) 

(KX) (j) ~(KY) (j) 
-j 

defined by the comnuta.tive diagram 

f 
X ---+) Y 

X -.""'-+ Y 

Assurre now that g is l::x:>th complete and cocomplete - then K has a left Cldjoint, viz. 

and a right ad joint, viz. 
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3.23 REMARK If g is roth complete and cocoroplete, 1:ta1 the sarre holds for 

[Note: Limits and colimits in [!,gl are computed "object by object". 1 

3.24 THEOREM left adjoints prererJe colimits and right adjoints prererve 

limits. 

3.25 RAPPEL Let g be a category -- then a m::>rphism f:X -+ Y is said to be 

u 
a m::>nooorphism if for any pair of m::>rphisms A : X such that f 0 u = f 0 v, there 

v 
follows u = v. 

3.26 lEMMA In C*ALG, a *-hcm:m:>rphism ~:A -+ B is a nonooorphism iff it is 

injective. 

PRCX)F An injective *-hcm::Inorphism ~:A -+ B is trivially a m::>nooorphism. As 

for the converse, consider 

i ~ 
Ker ~ --> A --> B 

o ~ 
Ker ~ --> A --> B. 

Then 

~ 0 i = ~ 0 0 => i = 0 => Ker ~ = {oJ. 

3.27 RAPPEL Let g be a category -- then a m::>rphism f:X -+ Y is said to be 

u 
an epi.norphism if for any pair of m::>rphisms Y : B such that u 0 f = v 0 f, there 

v 
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follows u = v. 

3.28 LEMMA In C*AI.G, a *-hcm:::nlorphism <l'>:A -)- B is an epinnrphism 

. ti' t surJec ve. 

it is 

t Archiv d. Math. 20 (1969), 48-53; see alro Inventiones Math. 9 (l970), 

295-307. 
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§4. HILBERT ,",-MODULES 

let A be a complex Banach algebra - the."1 a left BaTlach A-mJdule is a complex 

Bmach space E equipped with a left action (A,x) -+ Ax such that for SJme constant 

K > 0, 

(A E A,x E E). 

[Note: Right Banach A-nodules are defined analogously.] 

N.B. If A is nonunital, fonn A+ as in §l (but with ,,(A,A), I = I 'All + II.. \) --

then E becoJ:'l'eS a left Banach A+ -m:xiule via the pres:rriptiClTl 

[No te: w= have 

(A + A)x = Ax + Ax «A,A) A + A). 

Ix = x (I = I = (0,1».] 
A+ 

4.1 RAPPEL A left approximate unit per A is a nonn bounded net {ei:i E 11 

in A such that e.A -+ A for all A E A. 
]. 

4.2 'lHEOREM Suppose that A has a left approximate unit {e.:i E I} and let 
]. 

E be a left B:m.ach A-nodule -- then the set 

AE = {Ax:A E A,x E E} 

is a closed. linear Slbspace of E. 

Tre assertion is trivial if A is unital SJ take A nonunital and fix M > 0: 

I!ei II ~ M (i E I). 
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4.3 LEMMA let EO be the cloEEd linear span of AE -- then 

EO = {x E E:lim e.x = x}. 
iEI 1 

PRCOF The RHS is certainly contained in the IRS. en the ot.ler hand, AE 

is contained l.."l the RHS as is its linear sfml [AE]. With this in mind, take an 

arbitrary x E EO and given E: > 0, cmose y E [AE]: Ilx - y II < E:. Next, choose 

and write 

Ile.y - y II < E: 
1 

e.x - x = e. (x - y) + (y - x) + (e.y - y) • 
111 

$; (K"4 + 2) E:. 

4.4 RAPPEL let X E A+ and supp:>se that 'Ix! I < 1 -- then (I - X) -1 exists 

and there is a norm convergent exp.:msion 

(I - X) -1 = I + X + -2- + 

let 11 = l/M -- then ViE I, 

I - -~e. 
1 + 11 1 

is invertible, hence the same is true of 

as well. And 
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for s:rre Ai E A. 

tint 

A+ = «1 + 11) I - 11e )-1 n n 

+ + -1 
converges in A to a limit A E A and xn = (.1)) Xo converges in EO to an elemant x. 

Admit 4.5 for the :rrorrent -- then 

IIA~xn - Axil 

= IIA~~ - Axn + Axn - Axil 

+ 
:s; I I (A - A) x II + IIA (x - x) II -n n n 

-+ 0 (n -+ (0) • 

Therefore 

Turning to the proof of 4.5, set AO = 0, A~ = I and ch::x:>re the en inductively 



4. 

subject to 

and 

Since 

to prove that {A~} is convergent, it suffices to prove that {An} is Cauchy. 

First 

But 

~ M, 

and 

II A lin I! :$ (l + 11 )--n-l. 
fJen+1 n - '~n '"' 
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Therefore 

IIA - A II :::; 2M(1 + ) -n-l. 
n+1 n ~ 

So, for m > n, 

:::; IIA -A II + IIA -A II + ••• + IIA -A' I n n+1 n+1 n+2 m-1 m 

-n-1 -1 n~l 
:::; 2M(1 + ~) (1 + (1 +~) + ••• + (1 + ~) ) 

-n-1 :::; 2M(M + 1) (1 +~) + 0 (n + 00), 

which implies that {An} is Cauchy. 

thus 

+ -1 
It rema.ins to deal with xn = (An) xO. For this purp:::>se, note that 

-n-1 :::; (1 + ~) . 

Proceeding as above, 1Ne t1:En conclude that {~} is Cauchy, thereby finishing the 

proof of 4.5. 



6. 

4.6 EXAMPLE let A E A -- then M is a left Banach A-mxlule. Since A E M, 

it follows from 4.2 that :I B E A, C E AA such that A = BC. 

Maintain the ass..nnption that A has a left approxirna te unit {e.: i E I}. 
1. 

4. 7 LEMMA let X be a corrpact subset of EO -- then :I A E A and a continuous 

function f:X -+ EO such that 

Then 

x = Af (x) V x E X. 

PRCXlF Define a left action of A on the Banach space C(X,E
O

) (sup norm) by 

(Af) (x) = Af (x) (x E X) • 

IIAf II = sup II (Af) (x) II 
xEX 

= sup I\Af{x} II 
xEX 

:0; IIAII Ilfll. 

'lllerefore C{X,E
O

} is a left Banach A-m::rlule. And here 

.Accordingly, thanks to 4.2, V fO E C(X,EO) I 3 A E A and f E C{X,EO): 

Conclude by applying this to the particular choice fO (x) = x (x E X) • 



7. 

4.8 EXAMPLE Supp::>re that {xn } is a sequence in EO which converges to O. 

In 4.7, take X = {O,xl,x..., ••• }, and put y. = f (x ) -- then Ay, = x , Ai (0) = 0, 
L. n n n n 

and Yn -+ f (0) • So, letting xn' = y.n - f (0), we have Ax' = x and Xl -+ O. n n n 

4. 9 SCHOLItM Let A, B be complex Banach algebras. Let Q?: A -+ B be a h:Jrro-

rrorphian. AsSJJre: 

1. 3 K > 0: V A E A, II Q? (A) II :s: K IIA II. 
2. {e.:i E I} is a left approximate unit per A. 

1 

3. {Q?(ei):i E I} is a left approximate unit per B. 

Define a left action of A on B by 

AB = Q?(A)B. 

T:ten B is a left Banach A-roc:>d.ule and 

B = AB. 

[In 4.2, take E = B -- then 

But BO = AB.] 

Let A be a C*-algebra. Let E be a right A-roc:>d.ule - then an A-valued 

pre-inner product on E is a function < , >:E x E -+ A such that V x,y,z E E, 

V A E A, V A E £: 

(i) <x,y + z> :: <x,y> + <x,z>j 

(ii) <X,AY> = A<X,Y>i 
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(iii) <x,yA> = <X,y>Ai 

(iv) <x,y>* = <y,x>: 

(v) <x,x> 2: 0 (=> <x,x> E A+) . 

If 

<x,x> = 0 => x = 0, 

then < , > is called an A-valued inner product. 

[Note: <, > is "conjugatel:inear" :in the first variable: <xA,y> = A*<x,y>.] 

A pre-Hilbert A-rrodule is a right A-rrodule E e::JUipped with an A-valued pre-

inner product < , >. 

N.B. Tacitly E is a complex vector space with compatible scalar IIU.1ltipli-

cation: A (xA) = (Ax) A = x (A.A.) • 

4.10 LEMMA Suppose that E is a pre-Hilbert A-m:::>dule -- then V x, Y E E, 

<x,y>*<x,y> $ I I <x,x>I I<y,y>· 

PRCx:>F As9..llIe that II <x,x> II = 1 and let A E A: 

o $ <xA - y,xA - y> 

= A*<x,x>A - <y,x>A - A*<x,y> + <y,y> 

$ II<x,x>IIA*A - <y,x>A - A*<x,y> + <y,y> 

= A*A - <y,x>A - A*<x,y> + <y,y>. 

rbw take A = <x, y> in get I 
I 

o $ <x,y>*<x,y> - <y,x><x,y> - <x,y>*<x,y> + <y,y> 
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or still, 

<y,x><x,y> ~ <y,y> 

or still, 

<x,y>*<x,y> ~ <y,y>. 

Put 

I Ixll = I I <x,x> 111/2 

Then 4.10 implies that II. II is a saninonn on E: 

(x E E) • 

Ilx + yll ::; Ilx II + II yll 

I lAx II ::; I>-I!lxll· 

M:>reover, II. II is a nonn if the pre-inner product is actllally an inner product. 

Definition: E is s:Lid to be a Hilbert A-nodule 

E is mrnplete (hence is a Banach space) • 

the saninonn is a nonn and 

4.11 EXAMPIE Take A = g -- then the Hilbert g-rrodules are the complex 

Hilbert spaces. 

4.12 EXAMPIE let 1! be a hennitian vector bundle over a compact space X. 

Denote by r (1!) thte space of continuous S3ctions of E: -- then r (E:) is a right 

C(X)-rnodule and the rule 

<a,a'>(x) = <a(x) ,a' (x» x 

equips r (E:) with the structure of a Hilbert C (X) -nodule. 
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let 

NE = {x E E: I I x I r = O}. 

Thm NE is a sub A-nodule of E and t.1:"e pre-inner product and serninonn drop to an 

inner product and nann on tre quotient A-m:x1ule E/NE' 

4.13 lEMMA The completion of E/NE is a Hilbert A-m:x1ule. 

A Hilbert A-nodule E is a right Banach A-module. Proof: 

IlxAll = I I <xA,xA> I 11/2 

= IIA*<X,X>AI1 1
/

2 

= Ilxll IIAII· 

4.14 lEMMA let E be a Hilbert A-m:x1ule -- then E = EA. 

PR<X>F Q:1e ha.s only to show that EA is dens: in E (cf. 4.2). But 

<x - xe. ,x - xe.> 
1. 1. 

= <x,x> - e.<x,x> - <x,x>e. + e.<x,x>e. 
1. 1. 1. 1. 

-+ O. 

[Note: If A is unital, thm x = xlA.] 

Here are three examples of Hilbert A-modules which are "internal" to A. 
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4.15 EXAMPLE View A i trelf as a right A-m:Xlule and put 

<A,B> = A*B (A,B E A). 

Than A is a Hilbert A-rrodule. 

4.16 EXAMPLE Given n E ~, let An = A @ ••• @ A. View An as a right 

A-nodule in the obvious way and put 

Then An is a Hilbert A-nodule. 

••• @ A , 
n 

n 
B

1 
@ ••• @ B > = L: A*R • 

n k=l -K".-k 

00 

4.17 EXAMPLE Let H A stand for tl'E subEet of TT A con si sting of tm re ~ 
·k=l 

8.1ch that L: Ak1\: (1\: = ~(k» converges in A. View HA as a right A-nodule in trn 
k=l 

obvious way and p.lt 

Then H A is a Hilbert A-nodule. 

2 
4.18 REMARK let H A stand for the subret of TT A consisting of tho::e ~ 

00 

1<=1 
00 2 

SJ.Ch t.rat L II1\: II < 00 (1\: = ~ (k) -- than 
k=l 

and 
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iff A is finite dirrEnsional. E.g.: 

Let H be a complex Hilbert space, E a Hilbert A-nodule -- then their algebraic 

lbenror product H ~ E carries an A-valued inner product given on elerren.tary tenrors 

by 

<~ ~ x,n ~ y> = <~,n><x,y>. 

Its completion H ! E is therefore a Hilbert A-m::x'lule (cf. 4.13). 

4.19 :EXAMPLE SUPfOse that H is ::eparable and infinite dirrensional -- then 

H ! A and H A are isan:orphic as Hilbert A-nodules. 

4.20 :EXAMPLE Let X be a campact Haus:::1orff space -- then C(X,H) is a Hilbert 

C (X) -nodule and 

H! C(X) = C(X,H). 

[Consider the map 

H ~ C(X) + C(X,H) 

that sands ~ 9 f to the f1IDction x + f (x) ~. It pre::erves C (X) -valued inner products 

and has a den::e range.] 

4.21 crnsTRUcrIrn Suppo::e that E and F are HilJ::Ert A-nodules -- tten E $ F 

is a right A-nodule in the obvious way and the prescription 

< (x,y) ,(x' ,y'» = <x,x'> + <y,y'> 

is an A-valued inner product on E $ F. Since the completeness of E and F implies 
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tha.t of E ED F, it follows that E ED F is a Hilbert A-m:xlule. 

One difference between Hilbert A-m:xlules and Hilbert Epaces lies ill the 

properties of ortlogonal complerrents. Thus let FeE be a closed Slb A-m::xiule 

of the Hilbert A-m:xlule E. Put 

Flo = {x E E:<F,x> = O}. 

Then Flo is alSJ a clos:rl Slb A-m::xiule but ill general, E is not equal to F ED Fl.. 

4.22 EXAMPIE Take A = C[O,l] = E and let F ::::: {g E E:g (0) = O} -- then 

IJat E and F be Hilbert A-m:xlules -- then by Hom
A 

(E,F) we shall understand 

the Slbs=t of B (E,F) wlDs= elements are the T:E -+ F which are A-lillear: 

T (xA) = (Tx) A (x E E, A E A). 

N. B. HomA (E,F) is a clos:rl Slbspace of B (E,F), hence is a Banach Epace. 

4.23 LEMMA V T E HomA (E,F), we have 

2 
<Tx,Tx> ~ liT II <x,x> (x E E) • 

let T E Hom
A 

(E,F) -- then T is said to be adjoilltable if :3 an operator 

T* E HomA (F ,E) such that 

<Tx,y> = <x,T*y> 

for all x E E, Y E F. 
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[Note: T* is mique and T** = T.] 

Write HomA (E,F) for the subret of HOID
A 

(E,F) consisting of tlDre T which are 

adjo.intable -- then Hom
A 

(E,F) is a P.anach space. 

[Note: Too conta:inma1t 

HomA(E,F} c HarnA(E,F) 

is, .in general, proper (cf. .infra).] 

4.24 EXAMPLE Take A = C[O,l] = E and let F = {g E E:g(O) = O} (cf. 4.22). 

Def.ine T:E (& F -+ E (& F by T(f,g) ::::< (g,O) -- tien 

TEHamA (E (& F ,E (& F) but T ¢ Harn
A 

(E (& F ,E (& F) • 

4.25 LEMMA HarnA(E,E} is a mital C*-algebra. 

[Note: Hom
A 

(E,E) is a mital P.anach algebra.] 

<'!'x,x> ;:: O. 

4.27 NOl'ATICN H*M:DA is 1:.l'e category wtore objects are the Hilbert A;rod.ules 

with 

N.B. H*MODA is a *-category .in too sense that it comes equipped with an 

.involutive, identity-on-objects, cofmctDr 

*:H*MODj -+ H*MODj • 
,'\ Tlo 
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4.28 EXAMPLE ret HILB be the category whose objects are the corrplex 

Hilbert Epaces and whose rrorphisns are too bounded linear operators - then 

and 

4.29 LEMMA BarnA (E,F) is a Hilbert HomA(E,E)-module. 

PRCX)F The right action 

BarnA (E,F) x BarnA (E,E) -+ HOItlA (E,F) 

is precomfX) sition and the BarnA (E,E) -valued inner prcx:luct 

is 

<T,S> = T*S. 

[Note: The induced norm an HOItl
A 

(E,F) is tJ::e operator norm. J 

A 

ret E be a Hilbert A-m:xiule. Given x E E, define x:E -+ A by 

and define L :A -+ E by x 

Then 
A 

A 

x(y) = <x,y> 

L (A) = xA. x 

X E BarnA (E,A) 



And 

Therefore 

=> 

Put 

Th:m E is a right A-nodule: 

4. 30 LEMMA The arrow 
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<~(y),A> = «x,y>,A> 

A 

= <X,y>*A 

= <y,x>A 

<y,xA> 

= <y,L (A) >. 
x 

(x) * = L x 

A 1- x E Hom~(E.A) 

1_ Lx E Homl (A,E). 

E = Hom
A 

(E,A) • 

(TA) x = A *Tx. 

E+E 

x+x 

is an is::metric conjugate linear map of right A-itDdules. 

One tJ:en calls E ~lfdua1 if this arrow is surjective, thus 
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4.31 EXAMPIE A is relfdual iff A is unital. 

4.32 EXAMPIE HA is selfdual iff A is finite dimensional. 

4.33 LEMMA Supp:>re tmt E is relfdual -- then V Hilbert A-rrodule F, 

HamA (E,F) = Homl{E,F). 

4.34 REMARK SUppJSE tmt A is a W*-algebra and let E be a selfdual Hilbert 

A-rrodule -- then it can be Ehown tmt tm unital C*-algebra fbml (E,E) is a W*-algebra. 

TlEn. 

and 

Let E and F be Hilbert A-m::xlule s. Gi veIl 

8 (Xl) = y<X,XI>. 
y,x 

yEF 

, define 8 :E -+ F by y,x 

8 (x'A) = y<x,x'A> = y<x,x'>A = 8 (x')A. y,x y,x 

E.g.: Take E = F = A and suPFOse tmt A is unital -- then 
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4.35 LEMMA 8 E Hom*(E F): 
y,x A' 

8* = 8 • y,x x,y 

Write L (E,F) for the clos=d linear SJbspace of HomA* (E,F) sparmed by the 8 • 
-00 y,x 

4.36 EXA.T\1PLE Tte image of tte arrow in 4.30 is L (E,A). In fact, 
-IX> 

I\. 
8 = xA*. A,x 

Accordingly, when E is selfdual, 

~ (E,A) = Horn
A 

(E,A) • 

So, e.g., if A is unital, tl:En 

~(A,A) = HomA(A,A), 

but if A is nonunital, then Hom
A 

(A,A) is in general much larger than ~ (A,A) 

(cf. §5). 

4.37 REMARK If A is unital and if E is a Hilbert A-rrodule, then 

~ (E, A) = Hom
A 

(E, A) • 

Thus let T E HomA(E,A) and put x = T*(lA) -- then 

x(y) = <x,y> 

= Ty. 



and 

Take E = F -- then 

19. 

o 8 =8 =8 x,y u,v x<y,u>,v x,v<u,y> 

T0 =8 x,y Tx,y 

8 T = 8 * x,y x,T y. 

4.38 LEMMA ~ (E,E) is a cloood ideal in Homl (E,E). 

[Note: Therefore L (E,E) is a C*-algebra.] 
-co 

M:>re is true: ~ (E,E) is an esrential ideal in Homl (E,E). 'Ib prove this, 

we shall need a teclnical preliminary. 

4.39 LEMMA V x E E, 

-1 x = Inn x<x,x> «x,x> + £) • 
£+0 

Bearing in mind 1.11, let J c HomA (E ,E) be a clo ood ideal such that 

J n L (E,E) = {OJ. Fix J E J -- then V x E E, J8 = 0 and 
-00 x,x 

Jx = J (lnn x<x,x> «x,x> + £) -1) 
£+0 

= Inn J(x<x,x> «x,x> + £)-1) 
£+0 

= Inn J8 (x) «x,x> + £)-1 
£+0 x,x 



I.e.: J = {OJ. 
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-1 = lim O«x,x> + E) 
E-+O 

= O. 

4.40 EXArJIPLE The C*-algebra L (A,A) is *-is::morphic to A. 'lb see this, 
-00 

define LA:A -+ A by ~B = AB -- th:m 

But 

Tl"Erefore the range of 

is a C*-subalgebra of HomA (A,A). On the otler hand, 

from which it follows that 

[No te: The pa.ir 

0A,B(C) = A<B,C> 

LA = ~(A,A). 

(HomA (A,A) ,L) 

AB*C ::;; L C, 
AB* 

is a 1.IDitization of A. Indeed, tle image LA is L (A,A), which is an ess:mtial 
-co 

ideal in HomA (A,A) .] 

4.41 REMARK Let ~ (A) .be the set of n-by-n matrices with entries from A --
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then M (A) is a *-a1gebra but it is not a priori obvious that M (A) is a C*-algebra 
n n 

(if n > 1). Here is one way to proceed. 
n 

Introduce A per 4.16 -- then the map 

:imp1enents a *-isClITOrphisn 

n n L (A ,A ) + M (A). 
-00 n 

rrherefore Mn (A) becorres a C*-a1gebra via transp:>rt of structure. 

[Note: The involution *:Mn (A) + Mn (A) is 

fA .. ] * = [A~.].] 
1J J1 
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§5. MULTIPLIERS a~d VOUBLE CENTRALIZERS 

Given a C*-algebra A, put 

M(A) = HomA(A,A). 

Then M (A) is a mital C*-algebra, tha multiplier algebra of A. Abbreviate L (A,A) 
....cD 

to L (A), thus L (A) is an eSEErltial ideal in M (A) and there is a *-iSJITDrphian 
....cD ....cD 

L:A -+ L (A) (cf. 4.40) • 
....cD 

(Note: Recall that 

L (A) = M(A) 
....cD 

if A ismital (cf. 4.37).] 

let E be a left Banach A-m:::xlule -- then according to 4.2, the ret 

AE = {Ax:A E A,x E E} 

is a clored linear Slbspace of E, which can be characterized as 

denoted by EO in 4.3. 

{x E E:l:im e.x = x}, 
iEI 1 

N.B. E can, of course, be viewed as a left Banach L (A) -m:::xlule by writing 
-00 

Y = Ax. 

5.1 THEOREM AsS1.lI'£'e: E = AE - than the prescription 

iw welldefined and serves to equip E with tha strucblre of a left Banach M (A) -nodule. 
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PRCX)F Observe first that 

MLA E !:oo (A) , 

s::> th= RHS rrakes a:mse. 'Ib check that matters are welldefined, sup}';X)s:: that 

(MLA )xl = (M lim L A.. )xl 1 iEI e~_~ 

= lim (ML A..) xl 
iEI ei--~ 

= lim (ML ~ )x
l iEI e i ~ 

= lim (MLe ) A.. xl 
iEI i --~ 

= lim (ML )A...x... 
iEI e i -"2 .L. 

And 

11M (Ax) II = II (~) x II 

= I I lim (ML )Ax II 
iEI e i 

= ~im II (MLe)AxII· 
~EI ~ 

But 

II (MLe. )Axll ~ KIIMLe. II IIAxII 
~ ~ 

~ KIIMII 11Le. II \lAx I I 
~ 
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Therefore E is a left Banach M(A) -nodule. 

Given C*-algebras A and B, a *-harrorrorphisn tP:A -+- B is 5:lid to be proper 

if for any awroxima.te unit {e.:i E I} per A, {<p(e.):i E I} is an approxirna.te unit 
1 	 1 

per B. 

5.2 THEOREM SUH?Qse tha.t tP:A -+- B is proper -- then Uere is a unique unital 

*-harrorrorphisn ¢:M{A) -+- M(B) extending 	tPO'.): 

tP 
A B 

L (A) L (B)
-00 	 -00 

1 1 

M(A) ) M(B) • 

PROOF It is a question of applying 5.1. Thus view B as a left Banach 


A-m:xlule per 4.9 -- then B = AB. This said, given M E M(A), define ¢ (M) E M(B) by 


Then 

In fact, V AI E A, 

¢(L ) (tP{A)B) = tP {L LA)B 
A' 	 ex> A' 

= tP {L )B 
ex> AlA 

http:approxirna.te
http:awroxima.te
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= L B 
<P (A'A) 

= L L B 
<P (AI) <P (A) 

= L (<P (A) B) 
<P (A' ) 

= <P (L ) (<P(A)B). 
00 A' 

5.3 NarATICN PRC*AIG is the category whose objects are the C*-algebras 

and wlDse :rcorphisms are the proper *-h.am:::morphisms. 

N.B. 	 The assignment 


A ~ M(A) 


is functorial, i.e., defines a fmctor 

PRC*AIG ~ UNC*AIG. 

SUPfOse that (U,i) is a mitization of A -- then (U,i) is said to be maximal 

if for every embedding j:A ~ V as an essential ideal of a C*-algebra V, there exists 

a *-ho.rronorphism 1;;: V ~ U such that 1;; 0 j = i: 

A A 

V --+ U 
1;; 
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5.4 REMARK s is necessarily injective (j (A) being essential) and, in fact, 

is 	unique. 

[Note: If 

(Ul,il ) 

(U
2 

, i )
2

are maximal unitizations of A, then t.~re exists a *-isanorphism <P: U -+ U suchl 2 

that <P 	 0 i = i 2.]l 

5.5 LEMMA The pair (M(A),L) is a:max:ima.l unitization of A. 

5.6 EXAMPLE Let X be a nonccropact locally ccropact Hausdorff space and let 

BC(X) be the C*-algebra of complex valued bounded continuous functions on X -- then 

Coo (X) sits inside BC (X) as an essential ideal, hence there is a conmutative diagram 

BC(X) 

where, as pointed out above, s is injective. But here s is also surjective, Le., 

is a *-isanorphism. 

Given a Hilbert A-nodule E, denote by <E,E> the linear span of the set 

{<x,y>:x,y E E} -- then the closure <E,E> of <E,E> is an ideal in A. Working with 

an approximate unit fran <E,E>, one finds that E<E,E> is dense in E. 
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Abbreviate 

L (E,E) to L (E).
-00 _00 

Then HornA(E) is a unital C*-algebra containing !:oo (E) as an essential ideal. 

L 

5.7 LEMMA View E as a left Banach L
_00 
(E)~ule -- then 


_00 
(E)E = E. 


PR(X)F Let {ei:i E I} be an approximate unit per !:oo(E) -- then it need only 

be shown that e.x -)- x V x E E (cf. 4.2 and 4.3). And for this, it suffices to prove
1. 

that e.x -+- x V x E E<E,E>. So suppose that 
1. 

x = y<u,v>. 

Then 

e. e -)- e in L (E)
1. y,u y,u _00 

=> 

(e. e ) (v) -)- e (v) in E 
1. y,u y,u 

=> 

e. (0 (v)) -)- e (v) in E 
1. y,u y,u 

=> 

5. 8 THEOREM We have 

M(!:oo (E» ::: Homl (E) • 
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PIroF let 

i:L (E) -+ Han*{E)
_00 A 

be the inclusion -- then the pair 

(Han (E) ,i)
A 

is a unitization of L
_00 

(E), which we claim is maximal. To see this, consider an 

embedding j :!:oo (E) -+ V as an essential ideal of a C*-algebra V. Imitating the 

procedure utilized in 5.1, define l;;: V -+ HanA (E) by 

l;;(v)Tx = {vj{T»x (x E E, T E (E) ) • 

And so forth•... 

5.9 EXAMPLE Take A = S -- then the Hilbert S-m::xlules are the complex Hilbert 

spaces H, thus 

5.10 	 REMARK The relation 

M(A) = HanA (A) 

is 	a definition. On the other hand, 

L (A) :::: A 
-00 

=> 

5.11 EXAMPIE 'r/ n E ~, 

(cf. 4.41) 
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=> 


[Note: 1;/ n E ~, 

5.12 EXAMPLE Suppose that H is separable and infinite dimensional -- then 

(cf. 4.19) 

=> 


:::: L (H) 2. A,
_00 nun 

the symbol 2. standing for the minimal tensor product (cf. §6).
nun 

[Note: L (H) is nuclear I so there is only one C*-no:rm on L (H) 2 A.]
_00 _00 

There is another approach to M(A) based on purely algebraic tenets. 

Assurre for the m::ment that A is just a complex algebra -- then a 

left centralizer 

of A 

right centralizer 
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is a linear ma.p 

such that V A,B E A, 

L:A -+ A 

R:A -+ A 

L(AB) == L(A)B 


R(AB) = AR(B) 


and a double centralizer of A is a pair (L, R), where 

L is a left centralizer 


R is a right centralizer 


such that V A,B E A, 

AL(B) = R(A)B. 

Write De(A) for the set of double centralizers of A -- then De(A) is a complex 

algebra under pointwise linear operations, multiplication being defined by 

Since 

it follows that De(A) is unital. 

Given A E A, define 

L ·A -+ A'A. 

~:A -+ A 

by 

LA (B) = AB 

~ (B) = EA. 
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Then the pair 

and the map 

- A -+ Dt(A) 

is a h:m:::m:>rphism whose kernel is called the annihilator of A: Arm A. 

5.13 LEMMA 	 1A is surjective iff A is unital. 

N.B. Therefore lA is an isom:::>rphism iff A is unital. 

5.14 LEMMA 	 V A,B E A and V (L,R) E Dt(A) , -we have 

LAL(B} = AL(B) = R(A)B = ~(A)B 

~ (B) = R(BA) = BR(A) = ~(A)B 

LLA(B) = L(AS) = L(A)B = ~(A)B 

~R(B) = R(B)A = BL(A) = ~(A)B. 

Oonsequently, 	 lA(A) is an ideal in Dt(A) and 

(L,R) (LA'~) = (~(A) '~(A» 

(LA'~) (L,R) = 	(~(A) '~(A»' 
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Put 

TJ::en 

~A ::: {A E A:AB ::: 0 V B E A} 

~A ::: {A E A:BA ::: 0 V B E A}. 

Now sp=cialize and asSl.lIIE that A is a complex Banach algebra. 

5.15 lEMMA SUpfXJEe that 

let (L,R) E DC (A) -- then L and R are bounded: 

L,R E B(A). 

PRCX)F Let {An} be a sequence which converges to 0 with {L(A )} convergingn

to B (say) -- then veE A, 

CB = C( lim L(A}) 
n-+ oo n 

= lim CL(A) 
n-+ oo n 

= o. 

Therefore 

So, by the closed graph theorem, L is bounded. The argument for R is analogous. 
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5.16 REMARK The existence of a 

right approximate unit per A => A.n!T,A = {O} 

left approxima.te unit per A => ~A = {O}. 

[Note: In particular, 	these conditions are met by a C*-algebra.] 

Maintaining the suppositions of 5.15, place a nonn on PC (A) by stipulating 

that 

II (L, R) II = max{II L II, I I R II }. 
Then PC (A) is a unital Banach algebra and 

is contractive. 

5.17 	 EXAMPLE Let G be a locally compact topological group (Hausdorff is 

1 1assurred) . Take A =L 	 (G) (left Haar measure) -- then V f,g E L (G), 

II f II = sup{ II f*Q> II : II Q> 1\ s; l} 

II g II = sup{ II Q>*g II : II Q> II s; I}. 

Therefore 

Given l.I E M (G), define 

L 
l.I 

R 
l.I 

http:approxima.te
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by 

Then 

R f = f*fl. 
fl 

, (L ,R) E Dt(Ll(G»,
fl fl 

and a classical theorem due to Wendel says that the arrow 

11 -+ (L ,R )
fl fl 

is an isanetric isarorphism. 

Assume henceforth that Ais a C*-algebra. 

5. 18 W1MA Let (L t R) E Dt (A) - ­ then 

IILII = \\RII· 
PROOF Since 

we have 

IIL(B)II= sup IIAL(B) II ~ IIRIIIIBIi 
IIAII~l 

=> 

IlL II IIRII·:0; 
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Ditto: 

[Note: V X E A, 


Ilxll = sup IIXYII = sUI? Ilyxll.]

Ilyll:51 Ilyll:51 

Define an involution 

*:DC(A) -+ DC(A) 

by 

(L,R)* = (R*,L*), 

where T*(A) = T(A*)*. 

5.19 	 THEOREM Under the multiplication, nann, and involution defined above, 

DC(A) 	 is a unital C*-algebra. 

PRCX)F To check that 

2II (L,R) * (L,R) II II (L,R) II , 

note that V A E A of nonn :5 I, 

I I L (A) I 12 = II (L (A» *L (A) I I 

= IIL*(A*)L(A) II 

= IIA*R* (L(A» II 

:5 I I A * I I I IR* (L (A» I I 

:5 I I (R*L) (A) I I 
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::; IIR*LII 

= II (L,R) * (L,R) II 

=> 

= 

$ II (L,R) * (L,R) II 

It is clear that V A E A, 

(LA'~)* = (L ,R ). 
A* A* 

Therefore 

A + DC(A) 

an isonetric *-hononnrphism. 

5.20 LEMMA The ideal l A(A) is essential in DC(A). 
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PROOF If V A E A, 

so 

L{A) :::: 0 :::: R{A) 

=> 

(L,R) :::: (O,O). 

[Note: The quotient 

is called the corona algebra of A.] 

The pair (DC (A) ,1 A) is thus a unitization of A, which -we claim is maxiroa.l. 

To see this, consider an embedding j:A + V as an essential ideal of a C*-algebra 

V -- then the problem is to construct a *-horrorrorphism r;;: V + DC (A) such that 

r;; j = l A:0 

A A 

1 l1A 

V • DC(A). 
r;; 

Definition: 

r;; (v) = (Lv,R ) , v

where 

LV (A) = j-l (vj (A» 

R (A) = j-l(j(A)V). 
v 
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'rhe ccmputation 

L (AB) = j-l(vj(AB»
v 

= j-l(vj(A)j(B» 

= j-l(vj (A» B 

= L (A)B
V 

shows that LV is a left centralizer of A. Analogously, R is a right centralizer 
V 

of A. And 

ALV(B) = Aj-l(vj(B» = j-l(j(A»j-l(vj(B» = j-l(j (A)vj (B» 

Rv(A)B = j-l(j(A)V)B = j-l(j (A)V)j-l(j (B» = j-l(j(A)vj(B». 

'rherefore the pair (L ,R ) is a double centralizer of A. That l: is a *-hancJ:rorphismv v 

is likevrise immediate. Finally, 

But 

=> 

(Lj (A) ,Rj (A» = (LA'~) = 1A(A) • 

I.e. : 

[Note: The construction of l: uses only the fact that j (A) is a closed ideal 

in V.] 
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5.21 THEOREM The C*-algebras M(A) am DC(A) are *-isarorphic. f\breover, 

there is a ccmnutative diagram 

A A 

M(A) ---+-~ DC (A) • 

[This is because maximal illlitizations are illlique up to *-isarorphism.] 

[Note: one can therefore realize the corona algebra of A as the quotient 

M(A)/L(A). ] 

5. 22 REMARK Let E be a Hilbert A-rrodule -- then according to 5. 8, 

M(~ (E» :: HomA(E) , 

so by 5.21, 

This can be explicated, viz. define 

by assigning to T E HomA(E) the pair (~,R.r)' where 

~(tP) = T 0 tP 

(tP E ~ (E» • 

Then 4> is a *-isarorphism. 
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[Note: V x,y, z E E, 

- Toe (z) = Tx<y,z> 	= e (z)
x,y 	 Tx,y 

1 

e 0 T(z} = x<T*y,z> = e (z).] 
x,y x,T*y\ 

I2t A, B be C*-algebras then an extension of Aby B is a C*-algebra E and 

a short exact sequence 
i 'IT 

o -+ A -+ E -+ B -+ O. 

So: 1 is injective, 'IT is 	surjective, and Im 1 = Ker 'IT. 

N.B. 	 There is a ccmnutative diagram 


A A 


E DC (A) 
cr 

but cr need oot be injective (since the closed ideal 1 (A) need not be essential) • 

5.23 EXAMPLE The unitization extension is 

1 'IT 

o -+ A -+ A+ -+ C -+ 0, 

"Where 1 (A) = (A, O) and 'IT (A,:>") = :>... 

'IWo extensions 
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of A by B are said to 1:Je iscm:::>rphic if 3 a *-isarorphism y: El -+ E2 rendering the 

diagram 

'lT
l 

o ~ A B ~O 

o ~ A B -----)-> 0 

ca:nmutative. 

[Note: This notion of "isarorphic" is an equivalence relation and we write 

Ext (A, B) for the corresponding set of equivalence classes.] 

Suppose that 

1 'IT 

o -+ A --+ E --+ B -+ 0 

is an extension of A by B. Postcompose o:E -+ DC{A) with the projection pr:· 

DC (A) -+ C (A) to get a *-hon:rm::>rphism T from Ell (A) :::: B to C(A), the so-called 

Busby invariant of the extension. 

N.B. 	 The diagram 


1 'IT 


o ~ A ---+ E ---+ B ) 0 

1\ 

o ---+ A ---+ PC{A) --+ C{A) --+ 0 
lA 

is comnutative. 

5. 24 LEMMA There is a pullback square 

B 

pr 
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a *-isarorphism 1;;:E -+ DC{A) xC(A~ , am a conmutative diagram 

'lWo extensions 

l 1T 

o ---+ A ---+ E ---..,\» B --+) 0 

II II 


of A by B with respective Busby invariants Tl arrl T2 are isarrorphic iff Tl = T •2

Therefore the Busby invariant determirns the isarorphism class of an extension, 

thus there is an injection 

Ext (A,B) -+ Mor{B,C(A», 

that, in fact, is a bijection. Proof: Let T E Mor(B,C{A» -- then the Busby 

invariant of the extension 

is T itself. 

S. 2S EXAMPLE Take A = Coo (] 0,1 [), B = ~ -- then up to ison:orphism there are 

four extensions of A by B: 

1. E = C ([O,l[)
00 

3. E = C([O,l]) 

4. E = Coo(]O,l[) ~ c. 
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5.26 	 m.f.1A Let T:B -+- C (A) be the Busby invariant of the extension 

1 if 
o -+- A ~ E -__ B -+- o. 

Then T = 0 iff E is *-iSCItDrphic to A (9 B. 

5.27 REMARK If A is unital, then C(A) is trivial and, up to iSCItDrphism, 

there is only one extension of Aby B, viz. 

o -+- A -+- A(9 B -+- B -+- o. 
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§6. TENSOR PROVUCTS 

A nonoidal category is a category C equipped with a functor ~:C x C -+ C 

(the multiplication) and an object e E Ob s: (the unit), together with natural 

iscmorphisrns R, L, and A, where 

~:X ~ e -+ X 

Ix:e ~ X -+ X 

and 

A_ Y Z:X e (Y ~ Z) -+ (X e Y) e Z,
-X, I 

subject to the following assumptions. 

(MC ) The diagraml 

A A 
X e (y e (Z ~ W» -+ (X e Y) e (Z e W) -+ «X e Y) e Z) e w 


id Q A 1 rA Q id 


X ~ «Y e Z) e W) ---------+-) (X e (y e Z» ~ W 

A 


corrmutes. 

A 
X e (e e Y) -+ (X e e) e Y 

id eLl 1Reid 

xey xey 

conmutes. 

[Note: The "coherency" principle then asserts that "all" diagrams built up 

fran instances of R, L, A (or their inverses), and id by repeated application of 9 
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necessarily ccmnute. In particular, the diagrams 

A A 
e ~ (X ~ Y) -+ (e ~ X) ~ Y X ~ (Y ~ e) -+ (X G Y) G e 

lL ~ id id ~ Rl 
X~Y---XGY 	 X~Y--- X~Y 

carmute and L = R : e G e -+ e.]e e 

N.B. Technically, the categories 

C x (C x C) 

(C x C) x C 

are not the sane so it doesn't quite make sense to say that the functors 

(X,(Y,Z» -+ X ~ (y G Z) 

• C x (C x C) -+ C 

(f, (g,h» -+ f G (g ~ h) 

«X,Y),Z) -+ (X G Y) ~ Z 

• (g x g) x 	C -+ C 

«f,g),h) -+ 	 (f ~ g) G h 

are naturally isorrorphic. However, there is an obvious iscrrorphism 

1 

~ x (g x g) -+ (g x g) x ~ 

and the ass'llIrption is that A:F -+ G 0 1 is a natural isarrorphism, where 

11 
(c x C) x C 	 -+ C. 

G 
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1\ccordingly, 

v (X, (Y,Z» E Db e x (e x e) 

and 

v (f,(g,h» E Mor e x (£ x £), 

the square 

~,Y,Z 
x ~ (Y ~ Z) -----+) (x ~ Y) ~ Z 

f ~ (g 6} h) 1 1(f 6} g} 6lh 

x' 61 (Y' ~ Z') -----+) (x' ~ Y') 61 Z' 

~, ,Y' ,Z' 

canmutes. 

6.1 EXAMPLE Let VEe be the category whose objects are the vector spaces 

over s: and whose rrorphisms are the lirea.r transformations -- then VEe is rroroidal: 

Take X 6} Y to be the algebraic tensor product and let e be e. 

[Note: If 

f:X -+ XI 

g:Y -+ Y' , 

then 

sends x 6} Y to f (x) 

~ (f ,g) 

~ g (y) • ] 

= f 61 g:X ~ Y -+ X, ~ Y' 

6.2 EXAMPLE Let AIG be the category whose objects are the algebras over e 
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and whose norphlsrns are the multiplicative linear transfonnations -- then ALG is 

rronoidal: Take A ~ B to be the algebraic tensor product and let e be C. 

[Note: If 

A,B E Ob ALG, 

then the multiplication in A ~ B on eler:rentary tensors is given by 

6.3 EXAMPLE Let *ALG be the category whose objects are the *-algebras over 

S am whose rrorphlsms are the multiplicative *-linear transfonnations - then *ALG 

is nonoidal: Take A S B to :be the algebraic tensor product and let e be C. 

[Note: To say that 1>:A -+ B is *-linear means that 

<P(A*) = 1> (A) * 

for all A EA.] 

6.4 REMARK Each of these three categories also admits another nonoidal 

structure: Take for the multiplication the direct sum E9 and take for the unit the 

zero object {a}. 

Let H and K be complex Hilbert spaces -- then their algebraic tensor product 

H ~ K can be equipped with an inner product given on eler:rentary tensors by 

<Xl ~ Yl,x2 ~ Y2> = <xl ,x2><Yl'Y2> 

and its completion H ! K is a complex Hilbert space. 
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N.B. If 

then 

extends by contiruity to a bourrled linear operator 

Recall f"CM that HILB is the category whose objects are the canplex Hilbert 

spaces and whose morphisms are the bounded linear operators (cf. 4.28). 

6. 5 LEMMA HILE is a rromidal category. 


PRCX)F Defire a functor 


9:HILB x HILB -+ HILB 

by 

9(H,K) = H 9 K 

and 
A B 

9(Hl -+ H ,K -+ K ) = A 9 B
2 l 2

and let e be C. 

A syrrrretry for a nonoidal category £ is a natural isanorphism T, where 

such that 
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is the identity, ~ = Ix 0 TX,e' and the diagram 

A T 
X e (y e z) (X e Y) e z ) z e (X e Y) 

id ~ T1 1A 
X e (z e Y) (X e z) e Y ) (z e X) e Y 

A T e id 

ccmnutes. A symnetric moroidal category is a monoidal category ~ endowed with a 

symmetry T. A monoidal category can have more than one symmetry (or none at all) • 

[Note: The "coherency" principle then asserts that "all" diagrams built up 

fran instances of R, L, A, T (or their inverses), and id by repeated application of 

e necessarily ccmnute.] 

N.B. Let 

f:C x C -7- C X C 

be the interchan:re -- then f is an isorrorphism and T:e -7- e 0 f is a natural iso­

morphism. 

It is clear that VEe, AJ...[;, and *AJ...[; are syrrmetric monoidal, as is HILB. 

6.6 LEMMA Let H and K be ccmplex Hilbert spaces -- then the linear :rn.::'I.p 

~:B(H) e B(K) -7- B(H e K) 

induced by the bilinear :rn.::'I.P 

- B(H) x B(K) -7- B{H e K) 

s: 
(T,S) -7- T e S 

is an injective *-harx:mJrphism. 
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From the definitions, C*ALG is a full subcategory of *ALG and while *ALG 

is syrrmatric rronoidal, it is definitely not automatic that the same is true of 

C*ALG (the algebraic tensor product of two C*-algebras is not, in general, a 

C*-algebra) . 

Suppose that A and B are C*-algebras -- then a C*-ronn on their algebraic 

tensor product A ~ B is a norm II· I la which is suJ.:multiplicative, Le., 

and satisfies the C*-condition, Le., 

[Note: The pair (A ~ B, II· I I a) is a pre-C*-algebra and its canpletion 

A ~ B is a C*-algebra.]a 

Definition: A norm II· IlonA ~ B is said to be a cross nonn if V A E A, 
V B E B, 

I IA e BI I = I IAI I I IBI I· 

6.7 LEMMA Every C*-rorm 	on A ~ B is a cross rorm. 

6.8 	 EXAMPLE Given X E A e S, let 

= inf{ i: \lA. I I liB. II :X = E A. e B. }."xII 1 1 1 	 1 

Then II· II 
A 

is a sub:nultiplicative cross norm on A ~ B am the canpletion A ~ B 

is a Banach *-algebra. Still, II· II is rarely a C*-norm. 

6.9 RAPPEL Every C*-algebra is isometrically *-isarorphic to a ronn closed 
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*-subalgebra of B(H) for same H, or in different but equivalent terminology, every 

C*-algebra admits a faithful *-representation on same ccmplex Hilbert space (cf. 

10.37). 

6.10 LEMMA Suppose that 

1J:A -+ C 

IJi:B -+ V 

are *-h.cm::m:>rphisms of C*-algebras -- then there is a unique *-h.cm::m:>rphism 

1J Q IJi:A 2 B -+ C 2 V 

of algebraic tensor products such that 

(1J 2 1Ji) (A 2 B) = 1J{A) 2 IJi(B) 

for all A E A, B E B. And 

1J injective 

=> 1J 2 IJi injective. 

IJi injective 

A 
, letGiven C*-algebras 

B 

1J:A -+ B(H) 

1Ji: B -+ B(K) 

be faithful *-representations -- then the ca:rp:>sition 
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~ ~ ~ ~ 
A~ B---+ B(H) ~ B(K) + B(H ~ K) 

is an injective *-hcm::morphism. One can therefore place a e*-nonn on A ~ B by 

writing 

0IIX II . = II (B ~ ~ ~) (X) II (X E A ~ B) • 
IIWl ­

6.11 LEMMA \ I· I I min is independent of the choice of ~ and ~. 

[Note: If in the above ~ and ~ are arbitrary *-representations, then 

II (~ 0 ~ ~ ~) (x) II ::; Ilx limin. J 

One terms II· II. the minimal e*-nonn on A ~ B. Denote its canpletion by
IIWl 

A ~. B and call A ~. B the minimal tensor product of A and B. 
IIWl IIWl 

6.12 EXAMPLE Fix a e*-algebra A. Given X E M (e) ~ A, write 
n ­

X = L: E •. ~ A •.• 
. . 1J 1J 
1,) 

Then the A •. are unique and the map
1) 


X + [A•. J 

1) 

defines a *-isooorphism 

M (e) ~ A + M (A).
n - n 

But M (A) is a e*-algebra (cf. 4.41), hence M (e) ~ A is a e*-algebra w.r.t. the 
n n ­

nonn that it gets fran Mn (A). ONing to 1.2, this norm must then be 11·IIInin' so 
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M (e) 9 A= M (e) 9. A.n- n- nn.n 

[Note: One can show directly that Mn (s:) 9 A is complete per 11·llmin " 

For if {~} is Cauchy and if 

kL: E .. 9 A .. ,~= ~] ~Ji,j 

then for each pair (i, j), {A~.} is Cauchy in A, thus 
~] 

lim A~. = Ar:x:., say.
k ..... co ~J ~] 

Now put 

00 

X = L: E .. 9 A .. 
co •• ~J ~J 

~, ] 

and observe that 

ookII XOO - x. linn.'n = l I. L:. E .. 9 (A.. - A •. ) II . 
-~ 	 ~J ~J ~J nn.n 

~,J 

s L: IIA~. - A~ .11 .. ~J ~J 
~,J 

..... 0 (k ..... 00) " 

Consequently matters can be turneCi around: 'I'he *-iscmorphism 

M (e) 9 A ..... M (A)
n - n 

can be useCi to place the structure of a e*-algebra on Mn (A)"] 

6.13 	 EXAMPLE Suppose that X and Y are compact Hausdorff spaces -- then 

e(x) 9. e(Y): e{X x Y) " 
nun 



11. 


[Note: If instead, X and Y are noncanpact locally canpact Hausdorff spaces, 

then 

C (X) 9 'n C (y) ~ C (X x Y).]
00 nu 00 00 

6.14 EXAMPLE Fix a C*-algebra 	Aand suppose that X is a compact Hausdorff 

space 	-- then 

C(X,A) : C(X) 9, A. nun 

[Note: If instead, X is a noncampact locally canpact Hausdorff space, then 

6.15 LEMMA If A and B are simple, then A 9, B is simple.
nun 

6. 16 EXAMPLE Suppose that H and K are ca:nplex Hilbert spaces -- then 

is simple and 

L (H) 9, L (K) ~ L (H 9 K).
-00 mm -00 -00_ 

6.17 LEMMA Suppose that 

1?:A -+ C 

lJi:B -+ V 

are *-hc::m:::Inorphisms of C*-algebras -- then 

1? * lJi:A 9 B -+ C 9 V 
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extends by continuity to a *-haocm::>rphism 

~ ~. ~:A ~, B + C ~. V. nun nun nun 

6.18 REMARK Here 

- ~ injective 

=> ~ ~. ~ injective.nun 

~ injective 

E.g.: If A is a C*-suba1gebra of C and if B is a C*-suba1gebra of V, then there 

is an anbedding 

A~. B + C~. V. 
nun nun 

[Note: This is false in general if "~ . " is replaced by"~ "(cf. infra). J nun max 

There are canonical isarorphisms 

RA:A ~. C = A~ C} -+ A nun­

LA:C ~, A ( = C Q A) + A,
- nun 

and 

TA B:A ~. B + B~. A, , nun nun 

which are evidently natural. 
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6.19 SCHOLIUM Equip~ with the minimal tensor proouct, C*ALG is a syrrmetric 

rronoida1 category. 

[Define a functor 

~:C*ALG -+ C*ALG 

by 

~(A,B) = A ~min B 

and 
1> '¥ 

~(A -+ C,B -+ V) = 1> ~. '¥ 
nun 

am let e be ~.] 

6.20 THEOREM Let 11·11 be a C*-mnn on A ~ B -- then 'if X E A ~ B,a 

Ilx II· ~ Ilx II .nun a 

[Note: This result is the origin of the tenn "minimal tensor productll .] 

6_ 21 LEMMA If A is nonunita1, then any C*-nonn II· lion A ~ B can be a 
+eKtendEd to a C*-mnn on A ~ B. 

[Note: Therefore if both A and B are nonunital, then any C*-mnn II· lion a 

A ~ B can be extended to a C*-nonn on A+ ~ B+.] 

6.22 LEMMA If A ~ B is simple for sane C*-mnn II· lion A ~ S, then a a 


11·ll = II-I lInin am A am B are simple (cf. 6.15).
a 

Given C*-a1gebras A and B, define the maximal C*-nonn on A ~ B by 

Ilx II = sup {lin (X) II}'
max n 
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sup beirq taken over all *-representations of A ~ B. Let A ~ B be the conpletionmax 
'IT 

of A ~ B w. r. t. II· I I max -- then A ~max B is the maximal tensor product of A and B 

and 

A 

A ~ B =C*(A ~ B),max 

A A 

where c*(A ~ B} is the enveloping C*-algebra of A ~ B (cf. §9), hence there is an 

A 

A ~ B -+ A ~ B. max 

6. 23 LEMMA If tIl: A ~ B -+ C is a *-hcm:::norphism, then there is a unique 

*-hananorphism tIl : A ~ B -+ C which extends tIl. max max 

6.24 THEOREM let II· II be a C*-norm on A ~ B -- then V X E A ~ B,a 

Ilxll :S: Ilxll .a max 


PRCX)F Thanks to 6.23, there is a surjective *-hCXl.lCI'OC)rphism 


A ~ B -+ A ~ B,max a 

so 

for all X E A ~ B. 

6.25 REMARK Equi:r;:ped with the maximal tensor product, C*ALG is a syIIIlEtric 

rronoidal category (cf. 6. 19) • 
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A C*-algebra A is nuclear if there is only one C*-nonn on A ~ B for every 

C*-algebra B. So, if A is nuclear, then II·! I . = II· II on A ~ B and we write rru.n max 

A~ B for 

A9. B = A 9 B. 
rru.n max 

6.26 EXAMPLE V n :?: 1, the C*-algebra M (C) is nuclear (cf. 6.12). 
n ­

[Note: More generally I every finite din:ensional C*-algebra is nuclear 

(use 1.4).] 

6.27 EXAMPLE If H is an infinite dinen.sional canplex Hilbert space, then 

B(H) is not nuclear. 

[There are a number of ways to see this, none of them obvious. One nethod is 

to 	shaN that 

B(H) 9. B(H) ~ B(H) 9 B(H).]
rru.n 	 max 

6.28 THEOREM Every ccmnutative C*-algebra is nuclear. 

6.29 THEOREM A filtered 	colirndt of nuclear C*-algebras is nuclear. 

6. 30 EXAMPLE Every AF'-algebra is nuclear (cf. 3.17). 

6.31 EXAMPLE Suppose that H is an infinite dinensional canplex Hilbert 

space -- then L
_00 

(H) is nuclear. 

Note: 	 Recall that 


M(!:oo (H» ::: B(H) (cf. 5.9). 
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Since B(H) is not nuclear, it follows that the multiplier algebra of a nuclear 

C*-algebra need not be nuclear.] 

6.32 	 LEMMA The minimal tensor product A Q B is nuclear iff both A andmin 

B are 	nuclear. 

PRCX)F If B is not nuclear and if C is a C*-algebra for which 11·I!max ~ 

II· I \ . on B Q C, then the surjective *-hrnDnorphismnun 

BQ C-+-BQ. C 
max nun 

has a 	nontrivial kernel, thus the same is true of the canposition 

(A Q. B) Q C -+- A Q. (B Q C)
nun max nun max 

-+- A Q. (B Q. C)
nun nun 

~ (A Q. B) Q. C. 
nun nun 

Therefore A Q. B is not nuclear . Conversely, if A and B are nuclear, then for rm.n 

any C, W\e have 

(A Q. B) Q C ~ (A Q B) Q C 
nun max max max 

:: A Q (B Q C)
max max 

~ A Q (B Q. C)
max rm.n 

:: A Q. (B Q. C)
nun nun 

= (A Q. B) Q. C. nun nun 
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6. 33 EXAMPLE If A is nuclear, then V n ~ 1, Mn (A) is nuclear. In fact, 

= M (C) 9. A (cf. 6.12).
n - ffill1 

6. 34 EXAMPLE If H and K are complex Hilbert spaces, then 


L (H) 9. L (K) 

-ro nun -IX> 

is nuclear and, in fact, is *-isanorphic to 

L (H 9 K) (cf. 6.16).-'00 _ 

6.35 REMARK Write NUCC*ALG for the full subcategory of C*ALG whose objects 

are the nuclear C*-a1gebras equipped with the minima.1 tensor product -- then NUCC*ALG 

is a syrrnetric nonoidal category. 

A C*-algebra Ais said to be stable if A ~ A9min ~(t2) (~~oo(HA) (cf. 5.12». 

6.36 EXAMPLE ~(t2) is stable: 

=> 
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6 • 37 EXAMPLE A is stable, then V n 2: 1, Mn (A) :::: A. Prcx:>f: 

:::: A. 

Two C*-algebras A and B are stably isomorphic if 

6.38 EXAMPLE C and L (l2) 
- -co 

are stably isarnorphic. 

6.39 

nuclear. 

PROOF 

LEMMA 

For 

If A is nuclear and if A and B are stably isorrorphic, then B is 

A nuclear => A ~.n:u.n 

=> B ~.nun 

L (l2)
_00 

2L (l )
_00 

nuclear 

nuclear 

(cf. 6.32) 

=> B nuclear (cf. 6.32). 
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It is false in general that a C*-subalgebra of a nuclear C*-algebra is 

nuclear. Still, there are properties of permanence. 

6.40 LEMMA If A is nuclear and if 1 c A is a closed ideal, then 1 is 

nuclear. 

6. 41 lEMMA If A is nuclear and I c Ais a closed ideal, then All is 

nuclear. 

6.42 THEOREM Suppose that I c A is a closed ideal. Asst:m'e: 1 and All 

are nuclear -- then Ais nuclear. 

If 

o + ] + B + BI] + 0 

is a short exact sequence of C*-algebras and if A is a C*-algebra, then 

o + A ~ ] + A ~ B+ A ~ BI] + 0 
max max max 

is again short exact. On the other hand, this need not be true if "max" is replaced 

by "min", leading thereby to the following definition. 

A C*-algebra A is said to be exact if it has the property that A ~min -­

preserves short exact sequences. 

6.43 LEMMA Every nuclear C*-algebra is exact. 

6.44 REMARK There are C*-algebras which are not exact and there are exact 
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C*-algebras which are not nuclear. 

6.45 LEMMA Every C*-subalgebra of an exact C*-algebra is exact. 

[Note: Thus every C*-sul:::>.:.:l.lgebra of a nuclear C*-algebra is exact (but not 

necessarily nuclear).] 

The quotient of an exact C*-algebra is exact. Filtered colirnits of exact 

C*-algebras are exact but extensions of exact C*-algebras are in general not exact. 

N.B. It is a farrous theorem due to Kirchberg that every separable exact 

C*-algebra can be embedded as a C*-sul:::>.:.:l.lgebra of a separable nuclear C*-algebra. 

6.46 LEMMA If A and B are exact C*-algebras, then so is A ~. B. nun 

6.47 REMARK Write EXC*ALG for the full subcategory of C*ALG 'IN'hose objects 

are the exact C*-algebras equipped with the minimal tensor product -- then EXC*ALG 

is a syn:netric m::>noidal category containing NUCC*ALG as a full subcategory. 
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§7. STATES 

Let A, B be C*-algebras -- then a linear map iP:A ->- B is said to be positive 

if iP(A+) c B+. 

7.1 	 LEMMA Suppose that iP:A ->- B is positive - then If Al'~ E A, 

iP(AiA2)* = iP(AiAl)' 

2[Note: Since A = A , it follCMS that 


iP (A) * = iP (A*) (A E A) .] 


7.2 	 EXAMPLE A *-hornc.m:>rphism iP:A ->- B is positive: 


iP(A*A) = iP(A*)iP(A) = iP(A)*iP(A) E B+. 


7.3 	 LEMMA Suppose that iP:A ->- B is positive -- then iP is bounded. 

More can be said 	in the unital situation. 

7.4 	 LEMMA If A and B are unital and if iP:A ->- B is positive, then IliPll = 

IliP(lA) 	II· 


[Note: Accordingly, if iP is in addition unital, then IliPll = 1.] 


7.5 EXAMPLE Take A = B = ~ <g) and let iP be the linear map defined by 
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= 

o o 

Then II~II = 11~(lA) II 	 = 1 and ~(lA) ?! O. Still, ~ is not positive. 

7.6 LEMMA If A and B are unital and if ~: A -+ B is a unital J::xnmded linear 

map such that "<P II = I, then <P is positive. 

Specialize now and take B = S -- then a linear functional w:A -+ C is said to 

be positive if 

A ?! 0 => w(A) ~ O. 

N. B. Positive linear functionals are necessarily continuous (cf. 7.3). 

7.7 	 LEMMA let w:A -+ S be a positive linear functional -- then V A E A, 

w(A*) = weAl 

and 

IW(A) 12 ~ I 'wi IW(A*A). 

7.8 	 LEMMA Let w: A -+ g be a positive linear functional -- then \:/ A, B E A, 

IW(A*B) 12 ~ w(A*A)w(B*B). 

Fix an approximate unit 	{e.:i E I} for A per 1. 20. 
~ 
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7.9 LEMMA Let w: A -+ £ be a positive linear functional -- then 

Ilwll 	 = lim w{e.). 
iEI ]. 

In particular: If A is unital and if w: A -+ £ is positive, then II w II = 

w(1A) (cf. 7.4). 

[Note: This can be turned around. In other words, if w:A -+ £ is a bounded 

linear functional such that Ilwll = w(lA)' then w is positive (cf. 7.6) 

If 

are positive linear functionals, then their sum wI + w is a positive linear2 

functional. And: 

Proof: 

= lim wI (e.) + lim w (e.)2iEI :r iEI ]. 

= II WI I , + I I w211 • 

Suppose that A is nonunital. Given a positive linear functional w:A -+ £, 
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define a linear functional W+ on A+ by 

+. ..Then W J.S posJ.tive. In fact, 

W+ ( (A, A) * (A, A) ) 

= 1 A 12 I IwII + ~w (A) + AW (A*) + W (A*A) • 

But 

Aw(A) + AW{A*) + 21AI I Iwi 11/2 w(A*A) 1/2 

-
~ AW(A) + AW{A*) + 21AI IW(A) I (cf. 7.7) 

~ O. 

Therefore 

N.B. We have 

7.10 LEMMA let w:A -+ C be a bounded linear functional. Assun:e: V A E A, 

W(A*) = weAl. 

Then 3 unique positive linear functionals 
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w :A -+ C 

such that 

w = w - w+ ­

and 

by 

7.11 REMARK Let w: A -+ C be a bounded linear functional. Define w*: A -+ C 

and put 

w* (A) = w(A*) 

w + w* 
Re w = ---=2::--­

w - w*
Im w = . 

UC:[ 

Then 

w = Re w + ;::r Im w. 

Since 

Re w(A*) = Re W(A) 


Im w(A*) = Im W(A), 


it follows fran 7.10 that every bounded linear functional on A can be written as 

a linear combination of four positive linear functionals. 
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A state on A is a positive linear functional w of nonn 1. The state space 

S (A) of A is the set of states of A. 

E.g. : S (C E9 C) can be identified with [0,1] and S (~(~)) can be identified 

2with 8 . 

7 .12 EXAMPLE Fix a locally canpact Hausdorff space X . 

• If X is canpact, then the dual C(X)* of C(X) can be identified with 

M(X) I the space of ca:nplex Radon rreasures on X: 

~ + I ,I (f) = Ix fd~. 
~ ~ 

Here 

+I~I the total variation of ~. Therefore S(C(X» = Ml (X), the Radon probability 

rreasures on X • 

• If X is non~ct, then the dual C (X) * of C (X) can be identified with
~-''l::'''"'" eo eo 

M (X), the space of ca:nplex Radon measures on X: 

~ + I , I (f) = Ix fd~. 
~ ~ 

Here 

II ~ II = I~ I (X) I 

I~ I the total variation of ~. Therefore S (Ceo (X» = Ml+ (X) I the Radon probability 

rreasures on X. 

7. 13 EXAMPLE Given a ca:nplex Hilbert space H, denote by W(H) the set of 

density operators (Le. the set of positive trace class operators W with tr(W) = 1) 
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then the arrOW' 

W(H) -+ S (L (H»
-00 

that sems W to ~, where 

~ (T) = tr (wr) (T E L (H»
-00 

is bijective. 

[Note: It is clear that 

S{L
_00 

(H» c S{B{H», 

the inclusion bein:J proper if H is infinite dimensiona.1.] 

7.14 LEMMA SeA) is a nonempty convex subset of A*. 

7.15 LEMMA S (A) is weak* closed iff A is unital. 

[Note: So, if A is unital, then SeA) is weak* compact (A1aog1u) I thus is the 

weak* closed convex hull of its extrerre points (Krein-Milman).] 

If 

are positive linear fumtiona.1s, write w 2: w if w - w is positive.1 2 1 2 

NOW' let w E S(A}. Denote by [O,w] the set of all positive lirear fumtiona1s 

w':w 2: Wi -- then [O,w] is a convex set am w is said to be pure if [O,w] = 

{tw:O ::;; t ::;; 1}. Write peA) for the set of pure states of A. 

http:fumtiona.1s
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7.16 EXAMPIE If X is a locally compact Hausdorff space, then 

P{C{X» = {o :x E X} (X compact)x 

am 

P(C (X» = {o :X E X} (X norxx:xnpact) . 
00 x 

7.17 EXAMPIE Suppose that H is a canplex Hilbert space -- then 

P(~{H» = {wx: Ilxll = l}. 

Here 

w (T) = <x, Tx> x 

or still, 

w (T) = tr(p T),x x 

p the orthogonal projection onto Cx. x ­

[Note: Let ~H :be projective Hil:bert space (the quotient of the unit sphere 

in Hby the canonical action of Q(l». Give ~H the quotient topology -- then 

P(~ (H» supplied with the relativised weak* topology is ~:rphic to ~H.] 

N.B. The w (11x II = 1) are the so-called vector states. x 

7. 18 LEMMA If A is unital, then the extrerre points of S (A) are the pure 

states: 

ex S (A) = P (A) . 

7.19 REMARK For any A (unital or nonunital), let S (A) stand for the set 
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of positive linear functiona1s of nonn ::;; 1 -- then S (A) is convex, weak* compact, 

and 

ex S(A) = {O} u P(A). 

7.20 LEMMA Every multiplicative state is pure. 

7.21 LEMMA Every pure state is multiplicative on the center- of A. 

7. 22 SCHOLIUM If A is a commutative c*-algebra, then 

P(A) =1l(A). 

Suppose that A is ronmital. Given a state w E S (A), define as before a 

linear fun::::tiona1 w+ on A+ by 

w+ (A, It) = w(A) + It (II w II = 1). 


+ +
Then w E S (A ). Moreover , 

+ +wE peA) <=> w E P(A). 

7.23 THEOREM If AI is a C*-suba1gebra of A, then every state WI on AI can 

be extended to a state w on A. 

PROOF It suffices to establish this when both A and A I are unital with 

1A = 1 • So let WI E S (A'). ONirq to the Hahn-Banach theorem, :3 a bounded linear 
AI 

functional w E A* that extends Wi and is of the same nonn. But 

1 = Ilw II = Ilwl II = Wi (I ) = w(lA) • 
AI 
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Therefore w is positive (cf. 7.6), hence w E SeA). 

I7.24 	 THEORNVl If A is a C*-suba1gebra of A, then every pure state w I on A' 

can 	be extended to a pure state w on A. 

PROOF Let S (A) be the subset of S (A) oonsisting of those states that 
Wi 

extend w' -- then S (A) is rot empty (cf. 7.23). On the other hand, S (A) is a 
w' Wi 

weak* 	canpact face of S (A), thus 

ex S (A);c!if (Krein-Milman) • 
Wi 

But 

ex S (A) c ex S(H). 
Wi ­

And 

w E ex S (A) => w ;1! 0 => w E P(A) (cf. 7.19). 
Wi 

7.25 	 lEMMA Let A E t\;A -- then :3 w E P(A): Iw(A) I = I !AII· 

PROOF The C*-suba1gebra C* (A) generated by A is corrmutative. Choose a 

character w E Ll (C* (A) ) : Iw (A) I = IIA I I and extend w to a pure state w on A
A A 	 A 

(cf. 7.24). 

Here is a ooro11ary: If w(A) = 0 V w E P(A), then A = O. In fact, 

V w E P(A), 

weRe A) = 0 

=> Re 	A = Im A = O. 

w(Im A) = 0 
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7.26 LEMMA Let A E A -- then A E ASA iff weAl E ~ for all w E peA). 

7.27 LEMMA Let A E A -- then A E A+ iff weAl E ~~ for all w E P{A). 

A weight on A is a function w:A+ -+ [O,ooJ such that 

w(A + B) = weAl + weB) 


w{O) = 0, w{AA) = Aw{A) (A > 0, A E A+). 


E.g.: The prescription w(O) = 0, weAl = (A E A+,A ";! 0) is a weight, albeit00 

a not very interestin;J are. 

Every p::>sitive linear fun:::tio:n.3.1 is, of course, a weight. :More generally, any 

sum of positive lirear fun:::tio:n.3.ls is a weight (in fact, any sum of weights is a 

weight) . 

7. 28 EXAMPLE Let H be a complex Hilbert space. Fix an orthononua.l basis 

{e. :i E I} for H and define 
1. 

tr:B(H)+ -+ [0,00] 

by 

tr (A) = E <e. ,Ae.>.
1. 1.iEI 

Then tr is a weight. 

[Note: Recall that tr is welldefined in the sense that it is indeprodent of 

the choice of orthononua.l basis. J 

7.29 EXAMPLE Take X = ~n -- then the Riesz representation theorem identifies 

http:fun:::tio:n.3.ls
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the positive linear functionals on C (R
n

) with the Radon I'IEasures and the positive 
c ­

linear functionals on Coo C!t) with the finite Radon measures. Therefore every Radon 

I'!Easure ]J such that ]J(~n) = 00 determines a weight on Coo(~n) vv.hich is not a positive 

linear functional (e.g., ]J = Lebesgue measure) . 

[Note: Recall that a positive linear functional on C (Rn ) is a linear c ­

functional I:C (Rn ) -+ C such that I (f) ~ 0 whenever f ~ 0.]
c ­

Given a weight w on A, let 

7.30 lEMMA A ~ B ~ 0 and if A E w - A+, then B E w - A.r. 

PR(X)F write 

A = (A - B) + B. 

Then 

00 > weAl = w(A - B) + w(B). 

Let 


L = {A E A:w(A*A) < oo}.

W 

[Note: In general, 


w(A*A) < 00 "1-> w(AA*) < 00.] 


7.31 LEMMA L is a left ideal. 
w 
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PROOF There are two points. First, V A,B E A, 

(A + B)*(A + B) + (A - B)*(A - B) = 2 (A*A + B*B) 

=> 

(A + B)*(A + B) s 2 (A*A + B*B). 

Second, V X E L & V A E A,w 

(AX) *AX 	= X*A*AX 

s IIA*A Ilx*x 

2= IIA 11	 x*x. 

7. 32 LEMMA The linear span w - A of w - A+ is the set of elem:mts of the 

form 

n 
{E
i=l 

Y~X. :X. r Y. 
1 1 1 1 

E L }, 
W 

i.e., is 

L* L • ww 

PROOF If X,Y E L , then w 

3 
4Y*X = E (r-I) k (X + (;'::1) ky) * (X + ( r-I) ky) r 

k=O 

which implies that 

L* Lew - A. ww 

1/2
In the other direction, A E w - A+' then A E LW' thus 



14. 

N.B. It follows that w - Ais a *-subalgebra of Awith 

(w - A) n ~ = w - ~. 

Given A E w - A, we can write 

A - At - A' + ;.::r At - ;.::r AI - 1 2 3 4 

is another such deccmp::>sition I then 

So 

=> 


Therefore the prescription 

unambiguously extends w fran w - A+ to w - A. 

7.33 REMARK If w - A+ = t\, then w - A = A and the extension of w to A is 

a positive linear functional, hence w is continuous. 
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A trace on A is a weight w satisfying the condition 

w(A*A) = w('AA*) 

for all A E A. 

N. B. If A is ccmnutative, then every weight is a trace. 

7.34 REMARK If w is a trace, then L is a *-ideal, thus the same is true w 

of w - A (cf. 7.32). 

7.35 EXAMPLE If H is a complex Hilbert space, then 

is a trace and 

tr - B(H) = ~l(H). 

A tracial state on A is a state w whic.h is a trace. 

N.B. If A is contmltative, then every state is a tracial state. 

7.36 EXAMPLE Take A = M (e) -- then th.e assigrnrent
n ­

1 n 
[a •. J -+ - z:: a.. 
~J n k=l KK 

is a tracial state on M (e) (and there are no others) . 
n ­

7.37 EXAMPLE Let H be an infinite cl.im:msional canplex Hilbert space - ­

then ~(H) does not admit a tracial state. To see this, assl.lIl:e the opposite and 
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suppose that w E S (L (H)) is a tracial state, hence w has the sane constant value 
-00 

t > 0 on all rank one orthogonal projections (any two such being unitarily equiv­

alent) . Let {e.: i E I} be an orthononnal basis for H. Given e. , ... ,e. , let P 
1 11 1n n 

be the orthogonal projection onto their closed linear span -- then 

Iw(p ) I ::; lip Ii = l.n n 

On the other hand, 

Iw(Pn ) I =nt => nt::; 1 => n ::; l, 
t 

fran which the obvious contradiction. 
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§8. REPRESENTATIONS OF ALGEBRAS 

N.B. In what follONS, the underlying scalar field is g. 

let E be a linear space, L(E) the linear maps fran E to E -- then L(E) is 

an algrora (multiplication being COIl'I[X)sition) . 

let A be an algrora -- then a representation of A on E is a hcm::m:>rphism 

TI:A + L(E). 

[Note: A represa:1tation TI:A + L(E) defines a left A-nodule structure on E 

(viz. Ax = TI (A) x) and conversely_] 

8.1 TERMINOI1JGY 

• TI is faithful if TI is injective. 

• TI is trivial if TI(A) = a v A E A. 

• TI is algebraically irreducible if TI is not trival and {a} and E are the 

only TI-invariant subspaces. 

• TI is algebraically cyclic if 3 x E E such that {TI (A) x:A E A} = E. 

8.2 REMARK The definition of algebraically irreducible explicitly excludes 

trivial representations. If they were not excluded, then the trivial representation 

on a zero or one d:irrensional space would qualify. 

8.3 LEMMA let TI be a representation of A on E ;t a -- then TI is algebraically 

irreducible iff every nonzero vector in E is algebraically cyclic. 

8.4 THEOREM let TI be an algebraically irreducible representation of A on E. 
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Suppose that 1 c Ais a nonzero ideal - then the restriction TI 11 is either trivial 

or an algebraically irreducible representation of 1. Furtherm::>re, every algebra­

ically irreducible representation of 1 arises by restriction fran SatE algebraically 

irreducible representation of A. 

[Note: If 1 c Ker TI, then TI drops to an algebraically irreducible represent­

ation of A/I and every algebraically irreducible representation of A/I is obtained 

in this fashion.] 

8.5 lEMMA let TI be an algebraically irreducible representation of A on E. 

Suppose that A E ~A -- then TI (A) = O. 

PRCX)F Fix Y E E:y "#. 0, thus {TI(B)y:B E A} = E. And 

TI{A)TI{B)y 	= TI(AB}y 

= TI{O)y = o. 

COnse<;{UeIltly, 

Ann[/ c Ker TI. 

Since ~A is an ideal , it foll()l)olS that the induced hcm::morphisrn 

A/~A -+- L{E} 

is an algebraically irreducible representation of A/~A. 

8.6 THEOREM let TI be an algebraically irreducible representation of A on 

E -- then TI can be extended to an algebraically irreducible representation iT of 

DC (A) on E. Moreover, TI is unique. 
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PRCOF Suppose that 

n(X)x = n(Y)y (X,Y E A, x,y E E) . 

Then V A E A & V (L,R) E De(A) , 

n(A) (n(L(X»x - n(L(Y»y) 

= n(AL(X»x - n(AL(Y»y 

= n(R(A)X)x - n{R{A)Y)y 

= n(R(A» (n(X)x - n(Y)y) 

= o. 

But n is irreducible, hence 

n(L{X»x = n(L(Y»y. 

Accordingly, if e E E and if 

- n(X)x 

e= 

n(Y)y, 

then the prescription 

n(L(X» x 

rr{(L,R»e = = 

n(L(Y)) y 

makes sense and defines an algebraically irreducible representation of DC(A) on E. 

Finally, V A E A, 

;;: ( (LA'~» e = n (LA (X) ) x 

= n{AX)x 
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= TI(A) TI (X) x 

= TI (A) e. 

Given a representation TI of A on E, let 


TI(A) , = {T E L(E) :TTI(A) = TI(A)T(A E A) }. 


8.7 LEMMA let TI be an algebraically irreducible representation of A on 

E -- then TI(A) , is a division algebra. 

[Note: In other words, TI(A) , is a unital algebra in which every nonzero 

element has an inverse.] 

8.8 REMARK The converse is false, Le., it may very well be the case that 

TI(A) I is a division algebra, yet TI is not algebraically irreducible. E.g.: let 

A be the algebra of all ~-by~ matrices which have only finitely many nonzero 

entries, let E be the vector space of all carplex sequences, and let TI be t.~ 

canonical representation of A on E -- then TICA) , can be identified with ~, yet the 

subspace of E consisting of those sequences that are finitely supported is TI-invariant. 

let TI be a representation of A on E ~ 0 -- then TI is totally algebraically 

irreducible if v T E L(E) and every finite dimensional subspace VeE, ::I A E A: 

TI (A) x = Tx V x E E. 

N.B. Evidently, 

"totally algebraically irreducible" => "algebraically irreducible". 
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B.9 LEMMA If TI:A -+ L(E) is totally algebraically irreducible, then 

TI(A) , = g i<\:. 

PRCX)F Let T E TI(A) , and sUPIX>se that for sorre x E E, x and Tx are linearly 

independent. Since TI is totally algebraically irreducible, 3 A E A: 

TI(A)x = x 

TI(A)Tx = o. 

But then 

a = TI(A)Tx = TTI(A)x = Tx, 

a contradiction, So, V x E E, 3 c E C:Tx = c x. If x ~ 0, y ~ 0, and c ~ c ,x - x x y 

then x + y and T(x + y) "INOuld be linearly independent. This being an impossibility, 

the conclusion is that 3 c E C:Tx = ex (x E E) or still, T = c (i<\:) . 

B.lO LEMMA If TI:A -+ L(E) is algebraically irreducible and if TI(A) , = g i<\:, 

then TI is totally algebraically irreducible. 

B.ll RAPPEL The only finite <'linensional division algebra over g is g itself. 

Let TI be an algebraically irreducible representation of A on E. Assurre: 


dim E < -- then TI is totally algebraically irreducible. Proof: TI (A)' is a finite
00 

dim2msional division algebra, thus TI(A) , = g i<\:. Now quote B.lO. 

B.12 EXAMPLE If A is con:mutative, then every finite d..iIrensional algebraically 

irreducible representation TI: A -+ L (E) of A is one dinensional. 
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[Suppose that E has two linearly independent vectors x and y. Choose 

A,B E A:n(A)x = x, n(A)y = 0, n(B)x = y -- then 

TI(AB)x = n(A)TI(B)x = n(A)y = 0 


TI(BA)x = TI(B)TI(A)x = TI(B)x = y. 


But AS = BA, so "IIJe have a contradiction.] 

[Note: The assumption dim E < 00 implies that n is totally algebraically 

irreducible and this is all that is needed. Spelled out: If A is conmutative, 

then every totally algebraically irreducible representation of A is one d:i.lrensional. J 

8.13 REMARK Let TI be an algebraically irreducible representation of A on E. 

Assurre: V A E A, TI (A) is of finite rank -- then TI is totally algebraically irre­

ducible. 

Let TIl and TI2 be representations of A on El and E2 • 

• An algebraic equivalence is a linear bijection l;;:El ~ E2 such that 

(A EA) • 

• An algebraic intertwining operator is a linear map T:E ~ E2 such thatl 

(A E A). 


8.14 LEMMA Suppose that TIl and TI2 are algebraically irreducible representa­

tions of A on El and E2 -- then all nonzero algebraic intertwining operators 

be~en TIl and TI2 are algebraic equivalences. 
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Let n be an algebraically irreducible representation of A on E. Fix x ~ 0 -­

then I = {A E A: n (A) x = O} is a nodular maximal left ideal and the arrC1N A -+ n (A) x 

implements a linear bijection s:A/I -+ E that sets up an algebraic equivalence be­

tween the canonical representation L of A on A/I and n. 

[Note: To check nodularity, choose e E A:n(e)x = x -- then V A E A, 

n(Ae - A)x = n(A)n(e)x - n(A)x = n(A)x - n(A)x = o. 

Therefore 

Ae-AEI (A E A) • 

1.e. : I is nodular. J 

* * * * * * * 

Assume henceforth that A is a Banach algebra and that E is a Banach space -­

then in this context a representation of A on E is a hcm:::m::>rphism n: A -+ B(E), where 

B(E) is the Banach algebra whose elements are the bounded linear maps fran E to E. 

8. 15 TERMINOI.OGY 

• n is faithful if n is injective. 

• n is trivial if n(A) = 0 V A E A. 

• n is topologically irreducible if n is not trivial and {O} and E are the 

only closed n-invariant subspaces . 

• n is topolggically cyclic if 3 x E E such that {n(A)x:A E A} is dense in E. 

N.B. It is clear that the notions "topologically irreducible" and "topologically 

cyclic" are weaker than their purely algebraic counterparts. 
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8.16 LEM1A ret 'IT be a representation of A on E ~ 0 -- then 'IT is topologically 

irreducible iff every nonzero vector in E is topologically cyclic (cf. 8.3). 

8.17 REMARK Suppose that 1 c Ais a nonzero closed ideal -- then the re­

striction to 1 of a topologically irreducible representation of A is either trivial 

or a topologically irreducible representation of 1 (cf. 8.4). 

[Note: It is not cla.irred, however I that every topologically irreducible repre­

sentation of 1 can be extended to a topologically irreducible representation of A.] 

8.18 RAPPEL A nomed division algebra V is one d.irrensional: V:::: C. 

8.19 THEOREM ret 'IT be an algebraically irreducible representation of A on 

E -- then 'IT is totally algebraically irreducible. 

PRCXJF Recall first that 'IT (A) , is a division algebra (cf. 8.7). Accordingly, 

in view of 8.10, it suffices to show that 'IT (A) , is named. To this end, fix a 

nonzero x E E. Given T E 'IT (A) " put 

IITII = inf{II'IT(A) II:A E A, 'IT (A) x = Tx}.
x 

Since 'IT is algebraically irreducible, the RHS is not empty (cf. 8.3) and 

o :::; I I T I I x < ro. Next 

I I Tx I I = I I 'IT (A) x " :::; I I 'IT (A) I I I I x t I 

=> 

Therefore 

II T II x = 0 => IITx II = 0 

liT" .x 
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=> Tx = 0, 

so T = 0 (otherwise T-l.rx = 0 => X = 0). The verification that II· II is a nonn x 

is straightforward. 

[Note: The carmutant 1T(A) , of 1T(A) is CClrq?uted in L(E) (not B(E».] 

8.20 REMARK Mc:Ioontarily drcp the assumption that E is a Banach spa.ce (but 

retain the assumption that A is a Banach algebra). Consider an algebraically 

irreducible representation 1T of A on E -- then 1T is necessarily totally alge­

braically irreducible. To see this, recall that 1T is algebraically equivalent to 

the canonical representation L of A on A/I for satl: rrodular max.imal left ideal 

leA. But All is a Banach space (I being closed) and the operator LA: A/I -+ A/I 

'Which sends B + I to AB + I is continuous (indeed, IILA II $ IIAII). One may there­

fore apply 8.19. 

[Note: It is thus a corollary that an algebraically irreducible representation 

of a ccmnutative Banach algebra is one d..iIrensional (cf. 8.12).] 

8.21 EXAMPLE If 1T is an algebraically irreducible representation of A on E, 

then 1T(A) I = ~ i~ (cf. supra) but this is false if "algebraically irreducible" is 

replaced by "topologically irreducible". Thus take for E a Banach space with the 

property that :3 T E B(E) which has no nontrivial closed invariant subspaces 

(Enflo) -- then the identity representation 1T of the carmutative unital subalgebra 

A of B(E) generated by T is a topologically irreducible representation. But 

A c 1T (A) , • •• • 

If 1T is a representation of A on E, then 1T is continuous if :3 K > 0 such that 
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lilT (A) II ~ K II A II (A E A) • 

[Note: If in the tenninology of §4, E is a left Banach A-m::rlule, then the 

associated representation IT of A on E is continuous: 

lilT (A) x \I = I I Ax 1\ ~ K I I A II \I x \I 
=> 

I IlT (A) I I ~ K IIA I I . ] 

8.22 LEMMA Suppose that V x E E, the rrap 

- A + E 

IT : 
x 

A + lT (A) (= IT(A)x)
x 

is continuous -- then lT is continuous. 

PRX>F Consider the set 

{n : Ilxll ~ l} c: B(A,E) • x 

sUI? lilT (A) II ~ I IlT (A) II (A E A) • 
Ilxll~l x 

So, by the unifo:rm boundedness principle, 3 K > 0: 

SUI? lilT II ~ K. 
Ilxll~l x 

And this implies that 

lilT (A) II = sUI? lilT (A) x II = SUI? lilT (A) II ~ K IIA I , . 
, I x I I~l IIxI I~l x 
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8.23 THEOREM Suppose that 'IT is an algebraically irreducible representation 

of A on E -- then 'IT is continuous. 

PR<X>F In the notation of 8.22, the algebraic irreducibility of 'IT implies 

that there are two possibilities: 1. v X, 'IT is continuous; 2. v x ;z! 0, 'IT x X 

is discontinuous. This said, the idea then is to assume that the second possibility 

obtains and fran there derive a contradiction. So take E infinite dimensional and 

start by fixing a sequence of linearly independent elements x E E (11x II = 1) . 
n n 

Next, choose a sequence A E A with the following properties:
n 

That such a construction is possible will be detailed belCM. Proceeding, let 

00 

Then v k E ~, 

But 'IT(A ) E B(E), fran which a contradiction.
O

[Note: The existence of the A can be established by induction if one can 
n 

Iprove: V E > 0, V M > 0 I V m E ~ there is an A E A such that 
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IIAII < E:, n(A)x = ••• = n(A)x = 0, I In(A)xml I > M.l n_l 

'Ib this end, let 

11 = {A E A:n(A)Xl = O}, ••• ,l = {A E A:n(A)x = OJ. m m 

en the basis of 8.19, 3 Xm E A: 

n(xm)x = •.• = n(X)x 1 = 0, n(X)x = x •l m m- m m m 

Thls 

=> 

1 being maximal. Therefore addition defines a continuous linear map of m 


1 n ••• n 1 $ 1

1 m-l m 

onto A. By tl:e open mapping theorem, 3 0 > 0 such that for any C E A with 

Ilc II < OE:, 

3 A E 11 n ••• n 1m-I' B E 1m 

such that 

C = A + B and IIAII < E:, IIBII < E:. 

Since the map n is discontinuous, one can find a C: Ilc II < os and Iln(c)xmll > M. 
~ 

For this choice of C, the corresponding A satisfies the required conditions.] 

Let n1 and n2 be representations of A on El and E2. 

• A topological equivalence is a linear bt:::::m:Jeonorphism l;:El -+ E2 such that 
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(A E A) • 

• A topological intertwining operator is a rounded linear map T:E -+ E2
l 

such that 

(A E A). 

8. 24 LEMMA Supp:>se that TIl and TI2 are algebraically irreducible represen­

tations of A on El and E2 -- then every algebraic equivalence l;; :El -+ E2 is a 

tofOlogical equivalence. 

PR(X)F In view of 18.23, TIl and TI2 are continuous. Fix xl E El (xl ~ 0) and 

let 

Put x = l;;x -- then2 1 

Since the arrows 

are topological equivalences between 

the arrow 
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is a linear harreorrorphism. But 

Therefore 1;; is a topol<:X1ical equivalence. 

The radical of A is the intersection of the kernels of all the algebraically 

irreducible representations of A, thus is an ideal. Notation: rad A. 

[Note: A priori, this is a purely algebraic notion, Le., the representation 

space E of an algebraically irreducible representation TI of A is merely a linear 

space, not a Banach space. However, as was pJinted out in 8.20, one can always 

place a norm on E w. r. t. which E is a Banach space, the TI (A) (A E A) are bounded, 

and TI:A + B(E) is continuous.] 

8. 25 	 LEMMA The radical of A is the intersection of the nodular maximal left 

ideals 	in A, hence is a closed ideal. 

[Note: One can replace "left" by "right".] 

8.26 FEMARK A nodular maximal left ideal in A is closed but in general, 

maximal left ideals need not be closed. E.g.: Take A to be an infinite dimensional 

Banach space thought of as a Banach algebra with trivial multiplication (AB = 0 

V A,B E A) and let r be any dense linear subspace of codi:rrension l. 

[Note: If A has a right (left) approximate unit (cf. 4.1), then every maximal 

left (right) ideal is closed.] 
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N.B. If r:A -+ ~;:£) is the spectral radius, then 

r Irad A :: o. 

B.27 LEMMA let 1 c A be a closed ideal -- then rad 1 = 1 n rad A. 


[This is a trivial consequence of B. 4.] 


If rad A = {O}, then A is said to be sanisimple. 

N. B. The quotient A/rad A is a semis inple Banach algebra: 

rad(A/rad A) = {a}. 

[The algebraically irreducible representations of A are of the form 'IT pr,0 

where pr:A -+ A/rad A is the projection and 'IT is an algebraically irreducible re­

presentation of A/rad A.] 

B.2B EXAMPLE Every C*-algebra is semisimple. Proof: let A E rad A -- then 

A*A E rad A => r(A*A) = o. 

But 

IIAII = r(A*A) 1/2 (cf. 1.1). 

Therefore A = O. 

[Note: Not all Banach algebras are sanisimple and there are plenty of 

instances at the extreme end, viz. those equal to their radical (hence having no 

algebraically irreducible representations whatsoever).] 

8. 29 THEOREI'll let A and B be Banach algebras. Assume: A is semisimple and 

let '¥:B -+ A be a surjective harom::>rphism -- then '¥ is continuous. 
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PRCX)F Suppose that '¥ is not continuous -- then 3 a sequence {B } in B such n 

that B ..... 0 and '¥(B ) ..... A ~ O. Since A is semisimple, 3 an algebraically irre­
n n 

ducible representation 'IT of A on a Banach space E such that 'IT (A) ~ 0 with 'IT con­

tinuous. Because '¥ is surjective, 'IT 0 '¥: B ..... B(E) is also algebraically irreducible, 

thus is continuous (cf. 8.23). Therefore 

n('¥(B» = (n 0 '¥)(B) ..... (n 0 '¥){O) = O. n n 

MearlI'tlhile, thanks to the continuity of n, 

n{'¥{B » ..... n{A) ~ O. 
n 

Contradiction. 

8.30 REMARK If A is in addition ca:mlUtative, then it can be shown that any 

harrornorphism '¥: B ..... A is continuous. 

8. 31 THEOREM Any two complete no:rms on a semisimple Banach algebra are 

equivalent. 

[Apply 8.29 to idA:A ..... A.] 
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§9. *-REPRESENTATIONS OF *-ALGEBRAS 

N.B. In what follCMS, the underlying scalar field is ~. 

let E be a Hilbert s];:6.ce, B(E} the bounded linear operators fran E to E - ­

then B(E) is a C*-algebra. 

let A be a *-algebra -- then a *-representation of A on E is a *-hamomorphism 

'IT:A -+ B(E). 

9.1 LEMMA let 'IT be a *-representation of A on E. Supp:>se that EO c E is a 

- .1
'IT-invariant linear subspace of E -- then EO and EO are closed 'IT-invariant linear 

subspaces of E and 

[Note: let P O:E -+ EO be the orttogonal projection -- then 


Po E 'IT (Al ' . ] 


9.2 RAPPEL A subset SeE is total if the linear span of S is dense in E. 

let 'IT be a *-representation of A on E -- then 'IT is nondegenerate if the set 

AE = {'IT(A)x:A E A, x E E} 

is total. 

[Note: The trivial *-representation of A on a zero di.nensional space is non-

degenerate. ] 

E.g.: If 'IT is topologically cyclic, then 'IT is nondegenerate. 

http:s];:6.ce
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9.3 ~ Let if be a *-representation of A on E -- then if is nondegenerate 

V nonzero x E E, 3 A E A:if(A)x ~ O. 

9. 4 LEMMA Let if be a *-representation of A on E -- then if is nondegenerate 

V x E E, 


x E {if(A)x:A E A}-. 


Given a *-representation if of A on E, let Eif be the closed linear span of AE 

then Eif is IT-invariant and the restriction of IT to EIT is a nondegenerate *-repre­

sentation of A. Write 

J.E=Eif ESE.IT 

Then EJ. is if-invariant and the restriction of IT to EJ. is a trivial *-representationif if 

of A: 

EJ. = n Ker if (A) . 
if AEA 

9.S THEOREM Suppose that IT is a nondegenerate *-representation of A on E - ­

then there is an orthogonal decomposition 

where ViE I, E. is a closed if-invariant subspace and the restriction of IT to E. 
1. 1. 

is a topologically cyclic *-representation of A. 

PROOF Order the set of sets of mutually orthogonal, topologically cyclic, closed 

IT-invariant subspaces of E by inclusion and, via Zorn, consider a maximal element 
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{E.:i E I}. 
~ 

Let 'ITl and 'ITZ be *-representations of A on El and E2 • 

• A unitary eg:rlvalence is a unitary operator U:E + E such thatl Z 

UTI1 (A) = TI2 (A) U (A E A) • 

9.6 REMARK Let I;;:E + E be a to[X>logical equivalence. Write I;; = U(I;;*I;;) liZ
l Z 

(polar decx:mposition) -- then V A E A, 

(1;;*1;;) liZ TI (A) = 'IT (A) (1;;*1;;) liZ
1 1 

and 

Therefore 

=> 


[To begin with, 

= ('IT (A*) 1;;) * z 
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=> 

=> 

And then 

But the range of (1;;*1;;) 1/2 is dense, so 

9.7 LEMMA Let TIl and TI2 be *-representations of A on El and E2 . Assurre: 

TI2 is top:>logically cyclic with a top:>logically cyclic vector x E E2 -- then TIl2 

is unitarily equivalent to TI2 iff TIl is topologically cyclic with a topologically 

cyclic vector Xl E El such that 

(A E A). 

[tbte: One can always arrange llE.tters so as to ensure that UX = x .]l 2

In §8, 

TI(A) , = {T E L(E):TTI(A) = TI(A)T (A E A)L 
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I.e.: The ca:rmutant of 'IT was computed in L(E). However, for the p1.lI1Oses at hand, 

it is best to let 

'IT (A) t = {T E B(E) :T'IT(A) = 'IT(A)T (A E A)}. 

9.8 LEMMA Let 'IT be a *-representation of A on E ~ a -- then 'IT is topologic­

ally irreducible iff 'IT is not trivial and 'IT (A) t = g i~. 

9.9 LEMMA Let 'IT be a *-representation of A on E ~ a -- then 'IT is topologic­

ally irreducible iff 'IT is not trivial and 'IT (A)' contains no nonzero orthogonal pro­

jections except for the identity reap on E. 

PROOF Assume that 'IT is not trivial and that the condition on 'IT (A)' obtains. 

To get a contradiction, supy;ose that 'IT is not topologically irreducible. Let 

EO ~ E be a nonzero closed 'IT-invariant subspace and let Po be the orthogonal pro­

jection of E onto EO -- then V A E A, 

PO'IT(A)P 'IT(A)P · O = O 

Therefore 

Po'IT (A) = ('IT(A*)P )*O

= (pa'IT (A*) Po) * 

= Po'IT (A) Po 

= 'IT (A) Po 

=> 
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ret 1T. :A -+ E. (i E I) l::x:! a *-representation. Assurre: V A E A, :3 K.. > 0
1. 1. -A 

such that 

sup I 11T.: (A) II s K...
iEI..... -A 

Fonn the (Hilbert) direct sum 

Then V A E A, 

e 1T. (A) E B( (D E.) 
iEI 1. iEI 1. 

and the assignmant 

A -+ (D 1T. (A) 
iEI 1. 

defines a *-representation of A on (D E., the (Hilbert) direct sum of the 1T .• 
iEI 1. 1. 

[Note: It is clear that 

(D 1T. 
iEI 1. 

is nondegenerate iff ViE I, 1T. is nondegenerate.]
1. 

N.B. If 1T is a *-representation of A on E and if 1T. = 1T ViE I, then the 
-- 1. 

*-representation 

(D 1T. 
1.iEl 

is denoted by !1T (1 the cardinality of 1). Under the identification 

~ 2
(D E ~ E ~ I (1), 

iEI 

I1T beoames 1T ~ id. 
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[Note: lilly *-representation which is topologically equivalent to a 

*-representation of this type is called a multiple or amplification of 1T by!..] 

The definitions and results that folloN can be formulated for arbitrary 

*-represmtations but rna.tters s:implify if we restrict to nondegenerate *-re:pre­

sentations which is not an essential loss of generality. 

Let 1Tl and TI2 be nondegenerate *-representations of A on El and E2 -- then 

1Tl and 1T2 are disjoint if no nonzero sub *-representation of TIl is topologically 

equivalent to a nonzero sub *-representation of 1T2 • 

[Note: Therefore two topologically irreducible *-representations of A are 

disjoint iff they are not topologically equivalent. ] 

9.10 EXAMPLE Every nontrivial nondegenerate *-representation of A on a finite 

dinensional Hilbert space is the finite direct sum of topologically irreducible sub 

*-representations (these are unique up to topological equivalence while their multi ­

plicities are unique period). So, if 1Tl and 1T2 are two such, then to say TIl and 

1T2 are disjoint rooans that the "same lf topologically irreducible *-representation 

cannot appear in the decantX>sitions of 1Tl and 1T2 into topologically irreducible sub 

*-representations. 

Let TIl and 1T2 be nondegenerate *-representations of A on El and E2 -- then 

TIl and TI2 are geometrically equivalent if no nonzero sub *-representation of TIl is 

disjoint fran 1T2 and no nonzero sub *-representation of 1T2 is disjoint from 1Tl . 
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9.11 EXAMPLE In the finite d:i.mensiona1 case (cf. 9.10), "\ is ge<:netrically 

e::jUivalent to TI2 iff the II same" top:::>logically irreducible *-representations occur 

in Heir respective decompositions into top:::>logically irreducible cClll1p:::>nents but 

not necessarily with the same multiplicity. 

9.12 LEMMA Nondegenerate *-representations TIl ,TI2 are geon:etrically e::jUivalent 

iff TIl is unitarily equivalent to a sub *-representation of a multiple of TI2 and 

vice versa. 

[Note: Therefore a given nondegenerate *-representation is geanetrically 

e::jUivalent to any of its multiples.] 

In particular: 

"unitary e::jUivalence" => lIgec:metric equivalencell 
• 

9.13 REMARK If TIl is top:::>logically irreducible and TI2 is geon:etrica11y e::jUiv­

alent to TIl' then TI2 is unitarily equivalent to a multiple of TIl' Thus if TI2 is 

also top::>logically irreducible, then TIl and TI2 are unitarily equivalent. 

9.14 LEMMA Nondegenerate *-representations TIl'TI2 are gE!ClITEtrically equivalent 

iff ::I a cardinal number ~ such that ~TII is unitarily equivalent to ~TI2' 

[To establish sufficiency, let 11 be a nonzero sub *-representation of 

then 11 is not disjoint from ~TIl' hence is not disjoint fram ~112' or still, is 
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not disjoint from TI2. I t remains only to reverse the roles of TIl' TI2. J 

N.B. One says that TIl is weakly equivalent to TI2 if Ker TIl = Ker TI2. SO, as 

a corollary to 9.14, 

"geometric equivalenceft => "weak e::.JUivalence". 

9 .15 REMARK Let Rep A be the set of all nondegenerate *-representations of 

A -- then in Rep A there are four standard notions of equivalence: 

1. unitary e:ruivalence; 

2. to:t;:Ological equivalence; 

3. geometric equivalence; 

4. weak e:ruivalence. 

All are e:ruivalence relations and we have 1 <=> 2 => 3 => 4. M:>reover, these 

implications are not reversible (except in certain special situations). 

9.16 LEMMA Nondegenerate *-representations TIl ,TI2 are disjoint iff they have 

no gecxnetrically e:;ruivalent nonzero sub *-representations. 

A nondegenerate *-representation TI of A on E is pr.i.m3.ry if every nonzero sub 

*-representation of TI is geometrically e:ruivalent to TI. 

E.g.: If TI is to:t;:Ologically irreducible, then TI is primary (as is TI ED TI which, 

of course, is not to:t;:Ologically irreducible). 

[Note: Arbitrary multiples of a topologically irreducible *-representation are 

primary. J 

http:pr.i.m3.ry
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9.17 LEMMA Nonde:Jenerate primary *-representations 1Tl' 1T2 are either disjoint 

or geanetrically equivalent. 

PKX)F SuptDse that 1T ,1T2 are not disjoint -- then :1 nonzero sub *-represen­l 

tations 1T~ of 1Tl , 1T~ of 1T2 with 1T~ geometrically equivalent to 1T~ (cf. 9.16). But 

1T~ is geometrically equivalent to 1Tl and 1T~ is geometrically equivalent to ·rr~. 

Therefore 1Tl is geometrically equivalent to 1T2 . 

* * * * * * * 

Assume henceforth that A is a Banach *-algebra (but maintain the assumption 

that E is a Hilbert sp::lce). 

9.18 REMARK There is no universally agreerl to definition of the term "Banach 

*-algebralt Here, it simply means that A is a Banach algebra supplied with an• 

involution. In particular: The involution is not necessarily continuous. 

[Note: In my book POOITIVITY, the involution was tacitly taken to be isanetric 

(i. e., I IA* II = IIA II for all A E A) which, of course, implies its continuity. Let 

us also remind ourselves that this is autauatic for C*-algebras.] 

9.19 EXAMPlE Let A be an infinite dimensional Banach space. Fix a Hamel 

basis E = {e} for A subject to lie II = 1 VeE E. Let {en} be a sequence of distinct 

elements of E and put 

= nezn' = n e (n = 1,2, ... ).e2n_l e 2n 
1 

n_l 

For all remaining elements of E, put e* = e and then extend *: E -+ E to A by 
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conjugate linearity. Taking ncM the multiplication in A to be trivial (AB = 0 

V A,B E A) thus gives rise to a Banach *-algebra with a discontinuous involution. 

9.20 REMARK If A is a Banach *-algebra, then the ma.p 

PC (A) 4- PC (A) 
*: 

(L,R) 4- (R* ,L*) , 

'Where T* (A) = T (A*) *, is an involution, hence PC (A) is a *-algebra. If in addition, 

Anrly} = {oJ and ~A = {O}, 

then 5.15 (and subse:;ruent discussion) implies that PC (A) is a unital Banach *-alge­

bra, in 'Which case 

is contractive. 

[Note: In the presence of the involution, 

~A = {oJ <=> ~A = {Ole 

Therefore PC(A) is a Banach *-algebra if A admits a right or left ap~ximate unit 

(cf. 5.16).] 

9.21 LEMMA Sup:r;ose that A is se:nisimple -- then the involution *: A 4- A is 

continuous. 

PR!X)F Denote a nonn II· 11* by IIAII* = IIA* \\ -- then the p:lir (A, II· \1*) is 

a Banach algebra. But according to 8.31, 11·11 and 11·1\* are equivalent, fran 

which the assertion. 
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9. 22 REMARK The image of a left ideal under the involution is a right ideal. 

Therefore rad A is a closed *-ideal (cf. 8.25), thus A/rad A is a semisimple Banach 

*-algebra and its involution is oontinuous w. r. t. the quotient nonn. 

A *-representation of A on E is a *-hc:m:.m:>rphism rr: A + B(E) • 

N.B. If the involution is isometric, then every *-representation is continuous, 

a fact that persists in general (cf. 9.25). 

[Note: A *-hc:m:.m:>rphism from a Banach *-algebra with isexnetric involution to 

a C*-algebra is continuous (indeed, contractive).] 

9.23 EXAMPLE Let H be a complex Hilbert space. Take A = B{H) , E = !!2 (H) 

(the *-ideal in B(H) consisting of the Hilbert-8chmidt operators) -- then the left 

regular representation rr of B (H) on ~2 (H) is a *-representation: 

rr(A)T = AT (A E B(H), T E !!2(H». 

[Note: 


rr (A) E B (L2 (H» (' \rr (A) \ I = I I AII) . 


Moreover, V T,T' E ~2 (H) , 

<T',AT>2 = <A*T' ,T>2 = <rr(A*)T' ,T>2 

<T' ,AT>2 = <T' , rr(A) T>2 = <rr(A)*T ' ,T>2 

=> 

rr{A*) = rr{A) *.] 
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9.24 lEMMA Let T be a *-subalgebra of B(E) which is a Banach algebra illlder 

an auxiliary norm II· 110 -- tren 3 M > 0: 

I IT II ~ M I IT I 10 (T E T). 

9.25 THEOREM Let IT be a *-representation of A on E -- then IT is continuous. 

PRCX)F The image IT (A) is a *-subalgebra of B (E) (hence is sanisimple) and the 

kernel Ker IT is a cloSErl *-ideal of A: 

IT(Ker IT) c rad IT(A) = {O} => IT c Ker IT. 

Ther:efore IT (A) is a Banach algebra via transport of structure: 

A/Ker IT::::: IT(A) , 

the auxiliary norm II· 110 being given by 

lilT (A) 110 = inf {liB r I:IT (B) = IT (A) }, 

It remains only to take T = IT(A) and apply 9.24: 

I IlT (A) I I ~ M lilT (A) II 0 ~ MilA II· 

[Note: 

X E rad IT(A) => X*x E rad IT(A). 

The sp:.ctrum of X*X thus consists of {O} alone, so the spectral radius r (X*X) 

com}?Uted in B(E) must vani she But 

IIXII2 = r (X*X) = 0 => X = 0.] 
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9.26 RAPPEL In a lll1ital *-algebra A, an element U E A is lll1itary if U*U = 

00* = lA' In an arbitrary *-algebra A, an element V E A is quasilll1itary if V*V = 

W*=V+V*. 

[Note: If A is lll1ital , then the map A ~ lA - A induces a bijection between 

the lll1itary elanents and the quasilll1itary elements.] 

9. 27 LEMMA SUppJse that A is a Banach *-algebra -- then every element of A is 

a linear combination of quasilll1itary elements. 

[Note: This is a well..kno.tm structural fact (its proof depends on Ford's farrous 

"square root 16IIlla").] 

Let A E A -- then 

n 
A = l: A.V. (A. E C) ,

1. 1. 1. ­i=l 

where the V. are quasiunitary• 
1. 

n 
[Note: Since 0 is quasiunitary,one can always assume tmt l: A. = 0.] 

i=l 
1. 

Put 
n n 

q(A) =inf{l: IA.I: l: A. = oL 
1. i=l 1. 

9.28 LEMMA q:A ~ E;d) is a sul:multiplicative seminonn such that q<A*) = q(A) 

for all A E A. 

9.29 REMARK If A = rad A, let (3 (A) = 1 but if A ;t'. rad A, let (3 (A) be the 



15. 


norm of *:A/rad A + A/rad A, i.e., let 

fHA) = sup {IIA* + rad AII A E A - rad AL 
IIA + rad All 

Then it can be SIown that 

q(A) :::; (l + S{A» IIAII (A E A). 

Let I c A he a nonzero *-ideal (it is not assurred that I is closed). 5ur:pose 

tJ:at TI: I + B(E) is a *-representation - then we claim that TI can be extended to a 

*-representation :rr:A + B{E). To see this, recall that on general grounds there is 

an orth:>gonal deccmr:osition 

where ETI is the closed linear span of IE and the restriction of TI to E~ is a trivial 

*-representation of 1. One can certainly extend the latter to a trivial *-repre­

sentation of A. SO, to settle the extension question, one can assume that TI is 

nondegenerate. 

n 
If L: TI (I. ) x. is a typical elenent in the linear span E of IE and if :rr is an 

. 1 1. 1.1.= 

extension of TI, then V A E A, 

n n 
:rr (A) (L: TI (I. ) x. ) = L: :rr(A)TI{I.)x.

1. 1.i=l 1. 1. i=l 

n 
== L: :rr (A) :rr (I. ) x. 

1. 1.
i=l 

n 
= L: :rr (AI . ) x . 

. 1 1. 1.1.= 
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n 
= L 1T(AI.) x •• 

]. ].
i=l 

Since TI(A) E B(E) and since IE is total, it follCIINs that if TI exists, then TI is 

unique. 

One can also use this recipe to establish existence. For sup];Ose that 

n 
1: 1T(L)x. = O. 

i=l 

Then 

n n 
= L L 

i=l j=l 

n n 
= L L 

i=l j=l 

n n 
= l: L 

i=l j=l 

n n 
= l: 1: 

i=l j=l 

n n 
= L < L 

]. ]. 

<1T (AI. ) x. , 1T (AI.) x. >
].]. J J 

<x. , 1T (AI. ) *1T (A! .) x. >
]. ]. J J 

<x., 1T(I~A*A! .)x.>
]. ]. J J 

<1T(L )x. ,1T(A*AI .)x.>
].]. J J 

1T (L ) x. ,1T (A*AI .) x . > 
i=l ].]. J Jj=l 

= o. 

The prescription 
n n 

TI(A) ( L 1f(I.)X.) = L 1T(A!.) x. 
]. ]. ]. ].

i=l i=l 
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is thus a we11defined linear operator on E. 

9.30 RAPPEL Supp::>se that E is a pre-Hilbert space. Let T:E -to E be a 1ine:rr 

map -- then a 1ine:rr map T*:E -to E is a formal adjoint of T V x,y E E, 

<Tx,y> = <x,T*y>. 

Formal adjoints are tuilique and tre subret 

L* (E) c L(E) 

consisting of those T that have a formal adjoint is a unital *-a1gebra. 

[Note: The mere existence of a formal adjoint does not imply roundedness. 

If, however, U is a unitary e1e:nent of L* (E), then U is rounderl: 
,..., _ f"W1 _ 

<Ux,Uy> = <U*Ux,y> = <x,y> 

=> I lux 112 = Ilx 112 => !lUx II = Ilx II => Ilu II = 1. 

Incidentally, if E is a dense 1ine:rr subsp3.ce of a Hilbert space E, then the formal 

adjoint is the restriction to E of the Hilbert space adjoint.] 

Next, TIm) has a fo:rma1 adjoint, viz. n(A*). Proof: 

m n 
< E TI (J . ) y . , TI (A) (E TI (I. ) x. ) > 
j=l J J i=l 1 1 

m n 

= ""' E <TI (J.) y . I
L, TI (AI. ) x. >

J J 1 1j=l i=l 

m n 
= E L <y. , TI (~) TI (AI. ) x, >

J J 1 1j=l i=l 

m n 
= E E <y., TI {J'1!AI. )x. >.

J J 1 1j=l i=l 

http:subsp3.ce
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On the other hand, 

rn n 
<i (A*) (E 1T (J .) Y • ), E 1T (1. ) x. > 

j=l J J ~ ~ 

rn 	 n 
= E L <7T(A*J.)y.,1T(I.)x.>

j=l 	i=l J J ~ ~ 

rn n 
= E E <y.,1T(A*J.)*1T(1.)x.>

j=l i=l J J ~ ~ 

m n 
= E E <y. ,1T (J"l:A.1. ) x. >. 

J J ~ ~j=l 	i=l 

Therefore 

1T(A)* = 1T(A*) • 

N.B. The definitions imply tmt i:A -+ L(E) is a *-honDrrorphism. 

9.31 LEMMA If V E A is quasiunitary, then 

id~ - 1T(V) E L(E) 
E 

is unitary. 

PR(X)F We have 

(id~ - 1T(V»*(id~ - i(V» 
E E 

= id~ - i(V*) - 1T{V) + 1T(V*)1T(V) 
E 

= id	~ + 1T (- V* - V + V*V) 
E 

= id . 
E 
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Ditto 

(id_ - n(v» (id_ - n(V)* = id_. 
E E E 

Therefore 

id - n(V) E L(E) 
E 

is bounded (cf. 9.30). 

n n 
A= E A.v. E A. = 0) • 

1 1 1i=l i=l 

Then 
n 

TI (A) = E A. TI (V. )
1 1i=l 

n n 
= E A. n (v.) E A. id 

1 1 1i=l i=l E 

n 
== E A. (n (V.) - id-) ,

1 1
i=l E 

so TI(A) is bounded, thus can be extended by continuity to a bounded operator 

TI(A) E B(E) and the resulting map TI:A -+ B(E) is a nondegenerate *-representation 

of A which extends TI. 

N.B. If A is roorely a *-algebra, then it need not be true that a *-repre­

sentation TI: I -+ B(E) is extendible to a *-representation TI:A -+ B(E). 

9.32 LEMMA With too notation and assumptions being as above, TI is topologic­

ally cyclic iff TI is topologically cyclic and TI is topologically irreducible iff 

TI is topologically irreducible. 
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9. 33 EXAMPLE Suppose that A is a C*-algebra and let TI: A -+ B(E) be a non­

degenerate *-representation -- then 3 a unique nondegenerate *-representation TI of 

DC (A) on E such that V A E A, TI (LA/~) = TI (A). Assurre further that TI is topologically 

irreducible. Since the sane holds for TI I given any Z in the center l (A) of DC (A) I 

there exists a corrplex number C (TI) :z 

(cf. 9.8). 

[Note: let us keep in mind that DC(A) is a unital C*-algebra and leA) is a 

unital ccmnutative C*-algebra. J 

The *-radical of A is tre intersection of the kernels of all the topologically 

irreducible *-representations of A, thus a closed *-ideal. Notation: *-rad A. 

If *-rad A = {O}, then A is said to be *-sernisimple. 

N. B. 	 The quotient A/*-rad A is a *-semisimple Banach *-algebra. 

9.34 	 THEOREM The *-radical of A is the intersection of the kernels of all the 

*-representations 	of A. 

[This will emerge from the machinery developed in §10 (cf. 10.29).J 

Acrordingly, if A admits a faithful *-representation, then A is *-semisimple. 

E.g.: Every C*-algebra is *-semisimple (cf. 10.36). 

9.35 EXAMPLE Consider Ll(G) (cf. 5.17) -- then Ll(G) is a Banach *-algebra 

with isc:me.tric involution but it is not a C*-algebra unless G is a singleton. Still, 

Ll(G) 	 is *-semisimple. 
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1 	 2[The lift to L (G) of the left regular representation of G on L (G) is a 

1faithful *-representation of L (G).] 

9.36 EXAMPLE Let D = {z E C: Iz I s l} -- then by A(D) we shall l..ll'rlerstand the 

algebra of all continuous complex valued functions on ~ that are lnlCllIDrphic in 

int D. Since A(!2) c C(!2) is clos=d. in the supra:mJm. ronn, it follO\Vs that A(!2) is 

a unital conmutative Banach *-algebra, the involution being given by the rule 

f*(z) = fez). 

Define a *-representation TI of A(!2) on L2 (Iz I = 1) by 

TI(f)¢ = f¢ (:r;ointwise product) • 

Then TI is faithful, thus A(!2) is *-sem:i.simple. 

[Note: A (!2) is rot a C*-algebra (consider 1 + ;:r z) • ] 

9. 37 LEMMA Let TI be a 	 *-representation of A on E -- then V A E A, 

IITI (A) II s r(A*A) 1/2, 

r the spectral radius. 

9.38 	 LEMMA ve have 

rad A c *-rad A, 

hence 

A *-semisimple => A sernisimple. 

PR<X>F 	 Let A E rad A -- then 


A*A E rad A => r(A*A) = 0 
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=> 

I I TI (A) II = 0 ('If TI) => A E Ker TI ('If 'IT) 

=> 

A E *-rad A. 

[Note: It can happen that rad A = {o} but *-rad A ;;t {oL] 

Define Y:A -+ ~~ by 

y (A) = sup II TI (A) I I, 
'IT 

woore TI ranges over the *-representations of A. 

[Note: 'If A E A, 

y(A) ~ r(A*A) 1/2 (cf. 9.37). 

But 

r(A*A) 1/2 s; IIA*AI1 1/2. 

If nc:M *:A -+ A is continuous, then :3 CA > 0: IIA* II ::; C~ IIAII, so 

which proves that y is continuous w. r. t. I I· II (see belOlN for the general case) . ] 

9.39 LEMMA 'If A E A, 

y(A) s; q(A). 

n n 
PRCX)F If TI is a *-representation of A on E and if A = E 'A.V. (E 'A. = 0), 

i=l ~ ~ i=l ~ 

then i~ - TI (Vi) is unitary. Therefore 
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n 
I I 'IT (A) x I I = I I L: A . 'IT (V. ) x II 

. 1 1 1
1= 

n 
= II L: \ ('IT (Vi) - i~)xll 

n 
~ (L: IA. I) I Ix II 

. 1 11= 

=> I I 'IT (A) I I ~ q (A) => 	 Y(A) ~ q (A) • 

[Note: It is true (but not obvious) that y = q.] 

9.40 	 THEOREM V A E A, 


y (A) ~ (1 + S(A» I IA II (cf. 9. 29) . 


9.41 REMARK Here is 	a different approach to the continuity of y w.r.t. 

11·II:vAEA, 

r(A*A) = r(A*A + rad A) 

~ IIA*A + rad All 

~ IIA* + rad AI IliA + rad All 

~ S(A) IIA + rad A I \2 

~ S(A) IIA 112 

=> 

In turn, this leads to another proof of 9.25 and also srows that 
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y (A) ~ m(A) I IA II , 
where 

(A*A) 1/2
meA) = sup{r A E A - {oJ} 

IIAII 

[Note: 

IIA + rad All ~ s(A) IIA* 	 + rad All 

=> 

1 ~ S (A) • 

If *:A + A is isometric, then *:A/rad A + A/rad A is isometric, hence in this case, 

S(A) = 1.] 

It is clear that y is a 	 sul:::multiplicative seminorm and 


y(A*A) = y(A)2 (A E A). 


And 

Therefore y induces a C*-norm on the quotient A/*-rad A. Denote the completion 

of A/*-rad A by C*(A), the enveloping C*-algebra of A, and write PA for the canon­

ical *-hcm:m:::>rphism A + C* (A) • 

9.42 EXAMPLE Take A = Ll(G) (cf. 9.35) -- then C*(G) =C*(Ll(G» is called 

the grOUp C*-algebra of G. 
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[Note: Since L I (G) is *-senisimple, it can be viewed as a dense *-subalgebra 

of C*(G).] 

9.43 LEMMA If B is a C*-algebra and if if>:A -)00 B is a *-lx::.lrocm:>rphism, then 

there is a unique *-hcm::m:>rphism ¢:c* (A) B such that if> = ¢ 0 PA'-)00 

9.44 SCl:DLIUM The map TI -)00 TI = TI 0 PA sets up a bijection between the set of 

all *-representations TI of C* (A) and the set of all *-representations TI of A. This 

oorrespmdence prese:r:ves the following properties: trivial, nondegenerate, top::>­

logicalI y cyclic, top:>logically irreducible, unitary e:;ruivalence, ge:.::metric e:;ruiv­

alence. 

9. 45 REMARK It may very well be the case that TI is faithful yet TI is not 

faithful. 

[Note: It is also p:>ssible that TIl and TI2 are weakly equivalent but TIl and 

TI2 are not weakly equivalent.] 

The *-representation theory of Bclnach *-algebras, hard one to say the least, 

simplifies enonrously when specialiZed to C*-algebras. Further evidence for this 

is supplied by 9.48 infra, a surprise if there ever was one. Its proof depends on 

the two pillars of W*-algebra thEOry. 

9.46 T.HEOREH. Supp:>se that A is a nondegenerate *-subalgebra of B(E) -- then 

the weak closure of A is A" (= (A')'). 
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[N:>te: In this context, to say that A is nondegenerate means that the set 

AE = {Ax:A E A,x E E} 

is total, Le., A is nondegenerate in the sense used at the beginning per the 

identity representation of Aon E.] 

9.47 THEOREM SupJ?Ose that A is a *-subalgebra of B{E} and let T be an element 

in the weak closure of A - ­ then 3 a net T. 
~ 

in A such that V i, liT. I' 
~ 

:s liT II and 

T. 
~ 

+ T strongly. 

[Note: If T is selfadjoint, then one can take the T. selfadjoint.] 
~ 

9.48 THEOREM Let A be a C*-algebra and let n:A + B{E) be a *-representation. 

Assume: n is toJ?Ologically irreducible -- then n is algebraically irreducible. 

PROOF Since A is a C*-algebra, the image n{A} is a norm closed *-subalgebra 

of B{E). So, to establish algebraic irreducibility, we can replace A by n{A), the 

claim being that V x ~ 0, the set 

{Ax:A E A} 

a:xuals E {cf. 8.3}. To this end, note first that A is nondegenerate and 

AI = g i~ {cf. 9.8} => N' = B{E). 

Therefore the weak closure of A is B{E}. NOW' fix x ~ 0, y in E. To construct an 

A E A such that Ax = y, nonnalize the situation and take Ilx II = 1, Ily II = 1 and 

for any z E E, let 

P z,x = <x,->z {lipz,x II = liz II Ilx II} . 
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Accordingly, lip IIy,x = 1, so 3 Al E A: IIAll! ::; 1 and 

lip xy,x - AIX II ::; 2 ­
1 

or still, 

Ily - Alx II ::; 2 ­
1 

. 

Next, let Yl = Y - AIX - ­ then I I pYl' x II ::; 2 ­
1 

, so 3 A2 E A: II~ II ::; 2 ­
1 

and 

lip x - A X II ::; 2-2
2Yl'x 

or still, 

Proceeding, 3 ~ E A: I IAn II ::; 2-n such that 

n 
Ily - L: A.xll ::; 2-

n 
. 

i=l ]. 

Put 

00 

A = L: A. 
n=l n 

Then A E A and Ax = y. 

[Note: It is thus a corollary that every topologically irreducible *-repre­

sentation of a C*-algebra is totally algebraically irreducible (cf. 8.19). J 

Let Abe a C*-algebra and let n:A + B(E) be a topologically irreducible 

*-representation. SupfOse given 

Yl'·.· 'Yn E E, 
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where the x. are linearly independent. 
~ 

9.49 LEMMA 3 A E A: 

9.50 LEMMA Assume that 

for same selfadjoint T:E + E -- then 3 a selfadjoint A E A: 

9.51 LEMMA Take A unital and assume that 

for Sate unitary V:E + E -- then 3 a unitary U E A: 

PIroF It suffices to establish this under the additional supp::>sition that 

the Xi are orthonormal, hence that the Yk are also orthonormal. Let EO be the 

linear span of Xl'." ,xn'Yl'·" 'Yn0 Extend 

Xl' 0 0 0 ,xn to an orthonormal basis Xl"'" xm for EO 

Yl' ••• , Y n to an orthonormal basis Yl' . 0 . , Y m for EO 0 
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be an orthononna.l basis 	for EO: 

voe . = A. e . (A. E c, IA. I = 1).
J J J J - J 

r-r t. 
write A. = e J (t. E g) and put

J 	 J 

m 
T = L: t.P., 

j=l J J 

where P. is the orthogonal projection of E onto Ce. - then T:E + E is selfadjoint
J 	 - J 

and Te. = t.e.. Accordingly, 3 a selfadjoint A E A: 
J J J 


n(A)e. = t.e. (cf. 9.50).

J J J 

I=IA th EA' 	 , andLet U = e -- en U 1S UIlltary 

I=IAn(U) e. = n(e )e.
J 	 J 

r-I n (A)= e e. 
J 

= A.e. 
J J 

Therefore n (U) equals V 0 	on EO' thus 

n(U)x. = VOx. = y.,
111 

as desired. 

9.52 REMARK Let A be a C*-algEbra - then e.rery algebraically irrerlucible 
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repreSEntation of A is algebraically a:;ruivalent to a top::>logically irreducible 

*-representation of A. 

9.53 LEMMA Let A be a C*-algebra. SUpp::>se that TIl and TI2 are algebraically 

6:]Uivalent tofOlogically irreducible *-represEntations of A on El and E2 -- thEn 

TIl and TI2 are unitarily 6:]UivalEnt. 

PRCX:>F Since TIl and TI2 are algebraically irreducible (cf. 9.48), if I;;:E -+ E2
l 

is the algebraic eg:uivalence at issue, then I;; must be a top::>logical 6:]Uivalence 

(cf. 8.24), so TIl and TI2 are unitarily a:;ruivalent (cf. 9.6). 

One of the objectives of the thoory is the classification of all the non-

degenerate *-representations of a given C*-algebra A, the simplest situation being 

when A is canmutative. 

Notation: 

• Bor t;, (A): The a-algebra of Borel subsets of t;, (A) • 

• Pro E: The lattice of orthogonal projections of E. 


SUPFOse that 


P:Bor t;, (A) -+ Pro E 

is a spectral measure. Let 

A 

TIp (A) = ft;,(A)A(w}dP(w) (A E A). 

Then 

and the assignment A -+ TIp(A) is a unital *-representation of A on E. 

----------....--~ 
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[This is a simple conse:;ruence of the generalities that govern spectral 

inte:;rrals. In fact, 

TIp (AB) 	 = f l'l (A)AB" (w) dP (w) 

= fl'l(A)W(AB)dP(W) 

= (fl'l(A)W(A)dP(W» (fl'l(A)W(B)dP(W» 

and 

"­

TIp(A)* 	 = Ul'l(A)A(W)dP(w))* 

"­

= fl'l(A)A(W)dP(w) 

= f l'l (A) W(A) dP(w) 

N.B. 	 If A is unital, then 

Tenninology: P is rE9Ular if V S E Bor l'l (A) , 

peS) = sup{P(K):K c S, K compact}. 
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[Note: This is "irmer" rSJUlarity. It forces "outer" rSJUlarity: 

P(S) = inf{P(U) :U ;) S, U open}.] 

We then claim that TIp is nondegenerate if P is rSJUlar. Proof: There are 

two p:>ints. 

(i) First, by rSJUlarity, 

i~ = p(~{A» = sup P(K). 
Kc~ (A) 

Therefore 

{P(K)X:K c ~(A),x E E} 

is total. 

(ii) Second, if f =1 on K c ~(A) (f E c(~(A» (A unital) or f E Coo(~(A» 

(A nonunital», then 

P(K) = J~(A)XKdP 

=> 

Ran P(K) c Ran J~(A)fdP. 

Therefore 
A 

{(J~(A)AdP)X:A E A,x E E} 

is total, i. e., TIp is nondegenerate. 
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We thus have a map P -?- TIp from the set of regular E-valual spa::tral mEE.sures 

on fl {A} to the set of nondElJener-ate *-representations of A on E. 

9.54 SNAG The map P -?- TIp is bijective. 

The details are relatively straightfo:r:ward. Given x, y E E, set 


~ {S} = <x,P(S}y> (S E Bor fl{A».

x,y 

Then ~ is a complex Radon measure on fl (A) • x,y 

If nt::M P and Q are regular and if TIp = TIQ, then P = Q. Thus define \)
x,y 

per-

Q: V A E A, 

= <X,TIQ(A)y> 

=> 

~ = \) (V x,y E E)x,y x,y 

=> 

peS) = Q(S} (V S E Bor fl(A)} 

=> 

P = Q. 

Therefore the map P -?- TIp is injective. 

To prove surjectivity, assume initially that A is unital (so MAl is compact) 
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and let TI:A -+ B(E) be a nondegmerate *-represmtation (so TI(lA) = i~) -- thm 

by the Riesz represmtation theoran, V x,y E E, one can find a unique ccmplex Radon 

measure II on t,(A) such that V A E A,x,y 

'" 
ft,(A)Ad]Jx,y = <x,TI(A)y>. 

Since V S E Bor t, (A) , 

IllX,y(S) \2 S II (S)]J (S)x,x y,y 

S]J (t,(A»]J (t,(A»
x,x y,y 

there exists a unique operator peS) E B(E) such that 

II (S) = <x,P(S)y>.x,y 

It is clear that P (S) is selfadjoint and idan};Otmt, i. e., P (S) is an orth;:)gonal 

projection. Morenver I the assignment 

Bor t, (A) -+ Pro E 

S -+ peS) 

is a regular spectral me:lsure on t, (A) • Finally I V A E A, 

A 

<x,TIp(A)y> = <X, (ft,(A)AdP)y> 

= <x,TI(A)y>, 

implying thereby that TIp = TI. 
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It rema.ins to consider a nomnital A. So let 'IT:A -+ B(E) be a nondegenerate 

*-representation. Extend 'IT to A+ by writing 

'IT+ (A, A) = 'IT (A) + A i,\:, 

+ +Then 'IT : A -+ B(E) is a nondegenerate *-representation, thus 3 a regular spootral 

measure 

+ +P :Bor 6. (A ) -+ Pro E 

+such that 'IT + = 'IT. But 
P 

(cf. §2). 

And 

= 0 

P+ ({oo}) = 0 

=> 

P+ (6. (A) ) = P+ (6. (A) + - fool) 

= P+ «6.(A) + - fool) U fool) 


= P+(6. (A) +) 


= i,\:_ 


If DOiI P = p+I6.(A) , then 

P:Eor 6. (A) -+ Pro E 
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is a regular spectral measure such that 'ITp = 'IT. 

9.55 EXAMPLE Let A be a commItative C*-alget>ra. 8upFOse that 11 
+

E Ml (6. (A) ) 

(ef. 7.12). Take E = L
2 (6. (A) ,11) and define 'IT (A)

11 
by 

" 
('IT (A) f) (w) = A(w)f(w) (f E E).

11 

Then 'IT is a nondegenerate *-representation of A on E an:i its associated spectral
11 

measure P is the prescription
11 

(8 E For 6. (A» • 

Let 

P:Bor 6. (A) -+ PLo E 

be a regular spectral measure - then the support of P, der:otErl spt P, is the set 

of all w E 6.(A) such that p(U) ~ 0 V open neighborhood of w. 

[Note: The sUPFOrt of P is a elosErl subset of 6. (A) • ] 

N.B. 	 If 'ITp = 'IT, then spt P is callErl the spectrum of 'IT. 

9.56 	 LEMMA SUppose that 'IT:A -+ B(E) is a nondegenerate *-representation of A ­

then 	Ka:- 'IT consists of those A E A such that A vanishes on the spectrum of 'IT. 

[Note: 'IT is faithful iff its spectrum is all of 6. (A) .] 

9.57 REMARK The rna.chinery assembled for the proof of 9.54 and its consequences 

provides a direct route to the spectral theorem for normal operators. 
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§l0. GNS 

let A be a Banach *-algebra -- then a linear fun::::tional w:A -+ s: is E9sitive 

if v A E A, w{A*A) ;c O. 

10.1 	 LEMMA Let w:A -+ s: be a p:>sitive linear functional -- then V A,B E A, 

w(Z\*B) = w(B*A) 

and 

Iw{A*B) \2 :::; w (A*A)w (B*B). 

N.B. 	 Supp:>se that A is unital -- then V A E A, 


w (A*) = w (A) 


ani 

[Note: Therefore 

10.2 EXAMPLE There are Banach *-algebras that have no nonzero IOsitive linear 

functional s. Thus take any unital Banach algebra A ~ {O} and fonn the cartesian 

product A x A. Introduce operations am nonn by (Al,BI) + ~,B2) = (AI + A2' 

~ + B2) I A(A,B) = (AA,~B), ~,Bl)' (A2' Bz) = (Al A2, B2~)' (A, B) * = (B,A), am 

II (A, B) II = max { IIAII, IIBII) -- then A x A is a Banach *-algebra with unit 

lA x A = (lA,lA)· 
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Sime 

it follows that every pJsitive linear functional on A x A must vanish at (lA,lA)" 

hence from the above, must vanish identically. 

If A is a C*-algebra, then pJsitive linoor functionals are continuous (cf. 7.3) 

but if A is just a Banach *-algEi:>ra, this need :rnt be true. 

10.3 EXAMPLE Let A be the Pa.nach space C[O,l], take the multiplication to 

be trivial (fg = 0 V f,g) and set f* = f -- then A is a Banach *-algEi:>ra and every 

linear functional w:A + £ is pJsitive. On the other ham, A is infinite dimensional, 

trus admits a discontinuous linear functional. 

Let w:A + £ be a pJsitive linear functional. Given B E A, define wB:A + £ by 

(A E A) • 

10.4 lEMMA ve have 

[looking ahead, the cat1putation 

~ w(B*B)w(B*A*AB) 

B= w(B*B) w (A*A) 

Bshows that w satisfies condition H with 
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Therefore w
B is representable (cf. 10.10), hence (cf. 10.12) 

:::; w (B* B) y (A) • ] 

Let w:A + ~ be a FOsitive linear functional. Given B,C E A, define 

BC 
w ' :A + ~ by 

BC w ' (A) = w (B*AC) (A E A) • 

10.5 LEMMA ve have 

IwB,C (A) I :::; w (B*B) 1/2w (C*C) 1/2y (A) 

PROOF In fact, 

:::; w(~B)w(C*A*AC) (cf. 10.1) 

C = w (B*B) w (A*A) 

=> 

:::; w (~B) 1/2w (C*C) 1/2y (A*A) 1/2 

= w (~B) 1/2w (C*C) 1/2 (y (A) 2) 1/2 
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N.B. 	 Recall from 9.41 that 


y (A) ::; m (A) IIA II (A E A). 


10.6 THIDREM SUpp:>se that A has a left approx:in1a.te unit (cf. 4.1) -- then 

all positive linear functionals on A are continuous. 

PRCXJP Let W: A -+ ~ be a positive linear functional. 

Step 1: w \*-rad A ::: O. Thus let A E *-rad A and using 4.6, write A = B*C, 

where B E A, C E AA. c *-rad A. Rep69.t and write C* = E*D*, ...mere E* E A, 

D* E AC* c *-rad A, so C = DE, ...mere D E AC** c *-rad A, E E A. Therefore A = B*DE 

and 

IW(A) 12 = Iw(B*DE) 12 

= \wB,E (D) \2 

::; w(B*B)1/2w (E*E)1/2y (D) 

Step 2: Since w drops to A/*-rad A, it can be assumerl that A is *-sanisimple, 

hence sanisimple (cf. 9.38). In prrticular: The involution *:A -+ A is continuous 

(cf. 9.21). 

Step 3.: Let An E A be a se:;ruence in A such that ~ -+ o. Claim: w(A ) -+ 0 
n 

(=> w is continuous). To see this, use 4.8 to first write A = A*B*, where B* -+ O. n n n 

BJ.t then, thanks to the continuity of the involution, Bn -+ 0, thus by a second 

awlication of 4.8, we can write B = B*C*, where C* -+ 0, so A = A*C B and C -+ O. n n n 	 n n n 

http:approx:in1a.te
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Therefore 

+ 0 (n + (0) • 

10.7 LEMMA Suppose that A is unital -- then all positive line:rr fUIX:'!tionals 

on A are continuous. Moreover, if w: A + g is one such, then 

PRCXJF V A ;.e 0, 

Iw (lAAlA) IIw (A) I 
IIAII 

= -
IIAII 

lA,lA
Iw (A) I= 

IIAII 

=> 


[Note: If *:A + A is is::metric, th:m B(A) = 1 (cf. 9.41) and 

meA) $ S(A) 1/2 = 1 

=> 
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which can be improved to 

when A is a C*-algebra (cf. 7.4).] 

10.8 	 EXAMPLE It is not always true that Ilwll :'£ w(lA)' Thus let A = B(~2), 

2
where c has the nonn 

(t > 2). 

Represent the elerrents of A as 2-by-2 complex matrices [A. •• ] and put [A. •• ]* = 
1) 	 1) 

(~ .. ] -- then A is a Banach *-algebra with a continuous (but not isanetric) invo­
)1 

lution. Define w:A -+ C by w([A. •• ]) = l: A. •• -- then w is a positive linear 
- 1) i,j 1) 

functional on A such that w (lA) = 2. If 

o 2­
t 

A= 

1 0 

then 

A = t 
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=> 

IIAII = t 
=> 

Ilwll ~W{A) 
IIAII 

n 
10.9 	 REMARK Write A+ for the set of all finite sums of the form z.: AiA. - ­

i=l 1 

ethen the linear span of A+ is A (a.k.a. the linear span of the A*B). Proof: 

If A2 is not closed or is closed but not of finite codi.nension, then one can use a 

Harrel basis for A to construct a discontinuous linear functional w that vanishes on 

A2. Such an w is necessarily fOsitive. 

fute: [It therefore follows that a necessary condition for the continuity of 

all fOsitive linear functionals on a Banach *-algebra A is that A2 be closed of 

finite codimension.] 

Let w:A -+ s: be a p:.>Sitive linear functional. 

• w is said to be representable if 3 a topologically cyclic *-representation 

1T of A on E with a tofOlogically cyclic vector x E E such that 

w(A) = <x,TI(A)x> (A E A) • 

• 	 w is said to satisfy condition H if 


2

IlwliH = sup{ IW(A) I :w{A*A) :5 l} < co. 
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10. 10 THEOREM Let w: A -+ s: be a positive linear functional -- then w is 

representable iff w satisfies condtion H. 

N. B. The equivalences in 10.10 are of central importance for the theory. One 

direction is imnediate, viz.: 

10.11 LEMMA SUppose that w:A -+ s: is representable -- then w satisfies con­

dition H. 

PROOF By definition, 

w (A) = <x, TI (A) x> (A E A) , 

'Where x E E is topologically cyclic. Therefore 

2
IW(A) 12 = l<x,TI(A)x>1 

:0; (I I x I! 1 I TI (A) x I I) 2 

2 = IIxl1 <TI(A)x,TI(A)x> 

2 
== IIxl1 <x,TI(A*A)x> 

2
= IlxI1 w(A*A) 

=> 

1.e.: w satisfies condition H. 


[Note: Since x E E is topologically cyclic, we have 
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In fact, 

2
IIxl12 = 9.1p{l<x,y>1 :llyll :;; I} 

2
= rup{l<x,'1T(A)x>1 :11'1TQ\.)xll :;; I} 

= 9.1p{ Iw (A) 12:w (A*A) :;; I} 

10.12 

[Note: 

REMARK In viElW' of 9.25, a representable w is necessrrily continuous. 

This can be pinned dc:Mn in that 

IW(A) 12 :;; IIxl1 
4 

11'1T(A*A) II 

:;; II x 114 Y (A*A) 

=> 

= 

IW(A) I :;; 

IIxll 4 Y(A)2 

IIxl1
2 

yeA) 

= IlwliH yeA) 

=> 

IIwll 

:;; 

:;; 

IlwliH meA) IIAII 

IlwliH m(A).] 

10.13 

V A E A, 

LEMMA Suppose that w:A -+ £ is representable 

w(A*) = weAl. 

-- then w is hermitian: 
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PRCX)F 	 In fact, 

w(A*) 	 = <x,rr(A*)x> 

= <x, rr (A) *x> 

= <rr(A)x,x> 

= <X,rr(A)x> 

= w(A). 

The 	proof that 

Ucondition Hit => "representable" 

is a special case of the KolIrogorov construction. However, proceeding to the 

details, we shall first look for conditions on a Banach *-algebra that are sufficient 

to ensure that all its positive linear functionals satisfy condition H. 

10.14 LEMMA If A is unital, then every positive linear functional w:A -+ C 

satisfies 	condition H and IlwliH = w(lA)' 

PRCX)F To begin with, 

Accordingly, 

w(A*) 	 = W(A*lA) 

= w(lAA) (cf. 10.1) 

= W1AJ. 
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Therefore 

Iw(A) 	I
2 

= Iw(A} I2 

(cf. 10.1) 

On the other hand, 

=> 


=> 


[Note: If w (lA) = 0, then w is the zero functional am ma.tters are trivial.] 

10.15 LEMMA If A is a C*-algebra, then every positive linear functional 

w:A 	+ £ satisfies condition H and Ilw IIH = Ilw II. 

PR!X>F W:::>rk with an approximate unit {e.:i E I} per 1.20: V A E A,
l.. 

Iw(A) 12 = lim Iw(e.A) 12 
iEI l.. 



12. 


2 
= 	 lim Iw(el~A) I 

iEI 

~ lim inf w(e~e.)w(A*A) (cf. 10.1)
iEI 1 1 

= lim inf w(e~)w(A*A)
iEI 1 

~ 	 Ilw Ilw(A*A) 

=> 

On the other hand, 

e~ e. 
w( 1 1) ~ 1 

II w111/2 IIw111/2 

=> 

2
2 w(e. ) 

IlwliH ~ w( 1/2~ = 1 

IIwl\ Ilwll 

=> 

wee. ) 2 

Ilw IIH ~ lim 1 

iEI Ilwll 

= 	IIwl12 (cf. 7.9) 
IIwll 

= 	IIwll· 

The preceding lerrmas are special cases of the follCMing result. 
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10.16 THEOREM Suppose that A has a left approximate unit (cf. 4.1) - then 

every positive linear functional w:A + g satisfies condition H. 

PRCX)F rl'here is no loss of generality in taking A *-sanis.i.rrple (see the proof 

of 10.6) I so the involution *: A + A is continuous (cf. 9.21). If now {e.:i E I}
1 

is a left approximate unit per A and if M > 0: I lei II ::; M (i E I), then arguing as 

in 10.15 (bearing in mind that w is continuous (cf. 10.6», 'V A E A, we have 

IW(A) 12 = lim Iw(e.A) 12 
iEI 1 

= lim Iw«e~)*A) 12 
iEI 1 

::; lim inf w{e.e.*)w(A*A)
iEI 1 1 

~ lim inf IIe ,e , * II Ilw Ilw(A*A) 
iEI 1 1

::; lim inf lie. II lie. * II Ilw IIW(A*A)
1 1iEI 

::; lim inf IIe , 112 B(A) Ilwllw(A*A) 
iEI 1

::; ~B(A) Ilwllw(A*A) 

[Note: Here (3(A) is the nonn of the involution *:A + A (cf. 9.29).] 

Returning to 10.10, assume that w satisfies condition H and put 
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where Aw is the left ideal 

{A E A:w(A*A) = O} (cf. 10.1). 

- A E A A+A 
w 

Given , write in place of then the prescription 

BEA B+A 
w 

< , 

Wequips A with the structure of a pre-Hilbert space (=> I lAw II = w (A*A) 1/2) • 
w 

Define 1T 
w 

by 

Then 

is a *-harm:orpmsm. 

N.B. 1T
w(A) has a formal adjoint, viz. 1T 

w
(A*). Proof: 

= w( (AB)*C) 

= w(B*A*C) 

=> 
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10.17 !.EMMA V A E A, 'ITw (A) is bounded. 

PR(X)F This is because 'ITw (A) can be written as a finite linear canbination 

of unitary elements of L* (Aw) (cf. 9.31 and subsequent discussion) • 

[Note: 	 It is thus a corollary that V A E A, 


SUp{w(B*A*AB):B E A,w(B*B) ~ I} < 00]. 


W
Let E be the Hilbert space completion of AW 

-- then 'ITw extends by continuity 

to a *-representation of A on E
W

, denoted still by 'ITw. Since W satisfies condition 

H, it vanishes on AWl hence induces a linear functional on AW which is continuous 

w.r. t. II· Ilwl thus extends to E
W 

with the same bound, namely Ilw 11;2: V A E A, 

Owing to the Riesz representation theorem, 3 a unique vector x. E E
W such that 

W 

W (A) = <x fA
W 

> •
W W 

Here 

10.18 LEMMA V A E A, 

W W 
'IT (A)x = A • 

W 

PROOF V B E A, 
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= <x (A*B) w> - W(A*B)I
W W 

= w(A*B) - w(A*B) 

= o. 

WTo sumnarize: Trw is a topologically cyclic *-representation of A on E with 

topologically cyclic vector x E E
W such that 

w 

(A E A). 

Therefore w is representable I which ccmpletes the proof of 10.10. 

[Note: Trw is called the eNS representation attached to w.] 

10.19 EXAMPLE Take A unital -- then V A E A, 

TrW(A)l~ = AW, 

so l~ is topologically cyclic. And 

= w(A) 

=> 
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10.20 LEMMA Suppose that 'IT is a topologically cyclic *-representation of A 

on E with topologically cyclic vector x E E -- then 'IT is tmitarily equivalent to 

nW for SCIre w satisfying condi tion H. 

PRCX>F Define w: A -+ £ by 

wCA) = <x/n (A) x> (A E A). 

Then w is representable I hence satisfies condi tion H (cf. 10.11) I so 

wweAl = <x ,n (A)x > (A E A).w w w 

NQV.l quote 9. 7. 

[Note: The trivial *-representation on the zero di.nensional Hilbert space 

"is" nUJ=O.] 

10.21 LEMMA Supp:.>se that n is a nondegenerate *-representation of A on E - ­

then :3 a set ~ of representable positive linear ftmctionals w on A such that n is 

wunitarily equivalent to EO n and V A E A, 
wE~ 

lin (A) II = sup Iinw 
(A) II. 

wE~ 

[This is an i.nmediate consequence of 9.5 and 10. 20. ] 

Suppose that w:A -+ £ is a positive linear ftmctional which satisfies condition 

H -- then w is said to be a state if Ilwi IH = 1. 

[Note: This tenninology is consistent with that used for C*-algebras (cf. 10.15).] 

If w ;e. 0 satisfies condition HI then V t > 0 I tw satisfies condition H: 



18. 

Also V A E A, 

W (A) = <xW 
,1T 

W(A)x > ww 

=> 

two , '1 '1 w, th Etw EWtha end twAnd 1T 1S urn. tar1 Y eqw..va ent to 1T V1a e arrCM -+ . t s s A to 

10.22 THEOREM Every nontrivial to:p:>logically cyclic *-representation of A is 

Wunitarily equivalent to 1T for sane state W (cf. 10.20). 

PROOF If W ~ 0, then 

W 

is a state. 

If 

are :p:>sitive linear functionals satisfying condition H, write w ::: w2 if wl ­l w2 

is p:Jsitive. 

10.23 LEMMA If w,w':A -+ ~ satisfy condition H and if w ::: w', then 3 

wT E 1T (A) I (0 :s: T :s: I) such that 

w
WI (A) = <x 11T (A) Tx > (1\ E A).

w w w 
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PROOF Noting that 

W ~ W, => A c A I 

W w' 

put 

<AW,B
W> = w' (A*B). 

WI 

Then 

Iwi (A*B) 12 ::;; WI (A*A)WI (B*B) 

::;; w(A*A) w(B*B) 

Therefore < , > can be extended to E
W 

x EW. Fix T E B(Ew) : 
WI 

Then 

W ~ WI ~ 0 => 0 ::;; T ::;; I. 

And V A,B,C, 

= Wi (A*CB) 
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=> 


Finally, choose a sequence {A } in A such that AW -+ x : 
nnw 

IIw, I I H w, «AA - A) * (AA - A» n n 

$ I I w' IIH W «AA - A) * (AA - A»n n 

= Ilw' IIH IITIW(A) (A
W 

- x ) 112 (cf. 10.18)
W W 

-+ 0 (n -+ (0) 

=> 

w' (A) = lim w' (AA )
nn-+ oo 

= lim w'«A*)*A)nn-+ oo 

= «A*)w,Tx > 
ww 

= <x ,TI
W

(A)Tx > • 
W W W 
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[Note: 

=> 

1.0' (A) = <x , 'TTw (A) Tx > 
1.0 1.0 1.0 

= <T1/2 1.0 (A) 1/2 > ]XW,'TT r Xw w· 

Suppose that 1.0 ~ 0 satisfies condition Ii -- then 1.0 is said to be ~ if 

1.0 ;::: 1.0 => 1.0' = tw (3 t ;::: 0) • 

10.24 LEMMA If 'TTw is topologically irreducible, then 1.0 is pure. 

PR(X)F Assuming that 1.0 2 1.0', produce T E 'TT (A)' per 10.23: 
1.0 

o ~ T ~ I => T = tI (0 ~ t ~ 1) (cf.9.B). 

So, V A E A, 

1.0' (A) 

= t<x ,'TTw(A)X > 
1.0 1.01.0 

= tw(A) • 

10.25 LEMMA If 1.0 is pure, then TI 
w is topologically irreducible. 

PR(X)F 	 let P E 'TTw (A)' be a nonzero orthogonal projection. Define w':A -+ £ by 

1.0' (A) = <Px ,'TTw(A)Px > (A E A) • 
1.0 1.0 1.0 
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Then 

Therefore w, satisfies condition 	H. And 

w(A*A) = Iinw
CA) xw II~ 

w~ II Pn (A) x 112 w w 

= w' (A*A) 

=> 

w ~ w'. 

Eilt w is pure and w' is nonzero, hence w' = tw (3 t > O). So, 'if A E A, 

o = w' (A*A) - tw(A*A} 

since AWis dense in EW, it follows that P = tI => t = 1, thus nW is topologically 

irreducible (cf. 9.9). 

10. 26 THEOREM Suppose that w ~ 0 satisfies condtion H -- then nW is t0po­

logically irreducible iff w is pure. 



23. 


PROOF Combine 10.24 and 10.25. 

10.27 THEOREM Every topologically irreducible *-representation of A is 

unitarily equivalent to 'ITw for 5C:.lIOO pure state w (cf. 10.22). 

PROOF 	 If w is pure, then 


w 


is a pure state. Proof: 

_w__ ~ Wi => w= II w II Hw' 

=> w' = t( w ) • 
IlwliH 

10.28 EXAMPLE Take A = L (H) (H a cauplex Hilbert space) -- then the pure
-00 

states are the Wx ( II x II = 1), where 

w (T) = <x,Tx> (cf. 7.17).x 

Since the identity representation 'IT of L (H) on H is a topologically irreducible 
00 _00 

*-representation (cf. 9.8 ('IToo('!:!oo(H»' = S idH» it follows that V X, 'IT00 is unitarilyI 

w 
. 1 x equ~va ent to 'IT • On the other hand, an arbitrary topologically irreducible 

w 
*-representation 'IT of L_00 (H) is unitarily equivalent to SOJ:IE 'IT x (cf. 10.27). There­

fore 'IT is unitarily equivalent to 'IT 	 • 
00 



24. 


[Note: Every nondegenerate *-representation of kx, (H) is unitarily equivalent 

to a direct sum of copies of TIro'] 

10. 29 THEOREM. The *-radical of A is the intersection of the kernels of all 

the *-representations of A (cf. 9. 34) . 

The proof requires serre ancillary considerations. Thus given a norriegenerate 

*-representation TI of A, let 

and for any w satisfying condition H, put 

10.30 LEMMA 3 a set Q of pure states with the property that V A E A,
TI 

w a (A) = sup a (A). 
wEQ

TI 

Grant 	this temporarily -- then 

10.30 => 10.29. 

For in the first place, it is obvious that 

n Ker TI c *-rad A, 
TI 

where 	n is taken over all the *-representations TI of A. Conversely I let 
TI 

w
A E *-rad A -- then A is annihilated by all the TI (w pure). In particular: Given TI, 

w
V w E QTI' a (A) = 0 => a(A) = 0 => A E Ker TI. 


Therefore 


n Ker 	TI = *-rad A. 
TI 
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Proceeding: 

• Write S (A) for the set of positive linear functiona1s w on A that 

satisfy condition II subject to IlwliH ::; 1 and write ~(A,a) for the subset of 

~(A) consisting of those w such that OW ::; a • 

• Write peA) for the set of pure states w on A and write P(A,a) for the 

subset of peA) consisting of those w such that OW ::; cr. 

N.B. ~ (A) and ~ (A,a) are convex sets. 

[tbte-:- If w ,w both satisfy condition H, then so does wI + w2 and1 2 

Therefore SeA) is convex. Suppose further that w1,w E ~(A,a) and let 0 ::; A ::; 1 -­2 

then 

::; a.] 

10.31 LEMMA Suppose that w:A + ~ satisfies condition H -- then w is a pure 

state iff w is a nonzero extreme point of ~ (A) (cf. 7.19). 

10.32 lEMMA P(A,a) is the set of nonzero extreme points of ~ (A,a) and 

P(A,a) U {oJ is the set of all extreme points of ~(A,a). 

Equip ~(A,a) with the topology of pointwise convergence -- then the image of 



26. 


~ (A, a) in 1T a (A) D (product topology) under the natural embedding 
AEA ­

w -+ {weAl :A E A} 

is closed, hence ~ (A, a) is carpact. 

[Note: Recall that 'if A E A, 

wweAl = <x ,TI (A)x > w ww 

=> 

10.33 LEMMA The closed convex hull of P(A,a) U {oJ is ~(A,a). 

PR(X)F Apply the Krein-Milman theorem. 

Let us pass nCJ.Il to the proof of 10.30 -- then 3 a set rt of representable 

positive linear functionals w on A such that 'if A E A, 

a (A) = sup aW
(A) (cf. 10.21) 

wEQ 

and we claim that 

w a (A) = sup a (A), 
wErt

TI 
where rtTI = P(A,a) • 

To this end, fix A E A and £ > 0 -- then it suffices to produce w E P(A,a) 

such that 
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Choose W E Q:
E 


W 

o E(A) > o(A) - E. 

tw WE 
Because 0 E = 0 (t > 0), we can ass~ that W is a state, heoce W E S (A,o) • 

E E ­

Using 10.33, choose a net w. (i E I) that converges to W , where each w. is a convex 
~ E ~ 

oombination of elements fran P(A,o) U {a} -- then 3 io E I: 

w 
o o(A) > O(A) - E (ruo 

Let w ' ••• 'W be the elements of P(A,o) which occur with nonzero coefficients inl n 

the expression of Wo as a convex canbination per the al::x:>ve. Sioce 

W + •.. + W 
1T 1 n 

is unitarily equivalent to a sub *-representation of 

with 

W + ... + W w W
l lo n s sup{o , ... ,0 n}, 

there is an index k E {l, ... ,n}: 

Therefore 

as cla:irned. 

10.34 REMARK It is false in general that a nondegenerate *-representation 1T 

----~ ........... - ­
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decomposes into a direct sum of topologically irreducible *-representations. 

HONever, on the basis of the preceding discussion, V A E A, 

II Tf (A) II = II ED Tfw (A) II • 
wErt

Tf 

Set 

where W ranges over those positive linear functionals that satisfy condition H 

(meaningful since V A E A, II Tfw (A) II ::; y (A» -- then TfUN is a nondegenerate 

*-representation of A. It is "universal" in the sense that every nondegenerate 

*-representation of A is unitarily equivalent to a sub *-representation of a nnlltiple 

N.B. We have 

*-rad A= Ker TfUN 

and V A E A, 

Therefore the extension TIUN of TfW to a *-representation of C* (A) is isaretric 

(cf. 9.44), so the image 

is a norm closed *-subalgebra of EtJN = E9 EW. 
W 

[Note: Suppose that A is *-semisimple: 


*-rad A = {O}. 
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Then TIUN is a faithful *-representation of A.] 

10.35 RAPPEL If A is a C*-algebra, then every J=Osi tive linear functional 

w: A -+- C satisfies condition H (cf . 10. 15) • 

10.36 LEMMA Suppose that A is a C*-algebra and let A E A be nonzero -- then 

3 a topolCXJically irreducible *-representation TI of A such that 

hence A is *-sanisimple. 

PB(X)F Choose W E P(A) : 

w«A*A) 2) = II (A*A) 211 (cf. 7.25) 

= IIAI14. 

Then 

IIAI12 = w( (A*A) 2) 1/2 

= w ( (A*A) (A*A) )1/2 

= II (A*A)W II W 
W 

= I I TI (A*) AWI I W 

= [ I TI 
wCA) *AWII W 

.$ I ITI 
w(A) * I I IIAWII W 

W= I I TI CA} II IIAWllw• 
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But 

I lAw II = w(A*A) 1/2
w 

Therefore 

On the other hand, 

II'ITW(A) II :,; r(A*A) 1/2 (cf. 9.37) 

= IIAII (cf. 1.1). 

So 

thus it remains only to recall that 'ITw is a topologically irreducible *-representation 

wEP(A) 

of A (cf. 10.26). 

Put 

'IT = ED W
'IT. 

AT wEP(A) 

Then 10.36 implies that'ITAT is a faithful *-representation of A on EAT = ED EW. 

10.37 SCHOLIUM Every C*-algebra is isometrically *-isamorphic to a norm closed 

*-subalgebra of the bourrled linear operators on some couplex Hilbert space. 

[Note: Every separable C*-algebra is isometrically *-isamorphic to a norm 

closed *-subalgebra of the bounded linear operators on some separable ccmplex Hilbert 

space. ] 
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If I c A is a nonzero *-ideal (not recessarily closed), then every mrrlegen­

erate *-representation 'IT: I -+ B(E) can be extended to a mrrlegenerate *-represen­

tation TI:A -+ B(E) (see the discussion lea.ding up to 9.32). 

[Note: Recall that 

'IT top::>logically irreducible => TI top::>logically irreducible.] 

SUppose row that A' c A is a C*-subalgebra -- then a *-representation 

'IT: A -+ B (E) is said to be an extension of a *-representation 'IT': A' -+ B(E') if :3 

a closed subspace X c E which is invariant under 'IT IA' and has the proper 1::¥ that 

the sub representation 

'IT IA' : A' -+ B (X) 

is unitarily equivalent to 'IT'. 

10.38 LEMMA Every topologically irreducible *-representation 'IT':A' -+ B(E') 

has a topologically irreducible extension to A. 

PR(X)F Take 'IT = 'IT
W' 

, where w' is pure (cf. 10.27). Using 7.24, extend w' to 

a pure state w on A arrl let X be the closure of 

in EW 
- then X is invariant urrler 'ITw IA' ani if x 'is the orthogonal projection of 

W 

onto X, we have 
W 

(A' E A'), 


so x' is topologically cyclic for the sub representation of 'ITw IA' on X. 
W 

x 
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Finally, V A' E A', 

= <x , 'If 
w

(A') x > w w w 

= w(A') = (0' (A') 

w'= <x ,'If (A')x > 
w' w' w' 

Therefore 'If 
wlA' on X is unitarily equivalent to 'If 

w' (cf.9.7). 

[Note: The same kind of argument shcMs that every to:POlogically cyclic 

*-representation 'If' :A' -+ B(E') has a to:POlogically cyclic extension to A, thus 

every nondegenerate *-representation 'If' :A' -+ B(E') has a nondegenerate extension 

to A (cf. 9.5).] 

10.39 LEMMA Suppose that A' c A is a ccmn:utative C*-subalgebra -- then 

V w' E fICA'), 3 a top::>logically irreducible *-representation 'If: A -+ B(E) arrl. a nonzero 

vector x E E such that V A' E A', 

1T(A')x = w' (A')x. 

[This is a special case of 10.38.] 

10.40 	 REMARK The analog of 10.38 for Banach *-algebras is false in general. 

[Consider an A whose only *-representations are trivial.] 

Let H be an infinite dimensional ca:rplex Hilbert space -- then B(H) is a unital 
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C*-a1gebra but its representation theory is far more conplicated than that of 

L (H) (cf.10.28).
-00 

10.41 DICHOTOMY PRINCIPLE Suppose that TI is a topologically irreducible 

*-representation of B (H) -- then ei ther 

TI(L-co (H» = {oJ 

or 

TI is unitarily eq:uiva1ent to the identity representation of B(H) on H. 

[The point is that wis a pure state on B(H), then either wl!:co(H) = {oJ 

or w =w (3 x:llxll = 1).]x 

10.42 REMARK Every rorrlegererate *-representation of B(H) is unitarily 

equivalent to ore of the fonn 

where TIO is norrlegererate ani vanishes on !:oo (H) am TIi is unitarily eq:uiva1ent to 

the identity representation of B(H) on H. 

w 
10.43 LEMMA If w

1
,w

2 
are pure states on B(H) I then TI 1 is unitarily equiv­

w2alent to TI 3 a unitary u:H + H such that V A E B(H), 

PROOF If there is a U E U(H) with the stated property, then V A E B(H), 

http:cf.10.28
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W W 
Therefore 'IT 1 am 'IT 2 are unitarily equivalent (cf. 9.7). Conversely, sUPIDse that 

W w w w
l 2 l 2'IT and 'IT are W1itarily equivalent ani let W:E -+ E be a W1itary operator such 

that 

W wl 2W'IT (A) = 'IT (A)W (A E B(H)). 

W w2 2Chcx:>se a W1itary V:E -+ E :V'x = Wx -- then 3 U E U(H):ww2 l 

W2'IT (U)x = Wx (cf. 9.51).w w2 l 

So, VAE BUO, 
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10. 44 EXAMPLE If H is a separable infinite di.rrensional ca:nplex Hilbert space, 

c 
then there are 2- unitary equivalen::e classes of topologically irreducible *-repre­

sentations 	of B(H) • 

[This is a countirg argun:ent. 

1. The cardinality of B(H) is S. 

c 
2. The cardinality of P(B(H» is 2-. 

3. The cardinality of U(H) is S. 

NcJw let K be the cardinality of the set of unitary equivalence classes of tope-

logically irreducible *-representations of B(H). Stipulate that pure states w ,w
l 2 

are equivalent (denoted w
l 

~ w
2

) iff 3 a unitary u:H + H such that V A E B(H), 

-1Wl(A) = W (U AU).2 

Then in view of 10.43, 

K = #(P(B(H»/~). 

But each equivalence class of pure states has at least one and at ITOst S rranbers. 

Therefore 

C 

K $ #(P(H» = 2- $ KS = max(K,S). 

c c 
Since c < 2-, it follows that K = 2-.] 
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§ll. STRUCTURE THEORY 

A 

Given a C*-algebra A, denote by A the set of tmitary equivalence classes [1T] 

of to:tX>logically irreducible *-representations 1T of A -- then A is called the 

structure space of A. 

E.g.: If A is conmutative, then 

" 
A <-> 1l(A}. 

11.1 EXAMPLE let H be a complex Hilbert space. Take A = L
_00 

(H) -- then 

#(A) = 1 (cf. lO.28). 

11. 2 DICHOTC:MY PRINCIPlE let 1T:A -+ B(E} be a topologically irreducible 

*-representation -- then either 

1T(A} :::> L (E)
_00 

or 

1T(A} n L (E) = {oJ.
_00 

11.3 EXAMPLE let 

be toFOlogically irreducible *-representations of A such that Ker 1Tl = Ker 1T2. 

Assume: 
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Then 1Tl and 1T2 are lIDitarily equivalent. 

[Note: Therefore a topologically irreCl.ucible *-representation 1T of A is 

detennined by its kernel to within unitary equivalence provide::l TI (A) contains a 

nonzero ccrnp:lct operator. But all bets are off if 1T(A) n L 
_00 

(E) = {oJ (cf. 11.11).] 

11. 4 LEMMA. If # (A) = 1, then TI is faithful ([TI] E A) and A is simple. 

PRCX)F 'if A ;i! 0, 

IITI (A) II = IIA II > 0 (cf. 10.36). 

Therefore Ker 1T = {OJ. If I c A is a proper closed ideal, then I = {O}. 'l'his is 

because A/I, being a C*-algebra, aClmits a topologically irreducible *-representation 

the lift of which to A is unitarily equivalent to TI, so I c Ker TI = {O}. 

A C*-algebra A is said to be elanentary if A is *-isarorphic to !:oo(H) for sc:ma 

oamplex Hilbert space H. 

11. 5 LEMMA Let TI: A + B(E) be a *-representation. Assume: TI is nondegenerate 

and TI(A) c L (E) -- then TI is discretely decomposable, i.e., there is an orthogonal
-00 

decanposition 

E = (D E., 
iEI 1 

where each Ei is a closeCl. TI-invariant subspace of E on which TI acts irreducibly. 

[Note: To be completely precise, 'if i E I, the assignment 

- A + B(E.) 
1 

A + TI(A) IE. 
1 
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is a topolCXJically irreducible *-representation of A on E.. J 
1­

11. 6 THEOREM. SUppose that A is *-iscm::>rphic to a C*-subalgebra of an 

elementary C*-algebra -- then A is *-isamorphic to a (C*) direct sum mA. (cf. 3.19)
i 1­

of elementary C*-algebras A.. 
1­

A is elementary, then HA) = 1 (cf. 11.1) and this can be reversed provided 

A is separable. 

11. 7 THEOREM. Suppose that A is separable am # (A) = 1 -- then A is elementary. 


PROOF The rontrivial argurrent is lengthy and best broken up into pieces. 


Step 1: Take 1T per 11. 4, say 1T: A -+ B(E) -- then E is separable. Thus fix 


x ~ 0 inE and let DcA be a countable dense subset of A -- then 1T{D)x is dense 

in 1T{A)x, which is dense in E. 

Step 2: Let A' c A be a maximal conmutative C*-subalgebra -- then ~ (A') is 

countable. In fact, V w' E MA'), 3 a unit vector x{w ' ) E E:V A' E A', 

1T (A') x(w') = w' (A' )x(w') (cf. 10.39). 

Given wI ~ Wi 3 A I E A' •1 2' .~. 

Therefore 
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=> 

So if ""(AI) was uncountable, then E would have un:ountably many mutually orthogonal 

unit vectors oontradictin;:J its sep:rrability. 

Step 3: ""(AI) a countable locally ccmpact Hausdorff space, hence by the 

Baire category theorem, has at least one isolated point wOo On the other hand, 

A'::::c (MAl»,
00 

so there 	is a projection P in A' (p = P* = p2) such that wo(P) = 1 and wl(P) = 0 

for Wi ;c wo. ~reover, every element A' E AI decanJ:X)Ses as 

AI = AP + B' , 

where A E C and B'P = PB ' = O. 

Step 4: 	 let A E A - then 

AI (PAP) 	 = (AP + Bt) (PAP) 

= APAP 

= APAP + PAPB I 

= PAP (AP + B I ) 

= (PAP) A' • 
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But A' is maximal: 

PAP E AI => PAP c AI • 

Step 5: Sinc::::e 'IT faithful, 'IT(P) ;t; O. Therefore Ran 'IT(P) is a nonzero 

closed linear subspace of E 'Which is invariant urrler the cx:mmutative *-algEbra 

PAP. ~rote by 'ITp the associated *-representation 

PAP -+ 'IT (PAP) IRan 'IT (P) (A E A) • 

Then 'ITp is topologically irreducible. Proof: Let x,y E Ran 'IT(P) with x ;t; 0 and 

choose a ret {A.:i E I} in A: 
1 

'IT(A.)x -+ y (cf. 8.16)
1 

=> 

'IT(PA.P)x = 'IT(P)'IT(A.)'IT(P)x
1 1 

== 'IT (P) 'IT (A. ) x 
1 

-+ 'IT (P) Y == y. 

That 'ITp is topologically irreducible follows upon citing 8.16 once again. 

Step 6: Due to the topological irreducibility of 'ITp ' the 'ITp (PAP) (A E A) 

are scalar operators (cf. 9.8). In turn, this forces Ran 'IT(P) to be one dimensioral, 

i.e., 'IT (P) is rank 1. Accordi:rqly, 

'IT (A) n L (E) ;t; {a}
_00 

=> 

'IT (A) ::> L (E) (cf. 11. 2) • _co 

Step 7: The inverse image 'IT-1 (~oo (E» is a nonzero closed ideal in A, so, as A 

is simple (cf. 11.4), 

'IT-1 (L
-ro

(E» = A. 
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Therefore 

'IT:A -7 L (E)
_00 

is a *-isaoorphism or still, A is ele:nentary. 

11. 8 REMARK Consul t Akemarm-~V'eavert for a discussion of the situation when 

A is ronseparable (but #: (A) = 1). 

11.9 RAPPEL A primitive ideal of A is an ideal which is the kernel of a 

topologically irreducible *-representation of A. 

Write Prim A for the set of primitive ideals of A and equip it with the hu1l­

kernel topology - then Prim A is TO. 

The obvious arrC1il 

" A -7 Prim A 

['IT] -7 Ker 'IT 

is surjective (but, in general, is not injective). Therefore the hull-kerrel 

topology on Prim A can be pulled back to A to give what is called the regional 

topology on A. 

[Note: A subset SeA is open in the regional topology it is of the form 

{['IT] E A:Ker 11" E O} for S<:::lre subset 0 c Prim A which is open in the hull-kernel 

topo1ogy. ] 

N.B. In general, A need not be TO but if it is TO' it need not be Tl but if 

t proc• Natl. Acad. Sci. USA, 101 (2004), 7522-7525. 
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it is Tl , it need not be T2 (cf. infra). 

A 

11.10 LEMMA The following conditions are equivalent: (i) A is TO; (ii) Two 

to:p::>logically irreducible *-representations of A with the same kernel are unitarily 
A 

equivalent; (iii) The canonical map A -+ Prim A is a h.orneonorphisrn. 

[This is a simple deduction fran the definitions.] 

A 

11.11 EXAMPLE Sup:p::>se that A is sinple -- then Prim A = {O}. So, if A has 

rrore than one elanent, then A will not be TO' 

A 

[Note: rfhere are sinple A for which A is uncountable ("Glinm algebras") .] 

11.12 EXAMPLE Let H be an infinite dimensional complex Hilbert space. Take 
+ A A 

A = ~oo(H) - then :JI:{A) = 2, say A = bTl'TI2}. Here Ker TIl = {oJ, Ker TI2 = ~oo(H), 

so A is TO' But A is not T1: [TI1] is a dense open point ([TI2] is a closed point) . 

11. 13 EXAMPLE Let 

o 

(3 A, 11 E g) }.A = {f E C( [0,1],M2(~» :f(O) = 

o 

Then 
A 

A= ]0,1] U {TI
l 

,TI
2

}, 

where 

t <--> f(t) (0 < t s 1) 
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Top::>logically, ] a,I] has its usual topology and sets of the fonn {nI} u ] 0, E: [, 

{-rr } U ]O,E:[ are also open. Therefore A is Tr Still, it is not T :2	 2 

1-n 

1-
n 

11.14 LEMMA Let SeA -- then 

[TI] 	 E S <=> n Ker S c Ker TI. 
[S]ES 

E.g.: If S 	= {[S]} and Ker S = {a}, then S = A. 

"-

ILlS THEOREM. Suppose that A is separable -- then for a given [TI] E A, 

the following conditions are equivalent: (i) [TI] is closed in A; (ii) TI (A) = L
_00 

(E). 

PROOF AssUJ.l.1e (i) -- then 

{[TIl] E A:Ker TI c Ker TIl} 

is a one element set (cf. 11.14), so the C*-algebra TI(A) is elementary (cf. 11.7), 

hence :1 a *-isarorphism 4):TI(A) -+!:!oo (11) (H a complex Hilbert space). But the identity 

representation of TI(A) on E is topologically irreducible, thus :3 a unitary operator 

u:11 	 -+ E such that V A E A, 

U4)(TI(A»U-1 = TI(A). 

I.e. : 

http:AssUJ.l.1e
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=> 

L (E) = 'IT(A).
_00 

Ass1.n'le (ii) and consider a ['ITo] E ['IT], thus Ker 'IT c Ker 'ITO (cf. 11.14), so 

there is a topologically irreducible *-representation 'IT' of ~oo(E) on E' such that 

'ITa = 'IT' 0 'IT. Bearing in mind 10.28, fix a unitary operator U:E -+ E' with the pcop­

erty that V A E A, 

-1
U'IT (A) U = 'IT' ('IT (A» ( ;:: 'ITa(A» • 

'rhen obviously 

A 

which establishes that ['IT] is closed in A. 

[Note: The proof of the implication (ii) => (i) does not use the assWlption 

that A is seprrable.] 

A C*-algebra A is said to be liminal for every topologically irreducible 

*-representation 'IT:A -+ B(E), -we have 'IT(A) = L
_00 

(E). 

11.16 EXAMPLE Every cannutative C*-algebra is limina.1. 

11.17 EXAMPLE Every finite dimensional C*-algebra is liminal. 

11.18 EXAMPLE Every elanentary C*-algebra is limina.1. 

N.B. If H is an infinite dimensional ca:nplex Hilbert space, then B(H) is not 
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liminal (just consider the identity representation of B(H) on H). 

11.19 LEMMA Suppose that A is liminal -- then its C*-subalgebras are liminal 

(in 	particular, its closed ideals are liminal). 

[One has only to apply 10.38 (restrictions of canpact operators are canpact).] 

11. 20 LEMMA Suppose that A is liminal -- then V closed ideal I c A, the 

quotient A/I is liminal. 

If A is unital and liminal, then its topologically irreducible *-representations 

are necessarily finite dimensional (V 1f,1f(lA) = i~). This said, let H be an infinite 

dimensional canplex Hilbert space -- then L 
_00 

(H) + is not liminal (consider 1f (A, X) = 

A + Ud ). Still, ~oo (H) is a liminal closed ideal of ~oo(H) + and the quotientH

L (H) +/L (H) ~ C is liminal as well. _co _00 

11.21 LEMMA If A is liminal, then A is Tl , the converse being valid if in 

addition A is separable (cf. 11.15). 

11. 22 EXAMPLE Suppose that A *-isamorphic to a C*-subalgebra of an ele­

mentary C*-algebra -- then A is liminal (cf. 11.19), hence A is Tl and, in fact, 

A is discrete. 

A C*-algebra A is said to be postliminal if for every topologically irreducible 

*-representation 1f: A -+ B(E) I 'de have 1f (A) :::> ~oo (E) . 
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Trivially, 


"liminal" => "postliminal". 


11. 23 EXAMPLE Let H be an infinite dimensional complex Hilbert space -- then 

L 
_00 

(H)+ postliminal (but not liminal) . 

11. 24 LEMMA Supp:>se that A is postliminal -- then its C*-subalgebras are 

p:>stliminal (in particular, its closed ideals are postliminal) . 

11.25 LEMMA Suppose that Ais postliminal -- then V closed ideal I c A, 

the quotient A/I is postliminal. 

11. 26 LEMMA Let I c A be a closed ideal. AsS'llI1:'e: I and AI I are postliminal -­

then A postliminal. 

[Note: If I and All are liminal, then A is postliminal (but, as observed 

al::x:>ve (and will be seen again below), A need not be liminal).] 

211. 27 EXAMPLE Take H = 1... with its usual orthono:rma.l basis {e } am. let S 
n 

be the unilateral shift characterized by Sen = e + -- then the Toeplitz algebran l 

T is the C*-subalgebra of B(H) generated by S. It is well.knoltm. that T properly 

contains ~oo(H} and T~oo(H) ;::: C(!'). Since ~oo(H) and C(!') are liminal, hence post­

liminal, it follOtlS fran 11. 26 that T is postliminal. Nevertheless, T is not 

liminal: The identity representation is topologically irreducible and T properly 

contains L (H).
-00 
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N • B. One consequence of 11.25 am 11. 26 is this: Suppose that A is non­

unital - then A is postlimina1 iff A+ is post1imina.1. 

11.28 LEMMA Suppose that A is post1imina1. Let 

be topologically irreducible *-:representations of A such that Ker TIl = Ker TI2 -­

then 

(cf. 11. 3) • 

A A 

Therefore A is TO and the canonical ma.p A -+ Prim A is a horreaoo:tphism (cf. 

11.10) . 

[Note: A is T1 if A is liminal (cf. 11.21).J 

A 

11.29 REMARK It is a fact that if A is separable and A is TO' then A is post­

1imina.1. 

[Note: This is definitely not obvious.] 

11. 30 lEMMA Suppose that A is simple and post1imina1 -- then A is e1etrEI1tary. 

PR(X)F Let TI:A -+ B(E) be a topologically irreducible *-representation -- then 

1TI(A) ~ L (E). But TI-1 (L (E» is a closed ideal, thus A = TI- (L (E». At the same 
-co -co _C() 

time, TI is faithful. Therefore TI:A -+ L (E) is a *-isaoorphism, so A is e1~ntary. 
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An elementary C*-algebra is unital iff it is finite di.nensiona1. CombiniDJ 

this with 11. 30, we cor:clude that an infinite dimensional unital simple C*-algrora 

is not :r;ostlimiml. 

11. 31 EXAMPLE Let H be a separable infinite dimensional complex Hilbert 

space - then the quotient B (H) /L-oo (H) is not pJstliminal, her:ce B (H) is rot pJst­

limiml ei ther (cf . 11. 25) . 

[Note: For the record, Prim B(H) = {O,L (H)} (cf. 10.41), while 
-00 

#(B(H) 
"-

) (cf. 10.44).] 

11.32 THEOREM SUPpJse that A is pJstlimiml -- then every primary *-represen­

tation of A is geometrically equivalent to a tOpJlogically irreducible *-representation 

of A or still, is unitarily equivalent to a multiple of a to"fOlogically irreducible 

*-representation of A. 

11. 33 LEMMA Let A am B be C*-algebras and sup:r;ose that A is :r;ostlimim1. Fix 

a C*-rorm II· lion A 6} B -- then every topJlogically irreducible *-representationa. 
"­

r;; of A 6} B is unitarily equivalent to one of the form rr ~ r;;, where [rr] E A and 
a. 

"­

[r;;] E B. 

PRCX>F On elementary general grounds, there are nomegenerate *-representations 

(r;;:A 6} B + B(E»
a. 
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such that V A E A, V B E B, 

1;; (A ~ B} = 

Both 1;;A and 1;;B are primary. But A is also postlirninal, so 3 a topologically irre­

ducible *-representatian TI of A such that 1;;A is unitarily equivalent to !TI ~ TI ~ id 

(cf. 11. 32). And, umer this equivalence, 1;;B takes the fonn id ~ n, where n is a 

topologically irreducible *-representation of B. 

11.34 THEOREM Suppose that Ais postlirninal -- then Ais nuclear. 

PROOF Let B be a C*-algebra ani let X E A~ B (X ~ 0). Given a C*-nonn 

11·11 on A G B, choose a topologically irreducible *-representatian 1;; of A ~ B a a 

such that 

II X, Ia = I' 1;; (X) II (cf. 10.36). 

Then 

I I X I I = I I (TI ~ n) (X) I I (cf. 11. 33) . 
a ­

But 

II (TI ~ n) (X) II s IIx II . (cf. 6.11)
nun 

=> 

=> 

Ilxll s !lxll ..max nun 

Therefore Ais nuclear. 
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11. 35 REMA..t~:K It can :be shown that 

A,B postliminal => A ~ B postliminal. 

11. 36 EXAMPLE Let H :be an infinite diroonsional complex Hil1:Jert space -­

then B (H) is not postlimina1. 

[In fact, B(H) is not nuclear (cf. 6.27).] 

[Note: If H is not separable, then for each cardinal K :s; di.."U H there is a 

closed ideal IKe B (H) containing ~oo (H), hence B(H) If!oo (H) is not sirrple.] 

11.37 LEMMA Fix A E A -- then the function 

[n] "* lin (A) II 

A 

is lower semicontinuous on A. 

PRCOF Fix £ > O. Given a topologically irreducible *-representation 

n:A"* B(E), choose unit vectors x,y E E: 

I<x, n (A) y> I > lin (A) II - ~ • 

Then :3 a neighborh.cx:Xi U of [n] such that V [n'] E U, there are unit vectors x' ,y' 

in E' for which 

I<x',n' (A)y'> - <x,n(A)y>I < ~ , 

thus 

I<x' ,n' (A) y' > I > I In (A) I I - £ 

=> 

I In' (A) I I > I In (A) I I - E: • 
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Suppose now that {[~.]:i E I} is a net in A: 
l 

[~.] -+ [~].
l 

Then 	 [~i] is eventually :in U, so 

lim:inf II~·
l 

(A) II ~ I I ~ (A) I I - s 
iEI 

or still, 

lim:inf II~·
l 

(A) II ~ II ~(A) II (s -+ O) , 
iEI 

II, 38 REMARK In general, the function 

I~ ] -+ I I ~ (A) I I 
A 	 A 

is not continuous on A but it will be if A is T2 (see the next lemma) (a compact 

subset of a Hausdorff space is closed) . 

[Note: The continuity of the function 

[~] -+ I I ~ (A) I I 

'if A E A is equivalent to the condition that A be T ,]2

11.39 LEMMA Fix A E Aand r > 0 -- then 

A 

Sr (A) = {[~] E A: II ~ (A) I I ~ r} 

A 

is a 	 compact subset of A. 

PROOF let {S.: i E I} be a decreas:ing net of relatively closed nonempty subsets 
l 

of Sr(A) -- then it will be enough to prove that n S. ';!~. To this end, let 
iEI l 
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Claim: 

In fact, 

IIA + Ker 'IT II. 

But 

IIA+ Ker 'IT II = inf I I A + B II . 
BEKer 'IT 

And V B E Ker 'IT, 

r ::;; I I 'IT (A) I I = I I 'IT (A + B) I I 

::;; I I 'IT II IIA+BII 

::;; IIA + BII. 
Continuing, put 

1 = ( U 1.) , 
].

iEI 

so 

IIA + 111 ~ r. 

Since A/I is a C*-algebra, :I a topologically irreducible *-representation 'IT of A: 

1 c Ker 'IT & I I 'IT (A + 1) II = IIA+ 1 II (cf . 10. 36) . 

Therefore 

But ViE I, 

1. 
]. 

c Ker 'IT 

=> 

['IT] E Si (cf. 11.14) 
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=> 

fir] E S. (S. =!. n S (A»
1. 1. 1. r 

=> 

n S. ;t JJ. 
1. 

11.40 THEOREM A is locally compact. 

" 
PROOF Fix ['ITO] E A - then the claim is that ['ITO] has a basis of 	canpact 

" 
neighborhoods. Thus let U be an o:r;:en neighborhcxJd of ['ITO]' Since S = A - U is 

closed, 3 A E A: 

'ITo (A) ;t a and SeA) = a v [S] E S (cf. 11.14). 

Choose r > O:r < I I 'ITO (A) II -- then 

" 
{['IT] E A: II 'IT (A) II > r} 

is open (cf. 11.37), so 
A 

{['IT] E A: II 'IT (A) II ~ r} 

is a compact neighborhcxJd of I 'ITO] (cf. 11.39) which is contained in U. 

" 
11.41 	 REMARK If A is unital, then A is canpact. Proof: 


" 

{['IT] E A: 11'IT(lA) II ~ l} 

is a compact subset of A. But 

('IT:A -+ B(E» 

= 1. 
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[Note: The converse is false: If H is an infinite dirre:nsiona1 complex 
A 

Hilbert space and if A = L (H), then :if (A) = 1 (cf. 11.1), yet id fJ- L (H).]
-00 -00H 

N.B. The };I"Leceding considerations imply that Prim A is locally compact, 

Prim A being cO£rq?act if A is unital. 

Using the notation of 9.33, each Z in the center ~(A) of Dt(A) detennines 

a bounded continuous complex valued ftmction 

via the };I"Lescription 

If instead, we hold [TI] fixed and let Z vary, then the assignrrent 

defines a character w[TI] of ~ (A) (note that 

In stm:JTta.ry: 

X E BC(A) z 

11.42 RAPPEL An element Z E ~(A) is a pair (~,~) such that V A,B E A, 

~(A)B = ~(AB) = A~(B). 

http:stm:JTta.ry
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11.43 LEMMa V [~] E A, 

Ker w[~] = {z E leA) :s(A) c Ker ~}. 

[One has only to recall that by construction (cf. 9.32) I 

n n 
rr(Z) (L ~(A.)x.) = L ~(s(A.»x .• ]

i=l ~ ~ i=l ~ ~ 

It follows that w[~] depends only on Ker ~, so there is a continuous function 

¢:Prim A ~ ~(l(A» 

such that V ~ I 

11. 44 THEOREM The rra.p 

l (A) ~ Be (Prim A) 

is a *-iscm:>rphisn. 

[Note: ve have 

(Z 0 ¢) (Ker ~) = Z(w[~]) 

The only issue is surjectivity and for that 'We'll need a couple of lemnas , the 

first of which is standard fare. 
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11. 45 LEMMA let lk c A (k = 0,1, ••• , n) be closed ideals. Suppose that 

A E 10 + 11 + .•. + In' 

Then V e > 0, .3 ~ E l k : 

A = AO + Al + •.. + An and II~ II ~ (2 + e) IIA II· 

PROOF Proceed by induction, the statement being trivial if n = O. 'lb pass 

from n to n + 1, choose 

such that A - B E In+r Since 

(10 + ••. + In+l)/ln+l 

one can assurre that 

where e' > 0 will be specified below. Let en be another positive parameter which 

will also be specified below -- then the induction hypothesis applied to the pair 

(B, en) gives rise to a decanposition 

with 

II~ II ~ (2 + en) liB II. 

Put 

An+l = A-B. 

Then 

A = B + (A - B) 
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=A +A +···+Ao 1 n+1 

=> 

I lAo II :s; (2 + e") liB II :s; (2 + e") (1 + c') IIA II 

IIA111:s; (2+ cn)IIBII:s; (2+ c")(l+ e')IIAII 

Now take c', e" small enough to force 

2c' + e" + ene' :s; c. 

N.B. Take c = 1 to get the estimate 

To sirrp1ify the writing, let P stand for a generic e1a:rent of Prim A and let 

prp:A + A/p be the quotient map -- then 

n Ker prp = {O}. 
P 

11. 46 LEMMA Fix c > 0 and A E A. Let f E BC (Prim A) - then :3 Be E A such 

that V P E Prim A, 

PR(X)F Assl.JI'Ce for sake of argl.JI'Cent that f : Prim A + 10,1]. Fix n and define 
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open sets 

Ok = {p E Prim A:k~l < f(P) < k~l} (k = O,l, •.. ,n). 

Obviously, 
n 

Prim A = U Ok 
k=O 

and each P E Prim A belongs to at lIDst two of the Ok' IBt 

Then 

and 

A = AO + Al + ..• + An and II~ II ~ 3 IIA II . 

IBt 

n k 
B = L: -A.. 

n k=O n -1<. 

Then V P E Prim A, 

n 
= II L: (~ prp (~) - f (P)prp (~)) II 

k=O 

n 
= II L: (~ - f(p))prp(~) II 

k=O 

~~ IIA\!. n 
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Choose n > > 0: 

~ IIAII < s n 

and put 

B == B • s n 

N. B. If B' also has the stated property I then s 

lIB - B' I I < 2s.s s 

Proof: 

IIBs - B~ II == su~ IIrr(B - B~) IIs 
[rr] EA 

$ sup (1Iprp(Bs) - f(p)prp(A) II 
PEPrim A 

< 2s. 

The sequence {B .} generated per 11. 46 is therefore Cauchy I hence converges
2-n 

to an elerrent T(f/A) E A, and V P E Prim A, 

an equation that characterizes T(f,A) (since 	n Ker prp == {O}). 
P 

Let 

(A EA). 
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Then sf=A + Ais linear. 

[Note: 

Proof: V P E Prim A, 

=> 


=> 

f(P) = g(P) 

11.47 LEMMA 	 V A,B E A, 

PROOF V P E 	Prim A, 

prp(T(f,A)B) 	= prp(T(f,A»prp(B) 

= f(P)prp(A)prp(B) 

= f (P) prp (AB) 

prp (T (f ,AB) ) • 

E'IC. 

Put 
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Then 

(cf. 11. 42) 

and we claim that 

thereby establishing surjectivity in 11.44. 

First,v TI & V A, 

" 
= (Zf 0 </l) (Ker TI) TI (A) • 

But 

= TI(s" (A) - (Z 0 </l) (Ker TI)A + (Zf 0 </l) (Ker TI)A)
fZ 0 </lf 

= TI(s" (A) - (Z 0 </l) (Ker TI)A) + TI«Zf 0 </l) (Ke:- TI)A) 
f 

Zf 0 <P 

= TI(T(Zf 0 </l,A) - (Z 0 </l) (Ker TI)A) + TI«Zf 0 </l) (Ker TI)A)
f 

" = TI«Zf 0 </l) (Ker TI)A) 

" = (Zf 0 </l) (Ker TI) TI (A) • 

So V IT & V A, 
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=> 

~f(A) = 

=> 

=> 


11.48 REMARK One can work with A rather than Prim A provided A is TO 

(cf. 11.10), in 'Which case 

l (A) :.::oc (A) • 

11.49 LEMMA The map 

Prim A + Prim DC(A) 

that sends 

Ker 'IT to Ker TI 

is a continuous injection with a dense range. 

[The closure of the image of Prim A in Prim DC(A) consists of those Q: 

Q:::l nKerTI.] 
'IT 

Since DC(A) is a tmital C*-algebra, Prim DC{A) is compact. And, as will be 

seen nnnentarily, one can assign to each 

f E C(Prim DC(A» 
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an element 

1> (f) E Ie (Prim A) 

with the property that 

1>(f) (Ker TI) = f(Ker TI). 

11.50 THEOREM The map 

C (Prim DC (A» -+ BC (Prim A) 

f -+ 1> (f) 

is a *-isaro:rpmsm. 

PRCX)F Injectivity is implied by 11. 49, leaving surjectivity. To deal with it, 

note that the arrCM 

Prim A -+ Prim Z (A) 

Ker TI -+ Ker TI IZ (A) 

factors as 

Prim A -+ Prim DC(A) -+ Prim Z (A) 

fran which an induced map 

C (Prim Z (A» -+ C (Prim DC (A» ! Ie (Prim A) • 

But 

C (Prim Z (A» ~ C (M Z(A» ) 

:: ZeAl, 

so fran 11. 44, the arrc:M 

C (Prim Z (A» -+ BC (Prim A) 

is bijective, hence 1> is surjective. 
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11. 51 RAPPEL Let X be a top1ogica1 space -- then a Stone-Cech carpact­

ification of X is a compact Hausdorff space SX and a continuous map Sx:X ~ SX 

such that for every ca:npact Hausdorff space Y and every continuous function f: X ~ Y 

there is a unique continuous function f I : Sx ~ Y with f = flo SX' 

[Note: It is not assumed that X is Hausdorff. Still, SX always exists 

(cf. 11. 53) and is essentially unique. Incidentally, the image of X in eX is dense 

and is all of eX if X is compact.] 

11. 52 REMARK Let TOP be the category of t.0pologica1 spaces and continuous 

functions and let CPT;! be the full subcategory of TOP whose objects are the canpact 

Hausdorff spaces -- then the Stone-cech canpactification determines a functor 

Indeed, if X,Y are topological spaces and if f:X ~ Y is a continuous function then 

there is a a::nmu.tative diagram 

f 
X - Y 

Sx --+ 
Sf 

BY 

Sf being the unique filler for 

X 
f 
~Y 

Sx ... > BY 
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On the other hand, there is a forgetful functor 

and S is its left adjoint, so S preserves colirnits (cf. 3.24). E.g.: If {X.:i E I}
J. 

is a collection of corrpact Hausdorff spaces, then its coproduct in CPT2 is 

11.53 LEMMA. Let X be a top:>logical space. Define E:X + Prim Be (X) by E (x) = 

Ker EX' where Ex is evaluation at x - then the pair 

(Prim :oc: (X) , E) 

is "the" Stone-cech canpactification of X. 

[Note: Be (X) is a unital conmutative C*-algebra, hence Prim :OC:{X) is a canpact 

Hausdorff space.] 

E.g.: Tracing through 	the various identifications, we have 


S Prim A ;::: Prim Be (Prim A) 


;::: Prim z(Al (cf. 11. 44) . 



1. 


§12. W*-ALGEBRAS 

Let H be a com~eK Hilbert space -- then a *-subalgebra A c B(H) is non­

degenerate if the linear span of the set 

AH = {Ax:A E A,x E H} 

is dense in H, i.e. I if AH is total. 

[Note: A unital *-subalgebra A c B(H) is automatically nondegenerate.] 

12.1 REMARK If A c B(H) is a C*-subalgebra, then H is a left Hilbert 

A-rrcdule (11Ax II ::; IIA II II x II), hence in this situation, AH is a closed linear 

subspace of H (cf. 4.2) I thus H = AH if A is nondegenerate. 

12. 2 RAPPEL The arrow 

B(H) -+ ~l (H)* 

that sends A to AA (A E B(H», where 

AA (T) = tr (AT) (T E ~l (H» , 

is an is:>rnetric isooorphism, thus B(H) can be equippe::1 with the weak* topology 

arising from this identificatiDn. 

[Note: Accordingly, the weak* topology on B(H) is generaterl by the sem:i.norms 

IIAIIT = Itr(TA) I (T E ~l (H».J 

12.3 THEOREI4 SUROse that A is a nondegenerate *-subalgebra of B(H) -- then 

A is dense in An per the weak, the strong, arii the weak* topologies. 
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So, as a corollary, if A c B(H} is a nondegenerate *-subalgebra, then the 

following conditions are a;{Uivalent: 

1. A = A": 

2. A is weakly closed: 

3. A is strongly closErli 

4. A is -weak* closed. 

N.B. Therefore A is necessarily unital. 


A von Neuma.m algebra is a *-subalgebra A c B(H} such that A = A". 


E.g.: AI is a von Neumam algebra. In fact, (Atl It = At I t = AI. 


12.4 REMARK A von Neuma.m algebra A is weakly closed, hence n:>nn closed, so 

A is a unital C*-algebra. 

[Note: Sut=POse that A is a weakly closed C*-subalgebra of B(H). Let 

HO = n Ker A. 
AEA 

Then H~ is A-invariant am AIH~ is a -weakly closed nomegererate *-subalgebra of 

B(H~), hence is a von Neumann algebra. J 

12.5 EXAMPLE B(H) is a von Neumann algebra. On the other hand, L 
_00 

(H) is not 

a von Neuma.m algebra if H is infinite dimensional. To see this, fix an orthonormal 

basis {e.:i E I} for H. Write P. for the orthogonal projection onto Ce. and given
1 1 - 1 

a finite subset F c I, put 
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Then the net {Pp} is strongly convergent to idW But idH rt !!oo(H) • 

12.6 LEMMA If S is a subset of B{m which is closed under the *-operation, 

then S.. the sma.llest von Neumann algebra containing S (the von Neumann algebra 

ge:rerated by S) • 

12. 7 RAPPEL Suptl)se that {Ai: i E I} is a bo1.mded increasing net of self­

adjoint operators on H -- then 

sup Ai E B(m SA 

exists, call itA. So, Vi, Ai ~ A and if B E B (H) SA has the property that vi, 

A. ~ B, then A ~ B. 
1 

[Note: We have 

1. A. -+ A weakly;
1 

2. A. -+ A strongly;
1 

3. A. -+ A weak*.]
1 

If A c B{H) is a von Neumann algebra and if {Ai:i E I} c ~A is a bo1.mded 

increasing net, then it is clear that 

sup A. E A 
iEI 1 "SA· 

Conversely: 

12.8 THEOREM Let A c B (H) be a unital C*-algebra. Assurre: V bo1.mded 
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increasing net {Ai: i E I} c ~A' 

sup A. E AA. 
iEI 1 ·S 

Then A is a von Neumann algebra. 

A C*-algebra A is nnnotone complete if every bounded increasing net {A.:i E I}
1 

in ASA has a suprEmLUn in ASA. 

E.g.: Every von Neumann algebra is monotone ca:nplete. 

12.9 LEMMA. Suppose that A is monotone canplete -- then A is unital. 

PROOF Let {e.:i E I} be an approximate unit per A (cf. 1.20). Put 
1 

e = sup e. 
iEI 1 

and let 'IT:A + B(E) be a faithful *-representation of A (cf. 10.37) -- then, due 

to the nondegeneracy of 'IT, 'IT (e ) + iC\; strongly. But ViE I, 'IT(e.) $ 'IT (e) , thus
i 1 

i~ $ 'IT (e) , so 'IT(e) is invertible in B(E) or still, is invertible in 'IT(A) + ~ i,\:. 

Accordingly, V A E A, V c E ~, 

-1
'IT (e) 'IT (e) ('IT (A) + c i,\:) = 'IT(A) + c i,\:. 

Write 

( ) -1 () l'n'IT e = 'IT Ae + c e """E 

and take A = 0, c = 1 to get 
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i. e. , 

rr(eA + c e) = iiL e e -:E 

=> 

i~ E rr(A). 

Therefore A is unital. 

12.10 REMARK Let A be a unital comnutative C*-algebra - then A is rronotone 

romplete iff D,(A) is a a:mq::a.ct extranely disconrected Hausdorff space. 

[Note: The term "extranely disconrectedft means that the closure of every 

open set is open.] 

A W*-algebra is a C*-algebra A which is *-isorrorphic to a von Neumann algebra. 

N. B. A W*-algebra is unital and rronotone complete. 

12.11 REMARK Let A be a unital commutative C*-algebra -- then A is a 

W*-algebra iff there exists a locally compact Hausdorff space X equiPr:al with a 

positive Radon measure 1-1 such that A is iso.rretrically *-isarrorphic to the algebra 

L00 (X, 1-1) of essentially bounded 1-I-measurable fu:rctions on X. 

[Note: The};air (X, 1-1) is not unique.] 

If A and B are rronotone complete C*-algebras, then a }X)sitive linear map 

<P: A -)0. B is said to be normal if for every bounded increasing net {Ai:i E I} c I\,A' 

we have 

<p(sup A •. ) = sup <P(A.). 
iEI 1 iEI 1 

http:a:mq::a.ct
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12.12 LEMMA A *-isarorphism between rronotone complete C*-algebras is normal. 

Take B = g -- then it makes sense to consider normal positive linear function­

als on A, in particular mnnal states on A:S (A) c S (A) • 
n 

12.13 LEMMA Suppose that A is a von Neumann algebra. Let w:A + C be a 

positive linear functional -- then w is nonnal iff w is weak* continuous. 

12. 14 THEOREM Suppose that A c B(H) is a von Neumann algebra. Let 

w E S(A) -- then w is nonnal iff 3 a density operator W E W(H) such that V A E A, 

w (A) = tr ("'IA) • 

[Note: Recall that a density operator is a positive trace class operator W 

with tr(W) = 1 (cf. 7.13).] 

N.B. It is thus :i.mnediate that the nonnal state.5 separate the !Dints of A, 

i.e., V A 7 0, 3 w E S (A) :w(A) 7 O. 
n 

w[Note: Consequently, V A 7 0, 3 w E S (A):TI (A) 7 0.]
n 

Suppose that 

A c B(H) 


B c B (K) 


are van NeumaIID algebras. 

12.15 ~ Let <p:A + B be a !Dsitive line:rr map -- then <P is mnnal iff 

<P is wEEk* rontimnus. 
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12.16 THEOREr-1 Let <p:A -+ B be a *-haronorphism. AsSllI1l:!: <P is nonnal -- then 

Ker 	<P is weak* closed and Ran <P is weak* closed. 

[Note: It follows that Ran <P is a von Neuma.rm algebra if <P is unital.] 

12.17 EXAMPLE Let W E S (A) and consider its <NS representation Tfw -- then 

Tf 
W:A 	-+ B(E

W
) is a unital *-hcm::lrtorphism. Moreover, 

W norma.l ==> Tfw mrma.l, 


W W
herx:::e 	Tf (A) c B(E ) is a van Neumann algebra. 

A projection in the center 	of A is called a central projection. 

12. 18 LEMMA Sug;:>ose that 	1 c A is a weak* closed ideal - then 3 a unique 

central 	pvojection P such that 1 == pA (= AP) and V A E A, 

PA = P(PA) = P(AP) == (PA)P = AP. 

[Note: We have 

.L
A == pA (D P A.] 

12. 19 REMARK_ In the context of 12.16, one can thus say that there exists 

a unique central projection P such that Ker <P = pA am <P is a *-is:>norphism of P.LA 

onto Ran <P. 

Suppose that A is a W*-algebra -- then A is m:::n'Dtone ca:nplete and the norma.l 

states sep;rrate the points of A. Conversely, as we shall row see, these properties 

are characteristic. 

http:Neuma.rm
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[Note: If AO c BCHO) is a von Neumann algebra and if <p:A -r AO is a *-iso­

rrorphism, then <P is normal (cf. 12.12). So, V Wo E Sn (AO)' Wo 0 <P E Sn (A). 

B..lt Sn (AO) separates the points of AO' Therefore Sn (A) seprrates the points of A.] 
-

12. 20 LEMMA Suppose that A is nonotone ca:nplete. let W be a normal positive 

linear functional on A -- then for any bounded. increasing net {Ai: i E I} c ~, 

rrW (A.) converges strongly to rrW (A) (A = sup A.) • 
1 i8 1 


PRCX)F Let U E A be unitary -- then 


-1 -1

DAU = 	 sup DA. U 

iEI 1 

=> 


W W W
<rr (U)x 	,rr (A)rr (U)x >
W W W 

W -1 = <x ,rr 	(U AU)x >
W W W 

-1= sup w(U A. U)
1 

W -1= sup <x ,rr (U A.U)x > 
iEI W 1 W W 

=> 


= O. 
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Since the finite linear ca:nbinations of unitary e1~nts exhaust A and since 

w
converges stroI"B1y to zero, which imp1ie.c; that 1T (Ai } converges strongly to 1T

w
(A) • 

12.21 THEOREM Let A be a C*-a1gebra. Assume: A is rrorotone complete and 

the nonna1 states separate the pJints of A -- then A is a ~'i1*-a1gebra. 

PROOF 	 Let 


1]: = (9 1T 
W 

• 

NOR ES {A}w n 

rrhen 1T is a faithful *-representation of A onNOR 

So 

is a *-isorrorphism, thus to prove that A is a ~'i1*-a1gebra, it suffices to prove that 

is a von Neumann algebra and for this, we shall appeal to 12.8 (1T {A) is unitalNOR 

(cf. 12.9». Let {A1..': i E I} c AA be a bounded in::::reasillJ net and put A = sup A, - ­
"8 	 iEI 1.. 

converges strongly to 1TNOR (A). Meanwhile 

strongly. Therefore 
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sup 'NOR (Ai) = 'NOR(A) E 'NOR (A) • 
iEI 

1. e. : IT (Al is rronotone complete.NOR 

12.22 REMARK There are examples of rronotone complete C*-algebras A: 

S (A) = {O}. Such an A canrot be a W*-algebra.
n 

The predual of a von Neumarm algebra A is the set of all weak* continuous 

linear functionals on A. Notation: A*. 

So, e.g., 

12. 23 lEMMA let w: A -+ C be a weak* contiruous linear functional. Ass1.ID'e : 

'if A E A, 

w(A*) =w{A}. 

Then 3 unique weak* continuous positive linear functionals 

such that 

w= w - w,. -
and 

Ilwll = I i~+ Ii + IlwJ I­
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[Note: It is a corollaIy that every element of ~ can be written as a linear 

canbination of four weak* continuous positive linear functionals (cf. 7.11).] 

12.24 !..EMMA A* is a nann closed subspace of A* • 

Therefore A* is a Banach space. 

12.25 THEOREM Let A be a von Neumann algebra -..., then the arrow r: A -+- (A*) * 

definei by the rule 

r (A) (w) = w(A) 

is an isanetric isarorp:ri.sm. 

INote: r is also a horna:::mp~sm if A and (A*) * are endowei with their re­

spective wEBk* top::>logies, thus the closei unit ball Al of A is weak* compact.] 

Let X be a ca:nplex Banach space - then a canplex Banach space Y is callei a 

predual of X if X is isometrically isomorphic to Y*. 

[Note: If X is reflexive, then X :::: (X*) *, thus the dual x* is a predual.] 

E. g.: Take X = A, Y = ~. 

12.26 LEMMA Let A be a C*-algebra - then up to isometric isanorphism, A 

admits at IlDst one predua1. 

12.27 EXAMPLE In general, prErluals are not unique: Take H = t l and let 

- Y
l 

= c 

-- then c is not isaretrically isarorphic to Co I yet c* and c8 are 

http:isarorp:ri.sm
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both isanetrically isarorphic to tl. 

12.28 THEOREM let A be a C*-algebra. Sup};X)se that A has a predual V ­

then A is a W*-algebra. 

Because the proof is sanewhat involved, it will be convenient to proceed via 

a series of le:rmJaS, the goal being to finesse the matter by an application of 12.21. 

So let A be a C*-algebra with a predual V -- then by definition, there is an 

isaretric isarorphism cp: A -+ V*. Use cp to transfer the weak* to};X)logy on V* to A 

and call it the V*-topology ~ This done, given v E V, define w :A -+ C by
v ­

w (A) = <v,Cp(A) > (A E A).
v 

Then the set 

is the subset of A* consisting of those linear functionals that are continuous J?9r 

the V*-topology. 

[Note: To say that Ai -+ A in the V*-topology IOOans that V v E V, 

w (A.) -+ w (A).]v 1. V 

12.29 LEMMA Ais unital. 

lPRO:)F The closed unit ball A of A is ccmpact in the V* -topology (Alaoglu), 

hence has an extretre };X)int (Krein-.Milman). Therefore A is unital (cf. 1. 30) . 

12.30 RAPPEL (Krein-smulian) let E be a canplex Banach space; let E* be its 

dual and. let B* be the closed unit ball in E* - then a convex subset S c E* is 
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VJeak* closed iff each of the sets S n rB* (r > 0) is weak* closed. 

[Note: Here is an application. Suppose that w:E* -+ g is a linear functional - ­

then w is weak* continuous iff the restriction wi B* is weak* continuous. Proof: 

Ker w n B* is weak* closed, thus Ker w is wea.k* closed, \\7hich implies that w is 

weak* continuous.] 

12.31 LEMMA ASA is closed in the V*-tq;x::>logy. 

PID)F I t is enough to prove that 

is closed in the V*-topology (Krein-Smulian). So let {A.:i E I} be a V*-convergent
J. 

net in ~A and write the limit as X + r-I Y (x,Y E ASA)' the claim being that Y = O. 

To establish this, note that 'If n EN, {A. + r-I nl } is V* -convergent to X + r-I 
- J. A

(nlA + Y). And then 

=> 

2(1 + n ) 1/2 ~ lim inf IIA. + r-I nlAll 
iEI J. 

~ II X + r-I (nlA + Y) II 

If Y is not zero, one can asS1.llle that its spectrum contains sare r > 0 (otherwise 

work with {- Ai:i E I}), thus 'If n E~, 
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or still, 

222 
r +2m+n ~l+n, 

an imrnssibili ty. Therefore Y = 0, as clairred. 

12.32 LEMMA A+ is closed in the V*-top:>logy. 

PRCX)F It is enough to prove that 

is closed in the V*-topology (Krein-Smulian). But 

12.33 	 LEMMA A is rronotone canplete. 


1

PROOF Let {Ai: i E I} be a bounded i:r:creasing net in A ' Because ASA isSA 

compa.ct in the V*-top:>logy, there is a subret {A.:j E J} which is convergent to an 
J 

element A E ASA' But \;f Ai' Aj is ~ Ai eventually, hence A ~ Ai (A+ being closed in 

the V*-top:>logy (cf. 12.32)}. On the other ham, B E ASA and if 	B ;:?: Ai for all i, 

then B ~ A. for all j, so B ~ A. 'rherefore 
J 

A = sup A., 
iEI ~ 

which proves that A is nonotore canplete. 

Bearing in mim 12.21, to finish the proof of 12.28, we have to show that the 

normal states separate the p:>ints of A. Am for this, sare additional preparation 

is required. 

http:compa.ct
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12.34 RAPPEL (UrysOhn) Let X be a topological space. Suppose that {x.} 
~ 

is a net in X -- then l.lin x. = x iff every subnet {x.} has a subnet {x. } such that 
~ J K 

lim ~ = x. 

[If xi does rot converge to x, then 3 a reighborhcx:>d U of x with the following 

property: \;f i, j j z i:x. ¢ U. But the subnet {x } has a subnet {~} such that 
J j 

the ~ are eventually in U.] 

12.35 ~~ The involution *:A + A is V*-continuous. 


PROOF The V*-topology is the initial topology per the linear furctionals 


(v E V). 

So, to conclude that the involution *: A + A is V* -continuous, it suffices to prove 

that \;f v E V, the arrow 

A + W (A*)
v 

is V*-continuous am for this, it can be assume:l that IIAII s 1 (cf. 12.30). 

Accordingly, fix v E V am suppose that A. + 0 in the V*-topology -- then the 
~ 

contention is that w (A~) + o. Consider an arbitrary subnet {w (A~)}. since 
v ~ v J 

IIA1: II = IIA·II S I,
J J 

it follows fran the V*-canpactness of Al that the net {A~} has a V*-convergent
J 

subnet {Ak}: 

~ + B. 

Claim: B = O. To see this I note that 
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ASA being closed in the 	V*-topo1ogy (cf. 12.31). But 

B * BB* = B, ( - -) = - ­
r-I r-I 

=> 

_ ~) * = - B* B B 
=-=-­

r-I - r-I r-I r-I 

B = O. 

Therefore 

w (A*) 7 w (0) = O. v -1c v 

NON' apply 12.34 to get 

w (A~) 7 O. 
v ~ 

12.36 LEMMA If Wv is 	:r;:ositive, then Wv is ronna.l. 

PRCX)F 	 In the notation of 12.33, 

A 2 A. => W (A) 2 W (A.) 
~ v v ~ 

W (A.) :$ sup W (A.) 
v ) iEI v ~ 
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=> 

w (A) = lim w (A.) ~ sup w (A.). 
V jEJ V J iEI V 1 

[Note: Recall that A. + A in the V*-topology and w :A + C is a:mtinuous in
J V ­

the V* -topology. ] 

12.37 RAPPEL (Hahn-Banach) Let E be a real Hausdorff lCTVS. Let SeE be 

a closed convex COIE -- then 'if x E E - S, :3 a continuous liIEar furctional S:E + R 

such that S(x) < 0 and eIs ~ o. 

E.g. : Take E = A ' S = A+ and work with the v*-topology -- thenSA 

'if A E ASA - A+, :3 a V*-continuous linear functional S:t\,A + ~ such that S (A) < 0 

N . B. Extend e to a linear functional w on all of A by writing 


w(x + r-ly) = S(x) + e(Y) 


Then 	w is V*-continuous (cf. 12.35) and, by construction, is positive, heoce nonnal 

(cf. 12.36). 

12.38 IEMr-iA Let A E A and assume that Wv (A) = 0 for all V*-continuous 

positive lirear functionals w on A -- then A = o. v 


PROOF Write 


A = Re A + r-l Im A. 
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and fran this '11119 want to conclude that A = 0, which will be the case if 

Re A = 0 


Im A = O. 


Consider Re A: 

Re A = (Re A) + - (Re A) _. 

Suppose that Re A 'J. A+ (=> (Re A) ;t! 0) -- then 3 W = v 

WV(Re A) < 0 (cf. supra). 

'As this can't be, it follows that (Re A) = O. Analogous considerations apply to 

Im A, thus (Im A) = O. 'rherefore 

andVw,v 

Consider (Re A) + • If (Re A) + ;t! 0, then 

(Cf. 1. 24) , 

(cL supra), 

a contradiction, hence (Re A)+ = O. Similarly, (Im A)+ = O. Therefore A = O. 

'rhe upshot, then, is that the normal states se:r;:arate the points of A, which 

ccmpletes the proof of 12.28. 



- -
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12.39 REMARK Write A* for the subs:pace of A* spanned by the nomal :positive 

linear functionals -- then 

Suppose that A is a von 	Neumann algebra. 

• Write Pro(A) for the set of all projections P in A. 

• Write F (A) for the set of all nonn closed faces FinS (A).n 	 n 

• write IL (A) for t'tJ.e set of all '\.veak:* closed left ideals I in A. 

Equip each of these entities with their natural ordering. 

12.40 THEOREM 

• 	There is an order preserving bijection 


<p:Pro(A) ~ F (A).

-- n 

• There is an order reversing bijection 

• There is an order reversing bijection 

0:Fn (A) ~ IL (A) • 


[The relevant definitions are as follCMS. 


<P: Let 

<p(P} = {w E S (A):w(P) = 	I}.
n 


-1

Then <P (F) = P I where 	P is the smallest projection such that w(P) = 1 for all w E F. 
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'¥: Let 

'¥(P) = {A E A:AP = a}. 

-1 i
Then '¥ (1) = P , where P is the 1.IDique projection such that 1 = AJ? 

0: Take 0 = '¥ 0 if>-1 then 

0{F) = {A E A:w{A*A) = 0 V w E F} 

0-1 (1) = {w E S (A) :w{A*A) = 0 V A E I}.]
n 

Given P E Pro (A) , let 

thus 

12.41 LEMMA. Every Y in the convex hull of Fp U F can be written as a 1.IDique
pi 

convex canbination 

y = AO + {1 - A)T, 

Let Fp c Sn (A) be a nonn closed face -- then Fp is said to be a split face if 

the convex hull of Fp U F is all of S (A).
pi n 

12.42 LEMMA Fp is a split face iff P is a central projection. 
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[Note: Suprose that P is a central projection -- then 

w E Fp <=> V A E A, w(PA) = w(A) .] 

Let 	w E S CA) and fonn wB as in 10.4: 
n 


B 

w (A) 	 = w (B*AB) (A E A) 

or still, 

If w(B*B) ~ 0, then 

But 

(cf. §10). 

'Iherefore 

B 
wW ::: 

B - w(B*B) 

is a 	vector state which, moreover, is nonnal (cf. 12.17). 

12.43 !.EMMA Let Fp c:; Sn (A) be a split face. Fix w E Fp and suppose that 

w{B*B) 	 ;t; 0 -- then ~ E Fp' 

PROOF We have 

Since Fp is a split face, p is central, so 
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= w(B*P
.1

B) 

= w ( (B*B) p.l) 

But 

= w(P) + w(p .1 ) 

= 1 + w(p.1 ) 

.1 .1=> w(p ) = 0 => ~ (p ) = 0 => ~ (P) = 1 => w E Fp. 
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§13. THE 'DOUBLE 'DUAL 


Given a C*-algebra A, let 

- W 
TI = IB TI • 

wES (A) 

Then iT is faithful. Moreover, the image A= IT (A) is a nondegenerate *-subalgebra 

-of B(E) (E = IB EW) • Therefore A is dense in At , ~r the weak, the strong, 
wES (A) 

and the weak* topologies (cf. 12.3). 

13.1 LEMMA Each w E S (A) has a unique extension to an elanent wE S (At I) : 
n 

w = w 0 TI. 

PROOF Uniqueness follows from 12.13. As for existence, view x E E 
w as an w 

-
element x of E and let wbe the restriction to AI , of the vector state w -- then 

w ­
xw 

V A E A, 

weAl = <x ,TI
w(A)x > 

w ww 

= <x ,TI(A)X > w w 

= (w 0 IT) (A) • 

N.B. The procedure is exhaustive in that every el~t of S (AI') arises in 
n 

this way. 

13. 2 REMARK On AI I, the weak and the weak* topologies coincide. 
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-
[Every normal state on A" is a vector state.] 

13. 3 THEDREM The map 

seA) -+ S (A' ')
n 

-
w--+w 

is an affine isarorplllsm and extends to an isanetric isarnrphism 

-w --+ w. 

PROOF The only thing that has to be checked. is the fact that 

Ilwll = Ilwll (w E A*) • 

HaNever, according to 9.47, the closed unit ball Al (= TI(Al » is weakly dense in 

the closed. unit ball of A". But wis weakly continuous (cf • 13 • 2), so 

Ilw II = sup I(w 0 TI) (A) I 
AEAl 

= sup IW(A) I 

AEAl 

= I Iwl t· 

13.4 REMARK The dual of the arrow 

is an isorretric isonorphism 
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Therefore (A' ')* is a predual of A**. As it will be shoNn below that A** is a 

C*-algebra (cf. 13.20), this means that A** is actually a W*-algebra (cf. 12.28). 

There is an arrow 

A" r «A") *) * , 

viz. 

(cf. 12.25). 

Denote by 11 the a::::JIl:pOsite 

Then V A E ;4>" 11 (A) is that elanent of A** which sends w to weAl and by construction, 

11 is an isaretric isa:rorphism. 

N • B. The diagram 

11-
A't ~ A** 

r r 
A +-- A-1T 

canmutes. For let A E A -- then on the one hand, A(w) = w(A) , while on the other, 

11(1T (A» (w) = w(1T (A» = (w 0 1T) (A) = w (A) • 

To proceed further, it will be convenient to introouce sane formalities. 

So let A be a Banach algebra • 

• Given A E A, define linear maps A .... A by 

LA (B) = AB 

~ (B) = EA. 
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Then 

LA,:A* -+ A* 

RA:A* -+ A* . 

• Given 	w E A*, define 

w E A*
A 

w E A*
A 

by 

w = (L*) (w)A A 

• Given f E A**, define 

w E A*f 

w E A*
f 

by 

13.5 ARENS PRODUCT Given f,g E A**, define 

f 
L 

x g E A** 

f x g
R 

E A** 
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by 

(f L x g) (w) = f(gw) 

(f x R g) (w) = g(wf) . 

13.6 LEMMA We have 

- II wAII s; II W II IIAII 

IIAwl1 IIwl! IIAII.s; 

13. 7 LEMMA vie have 

13. 8 LEMMA We have 

- lI~il s; Ilwl! Ilfll 

I I wf I I s; I I W I I I I f I I . 

13.9 LEMMA We have 
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13.10 IEMMA W:!: have 

IlfLxgl1 ::;llfll Ilgll 

Ilf xRgll::; Ilfll IIgII· 

13. 11 IEMMA W:!: have 

Now bring in the canonical injection 

A -+ A** 

A -+ A. 

13. 12 IEMMA We have 

13.13 IEMMA We have 

A A 

A L x f = A x R f = (LA*) (f) 

A A

f x A = f x A = (~*) (f).
L RA 
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13.14 THEOREM Either Arens product makes A** into a Banach algebra and the 

arrCM A -+ A** is an injective honororphism w.r.t. both: 

A A 
A L x B = CAB) 

A A " 

A x B = (AB).
R 

"­

[Note: If A is unital, then 1A is a unit for either Arens product.] 

Definition: A is Arens regular if the two products LX, x R coincide (in 

which case we simply write f x g) • 

13.15 EXAMPIE Take G per 5.17 -- then Ll(G} is Arens regular iff G is finite. 

1 00 

13.16 EXAMPLE Take A = Co -- then Co ::: l and c*O ::: l . Here x = xL R 

and is just the elementwise multiplication on l 
00 

. 

Suppose in addition that A is a Barach *-algebra. Ass'1.llIe: The involution 


*:A -+ A is continuous• 


• Given w E A*, define w*:A -+ £: by 

w*(A) = w{A*). 

Then w* E A*, the map w -+ w* is a linear involution on A*, and 

(w )* = (w*) 
A A* 

(
A

w) * = (w*) 
A* 
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• Given f E A**, define f*:A* -+ S by 

f*(w) = f(w*) . 

Then f* E A**, the map f -+ f* is a linear invGlution on A**, and 

( f w) * = (w*) 
f* 

(w 	 ) * = (w*) • 
f f* 

13.17 EXAMPLE Take A to be a C*-algebra -- then 

In fact, V w E A*, 

(:., (A*) (w) = OJ (A*) , 

while 

(:., (A) * (w) = £). (1\) (w*) 

= (w*) (A) 

= W(A*) • 

13. 18 I..EMM..2\. We have 
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(f x g) * = g* X R +* 
L 	 .L 

(f x R g)* = g* L x f*. 

Consequently, if A is Arens regular, then A** is a Banach *-algebra. 

13.19 THEOREM Suppose that A is a C*-algebra -- then A is Arens regular. 

PROOF Given x,y E E, define w by 

x,y 


w (T) = <x, Ty> (T E B (E)) • 
x,y 

Then 

w 0 'IT E A* 
x,y 

and V f E A**, the expression 

f(w	__ 0 TI) 
x,y 

is 	conjugate linear in X, linear in y, and 

If (w__ 0 TI) I ::; I' f I' IIw__ 0 TI II 
x,y x,y 

::; Ilfll IIxll Ilyll, 
so :J a unique operator 

-
~f E B(E) 

such that 

f(w__ 0 TI) = <x'~fY>' 
x,y 
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The map 

"'­

is nonn preserving (11r.lfll = Ilfll) and V A E A, r.l(A) = TI(A), Le., there is a 

ccmnutative diagram 

AT A** 

:;r 1 1r.l 

BeE) == BeE). 

lastly: 

• <x,r.lf x g y> 
L 

= f x g (w TI)

L X,Y 

0 


= f «w TI»0 
g - ­x,y 

= f (w TI)0 

X,r.lii 

-
• <x,r.lf x g Y> 

R 

= f x g (w TI)0 

R - ­x,y 

= g({w	__ 0 TI} f} 
x,y 
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=> 

f L x 	g = f x R g. 

-[Note: It is clear that the span of the w o TI is all of A* but more is 
x,y 

true: Every w E A* "is" an w _ iT.]_ 0 

X,Y 

N.B. 	 We have 

and 

0f = Q 
f* 

fTo check the second point, write 

<x,Q y> = f* (w 0 '.jf) 
f* x,y 

= f«w	__ 0 w)*) 
X,y 

= f (w _ _ '.jf)0 

y,x 

= <y,Qr> 

= <Qr'Y> 

= <x,Q:fY>' ] 
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13.20 LEMMA Suppose that A is a C*-a1gebra -- then A** is a C*-a1gebra. 

PROOF V f E A**, 

Ilf* 	x f II = II rl II 
f* x f 

= II rl rlf II 
f* 

= II rlfrlf II 

= II rlf 112 

= Ilf 112. 

-
Maintaining the supposition that A is a C*-a1gebra, note that rl (A**) = A" 

and consider the composite 6. rl:0 

rl 6. 

A** -+ A" -+ A**. 


Then V f E A**, 

and 

6.W ) (w__ 0 TI)
f x,y 

= f(w__ TI).0 

x,y 
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Therefore 

L\ 0 n = id 
A** 

13.21 LEMMA L\ is a *-isamorphism. 

PROJF We already know that L\ is an isanetric isomorphism which I noreover I 

is *-li~ar (cf. 13.17), thus one has only to show that 

But 

= f x g 

N.B. 	 Therefore L\ is normal (cf. 12.12). 

[Note: Recall that A** is a W*-algebra (cf. 13.4) I hence is IIDIlOtone cauplete.] 

13.22 	 EXAMPLE let H be a carplex Hilbert space -- then 

~oo (H) * ::: ~1 (H) 

~1 (H) * ::: B (H) • 
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And the iSCJIretric isorrorphism B(m +:s., (Hl ** arising therefrcm is a *-isorrorphism, 

VJhere L 
_00 

(H) ** carries the Arens product. 

13.23 LEMMA Let 1T be a nondegenerate *-representation of A on E -- then 

there is a unique nonna1 *-ha:ncm::>rphism 1T" of A" onto 1T (A) It such that 1T" 0 TI = 1T: 

-1T 
A ~ A" 

1T(A)" -- 1T(A)". 

PRClOF Take for 1T" the canposite 

!'::. 1T** 
A" + A** --+ (1T{A)")** 

1T(A)". 

Here 

inc 
(1T(A)")* -----t­ (1T(A)")* 

=> 
inc* 

(1T(A) ")** -­

And 

X E 1T(A) " => X E (1T(A)")** 
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=> 

-
0There remains the claim that TI" TI = TI. SO let A E A: 

'" L':.(if (A» = A 

'" A A 
TI**(A) = A 0 TI* = TI(A) 

r-1 0 inc* (TI"(A» = TI (A) • 

[Note: TI" is necessarily 	weak* continuous (cf. 12.15).] 

Now specialize and asSl:I£1e further that A c B (N) is a von Neumann algebra. 

Let TI:A -+ B(N) be the identity map -.,.. then 3 a unique central projection P in A" 

such that Ker TIlt = PAil and TI" is a *-isarorphism of P.1A" onto A (cf. 12.19). 

N.B. 	 V A E A, 


TI"(TI(A» = TI(A) = A, 


so 

= A. 

Therefore 

.1­
arrl TI" is a *-isanorphism of P A onto A. 
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Definition: SeA) is the convex direct sum of convex subsets Sl,S2 c SCA) 

each w E S (A) admits a unique decanposition 

Notation: 

A norm closed face F c SeA) is said to be a ~lit face if there is a face 

Fol c S (A) such that S (A) is the convex direct sum of F and r: 
olS (A) = F e F. 

cvx 

[Note: Fol is nonn closed and is uniquely detennined by F.] 

13.24 LEMMA S (A) is a split face of S(A).
n 


PRCX)F Let 


F c S (An)
pol n 

be the split face corresponding to pol per 12.40, thus 

Taking into account the identification 

SeA) <-> S (An) (cf. 13.3),
n 

let 

F<->F,
pol 

the contention being that 

F = S (A).
n 
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'Ihus let w E Sn (A) and consider w 0 TI" E Sn (A") -- then 

w 0 TI" 0 i = w 0 TI = W 

and 

'Iherefore 

S (A) c F. n 

As for the other direction, let w E F, so w = W 0 i (w E F ). 'lb verify that 
pol 

w E Sn (A), let {Ai:i E I} c ASA be a bounded increasing net and put A = sup Ai -­

then 

ol- ol-P TI (A.) t P TI (A)
1 

=> 

- ol- - ol-w{P TI(A.» t w(P TI{A»
1 

=> 

w(n(A.» t w(i{A» (cf. 12.42)
1 

=> 


W(A.) t w(A)

1 

=> 

wE S (A).
n 

Therefore 

F c S (A).
n 
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Consequently, 

SeA) = S (A) 
n 

N. B. The elements of Sn (A).L are said to be singular. 

E.g.: A pure state is either nonna.l or singular. 

13.25 	 REMARK We have 

S (A") = F E9 F 
n p.L cvx P 

and 

F .L <-> S (A) 
p n 

13.26 LEMMA Fix Wo E S (A) -- then Wo is singular iff there is no nonzero 

-weak* continuous positive linear functional w on A such that w :::; w00 

then >..0" is a nonzero -weak* continuous positive linear functional on A such that 

>..0" :::; wOo Suppose, conversely, that there is such an W. Introduce 

(cf. 13.3).by 

-- WOTI=Ww 

Since W > 0 weak* continuous, 
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hence 

=> 


Therefore Wo is not singular. 

13.27 EXAMPLE Sup!X)se that H is an infinite dimensional canplex Hilbert space. 

Let wE S(B(H» -- then wis singular iff wlL
_00 

(H) = o. 

13.28 REMARK Let wE BUI) * - then wis weak* continuous iff Ilw II = 

IlwlL (H) II._00 
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§14. FOLIA 

Suppose that A is a C*-a1gebra. Let 1T be a nondegenerate *-representation of 

A on E. Take 1T" as in 13.23 (so 1T" 0 :rr ;: 1T) - then 3 a unique central projection 

P(1T) in A" such that Ker 1T" ;: P (1T) An (cf. 12.19). NCM put 

C(1T) = P(1T).L 

and call C (1T) the central cover of 1T. 

N.B. 1T" is a *-isarorphism of C(1T) A" onto 1T(A} " (cf. 12.19). 

14.1 LEMMA Let 1T1 and 1T2 be nondegenerate *-representations of A on E1 and 

E2 -- then 

C (1T ) = C (1T ) <=> Ker 1T" = Ker 1T"1 2 1 2' 


[This is trivial: 


.L­

Ker 1T" = C(1T ) A"

1 1 

14.2 RAPPEL Suppose that A is a *-a1gebra. Let 1T1 and 1T2 be nondegenerate 

*-representations of A on E1 and E2 then 1T1 and 1T2 are geometrically equivalent 

iff 3 a *-isamorphism 

such that V A E A, 
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14.3 LEMMA let Trl and Tr2 'be nondegenerate *-representations of A on El and 

PR.CX)F Suppose first that Trl and Tr2 are gecxnetrically equivalent and take iP 

as in 14.2 then iP is nonnal (cf. 12.12), hence is weak* continuous (cf. 12.15), 

and V A E A, 

or still, 

But A = TI (A) is dense in A" per the weak* topology, so 

iP (Tr" (A)) - Tr" (A) (A E A") •1 - 2 

Therefore 

i.e. , 

Conversely, 

thus the prescription 

-
iP(Tr"(A))1 

-= Tr"(A)2 (A E A") 

makes sense. 

14.4 SCHOLIUM Let Rep A 'be the set of all nondegenerate *-representations 

of A (cf. 9.15) and let C CA) 'be the set of all central projections in A" -- then 



3. 


Rep A/~ <-> C(A) 

[TI] <-> C(TI). 

E.g.: C(TI) = 0 corresponds to TI:A -+ {OJ. 

Given TIl,TI2 E Rep A, write TIl :::; TI2 if TIl is geanetrically equivalent to a 

sub *-representation of TI2 • 

E.g.: V TI E Rep A, TI :::; TI. 

Definition: A folium F is a nonn closed convex subset of S (A) which is 

"invariant" in the sense that w E F and if w(B*B) 7 0, then ~ E F. 

[Note: Here 

=w::...:..(B_*..;;,.AB~)- .] 
w (B*B) w(B*B) 

Given a nonCI.egenerate *-representation TI:A -+ B(E) I put 

A = TI(A) " 
TI 

ana. let 

14.7 LEMMA F(TI) is a folium. 
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[To check invariance, suppose that 

(W 0 rr) (B*B) ~ 0 

and then write 

w(rr(B*AB» w(rr(B)*rr(A)rr(B»= 
w(rr(B*B» w(rr(B)*rr(B» 

= wrr(B) (rr(A» 

= (w (B) 0 rr) (A) • rr 

But wrr (B) E Sn (Arr) (see the discussion prefacing 12.43).] 

14.8 LEMMA V rr E Rep A, 

Ker 	rr = n Ker w 0 TIe 
wES (A )

n rr 


['!he nonna.l states separate the points of A • J 

rr 

14.9 THEOREM Let rr and rr be nondegenerate *-representations of A in El1 2 

PR(X)F Suppose first that rr and rr2 are gec.metrically equivalent and take <P :per
1 

114.2. Since <P and <p- are weak* continuous, the arrCM 

is bijective, thus F(rr ) = F(rr2). Turning to the converse,1
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(cf. 14.8), 

fran which a *-isomorphism 

(A E A) • 

Next, V w E S (A ),2 !! TI2 

=> 

=> 

'lherefore w2 0 <p (= wI) is -weak* continuous. But every weak* continuous linear 

functional on TI2 (A) is a linear ccmbination of (restrictions) of elements of 

S (A ). Accordingly, fran the very definition of the -weak* topology as an initial 
!! TI2 

topology, <p (and its inverse) must be -weak* continuous, so :3 a weak* continuous 

*-isamorphism ~:A + A such that ~IA = <p. Now quote 14.2 to conclude that TIl 
TIl TI2 

and TI2 are geometrically equivalent. 

'l1le follo.ving generality was tacitly used above. 

14.10 lEMMA let H and K be canplex Hilbert spaces. Suppose that A c B(H) 

is a C*-subalgebra and <p:A + B{K} is a linear map. Assume: <p is weak* continuous -­
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then <p extends uniquely to a weak* continuous linear map iP:A" + B(K). Moreover, if 

<p is a *-homamorphism (hence <P(A) is a C*-subalgebra of B(K», then iP is a *-hamo­

nnrphism and iP(A") = <P(A)". 

[Note: In particular, every weak* continuous linear functional W: A + g 

extends uniquely to a weak* continuous linear functional w:A" + g.] 

E.g.: V 1T E Rep A, F(1T) c F(if) (= S(A» . 

Given w E SeA), let 

Then 

w E F(w) • 

Proof: V A E A, 

w
weAl = <XW,1T (A)Xw>w' 

On the other hand, the orthogonal projection P of EW onto ex is a density operatorw -w 
and the assigmnent 

is an element of F(1T
w). 

N.B. F(w) is the smallest folium containing w. 
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14.13 IEMMA If F is a folium in S (A) I then 3 a 11 E Rep A, determined up 

to gearetric equivalence, such that F(11) = F. 

w[One has only to take for 11 the direct sum of the 11 (w E F).] 

'Ihe folia in S(A) are thus in a one-tcrone correspondence with the gearetric 

e::J.Ul.valence classes in Rep A. 

[Note: Conventionally, the empty folium corresponds to 11: A -+ {O}.] 
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§l5. C*-CATEGORIES 

Given a category S, denote by Ob S its class of objects and by flor S its class 

of rrorphisms. If X,Y E Ob S is an ordered pair of objects, then Mor(X,Y) is the set 

of rrorphisms (or arrows) fran X to Y. An element f E Mor (X,Y) is said to have 

danain X and codanain Y. One writes f: X -+ Y or X t Y. 

We shall nCf.N impose a series of conditions which in total lead to the notion of 

c*-category. 

1. V X,Y E Ob S, Mer eX,Y) is a cx:m:1plex vector space and canposition 

Mer (X,Y) x rlor (Y, Z) -+ Mer (X, Z) , 

denoted by (f,g) -+ g 0 f, is bilinear. 

2. V X,Y E Ob S, Mor(X,Y) is a Bctnach space and 

- f E Mor(x,Y) 

g E M::>r(Y,Z) 

3. :l an involutive, identity on objects, cofunctor 

Spelled out (in superscript notation) : 

V X E Ob S, X* = X 

and 

V X,Y E Ob C, *:Mor(X,Y) -+ Mor(Y,X) 

subject to 

(af + bg)* = af* + 5g* (a,b E S) • 
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In addition, 

f** = f 


(g 0 f)* = f* 0 g*. 


4. 	 V X,Y E Ob g & f E M::>r(X,Y), 


II f I 12 = I I f* f II
0 

and 

f* 0 f E Mor(X,X)+. 

Summing up: g is said to be a 	C*-category if conditions 1,2,3,4 are satisfied. 

N.B. V X E Ob g, M::>r (X,X) is 	a unital C*-algebra. 

[Note: Every unital C*-algebra A can be viewed as a C*-cateog"Ory with one 

object. ] 

15.1 EXAMPLE Take C = HILB 	 (cf. 4.28) -- then g is a C*-category. 

15.2 EXAMPLE Let A be a C*-algebra and take C = H*M:D" (cf. 4.27) -- then C- .~ 

is a C*-category (use 4.26). 

15.3 EXAMPLE Let A be a unital C*-algebra -- then by End A we shall understand 

the C*-category whose objects are the unital *-haroI:torphisrns ¢:A -+ A and whose arrCMS 

¢ -+ If are the iritertwiriers, i.e., 

Mbr(¢,P) = {T E A:T¢(A) = P(A)T V A E A}. 

Here, the carq:;x:>Sition of arraN'S, when defiried, is given by the product iri A and 

*:End A -+ End A, 
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take it to be the identity on objects and then define 

by sending T to T*. 

15.4 EXAMPLE Given a C*-algebra A, there is a C*-category whose objects 

are the elements Tf of Rep A (cf. 9.15) and whose rrorphisms Tfl -+ Tf2 are the topo­

logical intertwining operators, Le., 

is trivial iff Tfl and Tf2 are diSjoint.] 

15.5 EXAMPLE let A be a unital C*-algebra -- then by Mat A we shall understand 

the category whose objects are the natural numbers and whose rrorphisms n -+ m are the 

n-by-m matrices with entries in A (cf. 4.41). Here, CODlpOsition of 

A E Mor(n,m) 


B E Mor(m,p) 


is the prescription 

BoA = AB, 

where AB is the usual multiplication of matrices, and id is the unit diagonaln 

n-by-n matrix, Le., id = diag lAo As for n 

*:Mat A -+ Mat A, 

take it to be the identity on objects and then define 

* :Mor (n,m) -+ Mer (m,n) 
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by sending [A.. ] to [A~.].
1J J1 

15. 6 REMARK The technical requirerrent that 


f* 0 f E M:>r (X,X) + 


is not an automatic consequence of the other conditions. To see this, consider the 

category with b.lo objects X and Y, where 

M:>r(X,X) = Mor(Y,Y) = C 


M:>r(X,Y) = Mor(Y,X) = g, 


and composition is multiplication of cc:mp1ex m.nllbers. Take the norm of z E C to be 

Iz I and define * by 

X* = X, Y* = Y 

and 

Z if z E Mor(X,X) or Mor(Y,Y) 

z* = 

- 'i if z E Mor (X, Y) or M:>r (y ,X) . 

Then 'if z E Mor(X,Y), 

z* z (- z) (z) = ­0 = 

Let g and !2 be C*-categories -- then a functor F:C -+ D is said to be a 

C*-functor if 'if X,Y E Ob g, 

F:M:>r(X,Y) -+ M:>r(FX,FY) 

is linear and 'if f E Mer (X, Y) , 
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F(f*) = (Ff)*. 

N.B. V X E Ob ~, the rrap 

M:>r (X,X) -+ M:>r (FX,FX) 

is a unital *-ha:rarorphism. 

15.7 LEMMA Suppose that F:~ -+ Q a C*-functor -- then V f E Mor(X,Y), 

PRCX)F By hypothesis, :3 A E Mor(X,X) such that 


f* 0 f = A* A.
0 

But 

IIF (A* A) II s; IIA* 0 All (cf. 1.7).0 

'Iherefore 

II F (f* 0 f) II s; II f* 0 f II 

=> 

II (Ff) * 0 Ff II s; II f* f II 0 

=> 

Accordingly, if F:~ -+ !? is a C*-functor, then the linear naps 

M:>r(X,Y) -+ M:>r(FX,FY) 

are continuous. 

15.8 LEMMA Suppose that F:~ -+ Q is a C*-functor. Assurre: F is faithful -­

then V f E Mor (X, Y) , 
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PROOF V X E Ob ~, the map 

Mer (X,X) + Mer (FX,FX) 

is injective (F being faithful), hence V A E Mer (X,X) , 

IIF (A* 0 A) II = IIA* 0 All (cf. 1. 8) . 

Now repeat the argunent of 15. 7. 

Let ~ be a C*-category -- then a representation of ~ is a C*-functor 


TI:C + RILE. 


15.9 THEOREM Fix X E Ob ~ and let w E S (Mer (X,X» -- then there is a rep­

resentation TIw:c + RILE and an element x E TIwX of nonn 1 such that 
- W 


w(f) = <x ,TIW(f)x > 
w w 

far all f E Mer (X,X) • 

[This is a straightforward extension of the standard GNS construction.] 

15.10 THEOREM Suppose that ~ is small -- then ~ admits a faithf.ul repre­

sentation TI:C + RILE. 

PROOF Fix X E Ob ~ and let ~ be the full subcategory of ~ consisting of those 

Y E Ob ~ such that Mer (X,Y) 7:. {O}. Given w E S(Mer(X,X», choose TIw:~ + RILE 

per 	15.9 and set 

X W
TI =E9TI, 

W 

http:faithf.ul
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X
where ED is taken over S(Mar(X,X». Claim: 1T is faithful. For let g E Mar(Y,Z) 

w 

and choose f E Mar (X, Y) : II f II = 1 -- then :1 A E Mer (X,X) such that 

(g f)* 0 (g f) = A* 0 A,0 0 

thus 

IIAII 
2 

= IIg 0 fll 
2

• 

But:1 wE S(Mar(X,X»: 

w(A* 0 A) = IIAI12 (cf. 7.25), 

so 

w( (g 0 f) * (g 0 f» = Ilg f ,,2,0 0 

from which 

X'lberefore 1T is faithful. NJw' put 

X 
1T= ED 1T • 

X E Ob C 

'ltlen 'IT! C -+ HIIB is faithful. 

15.11 RAPPEL Let £, Q be categories and let 

F:C -+ D 

be flIDctors -- then a natural transfonnation 3 from F to G is a flIDction that assigns 

to each X E Ob £ an elE!l1eI1t 3 E M:>r (FX,GX) such that v f E Mar (X, Y) the squarex 
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~ -x 
FX --> GX 

FY --> GY. 

ccm:nutes. 

Let £, Q be C*-categories and let 

F:C -+ D 

G:C -+ D 

be C*-functors. Given a natural transforIll3.tion E Nat (F,G) , putM 

II~II = sup II~xll 
X E Ob C 

and call ~ bounded if 

15.12 REMARK A natural transfonnation 5:F -+ G need not be bounded. Thus let 

£ = Q be the C*-category VJhose objects are the positive integers 1,2, ... with 

Mor (n,m) = £, canposition being induced by multiplication in £ with involution 

ca:nplex conjugation. Take F = idc and define ~:idc -+ idc by specifying that 

~ :n -+ n sends z to nz -- then ~ is not bounded. n 

15.13 LEMMA Let £, Q be C*-categories -- then the category [£,Q]*whose objects 

are the C*-functors F:£ -+ Q and whose rrorphisms are the rounded natural transfo:r::rrations 

~:F -+ G is a C*-category. 
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I'Ib define 

take it to be the identity on objects and given ~:F ~ G, specify ~*:G ~ F in the 

obvious way, viz. 

::x E Mor (FX,GX) => ~x E Mor (GX,FX) • 

Then V f E Mor (x,Y), the square 

';:;*
-X 

GX > FX 


Gf 1 1
Ff 

G:l > FY 
';:;*
-y 

comm.ltes. Indeed, 

Ff ~x = F(f**)0 

= F(f*)* ~x0 

= (~X 0 F(f*»* 

= (G(f*) ~y)*0 

= ';:;* 0 G(f*)*-y 

= ~y 0 G(f**) 

Moreover, ,;:;* E Mor(G,F), i.e., is bounded: 
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=> 


[Note: Strictly speaking, [~,Q] * is a rretacategory, not a category.] 

E.g.: '!he objects of [~,HIIB] * are the representations of ~. 
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§16. THE CATEGORY OF CATEGORIES 

let i:A -+ Y, p: X -+ B be no:rphisms in a category £ - then i is said to have 

the left lifting property with respect to p (LLP w. r. t. p) and p is said to have 

the right lifting property with respect to i (RLP w.r.t. i) if for all u:A -+ X, 

v:Y -+ B such that P 0 u = v i, there is a w:Y -+ X such that w 0 i = u, pow = v.0 

Schematically: The com:nutative diagram 

u 
A --> X 

i ! ! p 

Y --> B 


v 


admits a filler w:Y -+ X. 

Consider a category S equipped with three canposition closed classes of IIOr­

phigns tenned -weak equivalences, cofibrations, and fibrations, each containing the 

isano:rphisms of S. Agreeing to call a IIOrphism which is both a weak equivalence 

and a cofibration (fibration) an acyclic cofibration (acyclic fibration), C is said 

to be a model category provided that the following axioms are satisfied. 

(M::-l) S is finitely ccnplete and finitely cocanplete. 

(M::-2) Given canposable IIOrphisms f,g, if any two of f,g, g f are -weak0 

equivalences, so is the third. 

(M::-3) Every retract of a weak equivalence, cofibration, or fibration is 

again a weak equivalence, cofibration, or fibration. 

[Note: To say that f:X -+ Y is a retract of g:W -+ Z means that there exist 

IIOrphisms i:X -+ W, r:W -+ X, j:Y -+ Z, s:Z -+ Y with g 0 i = j f, for = s 0 g,0 

r 0 i = i~, s 0 j = idy, thus there is a com:nutative diagram 
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i r 
X-->W-->X 

y --> Z --> Y. 
j s 

Fact: A retract of an iscnorphism is an iscnorphism.] 

(r£-4) Every cofibration has the LLP w.r.t. every acyclic fibration and 

every fibration has the RLP w.r.t. every acyclic cofibration. 

(MC-5) Every rrorphlsm can be written as the canposite of a cofibration and 

an acyclic fibration and the canposite of an acyclic cofibration and a fibration. 

N.B. For a systematic introouction to model category theory (with numerous 

exan:p1es), see Chapter 12 of my book 'IDPICS IN 'IDpor..cx:;y AND HOMaroPY THEORY. 

16.1 REMARK A rrode1 category ~ has an initial object (denoted fO) and a final 

object (denoted *). An object X in ~ is said to be cofibrant if fO -+ X is a cofibra­

tion and fibrant if X -+ * is a fibration. 

16.2 NarATION" CAT is the category whose objects are the small categories and 

whose rrorphisms are the functors. 

Definition: Given sma.11 categories ~, Q, a functor F:C -+ D is a cofibration 

if the map 

ObC-+ObD- -

is injective. 


Definition: Given sma.11 categories ~, Q, a functor F:C -+ D is a fibration 
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if 'if X E Ob C and 'if isarorphism ljJ:FX -+ Y in Q, 3 an isarorphism 4>: X -+ X' in C 

such that F4> = ljJ. 

16.3 THEOREM CAT is a node1 category if vveak equivalence = equivalence, 

the cofibrations and fibrations being as above. 

The first step is the verification of M:-1 which, being of independent interest, 

will be isolated. 

16.4 THEOREM CAT is finitely complete and finitely cocanp1ete. 

16.5 RAPPEL The following conditions on a category £ are equivalent. 

(1) £ is finitely canp1ete. 

(2) C has finite products and equalizers. 

(3) C has finite products and pullbacks. 

(4) £ has a final object and pullbacks. 

Let 1 be the category with one object and one arrow - then 1: is a final object 

in CAT. 

Finite Products Given objects S, Q in CAT, their (binary) product is the 

category S x Q defined by 

Ob(C x D) = Db £ x Ob Q, 

!>:'lor ( ex, Y), (x I , Y' » = Mor (x,X' ) x Mer (y, YI ) 

id{X,Y) = i~ x i~, 
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with camposition 

(fl ,gl) (f,g) = (fl f,g' 0 g).0 0 

[Note: If a category bas a final object and (binary) products, then it bas 

finite products.] 

Equalizers Given objects £, Q in CAT and rrorphisms P, G:£ -+ Q in CAT, their 

equalizer eq (F ,G) is the inclusion inc of the subcategory of £ on which F, G 

coincide: 

Pinc ---.>
eq(F,G) --> C ___.> Q, 

G 

'Where 

Ob eq (F ,G) = {x E Ob £:FX = GX} 

MDr eq(F,G) = {f E MDr £:Ff = Gf}. 

T S 
Pullbacks Suppose that ~ -+ £ -+ ~ is a 2-sink in CAT. Fonn the product 

prB
-->B 

and note that 

T pr0 
A 

> 
AxB C.-

> 
S o pr

B 

let 
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pr 0 incB 
B~ Xc ~ > 

0pr inc SA 1 1 
A > C 

T 

is a pullback square. I.e. : 'Ihe 2-source 

pr o inc pr 0 incA B 
A< ;> B~ Xc ~ 

T S 
is a pullback of the 2-sink ~ -+ g +- ~. 

[Note: In SET, there is a pullback square 

Ob A -------'> Ob C.] 
T 

16.6 RAPPEL The follCM"ing conditions on a category g are equivalent. 

(1) g is finitely cocamplete. 

(2) C has finite coprcx:lucts and coequalizers. 

(3) C has finite coproducts and pushouts. 

(4) C has an initial object and pushouts. 

Let Q be the category with no objects and no arrows -- then 0 is an initial 

object in CAT. 
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pinite Coproducts Given objects ~, ~ in CAT, their (binary) coproduct is the 

category ~ 11 ~ defined by 

Ob (~ _II ~) = Ob ~ _" Ob ~ 


Mar (~ 11~) = Mar ~ 11 Mar ~, 


the coproducts on the RHS being taken in SET with the obvious carq;:lOsition of rror­

phisms. 

{Note: If a category has an initial object and (binary) coproducts, then it 

has finite coproducts.] 

Coequa.lizers Given objects ~, ~ in CAT and rrorphisms P, G:~ + ~ in CAT, con­

sider the smallest equivalence relation on Ob ~ w. r. t. "Which FX and GX are equivalent 

for all X E Ob g and let Sp, G be the set of pairs (Pf , Gf), -where the doma.in and co­

danain are equivalent. l):!note by ~ the principal congruence on ~ generated by this 

t pro 
data and fonn the quotient ~/:: (cf. ) -- then ~ -> 0/:: is a coequalizer of P,G: 

P __> pro 
~ __> ~ --'> coeq (F, G) • 

G 

T S 
Pushouts Suppose that ~ +- ~ + ~ is a 2-source in CAT. Fonn the coproduct 

inA ~ 
~-->~ll~<--B 

and note that 

t 'Ibeory Appl. Categ. 5 (l999), 266-280. 
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----'> 

c ~ 11~. 
-----:'> 

~ 0 S 

let 

AllB = coeq(in T, ~ 0 S).
A 

0 

C 

'Ihen the conmutative diagram 

S 
c -----> B 

lproo~ 
A ----> ~ll~ 

pro 0 inA C 

is a pushout square. I.e.: 'rhe 2-sink 

pro inA pro 0 ~0 

A '>~ll~< B 
C 

T S 
is a pushout of the 2-source ~ + £ -+ ~. 

[N:Jte: In SRI', there is a pushout square 

S 
Ob C '> Ob B 

T 1 1 
ObA '> Ob A Ob ~.]11 

Ob C 
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'!here remains the verification of r£-2, r£-3, r£-4, and r£-s. 

16.7 m~ If P:C -+ D and G:Q -+ ~ are equivalences, then G P:C -+ E is an0 

equivalence. 

16.8 LEMMA Suppose that P:~ -+ !2 and G:!2 -+ ~ are functors. Assume: P and 

GoP are equivalences -- then G is an equivalence. 

pRCXJF 	 Choose PI:D -+ C such that 


- p 0 pI ::::: i~ 


Choose H:E -+ C such that 

let GI = P 0 H - then G 0 GI 
::::: i~ and 

GI 
0 G = F 0 HoG = F 0 HoG 0 i~ 

::::: P 0 HoG 0 P 0 pI 

::::: P 0 id 
C 

0 pI 

= F 0 pI ::::: i~. 

16.9 LEMMA Suppose that P:~ -+ !2 and G:!2 -+ :§ are functors. Assume: G and 
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G 0 F are equivalences - then F is an equivalence. 

Therefore .MC-2 	 is satisfied. 

16.10 LEMMA A retract of an equivalence is an equivalence. 


PRCOF Consider a corrrnutative diagram 


i r 

e --> K --> e 


F 1 A 1 
-

F 1 

D --> L --> Q,
- j s 

where r 0 i :: ide' s j = i~, and A is an equivalence -- then the claim is that0 

F is an equivalence. Thus fix A ':L -+ K such that 

A 0 A' ~ i~ 


A' 0 A ~ i~. 


Then 

0 0 0 0 0r A' j F= r A' A 0 i 

::::: r 0 0 ii~ 

= r i0 = i~ 

and 

0 	 0 0F 0 r A' 0 j 	 = s A 0 A' j 

::::: s 0 0 ji~ 

= s j = i~.0 



- -
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16.11 LEMMA A retract of a cofibration is a cofibration. 


PR(X)F Consider a cannutative diagram 


i r 

C --> K --> C 


F 1 A 1 F 1 
D --> L --> ~, 

j s 

where r i = idc' s j = i~, and A is injective on objects -- then the claim is0 0 

that F is injective on objects. So SllptX)se that 

FX=FY (X,Y E Ob g>. 

Then 

jFX = jFY => AiX = My 

=> iX = iY 

=> riX = riY => X = Y. 

Ct 

N.B. let I denote the category with objects a,b and arrows id , ifL a + b,- a-b I 

b + a, where Ct 0 B= icL , B 0 Ct = id -- then F:C +D is a fibration iff every
D a ­

corrmutative diagram 


]l 
1 -->c 

n 1 1F (n(*> = a) 

I -->D-
\) 

admits a filler p~! + g, i.e., 

Fop = \). 



- - -
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16.12 LEMMA A retract of a fibration is a fibration. 


PRCX)F Consider a carmutative diagram 


]l i r 
l-->C-->K-->C 

I --> D --> L --). Q, 
- \i - j S 

where r i = idc, s 0 J = i~, and A is a fibration -- than 3 A:1 -+ K such that0 

A 0 A = j 0 \i, 

so if P = r 0 A:! -+ ~, we have 

p 0 1T r 0 A 0 1T = r 0 i 0 ]l = id O]l = ]l
C 

Fop = For 0 A = soli. 0 A = s 0 j 0 \i = i~ 0 \i = \i. 

Therefore MC-3 is satisfied. 

16.13 LEMMA Every cofibration has the LIP w. r. t. every acyclic fibration. 

PR!X>F Consider the ccmnutative diagram 

U 
C ). K 

AF 1 1 
D '> ~, 


V 
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where F is a cofibration and A is an acyclic fibration -- then the claim is that 

3 W:!? + !S such that W 0 F = u, A 0 W = V. Since A is an equivalence, it has a 

representative image, hence, being in addition a fibration, it is surjective on 

objects. Accordingly, define W on objects by first denanding that WFX = UX 

(X E Ob 9 (F is injective on objects, thus this nakes sense). Next, given 

Y E Ob ~, choose A E Ob !5 such that fIA = Vi and put WY = A, all the \I\1hile nain­

taining the relation WFX = UX (possible, as VFX = AUX). Turning to rrorphisms, 

there is an arrow 

M:rr(Y,Y') + Mor(VY,VY'). 

On the other hand, 

.M:>r (WY,W':! I) ;::: Mor (AW':!, p,;WY') = Mor (VY ,Vi' ) • 

So the data at hand does indeed give rise to a functor W:!? + !5 with the chosen 

object nap such that W 0 F = u, II. W = V.0 

16.14 LEMMA Every fibration has the RLP w.r.t. every acyclic cofibration. 

PR(X)F Consider the carmru.tative diagram 

U 

~ > !S 


F 1 1A 

D > ~, 

V 


where F is an acyclic cofibration and A is a fibration -- then the claim is that 3 

W:D + K such that W 0 F U, A 0 W = V. 'Ihe initial step is to construct F':!? + g 

subject to 

F' 0 F = id
C 

-------....-~ - ­
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which can be done by the usual procedure, viz. given Y E Ob ~, choose an object 

F'Y E Ob s: and an isomorphism FF'Y -+ Y, where if Y = FX, we take F'FX = X (per­

missible, F being injective on objects). As regards the natural isamorphism 

~':F 0 F' -+ idlY ll\'3.tters can be arranged so that V X E Ob ~, 

is i~. With this preparation, we shall start by defining W on objects, observing 

first that V Y E Ob ~, 

AUF'Y = VFF'Y. 

But 

EY:FFfY -+ Y 

=> 

V3 f 'vpp'Y -+ VY ,--yo . 

thus, since A is a fibration, :1 an object WY E Ob K and an isarnrphism Sy:UFfY -+ Wi 

with 

ASy = vsy (AWY = VY) • 

We can further assume that 

(WFX = OX). 

Passing to :rrorphisms, let g E MJr (Y I Y') and define Wg E Mer (NY,NY') by 

-1
Wg = ~ 0 UF'g 0 ~Y • 

y' 

Then W:D -+ K is a functor with the desired properties. 

Therefore MC-4 is satisfied. 
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16.15 IEMMA Every norphism can be written as the canposite of a cofibration 

and an acyclic fibration. 

PRCXJF Suppose that F:~ -+ Q is a norphism in CAT. let D' be the category with 

Ob Q' = Ob ~ 11 Ob Q 

and for 

X,X' E Ob C 


Y,Y' E Ob Q, 


viewed as objects in Q', let 

Mor(X,X') = Mor(FX,FX'), Mor(X,Y') == Mor{FX,Y') 

MDr (Y, X, ) == Mor (y ,FX'), Mor (y , Y') = Mo:r (Y, y' ) • 

Define a functor U:C -+ D' by 

ox = X (X E Ob C) 

Uf = Pf (f E Mor(X,X'». 

'ltlen U is injective on objects, hence is a cofibration. Define a functor V:D' -+ D 

by 

VX=FX (X E Ob ~) 


VY = Y (y E Ob D) 


and on each of the four possibilities for norphisms, take V to be the identity, thus 

V is fully faithful and surjective on objects, so V is an acyclic fibration. And 

fran the definitions, F = V U.0 

16.16 LEMMA EVery norphism can be written as the COl1\POsite of an acyclic 
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cofibration and a fibration. 

PROOF Suppose that F:~ -+ Q is a morphism in CAT. let~' be the category 

whose objects are the triples (X,E,Y), where X E Ob S' Y E Ob Q, and E:FX -+ Y 

is an isarorphism. Put 

MDr((X,E,Y) I (X' ,E',Y'» = Mor(X,X'). 

Define a functor U:C -+ C' by 

Vf = f (f:X -+ X') • 

Then it is clear that V is an acyclic cofibration. Define a functor V:~'-+ Q by 

V(X,E,Y) = Y 


Vf = ;::, Ff
0 0 

In this cormection, note that 

Vf:V(XIE,Y) -+ V(X',E',Y'), 

i.e. , 

Vf:Y-+Y'. 

Meanwhile, ;::, 0 Ff 0 is the cauposition 

;::-1 


Y >FX 


;::, 

FX' ---> Y'. 

So 

(V V) (f) = id Ff i~ = Ff.0 0 0 

FX' 
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To verify that V is a fibration, let 

1jJ:V(X,E,Y) -+ y' 

be an isanorphism - then we want to proouce an isanorphism 

¢: (X,E,Y) -+ (X' ,E' ,Y') 

such that V¢ = 1jJ. To this end, take 

X' = X, ~, = 1jJ 0 ~, 

and let 

¢ = i~ E Mor«X,E,Y),(X,1jJ 0 E,Y')). 

'!hen 

V¢ = 1jJ 0 

= 1jJ 0 i~ = 1jJ. 

Therefore MC-5 is satisfied. 

16.17 REMARK In CAT, all objects are roth cofibrant and fibrant. 

In addition to the categories Q and !, let ~ be the category with two objects 

and one arrow not the identity, let d2 be the discrete category with two objects, 

and let 12£ be the category with two objects and two parallel arrows -- then the 

canonical functors 

u:O -+ 1 

v:d2 -+ 2 



- -
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are cofibrations, hence every acyclic fibration has the RIP w.r. t. each of them 

(cf. M:-4), a property that turns out to be characteristic. 

16.18 LEMMA Let F:£ -+- ~ be a norphism in CAT. 

(u) F has the RLP w.r. t. u iff F is surjective on objects. 

(v) F has the RLP w.r.t. V iff F is full. 

(w) F has the RIP w.r. t. w iff F is faithful. 

Consequently, if F:£ -+- ~ has the RLP w.r. t. u,v,w, then F is an acyclic 

fibration. Proof: F is surjective on objects and fully faithful. 

[Note: By comparison, recall that F:£ -+- ~ is a fibration iff F has the RIP 

w. r. t. 'IT:! -+-! (which is an acyclic cofibration) . ] 

16.19 LEMMA Let 

F:e -+- D 


F' :e' -+- D' 


be cofibrations. Consider the diagram 

e x e' ----------------------------~> D x e' 

FIe x DI D X e'x F'ide i~ xJl ­- e x e' ­
~F' 

{­ ~ 
e x DI > D X D'. 
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Then F 11 F' is a cofibration. 

[IDte: w::>rking in SET, supp:>se that X c y, X'cY' - then 

X x X, = (X X Y') n (Y x X') 

and the diagram 

X X X' ------------~> Y x x, 

1 1 
X X y' ------'> (X x Y') u (Y X X') 

is a pushout square, tlrus trivially the arrow 

(X x yI) lJ (Y x X') -+ Y x Y' 

is one-to-one.] 

N.B. If in addition, either F or F' is an equivalence, then so is F 11 F'. 

16.20 RAPPEL A category g with finite products is said to be cartesian closed 

provided that each of the functors - x Y:g -+ g has a right adjoint Z -+ zY, so 

Mor(X x Y,z) ~ Mor(X,ZY) • 

The object zY is called an exponential object. The evaluation norphism evy , z is 

the rrorphism zY x Y -+ Z such that for every arrow cp:X x Y -+ Z there is a unique 

arrow Acp:X -+ ZY 
such that cp = evy,z 0 (Acp x idyl . 

[Note: Each Y E Ob g determines a functor F:g -+ g defined on objects by 

Y • f
FZ = Z and on rrorphisms Z -+ X by 

Ff = :\(f 0 evy,z>' 
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so 
y y

Ff:Z -+ X . 

On the other hand, each X E Ob £ determines a functor G:£OP -+ £ defined on objects 

y
by GY = x and on norphisms Z 2. y by 

Gg = A(evy,x id y x g),0 

X 

so 

y Z 
Gg:X -+ X .] 

Functor categories Given small categories C,D, [C,D] is the small category 

whose objects are the functors F:~ -+ ~ and whose n:orphisms are the natural trans­

formations Nat(F,G) fram F to G. 

16.21 LEM-1A CAT is cartesian closed: 

D 
Mor(£ x ~,§) ~ Mbr(£,§-), 

16.22 REMARK The product operation 

x : CAT x CAT -+ CAT 

equips CAT with the structure of a synmetric rronoidal category (here, e = !). 

16.23 l..EM)1A Let F:C -+ D be a cofibration and let 1\:K -+ L be a fibration. 
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Consider the diagram 

D 
-----------------> L­

/i 
1 

C c 
K -------------------~> L 

'Ihen r is a fibration. 

PRCOF One has merely to show that every camtUtative diagram of the form 

D 
1 --------> K 

1 1 (Tr(*) :::: a}
r 

C D 
I ---------:> K x C ~ 

L 

D 
admits a filler P:! -+ !$ , i.e., 

r 0 p = \) 

But this lifting problem is equivalent to a lifting problem for the diagram 

C x I J1 D >< 1 > K 
C x 1 

F 11 ~ 1 1A 

o- x I L.>-
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Since IT is an acyclic cofibration, the same holds for F 11 IT. Therefore J\. has 

the RLP w.r.t. F 11 IT (cf. ]1£-4), fran which the assertion. 

N.B. If in addition, either F or J\. is an equivalence, Wn so is r. 

16. 24 NarATIOO GRD is the full subcategory of CAT whose objects are the 

groupoids, Le., the small categories in which every n:orphism is invertible. 

16.25 REMARK GRD is a n:odel category if the cofibrations, fibrations, and 

v.:eak equivalences are defined per CAT. 

16.26 RAPPEL Let iso:CAT -+ GRD be the functor that sends ~ to iso ~, the 

groupoid whose objects are those of ~ and whose morphisms are the invertible n:or­

phisms -- then iso is a right adjoint for the in::lusion 1:GRD -+ CAT. Let 

IT1 : CAT -+ GRD be the functor that sends ~ to IT1 (~) I the fundamental groupoid of ~ 

(a.k.a. the localization of ~ at Mor~) -- then ITl is a left adjoint for the 

inclusion 1: GRD -+ CAT. 

16.27 NarATICN SISET is the category of simplicial sets. 

16.28 RAPPEL There is a functor 

c:SISET -+ CAT 

that assigns to each simplicial set X its categorical realization eX and there is 

a functor 

ner:CAT -+ SISET 
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§17. THE UNITARY MOVE L STRUCTURE 

In this § "We shall take up the C*-analogs of the purely categorical results 

that were obtained in §16. 

17.1 NCYI'ATION: C*CAT is the category 'Whose objects are the small C*-categories 

am 'Whose rrorphisms are the C*-functors. 

N.B. Q. is an initial object in C*CAT am ! is a final object in C*CAT. 

17.2 THEOREM C*CAT is finitely complete am finitely coca:nplete. 

[Note: 	 The inclusion 


UNC*ALG -+ C*CAT 


preserves finite limits (obvious) but does not preserve finite colimits (as can 

be seen by considering binary coproducts).] 

Let ~,Q be small C*-categories -- then their algebraic tensor product ~ ~ Q 

is the category defined by 

ObC~D=ObcxObD 

am 

Mor«X,Y),(X',Y'» = Mor(X,X') ~C Mor(Y,Y') 

equipped with the involution 
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Consider the diagram 

D 
L 

C 

--------------------------------~> 

/ 
c 

K --------------------------------~> L 

Then 	r is a fibration. 

PR(X)F one has merely to shOll that every ccm:nutative diagram of the fonn 

II D 
1 > K-

1 c 
1r 

0 
I > K Xc~ 

\) 
L 

D 
admits a filler P:! + !5 , i.e. , 

r 0 p 	= \) 

But 	this lifting problem is equivalent to a lifting proble:n for the diagram 

c x I II Dx 1 > K 
C x 1 

FJl1T 1A1 

o x I 	 > L. 
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Since IT is an acyclic cofibration, the sane holds for F II IT. Therefore A has 

the RLP w.r. t. F _II IT (cf. M:-4), fran tvhich the assertion. 

N.B. If in addition, either F or A is an equivalence, then so is r. 

16. 24 NDrATION GRD is the full subcategory of CAT whose objects are the 

groUJ?Oids, Le., the small categories in tvhich every :rrorphism is invertible. 

16.25 REMARK GRD is a :rrodel category if the cofibrations, fibrations, and 

v.eak equivalences are defined per CAT. 

16.26 RAPPEL let iso:CAT -+ GRD be the functor that sends C to iso ~, the 

groUJ?Oid whose objects are those of ~ and whose :rrorphisms are the invertible :rror­

phisms -- then iso is a right adjoint for the inclusion 1 :GRD -+ CAT. let 

ITl:CAT -+ GRD be the functor that sends ~ to ITI (~), the fundarrental groupoid of ~ 

(a.k.a. the localization of ~ at Mor~) -- then ITI is a left adjoint for the 

inclusion 1:GRD -+ CAT. 

16.27 NDrATICN SISET is the category of simplicial sets. 

16.28 RAPPEL There is a functor 

c:SISET -+ CAT 

that assigns to each simplicial set X its categorical realization eX and there is 

a functor 

ner:CAT -+ SISET 
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that 	assigns to each srrall category g its nerve ner g. 

Fact: c is a left adjoint for nero 

Let 	Tr == TIl c -- then0 

IT: SISET + GRD 

is a functor that sends a s:iroplicial set X to its fundamental groupoid lTx. 

16.29 	 LEMMA The functor 


1 0 IT:SISEl' + CAT 


is a left adjoint for the functor 

ner 0 1 0 iso:CAT + SISEl'. 

POClOF V X & V g, we have 

= Mor(l TIl (cX),g)0 

~ Mor(TI1(cX),iso g) 

~ Mor(cX,l(iso g» 

~ Mor(X,ner 1 (iso g». 

Take SISEl' in its canonical rrod.el category structure -- then it can be shown 

that 1 IT preserves cofibrations and acyclic cofibrations while ner 0 1 iso0 	 0 

preserves fibrations and acyclic fibrations. 



- - -

1. 


§17. THE UN1TARY MOVE L STRUCTURE 

In this § we shall take up the C*-analogs of the purely categorical results 

tha.t were obtained in §16. 

17.1 NarATIOO C*CAT is the category whose objects are the small C*-categories 

an:l whose rrorphisms are the C*-fun:::tors. 

N.B. Qis an initial object in C*CAT am ! is a firal object in C*CAT. 

17.2 THEOREM C*CAT is finitely complete am finitely cocamplete. 

[Note: 	 The inclusion 


UNC*ALG -+ C*CAT 


preserves finite limits (obvious) but does not preserve finite colimits (as can 

be seen by considering binary coproducts) .] 

Let s:,Q be small C*-categories -- then their algebraic tensor product s: 9 Q 

is the category defined by 

ObC9D=ObC xObD 

Mor{(X,Y), (X' ,Y'» = Mor(X,X') 	 9 Mor(Y,Y')
C 

equipped with the involution 
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This said, there are small C*-categories 

C ~. D - nun-

C ~ D 
- max­

which reduce to the usual minimal am maximal tensor proo.ucts of C*-a1gebras 

(details left to the reader) . 

N. B. The canonical functors 

C~D ->ce. 	D 
- nun­

ceD ->Ce D 
- max­

are faithful. 

17.3 	 lEMMA C*CAT is a sy.rrnetric nonoida1 category per 

e "C*CAT x C*CAT -+ C*CATmax" , 

the unite being the canp1ex numbers (viewed as a C*-category) . 

17.4 REMARK The 	functor - e D admits a right adjoint, viz. 
max ­

thus 

M:)r(C e D,E):::; 	Mor(g, [Q,~] *)- max - ­

or still, 
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In any C*-category, an arrcM f:X -+ Y is unitary if f*f = i~ and ff* = idy. 

Definition: let S,Q be objects in C*CAT -- then a C*-fumtor F:S -+ Q is a 

unitary equivaleme if :3 a C*-functor G:D -+ C am natural isomorphisms 

such that 

v X E Ob S, llX E M:>rCGFX,X) is unitary 

v Y E Ob S, Vy E M:>r (FGY,Y) is unitary. 

[Note: An iSOll'Orphism S -+ Q is necessarily unitary.] 

17.5 LEMMA A functor F:S -+ Q is a unitary equivalence iff it is fully 

faithful am v Y E ct> Q, :3 X E Ob S and a unitary isarorphism FX -+ Y. 

Definition: Given small C*-categories S,Q, a functor F:C -+ D is a cofibration 

if the map 

ObC-+ObD 

x -+ FX 

is injective on objects. 

Definition: Given small C*-categories S,Q, a fW1Ctor F:C -+ D is a fibration 

if V X E Ob S aId V unitary isamorphism 1J;:FX -+ Y in Q, :3 a unitary isomorphism 

</l:X -+ Xl in S such that F</l = 1J;. 
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17.6 THEOREM C*CAT is a nodel category if weak equivalence = unitary 

equivalence, 	the cofibrations and fibrations being as al:ove. 

['!he proof is similar to but not identical with that of 16.3. J 

let ~ be a small groupoid, i.e., let Q E Ob GRD -- then by fr ~ we shall 

understand the category whose objects are those of ~ but 

Morfr G (X,Y) 

is the free complex vector space generated by Mor (X,Y), thus the e1errents of
G 

are the fonna.1 finite linear combinations 

with 	composition law 

n m n,m 
(E c.cjl.) (E d.I/J.) = E (c.d.)cjl. I/J ..0 	 0 

i=l 	 1 1 j=l J J i,j=l 1 J 1 J 

17.7 	 LEMMA The prescription 

n 	 n _ -1 
(E 	 c.cjl.)* = E c.cjl. 
. 1 	 1 1 . 1 1 11= 1= 

generates an involutive, identity on objects, cofunctor 

*:fr 	G -+ fr G. 

n 
E c.cjl.

i=l 1 1 



5. 

A representation of fr § is a *-preserving linear functor rr:fr ~ ~ HILB. 

[Note: In particular, the elenents of rr(Mor (X,Y» are unitary operators
G 

from 	rrX to rrY.] 

Given f E Morfr G (x,Y), let 

II f II = sup II rr (f) II , 
max rr 

wrere the sup is taken over the representations rr of fr § -- then Ilf I Imax < 00. 

Proof: V rr, 
n 

Ilrr(f) II = Ilrr( l: c.cp.) II 
. 1 	 1 11= 

n n 
::; l: Icil Ilrr(CPi) II = l: Ic. 

1 
I < 00. 

It is therefore clear that fr G a pre-C*-category, herce its caupletion is a 

C*-category, call it C* (G).
max 	­

17.8 EXAr11?LE Take G =I as in §16 and fonn C* (I) (= fr I ffire) -- then 
max 	- ­

ex 
a ~ b is unitary and for every small C*-category C_' the C*-functors C* (I) ~ C 

max ­

are in a ore-to-ore corresporrlence with the unitary elements of MDr g. 

17. 9 	 LEMMA The association G ~ C* (G) defines a functor 
-	 max ­

C* 	 :GRD ~ C*CAT. max 	- ­

PROOF Let ~,!i be snaIl groupoids and let F:§ ~ ~ be a furctor -- then F induces 
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in tre evident manner a furctor fr F:fr ~ -+ fr!.! (on morphisms 

n n 
fr F( L c.¢.) = L c.F¢.).

i=l L L i=l L L 

Accordi:r.tg'ly, one has only to shcM that V X,Y E Ob g, 

fr F:MOrfr G (X,Y) -+ Mor H (FX,FY) 
- fr ­

is continuous. But for any representation IT of fr !.!, IT fr F is a representation0 

of fr g, so V f E Mor G (x,Y),fr 

II(IT frF)fll ~ Ilfllmax0 

=> 

II fr F (f) II ~ II f II .max max 

N • B. C~ takes equivalences to unitary equivalences. 

Let uni:C*CAT -+ GRD be the functor that sends C to uni S, the groupoid whose 

objects are those of S and whose mo:rphisms are the unitary mo:rphisms -- then uni is 

a right adjoint for C* : max 

Mor(C* (G),C):::: Mor(G,uni C).
max - - - ­

Indeed, to proceed fran the IRS to the RHS send 

F:C* (G) -+ C max ­

to the ccmposition 

P uniF 
G -+ uni C* (G) --> uni G. 
- max ­
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17.10 LEMMA We have 

uni[C* (G),C]* ~ [G,uni C].
max - - - ­

PRCX)p The bijection on objects is the gist of the preoedillJ observations. 

Suppose tr:M that P,P' :C* (G) -+ C are C*-fun::::tors am let S:P -+ P' be a unitarymax ­

nablral iscnorphisn, so 

v X E Ob C* (G) = Ob G, 
max - ­

3 a unitary arrow Sx:FX -+ FX' in C am V f:X -+ Y in Mer C* (G), there is a 
max ­

ca:rroutative diagram 

FX > F'X 

FY > P'Y. 

It is thus i.rrm:3diate that the data gererates a mtural is:::morphisn pp -+ P' p. 

17.11 EXAMPLE Let ~1'~2 be srtlClll groupoids and let £ be a sma.ll C*-category -­

then there is a strirY3" of is:::morphisms of categories: 
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~ uni[C* (G ) ~ C* 	 (G ),C]*.
max - l max max - 2 ­

[Note: It follows that 

let 

IT = C* IT.0 max max 

17.12 	 LEMMA '!he functor 

IT :SISET ~ C*CAT max-­

is a left adjoint for the functor 

ner 0 t 0 uni: C*CAT ~ SISET. 

PROOF 'If X & 'If £, we have (cf. 16.29) 

Mor(IT (X),C) = fur{C* (ITX) ,C)
max - max­

~ fur (ITX, uni £) 

~ fur (cX, t (uni £» 

~ Mer (x,ner t (uni £» • 

Take SISET in its canonical m:Xl.el category structure - then it can be shown 

that ITmax preserves cofibrations and acyclic cofibrations while ner 0 t 0 uni 

preserves fibrations and acyclic fibrations. 
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