CATEGORICAL HONOTOPY THEORY

Garth Warner

Department of Mathematics
University of Washington

Some say follow the money; I say follow the arrows.

ABSTRACT

This book is an account of certain developments in categorical homotopy theory that have taken place since the year 2000. Some aspects have been given the complete treatment (i.e., proofs in all detail), while others are merely surveyed. Therefore a lot of ground is covered in a relatively compact manner, thus giving the reader a feel for the "big picture" without getting bogged down in the "nitty-gritty".

1. Cisinski, Denis-Charles, Les Prêfaisceaux Comme Modèles Des Types D'Homotopie, Astérisque 308 (2006).
2. Dwyer, William et al., Homotopy Limit Functors on Model Categories and Homotopical Categonies. A.M.S. Mathematical Surveys and Monographs 113 (2004).
3. Hirschhom, Philip, Model Categories and Their Localizations, A.M.S. Mathematical Surveys and Monographs 99 (2003).
4. Joyal, André, Notes On Quasi-Categories, 2008.
5. Iurie, Jacob, Higher Topos Theory, Annals of Mathematics Studies 170 (2009).
6. Maltsiniotis, Georges, La Thêorie de L'Homotopie de Grothendieck, Astérisque 301 (2005).
7. Worner, Garth, Topics in Topology and Homotopy Theory, Available at: www.math.washington.edu/~ warner/

CONTENTS

PRELIMINARIES: MATTERS SIMPLICIAL

```
CHAPTER 0: MODEL CATEGORIES
CHAPTER X: ANALYSIS IN CAT
CHAPTER I: DERIVED FUNCTORS
CHAPTER 2: COFIBRATION CATEGORIES
CHAPTER 3: HOMOTOPY THEORIES
CHAPTER 4: SIMPLICIAL MODEL CATEGORIES
CHAPTER 5: CUBICAL THEORY
```

APPENDIX: CATEGORICAL BACKGROUND

PRELIMINARIES

MATTERS SIMPLICIAL

TOPICS

```
DEFINITIONS AND NOTATION
SIMPLICIAL SETS
SKELETONS
GEOMETRIC REALIZATION
SINGULAR SETS
CATEGORICAL REALIZATION
NERVES
SIMPLEX CATEGORIES
EXPONENTIAL OBJECTS
SEMISIMPLICIAL SETS
SUBDIVISION
EXTENSION
COFIBRATIONS
KAN FIBRATIONS
COMPONENTS
CATEGORICAL WEAK EQUIVALENCES
POINTED SIMPLICIAL SETS
SIMPLICIAL HOMOTOPY
CONTRACTIBLE CLASSIFYING SPACES
```


MATTERS SIMPLICIAL

DEFINITIONS AND NOTATION

\triangle is the category whose objects are the ordered sets $[n] \equiv\{0,1, \ldots, n\}$ ($n \geq 0$) and whose morphisms are the order preserving maps. In Δ, every morphism can be written as an epimorphism followed by a monomorphism and a morphism is a monomorphism (epinorphism) iff it is injective (sur jective). The face operators are the monomorphisms $\delta_{i}^{n}:[n-1] \rightarrow[n](n>0,0 \leq i \leq n)$ defined by amitting the value i. The degeneracy operators are the epimorphisms $\sigma_{i}^{n}:[n+1] \rightarrow[n]$ ($\mathrm{n} \geq 0,0 \leq i \leq n$) defined by repeating the value i. Suppressing superscripts, if $\alpha \in \operatorname{Mor}([m],[n])$ is not the identity, then α has a unique factorization

$$
\alpha=\left(\delta_{i_{1}} \circ \cdots \circ \delta_{i_{p}}\right) \circ\left(\sigma_{j_{1}} \circ \cdots \circ \sigma_{j_{q}}\right)
$$

where $n \geq i_{1}>\cdots>i_{p} \geq 0,0 \leq j_{1}<\cdots<j_{q}<m$, and $m+p=n+q$. Each $\alpha \in \operatorname{Mor}([m],[n])$ determines a linear transformation $R^{m+1} \rightarrow R^{n+1}$ which restricts to a map $\Delta^{\alpha}: \Delta^{m} \rightarrow \Delta^{n}$. Thus there is a functor $\Delta^{?}: \Delta \rightarrow$ TOP that sends [n] to Δ^{n} and α to Δ^{α}. Since the objects of Δ are themselves small categories, there is also an inclusion $1: \triangle \rightarrow$ CAT.

Given a category \mathbb{C}, write SIC for the functor category [\triangle, CP] and COSIC for the functor category $[\underline{\triangle}, \underline{C}]$-- then by definition, a simplicial object in \underline{C} is an object in SIC and a cosimplicial object in \underline{C} is an object in COSIC.

EXAMPLE The Yoneda embedding

$$
Y_{\Delta} \in O b[\underline{\Delta}, \hat{\Delta}],
$$

so Y_{Δ} is a cosimplicial object in $\hat{\Delta}$.

SIMPLICIAL SETS

Specialize to $\underline{C}=\underline{S E T}-$ then an object in SISET is called a simplicial set and a morphism in SISET is called a simplicial map. Given a simplicial set X , put $X_{n}=X([n])$, so for $\alpha:[m] \rightarrow[n], X \alpha: X_{n} \rightarrow X_{m}$. If $\left\lvert\, \begin{aligned} & d_{i}=X \delta_{i} \\ & s_{i}=X \sigma_{i}\end{aligned}\right.$, then d_{i} and s_{i} are connected by the simplicial identities:

$$
\left.\right|_{-} ^{d_{i} \circ d_{j}=d_{j-1} \circ d_{i}(i<j)} \begin{aligned}
& s_{i} \circ s_{j}=s_{j+1} \circ s_{i}(i \leq j)
\end{aligned}, d_{i} \circ s_{j}=\left\lvert\, \begin{array}{cc}
s_{j-1} \circ d_{i} & (i<j) \\
i d \quad(i=j \text { or } i=j+1) \\
s_{j} \circ d_{i-1} & (i>j+1)
\end{array}\right.
$$

The simplicial standard n-simplex is the simplicial set $\Delta[n]=\operatorname{Mor}(-,[n])$, so for $\alpha:[m] \rightarrow[n], \Delta[\alpha]: \Delta[m] \rightarrow \Delta[n]$. Owing to the Yoneda lenma, if X is a simplicial set and if $\mathrm{x} \in \mathrm{X}_{\mathrm{n}}$, then there exists one and only one simplicial map $\Delta_{\mathrm{X}}: \Delta[\mathrm{n}] \rightarrow \mathrm{X}$ that takes $i d_{[n]}$ to x.

THEOPEM SISET is complete and cocomplete, wellpowered and cowellpowered. [Note: SISET admits an involution $X \rightarrow x^{O P}$, where $d_{i}^{O P}=d_{n-i}, s_{i}^{O P}=s_{n-i}$.]

Let X be a simplicial set -- then one writes $x \in X$ when one means $x \in U_{n} X_{n}$.
With this understanding, an $x \in X$ is said to be degenerate if there exists an epimorphism $\alpha \neq$ id and a $y \in X$ such that $x=(X \alpha) y$; otherwise, $x \in X$ is said to
be nondegenerate. The elements of X_{0} ($=$ the vertexes of X) are nondegenerate. Every $\mathrm{x} \in \mathrm{X}$ admits a unique representation $\mathrm{x}=(\mathrm{X} \alpha) \mathrm{y}$, where α is an epimorphism and y is nondegenerate. The nondegenerate elements in $\Delta[n]$ are the monomorphisms $\alpha:[m] \rightarrow[n](m \leq n)$.

A simplicial subset of a simplicial set X is a simplicial set Y such that Y is a subfunctor of X, i.e., $Y_{n} \subset X_{n}$ for all n and the inclusion $Y \rightarrow X$ is a simplicial map.

SKELETONS

The n-skeleton of a simplicial set X is the simplicial subset $X^{(n)}$ ($n \geq 0$) of X defined by stipulating that $X_{p}^{(n)}$ is the set of all $x \in X_{p}$ for which there exists an epinorphism $\alpha:[p] \rightarrow[q](q \leq n)$ and $a y \in X_{q}$ such that $x=(X \alpha) y$. Therefore $X_{p}^{(n)}=X_{p}(p \leq n)$; furthermore, $X^{(0)} \subset x^{(1)} \subset \cdots$ and $x=\operatorname{colim} X^{(n)}$. A proper simplicial subset of $\Delta[n]$ is contained in $\Delta[n](n-1)$, the frontier $\dot{\Delta}[n]$ of $\Delta[n]$. Of course, $X^{(0)}$ is isamorphic to $X_{0} \cdot \Delta[0]$. In general, let $X_{n}^{\#}$ be the set of nondegenerate elements of X_{n}. Fix a collection $\left\{\Delta[n] x: x \in X_{n}^{\#}\right\}$ of simplicial standard n-simplexes indexed by $X_{n}^{\# \#}$ - then the simplicial maps $\Delta_{x}: \Delta[n] \rightarrow X\left(x \in X_{n}^{\#}\right)$ determine an arrow $X_{n}^{\#} \cdot \Delta[n] \rightarrow X^{(n)}$ and the commutative diagram

is a pushout square. Note too that $\dot{\Delta}[\mathrm{n}]$ is a coequalizer: Consider the diagram

$$
\underset{0 \leq i<j \leq n}{\prod_{0}} \Delta[n-2]_{i, j} \xlongequal{=} \underset{0 \leq i \leq n}{\Longrightarrow} \Delta[n-1]_{i},
$$

where u is defined by the $\Delta\left[\delta_{j-1}^{n-1}\right]$ and v is defined by the $\Delta\left[\delta_{i}^{n-1}\right]$-- then the $\Delta\left[\delta_{i}^{n}\right]$ define a simplicial map $f: \underset{0 \leq i \leq n}{\|} \Delta[n-1]_{i} \rightarrow \Delta[n]$ that induces an isomorphism $\operatorname{coeq}(u, v) \rightarrow \dot{\Delta}[n]$.

REMARK Call Δ_{n} the full subcategory of Δ whose objects are the $[m](m \leq n)$. Given a category \underline{C}, denote by $\underline{S I C}_{n}$ the functor category $\left[\underline{-n}_{n}^{O P}, \underline{C}\right]$. The objects of $\mathrm{SIC}_{\mathrm{n}}$ are the " n -truncated simplicial objects" in C . Enploying the notation of Kan extensions, take for K the inclusion $\Delta_{n}^{O P} \rightarrow \triangleq^{O P}$ and write $t r{ }^{(n)}$ in place of $K *$, so $\operatorname{tr}^{(n)}: \underline{S I C} \rightarrow \underline{S I C}_{n}$. If \underline{C} is complete and cocomplete, then $\mathrm{tr}^{(n)}$ has a left adjoint $s k^{(n)}:$ SIC $_{n} \rightarrow$ SIC, where $\forall X$ in SIC $_{n^{\prime}}$

$$
\begin{aligned}
\left(\mathrm{sk}^{(\mathrm{n})} \mathrm{X}\right)_{\mathrm{m}}= & \operatorname{colim} \mathrm{X}_{\mathrm{k}}, \\
& {[\mathrm{~m}] \rightarrow[\mathrm{k}] } \\
\mathrm{k} & \leq \mathrm{n}
\end{aligned}
$$

and a right adjoint $\operatorname{cosk}(n):$ SIC $_{n} \rightarrow$ SIC, where $\forall x$ in SIC $_{n}$,

$$
\begin{aligned}
\left(\cos { }^{(n)} \mathrm{x}\right)_{\mathrm{m}}= & \operatorname{lim~}_{\mathrm{k}} . \\
& {[\mathrm{k}] \rightarrow[\mathrm{m}] } \\
& \mathrm{k} \leq \mathrm{n}
\end{aligned}
$$

[Note: The colimit and limit are taken over a comma category.]

EXAMPLE Let $\underline{C}=\underline{\text { SET }}-$ then for any simplicial set X,

$$
\operatorname{sk}^{(n)}\left(\operatorname{tr}{ }^{(n)} x\right) \approx x^{(n)}
$$

GEOMETRIC REALIZATION

The realization functor Γ_{Δ} ? is a functor SISET \rightarrow TOP such that Γ_{Δ} ? ${ }^{\circ} Y_{\Delta}=\Delta$? It assigns to a simplicial set X a topological space

$$
|\mathrm{x}|=f^{[\mathrm{n}]} \mathrm{X}_{\mathrm{n}} \cdot \Delta^{\mathrm{n}}
$$

the geometric realization of X, and to a simplicial map $f: X \rightarrow Y$ a continuous function $|f|:|X| \rightarrow|Y|$, the geonetric realization of f.

In particular: $|\Delta[n]|=\Delta^{n}$ and $|\Delta[\alpha]|=\Delta^{\alpha}$.

EXAMPLE The pushout square

defines the simplicial n-sphere $\mathrm{S}[\mathrm{n}]$. Its geonetric realization is homeonorphic to S^{n}.

A simplicial map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is injective (surjective) iff its geometric realization $|f|:|X| \rightarrow|Y|$ is injective (surjective). Being a left adjoint, the functor | |:SISET \rightarrow TOP preserves colimits.

THEOREM Iet X be a simplicial set - then $|\mathrm{X}|$ is a CW Complex with CW structure $\left\{\left|x^{(n)}\right|\right\}$.

PROOF $\left|X^{(0)}\right|$ is discrete and the commutative diagram

is a pushout square in SISET. Since the geometric realization functor is a left adjoint, it preserves colimits. Therefore the commatative diagram

is a pushout square in TOP, which means that. $\left|X^{(n)}\right|$ is obtained from $\left|X^{(n-1)}\right|$ by attaching n-cells $(n>0)$. Moreover, $x=\operatorname{colim} x^{(n)}=>|x|=\operatorname{colim}\left|x^{(n)}\right|$, so $|\mathrm{X}|$ has the final topology determined by the inclusions $\left|\mathrm{X}^{(\mathrm{n})}\right| \rightarrow|\mathrm{X}|$. Denoting now by G the identity component of the homeamorphism group of $[0,1]$, there is a left action $G \times|X| \rightarrow|X|$ and the orbits of G are the cells of $|X|$.
[Note: If Y is a simplicial subset of X, then $|X|$ is a subcomplex of $|X|$, thus the inclusion $|\mathrm{Y}| \rightarrow|\mathrm{X}|$ is a closed cofibration.]

Therefore "geametric realization" can be viewed as a functor SISET \rightarrow CGH.

REMARK A colimit in CGH is calculated by taking the maximal Hausdorff quotient of the colimit calculated in TOP.

THEOREM The functor \mid :SISET \rightarrow OGH preserves finite limits.
N.B. \| : SISET \rightarrow OCH does not preserve arbitrary limits. E.g.: The arrow
$\left|\Delta[1]^{\omega}\right| \rightarrow|\Delta[1]|^{\omega}$ is not a honeomorphism (ω the first infinite ordinal).

SINGULAR SETS

The singular functor S_{Δ} ? is a functor TOP \rightarrow SISET that assigns to a troplogical space X a simplicial $æ t$ sin X, the singular set of $X: \sin X([n])=$ $\sin _{n} x=C\left(\Delta^{n}, X\right) . \quad|\quad|$ is a left adjoint for \sin.

REMARK There is a functor T from SIAB to the category of chain complexes of abelian groups: Take an X and let TX be $\mathrm{X}_{0}<\frac{\partial}{-} \mathrm{X}_{1}<\frac{\partial}{-} \mathrm{X}_{2}<\frac{\partial}{\square} \cdots$, where $\partial=\sum_{0}^{n}(-1)^{i_{d_{i}}}\left(d_{i}: X_{n} \rightarrow X_{n-1}\right)$. That $\partial \circ \partial=0$ is implied by the simplicial identities. One can then apply the homology functor H_{*} and end up in the category of graded abelian groups. On the other hand, the forgetful functor $A B \rightarrow$ SET has a left adjoint $F_{\underline{A B}}$ that sends a set X to the free abelian group $F_{\underline{A B}} X$ on X. Extend it to a functor $F_{A B}: S I S E T \rightarrow$ SIAB. In this terminology, the singular homology $H_{\star}(X)$ of a topological space X is $H_{*}\left(\mathrm{TF}_{A B}(\sin X)\right)$.

THEOREM Let X be a topological space - then the arrow of adjunction $|\sin \mathrm{X}| \rightarrow$ X is a weak homotopy equivalence.

REMARK The class of CW spaces is precisely the class of topological spaces for which the arrow of adjunction $|\sin X| \rightarrow X$ is a homotopy equivalence.

THEOREM Let X be a simplicial set - then the geometric realization of the arrow of adjuction $X \rightarrow \sin |X|$ is a homotopy equivalence.

The realization functor Γ_{i} is a functor SISET $\rightarrow \underline{C A T}$ such that $\Gamma_{i} \circ Y_{\Delta}=i$. It assigns to a simplicial set X a small category

$$
\text { cat } x=f^{[n]} x_{n} \cdot[n]
$$

called the categorical realization of X. In particular, cat $\Delta[n]=[n]$. In general, cat X can be represented as a quotient category $\mathbb{C X} / \sim$. Here, $\mathbb{C X}$ is the category whose objects are the elements of X_{0} and whose morphisms are the finite sequences $\left(x_{1}, \ldots, x_{n}\right)$ of elements of x_{1} such that $d_{0} x_{i}=d_{1} x_{i+1}$. Composition is concatenation and the empty sequences are the identities. The relations are $s_{0} x=i d_{x}\left(x \in X_{0}\right)$ and $\left(d_{0} x\right) \circ\left(d_{2} x\right)=d_{1} x\left(x \in X_{2}\right)$.

REMARK The functor cat:SISET \rightarrow CAT preserves finite products but does not preserve finite limits.

NERVES

The singular functor S_{1} is a functor CAT \rightarrow SISET that assigns to a small category \mathbb{C} a simplicial set ner \mathbb{C}, the nerve of \mathbb{C} : ner $\mathbb{C}([n])\left(=\operatorname{ner}_{\mathrm{n}} \mathrm{C}\right.$) $=$
 Since ner is full and faithful, the arrow of adjunction cat o ner \rightarrow id $_{\text {CAT }}$ is a natural isomorphism.

EXAMPLE Viewing [n] as a small category, the definitions imply that ner[n] = $\Delta[n]$.
N.B. We have
ner $\underline{C}^{\mathrm{OP}}=(\text { ner } \underset{\mathrm{C}}{ })^{\mathrm{OP}}$.
Let \underline{C} be a small category -- then its classifying space $B C$ is the geometric realization of its nerve:

$$
\mathrm{BC} \equiv \mid \text { ner } \mathrm{C} \mid \text {. }
$$

IENMA If C is a small category, then

$$
\mathrm{BC} \approx \underline{\mathrm{BC}}^{\mathrm{OP}}
$$

[This identification is canonical but, in general, is not realized by a functor from \subseteq to $\underline{C}^{\mathrm{OP}}$.]

LEMMA If $\underline{\mathrm{C}}$ and D are small categories, then in CGH,

$$
\mathrm{B}(\underline{\mathrm{C}} \times \underline{\mathrm{D}}) \approx \mathrm{BC} \times{ }_{\mathrm{k}} \mathrm{BD} .
$$

[In fact,

$$
\begin{aligned}
& \operatorname{ner}(\underline{C} \times \underline{D}) \approx \text { ner } \underline{C} \times \text { ner } \underline{D} .] \\
& \text { SIMPLEX CATEGORIES }
\end{aligned}
$$

Let X be a simplicial set - then X is a cofunctor $\underline{\Delta} \rightarrow$ SEI, thus one can form the Grothendieck construction gro X on X. So the objects of gro X are the $([n], x)\left(x \in X_{n}\right)$ and the morphisms $([n], x) \rightarrow([m], y)$ are the $\alpha:[n] \rightarrow[m]$ such that $(\mathrm{X} \alpha) \mathrm{y}=\mathrm{x}$. One calls gro X the simplex category of X . It is isomorphic to the conma category

N.B. The association $X \rightarrow$ gro $_{\Delta} X$ defines a functor

$$
\mathrm{gro}_{\triangle}: \underline{\text { SISET }} \rightarrow \text { CAT. }
$$

- In SISET, a simplicial weak equivalence is a simplicial map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ such that $|f|:|X| \rightarrow|Y|$ is a homotopy equivalence.
- In CAT, a simplicial weak equivalence is a functor $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ such that \mid ner $F \mid: B C \rightarrow B D$ is a homotopy equivalence.

LEMMA There are natural simplicial weak equivalences

$$
\left[\begin{array}{l}
\text { ner }\left(\mathrm{gro}_{\triangle} \mathrm{X}\right) \rightarrow \mathrm{X} \\
\mathrm{gro}_{\Delta}(\text { ner } \mathrm{C}) \rightarrow \mathrm{C}
\end{array}\right.
$$

[For instance, the first arrow is the rule ner ${ }_{p}\left(\right.$ gro $\left._{\triangle} X\right) \rightarrow X_{p}$ that sends

$$
\left(\left[n_{0}\right], x_{0}\right) \xrightarrow{\alpha_{0}} \cdots \xrightarrow{\alpha_{p-1}}\left(\left[n_{p}\right], x_{p}\right) \text { to }\left(x_{\alpha}\right) x_{p^{\prime}}
$$

where $\alpha:[p] \rightarrow\left[n_{p}\right]$ is defined by $\alpha(i)=\alpha_{p-1} \circ \cdots \circ \alpha_{i}\left(n_{i}\right)(0 \leq i \leq p)$
$\left.\left(\alpha(p)=n_{p}\right).\right]$

EXAMPLE Put

$$
\Delta[n]=\mathrm{gro}_{\Delta} \Delta[n] .
$$

Then there is a natural simplicial weak equivalence

$$
\text { ner } \Delta[n] \rightarrow \Delta[n]
$$

If X and Y are simplicial sets and if $f: X \rightarrow Y$ is a simplicial map, then there is a commtative diagram

from which it follows that f is a simplicial weak equivalence iff grog is a simplicial weak equivalence.

EXPONENTIAL OBJECTS

CAT is cartesian closed:

$$
\operatorname{Mor}(\underline{C} \times \underline{\mathrm{D}}, \underline{\mathrm{E}}) \approx \operatorname{Mor}\left(\underline{\mathrm{C}}, \underline{\mathrm{E}} \underline{\mathrm{D}}^{-}\right),
$$

where

$$
\underline{\mathrm{E}}^{\mathrm{D}}=[\underline{\mathrm{D}}, \underline{\mathrm{E}}]
$$

SISET is cartesian closed:

$$
\operatorname{Nat}(X \times Y, Z) \approx \operatorname{Nat}\left(X, Z^{Y}\right)
$$

where

$$
\mathrm{Z}^{\mathrm{Y}}([\mathrm{n}])=\operatorname{Nat}(\mathrm{Y} \times \Delta[\mathrm{n}], \mathrm{z}) .
$$

EXAMPLE Let $\emptyset=\dot{\Delta}[0]$ and $*=\Delta[0]$-- then the four exponential objects associated with \varnothing and * are $\not \varnothing^{\emptyset}=*, \star^{\varnothing}=*, \varnothing^{*}=\not \varnothing_{r} *^{*}=*$.

LEMMA The functor

$$
\text { ner: } \mathrm{CAT} \rightarrow \text { SISET }
$$

preserves exponential objects.
PROOF $\forall[n] \in \triangle$,

$$
\begin{aligned}
\operatorname{ner}_{\mathrm{n}}([\underline{C}, \underline{D}]) & =\operatorname{Mor}([\mathrm{n}],[\underline{C}, \underline{\mathrm{D}}]) \\
& \approx \operatorname{Mor}([\mathrm{n}] \times \underline{\mathrm{C}}, \underline{\mathrm{D}}) \\
& \approx \operatorname{Mor}(\operatorname{ner}([\mathrm{n}] \times \underline{\mathrm{C}}), \operatorname{ner} \underline{\mathrm{D}}) \\
& \approx \operatorname{Mor}(\operatorname{ner}[\mathrm{n}] \times \operatorname{ner} \underline{C}, \text { ner } \underline{D})
\end{aligned}
$$

$$
\begin{aligned}
& \approx \operatorname{Mor}(\text { ner } \underline{C} \times \operatorname{ner}[n], \text { ner } \underline{D}) \\
& \approx \operatorname{Mor}(\text { ner } \underline{C} \times \Delta[n], \text { ner } \underline{D}) \\
& =(\text { ner } \underline{D})^{\text {ner }} \underline{C}([n]) .
\end{aligned}
$$

Therefore
ner C

$$
\operatorname{ner}([\underline{C}, \underline{D}]) \approx(\operatorname{ner} \mathrm{D})
$$

RanARK Given a small category \underline{C} and a simplicial set X, the map

$$
{\text { (ner } \mathrm{C})^{\text {ner (cat } \mathrm{X})}}^{\longrightarrow}{\text { (ner } \mathrm{C})^{\mathrm{X}}}^{\text {ne }}
$$

induced by the arrow $\mathrm{X} \rightarrow$ ner (cat X) is an isomorphism.
NOTATION Given simplicial sets X and Y , write map (X, Y) in place of Y .
[Note: The elements of map $(X, Y)_{0} \approx \operatorname{Nat}(X, Y)$ are the simplicial maps $X \rightarrow Y$.]

SEMISIMPLICIAL SETS

Let M_{Δ} be the set of monomorphisms in Mor \triangle; let E_{Δ} be the set of epimorphisns in Mor \triangle-- then every $\alpha \in$ Mor \triangle can be written uniquely in the form $\alpha=\alpha^{\#} \circ \alpha^{\text {b }}$, where $\alpha^{\#} \in M_{\Delta}$ and $\alpha^{\mathbf{b}} \in \mathrm{E}_{\Delta}$.
Δ_{M} is the category with $O b \Delta_{M}=O b \Delta$ and Mor $\Delta_{M}=M_{\Delta^{\prime}}{ }^{1} M^{\prime} \Delta_{M} \rightarrow \Delta$ being the inclusion.

Write SSISET for the functor category [$\triangle M_{M}$, SET] -- then an object in SSISET
is called a semisimplicial set and a morphism in SSISET is called a semisimplicial map. There is a comutative diagram

where $\Gamma_{Y_{\Delta}} \circ{ }^{I_{M}}$ is the realization functor corresponding to $Y_{\Delta}{ }^{\circ}{ }^{1} M^{*}$ It assigns to a semisimplicial set X a simplicial set PX , the prolongment of X . Explicitly, the elements of $(P X)_{n}$ are all pairs (x, ρ) with $x \in X_{p}$ and $\rho:[n] \rightarrow[p]$ an epimorphism, thus $(P X \alpha)(X, \rho)=\left(\left(X(\rho \circ \alpha)^{\#}\right) x,(\rho \circ \alpha)^{b}\right)$ if the codomain of α is [n]. And P assigns to a semisimplicial map $f: X \rightarrow Y$ the simplicial map Pf: $\left.\right|_{-\quad \begin{array}{l}\text { PX } \rightarrow P Y \\ (x, \rho) \rightarrow(f(x), \rho)\end{array} .}$. The prolongment functor is a left adjoint for the forgetful functor $U: \hat{\Delta}_{\rightarrow} \rightarrow \hat{A}_{M}$ (the singular functor in this setup).

Put

$$
\left|\left.\right|_{M}=| | \circ P .\right.
$$

Then $\left(\left|\left.\right|_{M^{\prime}} U \circ \sin \right)\right.$ is an adjoint pair and $\left|\left.\right|_{M}\right.$ is the realization functor determined by the corposite $\Delta^{?}{ }^{0}{ }^{1} M^{\prime}$ i.e.,

$$
\left|\left.\right|_{M}=\Gamma_{\Delta^{?}} \rho_{{ }_{M}}\right.
$$

THEOREM For any simplicial set X, the arrow $|\mathrm{UX}|_{M} \rightarrow|\mathrm{X}|$ is a homotopy equivalence.

Given n, let $\bar{\Delta}[n]$ be the simplicial set defined by the following conditions. (Ob) $\bar{\Delta}[n]$ assigns to an object $[p]$ the set $\bar{\Delta}[n]_{p}$ of all finite sequences $\mu=\left(\mu_{0}, \ldots, \mu_{p}\right)$ of monomorphisms in Δ having codomain $[n]$ such that $\forall i, j$ $(0 \leq i \leq j \leq p)$ there is a monomorphism $\mu_{i j}$ with $\mu_{i}=\mu_{j} \circ \mu_{i j}$.
(Mor) $\bar{\Delta}[n]$ assigns to a morphism $\alpha:[q] \rightarrow[p]$ the map $\bar{\Delta}[n]{ }_{p} \rightarrow \bar{\Delta}[n]_{q}$ taking μ to $\mu \circ \alpha$, i.e., $\left(\mu_{0}, \ldots, \mu_{p}\right) \rightarrow\left(\mu_{\alpha(0)}, \cdots, \mu_{\alpha(q)}\right)$.

Call $\bar{\Delta}$ the functor $\Delta \rightarrow \hat{\Delta}$ that sends $[n]$ to $\bar{\Delta}[n]$ and $\alpha:[\mathrm{m}] \rightarrow[\mathrm{n}]$ to $\bar{\Delta}[\alpha]: \bar{\Delta}[m] \rightarrow$ $\bar{\Delta}[n]$, where $\bar{\Delta}[\alpha] v=\left(\left(\alpha \circ v_{0}\right)^{\#}, \ldots,\left(\alpha \circ v_{p}\right)^{\#}\right)$. The associated realization functor $\Gamma_{\bar{\Delta}}$ is a functor SISET $\rightarrow \underline{\text { SISET }}$ such that $\Gamma_{\bar{\Delta}} \circ Y_{\underline{\Delta}}=\bar{\Delta}$. It assigns to a simplicial set X a simplicial set

$$
\mathrm{Sd} X=f^{[n]} X_{n} \cdot \bar{\Delta}[n],
$$

the subdivision of X, and to a simplicial map $f: X \rightarrow Y$ a simplicial map $S d f: S d X \rightarrow$ Sd Y, the subdivision of f. In particular, $S d \Delta[n]=\bar{\Delta}[n]$ and $S d \Delta[\alpha]=\bar{\Delta}[\alpha]$. On the other hand, the realization functor $\Gamma_{Y_{\triangle}}$ associated with the Yoneda embedding Y_{\triangle} is naturally iscmorphic to the identity functor id on SISET:

$$
x=f^{[n]} x_{n} \cdot \Delta[n]
$$

If $a_{n}: \bar{\Delta}[n] \rightarrow \Delta[n]$ is the simplicial map that sends $\mu=\left(\mu_{0}, \ldots, \mu_{p}\right) \in \bar{\Delta}[n]$ to
$d_{n} \mu \in \Delta[n]_{p}: d_{n} \mu(i)=\mu_{i}\left(m_{i}\right)\left\langle\mu_{i}:\left[m_{i}\right] \rightarrow[n]\right)$, then the d_{n} determine a natural transformation $d: \bar{\Delta} \rightarrow Y_{\Delta^{\prime}}$ which, by functoriality, leads to a natural transformation $\mathrm{d}: \Gamma_{\bar{\Delta}} \rightarrow \Gamma_{\mathrm{Y}_{\Delta}}$. Thus, $\forall \mathrm{X}, \mathrm{Y}$ and $\forall \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, there is a commutative diagram

THEOREM For any simplicial set X, the arrow $\left|d_{X}\right|:|S d X| \rightarrow|X|$ is a homotopy equivalence.

RFMARK It can be shown that for any simplicial set X, there is a homeomorphism $h_{X}:|s d x| \rightarrow|x|$.
[Note: h_{X} is not natural but is homotopic to $\left|d_{X}\right|$ which is natural.]

EXAMPIE Let X be a simplicial set - then $|\mathrm{X}|$ is homeamorphic to B (cat $\mathrm{Sd}^{2} \mathrm{x}$). Therefore the geometric realization of a simplicial set is homeomorphic to the classifying space of a small category.
[Note: The homeomorphism is not natural.]

EXTENSION

Sd is the realization functor $\Gamma_{\vec{\Delta}}$. The associated singular functor $S_{\bar{\Delta}}$ is denoted by Ex and referred to as extension. Since (Sd,Ex) is an adjoint pair,

16.

there is a bijective map $\Xi_{X, Y}: \operatorname{Nat}(S d X, Y) \rightarrow \operatorname{Nat}(X, E X Y)$ which is functorial in X and Y. Put $e_{X}=E_{X, X}\left(d_{X}\right)$ - then $e_{X}: X \rightarrow E X X$ is the simplicial map given by $e_{X}(x)=\Delta_{x} \circ d_{n}\left(x \in X_{n}\right)$, hence e_{X} is injective.

THEOREM For any simplicial set X, the arrow $\left|e_{X}\right|:|X| \rightarrow|E X X|$ is a homptopy equivalence.

Denote by Ex^{∞} the colimit of $\mathrm{id} \rightarrow \mathrm{Ex}_{\mathrm{Cx}} \mathrm{Ex}^{2} \rightarrow \ldots-$ then Ex^{∞} is a functor $\underline{\text { SISET }} \rightarrow$ SISET and for any simplicial set X, there is an arrow $\mathrm{e}_{\mathrm{X}}^{\infty}: \mathrm{X} \rightarrow \mathrm{EX}^{\infty} \mathrm{X}$, the geometric realization of which is a homotopy equivalence.

COFIBRATIONS

A simplicial map $f: X \rightarrow Y$ is said to be a ofibration if its geometric realization $|\mathrm{f}|:|\mathrm{X}| \rightarrow|\mathrm{y}|$ is a cofibration.

LENMA The Cofibrations in SISET are the injective simplicial maps or still, the monomorphisms.

A cofibration is said to be acyclic if it is a simplicial weak equivalence.

EXAMPLE Let X be a simplicial set - then the arrow of ad junction $X \rightarrow \sin |X|$ is an acyclic ofibration.

EXAMPLE Let X be a simplicial $\mathfrak{F e}$ - then $e_{X}: X \rightarrow E x X$ is an acyclic cofibration, as is $\mathrm{e}_{\mathrm{X}}^{\infty}: \mathrm{X} \rightarrow \mathrm{Ex}^{\infty} \mathrm{X}$.

LEMMA Suppose that $f: X \rightarrow Y$ is an acyclic cofibration - then $S d$ is an acyclic cofibration.

PROOF Consider the cormutative diagram

Since sd preserves injections, $S d f$ is a cofibration. but d_{X} and d_{Y} are simplicial weak equivalences.

Given $n \geq 1$, the $k^{\text {th }}$-horn $A[k, n]$ of $\Delta[n](0 \leq k \leq n)$ is the simplicial subset of $\Delta[n]$ defined by the condition that $\Lambda[k, n]_{m}$ is the set of $\alpha:[m] \rightarrow[n]$ whose image does not contain the set $[\mathrm{n}]-\{\mathrm{k}\}$.
N.B. $|\Lambda[k, n]|=\Lambda^{k, n}$ is the subset of $|\Lambda[n]|=\Delta^{n}$ consi.sting of those $\left(t_{0}, \ldots, t_{n}\right): t_{i}=0(\exists i \neq k)$, thus $\Lambda^{k, n}$ is a strong deformation retract of Δ^{n}.

LEMMA The inclusions $\Lambda[k, n] \rightarrow \Delta[n](0 \leq k \leq n, n \geq 1)$ are acyclic cofibrations.

KAN FIBRATIONS

Let $p: X \rightarrow B$ be a simplicial map -- then p is said to be a Kan fibration if it has the RLP w.r.t. the inclusions $A[k, n] \rightarrow \Delta[n](0 \leq k \leq \pi, n \geq l)$.

EXAMPLE Let $\left.\right|_{-} ^{-} X$ be topological spaces, $f: X \rightarrow Y$ a continuous function - then f is a Serre fibration iff $\sin f: \sin X \rightarrow \sin Y$ is a Kan fibration.

LEMMA Let $\mathrm{p}: \mathrm{X} \rightarrow \mathrm{B}$ be a Kan fibration - then $\mathrm{Ex} \mathrm{p}: \mathrm{Ex} X \rightarrow \mathrm{Ex} \mathrm{B}$ is a Kan fibration.

A simplicial set X is said to be a Kan complex if the arrow $X \rightarrow$ is a Kan fibration. The Kan complexes are therefore those X such that every simplicial map $f: A[k, n] \rightarrow X$ can be extended to a simplicial map $F: \Delta[n] \rightarrow X(0 \leq k \leq n, n \geq 1)$.
N.B. $\Delta[n](n \geq 1)$ is not a Kan complex.

EXAMPLE Let X be a topological space - then $\sin \mathrm{X}$ is a Kan complex.

EXAMPLE Let \mathbb{C} be a small category - then ner \mathcal{C} is a Kan complex iff \underline{C} is a groupoid.

EXAMPIE Let X be a simplicial set - then $\mathrm{Ex}^{\infty} \mathrm{X}$ is a Kan complex.

LEMMA Suppose that $L \rightarrow K$ is an inclusion of simplicial sets and $X \rightarrow B$ is a Kan fibration -- then the arrow map $(K, X) \rightarrow \operatorname{map}(L, X) \times_{\operatorname{map}(L, B)} \operatorname{map}(K, B)$ is a Kan fibration.
[Pass from

to

So, as a special case, if Y is a Kan complex, then so is map $(X, Y) \forall X$.

COMPONENTS

Let $<2 n>$ be the category whose objects are the integers in the interval [$0,2 \mathrm{n}$] and whose morphisms, apart from identities, are depicted by

Put $I_{2 n}=$ ner $<2 n>:\left|I_{2 n}\right|$ is homeomorphic to $[0,2 n]$. Given a simplicial set X, a path in X is a simplicial map $\sigma: I_{2 n} \rightarrow X$. one says that σ begins at $\sigma(0)$ and ends at $\sigma(2 n)$. Write $\pi_{0}(X)$ for the quotient of X_{0} with respect to the equivalence relation obtained by declaring that $x^{\prime} \sim x^{\prime \prime}$ iff there exists a path in X which begins at x^{\prime} and ends at $x^{\prime \prime}$ - then the assignment $X \rightarrow \pi_{0}(X)$ defines a functor $\pi_{0}:$ SISET \rightarrow SET which preserves finite products and is a left adjoint for the functor si:SET \rightarrow SISET that sends X to $s i X$, the constant simplicial set on X, i.e., $\operatorname{si} x([n])=\left.x \&\right|_{i} ^{d_{i}=i d_{X}} \begin{gathered} \\ s_{i}=i d_{X}\end{gathered} \quad(\forall n)$.
[Note: The geometric realization of si X is X equipped with the discrete topology.]

Given a simplicial set X, the decomposition of X_{0} into equivalence classes determines a partition of X into simplicial subsets X_{i}. The X_{i} are called the components of X and X is connected if it has exactly one component.
[Note: $x=\frac{1}{i} X_{i} \Rightarrow|x|=\frac{1}{i}\left|X_{i}\right|,\left|X_{i}\right|$ running through the components of $\left.|X|, 5 \circ \pi_{0}(X) \longleftrightarrow \pi_{0}(|X|).\right]$

EXAMPIE A small category \underline{C} is connected iff its nerve ner \underline{C} is connected or, equivalently, iff its classifying space BC is connected (= path connected).

LEAMA The components of a Kan complex are Kan.

RAPPEJ Let K and L be CW complexes -- then a continuous function $f: K \rightarrow L$ is a honotopy equivalence iff for every CW complex Z, the arrow

$$
\pi_{o^{\operatorname{map}}(L, Z)} \rightarrow \pi_{o^{\operatorname{map}}(K, Z)}
$$

is bijective.
[Note: we have

Therefore the top horizontal arrow is a bijection iff the bottom horizontal arrow is a bijection.]

IEMMA Let \int_{-}^{X} be simplicial sets. Assume: Y is a Kan complex -- then
there is a weak homotopy equivalence

$$
|\operatorname{map}(X, Y)| \rightarrow \operatorname{map}(|X|,|Y|) .
$$

PROOF The assumption that Y is a Kan complex implies that the arrow $|\operatorname{map}(X, Y)| \rightarrow|\operatorname{map}(X, \sin Y)|$ is a homotopy equivalence. But map $(X, \sin |Y|) \approx$ $\sin \operatorname{map}(|X|,|Y|)$ and the arrow of adjunction

$$
|\sin \operatorname{map}(|X|,|Y|)| \rightarrow \operatorname{map}(|X|,|Y|)
$$

is a weak homotopy equivalence.
[Note: Here map $(|X|,|\mathrm{Y}|)=\mathrm{kC}(|\mathrm{X}|,|\mathrm{Y}|)$ (compact open topology).]

CRITERION A simplicial map $f: X_{1} \rightarrow X_{2}$ is a simplicial weak equivalence iff for every Kan complex Y, the arrow

$$
\pi_{0}^{\operatorname{map}}\left(\mathrm{X}_{2}, \mathrm{Y}\right) \rightarrow \pi_{0}^{\operatorname{map}}\left(\mathrm{X}_{1}, \mathrm{Y}\right)
$$

is bijective.
[The arrow $|\mathrm{f}|:\left|\mathrm{X}_{1}\right| \rightarrow\left|\mathrm{X}_{2}\right|$ is a homotopy equivalence iff for every CW complex Z, the arrow

$$
\pi_{0} \operatorname{map}\left(\left|\mathrm{x}_{2}\right|,|\sin \mathrm{z}|\right) \rightarrow \pi_{0} \operatorname{map}\left(\left|\mathrm{x}_{1}\right|,|\sin \mathrm{z}|\right)
$$

is bijective. On the other hand,

$$
\left\lvert\, \begin{aligned}
\pi_{0} \operatorname{map}\left(X_{1}, \sin z\right) & \approx \pi_{0}\left|\operatorname{map}\left(X_{1}, \sin z\right)\right| \\
\pi_{0} \operatorname{map}\left(X_{2}, \sin z\right) & \approx \pi_{0}\left|\operatorname{map}\left(x_{2}, \sin z\right)\right|
\end{aligned}\right.
$$

and since $\sin Z$ is a Kan complex,

$$
\left[\begin{array}{l}
\pi_{0}\left|\operatorname{map}\left(\mathrm{X}_{1}, \sin \mathrm{z}\right)\right| \approx \pi_{0} \operatorname{map}\left(\left|\mathrm{X}_{1}\right|,|\sin \mathrm{z}|\right) \\
\left.\pi_{0}\left|\operatorname{map}\left(\mathrm{X}_{2}, \sin \mathrm{z}\right)\right| \approx \pi_{0} \operatorname{map}\left(\left|\mathrm{X}_{2}\right|,|\sin \mathrm{z}|\right) \cdot\right]
\end{array}\right.
$$

CATEGORICAL WEAK EQUIVALENCES

A weak Kan complex is a simplicial set X such that every simplicial map $\mathrm{f}: \mathrm{A}[\mathrm{k}, \mathrm{n}] \rightarrow \mathrm{X}$ can be extended to a simplicial $\operatorname{map} \mathrm{F}: \Delta[\mathrm{n}] \rightarrow \mathrm{X}(0<\mathrm{k}<\mathrm{n}, \mathrm{n}>\mathrm{l})$.
[Note: Every Kan complex is a weak Kan complex.]
N.B. If Y is a weak Kan complex, then so is map $(X, Y) \forall X$.

EXAMPIE Let \underline{C} be a small category -- then ner \mathbb{C} is a weak Kan complex.

LEMMA Suppose that X is a weak Kan complex -- then X is a Kan complex iff cat X is a groupoid.

Denote by

$$
c_{0}: \underline{\text { SISET }} \rightarrow \text { SET }
$$

the functor that sends X to the set of isomorphism classes of objects of cat X .

LFPMA c_{0} preserves finite products.
PROOF cat and π_{0} preserve finite products. This said, observe that c_{0} is the composite

LEMMA If X is a Kan complex, then

$$
c_{0} X=\pi_{0} X
$$

N.B. It therefore follows that if Y is a Kan complex, then $\forall X$

$$
{ }^{C_{0} \operatorname{map}(X, Y)}=\pi_{0} \operatorname{map}(X, Y) .
$$

DEFINITION A simplicial map $\mathrm{f}: \mathrm{X}_{1}+\mathrm{X}_{2}$ is a categorical weak equivalence if for every weak Kan complex Y, the arrow

$$
c_{0} \operatorname{map}\left(X_{2}, Y\right) \rightarrow c_{0} \operatorname{map}\left(X_{1}, Y\right)
$$

is bijective.

EXAMPLE The inclusion $\Lambda[k, n] \rightarrow \Delta[n](0<k<n, n>l)$ is a categorical weak equivalence.

LEMMA The functor cat:SISET \rightarrow CAT sends a categorical weak equivalence to a categorical equivalence.

THEOREM Suppose that $\mathrm{f}: \mathrm{X}_{2} \rightarrow \mathrm{X}_{1}$ is a categorical weak equivalence - then $\mathrm{f}: \mathrm{X}_{2} \rightarrow \mathrm{X}_{1}$ is a simplicial weak equivalence.

PROOF For every Kan complex Y, the arrow

$$
c_{0} \operatorname{map}\left(X_{2}, Y\right) \rightarrow c_{0} \operatorname{map}\left(X_{1}, Y\right)
$$

is bijective. But

$$
\left[\begin{array}{l}
c_{0} \operatorname{map}\left(X_{2}, Y\right)=\pi_{0} \operatorname{map}\left(X_{2}, Y\right) \\
c_{0} \operatorname{map}\left(X_{1}, Y\right)=\pi_{0} \operatorname{map}\left(X_{1}, Y\right)
\end{array}\right.
$$

from which the assertion.

POINTED SIMPLICTAL SETS

A simplicial pair is a pair (X, A), where X is a simplicial set and $A \subset X$ is a simplicial subset. Example: $F i x x_{0} \in X_{0}$ and, in an abuse of notation, let x_{0} be the simplicial subset of X generated by x_{0} so that $\left(x_{0}\right)_{n}=\left\{s_{n-1} \cdots s_{0} x_{0}\right\}$ ($\mathrm{n} \geq 1$) -- then ($\mathrm{x}, \mathrm{x}_{0}$) is a simplicial pair.

A pointed simplicial set is a simplicial pair ($\mathrm{X}, \mathrm{X}_{0}$). A pointed simplicial map is a base point preserving simplicial map $f: X \rightarrow Y$, i.e., a simplicial map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ for which the diagram

commutes or, in brief, $f\left(x_{0}\right)=y_{0}$.

SISEIt is the category whose objects are the pointed simplicial sets and whose morphisms are the pointed sinplicial maps. Thus SISET ${ }_{*}=\left[\underline{\Delta}^{\mathrm{OP}}\right.$, SET $\left._{*}\right]$ and the forgetful functor SISEP $_{*} \rightarrow$ SISEP has a left adjoint that sends a simplicial set X to the pointed simplicial set $X_{+}=X \|$ *.
[Note: The vertex inclusion $e_{0}: \Delta[0] \rightarrow \Delta[1]$ defines the base point of $\Delta[1]$, hence of $\dot{\Delta}[1]$.
$\Delta[0]$ is a zero object in SISET * and SISET, has the obvious products and coproducts. In addition, the pushout square

defines the gmash product $X \#$ Y. Therefore SISET, is a closed category if $X Q Y=$ $X \# Y$ and $e=\dot{\Delta}[1]$. Here, the internal hom functor sends (X, Y) to map (X, Y), the simplicial subset of $\operatorname{map}(X, Y)$ whose elements in degree n are the $f: X \times \Delta[n] \rightarrow Y$ with $f\left(x_{0} \times \Delta[n]\right)=y_{0}$, i.e., the pointed simplicial maps $X \# \Delta[n]_{+} \rightarrow Y$, the zero morphism $0_{X Y}$ being the base point.

SIMPLICIAL HOMOTOPY

Given simplicial sets X and Y, simplicial maps $f, g \in \operatorname{Nat}(X, Y)$ are said to be simplicially homotopic ($\underset{\mathrm{s}}{\approx} \mathrm{g}$) provided that there exists a simplicial map $H: X \times \Delta[1] \rightarrow Y$ such that if

$$
\begin{aligned}
& H \circ i_{0}: X \approx X \times \Delta[0] \xrightarrow{i d_{X} \times e_{0}} X \times \Delta[1] \xrightarrow{H} Y \\
& \mathrm{H} \circ \mathrm{i}_{1}: \mathrm{X} \approx \mathrm{X} \times \Delta[0] \xrightarrow[i d_{X} \times e_{1}]{\longrightarrow} \mathrm{X} \times \Delta[1] \longrightarrow \mathrm{Y}_{\mathrm{H}} \\
& \text { then } \left\lvert\, \begin{array}{l}
\mathrm{H} \circ \mathrm{i}_{0}=\mathrm{f} \\
\mathrm{H} \circ \mathrm{i}_{1}=\mathrm{g}
\end{array}\right., \text { where } \left\lvert\, \begin{array}{l}
\mathrm{e}_{0}: \Delta[0] \rightarrow \Delta[1] \\
e_{1}: \Delta[0] \rightarrow \Delta[1]
\end{array}\right. \text { are the vertex inclusions per }\left.\left.\right|_{0} ^{-}\right|_{0} ^{-} .
\end{aligned}
$$

The relation $\underset{\mathbf{S}}{\approx}$ is reflexive but it needn't be symetric or transitive.
[Note: Elements of map $(X, Y){ }_{1}$ correspond to simplicial homotopies $H: X \times \Delta[1] \rightarrow Y$.

EXAMPLE Take $X=Y=\Delta[n](n>0)$. Let $C_{0}: \Delta[n] \rightarrow \Delta[n]$ be the projection of $\Delta[n]$ onto the $0^{\text {th }}$ vertex, i.e., send $\left(\alpha_{0}, \ldots, \alpha_{p}\right) \in \Delta[n]_{p}$ to $(0, \ldots, 0) \in \Delta[n]_{p}$. Claim: $C_{0} \underset{s}{\sim} i d_{\Delta[n]}$. To see this, consider the simplicial map $H: \Delta[n] \times \Delta[1] \rightarrow \Delta[n]$ defined by $H\left(\left(\alpha_{0}, \ldots, \alpha_{p}\right),(0, \ldots, 0,1, \ldots, 1)\right)=\left(0, \ldots, 0, \alpha_{i+1}, \ldots, \alpha_{p}\right)$ so that $H\left(\left(\alpha_{0}, \ldots, \alpha_{p}\right),(0, \ldots, 0)\right)=(0, \ldots, 0), H\left(\left(\alpha_{0}, \ldots, \alpha_{p}\right),(1, \ldots, 1)\right)=\left(\alpha_{0}, \ldots, \alpha_{p}\right)-$ then H is a simplicial homotopy between C_{0} and $i d{ }_{\Delta[n]}$. On the other hand, there is no simplicial homotopy H between $i d_{\Delta[n]}$ and C_{0}. For suppose that $H((1,1),(0,1))=$ $(\mu, v) \in \Delta[n] 1$. Apply $d_{1} \& d_{0}$ to get $\mu=1 \& v=0$, an impossibility.

LFIMMA Suppose that $\left.\right|_{-} ^{-} \underline{\mathrm{C}}$ are small categories. Iet $\mathrm{F}, \mathrm{G}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ be functors,
$E: F \rightarrow G$ a natural transformation -- then E induces a functor $E_{H}: C \times[1] \rightarrow \underline{D}$ given
on objects by

$$
\Xi_{H}(X, 0)=F X, \Xi_{H}(Y, 1)=G Y
$$

and on morphisms by

$$
\begin{aligned}
& \Xi_{H}(\mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Y}, 0 \longrightarrow 0)=\mathrm{FX} \xrightarrow{\mathrm{Ff}} \mathrm{FY}, \Xi_{\mathrm{H}}(\mathrm{X} \xrightarrow{\mathrm{~g}} \mathrm{Y}, \mathrm{I} \longrightarrow \mathrm{l})=\mathrm{GX} \xrightarrow{\mathrm{Gg}} \mathrm{GY} \\
& \Xi_{H}(X \xrightarrow{h} Y, 0 \longrightarrow 1)=F X \xrightarrow{\Xi_{Y} \circ \mathrm{Fh}} G Y
\end{aligned}
$$

or still,

$$
\Xi_{H}(X \xrightarrow{h} Y, 0 \longrightarrow 1)=\mathrm{FX} \xrightarrow{\text { Gh } \circ E_{X}} \mathrm{GY}
$$

Therefore

$$
\text { ner } \Xi_{\mathrm{H}}: \text { ner } \underline{\mathrm{C}} \times \Delta[1] \rightarrow \text { ner } \underline{\mathrm{D}}
$$

is a simplicial homotopy between ner F and ner G.

Suppose that $\left.\right|_{-} \quad \begin{aligned} & \mathrm{G}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}} \rightarrow \underline{\mathrm{C}}\end{aligned}$ are an adjoint pair with arrows of adjunction
$\left\lvert\, \begin{aligned} & \mu \in \operatorname{Nat}\left(\mathrm{id}_{\underline{C}^{\prime}} \mathrm{G} \circ \mathrm{F}\right) \\ & \nu \in \operatorname{Nat}\left(\mathrm{F} \circ \mathrm{G}, \mathrm{id} \underline{\mathrm{D}}^{\prime}\right)\end{aligned} \quad\right.$ - then

$$
\begin{aligned}
& \text { id ner } \underset{\sim}{\cong} \underset{s}{n e r} G \circ \text { ner } F \\
& \text { ner } F \circ \text { ner } G \underset{S}{\sim} \text { id ner } \underline{D}
\end{aligned}
$$

or still, in the topological category,

$$
\left\lvert\, \begin{aligned}
& i d_{B C} \simeq \mid \text { ner } G|\circ| \text { ner } F \mid \\
& \mid \text { ner } F|\circ| \text { ner } G \mid \simeq i d_{B D}
\end{aligned}\right.
$$

I.e.: $\left.\right|_{-} ^{-} \begin{array}{r}B C \\ B D\end{array}$ have the same homotopy type.

CONTRACTIBLE CLASSIFYING SPACES

DEFINITION A topological space X is contractible if the identity map of X is homotopic to some constant map of X to itself.

FACT A topological space is contractible iff it has the hamotopy type of a one point space.

FACT Two contractible spaces have the same homotopy type.

FACT Any continuous map between contractible spaces is a homotopy equivalence.

A small category \mathbb{C} is contractible if its classifying space $B C$ is contractible.

EXAMPLE 1 is contractible (Bl is a one point space).

LEMMA \underline{C} is contractible iff the arrow $\underline{C} \rightarrow 1$ is a simplicial weak equivalence.
N.B. The arrow $\underline{C} \rightarrow 1$ is an equivalence of categories iff $\underline{C} \neq \underline{0}$ and every object is a final object.

LEMMA If \underline{C} has a final object, then C is contractible.
[For then the functor $\underline{C} \rightarrow 1$ has the obvious right adjoint $\underline{1} \rightarrow \underline{C}$, thus $B C$ and Bl have the same homotopy type.]
[Note: If $\underline{\mathcal{C}}$ has an initial object, then $\underline{\mathbb{C}}$ is contractible. Proof: $\underline{\mathrm{OP}}^{\mathrm{OP}}$ has a final object and $\mathrm{BC} \approx \mathrm{BC}^{\mathrm{OP}}$. 1

EXAMPLE \triangle is contractible ([0] is a final object).

REMARK If the functor $\underline{C} \rightarrow 1$ is an equivalence of categories, then \underline{C} is contractible.

Suppose that I is a filtered category and let $\Delta: I \rightarrow$ CAT be a functor - then since filtered colimits commute with finite limits in SET, we have
ner colim $\Delta \approx$ colim ner Δ_{i}.
δ
Assume now that \forall morphism $i \longrightarrow j$ in I, the induced functor $\Delta \delta: \Delta_{i} \rightarrow \Delta_{j}$ is a simplicial weak equivalence -- then $\forall i$, the functor $\Delta_{i} \rightarrow$ colim Δ is a simplicial weak equivalence.

LEMMA Every filtered category I is contractible.
PROOF Define a functor $\Delta: I \rightarrow$ CAT by sending i to $I / i-$ then $I \approx \operatorname{colim} \Delta$. But \forall i, I/i has a final object, hence is contractible.

Let \underline{C} be a small category, let $X \in O B \underline{C}$, and let $F: \underline{C} \rightarrow \underline{C}$ be a functor.

LFMMA If there is a natural transformation from ${ }^{d_{C}}$ to F and if there is a natural transformation from the constant functor $C \rightarrow C$ at X to F, then $B C$ is contractible.

To illustrate this point, given a small category I, let Δ / I be the category
29.
whose objects are the pairs (m, u), where $m \geq 0$ is an integer and $u:[m] \rightarrow I$ is a functor, a morphism $(m, u) \rightarrow(n, v)$ being a morphism $f:[m] \rightarrow[n]$ of Δ such that the diagram

commutes.

FACT If I has a final object i_{0}, then Δ / I is contractible. [Define a functor $\mathrm{F}: \Delta / \mathrm{I} \rightarrow \Delta / \mathrm{I}$ as follows.

- On objects,

$$
F(m, u)=\left(m+1, u_{+}\right),
$$

where

$$
u_{+}(k)= \begin{cases}u(k) & \text { if } k \leq m \\ i_{0} & \text { if } k=m+1\end{cases}
$$

- On morphisms,

$$
F f(k)=\left\{\begin{array}{l}
f(k) \text { if } k \leq m \\
n+1 \text { if } k=m+1
\end{array}\right.
$$

Let $K_{0}: \underline{I} I \rightarrow \underline{I}$ be the constant functor at $\left(0, \mathrm{~K}_{\mathrm{i}_{0}}\right)$-- then \exists

$$
\left\{\begin{array}{l}
\alpha \in \operatorname{Nat}\left(i d_{\Delta / I^{\prime}} F\right) \\
\beta \in \operatorname{Nat}\left(\mathrm{K}_{0}, F\right) .
\end{array}\right.
$$

$\underline{\alpha}$: The inclusion $[m] \rightarrow[m+1](k \rightarrow k)$ induces a natural transfomation $i d_{\Delta / \underline{I}} \rightarrow F$. In fact,

$$
\mathrm{id}_{\underline{\Delta / I}}(\mathrm{~m}, \mathrm{u}) \xrightarrow{\alpha_{(m, u)}} F(\mathrm{~m}, \mathrm{u})
$$

is a morphism since the diagram

conmutes $\left(u(k)=u_{+}(k)\right.$ if $\left.k \leq m\right)$.
B: The inclusion [0] $\rightarrow[m+1](0 \rightarrow m+1)$ induces a natural transformation $K_{0} \rightarrow$ F. In fact,

$$
\mathrm{K}_{0}(\mathrm{~m}, \mathrm{u}) \xrightarrow{\mathrm{B}_{(\mathrm{m}, \mathrm{u})}} \mathrm{F}(\mathrm{~m}, \mathrm{u})
$$

is a morphism since the diagram

conmutes $\left(\mathrm{K}_{\mathrm{i}_{0}}(0)=\mathrm{i}_{0}=u_{+}(\mathrm{m}+1)\right)$.
0.1 ELEMENTS
0.2 TOP: QUILLEN STRUCTURE
0.3 SISET: KAN STRUCTURE
0.4 SISET: JOYAL STRUCTURE
0.5 SISET: HG-STRUCTURE
0.6 SISET: ρ-STRUCTURE
0.7 SIGR: FORGETFUL STRUCTURE
0.8 SISEI $_{G}$: FORGETFUL STRUCTURE
0.9 CXA: CANONICAL STRUCTURE
$0.10 \xrightarrow{\text { CXA }} \geq 0$ STANDARD STRUCTURE
0.11 CAA:BEKE STRUCTURE
0.12 CAT: INTERNAL STRUCTURE
0.13 CAT: EXTERNAL STRUICTURE
0.14 CAT:MORITA STRUCTURE
0.15 ERU: LARUSSON STRUCTURE
0.16 EXAMPLE: [I, SISET]
0.17 EXAMPLE:[I, C$]$
0.18 WEAK FACTORIZATION SYSTEMS
0.19 FUNCTORIALITY
0.20 COFIBRANTLY GENERATED W.F.S.
0.21 CISINSKI THEORY
0.22 MODEL FUNCTORS
0.23 PROPRIETY
0.24 TRANSFER OF STRLICTURE
0.25 COMBINATORIAL MODEL CATEGORIES
0.26 DIAGRAM CATEGORIES
0.27 REEDY THEORY
0.28 EXAMPLE: TSISET $_{\text {* }}$
0.29 BISIMPLICIAL SETS
0.30 THE W-CONSTRUCTION
0.31 BISISET: MOERDIIK STRUCTURE
0.32 BISISET: OTHER MODEL STRUCTURES
0.33 MODEL LOCALIZATION
0.34 MIXING
0.35 HOMOTOPY PULLBACKS

CHAPTER 0: MODEL CATEGORIES

0.1 ELEMENTS

It is presupposed that the reader is familiar with the theory in so far as it is presented in IMHP. So in this section we shall simply establish notation and recall some standard facts.
0.1.1 DEFTNITION Let $i: A \rightarrow Y, p: X \rightarrow B$ be morphisms in a category $C-$ then i is said to have the left lifting property with respect to p (IJP w.r.t. p) and p is said to have the right lifting property with respect to i (RTP w.r.t. i) if for all u:A $\rightarrow X, v: Y \rightarrow B$ such that $p \circ u=v \circ i$, there is a $w: Y \rightarrow X$ such that $w \circ i=u, p \circ w=v, i . e$. , the commutative diagram

admits a filler w:Y $\rightarrow X$.
0.1.2 EXAMPLE Take $\underline{C}=$ TOP - then $i: A \rightarrow Y$ is a cofibration iff $\forall X$, i has the LEP w.r.t. $p_{0}: P X \rightarrow X$ and $p: X \rightarrow B$ is a Hurewicz fibration iff $\forall Y$, p has the RLP w.r.t. $i_{0}: Y \rightarrow$ Y.
[Note: As usual,

$$
\begin{aligned}
& \mathrm{PX}=\mathrm{C}([0,1], \mathrm{X}) \\
& \mathrm{IY}=\mathrm{Y} \times[0,1] .]
\end{aligned}
$$

Consider a category \underline{C} equipped with three composition closed classes of morphisms termed weak equivalences (denoted $\xrightarrow{\sim}$), cofibrations (denoted \gg), and fibrations (denoted $\longrightarrow>$), each containing the isomorphisms of \underline{C}. Agreeing to call a morphism which is both a weak equivalence and a cofibration (fibration) an acyclic cofibration (fibration), C is said to be a model category provided that the following axioms are satisfied.
(MC - 1) \subseteq © is finitely complete and finitely cocomplete.
(MC - 2) Given conposable morphisms f, g, if any two of $f, g, g \circ f$ are weak equivalences, so is the third.
(MC - 3) Every retract of a weak equivalence, cofibration, or fibration is again a weak equivalence, cofibration, or fibration.
(MC - 4) Every cofibration has the LLP w.r.t. every acyclic fibration and every fibration has the RLP w.r.t. every acyclic cofibration.
(MC - 5) Every morphism can be written as the composite of a cofibration and an acyclic fibration and the composite of an acyclic cofibration and a fibration.
0.1.3 NOTATION

$$
\begin{aligned}
W & =\text { class of weak equivalences } \\
\text { cof } & =\text { class of cofibrations } \\
\text { fib } & =\text { class of fibrations. }
\end{aligned}
$$

N.B. The term model structure on a finitely complete and finitely cocomplete category C refers to the specification of w, cof, fib subject to the assumptions above.
0.1.4 REMARK A weak equivalence $\mathrm{w}: \mathrm{X} \rightarrow \mathrm{Y}$ which is a cofibration and a fibration is an isomorphism. Proof: The commutative diagram

aơmits a filler $Y \rightarrow X$.
0.1.5 EKAMPLE Every finitely complete and finitely cocomplete category \mathbb{C} admits a model structure in which the weak equivalences are the isomorphisms and

$$
\left\{\begin{aligned}
\quad \operatorname{cof} & =\operatorname{Mor} \underline{C} \\
\quad \text { fib } & =\operatorname{Mor} \underline{C} .
\end{aligned}\right.
$$

A model category \mathbb{C} has an initial object (denoted \varnothing) and a final object (denoted *). An object X in \underline{C} is said to be cofibrant if $\varnothing \rightarrow X$ is a cofibration and fibrant if $\mathrm{X} \rightarrow$ * is a fibration.
0.1.6 1FMMA Suppose that \underline{C} is a model category. Let $X \in O b \underline{C}-$ then X is cofibrant iff every acyclic fibration $Y \rightarrow X$ has a right inverse and X is fibrant iff every acyclic cofibration $X \rightarrow Y$ has a left inverse.
0.1.7 EXAMPIE Take $\mathcal{C}=$ TOP - then TOP is a model category if weak equivalence $=$ homotopy equivalence, cofibration $=$ closed cofibration, fibration $=$ Hurewicz fibration. All objects are cofibrant and fibrant.
[Note: We shall refer to this model structure on TOP as the Strpm structure.]
Addendum: $\mathbb{O G}$ has a Strom structure if weak equivalence $=$ homotopy equivalence, cofibration $=$ closed cofibration, fibration $=\underline{\text { CG fibration }}$.

Given a model category $\subseteq \underline{C} \underline{C}^{\text {OP }}$ acquires the structure of a model category by
stipulating that $f^{O P}$ is a weak equivalence in $\mathbb{C}^{O P}$ iff f is a weak equivalence in C, that f^{OP} is a cofibration in $\underline{C}^{\mathrm{OP}}$ iff f is a fibration in C , and that f^{OP} is a fibration in $\underline{C}^{O P}$ iff f is a cofibration in \mathbb{C}.

Given a model category \underline{C} and objects A, B in \underline{C}, the categories $A \backslash \underline{C}, \mathrm{C} / \mathrm{B}$ are again model categories, a morphism in either case being declared a weak equivalence, cofibration, or fibration if it is such when viewed in \subseteq alone.
0.1.8 EXAMPLE Take $\underline{\mathbb{C}}=$ TOP (Strom Structure) - then an object $\left(X, x_{0}\right)$ in $\underline{T O P}_{*}\left(\equiv \star \backslash \underline{T O P}\right.$) is cofibrant iff $* \rightarrow\left(X, x_{0}\right)$ is a closed cofibration (in TOP), i.e., iff ($\mathrm{X}, \mathrm{X}_{0}$) is wellpointed with $\left\{\mathrm{x}_{0}\right\} \subset \mathrm{X}$ closed.
0.1.9 THEOREM Let \subseteq © be model category.
(1) The cofibrations in \underline{C} are the morphisms that have the LIP w.r.t. acyclic fibrations.
(2) The acyclic cofibrations in \subseteq are the morphisms that have the ILP w.r.t. fibrations.
(3) The fibrations in C are the morphisms that have the RLP w.r.t. acyclic ©ofibrations.
(4) The acyclic fibrations in \subseteq are the morphisms that have the RLP w.r.t. cofibrations.
0.1.10 NOTATION Let $\subseteq \underline{C}$ be a category and let $\mathcal{C} \subset$ Mor \mathbb{C} be a class of morphisms.

- Write LLP (C) for the class of morphisms having the left lifting property w.r.t. the elements of C.
- Write $\operatorname{RLP}(C)$ for the class of morphisms having the right lifting property w.r.t. the elements of \mathcal{C}.
0.1.9 THEOREM (bis) Let C be a model category -- then

$$
\begin{aligned}
& \operatorname{cof}=\operatorname{LLP}(\omega \cap f i b), \quad \omega \cap \operatorname{cof}=\operatorname{LLP}(f j b), \\
& f i b=\operatorname{RLP}(\omega \cap \operatorname{cof}), \quad \omega \cap \mathrm{fib}=\operatorname{RLP}(\mathrm{cof}) .
\end{aligned}
$$

0.1.11 SCHOLTUM In a model category $\underset{C}{ }$, any two of the classes of weak equivalences, cofibrations, and fibrations determines the third.
[Note: Suppose that

$$
\left[\begin{array}{l}
w_{1}, \mathrm{cof}_{1}, \mathrm{fib}_{1} \\
w_{2}, \mathrm{cof}_{2}, \mathrm{fib}_{2}
\end{array}\right.
$$

are two model structures on C and let $\left.\right|_{F_{2}} ^{F_{1}}$ denote their classes of fibrant objects -- then

$$
\operatorname{cof}_{1}=\operatorname{cof}_{2} \& F_{1}=F_{2} \Rightarrow w_{1}=w_{2} \& f i b_{1}=f i b_{2}
$$

And

$$
\left[\begin{array}{l}
\operatorname{cof}_{1}=\operatorname{cof}_{2} \& F_{2} \subset F_{1} \Rightarrow w_{1} \subset W_{2} \\
\left.\operatorname{cof}_{1}=\operatorname{cof}_{2} \& w_{1} \subset w_{2} \Rightarrow F_{2} \subset F_{1} .\right]
\end{array}\right.
$$

In a model category C, the classes of cofibrations and fibrations possess a number of "closure" properties.
(Coproducts) If $\forall i, f_{i}: X_{i} \rightarrow Y_{i}$ is a cofibration (acyclic cofibration), then
$\frac{\|_{i}}{} f_{i}: \prod_{i} X_{i} \rightarrow \frac{\prod_{i}}{i} y_{i}$ is a cofibration (acyclic cofibration).
(Products) If $\forall i, f_{i}: X_{i} \rightarrow Y_{i}$ is a fibration (acyclic fibration), then $\prod_{i} f_{i}: \prod \prod_{i} x_{i} \rightarrow \prod_{i} Y_{i}$ is a fibration (acyclic fibration).
(Pushouts) Given a 2 -source $X \stackrel{f}{\longleftrightarrow} \mathrm{Z} \xrightarrow{\mathrm{g}} \mathrm{Y}$, define P by the pushout
 η is a cofibration (acyclic cofibration).
(Pullbacks) Given a $2-\operatorname{sink} \mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Z} \stackrel{\mathrm{g}}{ } \mathrm{Y}$, define P by the pullback

is a fibration (acyclic fibration).
(Sequential colimits) If $\forall \mathrm{n}, \mathrm{f}_{\mathrm{n}}: \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{X}_{\mathrm{n}+1}$ is a cofibration (acyclic cofibration), then $\forall n, i_{n}: X_{n} \rightarrow \operatorname{colim} X_{n}$ is a cofibration (acyclic cofibration).
(Sequential Limits) If $\forall n, f_{n}: X_{n+1} \rightarrow X_{n}$ is a fibration (acyclic fibration), then $\forall n, p_{n}: \lim X_{n} \rightarrow X_{n}$ is a fibration (acyclic fibration).
[Note: It is assumed that the relevant coproducts, products, sequential colimits, and sequential limits exist.]
0.1.12 EXAMPIE (Pushouts) Fix a model category C . Let I be the category

Thus an object of $[\underline{I}, C]$ is a 2 -solurce $X \stackrel{\mathrm{f}}{-} \mathrm{Z} \xrightarrow{\mathrm{g}} \mathrm{Y}$ and a morphism $\overline{\mathrm{E}}$ of 2 -sources
is a commutative diagram

Stipulate that Ξ is a weak equivalence or a fibration if this is the case of each of its vertical constituents. Define now P_{L}, P_{R} by the pushout squares

let $\rho_{L}: P_{L} \rightarrow X^{\prime}, \rho_{R}: P_{R} \rightarrow Y^{\prime}$ be the induced morphisms, and call E a cofibration provided that $Z \rightarrow Z^{\prime}, \rho_{L^{\prime}}$ and ρ_{R} are cofibrations. With the \mathfrak{F} choices, $[\underline{I}, \mathrm{C}]$ is a model category. The fibrant objects $X<\stackrel{f}{\longrightarrow} \xrightarrow{g} Y$ in $[\underline{I}, C]$ are those for which X, Y, and Z are fibrant. The cofibrant objects $X \stackrel{f}{\longleftrightarrow} Z \xrightarrow{g} Y$ in $[\underline{I}, \underline{C l}$ are those for which Z is cofibrant and $\left.\right|_{-} ^{-} \mathrm{F}: Z \rightarrow \mathrm{X}$, $\begin{aligned} & \mathrm{g} \rightarrow \mathrm{Y}\end{aligned}$ are cofibrations.
[Note: The story for pullbacks is analogous.]
0.1.13 EXAMPIE Fix a model category \underline{C}-- then $\operatorname{FIL}(\underline{C})$ is again a model category. Thus let $\phi:(\underline{X}, \underline{f}) \rightarrow(\underline{Y}, \underline{q})$ be a morphism in $\mathcal{F I L}(\mathbb{C})$. Stipulate that ϕ is a weak equivalence or a fibration if this is the case of each ϕ_{n}. Define now P_{n+1} by the
pushout square

let $\rho_{n+1}: P_{n+1} \rightarrow Y_{n+1}$ be the induced morphism, and call ϕ a cofibration provided that ϕ_{0} and all the ρ_{n+1} are cofibrations (each $\phi_{n}(n>0)$ is then a cofibration as well). With these choices, FIL(C) is a model category. The fibrant objects $(\underline{X}, \underline{f})$ in FII(C) are those for which X_{n} is fibrant $\forall n$. The cofibrant objects $(\underline{X}, \underline{f})$ in FIL(C) are those for which X_{0} is cofibrant and $\forall n, f_{n}: X_{n} \rightarrow X_{n+1}$ is a cofibration.
[Note: The story for row (C) is analogous.]
0.1.14 DEFINITION Given a model category \underline{C}, objects X ' and X ' are said to be weakly equivalent if there exists a path beginning at X^{\prime} and ending at $X^{\prime \prime}$: $X^{\prime}=X_{0} \rightarrow x_{1}+\ldots \rightarrow x_{2 n-1}+X_{2 n}=X^{\prime \prime}$, where all the arrows are weak equivalences.
0.1.15 EXAMPLE Take $\underline{\mathcal{C}}=\underline{\text { TOP }}$ (Strom Structure) -- then X^{\prime} and $X^{\prime \prime}$ are weakly equivalent iff they have the same homotopy type.
0.1.16 COMPOSITION LEMMA COnsider the commutative diagram

in a category C. Suppose that both the squares are pushouts -- then the rectangle is a pushout. Conversely, if the rectangle and the first square are pushouts, then the second square is a pushout.

0.1.17 APPLICATION Consider the commutative cube

in a category C. Suppose that the top and the left and right hand sides are pushouts -- the the bottom is a pushout.
0.1 .18 LEMMA Let \underline{C} be a model category. Given a 2 -source $X \stackrel{f}{\longrightarrow} \mathrm{Z} \xrightarrow{\mathrm{g}} \mathrm{Y}$, define P by the pushout square

Assume: $£$ is a cofibration and g is a weak equivalence -- then ξ is a weak equivalence provided that $Z \& Y$ are cofibrant.
[Note: There is a parallel statement for fibrations and pullbacks.]
0.1.19 EXAMPLE Working in TOP (Strom Structure), suppose that $A \rightarrow X$ is a closed cofibration. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a homotopy equivalence -- then the arrow $\mathrm{X} \rightarrow \mathrm{X} \mathrm{L}_{\mathrm{f}} \mathrm{Y}$ is a homotopy equivalence.
0.1.20 LEMMA Let \underline{C} be a model category. Suppose given a conmutative diagram

where $\left.\right|_{-} ^{-} f_{f}$, are cofibrations and the vertical arrows are weak equivalences - - then the induced morphism $P \rightarrow P^{\prime}$ of pushouts is a weak equivalence provided that $Z \& Y$ and $Z^{\prime} \& Y^{\prime}$ are cofibrant.
[Note: There is a parallel statement for fibrations and pullbacks.]
0.1.21 EXAMPLE Working in TOP (Strdn Structure), suppose that $\left.\right|_{-} ^{-} \begin{gathered}A \rightarrow X \\ A^{\prime} \rightarrow X\end{gathered}$ are closed cofibrations. Let $\left.\right|_{-f^{\prime}: A^{\prime} \rightarrow Y^{\prime}} ^{f: A \rightarrow Y}$ be continuous functions. Assume that the diagram

commutes and that the vertical arrows are homotopy equivalences -- then the induced $\operatorname{map} X \dot{U}_{f} Y \rightarrow X^{\prime} U_{f}, Y^{\prime}$ is a homotopy equivalence.
0.1.22 DEFINITION Let \subseteq be a model category.

- \underline{C} is said to be left proper if the following condition is satisfied.

Given a 2 -source $\mathrm{X} \stackrel{\mathrm{f}}{\longleftrightarrow} \mathrm{Z} \xrightarrow{\mathrm{g}} \mathrm{Y}$, define P by the pushout square

Assume: f is a cofibration and g is a weak equivalence -- then ξ is a weak equivalence.

- \underline{C} is said to be right proper if the following condition is satisfied.

Given a $2-\operatorname{sink} \mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Z} \stackrel{\mathrm{g}}{\longrightarrow} \mathrm{Y}$, define P by the pullback square

Assume: g is a fibration and f is a weak equivalence - then η is a weak equivalence.
N.B. \subseteq is proper if it is both left and right proper.
0.1 .23 LEMMA If all the objects of C are cofibrant, then C is left proper (cf. 0.1 .18) and if all the objects of $\underline{\mathcal{C}}$ are fibrant, then $\underline{\mathcal{C}}$ is right proper (cf. 0.1 .18).
0.1.24 EXAMPLE The Strfom structure on TOP is proper (all objects are cofibrant and fibrant).
0.1.25 NOTATION Given a model category \underline{C}, write $\underline{H C}$ in place of $W^{-1} \underline{C}$ and call
it the homotopy category of C (cf. 2.3.6).
[Note: W is necessarily saturated, i.e., $W=\bar{W}$ (cf. 2.3.20).]
0.1.26 EXAMPLE Take $\mathbb{C}=$ TOP (Strom Structure) - then HIOP "is" HTOP.
0.1.27 THEOREM Suppose that \underline{C} is a model category -- then $H C$ is a category (and not just a metacategory) (cf. 2.4.4).
0.1.28 EXAMPLE Consider the arrow category $\mathrm{C}(\rightarrow)$ of a model category C then $\underset{(}{C}(\rightarrow)$ can be equipped with two distinct model category structures both having the same class of weak equivalences, hence the same homotopy category. Thus let $(\phi, \psi):(X, f, Y) \rightarrow\left(X^{\prime}, f^{\prime}, Y^{\prime}\right)$ be a morphism in $\underset{C}{(}(\rightarrow)$, so

commutes. In the first structure, call (ϕ, ψ) a weak equivalence if $\phi \& \psi$ are weak equivalences, a cofibration if ϕ and $X^{\prime} \frac{\Lambda_{X}}{X} Y \rightarrow Y^{\prime}$ are cofibrations, a fibration if $\phi \& \psi$ are fibrations and, in the second structure, call (ϕ, ψ) a weak equivalence if $\phi \& \psi$ are weak equivalences, a cofibration if $\phi \& \psi$ are cofibrations, a fibration if ψ and $\mathrm{X} \rightarrow \mathrm{X}^{\prime} \times{ }_{Y^{\prime}} \mathrm{Y}$ are fibrations.
[Note:

$$
\underline{C} \text { proper } \Rightarrow \subseteq(\rightarrow) \text { proper.] }
$$

0.1.29 LENMA If S is a set and if

$$
w_{s}, \operatorname{cof}_{s^{\prime}} f \mathrm{fib}_{s}
$$

is a model structure on a category $C_{S}(s \in S)$, then

$$
w=\prod_{s} w_{s^{\prime}} \text { cof }=\prod_{s} \operatorname{cof} s_{s^{\prime}} f i b=\prod_{s} \mathrm{fib}_{s}
$$

is a model structure on $\mathrm{C}=\prod_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}$ and the canonical arrow

$$
\underline{\mathrm{HC}} \rightarrow \prod_{\mathrm{s}} \underline{\mathrm{HC}}_{\mathrm{S}}
$$

is an equivalence of categories.

0.2 TOP: QUI LLEN STRUCTURE

Take $\mathrm{C}=$ TOP - then TOP is a model category if weak equivalence $=$ weak homotopy equivalence, cofibration = retract of a "countable composition " $\mathrm{X} \rightarrow \mathrm{Y}$, where $\mathrm{X}=\mathrm{X}_{0} \rightarrow \mathrm{X}_{1} \rightarrow \cdots, \mathrm{Y}=\operatorname{colim} \mathrm{X}_{\mathrm{k}}$, and $\forall \mathrm{k}$, the arrow $\mathrm{X}_{\mathrm{k}} \rightarrow \mathrm{X}_{\mathrm{k}+1}$ is defined by the pushout square

fibration $=$ Serre fibration. Every $C W$ complex is cofibrant (and every object is weakly equivalent to a CW oomplex). Every cofibrant object is a compactly generated Hausdorff CW space (the quotient $[0,1] /[0,1[$ is compactly generated (and contractible) but not Hausdorff, hence not cofibrant). Every object is fibrant.
N.B. If (K, L) is a relative CW complex, then the inclusion $L \rightarrow K$ is a cofibration in the Quillen structure. Every cofibration in the Quillen structure is a closed
cofibration, thus is a cofibration in the strom structure. And the quillen structure is proper (even though not every object is cofibrant).

Addendum: CG, $\triangle-$ CG, and CGH each has a Quillen structure (definitions per those for TOP) which, moreover, is proper.

0.3 SISET: KAN STRUCTURE

Take $\underline{C}=\underline{\text { SISET }}-$ then SISET is a model category if weak equivalence $=$ simplicial weak equivalence, cofibration $=$ injective simplicial map, fibration $=$ Kan fibration. Every object is cofibrant and the fibrant objects are the Kan complexes.
[Note: It is a corollary that SISET $_{*}=\Delta[0] \backslash$ SISET is a model category.]
N.B. Recall that a simplicial map $f: X \rightarrow Y$ is a simplicial weak equivalence if $|\mathrm{f}|:|\mathrm{X}| \rightarrow|\mathrm{Y}|$ is a homotopy equivalence.
0.3.1 IEMMA The Kan structure is proper.

PROOF Since all objects are cofibrant, half of this is automatic (cf. 0.1.23). This said, consider a pullback square

in SISET. Assume: g is a Kan fibration and f is a weak equivalence -- then n is a weak equivalence. In fact,

is a pullback square in $\underline{O G H},|g|$ is a Serre fibration, and $|f|$ is a weak hamotopy equivalence. Therefore $|\eta|$ is a weak homotopy equivalence.
0.3.2 REMARK Let fib ${ }_{n}$ stand for the class of f such that $E X^{n}(f)$ is a Kan fibration ($\mathrm{n} \geq 0, \operatorname{Ex}^{0}(\mathrm{f})=\mathrm{f}$) - then the containment

$$
\mathrm{fib}_{\mathrm{n}} \in \mathrm{fib} \mathrm{n}_{\mathrm{n}+1}
$$

is strict and there is a model structure $w_{n}, \operatorname{cof}_{n}$, fib ${ }_{n}$ on SISET whose weak equivalences are those of the Kan structure (i.e., $\forall \mathrm{n}, \mathrm{W}_{\mathrm{n}}=W_{0}$) and whose fibrations are the elements of fib ${ }_{n}$. Bottom line: SISET can be equipped with a countable collection of distinct model structures all having the same homotopy cabegory.
[Note: The containment

$$
\operatorname{cof}_{n+1} \subset \operatorname{cof}_{n}
$$

is strict, thus for $n>0$, not every object is cofibrant. On the other hand, objects which are not fibrant in the Kan structure can become fibrant in structure " n " ($\mathrm{n}>0$), e.g., the $\Delta[\mathrm{m}](\mathrm{m} \geq 1)$.

0.4 SISET: JOYAL STRUCTURE

Take $\underline{C}=\underline{\text { SISET }}-$ - then SISET is a model category if weak equivalence $=$ categorical weak equivalence, cofibration $=$ injective simplicial map, fibration $=$ all simplicial maps which have the RLP w.r.t. those cofibrations that are categorical weak equivalences. Every object is cofibrant and the fibrant objects are the weak Kan complexes.
N.B. Every weak equivalence per the Joyal structure is a weak equivalence per the Kan structure:
"categorical weak equivalence" => "simplicial weak equivalence".
0.4.1 REMARK The Joyal structure is left proper. However, it is not right proper.
0.5 SISET: HG-STRUCTURE

Take $\mathcal{C}=\underline{\text { SISET }}$ and fix a nontrivial abelian group $G-$ then SISET is a model category if weak equivalence $=$ HG-equivalence, cofibration $=$ HG-cofibration, fibration $=$ HG-fibration. Every object is cofibrant and the fibrant objects are the $H G-l o c a l$ objects, i.e., those X such that $X \rightarrow *$ is an HG-fibration.
0.5.1 RAPPEL Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a simplicial map -- then f is said to be an HG-equivalence if $\forall \mathrm{n} \geq 0,|\mathrm{f}|_{\star}: \mathrm{H}_{\mathrm{n}}(|\mathrm{X}| ; \mathrm{G}) \rightarrow \mathrm{H}_{\mathrm{n}}(|\mathrm{Y}| ; \mathrm{G})$ is an isomorphism. Agreeing that an HG-cofibration is an injective simplicial map, an HG-fibration is a simplicial map which has the RLP w.r.t. all HG-cofibrations that are HG-equivalences.
N.B. Every HG-fibration is a Kan fibration, hence every HG-local object is a Kan complex.
0.5.2 REMARK The HG-structure is left proper (but it need not be right proper (e.g., when $G=Q$). .

0.6 SISET: $p-S T R U C T U R E$

Take $\underline{C}=$ SISET and fix an inclusion $\rho: A \rightarrow B$ of simplicial sets - then SISET is a model category if weak equivalence $=\rho$-equivalence, cofibration $=\rho$-cofibration, fibration $=\rho$-fibration. Every object is cofibrant and the fibrant objects are the p-local objects.
0.6.1 RAPPEL Working within the Kan structure, a Kan complex z is said to be ρ-local if $\rho^{*}: \operatorname{map}(B, Z) \rightarrow \operatorname{map}(A, Z)$ is a weak equivalence. Moreover, there is a functor $L_{\rho}:$ SISET \rightarrow SISET and a natural transformation id $\rightarrow L_{\rho}$, where $\forall X, L_{\rho} X$ is ρ-local and $\ell_{\rho}: X \rightarrow L_{\rho} X$ is a cofibration such that for all ρ-local z , the arrow $\operatorname{map}\left(L_{\rho} X, Z\right) \rightarrow \operatorname{map}(X, Z)$ is a weak equivalence.
0.6.2 RAPPEL Let $f: X \rightarrow Y$ be a simplicial map -- then f is said to be a p-equivalence if $L_{\rho} f: L_{\rho} X \rightarrow L_{\rho} Y$ is a weak equivalence. Agreeing that a p-cofibration is an injective simplicial map, a ρ-fibration is a simplicial map which has the RLP w.r.t. all p-cofibrations that are p-equivalences.
N.B. Every 0 -fibration is a Kan fibration.
0.7 SIGR: FORGETFUL STRUCTURE

The free group functor $\mathrm{F}_{\mathrm{gr}}:$ SET \rightarrow GR extends to a functor $\mathrm{F}_{\mathrm{gr}}:$ SISET \rightarrow SIGR which is left adjoint to the forgetful functor U:SIGR \rightarrow SISET. Call a morphism $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{K}$ of simplicial groups a weak equivalence if Uf is a weak equivalence, a fibration if Uf is a Kan fibration, and a cofibration if f has the LUP w.r.t. acyclic fibrations - then with these choices, SIGR is a model category.
[Note: Every object in SIGR is fibrant but not every object in SIGR is cofibrant. Definition: A simplicial group G is said to be free if $\forall n, G_{n}$ is a free group with a specified basis B_{n} such that $s_{i} B_{n} \in B_{n+1}(0 \leq i \leq n)$. Every free simplicial group is cofibrant and every cofibrant simplicial group is the retract of a free simplicial group.]
18.

0.8 SISETP $_{G}$: FORGETFUL STRUCTURE

Fix a nontrivial group G. Denote by G the groupoid having a single object * with $\operatorname{Mor}(*, *)=G-$ then the category SET_{G} of right G-sets is the functor category $\left[\mathrm{G}^{\mathrm{OP}}, \underline{\mathrm{SET}]}\right.$ and the category of simplicial right G -sets SISET $_{\mathrm{G}}$ is the functor category

$$
\left[\underline{\Delta}^{\mathrm{OP}},\left[\underline{G}^{\mathrm{OP}}, \underline{\mathrm{SET}}\right]\right] \approx\left[(\underline{\Delta} \times \underline{\mathrm{G}})^{\mathrm{OP}}, \underline{\mathrm{SET}}\right]
$$

So, if X is a simplicial right G-set, then $\forall n, X_{n}$ is a right $G-s e t$ and the actions are compatible with the simplicial structure maps. This said, let

$$
\mathrm{U}: \mathrm{SISET}_{\mathrm{G}} \longrightarrow \text { SISETT }
$$

be the forgetful functor and call a morphism $f: X \rightarrow Y$ of simplicial right G-sets a weak equivalence if Uf is a weak equivalence, a fibration if Uf is a Kan fibration, and a cofibration if f has the LLP w.r.t. acyclic fibrations -- then with these choices, SISET $_{G}$ is a model category.
[Note: Every object in SISET $_{G}$ is fibrant, the cofibrant objects being those X such that $\forall n, X_{n}$ is a free G-set.]
0.8.1 REMARK U has a left adjoint F_{G} which sends X to $X \times$ si G.

0.9 CXA:CANONICAL STRUCTURE

Let A be an abelian category. Write CXA for the abelian category of chain complexes over A. Given a morphism $f: X \rightarrow Y$ in CXA, call f a weak equivalence if f is a chain homotopy equivalence, a cofibration if $\forall n, f_{n}: X_{n} \rightarrow Y_{n}$ has a left
inverse, and a fibration if $\forall n, f_{n}: X_{n} \rightarrow Y_{n}$ has a right inverse -- then with these choices, CXA is a model category.

$$
0.10 \mathrm{CXA}_{\geq 0}: \text { STANDARD STRUCTURE }
$$

Let \underline{A} be an abelian category with enough projectives. Write $\underline{C X A} \geq 0$ for the full subcategory of CXA whose objects have the property that $X_{n}=0$ if $n<0$. Given a morphism $f: X \rightarrow Y$ in $\xrightarrow{C X A} 0_{0}$, call f a weak equivalence if f is a homology equivalence, a cofibration if $\forall n, f_{n}: X_{n} \rightarrow Y_{n}$ is a monomorphism with a projective cokernel, and a fibration if $\forall \mathrm{n}>0, \mathrm{f}_{\mathrm{n}}: \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{Y}_{\mathrm{n}}$ is an epimorphism -- then with these choices, $\xrightarrow{C X A} \geq 0$ is a proper model category. Every object is fibrant and the cofibrant objects are those X such that $\forall \mathrm{n}, \mathrm{X}_{\mathrm{n}}$ is projective.

0.11 CXA: BEKE STRUCTURE

Iet A be a Grothendieck category with a separator … then $\underset{\text { A }}{ }$ is presentable, as is CXA. Given a morphism $f: X \rightarrow Y$ in CXA, call f a weak equivalence if f is a homology equivalence, a cofibration if f is a monomorphism, and a fibration if f has the RLP w.r.t. those cofibrations that are homology equivalences -- then with these choices, CXA is a proper model category. Every fibration is an epimorphism (but not conversely).

0.12 CAT: INTERNAL STRUCTURE

Take $\underline{C}=\underline{C A T}$, let weak equivalence $=$ equivalence, stipulate that a functor
$\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a cofibration if the map

$$
\left[\begin{array}{rl}
\mathrm{Ob} \underline{\mathrm{C}} \longrightarrow \mathrm{Ob} \underline{\mathrm{D}} \\
\mathrm{X} & \longrightarrow \mathrm{FX}
\end{array}\right.
$$

is injective and a fibration if $\forall X \in O B \subseteq$ and \forall isomorphism $\psi: F X \rightarrow Y$ in \underline{D}, \exists an isomorphism $\phi: X \rightarrow X^{\prime}$ in \underline{C} such that $F \phi=\psi-$ then CAT is a model category in which all objects are cofibrant and fibrant.
[Note: These definitions restrict to give a model structure on GRD.]

0.13 CAT: EXTERNAL STRUCTURE

Take $\underline{C}=\underline{C A T}$, call a functor $F: \underline{C} \rightarrow \underline{D}$ a weak equivalence if \mid ner $F \mid: B \underline{C} \rightarrow B \underline{D}$ is a homotopy equivalence, a fibration if $\mathrm{Ex}^{2} \circ$ ner F is a Kan fibration, and a offibration if F has the LLP w.r.t. all fibrations that are weak equivalences then CAT is a proper model category (but not all objects are cofibrant nor are all objects fibrant).
[Note: These definitions restrict to give a model structure on GRD.]

0.14 CAT: MORITA STRUCTURE

Take $\underline{C}=\underline{C A T}$, let the weak equivalences be those fully faithful functors $F: \underline{C} \rightarrow \underline{D}$ such that every object in \underline{D} is the retract of an object in the image of F, let the cofibrations be the $F: \underline{C} \rightarrow \underline{D}$ which are injective on objects, and let the fibrations be the $F: \underline{C} \rightarrow \underline{D}$ which have the RIP w.r.t. acyclic cofibrations -- then CAT is a left proper model category (but CAT is not right proper). Every object is cofibrant and the fibrant objects are the small categories with the property that every idenpotent splits.

0.15 EQU: LARUSSON STRUCTURE

Let EQU be the category whose objects are the pairs ($\mathrm{X}, \mathrm{\sim}_{\mathrm{X}}$), where X is a set and \sim_{X} is an equivalence relation on X, and whose morphisms are the maps $f:(X, \sim X) \rightarrow$ (Y, ${ }_{Y}$), where f is a morphism in SET that sends equivalent elements in X to equivalent elements in Y. Call f a weak equivalence if f induces a bijection $X / \sim X$ $Y /{ }_{Y}$, a cofibration if f is injective, and a fibration if f maps each equivalence class in X onto an equivalence class in Y-- then EQU is a model category. Every object is cofibrant and fibrant.

0.16 EXAMPLE: [I, SISET] $]$

Fix a small category I -- then the functor category [I, SISET] adraits two proper model category structures. However, the weak equivalences in either structure are the same, so both give rise to the same homotopy category $\mathrm{H}[\underline{I}$, SISET] .
(L) Given functors $F, G: I \rightarrow$ SISET, call $\Xi \in \operatorname{Nat}(F, G)$ a weak equivalence if $\forall i, \Xi_{i}: F i \rightarrow G i$ is a simplicial weak equivalence, a fibration if $\forall i, \Xi_{i}: F i \rightarrow G i$ is a Kan fibration, a cofibration if Ξ has the LIP w.r.t. acyclic fibrations.
(R) Given functors $F, G: I \rightarrow$ SISET, call $\Xi \in \operatorname{Nat}(F, G)$ a weak equivalence if $\forall i, \Xi_{i}: F i \rightarrow G i$ is a simplicial weak equivalence, a cofibration if $\forall i: E_{i}: F i \rightarrow G i$ is an injective simplicial map, a fibration if E has the RLP w.r.t. acyclic ∞ fibrations.
[Note: When I is discrete, structure $L=s t r u c t u r e ~ R(a l l$ data is levelwise).]

Since the arguments are dual, it will be enough to outline the proof in the case of structure L .
0.16.1 NOIATION Let $f: X \rightarrow Y$ be a simplicial map -- then f admits a functorial factorization $X \xrightarrow{i_{f}} L_{f} \xrightarrow{\pi_{f}} Y$, where i_{f} is a cofibration and π_{f} is an acyclic Kan fibration, and a functorial factorization $X \xrightarrow{l_{f}} R_{f} \xrightarrow{P_{f}} Y$, where l_{f} is an acyclic cofibration and p_{f} is a Kan fibration.
N.B. These factorizations extend levelwise to factorizations of $\Xi: F \rightarrow G$, viz.
$F \xrightarrow{\mathrm{i}_{\Xi}} L_{\Xi} \xrightarrow{\pi_{E}} \mathrm{G}$ and $\mathrm{F} \xrightarrow{\mathrm{l}_{\Xi}} R_{\Xi} \xrightarrow{\mathrm{p}_{\Xi}} \mathrm{G}$.
Write $I_{\text {dis }}$ for the discrete category underlying I -- then the forgetful functor $\mathrm{U}:[\underline{I}$, SISEI $] \rightarrow\left[\underline{I}_{\text {dis }}\right.$, SISET $]$ has a left adjoint that sends X to fr X , where

$$
\operatorname{fr} X_{j}=\frac{\|}{i \in O b} \operatorname{I} \operatorname{Mor}(i, j) \cdot X i
$$

0.16.2 LEMMA Fix an F in [I,SISET]. Suppose that $\Phi: U F \rightarrow X$ is a cofibration in [Idis'SISEI] and

is a pushout square in [I,SISET] - then the composite
$\mathrm{Uu} \circ \mu_{\mathrm{X}}: \mathrm{X} \xrightarrow{\mu_{\mathrm{X}}} \operatorname{Ufr} \mathrm{X} \xrightarrow{\mathrm{Uu}} \mathrm{UG}$
is a cofibration in [$I_{\text {dis }}$,SISET].
[The commutative diagram

tells the tale. Indeed, the middle row is a factorization of (fr $\Phi)_{j}$ (suppression of "U"), the bottom square on the right is a pushout, and a coproduct of cofibrations is a cofibration.]
[Note: As usual, $\left.\right|_{-} ^{-} \nu$ are the ambient arrows of adjunction.]

Consider any $\Xi: F \rightarrow G$. Claim: Ξ can be written as the composite of a cofibration and an acyclic fibration. Thus define F_{1} by the pushout square

Then there is a commutative diagram

in which $f r U L_{E} \rightarrow F_{I} \rightarrow L_{E}$ is $\nu_{L_{\Xi}}$. Putting $F_{0}=F$ (and $\Xi_{0}=E$), iterate the construction to obtain a sequence $F=F_{0} \rightarrow F_{1} \rightarrow \cdots \rightarrow F_{\omega}$ of objects in [I, SISET], taking $F_{\omega}=\operatorname{colim} F_{n}$. This leads to a commutative diagram

Here, i_{ω} is a cofibration (since the $F_{n} \rightarrow F_{n+1}$ are). Moreover, i_{ω} is a weak equivalence whenever \equiv is a weak equivalence and in that situation, i_{ω} has the IDP w.r.t. all fibrations. To see that Ξ_{ω} is an acyclic fibration, look at the interpolation

in [I $I_{\text {dis }}$ SISET]. Thanks to the lerma, the horizontal arrows in the top row are
cofibrations. On the other hand, the arrows $U L_{E_{n}} \rightarrow U G$ are acyclic fibrations. But then $U E_{\omega}$ is an acyclic fibration per [$I_{\text {dis }}$,SISET], i.e., E_{ω} is an acyclic fibration per [I,SISET]. Hence the claim.

To finish the verification of MC - 5, one has to establish that Ξ can be written as the composite of an acyclic cofibration and a fibration. This, however, is inmediate: Apply the claim to l_{Ξ}. MC - 4 is equally clear. For if E is a cofibration, then Ξ is a retract of i_{ω}, so if Ξ is an acyclic cofibration, then E has the LLP w.r.t. all fibrations. Propriety is obvious.
N.B. In all of the above, it is understood that

$$
\left[\underline{I}_{\mathrm{dis}}{ }^{\text {SISET }}\right] \approx \prod_{\infty} \underline{\underline{\underline{I}}}
$$

carries the product structure of 0.1.29, where SISET itself is taken in its Kan structure.
0.16.3 EXAMPLE A functor $F: \underline{I} \rightarrow$ SISET is said to be free if \exists functors $B_{n}: I_{d i s} \rightarrow$ SET $(n \geq 0)$ such that $\forall j \in O b I: B_{n} j \subset(F j)_{n} \& s_{i} B_{n} j \subset B_{n+1} j(0 \leq i \leq n)$, with $f r B_{n} \approx F_{n}\left(F_{n} j=(F j)_{n}\right)$. Every free functor is cofibrant in structure L and every cofibrant functor in structure L is the retract of a free functor. Example: ner (I/ \rightarrow) is a free fumctor, hence is cofibrant in structure 1.

$$
0.17 \text { EXAMPLE: }[\mathrm{I}, \mathrm{C}]
$$

Consider the functor category $[\underline{I}, \underline{C}]$, where $(\mathbb{I}, \leq$) is a finite nonempty directed set of cardinality ≥ 2 and \underline{C} is a model category. Stipulate that a morphism $\Xi \in \operatorname{Nat}(F, G)$ is a weak equivalence or a fibration if this is true levelwise, i.e.,
if $\forall i \in O B I, \Xi_{i}: F i \rightarrow G i$ is a weak equivalence or fibration. As for the $C O-$ fibrations, given $i \in O b I$, let I_{i} be the subcategory of I whose elements are the $j \in I$ such that $j<i-$ then there is a commatative diagram

and one deems E a cofibration if $\forall i \in O b I$, the arrow

is a cofibration. Using induction on the cardinality of I, it thus follows that with these choices, $[\underline{I}, \underline{C}]$ is a model category.

0.18 WEAK FACTORIZATION SYSTEMS

Let C be a category.
0.18.1 DEFINITION A weak factorization system (w.f.s.) on C is a pair (L, R), where

$$
\left.\right|_{-} \quad \begin{aligned}
& \mathrm{L} \subset \mathrm{Mor} \mathrm{C} \\
& \mathrm{R}
\end{aligned}
$$

are classes of maps such that

$$
\left.\right|_{-\quad} \quad \begin{aligned}
L & =\operatorname{LLP}(R) \\
R & =\operatorname{RLP}(L)
\end{aligned}
$$

and every $f \in \operatorname{Mor} \underline{C}$ admits a factorization $f=\rho \circ \lambda$ with $\lambda \in L, \rho \in R$.
0.18.2 EXAMPIF Suppose that \underline{C} is a model category - then the pairs

$$
\left.\right|_{-}\left(\begin{array}{l}
(\omega \cap f, \omega \cap \mathrm{fib}) \\
(\omega \cap \operatorname{cof}, \mathrm{fib})
\end{array}\right.
$$

are w.f.s. on C (cf. 0.1 .9 (bis)).
0.18.3 LEMMA Let (L, R) be a w.f.s. on $\subseteq-$ - then L and R are closed under the formation of retracts and each contains the isamorphisms of C .
[Note: The intersection $L \cap R$ is the class of iscmorphisms of C. Proof: Let $f \in L \cap R$, say $f: X \rightarrow Y$, and consider the lifting problem

0.18.4 EXAMPLE Let C be a finitely complete and finitely cocomplete category -then every w.f.s. (L, R) on \subseteq gives rise to a model structure on \subseteq, viz. the triple (Mor $\mathrm{C}, \mathrm{L}, \mathrm{R}$).
E.g.: Take $\mathbb{C}=\underline{S E T}$ and let $L=$ the monomorphisms, $R=$ the epimorphisms.
0.18.5 DFFINITION Let \subseteq be a cocomplete category. Fix a class C c Mor C.

- \mathcal{C} is closed under the formation of pushouts if for every pushout square
in C

- C is closed under the formation of transfinite compositions if for every wellordered set I with initial element 0 and for every functor $\Delta: I \rightarrow C$ such that $\forall i>0$, the arrow

$$
\operatorname{colim}_{j<i} \Delta_{j} \rightarrow \Delta_{i}
$$

is an element of C, the arrow

$$
\Delta_{0} \rightarrow \infty \operatorname{im}_{\underline{I}} \Delta
$$

is an element of C.
0.18.6 DEFINITION Let \mathbb{C} be a oocomplete category. Suppose that $\mathcal{C} \subset$ Mor \mathcal{C} is closed under composition and contains the isomorphisms of $\underline{C}-$ then C is stable if it is closed under the formation of pushouts and transfinite compositions.
0.18.7 LEMMA Let C be a cocomplete category -- then every stable class $C \subset$ Mor \subseteq is closed under the formation of coproducts (taken in $C(\rightarrow)$).
0.18.8 DEFINITION Let \mathbb{C} be a cocomplete category - then a class $\mathcal{C} \subset$ Mor \mathbb{C} is retract stable if it is stable and closed under the formation of retracts.
0.18.9 EXAMPLE Let $\subseteq \underline{C}$ be a small category -- then the class $M \subset$ Mor \hat{C} of monomorphisms is retract stable.
[Note: The pair $(M, \operatorname{RLP}(M))$ is a w.f.s. on $\hat{\mathrm{C}}$.]
0.18.10 THEOREM Suppose that \underline{C} is a cocomplete category - then for any class $\mathcal{C} \subset$ Mor $C, \operatorname{LLP}(C)$ is retract stable.

In particular: If \underline{C} is cocomplete and if (L, R) is a w.f.s. system on \underline{C}, then L is retract stable.

Let \underline{C} and \underline{C}^{\prime} be categories.
0.18.11 LEMMA Suppose that

$$
\left[\begin{array}{c}
F: \underline{C}+\underline{C}^{\prime} \\
F^{\prime}: \underline{C}^{\prime}+\underline{C}
\end{array}\right.
$$

has the ILP w.r.t. F'f'.
PROOF There is a one-to-one correspondence between the commatative squares

and their fillers.
0.18.12 LEMMA Suppose that

$$
\left\lvert\, \begin{aligned}
& F: \underline{C} \rightarrow \underline{C}^{\prime} \\
& F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}
\end{aligned}\right.
$$

are an adjoint pair. Let

$$
\left[\begin{array}{l}
(L, R) \text { be a w.f.s. on } \underline{C} \\
\left(L^{\prime}, R^{\prime}\right) \text { be a w.f.s. on } \underline{C}^{\prime} .
\end{array}\right.
$$

Then

$$
F L \subset L^{\prime} \Leftrightarrow F^{\prime} R^{\prime} \subset R .
$$

Suppose that $\left.\right|_{-\underline{D}} ^{\underline{C}}$ are categories and

$$
\left.\right|_{-} ^{-} \underline{\mathrm{C}} \text { admits pushouts } .
$$

- Let $F_{1}, F_{2}: \underline{C} \rightarrow \underline{D}$ be functors and let $\alpha \in \operatorname{Nat}\left(F_{1}, F_{2}\right)$. Given $f \in \operatorname{Mor} \underline{C}$, there is a commatative diagram

$$
\begin{array}{cc}
\mathrm{F}_{1} \mathrm{~A} & \alpha_{\mathrm{A}} \\
\mathrm{~F}_{1} \mathrm{f} \mid & \mathrm{F}_{2} \mathrm{~A} \\
\downarrow & \downarrow_{\mathrm{F}^{\mathrm{f}}} \\
\mathrm{~F}_{\mathrm{I}} \mathrm{~B} & \mathrm{~F}_{\mathrm{B}}
\end{array}
$$

and a caronical arrow

$$
\alpha_{0} f: F_{1} B \frac{\|}{F_{1} A} F_{2} A \rightarrow F_{2} B
$$

defining thereby a functor

$$
\alpha_{\bullet}: \underline{C}(\rightarrow) \rightarrow \underline{D}^{(}(\rightarrow) .
$$

- Let $G_{1}, G_{2}: \underline{D} \rightarrow \underline{C}$ be functors and let $\beta \in \operatorname{Nat}\left(G_{2}, G_{1}\right)$. Given $g \in \operatorname{Mor} \underline{D}$, there is a commutative diagram

and a canonical arrow

$$
B^{\bullet}: G_{2} X \longrightarrow G_{2} Y \times_{G_{1} Y} G_{1} X
$$

defining thereby a functor

$$
\beta^{\bullet}: \underline{D}(\rightarrow)+\underline{C}(\rightarrow) .
$$

Assume now that

$$
\left\lvert\, \begin{array}{l|l}
\mathrm{F}_{1}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}} \\
\mathrm{G}_{1}: \underline{\mathrm{D}} \rightarrow \underline{\mathrm{C}}, & \mathrm{~F}_{2}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}} \\
\mathrm{G}_{2}: \underline{\mathrm{D}} \rightarrow \underline{\mathrm{C}}
\end{array}\right.
$$

are adjoint pairs.
_ β generates a natural transformation

$$
\beta_{1,2}: F_{1} \rightarrow F_{2}
$$

Proof: $\forall A \in O b \subseteq$

$$
\begin{aligned}
& \left(\mu_{2}\right)_{A}: A \longrightarrow G_{2} F_{2} A \\
& F_{1}\left(\mu_{2}\right)_{A}: F_{1} A \longrightarrow F_{1} G_{2} F_{2} A
\end{aligned}
$$

$$
\begin{aligned}
& { }^{-} \quad \mathrm{B}_{2^{\mathrm{A}}}: \mathrm{G}_{2} \mathrm{~F}_{2} \mathrm{~A} \longrightarrow \mathrm{G}_{1} \mathrm{~F}_{2}{ }^{\mathrm{A}} \\
& \text { = } \\
& \mathrm{F}_{1} \mathrm{~B}_{\mathrm{F}_{2}}: \mathrm{F}_{1} \mathrm{G}_{2} \mathrm{~F}_{2}^{\mathrm{A}} \longrightarrow \mathrm{~F}_{1} \mathrm{G}_{1} \mathrm{~F}_{2}^{\mathrm{A}} \\
& \begin{aligned}
\quad & \left(v_{1}\right)_{X}: F_{1} G_{1} \mathrm{X} \longrightarrow \mathrm{x} \\
\Rightarrow & \\
& \left(v_{1}\right)_{F_{2}{ }^{A}}: F_{1} G_{1} F_{2} \mathrm{~A} \longrightarrow \mathrm{~F}_{2}{ }^{\mathrm{A}} .
\end{aligned}
\end{aligned}
$$

Put

$$
\left(\beta_{1,2}\right)_{A}=\left(\nu_{1}\right)_{F_{2} A} \circ F_{1} \beta_{F_{2}}{ }^{\circ} \circ F_{1}\left(\mu_{2}\right)_{A}
$$

—_ α generates a natural transformation

$$
\alpha_{2,1}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{1}
$$

Proof: $\quad \forall \mathrm{X} \in \mathrm{Ob} \mathrm{D}$

$$
\begin{aligned}
& \begin{aligned}
-\quad\left(\mu_{1}\right)_{A}: A & G_{1} F_{1}{ }^{A}
\end{aligned} \\
& \left(\mu_{1}\right)_{G_{2}}: G_{2} X \longrightarrow G_{1} F_{1} G_{2} X
\end{aligned}
$$

33.

$$
\begin{aligned}
& \left(\nu_{2}\right): F_{2} G_{2} x \longrightarrow x \\
\Rightarrow & \\
& G_{1}\left(\nu_{2}\right){ }_{x}: G_{1} F_{2} G_{2} x \longrightarrow G_{1} x
\end{aligned}
$$

Put

$$
\left(\alpha_{2,1}\right)_{X}=G_{1}\left(\nu_{2}\right)_{X} \circ G_{1} \alpha_{G_{2}}{ }^{\circ}\left(\mu_{1}\right)_{G_{2}} X
$$

0.18.13 LEMMA Suppose that $\alpha=\beta_{1,2}$ and $\beta=\alpha_{2,1}$-- then

are an adjoint pair.

Accordingly, under these conditions, there is a one-to-one correspondence between the commutative squares

and their fillers.

> 0.19 FUNCTORIALITY

Let \mathcal{C} be a category. Consider its arrow category $\underset{(\rightarrow)}{(\rightarrow)}$-- then there are functors

$$
\left[\begin{array}{rl}
\text { dom: } \underline{C}(\rightarrow) & \longrightarrow \underline{C} \\
\operatorname{cod}: \underline{C}(\rightarrow) & \longrightarrow \underline{C}
\end{array}\right.
$$

that project to the domain and oodomain respectively and a natural transformation $E:$ dom \rightarrow cod, viz. $\Xi_{f}=f$.
[Note: There is also an embedding functor $E: \underline{C} \rightarrow \underline{C}(\rightarrow)$. On objects, $E X=i d_{X}$ and on morphisms,

0.19.1 DEFINITION A w.f.s. (L, R) on \underline{C} is functorial if there are functors

$$
\left\lvert\, \begin{aligned}
L: \underline{C}(\rightarrow) & \longrightarrow \mathrm{C}(\rightarrow) \\
\mathrm{R}: \underline{\mathrm{C}}(\rightarrow) & \longrightarrow \mathrm{C}(\rightarrow)
\end{aligned}\right.
$$

such that

$$
\operatorname{dom} \circ \mathrm{L}=\mathrm{dom}
$$

$$
\& \operatorname{cod} \circ \mathrm{~L}=\operatorname{dom} \circ \mathrm{R}
$$

$$
\operatorname{cod} \circ \mathrm{R}=\operatorname{cod}
$$

and $\forall f \in \operatorname{Mor} \underline{C}, f=R f \circ$ Lf with Lf $\in L$ and $\operatorname{Rf} \in R$.
N. B. Put

$$
\mathrm{F}=\operatorname{cod} \circ \mathrm{L}=\text { dam } \circ \mathrm{R} .
$$

Then there are natural transformations

$$
\left.\right|_{-\quad} ^{\lambda \in \operatorname{Nat}(\mathrm{Nam}(\mathrm{~F}, \mathrm{Cod})}: \quad E=\rho \circ \lambda
$$

35.

and the factorization of $f \in M O r \underline{C}$ is given by

[Note: Let $(\phi, \psi):(X, f, Y) \rightarrow\left(X^{\prime}, f^{\prime}, Y^{\prime}\right)$ be a morphism in $C(\rightarrow)$, so

cormutes .- then the diagram

commutes.]
0.19.2 DEFINITION The triple (F, λ, ρ) is called a functorial realization of the w.f.s. (L, R).
0.19.3 EXAMPLE Let \underline{C} be a model category. Suppose that the w.f.s.

$$
(c o f, W \cap f i b) \quad \text { (cf. } 0.18 .2 \text {) }
$$

is functorial -- then $\forall X \xrightarrow{f} Y$ there is a commutative diagram

where $\left.\right|_{-} ^{-} \mathrm{X}^{\prime}$ are cofibrant and the arrows $\left.\right|_{-} ^{-} \mathrm{X}^{\prime} \rightarrow \mathrm{X}$ are acyclic fibrations. The assignment $X \rightarrow X^{\prime}$ is called the cofibrant replacement functor, denote it by L, thus by construction, there is a natural transformation $\underline{\underline{\Xi}} \underset{\underline{C}}{ } i d_{C}$ and $\forall x$, $E_{X}: I X \rightarrow X$ is an acyclic fibration.

- $\forall f \in L$, the lifting problem

has a solution s, thus $\lambda_{f}=s \circ f, \rho_{f} \circ s=i d$.
- $\forall g \in R$, the lifting problem

has a solution t, thus $\rho_{g}=g \circ t, t \circ \lambda_{g}=i d$.
0.19.4 NOTATION Given a functional realization (F, λ, ρ) of the w.f.s. (L, R), let

$$
\begin{aligned}
L_{F} & =\left\{f: \exists s \text { st } \lambda_{f}=s \circ f, \rho_{f} \circ s=i d\right\} \\
R_{F} & =\left\{g: \exists \mathrm{t} \text { st } \rho_{g}=g \circ t, t \circ \lambda_{g}=i d\right\}
\end{aligned}
$$

If $f \in L_{F}, g \in R_{F}$, then the lifting problem

can be solved by taking $w=t \circ F(u, v) \circ s$.
0.19.5 LEMMA We have

$$
\left.\right|_{-} ^{-} \quad \begin{aligned}
L & =L_{F} \\
R & =R_{F}
\end{aligned}
$$

0.20 COFIBRANTLY GENERATED W.F.S.

Let \underline{C} be a coomplete category.
0.20.1 NOTATION Let $C \subset M O r$ be a class of morphisms -- then by cell \mathcal{C} we shall understand the smallest stable class containing \mathcal{C}.
0.20.2 NOTATION Let $\mathcal{C} \subset$ Mor $\subseteq \mathbb{C}$ be a class of morphisms - then by cof \mathcal{C} we shall understand the smallest retract stable class containing C.
0.20 .3 LEMMA We have

$$
C \subset \operatorname{cell} C \subset \operatorname{cof} C \subset \operatorname{ILP}(\operatorname{RLP}(C)) \quad \text { (cf. 0.18.10) }
$$

0.20.4 LEMMA Suppose that \underline{C} is presentable - then for every set I \subset Mor \underline{C},

$$
\operatorname{cof} I=L L P(\operatorname{RLP}(I)) .
$$

0.20.5 EXAMPLE Let \underline{C} be a small category and let $M \subset$ Mor \hat{C} be the class of monomorphisms - then there exists a set $M \subset M$ such that $M=L L P(R L P(M))$, hence $M=\operatorname{cof} M(\underline{\hat{C}}$ being presentable).
(1) Take $\underline{\mathrm{C}}=\underline{1}-$ then $\underline{\underline{1}} \approx \underline{\operatorname{SET}}$ and we can let $\mathrm{M}=\{\varnothing \rightarrow \star\}$.
(2) Take $\underline{C}=\underline{\Delta}-$ then $\hat{\Delta} \approx \underline{\text { SISET }}$ and we can let $M=\{\dot{\Delta}[n] \rightarrow \Delta[n]: n \geq 0\}$.
0.20.6 NOTATION Given a class $C=$ Mor \mathcal{C}, let \mathcal{C} be the full subcategory of $\subseteq(\rightarrow)$ having C as its objects.
0.20.7 LEMMA Suppose that $\underline{\mathcal{C}}$ is presentable (hence that $\underline{C}(\rightarrow)$ is presentable) then for every set $I \subset$ Mor $\underline{C}, \underline{R L P(I)}$ is an accessible subcategory of $\underline{C}(\rightarrow)$.
0.20.8 REMARK In general, cof $I \subset \underline{C}(\rightarrow)$ is not accessible.
0.20.9 DEFINITION Let \underline{C} be a cocomplete category - then \underline{C} is said to admit the small object argument if it has the following property: Given any set I e Mor C , the pair

$$
(\operatorname{LLP}(\operatorname{RLP}(I)), R L P(I))
$$

is a functorial w.f.s. on C.
[No te: he have

$$
\operatorname{RIP}(I L P(\operatorname{RIP}(I)))=\operatorname{RLP}(I) .]
$$

0.20.10 CRIIERION Let \underline{C} be a cocomplete category. Assme: $\forall X \in O B \underline{C}$, there exists a regular cardinal κ_{X} such that X is κ_{X}-definite - then \subseteq admits the gmall object argument.
N. B. In particular, every presentable category admits the small object argument.
0.20.11 REMARK TOP is not presentable, hence does mot fall within the purview of 0.20 .9 . Never theless, TOP does admit the small object argument (Garner ${ }^{\dagger}$).
0.20.12 REMARK If $\underset{C}{ }$ is presentable, then in general, $\underline{C}^{(P D}$ is not presentable, thus it is not automatic that $\underline{\mathrm{C}}^{\mathrm{OP}}$ admits the small object argument.
[Note: If \underline{C} and $\underline{C}^{\mathrm{OP}}$ are both presentable, then Mor (X, Y) has at most one element for each pair $X, Y \in O b \subseteq .1$
0.20.13 DEFINITION Let (L, R) be a w.f. s. on a cocomplete category \subseteq-- then (L, R) is cofibrantly generated if there exists a set $I \subset L$ such that

$$
R=\operatorname{RLP}(I) \quad(\Leftrightarrow L=\operatorname{LiP}(\operatorname{RLP}(I))) .
$$

[Note: he shall refer to I as a generating set for (L, R).]
N. B. Accordingly, if \underline{C} admits the small object argument, then a cofibrantly generated w.f.s (L, R) on C is necessarily functorial.
0.20.14 DEFINITION Let \underline{C} be a cocomplete model category -- then \underline{C} is cofibrantly generated if the w.f.s.

$$
\left.\right|_{-} \quad(c o f, w \cap f i b)
$$

are cofibrantly generated with generating set $\left.s\right|_{-} ^{-}$.

Here are a few examples.
0.20.15 EXAMPLE Take $\underline{C}=\underline{T O P}$ (Quillen Structure) -- then \underline{C} is cofibrantly generated.
[Let I be the set of inclusions $S^{n-1} \rightarrow D^{n}\left(n \geq 0, D^{0}=\{0\}\right.$ and $\left.S^{-1}=\varnothing\right)$ and let J be the set of inclusions $i_{0}:[0,1]^{n} \rightarrow[0,1]^{n} \times[0,1] \quad(n \geq 0)$.]
0.20.16 EXAMPIE Take $\underline{C}=$ SISET (Kan Structure) - then $\underset{C}{ }$ is cofibrantly generated.
[Let I be the get of inclusions $\dot{\Delta}[n] \rightarrow \Delta[n](n \geq 0)$ and let J be the set of inclusions $\mathrm{A}[\mathrm{k}, \mathrm{n}] \rightarrow \Delta[\mathrm{n}](0 \leq \mathrm{k} \leq \mathrm{n}, \mathrm{n} \geq 1)$.]
0.20.17 EXAMPLE Take $\underline{C}=\underline{C A T}$ (Internal Structure) -- then \underline{C} is cofibrantly generated.
[In addition to the categories $\underline{0}, \underline{1}$, and 2 , let $\underline{d 2}$ be the discrete category with two objects, and let p2 be the category with two objects and two parallel
arrows -- then the canonical functors

$$
\left[\begin{array}{r}
\mathrm{u}: \underline{0} \longrightarrow \underline{1} \\
\mathrm{v}: \underline{\mathrm{d} 2} \longrightarrow \underline{2} \\
\mathrm{w}: \underline{\mathrm{p} 2} \longrightarrow \underline{2}
\end{array}\right.
$$

are cofibrations and we can take $I=\{u, v, w\}$. Turning to J, let $\underline{i s o}_{2}$ denote the category with objects a, b and arrows $i d_{a}, i d_{b}, a \xrightarrow{\alpha} b, b \xrightarrow{\beta} a$, where $\alpha \circ \beta=$ $i d_{b}, \beta \circ \alpha=i d_{a}-$ then we can take $J=\{\pi\}$, where $\left.\pi: \underline{\underline{l}} \operatorname{lig}_{2}(\pi(*)=a).\right]$
0.20.18 EXAMPLE Take $\underline{C}=$ CAT (External Structure) - then \underline{C} is cofibrantly generated.
[Let I be the set of arrows cat $\mathrm{Sa}^{2} \dot{\Delta}[n] \rightarrow$ cat $\mathrm{Sa}^{2} \Delta[n](n \geq 0)$ and let J be the set of arrows cat $\operatorname{Sa}^{2} \Lambda[k, n] \rightarrow$ cat $\left.\operatorname{Sa}^{2} \Delta[n](0 \leq k \leq n, n \geq 1).\right]$
0.20.19 EXAMPLE Take $\mathbb{C}=$ EQU (Larussm Structure) - then \underline{C} is cofibrantly generated.
[One can take $I=\{f, g\}, J=\{h\}$, where $f: \varnothing \rightarrow\{*\}, g$ is the identity map from $\{a, b\}$ (discrete partition) to $\{a, b\}$ (indiscrete partition), and $h:\{*\} \rightarrow\{a, b\}$ (indiscrete partition) sends * to a.]
0.20.20 EXAMPIE Take $\underline{C}=\underline{C A T}$ and let L be the class whose elements are the full functors - then the pair ($L, \operatorname{RLP}(L)$) is a w.f.s. which is not cofibrantly generated, thus there are model categories that are presentable but not cofibrantly generated (apply 0.18.4).
0.20.21 REMARK The Strfin structuxe on TOP is not cofibrantly generated (Raptis ${ }^{\dagger}$).
0.20.22 IEMMA If S is a set and if

$$
\omega_{s}, \operatorname{cof}_{s}, f i b_{s}
$$

is a cofibrantly generated model structure on $\underline{C}_{S}(s \in S$) with generating sets sets $\left.\right|_{-} ^{-} I_{S}$, then the model structure on $\underset{S}{C}=\prod_{S}{\underset{-}{S}}$ per 0.1 .29 is cofibrantly generated with generating sets

$$
\begin{aligned}
& I={\underset{s \in S}{U}\left(I_{s} \times \prod_{t \neq S} i d_{\emptyset_{t}}\right)}^{J={\underset{s \in S}{ }}_{u}\left(J_{s} \times \prod_{t \pm s} i d_{\emptyset_{t}}\right)} .
\end{aligned}
$$

where $i d_{\varnothing_{t}}$ is the identity map of the initial object \varnothing_{t} of \underline{C}_{t}.

$$
0.21 \text { CISINSKI }^{+\dagger} \text { THEORY }
$$

Let \subseteq be a small category -- then the class $M \subset$ Mor $\widehat{\widehat{C}}$ of monomorphisms is retract stable and the pair ($M, \operatorname{RLP}(M)$) is a w.f.s. on \hat{C} (cf. 0.18.9).
[Note: For the recond, recall that a morphism Ξ in $\hat{\mathbb{C}}$ is a monomorphism iff $\forall \mathrm{X} \in \mathrm{Ob} \subseteq \subseteq \mathrm{E}_{\mathrm{X}}$ is a monomorphism in SET.]
N.B. Elements of $R L P(M)$ are called trivial fibrations.
${ }^{\dagger}$ Homology, Homotopy Appl. 12 (2010), 211-230.
tt Astérisque 308 (2006).
0.21.1 DEFINITION A cofibrantly generated model structure on \hat{C} is said to be a Cisinski structure if the cofibrations are the monomorphisms.
[Note: The acyclic fibrations of a Cisinski structure on $\hat{\mathrm{C}}$ are the trivial fibrations.]
0.21.2 EXAMPLE Take $C=\Delta-$ then the Kan structure on SISET is a Cisinski struc ture (cf. 0.20 .16).
0.21.3 LEMMA A Cisinski structure on \hat{C} is determined by its class of fibrant objects (cf. 0.1.11).
0.21.4 DEFINITION Consider a category pair (\hat{C}, W)-- then W is a \hat{C}-localizer provided the following conditions are met.
(1) W satisfies the 2 out of 3 condition (cf. 2.3.13).
(2) W contains RLP (M) .
(3) $W \cap M$ is a stable class.
N.B. If

$$
W, \operatorname{cof}=M, f i b=R L P(W \cap M)
$$

is a model structure on $\hat{\mathbb{C}}$, then W is a $\hat{\mathbb{C}}$-localizer.
Let $\mathcal{C}=$ Mor $\hat{\mathrm{C}}-$ - then the $\hat{\mathrm{C}}$-localizer generated by \mathcal{C}, denoted $W(\mathcal{C})$, is the intersection of all the $\hat{\underline{C}}$-localizers containing \mathcal{C}. The minimal $\hat{\hat{C}}$-localizer is $W(\emptyset)$ (θ the empty \mathfrak{y} of morphisms).
0.21.5 DEFINITION A $\hat{\mathbf{C}}$-localizer is admissible if it is generated by a set of morphisms of $\hat{\mathrm{C}}$.
0.21. 6 EXAMPLE Mor $\hat{\underline{\mathrm{C}}}$ is an admissible $\hat{\mathrm{C}}$-localizer. In fact,

$$
W\left(\left\{\emptyset_{\hat{\mathrm{C}}}+{ }_{\hat{\mathrm{C}}}\right\}\right)=\operatorname{Mor} \hat{\underline{\mathrm{c}}} .
$$

0.21.7 THEOREM Let (\hat{C}, W) be a category pair -- then W is an admissible $\hat{\mathrm{C}}$-localizer iff there exists a cofibrantly generated model structure on $\hat{\mathrm{C}}$ whose class of weak equivalences are the elements of W and whose cofibrations are the monomorphisms.
[Note: The cofibrantly generated model structure on $\underline{\hat{C}}$ determined by W is left proper (but it need not be right proper).]
0.21.8 SCHOLIUM The map

$$
W \rightarrow W, M, \operatorname{RLP}(W \cap M)
$$

induces a bijection between the class of admissible $\hat{\underline{\hat{S}}}$-localizers and the class of Cisinski structures on $\hat{\mathrm{C}}$.
[Note: The partially ordered class of $\hat{\underline{C}}$-localizers has a maximal element and a minimal element. Furthermore, if I is a set and if W_{i} ($i \in I$) is an admissible $\hat{\underline{C}}$-localizer, then the intersection $\cap_{i \in I} W_{i}$ is an admissible $\hat{\underline{C}}$-localizer.]
0.21.9 REMARK It follows a posteriori that the stable class $W \cap M$ is retract stable. In addition, W is necessarily saturated, i.e., $W=\bar{W}$ (cf. 2.3.20).
[Note: Every $\hat{\mathrm{C}}$-localizer is the filtered mion over the class of the admissible $\hat{\mathbf{c}}$-localizers contained therein, thus, by a simple argument, is saturated.]
0.21.10 EXAMPLE Consider SISET (Joyal Structure) - then W is the class of categorical weak equivalences and is an admissible $\hat{\Delta}$-localizer:

$$
W=W(\{I[n] \rightarrow \Delta[n]: n \geq 0\}) .
$$

Therefore the Joyal structure is cofibrantly generated.
[Here $I[n]$ is the simplicial subset of $\Delta[n]$ generated by the edges ($k, k+1$) $(0 \leq \mathrm{k} \leq \mathrm{n}-1)$ (take $\mathrm{I}[0]=\Delta[1]$), so there is a pushout square

[Note: The Kan structure on SISET is cofibrantly generated and its $\hat{\Delta}$-localizer is generated by the maps $\Delta[n]+\Delta[0](n \geq 0)$.
0.21.11 REMARK The HG-Structure on SISET is cofibrantly generated, thus its $\widehat{\Delta}$-localizer is admissible.
0.21.12 DEFINITION The Cisinski structure on $\widehat{\mathrm{C}}$ corresponding to $W(\emptyset)$ is called the minimal monic model structure on \hat{C}.
0.21.13 EXAMPLE Take $\underline{C}=\underline{1}-$ then $\hat{\underline{1}} \approx \underline{\text { SET }}$ and $W(\emptyset)$ is the class

$$
\{\emptyset \rightarrow \emptyset\} \cup\{f: X \rightarrow Y(X \neq \emptyset)\} .
$$

0.21.14 LEMMA The minimal monic model structure on $\hat{\underline{C}}$ is proper.
0.21.15 EXAMPLE Take $\underline{C}=\Delta$-- then the minimal monic model structure on SISET has fewer weak equivalences than the Joyal structure (cf. 0.4.1).
0.21.16 NOTATION Given an admissible $\hat{\underline{C}}$-localizer W and a small category I, denote by $W_{\underline{I}} \subset \operatorname{Mor}[\underline{I}, \hat{C}]$ the class of morphisms $E: F \rightarrow G$ such that $\forall i \in O$, I, $E_{i}: F i \rightarrow G i$ is in W.
0.21.17 THEOREM The category [I, $\hat{\mathrm{C}}$] carries a cofibrantly generated model structure whose weak equivalences are the elements of $W_{\underline{I}}$ and whose cofibrations are the monomorphisms.
[Identifying [I, $\hat{\mathrm{C}}]$ with the category of presheaves on $\underline{I}^{\mathrm{OP}} \times \underline{\mathrm{C}}$, observe that W_{I} is admissible and then invoke 0.21.7.]
[Note: If $\Xi: F \rightarrow G$ is a fibration in this model structure, then $\forall i \in \infty$ I, $\Xi_{i}: F i \rightarrow G i$ is a fibration in the model structure on \hat{C} per W (but, in general, not conversely).]
0.21.18 EXAMPLE Take $\mathbb{C}=\triangle$ and consider SISET in its Kan structure (hence the admissible $\hat{\Delta}$-localizer W is the class of simplicial weak equivalences) -- then for any I, the specialization of 0.21 .17 to this situation gives rise to structure R on [I,SISET] (cf. 0.16).

0.22 MODEL FUNCTORS

Let \mathbb{C} and C^{\prime} be model categories.
0.22.1 DEFINITION A left adjoint functor $F: C \rightarrow C^{\prime}$ is a left model functor if F preserves cofibrations and acyclic cofibrations.
0.22.2 DEFINITION A right adjoint functor $F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}$ is a right model functor if F^{\prime} preserves fibrations and acyclic fibrations.
0.22.3 LEMMA Suppose that

$$
\left[\begin{array}{l}
F: \underline{C} \rightarrow \underline{C}^{\prime} \\
F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}
\end{array}\right.
$$

are an adjoint pair - then F is a left model functor iff F^{\prime} is a right model functor.
0.22.4 DEFINITION A model pair is an adjoint situation (F^{\prime}, F^{\prime}), where F is a left model functor and F^{\prime} is a right model functor.
0.22.5 EXAMPLE Consider the setup

Then (cat, ner) is a model pair.
[Note: The inclusion $1: \underline{G R D} \rightarrow$ CAT admits a left adjoint $\pi_{1}: C A T \rightarrow$ GRD and a right adjoint iso:CAT \rightarrow GRD. This being so, consider the setup

$$
1 \circ \pi_{1} \circ \text { cat }
$$

SISET (Kan Structure) CAT (Internal Structure).

Then ($1 \times \pi_{1} \circ$ cat, ner $\circ 1 \circ$ iso) is a model pair.]
0.22.6 EXAMPLE Consider the setup

Then ($i d_{\text {MOP }}, i d_{\text {IOP }}$) is a model pair (take $F^{\prime}=i d_{\text {IOP }}$).
0.22.7 LEMMA The adjoint situation (F, F^{\prime}) is a model pair iff F preserves cofibrations and F^{\prime} preserves fibrations.
0.22.8 LEMMA The adjoint situation (F, F^{\prime}) is a model pair iff F preserves acyclic cofibrations and F^{\prime} preserves acyclic fibrations.

Recall now that $\underline{C}_{\text {cof }}$ is a cofibration category and $\underline{C}_{f i b}^{\prime}$ is a fibration category, the setup of 2.2 .6 thus becoming

0.22 .9 SCHOLIUM

- To ensure the existence of $\left(L F, \nu_{F}\right)$, it suffices to require that F send acyclic cofibrations between cofibrant objects to weak equivalences.
- To ensure the existence of ($R F^{\prime}, \mu_{F}{ }^{\prime}$), it suffices to require that F^{\prime}
send acyclic fibrations between fibrant objects to weak equivalences.

So, if the adjoint situation (F, F^{\prime}) is a model pair, then the functors

$$
\begin{array}{r}
\mathrm{LF}: \underline{\mathrm{HC}} \rightarrow \underline{\mathrm{HC}} \\
\mathrm{RF}^{\prime}: \underline{\mathrm{HC}}+\underline{\mathrm{HC}}
\end{array}
$$

exist and are an adjoint pair.
0.22.10 EXAMPIE Fix a model category $\underset{C}{ }$, let I be the category $1 \bullet<\stackrel{a}{\longrightarrow} \rightarrow 2$,
and equip [$\underline{I}, \underline{C}]$ with its model category structure per 0.1.12. Let colim: $[\underline{I}, \underline{C}] \rightarrow \underline{C}$ be the functor that on objects assigns to each 2-source $X \stackrel{f}{\mathrm{f}} \underset{\mathrm{g}}{\rightarrow} \mathrm{Y}$ it pushout P :

Then colim has a right adjoint, viz. the constant diagram functor $K: \mathbb{C} \rightarrow[\mathrm{I}, \mathrm{C}]$. But it is obvious that K preserves fibrations and acyclic fibrations. Therefore the adjoint situation (colim, K) is a model pair, thus $\left.\right|_{-} ^{-}$Lcolim exist and (Lcolim,RK) is an adjoint pair.
[Note: The story for pullbacks is analogous.]

Given a model category \underline{C} and objects A, B in \underline{C}, the categories $A \backslash \underline{C}, \underline{C} / B$ are again model categories, a morphism in either case being declared a weak equivalence, cofibration, or fibration if it is such when viewed in C alone.
0.22.11 EXAMPLE Iet \underline{C} be a model category and let $X, Y \in O B \subseteq$ - then each $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ induces a functor

$$
\mathrm{f}_{\mathrm{t}}: \mathrm{X} \backslash \underline{C} \rightarrow Y \backslash \underline{C}
$$

which sends an object $X \rightarrow Z$ of $X \backslash C$ to its pushout along f :

Moneover, f_{1} is a left adjoint for the functor

$$
\mathrm{I}^{*}: Y \backslash \underline{C} \rightarrow X \backslash \underline{C}
$$

which sends an object $Y \rightarrow W$ of $Y \backslash \underline{C}$ to its precomposition with f and it is immediate that f* preserves fibrations and acyclic fibrations:

Therefore the adjoint situation $\left(f_{1}, f^{\star}\right)$ is a model pair, thus $\left.\right|_{-} ^{-L f_{!}}$exist and ($L f_{!}, R f^{\star}$) is an adjoint pair.
[Note: The story for $\mathrm{C} / \mathrm{X}, \mathrm{C} / \mathrm{Y}$ is analogous.]
0.22.12 EXAMPLE Define a functor $4: \triangle \rightarrow$ SISET by the rule $\Psi[n]=$ ner $\pi_{1}[n]--$ then

$$
\left[\begin{array}{rl}
\Gamma_{\mathrm{Y}}: \text { SISET } & \longrightarrow \text { SISET } \\
\sin _{\mathrm{Y}}: \text { SISET } & \longrightarrow \text { SISET }
\end{array}\right.
$$

is an adjoint pair. But

$$
\Gamma_{Y}: \text { SISET (Kan Structure) } \longrightarrow \text { SISET (Joyal Structure) }
$$

is a left model functor. Therefore the adjoint situation ($\Gamma_{Y}, \sin _{Y}$) is a model pair, thus $\left.\right|_{-} ^{-} \operatorname{L\Gamma }_{\mathrm{Y}} \quad$ exist and $\left(\mathrm{Lr}_{\mathrm{Y}}, R \sin _{\mathrm{Y}}\right)$ is an adjoint pair.
0.22.13 EXAMPLE In the notation of 0.7 ,

$$
\left\lvert\, \begin{aligned}
\mathrm{F}_{\mathrm{gx}}: \underline{\text { SISET }} \longrightarrow \underline{\text { SIGR }} \\
\mathrm{U}: \underline{\text { SIGR }} \longrightarrow \longrightarrow \text { SISET }
\end{aligned}\right.
$$

is an adjoint pair. Since $F_{g r}$ preserves cofibrations and U preserves fibrations, it follows that $\left.\right|_{-\operatorname{RU}} ^{-L F_{g r}}$ exist and ($L F_{g r}, R U$) is an adjoint pair.

A model pair ($\mathrm{F}^{\prime} \mathrm{F}^{\prime}$) is a model equivalence if the adjoint pair (LF, RF ') is an adjoint equivalence of homotopy categories.
0.22.14 IENMA The adjoint pair

$$
\begin{array}{r}
L F: \underline{H C} \rightarrow \underline{H C^{\prime}} \\
R F^{\prime}: \underline{\mathrm{HC}^{\prime}} \rightarrow \underline{H C}
\end{array}
$$

per

is an adjoint equivalence of homotopy categories if

an arrow

$$
\phi \in \operatorname{Mor}\left(F X, X^{\prime}\right)
$$

is a weak equivalence iff its adjoint

$$
\psi \in \operatorname{Mor}\left(X, F^{\prime} X^{\prime}\right)
$$

is a weak equivalence.
[This is a special case of 1.7.3.]
N. B. Since

$$
\left.\right|_{-} ^{L F}
$$

are an adjoint pair, the left derived functor $L F$ is an equivalence iff the right derived functor RF' is an equivalence.
0.22 .15 EXAMPLE Take EQU as in 0.15 and equip SET with its model structure per 0.1.5, hence the weak equivalences are the bijections and

$$
\left.\right|_{-\quad \text { cof }=\text { Mor SET }} \quad \text { fib }=\text { Mor SET. } .
$$

Let $Q: E Q U \rightarrow$ SET be the functor that on objects sends $(X, \sim X)$ to $X / \sim X-$ then Q has a right adjoint $Q^{\prime}: S E T \rightarrow$ EQU that on objects endows a set with its discrete partition. It is clear that Q preserves cofibrations and Q ' preserves fibrations. Therefore the adjoint situation $\left(Q, Q^{\prime}\right)$ is a model pair, thus $\left.\right|_{-} ^{L Q} Q^{\prime}$ exist and ($\mathrm{LQ}, \mathrm{RQ}^{\prime}$) is an adjoint pair. Since the arrow of adjunction

$$
{ }^{\mu}\left(X, \sim \sim_{X}\right):\left(X, \sim \sim_{X}\right)+Q^{\prime} Q\left(X, \sim \sim_{X}\right)
$$

is the projection $x \rightarrow X / \sim x^{\prime}$ an arrow

$$
\phi \in \operatorname{Mor}\left(Q\left(X, \sim_{X}\right), X^{\prime}\right)
$$

is a bijection iff its adjoint.

$$
\psi \in \operatorname{Mor}\left(\left(X, \sim_{X}\right), Q^{\prime} X^{\prime}\right)
$$

is a bijection on quotients, so the adjoint pair ($L Q, R Q^{\prime}$) is an adjoint equivalence of homotopy categories:

where HSET is isomorphic to SET itself (cf. 1.1.8),
0.22.16 EXAMPLE In the theory above, take $\underline{C}=\underline{\text { SISET }}$ (Kan Structure), $\underline{C}^{\prime}=\underline{T O P}$ (Quillen Structure) and let $F=| |, F^{\prime}=\sin -$ then from the definitions, $|\mid$ preserves cofibrations and sin preserves fibrations, thus the adjoint situation (| |, sin) is a model pair which, in fact, is a model equivalence. Therefore the adjoint pair ($\mathrm{L} \mid$ |, Rsin) is an adjoint equivalence of homotopy categories:

[We shall sketch the classical argument. Consider the bijection of adjunction

$$
\Xi_{X, Y}: C(|X|, Y) \rightarrow \operatorname{Nat}(X, \sin Y),
$$

$\sin \mathrm{f}$
so $E_{X, Y} \mathrm{Y}^{f}$ is the composition $\mathrm{X} \rightarrow \sin |\mathrm{X}| \xrightarrow{\sin } \sin \rightarrow$ then the arrow $\mathrm{X} \rightarrow \sin |\mathrm{X}|$ is a simplicial weak equivalence. Proof: The diagram

commutes and the vertical arrow on the right is a weak homotopy equivalence. Consequently, $\Xi_{X, Y} f$ is a simplicial weak equivalence iff $\sin f$ is a simplicial weak
equivalence. But there is a commutative diagram

And the vertical arrows are weak horotopy equivalences, hence $\sin f$ is a simplicial weak equivalence iff f is a weak homotopy equivalence. Finally, then, $\overline{E X}_{\mathrm{X}}, \mathrm{Y}$ f is a simplicial weak equivalence iff f is a weak homotopy equivalence and 0.22 .14 is applicable.]
[Note: All objects in SISEI are cofibrant and all objects in TOP are fibrant.]
0.22.17 REMARK Let HCW be the homotopy category of CW complexes -- then HCW is equivalent to HTOP ('TOP in its grillen structure).
[Note: There are two points to be kept in mind.
(1) If K and L are $C W$ complexes and if $f: K \rightarrow L$ is a weak homotopy equivalence, then f is a homotopy equivalence.
(2) If X is a topological space, then there exists a CW complex K and a weak homotopy equivalence $f: K \rightarrow X$.]

0.23 PROPRIETY

Let \subseteq be a model category.
0.23.1 DEFINITION A weak equivalence $X \xrightarrow{\mathrm{f}} \mathrm{Y}$ is proper to the left if for every cofibration $X \rightarrow Z$ the arrow $Z \rightarrow Z \underset{Y}{ }$ is a weak equivalence. X
N.B. C is left proper iff all its weak equivalences are proper to the left.
0.23.2 LFMMA A weak equivalence $X \xrightarrow{f} Y$ is proper to the left iff the model pair ($f, f^{\star *}$) of 0.22 .11 is a model equivalence or, equivalently, iff the functor $R f^{*}: \underline{H}(Y \backslash \underline{C}) \rightarrow \underline{H}(X \backslash \underline{C})$ is an equivalence.
0.23.3 THEOREM Let C be a model category -- then \underline{C} is left proper iff for every weak equivalence $X \xrightarrow{\mathrm{f}} \mathrm{Y}$ the functor $R f^{*}: \underline{H}(\mathrm{Y} \backslash \underline{\mathrm{C}}) \rightarrow \underline{\mathrm{H}}(\mathrm{X} \backslash \underline{C})$ is an equivalence.
0.23.4 REMARK The upshot is that "left proper" can be formulated without the use of cofibrations. So if \mathcal{W}, cof, fib is a model structure on \underline{C} which is left proper, then so is any other model structure W, cof ${ }^{\prime}$, fib'.
[Note: The story for "right proper" is analogous.]
0.24 TRANSFER OF STRUCTURE

Let \underline{C} be a cofibrantly generated model category with generating sets $\left.\right|_{-} ^{-} I$, thus

Let \mathbb{C}^{\prime} be a finitely complete and finitely cocomplete category. Suppose that

$$
\left[\begin{array}{l}
F: \underline{C} \rightarrow \underline{C}^{\prime} \\
F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}
\end{array}\right.
$$

are an adjoint pair.
56.

- Assume:
$(\operatorname{LLP}(R L P(F I)), R L P(F I))$
is a w.f.s. on C'.
- Assume:
(LLP (RLP (FJ)), RLP (FJ))
is a w.f.s. on \underline{C}^{\prime}.
Suppose fur ther that

$$
F^{\prime}(\operatorname{LLP}(\operatorname{RLP}(\mathrm{FJ}))) \subset W .
$$

Put

$$
\begin{gathered}
W^{\prime}=\left\{f^{\prime} \in \operatorname{Mor} C^{\prime}: F^{\prime} f^{\prime} \in W\right\} \\
f i b^{\prime}=\left\{f^{\prime} \in \operatorname{Mor} \mathcal{C}^{\prime}: F^{\prime} f^{\prime} \in \text { fib }\right\}
\end{gathered}
$$

and set

$$
\operatorname{cof}^{\prime}=\operatorname{LJP}\left(\omega^{\prime} \cap \mathrm{fib}^{\prime}\right)
$$

0.24.1 THEOREM The data

$$
w^{\prime}, \text { cof', fib' }
$$

defines a cofibrantly generated model structure on C^{\prime} with generating sets $\left.\right|_{-} ^{-}$FI . PROOF One has only to note that from the assumptions

$$
\begin{aligned}
W \cap f i b^{\prime} & =\operatorname{RLP}(\mathrm{FI}) \\
\mathrm{fib} & =\operatorname{RLP}(\mathrm{FJ})
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{cof}^{\prime} & =\operatorname{LLP}(\mathrm{RLP}(\mathrm{FI})) \\
-\omega^{\prime} \cap \operatorname{cof}^{\prime} & =\operatorname{LLP}(\mathrm{RLP}(\mathrm{FJ}))
\end{aligned}
$$

[Note: The detail that is not quite immediate is the relation

$$
W^{\prime} \cap \operatorname{cof}^{\prime}=\operatorname{LJP}(\operatorname{RLP}(\mathrm{FJ})) .
$$

However, by hypothesis,

$$
F^{\prime}(\operatorname{LIP}(\operatorname{RLP}(F J))) \subset W,
$$

so

$$
\operatorname{LJP}(R I P(F J)) \subset W^{\prime} \cap c^{\prime} .
$$

Conversely, given $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ in $W^{\prime} \cap$ cof', write $f^{\prime}=\rho \circ \lambda$, where $\lambda: X^{\prime} \rightarrow Z^{\prime}$ is in $\operatorname{LJP}(R L P(F J))$ and $\rho: Z^{\prime} \rightarrow Y^{\prime}$ is in RLP (FJ) - - then

$$
\begin{aligned}
& f^{\prime}, \lambda \in W^{\prime} \Rightarrow \rho \in W^{\prime} \\
\Rightarrow & \rho \in W^{\prime} \cap \operatorname{RLP}(F J)=W^{\prime} \cap \text { fib} .
\end{aligned}
$$

But since $f^{\prime} \in \operatorname{cof}^{\prime}$, the commative diagram

admits a filler $r: Y^{\prime} \rightarrow Z^{\prime}$, thus the commutative diagram

exhibits f^{\prime} as a retract of λ, implying thereby that $\left.f^{\prime} \in \operatorname{LIP}(\operatorname{RLP}(F J)).\right]$
58.
N.B. The adjoint situation (F, F^{\prime}) is a model pair (for by construction, F^{\prime} is a right model functor), thus $\left.\right|_{-\quad R F^{\prime}} ^{-} \quad$ exist and ($L F, R F^{\prime}$) is an adjoint pair.
0.24.2 EXAMPLE Take

$$
\left\lvert\, \begin{array}{rr}
\underline{C}=\underline{S I S E T} & \\
\text { and } \\
\underline{C}^{\prime}=\underline{C A T} & \left.\right|_{-\quad} \quad F^{\prime}=\mathrm{EX}^{2} \circ \text { ner } .
\end{array}\right.
$$

Then C , C^{\prime} are presentable and ($\mathrm{F}, \mathrm{F}^{\prime}$) is an adjoint pair. Moreover, all the assumptions of 0.24 .1 are satisfied and the resulting cofibrantly generated model structure on CAT is its external structure.

- $\forall X \in O b$ SISET, the arrow of adjunction

$$
X \rightarrow E x^{2} \circ \text { ner } \circ \text { cat } \circ s d^{2} X
$$

is a simplicial weak equivalence.

- $\forall \Phi \in$ Mor CAT, ner Φ is a simplicial weak equivalence iff $E x^{2}$ 。 ner Φ is a simplicial weak equivalence.

Consider now the bijection of adjunction

$$
E_{X, C}: \operatorname{Mor}\left(\operatorname{cat} \circ \mathrm{Sd}^{2} \mathrm{X}, \mathrm{C}\right) \rightarrow \operatorname{Mor}\left(\mathrm{X}, \mathrm{Ex}^{2} \text { o ner } \mathrm{C}\right)
$$

so $\Xi_{X, C^{\Phi}}$ is the composition

$$
X \rightarrow \mathrm{EX}^{2} \circ \text { ner } \circ \text { cat } \circ \mathrm{Sd}^{2} \mathrm{X} \xrightarrow{\mathrm{EX}^{2} \circ \text { ner } \Phi} \mathrm{Ex}^{2} \circ \text { ner } \underline{C} .
$$

Then $E_{X, C^{\Phi}}$ is a simplicial weak equivalence iff Φ is a simplicial weak equivalence. So, in view of 0.22.14, the model pair ($\mathrm{F}, \mathrm{F}^{\mathrm{l}}$) is a model equivalence, i.e., the
adjoint pair ($L F, R F^{\prime}$) is an adjoint equivalence of hanotopy categories:

[Note: The main reason for working with (cat $\circ \mathrm{Sd}^{2}, \mathrm{Ex}^{2}$ o ner) rather than (cat,ner) (or (cat $\circ \mathrm{Sd}$, Ex \circ ner)) is that the arrow of adjunction $\mathrm{X} \rightarrow$ ner (cat X) (or $\mathrm{X} \rightarrow \mathrm{EX}$ o ner o cat o Sd X) need not be a simplicial weak equivalence.]
0.24.3 REMARK Recall first that there are natural simplicial weak equivalences

$$
\left[\begin{array}{l}
\operatorname{ner}\left(\mathrm{gro}_{\triangle} \mathrm{X}\right) \rightarrow \mathrm{X} \\
\mathrm{gro}_{\Delta}(\text { ner } \underline{C})
\end{array}+\mathrm{C} .\right.
$$

- In CAT, let W_{∞} denote the class of simplicial weak equivalences, i.e., the class of functors $F: \underline{C} \rightarrow \underline{D}$ such that \mid ner $F \mid: B C \rightarrow B \underline{D}$ is a homotopy equivalence.
N.B. W_{∞} is the class of weak equivalences per CAT (Extemal Structure) and

$$
W_{\infty}^{-1} \underline{\text { CAT }}=\underline{H C A T} .
$$

- In SISET, let W_{∞} denote the class of simplicial weak equivalences, i.e., the class of simplicial maps $f: X \rightarrow Y$ such that $|f|:|X| \rightarrow|Y|$ is a homotopy equivalence.
N.B. W_{∞} is the class of weak equivalences per SISET (Kan Structure) and

$$
W_{\infty}^{-1} \underline{\text { SISET }}=\underline{\text { HSISET }} .
$$

Since ner $W_{\infty} \subset W_{\infty}$, there is a cormutative diagram

and since gro ${ }_{\triangle} W_{\infty} \subset W_{\infty}$, there is a conmatative diagram

Taking into account the natural isomorphisms

$$
\begin{aligned}
& \overline{\mathrm{ner}} \circ \overline{\mathrm{gro}_{\Delta}} \rightarrow \text { id } \\
& \overline{\mathrm{gro}_{\Delta}} \circ \overline{\mathrm{ner}} \rightarrow i d,
\end{aligned}
$$

it follows that ner induces an equivalence

$$
\underline{\text { HCAT }} \rightarrow \text { HSISET }
$$

of homotopy categories.
N.B. Take TOP in its Quillen structure, SISET in its Kan structure, and CAT in its external structure -- then HCW is equivalent to HPOP (cf. 0.22.17), HTOP is equivalent to HSISET (cf. 0.22.16), and HSISET is equivalent to HCAT (by the above).
[Note: Let [CAT] be the category with $O b$ [CAT] $=O$ CAT and whose morphisms are isomorphism classes of functors (i.e., in [CAT], $\operatorname{Mor}(\underline{I}, J)$ is the set of
isomorphism classes of objects in [I, J]) -- then the canonical projection

$$
\underline{C A T} \rightarrow[\mathrm{CAT}]
$$

is a localization of CAT at the class ω whose elements are the equivalences of small categories, thus when CAT is equipped with its internal structure,

$$
\text { HCAT }=[C A T]
$$

Given a small category I, write I $I_{\text {dis }}$ for the discrete category underlying I - then for any cocomplete category C , the forgetful functor $\mathrm{U}:[\mathrm{I}, \mathrm{C}] \rightarrow\left[\mathrm{I}_{\mathrm{dis}}, \mathrm{C}\right]$ has a left adjoint that sends X to fr X , where

$$
\operatorname{fr} \mathrm{Xj}=\prod_{\mathrm{i} \in \mathrm{Ob} I} \operatorname{Mor}(i, j) \cdot X i .
$$

0.24.4 EXAMPLE Take $\underline{\mathcal{C}}=\underline{\text { SISET }}$ (Kan Structure) and consider the adjoint pair

$$
\left[\begin{array}{l}
\mathrm{fr}:\left[\underline{I}_{\mathrm{dis}}, \underline{\text { SISET }]} \rightarrow[\underline{\mathrm{I}}, \underline{\text { SISET }]}]\right. \\
\mathrm{U}:[\underline{I}, \underline{\text { SISET }]}] \rightarrow\left[\mathrm{I}_{\mathrm{dis}}, \underline{\text { SISET }]}\right]
\end{array}\right.
$$

Then [I ${ }_{\text {dis }}$ SISEI] is a cofibrantly generated model category (cf. 0.20 .22) and all the assumptions leading to 0.24 .1 are satisfied ($F=f r, F^{\prime}=U$). The resulting cofibrantly generated model structure on [I,SISET] is structure L (cf. 0.16).
0.24.5 LEMMA Let $\underline{G}, \underline{H} \in O B \underline{G R D}, f: \underline{G} \rightarrow \underline{H}$ a morphism -- then f is a simplicial weak equivalence iff f is an equivalence.
0.24.6 LEMMA Let $\underline{G}, \underline{H} \in O B G \underline{G R D}, f: \underline{G} \rightarrow \underline{H}$ a morphism -- then $E x^{2}$ o ner f is a

Kan fibration iff ner f is a Kan fibration iff f has the RLP w.r.t. $\pi: \underline{1} \rightarrow \underline{i s O}_{2}$ (cf. 0.20.16).
0.24.6 SCHOLIUM The external and internal model structures on CAT restrict to the same model structure on GRD.
0.25 COMBINATORIAL MODEL CATEGORIES

Let \underline{C} be a cofibrantly generated model category.
0.25.1 DEFINITION \underline{C} is combinatorial if in addition \underline{C} is presentable (hence complete and cocomplete).

Suppose that \mathbb{C} is combinatorial -- then there exist sets

$$
\left[\begin{array}{l}
I \subset \operatorname{cof} \\
J \subset W \cap \operatorname{cof}
\end{array}\right.
$$

such that

$$
\left\lvert\, \begin{aligned}
-\quad \mathrm{fib} & =\operatorname{RLP}(I) \\
\mathrm{fib} & =\operatorname{RLP}(J) .
\end{aligned}\right.
$$

0.25.2 REMARK The cofibrantly generated w.f.s.

$$
\left[\begin{array}{l}
(\operatorname{cof}, \omega \cap \mathrm{fib}) \\
((\omega \cap \operatorname{cof}, \mathrm{fib})
\end{array}\right.
$$

are functorial (C being presentable) and the functors

$$
\left\{\begin{array}{l}
L: \underline{C}(\rightarrow) \rightarrow \underline{C}(\rightarrow) \\
R: \underline{C}(\rightarrow) \rightarrow \underline{C}(\rightarrow)
\end{array}\right.
$$

can be taken accessible.
N.B. Recall that

$$
\underline{C} \text { presentable }=>~ C(\rightarrow) \text { presentable. }
$$

0.25.3 LemMA Suppose that \underline{C} is combinatorial -- then

$$
\underline{w} \cap \underline{f i b}
$$

fib
are accessible subcategories of $\underset{(}{(\rightarrow)}$.
[This is an application of 0.20.7.]
0.25.4 IEMMA Suppose that $\underline{¢}$ is combinatorial - then \underline{w} is an accessible subcategory of $\underline{C}(\rightarrow)$.

PROOF Work with

$$
\begin{aligned}
& \mathrm{L}: \underline{\mathrm{C}}(\rightarrow) \rightarrow \underline{\mathrm{C}}(\rightarrow) \\
& \mathrm{R}: \underline{\mathrm{C}}(\rightarrow) \rightarrow \mathrm{C}(\rightarrow)
\end{aligned}
$$

per ($\omega \cap$ cof,fib) and note that

$$
\underline{w}=R^{-1}(\underline{w} \cap \underline{f i b}) .
$$

We turn now to the "recognition principle" for combinatorial model categories.
Thus fix a presentable category C, a class $W \subset$ Mor C, and a set $I \subset$ Mor C. Make the following assumptions.
(1) W satisfies the 2 out of 3 condition (cf. 2.3.13).
(2) $\underline{W} \subset \underline{C}(+)$ is an accessible subcategory of $\underline{C}(\rightarrow)$.
(3) The class RLP (I) is contained in W.
(4) The intersection $W \cap$ cof I is a stable class.
N.B. The closure of W under the fommation of retracts is automatic (cf. (2)).
0.25.5 THEOREM Under the preceding hypotheses, \underline{C} is a combinatorial model category with weak equivalences W, cofibrations cof I, fibrations RLP ($W \cap \operatorname{cof} I$).

The key is to construct a set $J \in W \cap \operatorname{cof} I$ such that $\operatorname{cof} J=W \cap \operatorname{cof} I$. Granting this for the moment, it is not difficult to check that $\underset{\underline{C}}{ }$ is in fact a model category, the remaining claim being that

$$
\left\{\begin{aligned}
W \cap f i b & =\operatorname{RLP}(I) \\
f i b & =\operatorname{RIP}(\mathrm{J})
\end{aligned}\right.
$$

But

$$
\begin{aligned}
W \cap \text { fib } & =\operatorname{RLP}(\operatorname{cof}) \\
& =\operatorname{RLP}(\operatorname{LIP}(\operatorname{RLP}(I))) \quad \text { (cf. 20.4) } \\
& =\operatorname{RLP}(I)
\end{aligned}
$$

and

$$
\begin{aligned}
\text { fib } & =\operatorname{RLP}(W \cap \operatorname{cof} \mathrm{I}) \\
& =\operatorname{RLP}(\operatorname{cof} \mathrm{J}) \\
& =\operatorname{RLP}(\operatorname{LLP}(\operatorname{RLP}(\mathrm{J}))) \quad \text { (cf. 20.4) } \\
& =\operatorname{RLP}(\mathrm{J}) .
\end{aligned}
$$

There are two steps in the construction of J.
0.25.6 LEMMA Suppose that $J \subset W \cap \operatorname{cof} I$ is a set with the following property: Every commutative diagram

where

$$
\left[\begin{array}{l}
(X \rightarrow Y) \in I \\
(A \rightarrow B) \in W,
\end{array}\right.
$$

can be factored as a commutative diagram

where

$$
(W \rightarrow Z) \in J .
$$

Then

$$
\operatorname{cof} J=W \cap \operatorname{cof} I .
$$

[It suffices to show that every $f \in W$ admits a factorization as $h \circ g$, where $g \in \operatorname{cell} J$ and $h \in \operatorname{RLP}(I)$. To this end, fix a regular cardinal k such that the domains of the elements of I are K-definite and proceed by transfinite induction.]

Since \underline{w} is an accessible subcategory of $\underline{C}(\rightarrow)$, the inclusion functor $\underline{w} \rightarrow \underset{C}{(\rightarrow)}$ satisfies the solution set condition: Given any object $X \rightarrow Y$ in Mor \underline{C}, there exists a source

such that for every commutative diagram

there is an i, an arrow

in $\underline{C}(\rightarrow)$, and a commutative diagram

0.25.7 LEMMA There exists a set $J \subset W \cap$ cof I which has the property set forth in 0.25.6.

PROOF Start with a commutative diagram

where

$$
\left[\begin{array}{l}
(X+Y) \in I \\
(A+B) \in W,
\end{array}\right.
$$

and factor it as above

So, to draw the desired conclusion, it suffices to factor the square on the left by an element of $W \cap$ cof I. For this purpose, form the pushout square

and note that the arrow $X_{i} \rightarrow Y \underset{X}{\underset{X}{U}} X_{i}$ is in cof I. Next, factor the arrow $Y \underset{X}{U} X_{i} \rightarrow Y_{i}$
as an element $Y \underset{X}{\bigcup} X_{i} \rightarrow Z_{i}$ of cof I followed by an element $Z_{i} \rightarrow Y_{i}$ of RJP (I) (permissible since \subseteq admits the small object argument) -- then the cormutative diagram

factors the square

by an arrow $X_{i} \rightarrow Z_{i}$ in $W \cap \operatorname{cof} I$.
[Note: To check the last point, introduce some labels:

$$
x_{i} \xrightarrow{w_{i}} y_{i}
$$

and

Then

$$
w_{i}=\psi_{i} \circ \phi_{i} \circ f_{i}
$$

But

$$
\psi_{i} \in \operatorname{RLP}(I) \subset W \Rightarrow \phi_{i} \circ f_{i} \in W .
$$

On the other hand,

$$
\left.f_{i} \in \operatorname{cof} I, \phi_{i} \in \operatorname{cof} I \Rightarrow \phi_{i} \circ f_{i} \in \operatorname{cof} I .\right]
$$

0.25.8 EXAMPLE Take $\underline{C}=$ SISET, let W be the class of categorical weak equivalences, and let I be the set of inclusions $\dot{\Delta}[n] \rightarrow \Delta[n](n \geq 0)$ - then this data satisfies the assumptions of 0.25 .5 , which thus provides a route to the construction of the Joyal structure on SISET.
[Note: I am unaware of a specific description of "J".]
0.25.9 REMARK Working within the framework of 0.21 , let $\underset{C}{C}$ be a small category and let $W=$ Mor $\underline{\hat{C}}$ be an admissible $\hat{\hat{C}}$-localizer -- then

$$
W, M, \operatorname{RLP}(W \cap M)
$$

is a cofibrantly generated model structure on $\hat{\underline{C}}$, thus is combinatorial ($\widehat{\underline{C}}$ being presentable). Therefore \underline{W} is an accessible subcategory of $\hat{C}(\rightarrow)$ (cf. 0.25.4). To reverse matters, fix a set $M \subset M: M=\operatorname{cof} M$ (cf. 0.20 .5) and suppose that $\underline{W} \subset$ Mor $\underline{\hat{C}}$ is a class satisfying assumptions (1) through (4) above (with I replaced by M) -then

$$
\begin{aligned}
\operatorname{RLP}(M) & =\operatorname{RLP}(\operatorname{cof} M) \\
& =\operatorname{RLP}(\operatorname{LLP}(\operatorname{RLP}(M))) \quad \text { (cf. } 0.20 .4) \\
& =\operatorname{RLP}(M) \subset W,
\end{aligned}
$$

so W is a \hat{C}-localizer. But the cofibrantly generated model structure on \hat{C} produced
by 0.25 .5 has W for its weak equivalences and M for its cofibrations. Accordingly, on the basis of $0.21 .7, \mathrm{~W}$ is necessarily admissible.
0.25.10 THEOREM Keep I fixed and let $W_{k}(k \in K)$ be a set of classes of morphisms of C. Suppose that $\forall k \in K$, the pair ($\left(W_{k}, I\right)$ satisfies assumptions (l) through (4) above - then \underline{C} is a combinatorial model category with weak equivalences $\prod_{k \in K} W_{k}$, cofibrations cof I, fibrations $\operatorname{RLP}\left(\cap_{k \in K} W_{k} \cap \operatorname{cof} I\right)$.
[The point here is that an intersection of a set of accessible subcategories is an accessible subcategory.]

0.26 DIAGRAM CATEGORIES

Fix a mall category I.
0.26.1 DEFINITIION Let \underline{C} be a model category and suppose that $\Xi \in \operatorname{Mor}[\underline{I}, \underline{C}]$, say $E: F \rightarrow G$.

- E is a levelwise weak equivalence if $\forall i \in O b I, E_{i}: F i \rightarrow G i$ is a weak equivalence in C .
- Ξ is a levelwise fibration if $\forall i \in O D \underline{I}, \Xi_{i}: F i \rightarrow G i$ is a fibration in C.
- Ξ is a projective cofibration if it has the LLP w.r.t. those morphisms which are simultaneously a levelwise weak equivalence and a levelwise fibration.
0.26.2 DEFINITION The triple consisting of the classes of levelwise weak equivalences, levelwise fibrations, and projective cofibrations is called the projective structure on $[\underline{I}, C]$.

Question: Is the projective structure a model structure on [I, C]?
0.26.3 EXAMPLE Let I be the category $1 \cdot \stackrel{a}{a} \xrightarrow{b}$ - then the model structure on [I, C] per 0.1.12 is the projective structure.
0.26.4 EXAMPLE Suppose that (I, \leq) is a finite nonempty directed set of cardinality ≥ 2 - then the model structure on [I, C] per 0.17 is the projective structure.
0.26.5 THEOREM Suppose that C is a combinatorial model category - then for every I, the projective structure on $[\underline{I}, C]$ is a model structure that, moreover, is combinatorial.
0.26.6 EXAMPIE Take $\underline{C}=\underline{\text { SISET }}$ in its Kan structure - - then the projective structure on [I,SISET] is a combinatorial model structure (it coincides with structure L (cf. 0.16)).
0.26.7 DEFINITIION Let $\underset{C}{C}$ be a model category and suppose that $\Xi \in \operatorname{Mor}[\underline{I}, C]$, say $E: F \rightarrow G$.

- Ξ is a levelwige weak equivalence if $\forall i \in O b I, E_{i}: F i \rightarrow G i$ is a weak equivalence in C .
- E is a levelwise cofibration if $\forall i \in O b I, \Xi_{i}: F i \rightarrow G i$ is a cofibration in C.
- Eis an injective fibration if it has the RIP w.r.t. those morphisms which are simultaneously a levelwise weak equivalence and a levelwise cofibration.
0.26.8 DEFINITION The triple consisting of the classes of levelwise weak equivalences, levelwise cofibrations, and injective fibrations is called the injective structure on [I, C].

Question: Is the injective structure a model structure on $[\underline{I}, \mathrm{C}]$?
0.26.9 EXAMPLE Let I be the category $1 \bullet \xrightarrow{a} \stackrel{b}{\longleftrightarrow} 2$-- then the model structure on $[\underline{I}, \underline{C}]$ per 0.1.12 is the injective structure.
0.26.10 EXAMPLE Let \underline{C} be a small category -- then $\hat{\mathcal{C}}$ is presentable and the Císinski structures on \hat{C} are in a one-to-one correspondence with the class of admissible $\hat{\mathbf{C}}$-localizers. Each Cisinski stucture is cofibrantly generated and the model structure on $[\underline{I}, \hat{\mathrm{C}}]$ per 0.21 .17 is the injective structure.
[Note: Recall that here monomorphisns are levelwise.]
0.26.11 THEOREM Suppose that C is a combinatorial model category -- then for every I, the injective structure on $[\mathrm{I}, \mathrm{C}]$ is a model structure that, moreover, is combinatorial.
0.26.12 EXAMPIE Take $\underline{C}=$ SISET - then the injective structure on [I, SISET] is a combinatorial model structure (it coincides with structure R (cf. 0.16)).
0.26.13 LEMMA Take C combinatorial - then

and
C right proper $\left.\Rightarrow\right|_{-} ^{[\underline{I}, \mathrm{C}]}$ (Projective Structure) \quad right proper.
N.B.

- Every projective cofibration is necessarily levelwise, hence is a cofibration in the injective structure.
- Every injective fibration is necessarily levelwise, hence is a fibration in the projective structure.
0.26.14 LEMMA Take \underline{C} combinatorial and consider the setup

$$
{ }^{i d}[\underline{I}, \underline{C}]
$$

[I,C] (Projective Structure)
[I,C] (Injective Structure).

Then (id ${ }_{[\underline{I}, \underline{C}]}$ id $_{[\underline{I}, \underline{C}]}$) is a model equivalence.
PROOF The weak equivalences are the same and
0.26.15 REMARK If \underline{C} and \underline{C}^{\prime} are combinatorial and if

is a model pair, then composition with F and F^{\prime} determines a model pair
73.

w.r.t. either the projective structure or the injective structure.

Let I and \mathbb{J} be small categories, $K: I \rightarrow I$ a functor, and take \underline{C} combinatorial then C is complete and cocomplete, so the functor $\mathrm{K}^{*}:[\underline{I}, \mathrm{C}] \rightarrow[\underline{I}, \mathrm{C}]$ has a right adjoint

$$
\mathrm{K}_{\mathrm{f}}:[\underline{\underline{I}}, \underline{\mathrm{C}}] \rightarrow[\underline{\mathrm{J}}, \underline{\mathrm{C}}]
$$

and a left adjoint

$$
\mathrm{K}_{1}:[\underline{\mathrm{I}}, \underline{\mathrm{C}}] \rightarrow[\underline{\mathrm{U}}, \underline{\mathrm{C}}] .
$$

0.26.16 IEMMA Consider the setup

[I,C] (Projective Structure)
[J,C] (Projective Structure).

Then ($\mathrm{K}_{1}, \mathrm{~K}^{*}$) is a model pair.
PROOF K* preserves levelwise weak equivalences and levelwise fibrations.
0.26.17 LEMMA Consider the setup

Then (K^{*}, K_{\dagger}) is a model pair.
PROOF K* preserves levelwise weak equivalences and levelwise cofibrations.
0.26.18 THEOREM The model pairs

$$
\left[\begin{array}{ll}
& \left(K_{!}, K^{*}\right) \\
- & \left(K^{*}, K_{+}\right)
\end{array}\right.
$$

are model equivalences if K is an equivalence of categories.

Since K* preserves levelwise weak equivalences, there is a commutative diagram

and adjoint pairs

0.26.19 DEFINITION The functor

$$
\mathrm{K}_{1}: \mathrm{H}[\mathrm{I}, \mathrm{C}] \rightarrow \underline{\mathrm{H}}[\underline{\mathrm{~J}}, \mathrm{C}]
$$

is called the homotopy colimit of K .
[Note: Take $\mathrm{J}=\underline{1}-$ - then in this case, $\mathrm{LK}_{\text {! }}$ is called the homotopy colimit functor and is denoted by hocolim. ${ }^{\text {.] }}$]
0.26.20 DEFINITION The functor

$$
\mathrm{RK}_{+}: \underline{H}[\underline{\mathrm{I}}, \underline{\mathrm{C}}] \rightarrow \underset{\sim}{\mathrm{H}}[\underline{\mathrm{~J}}, \mathrm{C}]
$$

is called the homotopy limit of K .
[Note: Take $\mathrm{J}=\underline{1}$ - then in this case, RK_{+}is called the homotopy limit functor and is denoted by holim ${ }_{I}$.

Is it true that for every small category I and model category C , the functor category $[\mathrm{I}, \mathrm{C}]$ admits a model structure whose weak equivalences are the levelwise weak equivalences? As far as I can tell, this is an open question. But some information is available. Thus let \underline{C} (cof) stand for \underline{C} viewed as a cofibration category and let \mathbb{C} (fib) stand for \mathbb{C} viewed as a fibration category -- then [I, $\underline{C}(c o f)]$ in its injective structure is a homotopically cocomplete cofibration category (cf. 2.5.3) and [$\underline{I}, \underline{C}(f ; b)]$ in its projective structure is a homotopically complete fibration category (cf. 2.5.6). Furthermore, since every model category is a weak model category, 2.7.5 and 2.7.6 are applicable and serve to equip [I, C] with two weak model structures.

0.27 REEDY THEORY

Let I be a small category.
0.27.1 DEFINITION I is said to be a direct category if there exists a function deg: $O \mathrm{D} \underline{\mathrm{I}}+Z_{\geq 0}$ such that for any nonidentity morphism $i \xrightarrow{\delta} j$, we have deg (i) $<\operatorname{deg}(\mathrm{j})$.
0.27.2 EXAMPLE The category $1 \bullet \stackrel{a}{\longleftrightarrow} \stackrel{\mathrm{a}}{\longrightarrow} 2$ is a direct category.
0.27.3 THEOREM Suppose that \mathbb{C} is a cocomplete model category - then for every direct category I, the projective structure on $[\underline{I}, \underline{C}]$ is a model structure.
0.27.4 DEFINITION I is said to be an inverse category if there exists a function deg: $O b I \rightarrow Z_{\geq 0}$ such that for any nonidentity morphism $i \xrightarrow{\delta} j$, we have deg(i) $>\operatorname{deg}(\mathrm{j})$.
0.27.5 EXAMPLE The category $1 \bullet \xrightarrow{a} \stackrel{b}{\longrightarrow} \cdot \stackrel{\text { is an inverse category. }}{\square}$
0.27.6 THEOREM Suppose that \underline{C} is a complete model category -- then for every inverse category I, the injective structure on [I, $\mathbb{C}]$ is a model structure.
0.27.7 DEFINITION Let I be direct and let $i \in O B$ I -- then the latching category $\partial(\underline{I} / i)$ is the full subcategory of I / i containing all the objects except for the identity map of i.

If I is direct, then $\partial(I / i)$ is also direct with $\operatorname{deg}\left(i^{\prime} \xrightarrow{f} i\right)=\operatorname{deg}\left(i^{\prime}\right)$, thus all the objects of $\partial(I / i)$ have degree $<\operatorname{deg}(i)$.
0.27.8 LFMMA Suppose that I is direct -- then for any morphism $f: i^{\prime} \rightarrow i$, there is a canonical iscmorphism

$$
\partial(\partial(\underline{I} / \mathbf{i}) / £) \approx \partial\left(\underline{I} / i^{\prime}\right)
$$

of categories.
0.27.9 DEFTNITION Let I be inverse and let $i \in O$ I - then the matching category $\partial(i \backslash I)$ is the full subcategory of $i \backslash I$ containing all the objects except
for the identity map of i.

If I is inverse, then $\partial(i \backslash I)$ is also inverse with $\operatorname{deg}\left(i \xrightarrow{f} i^{\prime}\right)=\operatorname{deg}\left(i^{\prime}\right)$, thus all the objects of $\partial(i \backslash I)$ have degree $<\operatorname{deg}(i)$.
0.27.10 LEMMA Suppose that I is inverse - then for any morphism $f: i \rightarrow i^{\prime}$, there is a canonical isomorphism

$$
\partial(f \backslash \partial(i \backslash I)) \approx \partial\left(i{ }^{\prime} \backslash I\right)
$$

of categories.
0.27.11 DEFINITION Fix a cocomplete category \mathbb{C}, a direct category I, and an $i \in O$ I. Let

$$
\partial U / i: \partial(I / i) \rightarrow I
$$

be the forgetful functor - then the latching functor L_{i} is the composite

$$
[\underline{I}, \underline{C}] \xrightarrow{(\partial \mathrm{U} / \mathrm{i})^{\star}}[\partial(\mathrm{I} / \mathrm{i}), \mathrm{C}] \xrightarrow{\mathrm{colim}} \mathrm{C} .
$$

N. B. Given $F \in O[I, C]$, the latching object of F at i is $L_{i} F$ and the latching morphism of F at i is the canonical arrow $L_{i} F \rightarrow F i$.
0.27.12 THEOREM Suppose that \underline{C} is a cocomplete model category -- then for any direct category I, a morphism $\Xi: F \rightarrow G$ in [$\underline{I}, \underline{C}]$ is a cofibration (acyclic oofibration) in the projective structure (cf. 0.27 .3) iff $\forall i \in O O I$, the induced morphism

$$
F i \frac{\|}{L_{i} F} L_{i} G \rightarrow G i
$$

is a cofibration (acyclic cofibration) in C .
0.27.13 DEFINITION Fix a complete category \mathcal{C}, an inverse category \underline{I}, and an $i \in O$ I. Iet

$$
\partial \mathbf{i} \backslash U: \partial(i \backslash I) \rightarrow I
$$

be the forgetful functor -- then the matching functor M_{i} is the composite

$$
[\underline{\mathrm{I}}, \underline{\mathrm{C}}] \xrightarrow{(\partial \mathrm{i} \backslash \mathrm{U})^{*}}[\partial(\mathrm{i} \backslash \underline{\mathrm{I}}), \underline{\mathrm{C}}] \xrightarrow{\lim } \underline{\mathrm{C}} .
$$

N.B. Given $F \in O b[I, C]$, the matching object of F at i is $M_{i} F$ and the matching morphism of F at i is the canonical arrow $\mathrm{Fi} \rightarrow \mathrm{M}_{\mathrm{i}} \mathrm{F}$.
0.27.14 THEOREM Suppose that C is a complete model category - then for any inverse category I, a morphism $E: F \rightarrow G$ in [I,C] is a fibration (acyclic fibration) in the injective structure (cf. 0.27 .6) iff $\forall i \in O B I$, the induced morohism

$$
F i \rightarrow M_{i} F{ }_{M_{i} G} G i
$$

is a fibration (acyclic fibration) in C .
0.27.15 DFFINITION A small category I is said to be a Reedy category if the following conditions are satisfied.

every $f \in \operatorname{Mor} \underline{I}$ admits a unique factorization $f=\vec{f} \circ \stackrel{\leftarrow}{f}$, where $\vec{f} \in \operatorname{Mor} \underset{\underline{I}}{\vec{I}}$ and $\stackrel{t}{f} \in \operatorname{Mor} \underset{\underline{I}}{\underline{I}}$.

- There exists a function deg: $\mathrm{Ob} \underline{I} \rightarrow Z_{\geq 0}$ such that

$$
\left[\begin{array}{l}
\forall i \xrightarrow{\delta} j \in \operatorname{Mor} \underset{I}{I}(\delta \neq i d), \operatorname{deg}(i)<\operatorname{deg}(j) \\
\forall i \xrightarrow{\delta} j \in \operatorname{Mor} \stackrel{\leftarrow}{I}(\delta \neq i d), \operatorname{deg}(j)<\operatorname{deg}(i) .
\end{array}\right.
$$

N.B. Therefore $\underset{\underline{I}}{\vec{I}}$ is a direct category and $\underset{\underline{I}}{\stackrel{*}{\text { is }} \text { is an inverse category. }}$
[Note: Conversely, every direct category is a Reedy category and every inverse category is a Reedy category.]
0.27.16 REMARK The only isomorphisms in a Reedy category are the identities.
0.27.17 REMARK The notion of Reedy category is not invariant under the equivalence of categories.
0.27.18 LPMMA If I is a Reedy category, then $I^{O P}$ is a Reedy category:

$$
\left[\begin{array}{l}
\overrightarrow{I^{O P}}=(\underset{I}{I})^{O P} \\
\stackrel{<}{O P}=(\vec{I}) O P \\
\underline{I}^{O P}
\end{array}\right.
$$

0.27.19 LEMMA If I and \underline{J} are Reedy categories, then $I \times J$ is a Reedy category:

$$
\left\{\begin{array}{l}
\vec{I} \times \underline{U}=\vec{I} \times \underline{\underline{U}} \\
< \\
-\bar{I} \times \underline{J}=\stackrel{\leftarrow}{I} \times \stackrel{+}{\mathbf{I}} .
\end{array}\right.
$$

0.27.20 EXAMPIE \triangle is a Reedy category: $\operatorname{deg}([n])=n$ with

$$
\begin{aligned}
& \vec{\Delta} \text { the injective maps } \\
& \stackrel{ \pm}{4} \text { the surjective maps. }
\end{aligned}
$$

Fix a Reedy category I.
0.27.21 DEFINITICN Let $F \in O[\underline{I}, \underline{C}]$, where \underline{C} is complete and cocomplete.

- The latching object of F at i is $L_{i} F$, where L_{i} is computed per $\partial(\vec{I} / i)$, and the latching morphism of F at i is the canonical arrow $L_{i} F \rightarrow F i$.
- The matching object of F at i is $M_{i} F$, where M_{i} is computed per $\partial(i \backslash \underset{I}{I})$, and the matching morphism of F at i is the canonical arrow $F i \rightarrow M_{i} F$.
0.27.22 EXAMPIE Take $I=\triangleq^{O P}$ and given a simplical object X in $\underline{\operatorname{SIC}}\left(=\left[\underline{U}^{\mathrm{OP}}, \mathrm{C}\right]\right.$), put

$$
\begin{aligned}
s k^{(n)} X & =\operatorname{sk}^{(n)}\left(\operatorname{tr}^{(n)} X\right) \\
\operatorname{cosk}{ }^{(n)} X & =\operatorname{cosk}^{(n)}\left(\operatorname{tr}^{(n)} X\right)
\end{aligned}
$$

Then

$$
L_{n} X\left(=L_{[n]} X\right)=\left(s k^{(n-1)} X\right)
$$

and

$$
\left.M_{n} X\left(=M_{[n]} X\right)=\operatorname{cosk}^{(n-1)} X\right)_{n}
$$

[Note: Therefore $L_{0} X$ is an initial object in \underline{C} and $M_{0} X$ is a final object in C.]
0.27.23 DEFINITION Let $\subseteq \subseteq$ be a complete and cocomplete model category and suppose that $\Xi \in \operatorname{Mor}[I, C]$, say $\Xi: F \rightarrow G$.

- Eis a levelwise weak equivalence if $\forall i \in O$ I $\underline{I}, \Xi_{i}: F i \rightarrow G i$ is a weak equivalence in C .
- E is a Reedy cofibration if $\forall i \in O b I$, the induced morphism

$$
F i \frac{L_{i} F}{} L_{i} G \rightarrow G i
$$

is a cofibration in C .

- Ξ is a Reedy fibration if $\forall i \in O B I$, the induced morphism

$$
F i \rightarrow M_{i} F \times_{M_{i} G} G i
$$

is a fibration in C .
0.27.24 LEMA Suppose that $\Xi: F \rightarrow G$ is a Reedy oofibration - then $\forall i \in O B I$, $\bar{E}_{\mathrm{i}}: \mathrm{Fi} \rightarrow \mathrm{Gi}$ is a cofibration in C.
[Note: In addition, the induced morphism $L_{i} E: L_{i} F \rightarrow L_{i} G$ of latching objects is a cofibration in C which is acyclic if Ξ is a levelwise weak equivalence.]
0.27.25 LEMMA Suppose that $E: F \rightarrow G$ is a Reedy fibration -- then $\forall i \in O b$ I, $\mathrm{E}_{\mathrm{i}}: \mathrm{Fi} \rightarrow \mathrm{Gi}$ is a fibration in C.
[Note: In addition, the induced morphism $M_{i} \Xi: M_{i} F \rightarrow M_{i} G$ of matching objects is a fibration in C which is acyclic if Ξ is a levelwise weak equivalence.]
0.27.26 APPLICATION Every projective cofibration is a Reedy cofibration and every injective fibration is a Reedy fibration.
0.27.27 DEFINITION The triple consisting of the classes of levelwise weak equivalences, Reedy cofibrations, and Reedy fibrations is called the Reedy structure on $[\mathrm{I}, \mathrm{C}]$.
0.27.28 THEOREM The Reedy structure on [$\underline{I}, \underline{C}$] is a model structure. And

C left proper $=>[\underline{I}, \underline{C}]$ (Reedy Structure) left proper C right proper => [I, C] (Reedy Structure) right proper.
[Note: Let $\Xi \in \operatorname{Mor}[\underline{I}, \mathrm{C}]$, say $\Xi: \mathrm{F} \rightarrow \mathrm{G}$.

- Ξ is both a levelwise weak equivalence and a Reedy cofibration iff $\forall i \in O B I$, the arrow

$$
F i \underset{L_{i} F}{\prod_{i}} L_{i} G \rightarrow G i
$$

is an acyclic cofibration in C .

- E is both a levelwise weak equivalence and a Reedy fibration iff $\forall i \in O B I$, the arrow

$$
\mathrm{Fi} \rightarrow \mathrm{M}_{i} \mathrm{~F} \times_{\mathrm{M}_{i} G} \mathrm{Gi}
$$

is an acyclic fibration in C.]
0.27.29 REMARK It follows from 0.27 .12 that if I is direct, then [I,C] (Projective Structure) $=[$ I, C] (Reedy Structure)
and it follows from 0.27.14 that if I is inverse, then
[I,C] (Injective Structure) $=$ [I,C] (Reedy Structure).
0.27.30 THEOREM Suppose that \underline{C} is combinatorial - then [$\underline{I}, \underline{C}]$ (Reedy Structure) is combinatorial.
0.27.31 LFMMA Take \subseteq combinatorial and consider the setup

[II, ㄷ] (Projective Structure) $<\underbrace{[\underline{I}, \underline{C}] \text { (Reedy Structure). }}_{i_{[\underline{I}, \mathrm{C}]}}$

Then ($\mathrm{id}_{[\underline{I}, \underline{C}]}$ id $_{[\underline{I}, \underline{C}]}$) is a model equivalence.
[Working fram left to right, the weak equivalences are the same and every projective cofibration is a Reedy cofibration.]
0.27.32 LFMMA Take \mathbb{C} combinatorial and consider the setup

Then $\left(\mathrm{id}_{[\underline{I}, \underline{C}]} \mathrm{id}_{[\underline{I}, \underline{C}]}\right)$ is a model equivalence.
[Working from right to left, the weak equivalences are the same and every injective fibration is a Reedy fibration.]
0.27.33 EXAMPLE Take $\underline{I}=\underline{\Delta}, \underline{C}=\underline{\text { SISET }}$ - then every projective cofibration is a Reedy cofibration (cf. 0.27 .26) and the containment is strict since, e.g., Y_{Δ} is a cosimplicial object in $\widehat{\widehat{\Delta}}$ which is cofibrant in the Reedy structure but not in the projective structure (a, k, a, structure L).
0.27.34 THEOREM If I and J are Reedy categories, then for any complete and cocomplete model category C ,

$$
[\underline{I} \times I, C] \text { (Reedy Structure) }
$$

is the same as

$$
[\mathrm{I},[\mathrm{~J}, \mathrm{C}] \text { (Reedy Structure)] (Reedy Structure). }
$$

Let I be a Reedy category, $\underline{\text { C a complete and cocomplete model category, and }}$
let $K: \underline{C} \rightarrow[\underline{I}, \underline{C}]$ be the constant diagram functor. Equip [I, C] with the Reedy structure.
0.27.35 LEMMA The adjoint situation $\left(\mathrm{K}_{\mathrm{f}} \lim _{\underline{I}}\right)$ is a model pair iff $\forall \mathrm{i} \in \mathrm{Ob} \mathrm{I}$, the latching category $\partial(\vec{I} / i)$ is either connected or empty.
0.27.36 REMARK Let I be a small category, C a combinatorial model category -then $[\underline{I}, \underline{C}]$ admits a model structure such that the adjoint situation ($K, l i m_{\underline{I}}$) is a model equivalence.
0.27 .37 LEMMA The adjoint situation (colim $\underline{I}^{\prime}, K$) is a model pair iff $\forall i \in O B$, the matching category $\partial(i \backslash \underset{\mathrm{I}}{\underset{\sim}{*}}$ is either connected or empty.
0.27.38 REMARK Let I be a small category, $\underline{\text { C }}$ a combinatorial model category -then $[\underline{I}, \mathrm{C}]$ admits a model structure such that the adjoint situation (colim ${ }_{\underline{I}}, \mathrm{~K}$) is a model equivalence.
0.27.39 EXAMPIE Take $I=\Delta^{\text {OP }}$ to realize 0.27 .35 and take $I=\Delta$ to realize 0.27 .37 .

The theory outlined above is "classical" and certain important examples do not fall within its scope, e.g. Segal's category $\underline{\Gamma}$ or Connes's category A . To accommodate these (and others of significance) it is necessary to extend the notion of Reedy category so as to allow for nontrivial isomorphisms (cf. 0.27.16). For a systematic account, consult Berger-Moerdijk ${ }^{\dagger}$.
† arXiv:0809.3341

0.28 EXAMPLE: 「SISET $_{*}^{*}$

$\underline{\underline{I}}$ is the category whose objects are the finite sets $\underline{n} \equiv\{0,1, \ldots, n\}(n \geq 0)$ with base point 0 and whose morphisms are the base point preserving maps.
[Note: Suppose that $\gamma: \underline{m} \rightarrow \underline{n}$ is a morphism in $\underline{\Gamma}$-- then the partition

$$
\prod_{0 \leq j \leq n} \gamma^{-1}(j)=m
$$

of \underline{m} determines a permatation $\theta: \underline{m} \rightarrow \underline{m}$ such that $\gamma \circ \theta$ is order preserving. Therefore γ has a unique factorization of the form $\alpha \circ \sigma$, where $\alpha: \underline{m} \rightarrow \underline{n}$ is order preserving and $\sigma: \underline{m} \rightarrow \underline{m}$ is a base point preserving pernatation which is order preserving in the fibers of γ.

Write ISISET $_{*}$ for the full subcategory of $\left[\underline{\Gamma}\right.$, SISET $\left._{*}\right]$ whose objects are the $X: \underline{\Gamma} \rightarrow \underline{\text { SISET }}_{*}$ such that $X_{0}=*\left(X_{n}=X(\underline{n})\right)$.
0.28.1 EXAMPIE Let G be an abelian semigroup with unit. Using additive notation, view G^{n} as the set of base point preserving functions $\underline{n} \rightarrow G-$ then the rule $X_{n}=$ si G^{n} defines an object in ISISET $_{*}$. Here the arrow $G^{m} \rightarrow G^{n}$ attached to $\gamma: \underline{m} \rightarrow \underline{n}$ sends $\left(g_{1}, \ldots, g_{m}\right)$ to $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)$, where $\bar{g}_{j}=\sum_{\gamma(i)=j} g_{i}$ if $\gamma^{-1}(j) \neq \emptyset$, $\bar{g}_{j}=0$ if $\gamma^{-1}(j)=\varnothing$.

Let S_{n} SISET $_{t}$) be the category whose objects are the pointed simplicial left S_{n}-sets - then S_{n} (SISET $_{\star}$) is a model category (cf. 0.8).
[Note: The group of base point preserving permutations $\underline{n} \rightarrow \underline{n}$ is S_{n} and for any X in 「SISET $_{t}, X_{n}$ is a pointed simplicial left S_{n}-set.]

Let I_{n} be the full subcategory of \underline{I} whose objects are the $\underline{m}(m \leq n)$. Assigning to the symbol Γ_{-n} SISET $_{*}$ the obvious interpretation, one can follow the usual procedure and introduce $\operatorname{tr}^{(n)}:$ 「SISET $_{*} \rightarrow \Gamma_{n} \underline{S I S E T}_{*}$ and its left (right) ad joint sk ${ }^{(n)}$ (cosk ${ }^{(n)}$).
0.28.2 NOIATION Given an X in TSISET $_{*}$, put

$$
\left[\begin{array}{c}
s k^{(n)} x=\operatorname{sk}^{(n)}\left(t r^{(n)} x\right) \\
\operatorname{cosk}^{(n)} x=\operatorname{cosk}^{(n)}\left(t r^{(n)} x\right)
\end{array}\right.
$$

and write

$$
\left[\begin{array}{l}
I_{n} X\left(=I_{\underline{n}} X\right)=\left(s k^{(n-1)} X\right)_{n} \\
M_{n} X\left(=\underline{M}_{\underline{n}} X\right)=\left(\cos k^{(n-1)} X\right)_{n}
\end{array}\right.
$$

for the

objects of X at \underline{n} (cf. 0.27 .22).
0.28.3 DEFINITTON Suppose that $f \in$ Mor $\underline{\text { TSISETT }}_{*}$, say $f: X \rightarrow Y$.

- f is a weak equivalence if $\forall \mathrm{n} \geq 1, \mathrm{f}_{\mathrm{n}}: \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{Y}_{\mathrm{n}}$ is a weak equivalence in $S_{n}\left(\right.$ SISET $\left._{\star}\right)$.
- f is a cofibration if $\forall n \geq 1$, the induced morphism $X_{n} \frac{\|}{L_{n} X} L_{n} Y \rightarrow Y_{n}$ is a cofibration in $S_{n}\left(\right.$ SISET $\left._{*}\right)$.
- f is a fibration if $\forall n \geq 1$, the induced morphism $X_{n} \rightarrow M_{n} X{ }_{M_{n} Y} Y_{n}$ is a fibration in S_{n} (SISET $_{*}$).

Call thes choices the Reedy structure on PSISET $_{*}$.
0.28.4 THEOREM FSISET * in the Reedy structure is a proper model category.

$$
0.29 \text { BISIMPLICTAL SETS }
$$

The category $\left[\underline{\triangle}^{O P}\right.$, SISEI] carries three proper combinatorial model structures: The projective structure (= structure L) (cf. 0.26 .6)
The Reedy structure
The injective structure $(=$ structure R) (cf. 0.26.12).
0.29.1 LEMMA The projective structure is not the same as the Reedy structure but the Reedy structure is the same as the injective structure (hence all objects in the Reedy structure are cofibrant).

Given a category C , write BISIC for the functor category $\left[(\underline{\Delta} \times)^{\mathrm{OP}}, \mathrm{C}\right]$ - then by definition, a bisimplicial object in \mathbb{C} is an object in BISIC.
0.29.2 EXAMPLE Suppose that \underline{C} has finite products and let $\left.\right|_{-} ^{-} X$ be simplicial objects in $\mathrm{C}-$ then the assignment $([\mathrm{n}],[\mathrm{m}]) \rightarrow \mathrm{X}_{\mathrm{n}} \times \mathrm{Y}_{\mathrm{m}}$ defines a bisimplicial object $X \underline{Y}$ in \underline{C}.

Specialize to $\underline{C}=$ SET - then an object in BISISET is called a bisimplicial set and a morphism in BISISET is called a bisimplicial map. Given a bisinplicial

玉t X , put $\mathrm{X}_{\mathrm{n}, \mathrm{m}}=\mathrm{X}([\mathrm{n}],[\mathrm{m}])$ - then there are horizontal operators

$$
\left\lvert\, \begin{array}{ll}
d_{i}^{h}: x_{n, m} \rightarrow x_{n-1, m} \\
s_{i}^{h}: x_{n, m} \rightarrow x_{n+1, m} & (0 \leq i \leq n)
\end{array}\right.
$$

and vertical operators

$$
\left\lvert\, \begin{array}{ll}
d_{j}^{v}: x_{n, m} \rightarrow x_{n, m-1} \\
s_{j}^{v}: x_{n, m} \rightarrow x_{n, m+1} & (0 \leq j \leq m)
\end{array}\right.
$$

The horizontal operators commute with the vertical operators, the simplicial identities are satisfied horizontally and vertically, and thanks to the Yoneda lemma, $\operatorname{Nat}(\Delta[\mathrm{n}, \mathrm{m}], \mathrm{X}) \approx \mathrm{X}_{\mathrm{n}, \mathrm{m}^{\prime}}$ where $\Delta[\mathrm{n}, \mathrm{m}]=\Delta[\mathrm{n}] \underline{x} \Delta[\mathrm{~m}]$.
[Note: Every simplicial set X can be regarded as a bisimplicial set by trivializing its structure in either the horizontal or vertical direction, i.e., $x_{n, m}=x_{m}$ or $\left.x_{n, m}=x_{n}.\right]$
0.29.3 EXAMPLE Every functor $T: \triangle \rightarrow$ CAT gives rise to a functor $X_{T}: C A T \rightarrow$ BISISET by writing

$$
X_{T} I([n],[m])=\operatorname{ner}_{n}([T[m], I])
$$

or still,

$$
\begin{aligned}
& \operatorname{ner}[\mathrm{T}[\mathrm{~m}], \mathrm{I}]([\mathrm{n}]) \\
\approx & \operatorname{Nat}(\Delta[\mathrm{n}], \operatorname{ner}[\mathrm{T}[\mathrm{~m}], \underline{x}]) \\
\approx & \operatorname{Nat}(\operatorname{ner}[\mathrm{n}], \operatorname{ner}[\mathrm{T}[\mathrm{~m}], \mathrm{I}]) \\
\approx & \operatorname{Mor}([\mathrm{n}],[\mathrm{T}[\mathrm{~m}], \underline{I}]) \\
\approx & \operatorname{Mor}([\mathrm{n}] \times \mathrm{T}[\mathrm{~m}], \underline{I})
\end{aligned}
$$

$$
\begin{aligned}
& \approx \operatorname{Mor}(\mathrm{T}[\mathrm{~m}] \times[\mathrm{n}], \mathrm{I}) \\
& \approx \operatorname{Mor}(\mathrm{T}[\mathrm{~m}],[[\mathrm{n}], \mathrm{I}]) \\
& \approx\left(\mathrm{S}_{\mathrm{T}}[[\mathrm{n}], \mathrm{I}]\right)_{\mathrm{m}^{\prime}}
\end{aligned}
$$

S_{T} the singular functor.
0.29.4 REMARK There are two canonical identifications

$$
\text { EISISET } \approx\left[\underline{\Delta}^{O P}, \text { SISET }\right]
$$

that send a bisimplicial set X to the cofunctors

$$
\begin{aligned}
& {[\mathrm{n}] \rightarrow \mathrm{X}_{\mathrm{n}, *}} \\
& {[\mathrm{~m}] \rightarrow \mathrm{X}_{\star, \mathrm{m}}}
\end{aligned}
$$

Each bisimplicial map $f: X \rightarrow Y$ induces sinplicial maps

$$
\left[\begin{array}{l}
I_{n, *}: X_{n, *} \rightarrow Y_{n, *} \\
F_{*, m}: X_{*, m} \rightarrow Y_{*, m}
\end{array}\right.
$$

and it can happer that $\forall n, f_{n, *}$ is a simplicial weak equivalence but for some m, $f_{k, m}$ is not a simplicial weak equivalence.
[Take $X_{n, *}=\Delta[1], Y_{n, m}=\{*\}$ and let f be the unique bisimplicial map from X to $Y \rightarrow$ then $\forall n, f_{n, *}: X_{n, *} \rightarrow Y_{n, *}$ is the simplicial map $\Delta[1] \rightarrow \Delta[0]$, which is a simplicial weak equivalence, but $f_{*, 0}: X_{k, 0} \rightarrow Y_{*, 0}$ is the simplicial map $\Delta[0] \mid] \Delta[0] \rightarrow \Delta[0]$, which is not a simplicial weak equivalence.]
[Note: The projective (injective) structure on [\triangle OP , SISET] gives rise to
two model structures on BISISEI. In the one, a bisimplicial map $f: X \rightarrow Y$ is a weak equivalence if $\forall n, f_{n, \star}: X_{n, \star} \rightarrow Y_{n, *}$ is a simplicial weak equivalence and in the other, a bisimplicial map $f: X \rightarrow Y$ is a weak equivalence if $\forall m, f_{*, m}: X_{*, m} \rightarrow Y, m$ is a simplicial weak equivalence. The point then is that these model structures are not the same.]
0.29.5 LEMMA Let X be a bisimplicial set -- then

$$
x \approx f^{[n]} f^{[m]} \operatorname{Mor}(-,([n],[m])) \cdot x_{n, m}
$$

and

$$
\mathrm{x} \approx \int_{[\mathrm{n}]} f_{[\mathrm{m}]}\left(\mathrm{x}_{\mathrm{n}, \mathrm{~m}}\right) \operatorname{Mor}(([\mathrm{n}],[\mathrm{m}]), \longrightarrow
$$

[Theme formulas are instances of the integral Yoneda lemma.]
[Note: Here Mor is conputed per $\Delta \times \Delta$ (and not $(\Delta \times \Delta)^{\text {OP }}$).]

Using the notation of Kan extensions, take $\underline{C}=\underline{\Delta}^{\mathrm{OP}}, \underline{\mathrm{D}}=\underline{\Delta}^{\mathrm{OP}} \times \underline{\Delta}^{\mathrm{OP}}\left(\approx\left(\underline{\Delta} \times \underline{\Delta}^{\mathrm{OP}}\right)\right.$, $\underline{\mathrm{S}}=\underline{\text { SET }}$, and let K be the diagonal $\underline{\Delta}^{\mathrm{OP}} \rightarrow \Delta^{\mathrm{OP}} \times \underline{\Delta}^{\mathrm{OP}}-$ then the functor $K *:$ BISISET \rightarrow SISET is denoted by dia, thus

$$
(\operatorname{dia} \mathrm{X})_{\mathrm{n}}=\mathrm{X}([\mathrm{n}],[\mathrm{n}])=\mathrm{X}_{\mathrm{n}, \mathrm{n}}
$$

the operators being

$$
\left[\begin{array}{rl}
d_{i} & =d_{i}^{h} d_{i}^{v}=d_{i}^{v} d_{i}^{h} \\
s_{i} & =s_{i}^{h} s_{i}^{v}=s_{i}^{v} s_{i}^{h}
\end{array}\right.
$$

0.29.6 EXAMPLE Let X, Y be simplicial sets -- then

$$
\operatorname{dia}(\mathrm{X} \underline{\times} \mathrm{Y})=X \times Y(\Leftrightarrow \operatorname{dia} \Delta[\mathrm{n}, \mathrm{~m}]=\Delta[\mathrm{n}] \times \Delta[\mathrm{m}]) .
$$

0.29.7 LEMMA Let X be a bisimplicial sxt -- then

$$
\begin{aligned}
\operatorname{dia} \mathrm{x} & \approx f^{[\mathrm{n}]} f^{[\mathrm{m}]}(\operatorname{Mor}(-,[\mathrm{n}]) \times \operatorname{Mor}(-,[\mathrm{m}])) \cdot \mathrm{x}_{\mathrm{n}, \mathrm{~m}} \\
& \approx \delta^{[\mathrm{n}]} \operatorname{Mor}(-,[\mathrm{n}]) \times \mathrm{X}_{\mathrm{n}, *} \\
& \approx f^{[\mathrm{m}]} \operatorname{Mor}(-,[\mathrm{m}]) \times \mathrm{X}_{*, \mathrm{~m}}
\end{aligned}
$$

and

$$
\begin{aligned}
\text { dia } \mathrm{X} & \approx \delta_{[\mathrm{n}]} \delta_{[\mathrm{m}]}\left(\mathrm{X}_{\mathrm{n}, \mathrm{~m}}\right)^{\operatorname{Mor}([\mathrm{n}], \rightarrow)} \mathrm{X} \operatorname{Mor}([\mathrm{~m}],-) \\
& \approx \delta_{[\mathrm{n}]}\left(\mathrm{X}_{\mathrm{n}, \star}\right)^{\operatorname{Mor}([\mathrm{n}], \rightarrow)} \\
& \approx \delta_{[\mathrm{m}]}\left(\mathrm{X}_{\star, \mathrm{m}}\right)^{\operatorname{Mor}([\mathrm{m}], \longrightarrow)}
\end{aligned}
$$

0.29.8 DEFINITION The simplicial set

$$
\begin{aligned}
& f^{[n]} \operatorname{Mor}(-,[n]) \times x_{n, *} \\
& \approx f^{[n]} x_{n} \times \Delta[n] \quad\left(x_{n} \equiv x_{n, *}\right)
\end{aligned}
$$

is called the realization of x, written $|x|$.
[Note: Its geometric realization is the coend

$$
\left.f^{[n]}\left|x_{n}\right| \times \Delta^{n} \cdot\right]
$$

0.29.9 LEMMA Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bisimplicial map. Assume: $\forall \mathrm{n}, \mathrm{f}_{\mathrm{n}, \star}: \mathrm{X}_{\mathrm{n}, \star} \rightarrow \mathrm{Y}_{\mathrm{n}, \star}$ is a simplicial weak equivalence -- then $|\mathbf{f}|:|X| \rightarrow|Y|$ is a simplicial weak equivalence, thus dia $f: d i a X \rightarrow$ dia Y is a simplicial weak equivalence.
0.29.10 IEMMA Let $f: X \rightarrow Y$ be a bisimplicial map. Assume: dia $f: d i a x \rightarrow$ dia Y is a Kan fibration -- then

$$
\left[\begin{array}{l}
\forall \mathrm{n}, \mathrm{f}_{\mathrm{n}, *}: \mathrm{X}_{\mathrm{n}, *} \rightarrow \mathrm{Y}_{\mathrm{n}, *} \\
\forall \mathrm{~m}, \mathrm{f}_{*, \mathrm{~m}}: \mathrm{X}_{*, \mathrm{~m}} \rightarrow \mathrm{Y}_{*, \mathrm{~m}}
\end{array}\right.
$$

are Kan fibrations.
[The converse is fals, i.e., it can happen that

$$
\left[\begin{array}{l}
\forall \mathrm{n}, \mathrm{f}_{\mathrm{n}, \star}: \mathrm{X}_{\mathrm{n}, \star} \rightarrow \mathrm{Y}_{\mathrm{n}, *} \\
\forall \mathrm{~m}, \mathrm{f}_{\star, \mathrm{m}}: \mathrm{X}_{\star, \mathrm{m}} \rightarrow \mathrm{Y}_{\star, \mathrm{m}}
\end{array}\right.
$$

are Kan fibrations but dia $f: d i a X \rightarrow$ dia Y is not a Kan fibration. In fact, there are bisimplicial sets X such that the $\mathrm{X}_{\mathrm{n}, \star^{*}} \mathrm{X}_{*, \mathrm{~m}}$ are Kan complexes but dia X is not a Kan complex.]

The functor dia:BISISET \rightarrow SISET has a left adjoint

$$
\operatorname{dia}_{!}: \text {SISET } \rightarrow \text { BISISET }
$$

and a right adjoint

$$
\text { dia }_{+}: \text {SISET } \rightarrow \text { BISISET. }
$$

- Let A be a simplicial set -- then

$$
\begin{aligned}
& (\mathrm{dia}, \mathrm{~A})([\mathrm{n}],[\mathrm{m}]) \\
& =f_{\Delta}^{[\mathrm{k}]} \mathrm{Mor}_{\Delta}^{\mathrm{OP}} \times \Delta_{\mathrm{OP}}^{\mathrm{O}[\mathrm{~K}[\mathrm{k}],([\mathrm{n}],[\mathrm{m}]) \cdot \mathrm{A}[\mathrm{k}]}
\end{aligned}
$$

$$
\begin{aligned}
& =f^{[k]} \operatorname{Mor} \underset{\Delta^{O P}}{ } \times \underline{O P}^{(([k],[k]),([n],[m])) \cdot A_{k}} \\
& =f^{[k]} \operatorname{Mor}_{\Delta} \times \Delta^{(([n],[m]),([k],[k])) \cdot A_{k}} \\
& =f^{[k]}(\operatorname{Mor}([n],[k]) \times \operatorname{Mor}([m],[k])) \cdot A_{k}
\end{aligned}
$$

[Note: To run a reality check, let X be a bisimplicial set and compute:
$\operatorname{Mor}(A, \operatorname{dia} X)=\operatorname{Nat}(A, \operatorname{dia} X)$

$$
\approx f_{[k]} \operatorname{Mor}(A[k], \operatorname{dia} X([k]))
$$

$$
\approx \delta_{[k]} \operatorname{Mor}\left(A_{k}, \delta_{[n]} f_{[m]}\left(\mathrm{X}_{\mathrm{n}, \mathrm{~m}}\right)^{\operatorname{Mor}([\mathrm{n}],[\mathrm{k}]) \times \operatorname{Mor}([\mathrm{m}],[\mathrm{k}])}\right)
$$

$$
\approx f_{[\mathrm{n}]} \int_{[\mathrm{m}]} \delta_{[\mathrm{k}]} \operatorname{Mor}\left(\mathrm{A}_{\mathrm{k}} \times \operatorname{Mor}([\mathrm{n}],[\mathrm{k}]) \times \operatorname{Mor}([\mathrm{m}],[\mathrm{k}]), \mathrm{X}_{\mathrm{n}, \mathrm{~m}}\right)
$$

$$
\approx \delta_{[n]}^{f_{[m]}} \operatorname{Mor}\left(f^{[k]}(\operatorname{Mor}([n],[k]) \times \operatorname{Mor}([m],[k])) \cdot A_{k}, X_{n, m}\right)
$$

$$
\left.\approx \operatorname{Nat}\left(\operatorname{dia}_{!} A, X\right)=\operatorname{Mor}\left(\operatorname{dia}_{!} A, X\right) .\right]
$$

0.29.11 EXAMPLE Take $A=\Delta[n]$-- then

$$
\operatorname{dia}_{!} \Delta[n] \approx \Delta[n, n] \quad(=\Delta[n] \times \Delta[n])
$$

[For any bisimplicial set X, we have

$$
\operatorname{Mor}\left(\text { dia }_{!} \Delta[n], x\right) \approx \operatorname{Mor}(\Delta[n], \text { dia } x) \approx x_{n, n}
$$

On the other hand,

$$
\left.\operatorname{Mor}(\Delta[n, n], x) \approx x_{n, n} .\right]
$$

- Let A be a simplicial set - then
[Note: To rum a reality check, let x be a bisimplicial set and compute: $\operatorname{Mor}($ dia $X, A)=\operatorname{Nat}($ dia $X, A)$

$$
\approx f_{[k]} \operatorname{Mor}(\operatorname{dia} X([k]), A[k])
$$

$$
\approx f_{[k]} \operatorname{Mor}\left(f^{[n]} f^{[m]}(\operatorname{Mor}([k],[n]) \times \operatorname{Mor}([k],[m])) \cdot X_{n, m}, A_{k}\right)
$$

$$
\approx \delta_{[\mathrm{n}]} \delta_{[\mathrm{m}]} \delta_{[\mathrm{k}]} \operatorname{Mor}\left(\mathrm{X}_{\mathrm{n}, \mathrm{~m}} \times \Delta[\mathrm{n}][\mathrm{k}] \times \Delta[\mathrm{m}][\mathrm{k}], \mathrm{A}_{\mathrm{k}}\right)
$$

$$
\approx \int_{[\mathrm{n}]} f_{[\mathrm{m}]} f_{[\mathrm{k}]} \operatorname{Mor}\left(\mathrm{X}_{\mathrm{n}, \mathrm{~m}^{\prime}}\left(\mathrm{A}_{\mathrm{k}}\right)^{\Delta[\mathrm{n}][\mathrm{k}] \times \Delta[\mathrm{m}][\mathrm{k}]}\right)
$$

$$
\begin{aligned}
& \left(\operatorname{dia}_{+} A\right)([n],[m]) \\
& \Delta^{\text {Mor }} \mathrm{OP} \times \Delta^{\mathrm{OP}}(([\mathrm{n}],[\mathrm{m}]), \mathrm{K}[\mathrm{k}]) \\
& =S_{[k]}\left(A_{k}\right) \stackrel{\text { Mor }}{\Delta^{O P} \times \Delta^{O P}(([\mathrm{n}],[\mathrm{m}]),([\mathrm{k}],[\mathrm{k}]))} \\
& =\int_{[k]}\left(A_{k}\right) \text { Mor }_{\Delta \times \Delta^{(([k],[k]),([n],[m]))}} \\
& =f_{[k]}\left(A_{k}\right) \operatorname{Mor}([k],[n]) \times \operatorname{Mor}([k],[m]) \\
& =\int_{[k]}\left(A_{k}\right)^{\Delta[n][k] \times \Delta[m][k]} \\
& =\int_{[k]} \operatorname{Mor}\left(\Delta[\mathrm{n}][\mathrm{k}] \times \Delta[\mathrm{m}][\mathrm{k}], \mathrm{A}_{\mathrm{k}}\right) \\
& \approx \operatorname{Nat}(\Delta[\mathrm{n}] \times \Delta[\mathrm{m}], \mathrm{A})=\operatorname{Mor}(\Delta[\mathrm{n}] \times \Delta[\mathrm{m}], \mathrm{A}) .
\end{aligned}
$$

$$
\begin{aligned}
& \approx \int_{[\mathrm{n}]} \delta_{[\mathrm{m}]} \operatorname{Mor}\left(\mathrm{X}_{\mathrm{n}, \mathrm{~m}^{\prime} f_{[k]}\left(\mathrm{A}_{\mathrm{k}}\right)} \mathrm{D}^{\Delta \mathrm{n}][\mathrm{k}] \times \Delta[\mathrm{m}][\mathrm{k}]}\right) \\
& \approx \delta_{[\mathrm{n}]} f_{[\mathrm{m}]} \operatorname{Mor}\left(\mathrm{X}_{\mathrm{n}, \mathrm{~m}^{\prime}} \operatorname{Mor}(\Delta[\mathrm{n}] \times \Delta[\mathrm{m}], \mathrm{A})\right) \\
& \left.\approx \operatorname{Nat}\left(\mathrm{X}, \operatorname{dia}_{+} \mathrm{A}\right)=\operatorname{Mor}\left(\mathrm{X}, \operatorname{dia}{ }_{+} \mathrm{A}\right) .\right]
\end{aligned}
$$

0.30 THE \bar{W}-CONSTRUCTION

Using the notation of Kan extensions, take $\underset{\mathcal{C}}{ }=\Delta^{\mathrm{OP}} \times \Delta^{\mathrm{OP}}\left(\approx(\Delta \times \Delta)^{\mathrm{OP}}\right)$, $\underline{\mathrm{D}}=\underline{\Delta}^{\mathrm{OP}}, \underline{\mathrm{S}}=\underline{\text { SEI, }}$, and let K be the ordinal sum $\underline{\Delta}^{\mathrm{OP}} \times \underline{\underline{Q}}^{\mathrm{OP}} \rightarrow \underline{\Delta}^{\mathrm{OP}}$ (i.e., $([\mathrm{n}],[\mathrm{m}]) \rightarrow$ $[n+m+1])$ - then the functor $K^{*}:$ SISEI \rightarrow BISISET is denoted by dec, thus

$$
(\operatorname{dec} x)([n],[m])=x_{n+m+1}
$$

the operations being

$$
\left\lvert\, \begin{aligned}
& d_{i}^{h}=d_{i}: x_{n+m+1} \rightarrow X_{n+m}(0 \leq i \leq n) \\
& s_{i}^{h}=s_{i}: X_{n+m+1} \rightarrow X_{n+1+m+1}(0 \leq i \leq n)
\end{aligned}\right.
$$

and

$$
\left[\begin{array}{l}
d_{j}^{v}=d_{n+l+j}: x_{n+m+1} \rightarrow x_{n+m} \quad(0 \leq j \leq m) \\
s_{j}^{v}=s_{n+1+j}: x_{n+m+1} \rightarrow x_{n+m+1+1} \quad(0 \leq j \leq m)
\end{array}\right.
$$

0.30.1 EXAMPLE he have

$$
(\operatorname{dec} \Delta[n])([k],[n-k])=\Delta[n]_{n+1} \quad(0 \leq k \leq n)
$$

Put $\bar{W}=$ dec $_{+}$, hence

$$
\bar{W}: \text { BISET } \rightarrow \text { SISET. }
$$

N.B. For any bisimplicial set X,

$$
(\overline{\bar{h}} x)_{n}=\left\{\left(x_{0, n}, \ldots, x_{n, 0}\right) \in \prod_{k=0}^{n} x_{k, n-k}: d_{0}^{v} x_{k, n-k}=d_{k+1}^{h} x_{k+1, n-k-1} \quad(0 \leq k<n)\right\}
$$

And the

$$
\left[\begin{array}{ll}
d_{i}:(\bar{W} X)_{n} \rightarrow(\bar{W} X)_{n-1} & \\
s_{i}:(\bar{W} X)_{n} \rightarrow(\bar{W} x)_{n+1} &
\end{array} \quad(0 \leq i \leq n)\right.
$$

are the prescriptions

$$
\left.\right|_{-} ^{d_{i} x=\left(d_{i}^{v} x_{0, n}, \ldots, d_{i}^{v} x_{i-1, n-i+1}, d_{i}^{h} x_{i+1, n-i-1}, \ldots, d_{i}^{h} x_{n, 0}\right)} \begin{aligned}
& s_{i}=\left(s_{i}^{v} x_{0, n}, \ldots, s_{0}^{v} x_{i, n-i}, s_{i}^{h} x_{i, n-i}, \ldots, s_{i}^{h} x_{n, 0}\right)
\end{aligned}
$$

where

$$
\underline{x}=\left(x_{0, n}, \ldots, x_{n, 0}\right)
$$

[Note: To shorten matters, the elements of $(\bar{W} X)_{n}$ can be regarded as ($\mathrm{n}+1$) -tuples

$$
\left(x_{0}, \ldots, x_{n}\right) \in \prod_{k=0}^{n} x_{k, n-k}
$$

such that

$$
\left.d_{0}^{v} x_{k}=d_{k+1}^{h} x_{k+1} \quad(0 \leq k<n) \cdot\right]
$$

0.30.2 LEMMA The rule that assigns to each bisimplicial set X the simplicial map

$$
\Xi_{X}: \operatorname{dia} X \rightarrow \bar{W} X
$$

given by

$$
\left(E_{x}\right) x=\left(\left(d_{1}^{h}\right)^{n} x,\left(d_{2}^{h}\right)^{n-1} d_{0}^{v} x, \ldots,\left(d_{i+1}^{h}\right)^{n-i}\left(d_{0}^{v}\right)^{i} i_{x}, \ldots,\left(d_{0}^{v}\right)^{n} x\right)\left(x \in x_{n, n}\right)
$$

defines a natural transformation

$$
\mathrm{E}: \text { dia } \rightarrow \overline{\mathrm{W}} .
$$

0.30.3 THEOREM For every X,

$$
\Xi_{X}: \text { dia } X \rightarrow \bar{W} X
$$

is a simplicial weak equivalence.
0.30.4 DEFINITION A bisimplicial map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a diagonal weak equivalence if dia f is a simplicial weak equivalence.
[Note: Recalling that $\left.\right|_{-} ^{-}|\mathrm{X}|$ are the realizations of $\left.\right|_{-} ^{-} \mathrm{X}$ (cf. 0.29.8), there is a commutative diagram

so f is a diagonal weak equivalence iff $|\mathrm{f}|$ is a simplicial weak equivalence.]
0.30.5 LeMMA Let $f: X \rightarrow Y$ be a bisimplicial map -- then f is a diagonal weak equivalence iff $\bar{W} \mathbb{E}: \bar{W} X \rightarrow \bar{W} y$ is a simplicial weak equivalence.

PROOF Consider the commutative diagram

and quote 0.30.3.

0.31 BISISET:MOERDIJK STRUCTURE

Given a bisirplicial map $f: X \rightarrow Y$, call f a weak equivalence if f is a diagonal weak equivalence, a fibration if dia f is a Kan fibration, and a cofibration if f has the LLP w.r.t. acyclic fibrations - then with these choices, BISISET is a proper combinatorial model category.
N. B. Every cofibration in the Moerdijk structure is a monomorphism.
0.31.1 REMARK The Moerdijk structure on BISISET is not the same as the induced projective or injective structures. This is because the weak equivalences in these structures are necessarily weak equivalences in the Mordijk structure (cf. 0.29.9) but not converæly.
0.31.2 LEMMA Consider the setup

Then (dia, dia) is a model pair.
[One has only to note that by construction, dia is a right model functor.]

Therefore $\left.\right|_{-} ^{-} \begin{aligned} & \text { Ldia } \\ & \text { Rdia }\end{aligned}$ exist and (Ldia, Rdia) is an adjoint pair.
0.31 .3 LEMAA The model pair (dia ${ }_{!}$, dia) is a model equivalence.

Therefore the adjoint pair (Ldia ${ }_{1}$, Rdia) is an adjoint equivalence of homotopy Ca tegories:

There is another proper combinatorial model structure on BISISET that is analogous to the Moerdijk structure, the role of "dia" being played by " $\overline{\mathrm{W}}$ ". Thus the weak equivalences are again the diagonal weak equivalences but now a bisimplicial $\operatorname{map} f: X \rightarrow Y$ is a fibration if \bar{W} is a Kan fibration and a cofibration if it has the LUP w.r.t. acyclic fibrations.
[Note: he shall refer to this model structure on BISISET as the \bar{W}-structure.] N. B. Every cofibration in the \bar{W}-structure is a monomorphism.
0.32.2 LEMMA Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bisimplicial map. Assume: dia f is a Kan fibration - then \bar{W} Is a Kan fibration.

Therefore

$$
\begin{aligned}
& \text { Cof (} \bar{W} \text {-Structure) } \operatorname{c} \text { cof aberdijk Structure). } \\
& 0.32 \text { BISISET:OTHER MODEL STRUCTURES }
\end{aligned}
$$

0.32.1 NOTATION Let

$$
M \subset \text { Mor BTSISET }
$$

be the class of monomorphisms and let $M \subset M$ be the set of inclusions

$$
\dot{\Delta}[n] \underline{x} \Delta[m] \cup \Delta[n] \underline{x} \dot{\Delta}[n] \rightarrow \Delta[n] \underset{x}{x}[m]
$$

0.32.2 LEMMA We have

$$
M=\operatorname{LLP}(\operatorname{RLP}(M)) \quad \text { (cf. } 0.20 .5)
$$

0.32.3 THEOREM There is a model structure on BISISET in which the weak equivalences are the diagonal weak equivalences and the cofibrations are the monomorphisms.
[Note: This structure is proper and combinatorial.]
0.32.4 THEOREM There is a model structure on BISISEI in which the weak equivalences are the bisimplicial maps $f: X \rightarrow Y$ such that $\forall n$,

$$
f_{n, *}: x_{n, *} \rightarrow x_{n, *}
$$

is a simplicial weak equivalence and the cofibrations are the monomorphisms.
[No te: This structure is proper and combinatorial.]
0.32.5 THEOREM There is a model structure on BISISET in which the weak equivalences are the bisimplicial maps $f: X \rightarrow Y$ such that $\forall \mathrm{m}$,

$$
f_{\star, m^{\prime}}: X_{\star, m} \rightarrow Y_{\star, m}
$$

is a categorical weak equivalence and the cofibrations are the monomorphisms.
[Note: This structure is left proper and combinatorial.]

0.33 MODEL LOCALIZATION

Let \subseteq be a model category and let $\mathcal{C} \subset$ Mor \subseteq be a class of morphisms.
0.33.1 DEFINITION A model localization of $\subseteq \subseteq$ at C is a pair ($\mathcal{L}_{C} C_{C} L_{C}$), where $\underline{L}_{C} \underline{C}$ is a model category and $L_{\mathcal{C}}: \underline{C} \rightarrow \underline{L}_{\mathcal{C}} \underline{C}$ is a left model functor such that $\forall f \in \mathcal{C}$, $L_{C} L_{W} f$ is an igmorphiam in $\underline{H L}_{C} \underline{C},\left(\underline{L}_{C}, L_{C}\right)$ being initial among all pairs having this property, i.e., for any model category C^{\prime} and for any left model functor $F: \underline{C} \rightarrow \underline{C}^{\prime}$ such that $\forall f \in \mathcal{C}, L F L_{W} f$ is an isamorphism in $\underline{H C}^{\prime}$, there exists a unique
left model functor $\bar{F}:{\underset{C}{C}}_{C}^{C} \rightarrow \underline{C}^{\prime}$ such that $F=\bar{F} \circ L_{C}$.
0.33.2 EXAMPLE Take $\mathcal{C}=W$ and let $\underline{L}_{\mathcal{C}} \underline{C}=\underline{C}, L_{\mathcal{C}}=i d_{C}-$ then the pair ($\underline{C}, \mathrm{id}_{\underline{C}}$) is a model localization of \underline{C} at W.

Given \underline{C} and C, the central question is the existence of the pair ($\underline{L}_{C} \underline{C}, L_{C}$) (uniqueness up to isomorphism is clear) and for this it will be necessary to impose some conditions on C and C.

Assume:

- \subseteq is left proper and combinatorial.
- \mathcal{C} is a set.
0.33.3 NOTATION Let W_{C} be the smallest class subject to:
(1) W_{C} contains W and \mathcal{C}.
(2) W_{C} satisfies the 2 out of 3 condition (cf. 2.3.13).
(3) $W_{C} \cap$ cof is a stable class.
0.33.4 THEOREM Under the preceding hypotheses, \mathbb{C} is a left proper combinatorial model category with weak equivalences ω_{C}, cofibrations cof, fibrations $\operatorname{RLP}\left(\omega_{C} \cap \operatorname{cof}\right)$.
[The proof hinges on 0.25 .5 , the key point being that $\mathcal{W}_{\mathcal{C}} \in \underline{\mathcal{C}}(\rightarrow)$ is an accessible subcategory of $\mathrm{C}(\rightarrow)$.]

Write $\underline{L}_{C} \underline{C}$ for \underline{C} equipped with the model structure per 0.33 .4 and let $L_{C}=i d_{\underline{C}}$.
0.33.5 THEOREM The pair ($I_{C} C, L_{C}$) is a model localization of C at C.
[Let $F: \underline{C} \rightarrow \underline{C}^{\prime}$ be a left model functor. Since $F=F \circ L_{C}$, it suffices to check that F is a left model functor when viewed as a functor from $I_{C} \mathbb{C}$ to \underline{C} '. The fact that F preserves cofibrations is obvious, the fact the F preserves acyclic cofibrations being slightly less so.]
0.33.6 DEFINITION A presentation of a model category C is a snall category \bar{I}, a set $S \in \operatorname{Mor}[\underline{I}$, SISET], and a model equivalence

$$
\left.\underline{L}_{S}[\underline{I}, \text { SISET }] \text { (Projective Structure }\right) \rightarrow \mathbb{C}
$$

[Note: Recall that
[I,SISET] (Pro jec tive Struc ture)
is a left proper combinatorial model category (cf. 0.26 .6 and 0.26 .13), so L_{S}... makes sens.]
0.33.7 THEOREM † Every combinatorial model category has a presentation.
0.33 .8 NOTATION Given a mall category \underline{I}, let $\operatorname{PREI}=[\underline{I} \underline{O P}, \underline{S E T}](=\hat{I})$ and put

$$
\underline{\text { SPREI }}=\left[\underline{I}^{O P}, \underline{\text { SISET }}\right]
$$

N. B. There is a canonical arrow

which will be denoted by sx $_{\underline{\text { I }}}$.
0.33.9 RAPPEU Let \mathbb{C} be a cocomplete category - then for every $T \in O b[\underline{I}, \mathrm{C}]$
${ }^{\dagger}$ Dugger, Adv. Math. 164 (2001), 177-201.
there exists $\Gamma_{T} \in O b[\hat{\underline{I}}, \underline{C}]$ such that $T \approx \Gamma_{T} \circ Y_{\underline{I}}$.
0.33 .10 LEMMA Suppose that $\underline{\mathbb{C}}$ is a cocomplete model category and let $T: \underline{I} \rightarrow \underline{C}$ be a functor -- then there exists a functor $S \Gamma_{T} ; S P R E I \rightarrow \underline{C}$ and a natural transformation

$$
\text { И: } S \Gamma_{T} \circ S_{\underline{I}} \rightarrow T
$$

such that $\forall i \in O$ I,

$$
H_{i}:\left(s i_{T}{ }_{T} \circ{\left.s X_{\underline{I}}\right)_{i} \rightarrow T_{i} .}\right.
$$

is a weak equivalence.

$$
0.34 \text { MIXING }
$$

Let \underline{C} be a finitely complete and finitely cocomplete categor y. Suppose that C carries two model struc tures

$$
\left[\begin{array}{l}
M_{1}: w_{1}, \operatorname{cof}_{1}, f i b_{1} \\
M_{2}: w_{2}, \operatorname{cof}_{2}, f i b_{2} .
\end{array}\right.
$$

0.34.1 THEOREM Assume

$$
\begin{gathered}
w_{1} \subset w_{2} \\
\quad \mathrm{fib}_{1} \subset \mathrm{fib}_{2}
\end{gathered}
$$

Then

$$
w_{2}, \operatorname{LIP}\left(w_{2} \cap \mathrm{fib}_{1}\right), f i b_{1}
$$

is a model structure on C which is left (right) proper if this is the case of M_{2}.
0.34.2 DEFINITION The model structure arising from 0.34 .1 is said to be mixed.
0.34.3 EXAMPLE Take $\underline{C}=\underline{T O P}-$ then TOP carries its S trom structure and its Quillen structure. Since a homotopy equivalence is a weak homotopy equivalence and since a Hurewicz fibration is a Serre fibration, there is a mixed model structure on TOP whose weak equivalences are the weak homotopy equivalences and whose fibrations are the Hurewicz fibrations.
[Note: he shall refer to this model structure on TOP as the Cole structure. Consider the setup

Then ($\mathrm{id}_{\text {TOP }}, i \mathrm{id}_{\mathrm{TOP}}$) is a model pair.]
0.34.4 LEMMA X is cofibrant in the mixed model structure iff X is cofibrant in model structure M_{1} and there exists an arrow $w_{1}: X^{\prime} \rightarrow X$, where $w_{1} \in W_{1}$ and X^{\prime} is cofibrant in model structure M_{2}.
0.34.5 EXAMPLE Consider the cole structure on TOP -- then every cofibrant X is necessarily a CW space. In fact, for such an X, \exists an arrow $w: X^{\prime} \rightarrow X$, where w is a homotopy equivalence and X^{\prime} is cofibrant in the quillen structure. But X^{\prime} is a CW space (cf. 0.2.1), hence the same holds for X .
0.35 HOMOTOPY PULLBACKS

Let $\underline{\mathrm{C}}$ be a right proper model category -- then a commutative diagram

in \underline{C} is said to be a homotopy pullback if for some factorization $Y \longrightarrow \bar{Y} \longrightarrow \mathbf{Z}$ of g, the induced morphism $W \rightarrow X \times{ }_{Z} \bar{Y}$ is a weak equivalence. This definition is essentially independent of the choice of the factorization of g since any two such factorizations

$$
\left\{\begin{aligned}
Y & \sim \bar{Y}^{\prime} \longrightarrow Z \\
Y & \sim \bar{Y}^{\prime} \longrightarrow
\end{aligned}\right.
$$

lead to a commative diagram

and it does not matter whether one factors g or f.
[Note: The dual notion is homotopy pushout.]
0.35.1 LEMMA A pulliback square

is a homo topy pullback provided g is a fibration.
[Take $\bar{Y}=Y$ and fac tor g as $Y \xrightarrow{\text { id }_{Y}} \mathrm{Y} \xrightarrow{\mathrm{g}}$ 2.]
0.35.2 LEMMA A commatative diagram

where f is a weak equivalence, is a homotopy pullback iff the arrow $W \longrightarrow Y$ is a weak equivalence.

PROOF Factor g as $Y \xrightarrow{\overline{\mathrm{f}}} \overline{\mathrm{Y}} \xrightarrow{\overline{\mathrm{g}}} \mathrm{Z}$ and form the commuta tive diagram

where ρ is the induced morphisn and $\bar{\xi}, \bar{\eta}$ are the projections -- then the claim is that ρ is a weak equivalence iff η is a weak equivalence. Since \underline{C} is right proper and \bar{g} is a fibration, it follows that $\bar{\eta}$ is a weak equivalence. But $\bar{f} \circ \eta=\bar{\eta} \circ \rho$ and $\overline{\mathrm{f}}$ is a equivalence. Therefore

$$
\left[\begin{array}{l}
\rho \text { w.e. } \Rightarrow \bar{\eta} \circ \rho \text { w.e. } \Rightarrow \bar{f} \circ \eta \text { w.e. } \Rightarrow \eta \text { w.e. } \\
\eta \text { w.e. } \Rightarrow \bar{f} \circ \eta \text { w.e. } \Rightarrow \bar{\eta} \circ \rho \text { w.e. } \Rightarrow \rho \text { w.e. }
\end{array}\right.
$$

0.35.3 COMPOSITION LEMMA Consider the commutative diagram

in a right proper model category C. Suppose that both the squares are hamotopy pullbacks -- then the rectangle is a homotopy pullback. Conversely, if the rectangle and the second square are hormopy pullbacks, then the first square is a homotopy pullback.
0.35.4 LEMMA suppose that $\underline{\mathrm{C}}$ is a right proper model category. Let $\mathrm{Y} \xrightarrow{\mathrm{g}} \mathrm{Z}$ be an arrow in \underline{C}-- then the following conditions are equivalent.
(1) For every arrow $X \xrightarrow{f}$ 2, the pullback square

is a komotopy pullback.
(2) For every weak equivalence $X^{\prime} \xrightarrow{u} x$ and for every arrow $X \xrightarrow{£} Z$,
the arrow

$$
X^{\prime} x_{Z} Y \xrightarrow{v} X x_{Z} Y
$$

in the commutative diagram

is a weak equivalence.
PROOF
(1) \Rightarrow (2) The assumptions, in conjunction with 0.35 .3 , imply that the
square

is a horotopy pullback. Therefore v is a weak equivalence (cf. 0.35.2).
(2) \Rightarrow (1) Given an arrow $X \xrightarrow{\mathrm{f}}$ Z, factor it as $\mathrm{X} \xrightarrow{\sim} \overline{\mathrm{X}} \longrightarrow \mathrm{Z}$ and consider the commutative diagram

Then the first square is a bomotopy pullback (cf. 0.35.2), as is the second square (cf. 0.35.1). Therefore the rectangle is a homotopy pullback (cf. 0.35.3).
0.35.5 DEFINITION Let \underline{C} be a model category -- then an arrow $\mathrm{y} \xrightarrow{\mathrm{g}} \mathrm{Z}$ in \underline{C} is said to be a homotopy fibration if in any commutative diagram

v is a weak equivalence whenever u is a weak equivalence.
N. B. If C is right proper, then every fibration is a homotopy fibration but, in general, there will be homotopy fibrations that are not fibrations.
0.35.6 EXAMPLE Take $\underline{C}=$ TOP (Strofm Structure) - then fibration = Hurewicz fibration. On the other hand, the pullback square

is a horotopy pullback provided g is a Dold fibration.
[Note: Recall that Hurewicz => Dold but Dold $\neq>$ Hurewicz.]
0.35.7 EXAMPLE Take $\underline{C}=\underline{\text { SISET }}$ (Kan Structure) - then fibration $=$ Kan fibration and the fibrant objects are the Kan complexes. Still, for every simplicial set Y, the arrow $Y \rightarrow$ * is a homotopy fibration.
0.35.8 IEMMA The class of homotopy fibrations is closed under composition and the formation of retracts and is pullback stable.

CHAPTER X: ANALYSIS IN CAT

A: FIBERED CATEGORIES
B: INTEGRATION
C: CORRESPONDENCES
D: LOCAL ISSUES

A: FIBERED CATEGORIES

A. 1 GROTHENDIECK FIBRATIONS

A. 2 CLOSURE PROPERTIES

A. 3 CATEGORIES FIBERED IN GROUPOIDS
A. 4 CLEAVAGES AND SPLITtIINGS

A. 1 GROTHENDIECK FIBRATIONS

Iet \underline{C} and \underline{D} be categories and let $F: \underline{C} \rightarrow \underline{D}$ be a functor.
A.1.1 DEFINITION Given $Y \in O b D$, the fiber C_{Y} of F over Y is the subcategory of \underline{C} whose objects are the $X \in O$ © \underline{C} such that $F X=Y$ and whose morphisms are the arrows $\mathrm{f} \in$ Mor $\underline{\mathrm{C}}$ such that $\mathrm{Ff}=\mathrm{id}_{\mathrm{Y}}$.
[Note: In general, C_{Y} is not full and it may very well be the case that Y and Y^{\prime} are isomorphic, yet $\underline{G}_{Y}=\underline{0}$ and $\underline{C}_{Y^{\prime}} \neq \underline{0}$ (cf. A.1.20).]
N.B. There is a pullback square

A.1.2 NOIATION Given $X, X^{\prime} \in O b C_{Y}$, let $\operatorname{Mor}_{Y}\left(X, X^{\prime}\right)$ stand for the set of morphisms $X \rightarrow X^{\prime}$ in C_{Y}.
A.1.3 DEFINITION Let $X, X^{\prime} \in O b \subseteq$ and let $u \in \operatorname{Mor}\left(X, X^{\prime}\right)$-- then u is prehorizontal if \forall morphism $w: X_{0} \rightarrow X^{\prime}$ of \subseteq such that $F W=F u$, there exists a unique morphism $v \in \operatorname{Mor}_{F X}\left(X_{0}, X\right)$ such that $u \circ v=w$:

[Note: Let

$$
\operatorname{Mor}_{\mathfrak{u}}\left(X_{0}, X^{\prime}\right)=\left\{w \in \operatorname{Mor}\left(X_{0}, X^{\prime}\right): F w=F u\right\}
$$

Then there is an arrow

$$
\operatorname{Mor}_{E X}\left(\mathrm{X}_{0}, \mathrm{X}\right) \rightarrow \operatorname{Mor}_{\mathfrak{u}}\left(\mathrm{X}_{0}, \mathrm{X}^{\prime}\right),
$$

viz. $v \rightarrow u \circ v$ (in fact, $\left.F(u \circ v)=F u \circ F v=F u \circ i d_{F X}=F u\right)$ and the condition that u be prehorizontal is that $\forall \mathrm{X}_{0} \in \mathrm{C}_{\mathrm{FX}}$, this arrow is bijective.]
A.1.4 DEFINITION Let $X, X^{\prime} \in O B \underline{C}$ and let $u \in \operatorname{Mor}\left(X, X^{\prime}\right)$-- then u is preophorizontal if \forall morphism $w: X \rightarrow X_{0}$ of \subseteq such that $F w=F u$, there exists a mique $\underset{F X \prime}{\operatorname{morphism}} v \in \operatorname{Mor}\left(X^{\prime}, X_{0}\right)$ such that $v \circ u=w$:

[Note: Let

$$
\operatorname{Mor}_{\mathfrak{u}}\left(\mathrm{X}, \mathrm{X}_{0}\right)=\left\{\mathrm{w} \in \operatorname{Mor}\left(\mathrm{X}, \mathrm{X}_{0}\right): \mathrm{Fw}=\mathrm{Fu}\right\}
$$

Then there is an arrow

$$
\underset{F X^{\prime}}{\operatorname{Mor}}\left(X^{\prime}, X_{0}\right) \rightarrow \operatorname{Mor}_{\mathfrak{u}}\left(X, X_{0}\right),
$$

viz. $v \rightarrow v \circ u(i n$ fact, $F(v \circ u)=F v \circ F u=i d, \circ F u=F u)$ and the condition FX
that u be preophorizontal is that $\forall X_{0} \in{\underset{F X}{ }}_{C_{\text {, }}}$, this arrow is bijective.]
A.1.5 LFMMA The iscmorphisms in \underline{C} are prehorizontal (preophorizontal).
A.1.6 REMARK The conposite of two prehorizontal (preophorizontal) morphisms need not be prehorizontal (preophorizontal).
A. 1.7 DEFINITION The functor $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck prefibration if for any object $X^{\prime} \in O b \subseteq$ and any morphism $g: Y \rightarrow F X^{\prime}$, there exists a prehorizontal morphism $u: X \rightarrow X^{\prime}$ such that $F u=g$.
A. 1.8 DEFINITION The functor $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck preopfibration if for any object $X \in O b \subseteq$ and any morphism $g: F X \rightarrow Y$, there exists a preophorizontal morphism $u: X \rightarrow X^{\prime}$ such that $F u=g$.
A.1.9 LEMMA The functor $F: \underline{C} \rightarrow \underline{D}$ is a Grothendieck prefibration iff $\forall Y \in O B \underline{D}$, the canonical functor

$$
\underline{C}_{Y} \rightarrow Y \backslash \underline{C} \quad\left(X \rightarrow\left(\mathrm{id}_{Y}, X\right)\right)
$$

has a right adjoint.
A.1.10 LAMMA The functor $F: \underline{C} \rightarrow \underline{D}$ is a Grothendieck preopfibration iff $\forall Y \in O b \underline{D}$, the canonical functor

$$
\mathrm{C}_{\mathrm{Y}} \rightarrow \mathrm{C} / \mathrm{Y} \quad\left(\mathrm{X} \rightarrow\left(\mathrm{X}, \mathrm{id} \mathrm{Y}_{\mathrm{Y}}\right)\right)
$$

has a left adjoint.
A.1. 11 DEFTNITION Let $X, X^{\prime} \in O b \subseteq$ and let $u \in \operatorname{Mor}\left(X, X^{\prime}\right)$ - then u is horizontal
if \forall morphism $w: X_{0} \rightarrow X^{\prime}$ of C and \forall factorization

$$
F W=F u \circ x \quad\left(x \in \operatorname{Mor}\left(F^{X}, F X\right)\right),
$$

there exists a unique morphism $v: X_{0} \rightarrow X$ such that $F v=x$ and u o $v=w$. Schematically:
N.B. If u is horizontal, then u is prehorizontal. Proof: For Fw $=$ Fu \Rightarrow $\mathrm{FX}_{0}=\mathrm{FX}$, so we can take $\mathrm{x}=i d_{\mathrm{FX}}$, hence $\mathrm{FV}=i d_{\mathrm{FX}}=>\mathrm{v} \in \operatorname{Mor}_{\mathrm{FX}}\left(\mathrm{X}_{0}, \mathrm{X}\right)$.
A.1.12 DEFINITION Let $X, X^{\prime} \in O b \mathbb{C}$ and let $u \in \operatorname{Mor}\left(X, X^{\prime}\right)-$ then u is ophorizontal if \forall morphism $w: X \rightarrow X_{0}$ of \underline{C} and \forall factorization

$$
\mathrm{FW}=\mathrm{x} \circ \mathrm{Fu} \quad\left(\mathrm{x} \in \operatorname{Mor}\left(\mathrm{FX}^{\prime}, \mathrm{FX}_{0}\right)\right),
$$

there exists a unique morphism $v: X^{\prime} \rightarrow X_{0}$ such that $F v=x$ and $v o u=w$. Schematically:

N.B. If u is ophorizontal, then u is preophorizontal. Proof: For Fw $=\mathrm{Fu}=>$

A. 1. 13 DEFINITION The functor $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck fibration if for any object $X^{\prime} \in O D \subseteq$ and any morphism $g: Y \rightarrow F X^{\prime}$, there exists a horizontal morphism $u: X \rightarrow X^{\prime}$ such that $F u=g$.
N.B. If $\tilde{u}: \tilde{X} \rightarrow X^{\prime}$ is another horizontal morphism such that $F \tilde{u}=g$, then \exists a unique isomorphism $\dot{f} \in \operatorname{Mor} C_{Y}$ such that $\tilde{u}=u \circ f$.
[We have

$$
\begin{aligned}
& \text { ũ } \quad \mathrm{Fu}
\end{aligned}
$$

Here

$$
\left\lvert\, \begin{aligned}
& F v=i d_{Y} \& u \circ v=\tilde{u} \\
& F \tilde{v}=i d_{Y} \& \tilde{u} \circ \tilde{v}=u .
\end{aligned}\right.
$$

Therefore

$$
\left\{\begin{array}{l}
\tilde{u} \circ \tilde{v} \circ v=u \circ v=\tilde{u} \\
u \circ v \circ \tilde{v}=\tilde{u} \circ \tilde{v}=u,
\end{array}\right.
$$

so

$$
\begin{aligned}
& \tilde{v} \circ \mathrm{v}=i d_{\tilde{x}} \\
& \left.v \circ \tilde{v}=i d_{\mathrm{x}} .\right]
\end{aligned}
$$

A.1.14 DEFINITION The functor $F: C \rightarrow \underline{D}$ is a Grothendieck opfibration if for any object $X \in O b \underline{C}$ and any morphism $g: F X \rightarrow Y$, there exists an ophorizontal morphism $u: X \rightarrow X$ such that $F u=g$.
N.B. If $\tilde{u}: X \rightarrow \tilde{X}$ ' is another ophorizontal morphism such that $F \tilde{u}=g$, then \exists
a unique isomorphism $f \in \operatorname{Mor} \underline{G}_{Y}$ such that $\tilde{u}=f \circ u$ (cf. supra).
A.1.15 LEMMA The functor $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck fibration iff the functor $\mathrm{F}^{\mathrm{OP}}: \mathrm{C}^{\mathrm{OP}} \rightarrow \underline{\mathrm{D}}^{\mathrm{OP}}$ is a Grothendieck opfibration.
A. 1.16 EXAMPLE The functor $\mathbb{P}_{\underline{C}}: \underline{C} \rightarrow \underline{1}$ is a Grothendieck fibration.
[Note: The functor $\underline{0} \rightarrow \underline{C}$ is a Grothendieck fibration (all requirements are satisfied vacuously).]
A.1.17 EXAMPLE The codomain functor

$$
\operatorname{cod}:[\underline{2}, \underline{C}] \quad(\approx \underline{C}(\rightarrow)) \rightarrow \underline{C}
$$

is a Grothendieck fibration provided C has pullbacks.
[Note: The fiber $[\underline{2}, \underline{C}]_{X}$ of cod over $\mathrm{X} \in \mathrm{Ob} \underline{\mathrm{C}}$ can be identified with C / X.]
A. 1.18 EXAMPLE Given groups $\left.\right|_{-} ^{-} \mathrm{G}$, denote by $\left.\right|_{-} ^{-}$G the groupoids having a
single object * with $\left.\right|_{-\underline{G}^{-}(*, *)=\mathrm{G}} ^{\operatorname{Mor}_{\underline{H}}(*, *)=\mathrm{H}}$ - then a group homomorphism $\phi: \mathrm{G} \rightarrow \mathrm{H}$ can
be regarded as a functor $\Phi: \underline{G} \rightarrow \underline{H}$ and, as such, Φ is a Grothendieck fibration iff ϕ is surjective.
[Note: The fiber \underline{G}_{*} of ϕ over * "is" Ker $\left.\phi.\right]$
A. 1. 19 EXAMPLE Let $U:$ TOP \rightarrow SEI be the forgetful functor -- then U is a Grothendieck fibration. To see this, consider a morphism $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{UX}$ ', where Y is
a set and X^{\prime} is a topological space. Denote by X the topological space that arises by equipping Y with the initial topology per g (i.e., with the smallest topology such that g is continuous when viewed as a function from Y to X^{\prime}) then for any topological space X_{0}, a function $X_{0} \rightarrow X$ is continuous iff the composition $X_{0} \rightarrow X \rightarrow X^{\prime}$ is continuous, from which it follows that the arrow $X \rightarrow X^{\prime}$ is horizontal.
[Note: The fiber TOP_{Y} of U over Y is the partially ordered set of topologies on Y thought of as a category.]
A.1.20 REMARK Suppose that $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck fibration. Let $Y, \mathrm{Y}^{\prime} \in \mathrm{O}$ $\underline{\mathrm{D}}$ and let $\psi: Y \rightarrow Y^{\prime}$ be an isomorphism -- then $\underline{C}_{Y},=\underline{0} \Rightarrow{\underset{\underline{Y}}{ }}=\underline{0}$.
[To get a contradiction, assume $\exists \mathrm{X} \in \mathrm{Ob} \mathrm{C}: F X=Y$. Since $\psi^{-1}: \mathrm{Y}^{\prime} \rightarrow \mathrm{Y}=\mathrm{FX}, \exists$ a horizontal $u^{\prime}: X^{\prime} \rightarrow X$ such that $F u^{\prime}=\psi^{-1}$, hence $\left.F X^{\prime}=Y^{\prime}.\right]$
A.1.21 IFMMA The isomorphisms in C are horizontal (ophorizontal).
A.1.22 LEMMA Let $u \in \operatorname{Mor}\left(X, X^{\prime}\right), u^{\prime} \in \operatorname{Mor}\left(X^{\prime}, X^{\prime}\right)$. Assume: u^{\prime} is horizontal -then u ' o u is horizontal iff u is horizontal.
[Note: Therefore the class of horizontal morphisms is closed under composition (cf. A.l.6).]
A.1.23 LEMMA Suppose that $F: \underset{\sim}{C} \rightarrow \underline{D}$ is a Grothendieck fibration. Let $u \in \operatorname{Mor}\left(X, X^{\prime}\right)$ be horizontal. Assume: Fu is an isomorphism -- then u is an isomorphism.

PROOF In the definition of horizontal, take $X_{0}=X^{\prime}, w=i d$, , and consider
the factorization

$$
F w=\mathrm{id}_{\mathrm{FX}}=\mathrm{Fu} \circ(\mathrm{Fu})^{-1} \quad\left(\mathrm{x}=(\mathrm{Fu})^{-1}\right)
$$

Choose $v: X^{\prime} \rightarrow X$ accordingly, thus $u \circ v=i d$, so v is a right inverse for u. But thanks to A.1.21 and A.1.22, v is horizontal. Since $\mathrm{Fv}=(\mathrm{Fu})^{-1}$, the argument can be repeated to get a right inverse for v. Therefore u is an isomorphism.
A. 1.24 RAPPEL Consider CAT (Internal Structure) (cf. 0.12) -- then by definition, a functor $F: \underline{C} \rightarrow \underline{D}$ is a fibration if $\forall X \in O B \underline{C}$ and \forall isomorphism $\psi: F X \rightarrow Y$ in \underline{D}, \exists an isomorphism $\phi: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ in \underline{C} such that $\mathrm{F} \phi=\psi$. Equivalently, a functor $F: \underline{C} \rightarrow \underline{D}$ is a fibration iff $\forall X^{\prime} \in O b \underline{C}$ and \forall iscmorphism $\psi: Y \rightarrow F X^{\prime}$ in \underline{D}, \exists an isomorphism $\phi: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ in $\underline{\mathrm{C}}$ such that $\mathrm{F} \phi=\psi$.
[Note: In this connection, observe that F is a fibration iff $F^{O P}$ is a fibration.]
A.1.25 THEOREM Let \underline{C} and \underline{D} be small categories -- then a Grothendieck fibration $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a fibration in CAT (Internal Structure).

PROOF Let $\psi: Y \rightarrow F X$ be an isomorphism in \underline{D}-- then there exists a horizontal morphism $\phi: X \rightarrow X$ such that $\mathrm{F} \phi=\psi$. But, in view of A.1.23, ϕ is necessarily an isamorphism in C.
[Note: The same conclusion obtains if instead $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck opfirbration.]

Suppose that $F: C \rightarrow$ D is a Grothendieck fibration.
A.1.26 LEMMA Consider any object $X^{\prime} \in O \underline{C}$ and any morphism $g: Y \rightarrow F X$. Suppose that $\tilde{\mathrm{u}}: \tilde{\mathrm{X}} \rightarrow \mathrm{X}$ ' is prehorizontal and $F \tilde{\mathrm{u}}=\mathrm{g}-$ then $\tilde{\mathrm{u}}$ is horizontal.

PROOF Choose a horizontal $u: X \rightarrow X^{\prime}$ such that $F u=g-$ then u is prehorizontal so \exists a unique isomorphism $f \in \operatorname{Mor} C_{Y}$ such that $\tilde{\mathbf{u}}=u \circ f$. Therefore \tilde{u} is horizontal (cf. A.1.21 and A.1.22).
A. 1.27 THEOREM Let $F: \underline{C} \rightarrow \underline{D}$ be a functor -- then F is a Grothendieck fibration iff

1. $\forall X^{\prime} \in O B \subseteq$ and $\forall g \in \operatorname{Mbr}\left(Y, F^{\prime}\right), \exists$ a prehorizontal $\tilde{u} \in \operatorname{Mor}\left(\tilde{X}, X^{\prime}\right): F \tilde{u}=g$;
2. The composition of two prehorizontal morphisms is prehorizontal.

PROOF The conditions are clearly necessary (for point 2, cf. A. 1.26 and recall A.1.22). Turning to the sufficiency, one has only to prove that the \tilde{u} of point 1 is actually horizontal. Consider a morphism $w: X_{0} \rightarrow X^{\prime}$ of \underline{C} and a factorization

$$
F w=F \tilde{u} \circ x \quad\left(x \in \operatorname{Mor}\left(F X_{0}, F \tilde{X}\right)\right)
$$

Then there is a prehorizontal $\tilde{u}_{0} \in \operatorname{Mor}\left(\tilde{X}_{0}, \tilde{\mathrm{X}}\right): \mathrm{F} \tilde{\mathrm{u}}_{0}=\mathrm{x}\left(\Rightarrow \mathrm{FX}_{0}=F \mathrm{X}_{0}\right)$. Here

$$
\tilde{\mathrm{x}}_{0} \xrightarrow{\tilde{\mathrm{u}}_{0}} \tilde{\mathrm{x}} \xrightarrow{\tilde{\mathrm{u}}} \mathrm{x}^{\prime}
$$

and

$$
F\left(\tilde{\mathrm{u}} \circ \tilde{\mathrm{u}}_{0}\right)=F \tilde{\mathrm{u}} \circ F \tilde{u}_{0}=F \tilde{\mathrm{u}} \circ \mathrm{x}=F w .
$$

But $\tilde{\mathrm{u}} \circ \tilde{\mathrm{u}}_{0}$ is prehorizontal, thus there exists a unique morphism $\tilde{v}_{0} \in \operatorname{Mor} \mathrm{FX}_{0}\left(\mathrm{X}_{0}, \tilde{X}_{0}\right)$ such that $\tilde{\mathrm{u}} \circ \tilde{\mathrm{u}}_{0} \circ \tilde{\mathrm{v}}_{0}=\mathrm{w}$:

Put $v=\tilde{u}_{0} \circ \tilde{v}_{0}-$ then $F v=F \tilde{u}_{0} \circ F \tilde{v}_{0}=F \tilde{u}_{0} \circ \frac{i d}{F \tilde{X}_{0}}=F \tilde{u}_{0}=x$ and $\tilde{u} \circ v=$ $\tilde{u} \circ \tilde{u}_{0} \circ \tilde{v}_{0}=w$. To establish that v is unique, let $v^{\prime}: X_{0} \rightarrow \tilde{\mathrm{X}}$ be another morphism with $F v^{\prime}=x$ and $\tilde{u} \circ v^{\prime}=w$. Since \tilde{u}_{0} is prehorizontal and since $F v^{\prime}=x=F \tilde{u}_{0}$, the diagram

admits a unique filler $\mathrm{v}^{\prime \prime} \in \underset{\mathrm{Fx}}{0} \mathrm{Mor} \underset{0}{ }\left(\mathrm{X}_{0}, \tilde{\mathrm{X}}_{0}\right): \mathrm{u}_{0} \circ \mathrm{v}^{\prime \prime}=\mathrm{v}^{\prime}$. Finally

$$
\begin{aligned}
& \tilde{u} \circ \tilde{u}_{0} \circ v^{\prime}=\tilde{u} \circ v^{\prime}=w \\
\Rightarrow & v^{\prime \prime}=\tilde{v}_{0} \Rightarrow v=\tilde{u}_{0} \circ \tilde{v}_{0}=\tilde{u}_{0} \circ v^{\prime \prime}=v^{\prime} .
\end{aligned}
$$

A.1.28 THEOREM Suppose that $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck fibration. Let

$$
\left\lvert\, \begin{aligned}
& L=\text { the morphisms rendered invertible by } F \\
& R=\text { the horizontal morphisms. }
\end{aligned}\right.
$$

Then the pair (L, R) is a w.f.s. on C .
A.1.29 EXAMPLE Assume that \underline{C} has pullbacks and work with cod: $\underline{\mathbb{C}}(\rightarrow) \rightarrow \underline{C}$ (cf. A.1.17). Consider a morphism $(\phi, \psi):(X, f, Y) \rightarrow\left(X^{\prime}, f^{\prime}, Y^{\prime}\right)$ in $C^{(\rightarrow)}$, so

commutes -- then (ϕ, ψ) is horizontal iff this square is a pullback square. Therefore the category $\underset{(}{C}(\rightarrow)$ admits a w.f.s. (L, R) in which R is the class of pullback squares. On the other hand, $(\phi, \psi) \in \mathcal{L}$ iff ψ is invertible.

Fix a category D-- then by FIB(D) we shall understand the metacategory whose objects are the pairs ($\underline{C}, F)$, where $F: \underline{C} \rightarrow \underline{D}$ is a Grothendieck fibration, and whose morphisms $\Phi:(\underline{C}, F) \rightarrow\left(\underline{C}^{\prime}, F^{\prime}\right)$ are the functors $\Phi: \underline{C} \rightarrow \underline{C}^{\prime}$ that send horizontal arrows to horizontal arrows subject to $F^{\prime} \bullet \Phi=F$.
[Note: Such a Φ is called a fibered functor from $\underline{\mathrm{C}}$ to $\underline{\mathrm{C}}^{\prime}$.]
N.B. $\forall \mathrm{Y} \in \mathrm{Ob}$ D, Φ restricts to a functor $\Phi_{\mathrm{Y}}: \mathrm{C}_{\mathrm{Y}} \rightarrow \mathrm{C}_{\mathrm{Y}}^{\prime}$.
A.1.30 EXAMPLE Take $\underline{\mathrm{D}}=\underline{1}--$ then $\mathrm{FIB}(\underline{1})$ is CAT.
A.1.31 DEFINITION Suppose that $F: \underline{C} \rightarrow \underline{D}$ and $F^{\prime}: \underline{C^{\prime}} \rightarrow \underline{D}$ are Grothendieck fibrations -- then a fibered functor $\Phi: \underline{C} \rightarrow \underline{C}^{\prime}$ is said to be an equivalence if there exists a fibered functor $\Phi^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}$ and natural iscmorphisms

$$
\left[\begin{array}{c}
\Phi^{\prime} \circ \Phi \rightarrow i d_{\underline{C}} \\
\Phi \circ \Phi^{\prime} \rightarrow i d_{C^{\prime}} .
\end{array}\right.
$$

A.1.32 LEMMA The fibered functor $\Phi: \underset{\sim}{C} \underline{C}^{\prime}$ is an equivalence iff $\forall Y \in O B D$, the functor $\Phi_{Y}: C_{Y} \rightarrow C_{Y}^{\prime}$ is an equivalence of categories.

Because of A.l.15, in so far as the theory is concerned, it suffices to deal with Grothendieck fibrations. Still, Grothendieck opfibrations are pervasive (cf. B.2.6) . Here is a specific instance.
A.1.33 EXAMPLE Let $\subseteq \mathbb{C}$ be a category -- then the twisted arrow category $\mathbb{C}(\sim>)$ of \underline{C} is the category whose objects are the arrows $f: X \rightarrow Y$ of \underline{C} and whose morphisms
$f \rightarrow f^{\prime}$ are the pairs $(\phi, \psi):\left.\right|_{-\phi \in \operatorname{Mor}\left(X^{\prime}, X\right)} ^{-} \quad$ for which the square

commutes, thus

$$
i d_{\mathrm{f}}=\left(i d_{X^{\prime}}, i d_{\mathrm{Y}}\right),\left(\phi^{\prime}, \psi^{\prime}\right) \circ(\phi, \psi)=\left(\phi \circ \phi^{\prime}, \psi^{\prime} \circ \psi\right)
$$

Denote by $\left.\right|_{-} ^{{ }^{s} \underline{C}}$ the canonical projections

$$
\left[\begin{array}{l}
\underline{\mathrm{C}}(\sim>) \rightarrow \underline{\mathrm{C}}^{\mathrm{OP}} \\
\underline{\mathrm{C}}(\sim>) \rightarrow \underline{\mathrm{C}}
\end{array}\right.
$$

hence

$$
\left[\begin{array}{ll}
\mathbf{s}_{\underline{C}} \mathrm{f}=\operatorname{dom} \mathbf{f} & \mathbf{s}_{\underline{C}}(\phi, \psi)=\phi \\
{ }_{t_{\underline{C}}} f=\operatorname{cod} \mathbf{f}, & t_{\underline{C}}(\phi, \psi)=\psi
\end{array}\right.
$$

and $\left.\right|_{-} ^{-}{ }^{s_{\underline{C}}}$ are Grothendieck opfibrations.
[Note: The functor

$$
\mathrm{A}: \underline{\mathrm{C}}(\sim>) \rightarrow \underline{\mathrm{C}}^{\mathrm{OP}}(\sim>)
$$

that sends f to f and (ϕ, ψ) to (ψ, ϕ) is an isomorphism of categories and

$$
\left.\right|_{\underline{C}^{S} O P} \circ \mathbf{A}=t_{C} .
$$

N.B. If $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a functor, then the prescription

$$
\left[\begin{array}{c}
f \rightarrow F f \\
\quad(\phi, \psi) \rightarrow(F \phi, F \psi)
\end{array}\right.
$$

defines a functor rendering the diagram

commutative.
A.1.34 REMARK To relativise the preceding setup, let $\mathbb{C}, \underline{D}$ be categories and let $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ be a functor -- then $\underline{\mathrm{F}}(\sim>)$ is the category whose objects are the triples (X, f, Y), where $X \in O B \underline{C}, Y \in O B \underline{D}, f: Y \rightarrow F X$, and whose morphisms $(X, f, Y) \rightarrow$ $\left(X^{\prime}, f^{\prime}, Y^{\prime}\right)$ are the pairs $(\phi, \psi): \left\lvert\, \begin{aligned} & \phi \in \operatorname{Mor}\left(X, X^{\prime}\right) \\ & \psi \in \operatorname{Mor}\left(X^{\prime}, Y\right)\end{aligned}\right.$ for which the square

commates, thus

$$
\mathrm{id}_{(\mathrm{X}, \mathrm{f}, \mathrm{Y})}=\left(\mathrm{id}_{\mathrm{X}^{\prime}} \mathrm{id}_{\mathrm{Y}}\right),\left(\phi^{\prime}, \psi^{\prime}\right) \circ(\phi, \psi)=\left(\phi^{\prime} \circ \phi, \psi \circ \psi^{\prime}\right)
$$

Denote by $\left.\right|_{-} ^{s_{F}}$ the canonical projections

$$
\begin{aligned}
& \underline{F}(\sim>) \rightarrow \underline{D}^{O P} \\
& \underline{F}(\sim>) \rightarrow \underline{C}
\end{aligned}
$$

hence

$$
\left.\right|_{-\quad s_{F}(X, f, Y)=Y} \quad \left\lvert\, \begin{aligned}
& \mathrm{s}_{\mathrm{F}}(\phi, \psi)=\psi \\
& \left.\mathrm{t}_{\mathrm{F}}(\mathrm{X}, \mathrm{f}, \mathrm{Y})=\mathrm{X}, \psi\right)=\phi
\end{aligned}\right.
$$

and $\int_{-}^{-} \mathrm{s}_{\mathrm{F}}$ are Grothendieck opfibrations.
[Note: Take $\underline{C}=\underline{D}, F=i d_{\underline{C}}$, and switch the labeling of the data to get
$\left.\underline{\operatorname{id}}_{\underline{C}}(\sim>)=\underline{\mathrm{C}}(\sim>) \cdot\right]$

A. 2 CLOSLIRE PROPERTIES

A.2.1 LIMMA If $F: \underline{C} \rightarrow \underline{D}$ and $G: \underline{D} \rightarrow \underset{E}{ }$ are Grothendieck fibrations, then so is
their composition $G \circ \mathrm{~F}: \underline{\mathrm{C}} \rightarrow \mathrm{E}$.
A.2.2 LIFMMA The projection functor

$$
\underline{\mathrm{C}} \times \underline{\mathrm{D}} \rightarrow \underline{\mathrm{D}}
$$

is a Grothendieck fibration.
A.2.3 LEMMA If $F: \underline{C} \rightarrow \underline{D}$ and $F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{D}^{\prime}$ are Grothendieck fibrations, then the product functor

$$
\mathrm{F} \times \mathcal{F}^{\mathbf{r}}: \underline{\mathrm{C}} \times \underline{\mathcal{C}}^{\prime} \rightarrow \underline{\mathrm{D}} \times \underline{\mathrm{D}}^{\prime}
$$

is a Grothendieck fibration.

A.2.4 LEMMA If

is a pullback square in CAT, then

$$
\text { F a Grothendieck fibration }=>F^{\prime} \text { a Grothendieck fibration. }
$$

A.2.5 EXAMPLE Let $\underset{\sim}{A}$ be a category, $\alpha: \underline{A} \rightarrow \underset{\mathcal{C}}{ }$ a functor -- then there is a pullback square

and $g l \alpha$ is a Grothendieck fibration.
A.2.6 LEMMA Let $F: \underline{C} \rightarrow \underline{D}$ be a Grothendieck fibration and let \underline{I} be a small category -- then

$$
F_{*}:[\underline{I}, \underline{C}] \rightarrow[\underline{I}, \underline{D}]
$$

is a Grothendieck fibration.
A.2.7 EXAMPLE Define <I, $\mathbf{C}>$ by the pullback square

Then the arrow $\langle\underline{I}, \underline{C}\rangle \rightarrow \underline{D}$ is a Grothendieck fibration.
[Note: Let $Y \in O B D-$ then the objects of the fiber $\langle\underline{I}, \underline{C}\rangle$ are those functors $\Delta: \underline{I} \rightarrow \mathbb{C}$ such that $F_{*} \Delta=K Y$ (the constant diagram functor at Y).]

A. 3 CATEGORIES FIBERED IN GROLPOIDS

A. 3.1 DEFINITION Suppose that $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck fibration -- then $\underline{\mathrm{C}}$ is fibered in groupoids by F if $\forall Y \in O b \underline{D}, G_{Y}$ is a groupoid.
A.3.2 RAPPEL Let G be a topological group, X a topological space. Suppose that X is a free right G-space: $\left.\right|_{-\quad X \times G \rightarrow X}(x, g) \rightarrow X \cdot g \quad$ then X is said to be principal provided that the continuous bijection $\theta: X \times G \rightarrow X \times X / G X$ defined by $(x, g) \rightarrow$ ($\mathrm{x}, \mathrm{x} \cdot \mathrm{g}$) is a homeomorphism.

Let G be a topological group -- then an X in TOP/B is said to be a principal G-space over B if X is a principal G-space, B is a trivial G-space, the projection $X \rightarrow B$ is open, surjective, and equivariant, and G operates transitively on the fibers. There is a cormutative diagram

and the arrow $X / G \rightarrow B$ is a homeomorphism.
A. 3.3 NOIATION Let

$$
\mathrm{PRTN}_{\mathrm{B}, \mathrm{G}}
$$

be the category whose objects are the principal G-spaces over B and whose morphisms are the equivariant continuous functions over B, thus

with ϕ equivariant.
A. 3. 4 FACT Every morphism in PRIN $_{B, G}$ is an iscomorphism.
A.3.5 EXAMPLE Let G be a topological group -- then the classifying stack of G is the category PRIN (G) whose objects are the principal G-spaces $X \rightarrow B$ and whose morphisms $(\phi, f):(X \rightarrow B) \rightarrow\left(X^{\prime} \rightarrow B^{\prime}\right)$ are the commutative diagrams

where ϕ is equivariant. Define now a functor $F: \operatorname{PRIN}(G) \rightarrow$ TOP by $F(X \rightarrow B)=B$ and $F(\phi, f)=f$ - then F is a Grothendieck fibration. Moreover, PRIN (G) is fibered in groupoids by F:

$$
{\underline{\operatorname{PRIN}}(\mathrm{G})_{\mathrm{B}}=\underline{\operatorname{PRIN}}_{\mathrm{B}, \mathrm{G}^{\prime}}, \underbrace{\prime},}
$$

which is a groupoid by A.3.4.
A.3.6 LEMMA If \underline{C} is fibered in groupoids by F, then every morphism in \mathbb{C} is horizontal.

PROOF Let $f \in \operatorname{Mor}\left(X, X^{\prime}\right)\left(X, X^{\prime} \in O D C\right)$, thus $F f: F X \rightarrow F X^{\prime}$, so one can find a horizontal $u_{0}: X_{0} \rightarrow X$ such that $F u_{0}=F f$. But u_{0} is necessarily prehorizontal, hence there exists a unique morphism $v \in \operatorname{Mor}_{F X_{0}}\left(X, X_{0}\right)$ such that $u \circ v=f$:

Since u is horizontal and v is an isomorphism, it follows that f is horizontal (cf. A.1.21 and A.1.22).
N.B. Suppose that

$$
\left.\right|_{-} ^{C} \text { is fibered in groupoids by } F=1 .
$$

Then every functor $\Phi: \underline{C} \rightarrow \underline{C}^{\prime}$ such that $F^{\prime} \circ \Phi=F$ is automatically a fibered functor from \underline{C} to \underline{C}^{\prime}.
A.3.7 LEMMA Let $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ be a functor. Assume: Every arrow in C is horizontal and for any morphism $g: Y \rightarrow F X '$, there exists a morphism $u: X \rightarrow X^{\prime}$ such that $\mathrm{Fu}=\mathrm{g}-$ then F is a Grothendieck fibration and C is fibered in groupoids by F .

PROOF The conditions obviously imply that F is a Grothendieck fibration. Consider now an arrow $f: X \rightarrow X^{\prime}$ of C_{Y} for some $Y \in O b \underline{D}$ - then f is horizontal, so there exists a unique morphism $v \in \operatorname{Mor}_{Y}\left(X^{\prime}, X\right)\left(F X=Y=F X^{\prime}\right)$ such that $f \circ v=$ id : X^{\prime}

Therefore every arrow in C_{Y} has a right inverse. But this means in particular that v must have a right inverse, thus f is invertible.

Let $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \mathrm{D}$ be a Grothendieck fibration. Denote by $\mathrm{C}_{\text {hor }}$ the subcategory of \underline{C} whose objects are the objects of C and whose morphisms are the horizontal arrows of C. Put

$$
\mathrm{F}_{\mathrm{hor}}=\mathrm{F} \mid \mathrm{C}_{\mathrm{hor}} .
$$

A. 3.8 LRMMA $F_{\text {hor }}: C_{\text {hor }} \rightarrow \underline{D}$ is a Grothendieck fibration and $G_{\text {hor }}$ is fibered in groupoids by $\mathrm{F}_{\mathrm{hor}}$.
A.3.9 RAPPEL A category is said to be discrete if all its morphisms are identities.
[Note: Functors between discrete categories correspond to functions on their underlying classes.]
A.3.10 EXAMPLE Every class is a discrete category and every set is a small discrete category.
A. 3.11 LEMMA A category $\underset{C}{C}$ is equivalent to a discrete category iff \underline{C} is a groupoid with the property that $\forall X, X^{\prime} \in O D C$, there is at most one morphism fram X to X^{\prime}.

Every discrete category is, of course, a groupoid. So, if $F: \underline{C} \rightarrow \underline{D}$ is a Grothendieck fibration, then the statement that $\underset{\sim}{C}$ is "fibered in discrete categories by $F^{\prime \prime}$ (or, in brief, that \underline{C} is discretely fibered by F) is a special case of A.3.1.
A.3.12 EXAMPIE Given a category $\mathbb{C}, \forall X \in O C$, the canonical functor $U_{X}: C / X \rightarrow C$ is a Grothendieck fibration. Moreover, C / X is discretely fibered by $\mathrm{U}_{\mathrm{X}}(\forall \mathrm{Y} \in \mathrm{O}$ C , the fiber $(\underline{C} / X)_{Y}$ is the discrete groupoid whose set of objects is $\operatorname{Mor}(\mathrm{Y}, \mathrm{X})$).
A.3.13 LEMMA Let $F: \underline{C} \rightarrow \underline{D}$ be a functor -- then \underline{C} is discretely fibered by F iff for any morphism $g: Y \rightarrow F X^{\prime}$, there exists a wique morphism $u: X \rightarrow X^{\prime}$ such that $F u=g$.

PROOF Assume first that \underline{C} is discretely fibered by F, choose $u: X \rightarrow X^{\prime}$ per g and consider a second arrow $\tilde{u}: \tilde{X} \rightarrow X^{\prime}$ per $g-$ then $F \tilde{u}=F u$. Since u is horizontal (cf. A.3.6), thus is prehorizontal, there exists a unique morphism $v \in \operatorname{Mor}_{\mathrm{FX}}(\tilde{\mathrm{X}}, \mathrm{X})$ sucht that $u \circ v=\tilde{u}$:

But the fiber C_{FX} is discrete, hence $\mathrm{X}=\tilde{\mathrm{X}}$ and v is the identity, so $\tilde{\mathrm{u}}=\mathrm{u}$. In the other direction, consider a setup

Wi.th " x " playing the role of " g ", let $\mathrm{v}: \mathrm{X}_{0} \rightarrow \mathrm{X}$ be the unique morphism such that $\mathrm{Fv}=\mathrm{x}-\mathrm{-}$ then

$$
\left\lvert\, \begin{gathered}
u \circ v: X_{0} \rightarrow X^{\prime} \Rightarrow F(u \circ v): F X_{0} \rightarrow F X^{\prime} \\
w: X_{0} \rightarrow X^{\prime} \Rightarrow \quad F(w): F X_{0} \rightarrow F X^{\prime}
\end{gathered}\right.
$$

Accordingly, by uniqueness, $u \circ v=w$. Therefore every arrow in \subseteq is horizontal which implies that C is fibered in groupoids by F (cf. A.3.7). That the fibers are discrete is clear.

A. 4 CLEAVAGES AND SPLITTINGS

Let $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \mathrm{D}$ be a Grothendieck fibration.
A.4.1 CONSTRUCTION Suppose that $g: Y \rightarrow Y^{\prime}$ is an arrow in D.

Case 1: ${\underset{Y}{Y}}=\underline{0}$-- then take $\mathrm{G}^{*}:{\underset{Y}{ }}^{\mathrm{C}^{\prime}} \rightarrow \mathrm{C}_{\mathrm{Y}}$ as the canonical inclusion.
Case 2: ${\underset{Y}{Y}}^{\prime} \neq \underline{0}$-- then for each $X^{\prime} \in O b{\underset{Y}{\prime}}^{C^{\prime}}$, choose a horizontal $u: X \rightarrow X^{\prime}$ and define $g^{*}: \underline{Y}_{Y^{\prime}} \rightarrow \underline{C}_{Y}$ as follows.

- On an object X^{\prime}, let $g^{*} X^{\prime}=X$.
- On a morphism $\phi: X^{\prime} \rightarrow \tilde{X}^{\prime}$, noting that $F(\phi \circ u)=F \phi \circ F u=i d{ }_{Y^{\prime}} \circ \mathrm{Fu}=$ $g=F \tilde{u}$, let $g^{\star} \phi$ be the unique filler for the diagram

22.

A.4.2 LEEMMA $g^{*}:{\underset{Y}{ },}^{C^{\prime}} \rightarrow \mathcal{C}_{Y}$ is a functor.

Needless to say, the construction of g^{*} hinges on the choice of the horizontal $\mathrm{u}: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$.
A.4.3 DEFINITION A cleavage for F is a function σ which assigns to each pair $\left(g, X^{\prime}\right)$, where $g: Y \rightarrow F X^{\prime}$, a horizontal morphism $u=\sigma\left(g, X^{\prime}\right)\left(u: X \rightarrow X^{\prime}\right)$ such that $\mathrm{Fu}=\mathrm{g}$.
N.B. The axiom of choice for classes implies that every Grothendieck fibration has a cleavage.
A.4.4 REMARK If C is discretely fibered by F, then there is only one cleavage for F (cf. A.3.13).

Consider now a pair (F, σ), where $F: \underline{C} \rightarrow \underline{D}$ is a Grothendieck fibration and σ is a cleavage for F - then there is an association $\Sigma_{F, \sigma}$

$$
Y \longrightarrow{\underset{Y}{Y^{\prime}}}\left(Y \longrightarrow Y^{\prime}\right) \longrightarrow\left({\underset{Y}{Y}}^{\prime}, \xrightarrow{\mathrm{g}^{*}} \underline{G}_{Y}\right)
$$

from $\underline{D}^{\mathrm{OP}}$ to CAT that, however, is not necessarily a functor for more or less obvious
reasons. Still, we do have:

- $\forall \mathrm{Y}$, there is an isomorphism $\varepsilon_{Y}: i d_{Y}^{\star} \rightarrow i d_{C_{Y}}$ of functors $C_{Y} \rightarrow \mathcal{C}_{Y}$.
$\bullet \forall Y \xrightarrow{g} Y^{\prime} \xrightarrow{g^{\prime}} Y^{\prime \prime}$, there is an isomorphism $\alpha \quad: g^{*} \circ g^{\prime *} \rightarrow$ g, g^{\prime} $\left(g^{\prime} \circ g\right)^{*}$ of functors ${\underset{Y}{Y}},{ }^{\prime}{\underset{Y}{ }}$.
A.4.5 DEFINITION A cleavage σ is solit if the following conditions are satisfied.

1. $\sigma\left(\mathrm{id} \mathrm{FX}^{\prime}, \mathrm{X}^{\prime}\right)=\mathrm{id} \mathrm{X}^{\prime}$.
2. $\sigma\left(g^{\prime} \circ g, X^{\prime \prime}\right)=\sigma\left(g^{\prime}, X^{\prime}\right) \circ \sigma\left(g, g^{\prime} \mathrm{X}^{\prime}\right)$).
[Note: A Grothendieck fibration is split if it has a cleavage that splits or, in brief, has a splitting.]
A.4.6 EXAMPLE In tine notation of A.1.18, assume that $\phi: G \rightarrow H$ is surjective, hence that $\Phi: \underline{G} \rightarrow \underline{H}$ is a Grothendieck fibration -- then a cleavage σ for ϕ is a subset K of G which maps bijectively onto H and ϕ is split iff K is a subgroup of G. Therefore ϕ is split iff ϕ is a retract, i.e., iff \exists a homorphism $\psi: H \rightarrow G$ such that $\phi \circ \psi=\mathrm{id}_{\mathrm{H}}$.
A.4.7 IEMMA The association

$$
\Sigma_{\mathrm{F}, \sigma}: \underline{D}^{\mathrm{OP}} \rightarrow \mathbb{C A I}
$$

is a functor iff F is split.
N.B. It is a fact that every Grothendieck fibration is equivalent to a split Grothendieck fibration.
A.4.8 REMARK In the world of Grothendieck opfibrations, the term cleavage is replaced by opcleavage but there is no "op" in front of split or solittings.
B: INTEGRATION
B. 1 REALIzATION OF PRESHEAVES
B. 2 THE FUNDAMENTAL CONSTRUCTION
B. 3 THE CANONICAL EQUIVALENCE
B. 4 COINTEGRALS
B. 5 ISOMORPHIC REPLICAS
B. 6 HOMOTOPICAL MACHINERY
B. 7 INVARIANCE THEORY
B. 8 HOMOTOPY COLIMITS

B: INTEGRATION

B. 1 REALIZATION OF PRESHEAVES

Given a small category $\underline{\mathcal{C}}$, let $\gamma: \underline{C} \rightarrow \underline{C A T}$ be the functor that sends X to $\underline{C} / X-$ then the realization functor Γ_{γ} assigns to each F in $\hat{\underline{C}}$ its Gro thendieck construction:
[Note: Recall that $\gamma \approx \Gamma_{\gamma} \circ Y_{C^{\prime}}$ thus $\forall X \in O$ C

$$
\left.\gamma X=\underline{C} / X \approx \Gamma_{\gamma} h^{\prime} X^{*}\right]
$$

B.1.1 LEMMA The projection

$$
\pi_{\mathrm{F}}: \mathrm{gro}_{\mathrm{C}} \mathrm{~F} \rightarrow \underline{\mathrm{C}}
$$

is a Grothendieck fibration and gro ${ }_{C} F$ is discretely fibered by π_{F}.

In the sequel, we shall write \underline{C} / F in place of gro $_{\underline{C}} F$ and organize matters functorially.
B.1.2 NOTATION Given $F \in O B \hat{C}$, let \mathcal{C} / F be the small category whose objects are the pairs (x, s), where $X \in O b \subseteq$ and $s \in N a t\left(h_{X}, F\right) \longleftrightarrow F X$, and whose morphisms $(X, s) \rightarrow(Y, t)$ are the arrows $f: X \rightarrow Y$ such that $\mathrm{H}_{\mathrm{f}}=\mathrm{s}$.
B.1.3 NOTATION Given $F, G \in O b \underline{\hat{C}}$ and $\Xi: F \rightarrow G$, let

$$
\mathrm{C} / \mathrm{E}: \mathrm{C} / \mathrm{F} \rightarrow \mathrm{C} / \mathrm{G}
$$

be the functor that sends (X, s) to $(\mathrm{X}, \Xi \circ \mathrm{s})$.
B.1.4 NOTATION Let

$$
{ }^{\mathrm{i}} \underline{\underline{C}}: \underline{\hat{\mathrm{C}}}+\underline{\mathrm{CAT}}
$$

be the functor defined on objects by

$$
F \rightarrow C / F
$$

and on morphisms by

$$
\Xi \rightarrow C / E
$$

Let $*_{\underline{\hat{C}}}$ be a final object in $\underline{\hat{C}}-$ then $\underline{i}_{\underline{C}}\left(*_{\underline{\hat{C}}}\right)=\underline{C}$, so there is a factorization

$\mathrm{U}_{\underline{\mathrm{C}}}$ the forgetful functor.

B.1.5 LEMMA The functor

$$
\bar{j}_{\underline{C}}: \hat{C} \rightarrow \underline{\mathrm{CAT} / \mathbb{C}}
$$

is fully faithful.

B.1.6 LENMA The functor

$$
{ }^{i_{\underline{C}}}: \hat{\underline{C}} \rightarrow \underline{\text { CAT }}
$$

is faithful.
[The forgetful functor

$$
\mathrm{U}_{\underline{\mathrm{C}}}: \mathrm{CAT} / \mathrm{C}+\mathrm{CAT}
$$

is faithful.]
B.1.7 LemMA The functor

$$
\mathrm{j}_{\underline{C}}: \hat{\underline{C}} * \underline{\mathrm{CAT}} / \underline{\underline{C}}
$$

preserves limits and colimits.
B.1.8 LEMMA The functor

$$
{ }^{{ }^{2} \underline{C}}: \hat{C}+\underline{C A T}
$$

preserves colimits.
[The forgetful functor

$$
\mathrm{U}_{\underline{\mathrm{C}}}: \underline{\mathrm{CAT} / \mathrm{C}} \rightarrow \underline{\underline{\mathrm{CAT}}}
$$

preserves colimits.]
B.1. 9 LEMMA The functor

$$
i_{\underline{C}}: \hat{\mathbb{C}} \rightarrow \underline{C A T}
$$

preserves pullbacks.
[The forgetful functor

$$
U_{C}: C A T / C \rightarrow C A T
$$

preserves pullbacks.]
N.B. Therefore ${ }^{{ }_{\mathrm{C}}}$ preserves monomorphisms.
[Note: In any category, $A \xrightarrow{f} B$ is a monomorphism iffy

is a pullback square.]

B.1.10 LENMA The functor

$$
\mathrm{i}_{\underline{\underline{C}}}^{*}: \underline{\mathrm{CAT}} \rightarrow \underline{\mathrm{C}}
$$

that sends I to F_{I}, where

$$
\mathrm{F}_{\underline{I}}(\mathrm{X})=\operatorname{Mor}\left(\mathrm{C} / h_{X}, I\right) \quad(X \in O B \underline{C}),
$$

is a right adjoint for ${ }^{\mathrm{i}_{\mathrm{C}}}$.
[Note: Let

$$
\left\lvert\, \begin{gathered}
\mu: i d_{\underline{\hat{C}}} \rightarrow{ }_{\underline{i} \underline{\mathrm{C}}_{\underline{\mathrm{i}}}^{\underline{C}}} \\
v: \underline{\mathrm{C}}_{\underline{\mathrm{C}}}^{\underline{\mathrm{C}}} \rightarrow i d_{\underline{\mathrm{CAT}}}
\end{gathered}\right.
$$

be the arrows of adjunction.

- Given F,

$$
\mu_{\mathrm{F}}: F \rightarrow \mathrm{i}_{\underline{\mathrm{C}}}^{\star i} \underset{\underline{E}}{\mathrm{~F}},
$$

i.e.,

$$
\mu_{\mathrm{F}}: \mathrm{F} \rightarrow \mathrm{~F}_{\mathrm{C} / \mathrm{F}^{\bullet}}
$$

But Nat $\left(h_{X}, F\right) \longleftrightarrow F X$ and

$$
\mu_{F}(X): \operatorname{Nat}\left(h_{X}, F\right) \rightarrow \operatorname{Mor}\left(\underline{C} / h_{X}, \underline{C} / F\right)
$$

is the map that sends s to C / s.

- Given I,

$$
\underline{\underline{I}}^{\prime} \underline{\underline{C}}_{\underline{i} \underline{\underline{C}}}^{\underline{\underline{I}}} \rightarrow \underline{\underline{I}}
$$

i.e.,

$$
V_{\underline{I}}: \underline{C} / \mathrm{F}_{\underline{I}} \rightarrow \underline{I} .
$$

An object in $\mathrm{C} / \mathrm{F}_{\underline{I}}$ is a pair (X, s), where $\mathrm{X} \in \mathrm{Ob} \underline{\mathrm{C}}$ and $\mathrm{s} \in \operatorname{Nat}\left({\left.h_{X}, \mathrm{~F}_{\underline{I}}\right)}^{\underline{C}} \mathrm{~F}_{\underline{I}}(\mathrm{X})=\right.$ $\operatorname{Mor}\left(\underline{C} / h_{X}, I\right), \quad$ But $\underline{C} / h_{X}=\underline{C} / X$ and

$$
\left.v_{I}(X, \underline{C} / X \xrightarrow{s} I)=s\left(X, i d_{X}\right) \cdot\right]
$$

B.1.1l DEFINITION Let $\underset{C}{\mathbb{C}}$ be a small category -- then a sieve in \underline{C} is a full subcategory \underline{U} of \subseteq with the following property:

$$
\operatorname{cod} f \in O b \underline{U} \Rightarrow \operatorname{dom} f \in O b \underline{U} \quad(f \in \operatorname{Mor} \underline{C})
$$

B.1.12 LEMMA The functor $\mathrm{F}: \mathrm{C} \rightarrow$ [1] are in a one-to-one correspondence with the sieves in \underline{C} via the map $F \rightarrow F^{-1}(0)$.
 bijection

$$
\begin{aligned}
\operatorname{Mor}\left(\mathrm{F}, \mathrm{I}_{\underline{\mathrm{C}}}\right) & =\operatorname{Mor}\left(\underset{\left.\mathrm{F}, \mathrm{i}_{\underline{C}}^{\star}[1]\right)}{ }\right. \\
& \approx \operatorname{Mor}\left(\mathbf{i}_{\underline{\mathrm{C}}}^{\mathrm{F}},[1]\right) \\
& \approx \operatorname{Mor}(\underline{\mathrm{C}} / \mathrm{F},[1]) \\
& \approx\{\text { sieves in } \underline{C} / \mathrm{F}\} \approx \operatorname{Sub}_{\hat{\mathrm{C}}} F,
\end{aligned}
$$

the symbol on the RHS standing for the subobjects of F. Therefore L_{C} represents Sub $_{\hat{\mathrm{C}}}$.

C
[Note: L_{C} is called the object of Lawvere.]
B. 1.14 THEOREM For any small category C, the canonical arrow

$$
\widehat{\underline{C} / F} \rightarrow \hat{\mathrm{C}} / \mathrm{F}
$$

is an equivalence.

Specialize, taking $C=\Delta$ and $F=X$ (a simplicial set) - then the objects of Δ / x are the pairs $([n], x)\left(x \in X_{n}\right)$ and

$$
\Delta / \mathrm{x}=\mathrm{gro} \underline{\Delta} \mathrm{x},
$$

the simplex category of X .
Given a small category I, consider the composite

$$
\hat{\underline{\mathrm{I}}} \xrightarrow{\mathrm{j}_{\triangle}} \text { CAT/I } \xrightarrow{\text { ner }} \text { SISET//ner } \underline{I} .
$$

Since ner is fully faithful, it follows from B.l.5 that ner $\circ \mathrm{j}_{\Delta}$ is fully faithful.
B.1.15 LeMMA Let $\mathrm{F} \in \mathrm{Ob} \hat{\mathrm{I}}$-- then

[Note: This isomorphism is natural in n.]

Let

$$
\mathrm{N}_{\underline{I}}: \underline{\hat{\mathrm{I}}} \rightarrow \underline{\text { SISET/ner } \underline{I}}
$$

be the functor defined by

$$
\mathrm{N}_{\underline{\mathrm{I}}}(\mathrm{~F})_{\mathrm{n}}=\left(\frac{1}{i_{0} \rightarrow \cdots \rightarrow i_{\mathrm{n}}} \mathrm{~F} i_{\mathrm{n}} \rightarrow \frac{1}{i_{0} \rightarrow \cdots \rightarrow i_{\mathrm{n}}} *\right) .
$$

Then

$$
\mathrm{N}_{\underline{\mathrm{I}}} \approx \operatorname{ner} \circ \mathrm{j}_{\underline{\Delta^{\prime}}}
$$

hence N_{I} is fully faithful.
B.1.16 DEFINITION The composite
is called the simplicial replacement functor.

In B.1.14, let $\underline{C}=\triangle, F=$ ner \underline{I} - then

$$
(\underline{\|} / \text { ner } \underline{I})^{\wedge} \rightarrow \hat{\Delta} / \text { ner } \underline{I}=\underline{\text { SISET }} / \text { ner } I
$$

[Note: To explicate matters, let

$$
\mathrm{F}:(\underline{\Delta} / \text { ner } \mathrm{I})^{\mathrm{OP}} \rightarrow \underline{\text { SET }}
$$

be a presheaf - then the object $\mathrm{X} \xrightarrow{\pi}$ ner I corresponding to F is given in degree n by

$$
\mathrm{X}_{\mathrm{n}}=\frac{1}{\Delta[\mathrm{n}] \xrightarrow{\alpha} \mathrm{ner} \underline{\mathrm{I}}} \mathrm{~F} \alpha,
$$

where

$$
\left.\pi_{n}(a)=\alpha_{n}\left(i d_{[n]}\right) \quad(a \in F \alpha) .\right]
$$

B.1.17 RAPPEL For any small category I, there is a natural simplicial weak equivalence

$$
\Delta / \text { ner } I\left(=g r o_{\Delta} \text { ner } I\right) \rightarrow \underline{I} .
$$

N.B. The induced functor

$$
\hat{\mathrm{I}} \rightarrow(\underline{\Delta} / \text { ner } \underline{\mathrm{I}})^{\hat{\text { SISETI}} / \text { ner } \underline{I}}
$$

is $\mathrm{N}_{\underline{I}}$.

B. 2 THE FUNDAMENTAL CONSTRUCTION

Let I be a small category, $F: I \rightarrow C A T$ a functor.
B.2.1 DEFINITION The integral of F over I , denoted $\mathrm{INT}_{\mathrm{I}} \mathrm{F}$, is the category whose objects are the pairs (i, X), where $i \in O b I$ and $X \in O b F i$, and whose morphisms are the arrows $(\delta, f):(i, X) \rightarrow(j, Y)$, where $\delta \in \operatorname{Mor}(i, j)$ and $f \in \operatorname{Mor}((F \delta) X, Y)$ (composition is given by

$$
\left.\left(\delta^{\prime}, f^{\prime}\right) \circ(\delta, f)=\left(\delta^{\prime} \circ \delta, f^{\prime} \circ\left(F \delta^{\prime}\right) f\right)\right)
$$

B.2.2 NOTATION Iet

$$
\theta_{F}: \underline{\mathbb{N T}}_{\underline{I}}{ }^{F} \rightarrow \underline{I}
$$

be the functor that sends (i, X) to i and (δ, f) to δ.
B.2.3 LEMMA The fiber of θ_{F} over i is isomorphic to the category Fi.

PROOF Define

$$
\mathrm{i}_{\mathrm{i}}: \mathrm{Fi} \rightarrow \underline{\mathrm{NT}}_{\underline{I}} \mathrm{~F}
$$

by

$$
\left\{\begin{array}{l}
{ }^{{ }_{i}} \mathrm{X}=(\mathrm{i}, \mathrm{X}) \quad(\mathrm{X} \in \mathrm{Ob} \mathrm{Fi}) \\
\quad{ }^{{ }_{i}} \mathrm{f}=\left(\mathrm{id}_{\mathrm{i}}, f\right) \quad(f \in \operatorname{Mor} \mathrm{Fi})
\end{array}\right.
$$

[Note: There is a natural transformation

$$
\xi_{\delta}: \tau_{i} \rightarrow v_{j} \circ F \delta
$$

viz.

$$
\xi_{\delta, x}=\left(\delta, i d{ }_{(F \delta) X}\right):(i, X) \rightarrow(j,(F \delta) X)
$$

And

$$
\left.\xi_{\delta^{\prime} \circ \delta}=\left(\xi_{\delta^{\prime}} F \delta\right) \circ \xi_{\delta^{\prime}} \xi_{i d_{i}}=i d_{i} .\right]
$$

N.B. There is a pullback square

B.2.4 LEMMA The preophorizontal morphisms are the (δ, f), where f is an isomorphism.
[Note: The composition of two preophorizontal morphisms is therefore preophorizontal.]
B.2.5 LFMMA θ_{F} is a Grothendieck preopfibration.
B.2.6 THEOREM θ_{F} is a Grothendieck opfibration.

PROOF In view of B.2.4 and B.2.5, one has only to cite A.1.27.
B.2.7 LEMMA θ_{F} is a split Grothendieck opfibration.

PROOF Define σ_{F} by

$$
\sigma_{F}(\delta,(i, X))=\left(\delta, i d_{F \delta X}\right):(i, X) \rightarrow(j, F \delta X)
$$

B.2.8 EXAMPLE If $F_{\underline{I}}: I \rightarrow$ CAT is the constant functor with value J, then $\mathrm{TNT}_{\underline{I}} \mathrm{~F}_{\mathrm{J}}$ is isomorphic to $\mathrm{I} \times \underline{\mathrm{J}}$.
[Note: In particular

$$
\left.\operatorname{INT}_{\underline{I}} F_{1} \approx I \cdot\right]
$$

B.2.9 EXAMPIE Given a small category I, let

$$
\mathrm{H}_{\mathrm{I}}: \underline{I}^{\mathrm{OP}} \times \underline{I} \rightarrow \underline{C A T}
$$

be the functor $(j, i) \rightarrow \operatorname{Mor}(j, i)$, where the set $\operatorname{Mor}(j, i)$ is regarded as a discrete category -- then

$$
\frac{\text { INT }_{I}^{I}}{I} \times I_{I}^{\mathrm{H}_{\mathrm{I}}}
$$

can be identified with $I(\sim>)$ (cf. A.1.33), $\theta_{\mathrm{H}_{\underline{I}}}$ hecoming the functor

$$
\left(s_{\underline{I}}, t_{\underline{I}}\right): \underline{I}(\sim>) \rightarrow \underline{I}^{O P} \times \underline{I}
$$

Let $F, G: I \rightarrow C A T$ be functors, $E: F \rightarrow G$ a natural transformation.
B.2.10 DEFINITION The integral of E over I, denoted $I N I_{I} \Xi$, is the functor

$$
\underline{\mathrm{INT}}_{\underline{\mathrm{I}}} \mathrm{~F} \rightarrow \underline{\mathrm{INP}}_{\underline{\mathrm{I}}}^{\mathrm{G}}
$$

defined by the prescription

$$
\left[\begin{array}{l}
\left(\mathrm{INT}_{\mathrm{I}} \mathrm{I}\right)(\mathrm{i}, \mathrm{X})=\left(\mathrm{i}, \Xi_{i} \mathrm{X}\right) \\
\left(\mathrm{INT}_{\mathrm{I}} \mathrm{E}\right)(\delta, f)=\left(\delta, \Xi_{j} \mathrm{f}\right)
\end{array}\right.
$$

[Note: Since f: (F δ) $\mathrm{X} \rightarrow \mathrm{Y} \in \mathrm{Mbr} \mathrm{Fj}$, it follows that

$$
\Xi_{j} f: E_{j}(F \delta) X \rightarrow \Xi_{j} Y \in \text { Mor } G j
$$

But there is a commutative diagram

so

$$
\left(\delta, \Xi_{j} f\right):\left(i, \Xi_{i} X\right) \rightarrow\left(j, \Xi_{j} Y\right)
$$

is a morphism in $\mathrm{INT}_{\mathrm{I}} \mathrm{G}$.]

Obviously,

$$
\theta_{\mathrm{G}} \circ \underline{I N T}_{\mathrm{I}} \mathrm{E}=\theta_{\mathrm{F}}
$$

and, in fact,

$$
\mathrm{INT}_{\mathrm{I}}=: \underline{\mathrm{INT}}_{\underline{I}} \mathrm{~F} \rightarrow \underline{\mathrm{INT}}_{\underline{I}} \mathrm{G}
$$

is an opfibered functor.

B.2.11 LEMMA The association

$$
\left\lvert\, \begin{aligned}
& \mathrm{F} \rightarrow\left(\underline{\mathrm{INT}}_{\mathrm{I}} \mathrm{~F}, \theta_{\mathrm{F}}\right) \\
& \mathrm{E} \rightarrow \underline{\mathrm{INT}}_{\mathrm{I}} \mathrm{E}
\end{aligned}\right.
$$

defines a functor

$$
\underline{\mathrm{INT}}_{\underline{\mathrm{I}}}:[\underline{\mathrm{I}}, \underline{\mathrm{CAT}]} \rightarrow \underline{\mathrm{CAT}} / \underline{\underline{I}} .
$$

[Note: Suppose that I and \underline{J} are small categories and $K: \underline{J} \rightarrow I$ is a functor -then there is an induced functor

$$
K^{*}:[\underline{I}, \mathrm{CAT}] \rightarrow[\underline{\mathrm{I}}, \mathrm{CAT}]
$$

and $\forall F: I \rightarrow C A T$, there is a pullback square

Iet

$$
\Gamma_{\underline{I}}: \underline{C A T} / \underline{I} \rightarrow[\underline{I}, \underline{C A T}]
$$

be the functor given on objects (\mathbf{A}, p) ($\mathrm{p}: \underline{\mathrm{A}} \rightarrow \mathrm{I}$) by

$$
\Gamma_{\underline{I}}(\underline{A}, p) i=A / i
$$

[Note: There is a pullback square

B.2.12 LEMMA ${ }^{\dagger} \Gamma_{I}$ is a left adjoint for $I N I_{I}$.

PROOF It suffices to exhibit natural transformations

$$
\left[\begin{array}{l}
\mu \in \operatorname{Nat}\left(i d_{\mathrm{CAT} / \underline{I}}, \mathrm{INT}_{\underline{I}} \circ \Gamma_{\underline{I}}\right) \\
v \in \operatorname{Nat}\left(\Gamma_{\underline{I}} \circ \underline{\mathrm{INT}}_{\underline{I}},{ }^{i d}[\underline{I}, \underline{\mathrm{CAT}]})\right.
\end{array}\right.
$$

[^0]such that
\[

\left[$$
\begin{array}{c}
\left(\frac{\left(N N I_{I}\right.}{\nu}\right) \circ\left(\underline{\underline{I N P} I_{I}}\right)=i d_{\underline{I N T} I_{\underline{I}}} \\
\left(\nu \Gamma_{\underline{I}}\right) \circ\left(\Gamma_{\underline{I}}^{\mu)}=i d_{\Gamma_{\underline{I}}} .\right.
\end{array}
$$\right.
\]

$\underline{\mu}$: Let $(\underline{A}, \mathrm{p})$ be an object of $\mathrm{CAT} / \underline{I}$. To define a functor

$$
\mu_{(\underline{A}, \mathrm{p})}:(\underline{\mathrm{A}}, \mathrm{p}) \rightarrow \underline{I N T}_{\underline{I}} \Gamma_{\underline{I}}(\mathrm{~A}, \mathrm{p})
$$

over \underline{I}, note that the objects of $\underline{I N T}_{\underline{I}}^{\Gamma_{I}} \underline{(A, p)}$ are the triples (i,a,pa $\xrightarrow{\phi}$ i), where

$$
(\delta, f):(i, a, p a \xrightarrow{\phi} i) \rightarrow\left(i^{\prime}, \mathrm{a}^{\prime}, \mathrm{pa}^{\prime} \xrightarrow{\phi^{\prime}} i^{\prime}\right),
$$

where $\delta \in \operatorname{Mor}(i, i \prime)$ and $f: a \rightarrow a^{\prime}$ is a morphism of A for which the diagram

commutes. This said, let

$$
\left\lvert\, \begin{aligned}
& \mu_{(\underline{A}, p)^{a}}=\left(p a, a, p a \xrightarrow[p a]{i d_{p a}}\right. \\
& \mu_{(\underline{A}, p)^{f}}=(p f, f):\left(p a, a, i d_{p a}\right) \rightarrow\left(p a^{\prime}, a^{\prime}, i d_{p a^{\prime}}\right)
\end{aligned}\right.
$$

\underline{v} : Let F be an object of [I,CAT]. To define a natural transformation

$$
v_{F}: \Gamma_{I}{ }^{\mathbb{N} T}{ }_{\underline{I}}^{F} \rightarrow F
$$

or still, to define a functor

$$
\nu_{\mathrm{F}, \mathrm{i}}: \underline{\mathrm{INP}}_{\underline{\mathrm{I}}}^{\mathrm{F}} / \mathrm{i} \rightarrow \mathrm{Fi}
$$

functorial in i, note that the objects of $\mathrm{INT}_{I^{\prime}} F / i$ are the triples (i', $X^{\prime}, i^{\prime} \xrightarrow{\delta^{\prime}}$ i), where $i^{\prime} \in O B I, X^{\prime} \in F i^{\prime}, \delta^{\prime} \in M o r \underline{I}$ and the morphisms of $\underline{I N T} \underline{I} F / i$ are the arrows

$$
(\delta, f):\left(i^{\prime}, X^{\prime}, i^{\prime} \xrightarrow{\delta^{\prime}} i\right) \rightarrow\left(i^{\prime \prime}, X^{\prime \prime}, i^{\prime \prime} \xrightarrow{\delta^{\prime \prime}} i\right),
$$

where $\delta \in \operatorname{Mor}\left(\mathrm{i}^{\prime}, \mathrm{i}^{\prime \prime}\right)$ and $\mathrm{f}:(\mathrm{F} \delta) \mathrm{X}^{\prime} \rightarrow \mathrm{X}^{\prime \prime}$ is a morphism of $\mathrm{Fi}{ }^{\prime \prime}$ for which the diagram

commutes. This said, let

$$
\left[\begin{array}{l}
\nu_{F, i^{\prime}}\left(i^{\prime}, X^{\prime}, i^{\prime} \xrightarrow{\delta^{\prime}} i\right)=\left(F \delta^{\prime}\right) X^{\prime} \\
\nu_{F, i}(\delta, f)=\left(F \delta^{\prime}\right) f:\left(F \delta^{\prime}\right) X^{\prime} \rightarrow\left(F \delta^{\prime}\right) X^{\prime} .
\end{array}\right.
$$

The verification that μ and v have the requisite properties is straightforward.
B.2.13 REMARK Given small categories I, J and a functor $K: \underline{I} \rightarrow \underline{J}$, let

$$
\underline{\mathrm{CAT} / \mathrm{K}: \mathrm{CAT} / \mathrm{I} \rightarrow \mathrm{CAT} / \overline{\mathrm{J}}, \underline{I} .}
$$

be the induced functor -- then the functor

$$
\Gamma_{\underline{J}} \circ \underline{\mathrm{CAT}} / \mathrm{K}: \mathrm{CAT} / \underline{I} \rightarrow \mathrm{CAT} / \underline{\mathrm{J}} \rightarrow[\underline{\mathrm{~J}}, \underline{\mathrm{CAT}]}
$$

is a left adjoint for the functor
15.

$$
\underline{I N T}_{\underline{I}}^{\underline{I}} \circ K^{*}:[\underline{J}, \underline{C A T}] \rightarrow[\underline{I}, \underline{C A T}] \rightarrow \underline{C A T} / \underline{I}
$$

the proof being an easy extension of the preceding considerations (take $\underline{I}=\underline{J}$, $K=i d_{\underline{I}}$ to recover $\left.B .2 .12\right)$.

The category $\mathrm{NNT}_{\mathrm{I}} \mathrm{F}$ has a universal mapping property.
B.2.14 THEOREM Fix a small category C. Suppose given functors $\phi_{i}: F i \rightarrow \underline{C}$
($\mathbf{i} \in O b I$) and natural transformations $\Xi_{\delta}: \phi_{i} \rightarrow \phi_{j} \circ F \delta(i \xrightarrow{\delta} \mathcal{j} \in$ Mor I) such that

$$
\Xi_{\delta^{\prime} \circ \delta}=\left(\Xi_{\delta^{\prime}} F \delta\right) \circ \Xi_{\delta^{\prime}} \Xi_{i d_{i}}=i d_{\phi_{i}}
$$

Then there exists a unique functor

$$
\Phi: \underline{\mathrm{INT}_{\mathrm{I}} \mathrm{~F}} \rightarrow \underline{\mathrm{C}}
$$

such that

$$
\phi_{i}^{-}=\Phi \circ \imath_{i} \quad\left(l_{i}: F i \rightarrow \underline{I N T}_{\underline{I}} F\right) \quad \text { (cf. B.2.3). }
$$

PROOF Define Φ by

$$
\left[\begin{array}{l}
\Phi(i, X)=\phi_{i} X \quad(X \in O b F i) \\
\Phi(\delta, f)=\phi_{j} f \circ \Xi_{\delta, X^{*}}
\end{array}\right.
$$

[Note: As regards the definition of $\Phi(\delta, f)$, observe that

$$
\Xi_{\delta, X}: \phi_{i} X \rightarrow \phi_{j} F \delta X
$$

On the other hand, $f:(F \delta) X \rightarrow Y$, where ($F \delta$) $X, Y \in O b F j$, so

$$
\phi_{j} f: \phi_{j}(F \delta) X \rightarrow \phi_{j} Y,
$$

thus

$$
\Phi(\delta, f): \Phi(i, X)\left(=\phi_{i} X\right) \rightarrow \Phi(j, Y)\left(=\phi_{j} Y\right)
$$

as desired.]
B.2.15 EXAMPLE Consider the natural $\operatorname{sink}\left\{\ell_{i}: F i \rightarrow \operatorname{colim}_{\underline{I}} F\right\}$, hence $\ell_{i}=\ell_{j} \circ F \delta-$ then there exists a unique functor

$$
\mathrm{K}_{\mathrm{F}}: \underline{\text { INT }}_{\underline{\mathrm{F}}}^{\mathrm{F}} \rightarrow \operatorname{colim}_{\underline{\mathrm{I}}}^{\mathrm{F}}
$$

such that

$$
\left[\begin{array}{rl}
-\quad \ell_{i} & =K_{F} \circ l_{i} \\
\quad i d_{\ell_{i}} & =K_{F} \xi_{\delta} .
\end{array}\right.
$$

[Note: Spelled out,

$$
\left[\begin{array}{l}
K_{F}(i, X)=\ell_{i} X \\
\left.K_{F}(\delta, f)=\ell_{j} f .\right]
\end{array}\right.
$$

Let \underline{C} be a small category, $F: \underline{I} \rightarrow \underline{\hat{C}}$ a functor -- then

$$
\underline{\underline{I}} \stackrel{F}{\underline{\mathrm{C}}} \xrightarrow{{ }^{\mathrm{I}_{\mathrm{C}}}} \underline{C A T}
$$

and there is an arrow

$$
\begin{aligned}
& \approx \mathrm{i}_{\underline{C}} \operatorname{colim}_{\underline{I}} \mathrm{~F} \quad \text { (cf. B.1.8) } \\
& =C / \infty \lim _{\mathrm{I}} \mathrm{~F} \text {. }
\end{aligned}
$$

B.2.16 LEMMA $K_{i_{\underline{F}}}$ is a Grothendieck fibration.

Let (X, s) be an object of $\underline{C} / \operatorname{colim}_{\underline{I}} F$ (so $X \in O b \underline{C}$ and $\sin _{X} \rightarrow \operatorname{colim}_{\underline{I}} F$) -- then the fiber

$$
\underline{(N T}_{\underline{I}}^{\underline{i}}{ }_{\underline{E}}{ }^{F}(X, s)
$$

of $\mathrm{K}_{\mathrm{i}_{\underline{F}}}$ over (X, s) admits an external description. In fact, $\forall \mathrm{i}$ in $\mathrm{Ob} \underline{I}$, there is

$$
(\mathrm{C} / \mathrm{Fi})_{(\mathrm{X}, \mathrm{~s})} \rightarrow(\mathrm{C} / \mathrm{Fj})_{(\mathrm{X}, \mathrm{~s})}
$$

Write

$$
\left.{ }_{\left(i_{\underline{C}}\right.}\right)_{(X, s)}: \underline{I} \rightarrow \underline{C A T}
$$

for the functor thus determined.
B.2.17 LEMMA We have

$$
\left.\underline{I N T}_{\underline{I}} \underline{I}^{F}\right)(X, s) \approx \underline{I N T}_{\underline{I}}\left(i_{\underline{E}}^{F)}(X, s)\right.
$$

[The verification is tautological.]

B. 3 the canonical equivalence

Fix a small category D^{--}then by $\mathrm{SO}(\mathrm{D})$ we shall understand the category
whose objects are the triples $(\underline{C}, F, \sigma)$, where \underline{C} is small and $F: \underline{C} \rightarrow \underline{D}$ is a split Grothendieck opfibration with splitting σ, and whose morphisms $\Phi:(\underline{C}, F, \sigma) \rightarrow\left(C^{\prime}, F^{\prime}, \sigma^{\prime}\right)$ are the functors $\Phi: \underline{C} \rightarrow \underline{C}^{\prime}$ such that for any object $X \in O b \underline{C}$ and any morphism $\mathrm{g}: \mathrm{FX} \rightarrow \mathrm{Y}$,

$$
\Phi(\sigma(\mathrm{g}, \mathrm{X}))=\sigma^{\prime}(\mathrm{g}, \Phi \mathrm{X})
$$

subject to $F^{\prime} \circ \Phi=F$.
N.B. $\forall Y \in O D \underline{D}, \Phi$ restricts to a functor $\Phi_{Y}: \mathcal{C}_{\mathrm{Y}} \rightarrow \mathrm{C}_{\mathrm{Y}}^{\prime}$.

Define now the association

$$
\Sigma_{F, \sigma}: \underline{D} \rightarrow C A T
$$

as in A. 4.7 (recast for opfibrations) - then $\Sigma_{F, \sigma}$ is a functor (σ being split).
B.3.1 NOTATION Let

$$
\Sigma_{\underline{D}}: \underline{S O}(\underline{D}) \rightarrow[\underline{D}, \underline{C A T}]
$$

be the functor given on an object ($\mathrm{C}, \mathrm{F}, \sigma$) by

$$
\Sigma_{\underline{D}}(C, F, \sigma)=\Sigma_{F, \sigma}
$$

and on a morphism

$$
\Phi:(\underline{C}, F, \sigma) \rightarrow\left(\underline{C}^{\prime}, F^{\prime}, \sigma^{\prime}\right)
$$

by

$$
\left(\Sigma_{\underline{D}^{\Phi}}\right)_{\mathrm{Y}}=\Phi_{\mathrm{Y}}
$$

[Note: The tacit assumption is that

$$
\Sigma_{\mathrm{D}^{\Phi} \in \operatorname{Nat}\left(\Sigma_{F, \sigma^{\prime}} \Sigma_{F^{\prime}, \sigma^{\prime}}\right) .}
$$

But, from the definitions,

$$
\left\lvert\, \begin{gathered}
\Sigma_{F, \sigma^{\prime}}=C_{Y} \\
\Sigma_{F^{\prime}, \sigma^{\prime}} Y=C_{Y}^{\prime}
\end{gathered}\right.
$$

and for any $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Y}^{\prime}$, there is a commtative diagram

Matters can be reversed. Thus let G:D \rightarrow CAT be a functor -- then

$$
\Theta_{\mathrm{G}}: \underset{\underline{\mathrm{D}}}{\mathrm{GNT}} \rightarrow \underline{\mathrm{D}}
$$

is a split Grothendieck opfibration with splitting σ_{G} (cf. B.2.7), so the triple

$$
\left(\underline{\mathbb{N N T}_{\underline{Q}}, \theta_{G}}, \sigma_{\mathrm{G}}\right)
$$

is an object in $\underline{\text { SO }}(\underline{D})$. Furthermore, if $\Omega: G \rightarrow G^{\prime}$ is a natural transformation, then
is a morphism in SO(D).
Accordingly, these considerations lead to a functor

$$
\underline{\mathrm{INT}}_{\underline{\mathrm{D}}}:[\underline{\mathrm{D}}, \underline{\mathrm{CAT}}] \rightarrow \underline{\mathrm{SO}}(\underline{\mathrm{D}}) .
$$

B.3.2 THEOREM The categories SO(D), [D,CAT] are equivalent:
with

B. 4 COINTEGRALS

Let I be a small category, $F: I^{O P} \rightarrow$ CAT a functor.
B.4.1 DEFINITION The cointegral of F over \underline{I}, denoted $\overline{\mathrm{INT}}_{\underline{\mathrm{I}}} \mathrm{F}$, is the category
whose objects are the pairs (i, X), where $i \in O b I$ and $X \in O D F i$, and whose morohisms are the arrows $(\delta, f):(i, X) \rightarrow(j, Y)$, where $\delta \in \operatorname{Mor}(i, j)$ and $f \in \operatorname{Mor}(X,(F \delta) Y)$ (composition is given by

$$
\left.\left(\delta^{\prime}, f^{\prime}\right) \circ(\delta, f)=\left(\delta^{\prime} \circ \delta,(F \delta) f^{\prime} \circ f\right)\right)
$$

B.4.2 REMARK Let $\underline{\mathrm{c}}$ be a small category and suppose that $\mathrm{F} \in \mathrm{O} \hat{\mathrm{C}}$-- then $\mathrm{F}: \underline{C}^{\mathrm{OP}} \rightarrow$ SET. Thinking of SET as a subcategory of CAT (every set is a small category when viewed discretely), it follows that

$$
{\overline{\mathrm{IN}} \overline{\mathrm{~T}}_{\underline{\mathrm{I}}} \mathrm{~F}=\mathrm{gro}_{\underline{\mathrm{C}}} \mathrm{~F}=\underline{\mathrm{C}} / \mathrm{F}}
$$

B.4.3 NOTATION Let

$$
\bar{\theta}_{F}: \overline{\overline{I N T}}_{\underline{\underline{I}}} F \rightarrow \underline{I}
$$

be the functor that sends (i, X) to i and (δ, f) to δ.
B.4.4 THEOREM $\bar{\theta}_{F}$ is a split Grothendieck fibration.

What has been said about integrals can be said about cointegrals, thus no additional elaboration on this score is necessary.
B.4.5 LEMMA we have

$$
\overline{I N T}_{\underline{I}} \mathrm{~F}=\left(\underline{\underline{I N T}} \underline{\underline{I}}^{O P} O P\right)^{O P}
$$

and

$$
\bar{\theta}_{\mathrm{F}}=\left(\theta_{\mathrm{OP} \circ \mathrm{~F}}\right)^{\mathrm{OP}}
$$

[Note:

$$
\begin{array}{ll}
& \theta_{O P} \circ F: \frac{I N T}{I} O P O P \circ F \rightarrow \underline{I}^{O P} \\
=> & \left(\theta_{O P} \circ F^{O P}: \frac{(I N T}{I} O P_{\left.O P \circ F)^{O P} \rightarrow I .\right]}\right.
\end{array}
$$

N.B. $F^{O P}$ is not the same as $O P \circ F$.

B.4.6 REMARK The involution

$$
\mathrm{OP}: \mathrm{CAT} \rightarrow \mathrm{CAT}
$$

induces an isomorphism

$$
O P_{\star}:\left[\underline{I}^{O P}, \underline{\mathrm{CAT}}\right] \rightarrow\left[\underline{I}^{O P}, \mathrm{CAT}\right]
$$

and there is a cormatative diagram

Let I and \underline{J} be small categories, $F: I^{O P} \times \underline{J} \rightarrow \underline{C A T}$ a functor - then there are functors

$$
\left\lvert\, \begin{aligned}
& \underline{I N T_{J}^{F}}: \underline{I}^{O P} \rightarrow \underline{C A T} \\
& \overline{I N T}_{\underline{I}}: \underline{I} \rightarrow \mathrm{CAT}
\end{aligned}\right.
$$

arising from term-by-tenm operations and in this context

$$
\begin{aligned}
& -\Theta_{\mathrm{F}}: \underset{\underline{\mathbb{N P}} \mathrm{F}}{\mathrm{~F}} \rightarrow \underline{\mathrm{~J}} \\
& \bar{\theta}_{F}: \overline{\operatorname{TNT}}_{\underline{I}} F \rightarrow \underline{I}
\end{aligned}
$$

are natural transformations (treat the targets as constant functors).

B.4.7 LEMMA There is a commutative diagram

B.4.8 NOTATION Given functors

$$
\left.\right|_{-} ^{F: \underline{I} \rightarrow \underline{C A T}} \begin{aligned}
& \mathrm{G}: \underline{I}^{O P} \rightarrow \underline{C A T}
\end{aligned}
$$

define $\overline{\mathrm{INT}}_{\underline{I}}$ (F, G) by the pullback square

N.B. Using the notation of B.2.8,
B.4.9 LEMMA The functor p_{F} is a Grothendieck fibration and the functor q_{G} is a Grothendieck opfibration (cf. A.2.4).

$$
\text { B. } 5 \text { ISOMORPHIC REPLICAS }
$$

Let I be a small category.
B.5.1 NOTATION Given functors

$$
\left\lvert\, \begin{aligned}
& F: I \rightarrow \text { CAT } \\
& G: I^{O P} \rightarrow \underline{C A T},
\end{aligned}\right.
$$

put

$$
\mathrm{G} \otimes_{\underline{I}} \mathrm{~F}=f_{\mathrm{Gi}}^{\mathbf{i}_{\mathrm{Gi}} \times \mathrm{Fi},}
$$

an object of CAT.
[Note: One can realize $G \otimes_{\underline{I}} F$ as

$$
\left.\operatorname{coeq}\left(\underset{i}{\rightarrow} \mathrm{H} \text { } \mathrm{Gj} \times \mathrm{Fi} \longrightarrow \frac{\|}{\mathrm{i}} \mathrm{Gi} \times \mathrm{Fi}\right) .\right]
$$

N.B. It is clear that - $N_{\underline{I}}$ - is functorial in F and G and behaves in the obvious way w.r.t. a functor $\underline{I} \rightarrow$ I.
B.5.2 EXAMPLE Let G be constant with value 1 -- then

$$
\underline{\otimes_{I}} F \approx \operatorname{colim}_{\underline{I}} F .
$$

Specialize and take for G the functor $I^{O P} \rightarrow$ CAT that sends i to i\I -- then the assignment $(i, j) \rightarrow i \backslash \underline{I} \times F j$ defines a diagram $\underline{I}^{O P} \times \underline{I} \rightarrow$ CAT.
B.5.3 CONSTRUCTION $\forall i \in O B I$, there is a canonical functor

$$
f_{i}: i \backslash \underline{I} \times F i \rightarrow \underline{I N T}_{\underline{I}}^{F} .
$$

- Define f_{i} on an object $(i \xrightarrow{\delta} j, x)(X \in O b F i)$ by

$$
f_{i}\left(i \longrightarrow{ }^{\delta}, j, X\right)=(j,(F \delta) X)
$$

[Note:

$$
\begin{aligned}
i \xrightarrow{\delta} j & \Rightarrow F i \xrightarrow{F \delta} F j \\
& \Rightarrow(F \delta) x \in O b F j .]
\end{aligned}
$$

- Define f_{i} on a morphism

$$
(i \xrightarrow{\delta} j, X) \xrightarrow{(\lambda, f)}\left(i \xrightarrow{\delta^{\prime}} j^{\prime}, X^{\prime}\right)
$$

where $\lambda: j \rightarrow j^{\prime}\left(\lambda \circ \delta=\delta^{\prime}\right)$ and $f: X \rightarrow X^{\prime}(f \in$ Mor $F i)$, by

$$
f_{i}(\lambda, f)=\left(\lambda,\left(F \delta^{\prime}\right) f\right):(j,(F \delta) X) \rightarrow\left(j^{\prime},\left(F \delta^{\prime}\right) X^{\prime}\right)
$$

[Note:

But

$$
\lambda \circ \delta=\delta^{\prime} \Rightarrow F \lambda \circ F \delta=F \delta^{\prime} .
$$

Therefore

$$
\left.\left(F \delta^{\prime}\right) f:(F \lambda)(F \delta) X \rightarrow\left(F \delta^{\prime}\right) X^{\prime} .\right]
$$

B.5.4 LEMMA The collection

$$
\left\{f_{i}: i \backslash I \times F i \rightarrow \mathbb{N N T}_{I} F\right\}
$$

is a dinatural sink: $\forall i \xrightarrow{\delta}>j$ in Mor I, there is a commatative diagram

B.5.5 LEMMA Suppose that $\left\{\gamma_{i}: i \backslash I \times F i \rightarrow \Gamma\right\}$ is a dinatural $\operatorname{sink}(\Gamma \in O B C A T)$-then there is a unique functor $\phi: \operatorname{INT}_{\underline{I}} F \rightarrow \Gamma$ such that $\gamma_{i}=\phi \circ f_{i}$ for all $i \in O b I$. [The verification is elementary but fastidious.]
B.5.6 SCHOLIUM We have

$$
-\backslash \underline{\mathbb{X}_{\underline{I}}} \underset{\underline{I}}{ } \underset{\underline{I N T}}{ } \mathrm{~F}
$$

[Note: Let $K: I \rightarrow \underline{I}$ be a functor - then for all $G \in O b[\underline{J}, C A T]$,

$$
-\underline{I}_{\mathbb{Q}_{\underline{J}}} G \approx \underline{I N T}_{\underline{I}} K^{\star} G,
$$

where in this context $-\backslash I$ sends j to $j \backslash I$.
B. 5.7 REMARK If $F: I^{O P} \rightarrow$ CAT, then

$$
\mathrm{F} \underline{\Omega}_{\underline{\mathrm{I}}} \mathrm{I} /-\approx \overline{\mathrm{INT}}_{\underline{\mathrm{I}}} \mathrm{~F} .
$$

[Note: Let $K: \underline{I} \rightarrow \underline{J}$ be a functor - - then for all $G \in O O^{\circ}{ }^{O P}$,CAT],

$$
\mathrm{G} \otimes_{\underline{\mathrm{I}}} \mathrm{I} /-\approx \overline{\mathrm{INT}}_{\underline{I}}\left(\mathrm{~K}^{\mathrm{OP}}\right)^{\star} \mathrm{G}^{\prime}
$$

where in this context $I /-$ sends j to I / j.

$$
\text { B. } 6 \text { HOMOTOPICAL MACHINERY }
$$

Recall:

- In SISET, a simplicial weak equivalence is a simplicial map $f: X \rightarrow Y$ such that $|f|:|X| \rightarrow|Y|$ is a homotopy equivalence.
- In CAT, a sinplicial weak equivalence is a functor $F: \underline{C} \rightarrow \underline{D}$ such that \mid ner $F \mid: B C \rightarrow B D$ is a horotopy equivalence.
N.B. Therefore a functor $F: \underline{C} \rightarrow \underline{D}$ is a simplicial weak equivalence iff ner F :ner $\underline{C} \rightarrow$ ner \underline{D} is a simplicial weak equivalence.
B.6.1 LEMMA If $F: \underline{C} \rightarrow \underline{D}$ is a functor and if ner $F: n e r \underline{C} \rightarrow$ ner \underline{D} is simplicially homotopic to a simplicial weak equivalence, then $F: \underline{C} \rightarrow \underline{D}$ is a sirmlicial weak equivalence.
B. 6.2 NOIATION Let W_{∞} denote the class of simplicial weak equivalences in CAT (a.k.a. the class of weak equivalences per CAT (External Structume) (cf. 0.13)).
B. 6. 3 EXAMPIE Suppose that $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \mathrm{D}$ is a Grothendieck prefibration -- then $\forall Y \in O b \underline{D}$, the canonical functor $\mathrm{C}_{\mathrm{Y}} \rightarrow Y \backslash \underline{C}$ is a simplicial weak equivalence (cf. A.1.9).
B. 6.4 EXAMPLE Suppose that $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a Grothendieck preopfibration -- then $\forall Y \in O D D$, the canonical functor $C_{Y} \rightarrow C / Y$ is a simplicial weak equivalence (cf. A.1.10).
B. 6.5 THEOREM Fix a small category I and let

$$
\left[\begin{array}{r}
\underline{\mathrm{C}} \xrightarrow{\mathrm{p}} \underline{I} \\
\underline{\mathrm{D}} \xrightarrow{\mathrm{q}} \underline{I}
\end{array}\right.
$$

be objects in CAT/I. Suppose that $\Phi:(\underline{C}, \mathrm{p}) \rightarrow(\underline{\mathrm{D}}, \mathrm{q})$ is a morphism in CAT/I ($\mathrm{q} \circ \Phi=\mathrm{p}$) such that \forall i $\in O B I$, the arrow

$$
\Phi / i: C / i \rightarrow D / i
$$

is a simplicial weak equivalence -- then Φ is a simplicial weak equivalence.

PROOF

- The elements of ner $n_{n} C / i$ are the pairs

$$
\left(\left(x_{0} \rightarrow \cdots \rightarrow x_{n}\right), p x_{n} \rightarrow i\right),
$$

where $\mathrm{pX}_{\mathrm{n}} \rightarrow \mathrm{i}$ is a morphism in I . This said, define a bisinplicial set $\mathrm{T}_{\underline{C}}$ by

$$
T_{\underline{C}}([n],[m])=\left\{\left(\left(x_{0} \rightarrow \cdots \rightarrow x_{n}\right), p x_{n} \rightarrow i_{0}\right), i_{0} \rightarrow \cdots \rightarrow i_{m}\right\}
$$

- The elements of ner ${ }_{n} \mathrm{D} / \mathrm{i}$ are the pairs

$$
\left(\left(Y_{0} \rightarrow \cdots \rightarrow Y_{n}\right), q Y_{n} \rightarrow i\right),
$$

where $q Y_{n} \rightarrow i$ is a morphism in I. This said, define a bisimplicial set T_{D} by

$$
\mathrm{T}_{\underline{\mathrm{D}}}([\mathrm{n}],[\mathrm{m}])=\left\{\left(\left(Y_{0} \rightarrow \cdots \rightarrow Y_{\mathrm{n}}\right), q Y_{\mathrm{n}} \rightarrow i_{0}, i_{0}+\cdots \rightarrow i_{m}\right\}\right.
$$

Then there is a map

$$
T \Phi: T_{\underline{C}}+T_{\underline{D}}
$$

of bisimplicial sets given on vertexes by

$$
\begin{aligned}
& \left.T \Phi\left(\left(X_{0} \rightarrow \cdots \rightarrow X_{n}\right), p X_{n} \rightarrow i_{0}\right), i_{0} \rightarrow \cdots \rightarrow i_{m}\right) \\
& \quad=\left(\left(\Phi X_{0} \rightarrow \cdots+\Phi X_{n}\right), q \Phi X_{n} \rightarrow i_{0}, i_{0}+\cdots+i_{m}\right) .
\end{aligned}
$$

Fixing the second variable leads to a commutative diagram

By hypothesis, the horizontal arrow on the botton is a simplicial weak equivalence.

Since the vertical arrows are isomorphisms, it follows that the horizontal arrow on the top is a simplicial weak equivalence. Therefore

$$
\operatorname{dia} T \Phi: d i a T_{\underline{C}} \rightarrow \operatorname{dia} T_{\underline{D}}
$$

is a simplicial weak equivalence. On the other hand,

$$
\left\{\begin{array}{l}
T_{\underline{C}}\left([n], \rightarrow \approx \frac{1}{x_{0} \rightarrow \cdots \rightarrow x_{n}} \text { ner } \mathrm{pX}_{n} \backslash I\right. \\
{ }_{-}^{T_{\underline{D}}}([n],-) \approx \frac{1}{Y_{0}+\cdots \rightarrow Y_{n}} \text { ner } q Y_{n} \backslash I
\end{array}\right.
$$

and since
have initial objects, the arrows
are simplicial weak equivalences. Therefore

$$
\left.\right|_{-\quad \operatorname{dia} \underline{T}_{\underline{C}} \rightarrow \text { ner } \underline{\mathrm{C}}} ^{\quad \operatorname{dia} \mathrm{T}_{\underline{\mathrm{D}}} \rightarrow \operatorname{ner} \underline{\mathrm{D}}}
$$

are simplicial weak equivalences. Form now the conmutative diagram

to conclude that ner Φ is a simplicial weak equivalence.
B. 6. 6 APPLICATION Let $\underline{C}, \underline{D}$ be small categories and let $F: \underline{C} \rightarrow D$ be a functor. Assume: $\forall Y \in O B \underline{D}$, the arrow $\underline{C} / Y \rightarrow \underline{1}$ is a simplicial weak equivalence -- then F is a simplicial weak equivalence.
[In 8.6.5, take $\underline{I}=\underline{D}, p=F, q=i d_{\underline{D}}:$

With F playing the role of Φ, consider the diagram

The vertical arrow on the left is a simplicial weak equivalence (by assumption), while the vertical arrow on the right is a simplicial weak equivalence (D/Y has a final object). Therefore F / Y is a simplicial weak equivalence. As this is true of all $\mathrm{X} \in \mathrm{Ob} \mathrm{D}$, it remains only to quote B.6.5.]
B. 6.7 EXAMPLE Suppose that $F: \underline{C} \rightarrow \underline{D}$ is a Grothendieck preopfibration.

Assume: $\forall Y \in O B D, C_{Y}$ is contractible -- then F is a simplicial weak equivalence. [Bearing in mind B.6.4, consider the diagram

B.6.8 LEMMA Fix a small category I and let

$$
\left[\begin{array}{r}
\underline{\mathrm{C}} \xrightarrow{-} \xrightarrow{\mathrm{D}} \xrightarrow{\underline{I}} \\
\underline{I}
\end{array}\right.
$$

be Grothendieck preopfibrations. Suppose that $\Phi:(\underline{C}, \mathrm{p}) \rightarrow(\underline{D}, q)$ is a morphism in $C A T / I(q \circ \Phi=p)$ such that $\forall i \in O B I$, the arrow of restriction

$$
\Phi_{i}: C_{i} \rightarrow D_{i}
$$

is a simplicial weak equivalence -- then Φ is a simplicial weak equivalence. PROOF The horizontal arrows in the commatative diagram

are simplicial weak equivalences (cf. B.6.4), thus Φ / i is a simplicial weak equivalence from which the assertion (cf. B.6.5).

B. 6.9 LEMMA Let

be a pullback square in CAT. Suppose that f is a Grothendieck fibration and that for all $z \in O b \underline{Z}$, the category \underline{Y} / z is contractible -- then for all $x \in O b \underline{X}$, the category $\underline{P} / \mathrm{x}$ is contractible, hence ξ is a simplicial weak equivalence (cf. B.6.6).

B.6.10 LemMA Iet

be a pullback square in CAT. Suppose that f is a Grothendieck fibration and g is a Grothendieck opfibration with contractible fibers - then ξ is a simplicial weak equivalence.

PROOF The assumption on g implies that the Y / z are contractible (cf. B.6.4), hence that the P / x are contractible (cf. B.6.9). But $\bar{\xi}$ is a Grothendieck opfibration (cf. A.2.4), thus its fibers are contractible (cf. B.6.4), so ξ is a simplicial weak equivalence (cf. B.6.7).

What follows next is a list of results that dualize B.6.5-B.6.10.
B. 6.11 THEOREM Fix a small category I and let

$$
\left.\right|_{-} ^{\underline{\mathrm{C}} \xrightarrow{\mathrm{p}} \xrightarrow{\mathrm{q}} \mathrm{I}} \begin{aligned}
& \mathrm{I}
\end{aligned}
$$

be objects in CAT/I. Suppose that $\Phi:(\underline{C}, p) \rightarrow(\underline{D}, q)$ is a morphism in CAT/I ($q \cdot \Phi=\mathrm{p}$) such that $\forall i \in O$ I, the arrow

$$
i \backslash \Phi: i \backslash \underline{C} \rightarrow i \backslash \underline{D}
$$

is a simplicial weak equivalence -- then Φ is a simplicial weak equivalence.
B.6.12 APPLICATION Let $\underline{C}, \underline{D}$ be small categories and let $F: \underline{C} \rightarrow \underline{D}$ be a functor. Assume: $\forall \mathrm{Y} \in \mathrm{Ob} \underline{\mathrm{D}}$, the arrow $\mathrm{Y} \backslash \underline{\underline{C}} \rightarrow \underline{1}$ is a simplicial weak equivalence -- then F is a simplicial weak equivalence.
B.6.13 EXAMPLE Suppose that $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \mathrm{D}$ is a Grothendieck prefibration. Assume: $\forall \mathrm{Y} \in \mathrm{Ob} \mathrm{D}, \mathrm{C}_{\mathrm{Y}}$ is contractible - then F is a simplicial weak equivalence.
B.6.14 LEMMA Fix a small category I and let

$$
\left[\begin{array}{rl}
\underline{\mathrm{C}} \xrightarrow{\mathrm{p}} \underline{\mathrm{I}} \\
\underline{\mathrm{D}} \xrightarrow{\mathrm{q}}
\end{array}\right.
$$

be Grothendieck prefibrations. Suppose that $\Phi:(\underline{C}, p) \rightarrow(\underline{D}, q)$ is a morphism in CAT/I (q $\circ \Phi=p$) such that $\forall i \in O b I$, the arrow of restriction

$$
\Phi_{i}: \mathcal{C}_{i} \rightarrow \underline{D}_{i}
$$

is a simplicial weak equivalence -- then Φ is a simplicial weak equivalence.

B. 6.15 LEMMA Let

be a pullback square in CAT. Suppose that f is a Grothendieck opfibration and that for all $z \in O B \underline{Z}$, the category $z \backslash \underline{Y}$ is contractible -- then for all $x \in O b \underline{X}$, the category $x \backslash P$ is contractible, hence ξ is a simplicial weak equivalence (cf. B.6.12).
B.6.16 LEMMA Let

be a pullback square in CAT. Suppose that f is a Grothendieck opfibration and g is a Grothendieck fibration with contractible fibers -- then ξ is a simplicial weak equivalence.

B. 7 INVARIANCE THEORY

Let I be a small category.
B.7.1 THEOREM Suppose given functors $F, F^{\prime}: I \rightarrow C A T$ and $\Xi \in \operatorname{Nat}\left(F, F^{\prime}\right)$. Assume: $\forall i \in O b I$,

$$
\Xi_{i}: F i \rightarrow F^{\prime} i
$$

is a simplicial weak equivalence -- then

$$
\underline{I N T}_{\underline{I}} E: \underline{I N T}_{I} F \rightarrow \underline{I N T}^{I} F^{\prime}
$$

is a simplicial weak equivalence.

PROOF The arrows

$$
\left[\begin{array}{l}
\theta_{F}: \underline{T N T}^{F} \rightarrow \underline{I} \\
\theta_{F}: \underline{R N P}_{\underline{I}} F^{\prime} \rightarrow I
\end{array}\right.
$$

are Grothendieck opfibrations (cf. B.2.6) and

$$
\theta_{F^{\prime}} \cdot \underline{I N T}_{\underline{I}}{ }^{E}=\theta_{F^{\prime}}
$$

Moreover, $\forall i \in O b I$,
with

$$
\left.\underline{(I N P}_{I}^{I}\right)_{i} \longleftrightarrow \Xi_{i}
$$

That $\mathbb{I N T}^{E}$ is a simplicial weak equivalence thus follows from B.6.8.
B.7.2 REMARK Consider CAT in its external structure -- then CAT is combinatorial, as is [I,CAT] when equipped with its projective structure (cf. 0.26.5). Since the weak equivalences per [$\mathrm{I}, \mathrm{CAT}]$ are levelwise, the composite

induces a functor

$$
\underline{\text { int }_{\underline{I}}}: \underline{H}[\underline{I}, \underline{C A T}] \rightarrow \underline{H C A T}
$$

at the level of homotopy categories (cf. B.7.1). But it is not difficult to see
that $\underline{\text { int }}_{\underline{I}}$ is a left adjoint for the functor

$$
\underline{H C A T} \rightarrow \underline{H}[\underline{I}, \mathrm{CAT}]
$$

associated with the arrow $p_{\underline{I}}: I \rightarrow 1$. Therefore

$$
\text { int }_{I}=\text { hocolim }_{\underline{I}} \quad \text { (cf. } 0.26 .19 \text {) }
$$

B. 7.3 THEOREM Suppose given functors $F, F \prime: \underline{I} \rightarrow \underline{\text { CAT }}$ and $\Xi \in$ Nat (F, F^{\prime}) plus functors $G, G^{\prime}: \underline{I}^{O P} \rightarrow$ CAT and $\Omega \in \operatorname{Nat}\left(G, G^{\prime}\right)$. Assume: $\forall i \in O D$,

$$
\left[\begin{array}{l}
\Xi_{i}: F i \rightarrow F^{\prime} i \\
\Omega_{i}: G i \rightarrow G^{\prime} i
\end{array}\right.
$$

are simplicial weak equivalences -- then the induced arrow

$$
\Xi \mid \Omega: \overline{\mathbb{N T}}_{\underline{I}}(F, G) \rightarrow{\overline{\overline{T N T}_{I}}}_{\underline{I}}\left(F^{\prime}, G^{\prime}\right)
$$

is a simplicial weak equivalence.
PROOF There is a commutative diagram

from which the factorization

$$
\Xi|\Omega=\mathrm{id}| \Omega \circ \Xi \mid \mathrm{id}
$$

and the claim is that $E \mid i d$ and $i d \mid \Omega$ are simplicial weak equivalences. In view of
B.4.9, the projections
are Grothendieck opfibrations and

$$
q_{G}^{*} \circ \Xi \mid i d=q_{G}
$$

The objects of $\overline{\mathrm{INT}}_{\underline{I}} G$ are the pairs (i, y), where $i \in O b I$ and $Y \in O b G i$, and from the definitions,

$$
\left[\begin{array}{l}
\overline{I N T}_{I}(F, G)(i, Y) \\
\overline{I N T}_{I}\left(F^{\prime}, G\right)_{(i, Y)} \approx F^{\prime} i
\end{array}\right.
$$

with

$$
{ }_{(\Xi \mid i d}{ }_{(i, y)} \longleftrightarrow \Xi_{i} .
$$

That $E \mid$ id is a simplicial weak equivalence thus follows from B.6.8. And analogously for id| Ω (use B.6.14).
B. 8 HOMOTOPY COLIMITS

Let $\left(\underline{C}_{1}, w_{1}\right),\left(\underline{C}_{2}, w_{2}\right)$ be category pairs, where w_{1}, w_{2} satisfy the 2 out of 3 condition. Suppose that

$$
\left\{\begin{array}{l}
F: C_{1}+\underline{C}_{2} \\
G: C_{2}+C_{1}
\end{array}\right.
$$

are an adjoint pair with arrows of adjunction

$$
\left.\right|_{-}{ }_{-}^{\mu: i d_{C_{1}} \rightarrow G \circ F} \begin{aligned}
& \nu: F \circ G \rightarrow i d_{C_{2}} .
\end{aligned}
$$

B.8.1 LEMMA The following conditions are equivalent.

(1) $w_{1}=F^{-1}\left(w_{2}\right)$ and $\forall X_{2} \in O C_{2}$, the arrow $v_{X_{2}}: F G X_{2} \rightarrow X_{2}$ is in w_{2}.
(2) $W_{2}=G^{-1}\left(w_{1}\right)$ and $\forall X_{1} \in O b{\underset{C}{1}}$, the arrow $\mu_{X_{1}}: X_{1} \rightarrow G F X_{1}$ is in W_{1}. PROOF

- (1) $\Rightarrow>$ (2) Given $X_{1} \in O B \mathrm{C}_{1}$, we have

$$
\nu_{\mathrm{FX}_{1}} \circ \mathrm{~F} \mu_{\mathrm{X}_{1}}=i d_{\mathrm{FX}_{1}}
$$

But $v_{F_{X}} \in w_{2}, i d_{\mathrm{FX}_{1}} \in W_{2}$, so, since W_{2} satisfies the 2 out of 3 condition, $F \mu_{X_{1}} \in W_{2}$, hence $\mu_{X_{1}} \in W_{1}$. There remains the contention that $W_{2}=G^{-1}\left(W_{1}\right)$. Given an arrow $f_{2}: X_{2} \rightarrow Y_{2}$ in Nor C_{2}, consideration of the commutative diagram

implies that $f_{2} \in W_{2}$ iff $\mathrm{FGf}_{2} \in W_{2}$. However, by hypothesis, $\mathrm{FGf}_{2} \in \mathcal{W}_{2}$ iff $G f_{2} \in W_{1}$.

$$
\text { - } \quad(2) \Rightarrow(1) \quad \cdots
$$

B.8.2 LEMMA Suppose that the equivalent conditions of B.8.1 are in force -then

$$
\left[\begin{array}{l}
F w_{1} \subset w_{2} \\
\mathrm{G} w_{2} \subset w_{1}
\end{array}\right.
$$

thus

$$
\left[\begin{array}{l}
F:\left(\underline{C}_{1}, W_{1}\right) \rightarrow\left(\underline{C}_{2}, W_{2}\right) \\
G:\left(\underline{C}_{2}, W_{2}\right) \rightarrow\left(\underline{C}_{1}, W_{1}\right)
\end{array}\right.
$$

are morphisms of category pairs, so there are unique functors

$$
\left[\begin{array}{l}
\bar{F}: w_{1}^{-1} C_{1} \rightarrow w_{2}^{-1} C_{2} \\
\bar{G}: w_{2}^{-1} C_{2} \rightarrow w_{1}^{-1} C_{1}
\end{array}\right.
$$

for which the diagrams

$$
\omega_{1}^{-1} \mathrm{C}_{1} \xrightarrow[\overline{\mathrm{~F}}]{ } \omega_{2}^{-1} \mathrm{C}_{2}
$$

commate (cf. 1.4.5).
B.8.3 LEMMA Suppose that the equivalent conditions of B.8.1 are in force -
then

$$
\left.\right|_{-} ^{\bar{F}: w_{1}^{-1} \mathrm{C}_{1}}+w_{2}^{-1} \mathrm{C}_{2}, ~\left(w_{2}^{-1} \mathrm{C}_{2} \rightarrow w_{1}^{-1} \mathrm{C}_{1}, ~ \$\right.
$$

are an adjoint pair (cf. 1.7.1) and the induced arrows of adjunction

$$
\left[\begin{array}{l}
\bar{\mu}: i W_{1}^{-1} \mathcal{C}_{1} \\
\bar{v}: \overline{\mathrm{F}} \circ \overline{\mathrm{G}} \rightarrow \overline{\mathrm{id}} \\
\mathrm{~W}_{2}^{-1} \mathrm{C}_{2}
\end{array}\right.
$$

are natural isomorphisms, thus the adjoint situation ($\bar{F}, \overline{\mathrm{G}}, \bar{\mu}, \bar{\nu}$) is an adjoint equivalence of metacategories.
[Note: Bear in mind that

$$
\begin{aligned}
& \forall x_{2} \in o b C_{2}, L_{w_{2}} v_{x_{2}} \text { is an isomorphism in } W_{2}^{-1} \underline{C}_{2} \\
& \left.\forall x_{1} \in O C_{1}, L_{w_{1}} \mu_{x_{1}} \text { is an isomorphism in } w_{1}^{-1} C_{1} .\right]
\end{aligned}
$$

Let I be a small category.

- Denote by $W_{\infty}, \underline{I}$ the levelwise simplicial weak equivalences in Mor [I, CAT],
i.e., the $\Xi \in \operatorname{Nat}\left(F^{\prime}, F^{\prime}\right)$ such that $\forall i \in O D I$,

$$
E_{i}: F i \rightarrow F^{\prime} i
$$

is a simplicial weak equivalence.

- Denote by $W_{o f}$ I the local simplicial weak equivalences in Mor CAT/I,
i.e., the $\Phi \in \operatorname{Mor}((\underline{C}, p),(\underline{D}, q))$ such that $\forall i \in O D I$,

$$
\Phi / i: C / i \rightarrow D / i
$$

is a simplicial weak equivalence.
Recall now the setup of B. 2.12 which produced an adjoint pair

$$
\left\{\begin{array}{l}
\Gamma_{\underline{I}}: \underline{\mathrm{CAT} / I} \rightarrow[\underline{I}, \mathrm{CAT}] \\
\underline{I N T}_{\underline{I}}:[\underline{I}, \underline{\mathrm{CAT}}] \rightarrow \mathrm{CAT} / \underline{I} .
\end{array}\right.
$$

The claim then is that the equivalent conditions figuring in B.8.1 are realized by this data.

B.8.4 LEMMA We have

$$
w_{\infty} / \underline{I}=\Gamma_{\underline{I}}^{-1}\left(w_{\infty, \underline{I}}\right)
$$

PROOF For $\Phi \in \Gamma_{\underline{I}}^{-1}\left(\omega_{\infty, \underline{I}}\right) \Leftrightarrow \Gamma_{\underline{I}}^{\Phi} \in W_{\infty, \underline{I}} \quad$ And $\Gamma_{\underline{I}} \Phi=\Phi /-$.
B.8.5 IWMMA Let $F \in O b[\underline{I}, \underline{C A T}]$ - then $\forall i \in O b I$, the functor

$$
\nu_{F, i}: \underline{I N T}=\underline{E} / i \rightarrow F i \quad \text { (cf. B.2.12) }
$$

is a simplicial weak equivalence.
PROOF It suffices to show that $\nu_{F, i}$ admits a right adjoint

$$
\rho_{F, i}: F i \rightarrow \underset{I}{I N T} F / i
$$

Definition:

$$
\begin{aligned}
& \rho_{F, i} X=\left(i, X, i \xrightarrow{i d_{i}} \xrightarrow{l}(X \in O B F i)\right. \\
& \rho_{F, i} f=\left(i d_{i}, f\right) \quad(f \in \operatorname{Mor} F i) .
\end{aligned}
$$

Therefore the first condition of B.8.1 is satisfied and, as a consequence, B.8.3 is applicable.
B.8.6 THEOREM The adjoint pair

$$
\left.\right|_{-} ^{-} \begin{aligned}
& \overline{\Gamma_{I}} \\
& \overline{\mathrm{INT}}
\end{aligned}
$$

is an adjoint equivalence of categories:

$$
\left[\begin{array}{l}
\overline{\Gamma_{\underline{I}}}:\left(w_{\infty} / \underline{I}\right)^{-1} \underline{C A T} / \underline{I} \rightarrow W_{\infty, \underline{I}}^{-1}[\underline{I}, \underline{C A T}] \\
\overline{\overline{I N T}_{I}^{I}}: W_{\infty, \underline{I}}^{-1}[\underline{I}, \underline{C A T}] \rightarrow\left(w_{\infty} / \underline{I}\right)^{-1} \underline{\mathrm{CAT} / \underline{I}} .
\end{array}\right.
$$

Let I and I be small categories, $\mathrm{K}: \underline{I} \rightarrow \underline{J}$ a functor.

B.8.7 IEMMA The functor

$$
K^{\star}:[\underline{J}, \underline{C A T}] \rightarrow[\underline{I}, \underline{C A T}]
$$

sends $w_{\infty, \underline{\mathrm{I}}}$ to $W_{\infty, \underline{I}}$:

$$
K * W_{\infty, \underline{U}} \subset W_{\infty, \underline{I}}
$$

PROOF If $\Omega \in W_{\infty, J^{\prime}}$ then $\forall j \in O b J, \Omega_{j}$ is a simplicial weak equivalence, so $\forall i \in O B I$,

$$
\left(K^{*} \Omega\right)_{i}=\Omega_{K i}
$$

is a simplicial weak equivalence.

Therefore

$$
K^{*}:\left([\underline{J}, \underline{C A T}], W_{\infty, \underline{U}}\right) \rightarrow\left([\underline{I}, \underline{C A T}], W_{\infty, \underline{I}}\right)
$$

is a morphism of category pairs, thus there is a unique functor

$$
\overline{K^{\star}}: W_{\infty, \underline{\mathrm{I}}}^{-1}, \underline{\mathrm{~J}}, \underline{\left.A^{2}\right]} \rightarrow W_{\infty}^{-1}[\underline{I}, \mathrm{CAT}]
$$

for which the diagram

commutes.
Now take CAT in its external structure. Since CAT is combinatorial, the functor categories

$$
\left.\right|_{-} ^{[\underline{I}, \underline{\mathrm{CAT}]}]} \begin{aligned}
& {[\underline{\mathrm{I}, \mathrm{CAT}]}]}
\end{aligned}
$$

in their projective structure are also combinatorial (cf. 0.26.5) and we have an instance of the setup of 0.26 .16 :

Therefore $\overline{K^{*}}$ admits a left adjoint

$$
\mathrm{LK}_{\mathrm{I}}: \mathrm{H}[\mathrm{I}, \mathrm{CAT}] \rightarrow \underline{\mathrm{H}}[\underline{\mathrm{~J}}, \mathrm{CAT}],
$$

the homotopy colimit of K (cf. 0.26 .19), the explication of which will be carried out below.

B.8.8 LFNMA The functor

$$
\mathrm{CAT} / \mathrm{K}: \mathrm{CAT} / \mathrm{I} \rightarrow \mathrm{CAT} / \mathrm{J}
$$

sends $W_{\infty} / \underline{I}$ to $W_{\infty} / \underline{I}:$

$$
\underline{\operatorname{CAT}} / K W_{\infty} / I=W_{\infty} / \underline{J} .
$$

PROOF Consider

where $q \circ \Phi=p$ and $\forall i \in O$ I,

$$
\Phi / i: C / i \rightarrow D / i
$$

is a simplicial weak equivalence, the claim being that $\forall j \in O b$ I,

$$
\Phi / j: C / j \rightarrow D / j
$$

is a simplicial weak equivalence. To see this, form the commutative diagram

and let (i, g) be an object of $I / j(g: K i \rightarrow j)$-- then

$$
\begin{aligned}
& (\underline{C} / j) /(i, g) \approx \underline{C} / i \\
& (\underline{D} / j) /(i, g) \approx \underline{D} / i
\end{aligned}
$$

and

$$
(\Phi / j) /(i, g) \longleftrightarrow \Phi / i .
$$

Consequently,

$$
\Phi / j: C / j \rightarrow D / j
$$

is a simplicial weak equivalence (cf. B.6.5).

Therefore

$$
\mathrm{CAT} / \mathrm{K}: \mathrm{CAT} / \mathrm{I} \rightarrow \mathrm{CAT} / \mathrm{J}
$$

is a morphism of category pairs, thus there is a unique functor

$$
\overline{\mathrm{CAT} / \mathrm{K}}:\left(\mathrm{W}_{\infty} / \mathrm{I}\right)^{-1} \mathrm{CAT} / \mathrm{I} \rightarrow\left(\omega_{\infty} / J\right)^{-1} \mathrm{CAT} / \mathrm{J}
$$

for which the diagram

conmutes.
B. 8.9 NOIATION Write $K(1)$ for the carmposite

$$
\mathrm{r}_{\mathrm{I}} \circ \underline{\mathrm{CAT} / \mathrm{K}} \circ \underline{\mathrm{INT}^{\prime}} \underline{I}^{\prime}
$$

so

$$
\mathrm{K}(1):[\underline{I}, \underline{\mathrm{CAT}}] \rightarrow[\underline{\mathrm{I}}, \underline{\mathrm{CAT}}] .
$$

[Note: $K(!)$ is not to be confused with K_{1} (the left adjoint of K *).]
B.8.10 NOTATION Write LK(!) for the composite

$$
\overline{\bar{\Gamma}_{\underline{J}}} \circ \overline{\overline{\mathrm{CAT} / \mathrm{K}}} \circ \overline{\underline{\mathrm{INT}} \underline{I}^{\prime}}
$$

so

$$
\operatorname{LK}(1): \underline{H}[\underline{I}, \underline{C A T}] \rightarrow \underline{H}[\underline{\mathrm{~J}}, \underline{\mathrm{CAT}}] .
$$

B.8.11 THEOREM LK(!) is a left adjoint for $\overline{K^{*}}$, thus $\mathrm{LK}(!)$ "is" $L K$. PROOF Start with the adjoint pair

$$
\left[\begin{array}{l}
\overline{\Gamma_{\underline{J}}} \circ \overline{\mathrm{CAT} / \mathrm{K}} \\
\frac{\mathrm{INI}_{\underline{I}}}{-} \overline{\mathrm{K}^{*}}
\end{array} \quad\right. \text { (cf. B.2.13) }
$$

Then

$$
\begin{align*}
& \left.\right|^{-} \forall \mathrm{X} \in \mathrm{Ob} \underline{H}[\underline{I}, \mathrm{CAT}] \\
& \forall Y \in O b \underline{H}[\underline{J}, \underline{C A T}], \\
& \operatorname{Mor}(\operatorname{LK}(1) \mathrm{X}, \mathrm{Y}) \\
& =\operatorname{Mor}\left(\overline{\Gamma_{\mathrm{J}}} \circ \overline{\mathrm{CAT} / \mathrm{K}} \circ \overline{\overline{\mathrm{INT}} \underline{\underline{I}}} \mathrm{X}, \mathrm{Y}\right) \\
& \approx \operatorname{Mor}\left(\overline{\overline{\operatorname{INS}}_{\underline{I}}} \mathrm{X}, \overline{\underline{\mathrm{INT}} \underline{\underline{I}}} \circ \overline{\mathrm{~K}^{\star}} \mathrm{Y}\right) \\
& \approx \operatorname{Mor}\left(\overline{\Gamma_{\underline{\mathrm{I}}}} \circ \overline{\overline{\mathrm{~N}}_{\underline{\mathrm{I}}}} \mathrm{X}, \overline{\mathrm{~K}^{\star} \mathrm{Y}}\right) \tag{cf.B.8.6}
\end{align*}
$$

$$
\begin{aligned}
& \approx \operatorname{Mor}\left(\mathrm{id}_{\underline{H}}[\underline{I}, \underline{\operatorname{CAT}]}\right. \\
& \left.X, \overline{\mathrm{~K}^{\star}} \mathrm{Y}\right) \\
& =\operatorname{Mor}\left(\mathrm{X}, \overline{\mathrm{~K}^{\star} \mathrm{Y}}\right) .
\end{aligned}
$$

B.8.12 SCHOLTUM The composite

$$
\overline{\Gamma_{\underline{J}}} \circ \overline{\overline{\mathrm{CAT} / \mathrm{K}}} \circ \overline{\underline{\mathrm{INT}_{\underline{I}}^{I}}}
$$

is the homotopy colimit of K .
B. 8.13 EXAMPLE Take $\underline{J}=\underline{1}$ and let $K=P_{\underline{I}}$ (the canonical arrow $\underline{I} \rightarrow \underline{I}$) - then $\mathrm{P}_{\underline{I}}^{*}: \underline{C A T} \rightarrow[\underline{I}, \underline{C A T}]$ is the constant diagram functor and its left adjoint $\mathrm{P}_{\underline{I}!}$ is colim $_{\underline{I}}:[\underline{I}, \underline{\text { CAT }]} \rightarrow$ CAT, thus

$$
\text { hocolim }_{I^{\prime}}=\mathrm{L} \text { colim }_{\mathrm{I}^{\prime}}
$$

and $\forall F \in O b[I, C A T]$,

$$
\text { hocolim }_{\underline{I}}^{F}=\underline{I N T}_{\underline{I}} F \quad \text { (cf. B.7.2). }
$$

E.g.: Suppose that $F=F_{\underline{J}}$ (cf. B.2.8) - then

$$
\operatorname{hocolim}_{\underline{I}} \mathrm{~F}_{\underline{J}}=\underline{I N T}_{\underline{I}} \underline{F}_{\underline{J}} \approx \underline{I} \times \underline{J} .
$$

[Note: Given $F \in O b[\underline{I}, \underline{C A T}]$, put $N F=$ ner $\circ \mathrm{F}$, so $\mathrm{NF}: \underline{I} \rightarrow \underline{\text { SISET. Denote by }}$ L NF the bisimplicial set for which
(\| NF) $([\mathrm{n}],[\mathrm{m}])$
are the pairs of strings

$$
\left(i_{0} \xrightarrow{\delta_{0}} i_{1} \rightarrow \cdots+i_{n-1} \xrightarrow{\delta_{n-1}} i_{n}, x_{0} \xrightarrow{f_{0}} x_{1} \rightarrow \cdots \rightarrow x_{m-1} \xrightarrow{f_{m-1}} x_{m}\right),
$$

where the $X_{k} \in O b \mathrm{Fi}_{0}$ and the $f_{k} \in \operatorname{Mor}\left(\mathrm{Fi}_{0}, \mathrm{Fi}_{0}\right)(0 \leq k \leq m)$, supplied with the
evident horizontal and vertical operations. Using B.2.14, one can show that for any small category C ,

$$
\operatorname{Mor}(\text { dia } \| \mathrm{NF}, \text { ner } \underline{\mathrm{C}}) \approx \operatorname{Mor}(\underline{\operatorname{TNT}} \underset{\underline{\mathrm{F}}}{\mathrm{~F}}, \underline{\mathrm{C}})
$$

from which,

$$
\operatorname{Mor}(\text { cat dia } \| \mathrm{NF}, \mathrm{C}) \approx \operatorname{Mor}\left(\underline{I N T}_{\underline{I}} F, \underline{C}\right)
$$

thus

$$
\text { cat dia } \| N F \approx \underline{I N T}_{\underline{I}} F
$$

On the other hand, there is an arrow of adjunction

$$
\begin{aligned}
\text { dia } 山 \mathrm{NF} & \longrightarrow \text { ner cat dia } 11 \mathrm{NF} \\
& \approx \text { ner } \xrightarrow{[N T} \mathrm{F}
\end{aligned}
$$

and Thomason ${ }^{\dagger}$ proved that it is a simplicial weak equivalence. 1

Keeping still to the assumption that $K: I \rightarrow J$ is a functor, there is an arrow of adjunction

$$
L K(1) \overline{K^{*}} \rightarrow i d_{\underline{H}[J, C A T]} \quad \text { (cf. B.8.11) }
$$

and

$$
\begin{aligned}
& \underline{I} \xrightarrow{K} \underline{J} \longrightarrow \underline{I} \Rightarrow p_{\underline{I}}=\underline{p}_{\underline{J}} \circ K \\
& \quad \Rightarrow \operatorname{Lp}_{\underline{I}}(!) \circ \overline{p_{\underline{I}}^{\star}} \\
& \\
& \quad=\operatorname{Lp}_{\underline{J}}(1) \circ \operatorname{LK}(!) \circ \overline{K^{*}} \circ \overline{p_{\underline{J}}^{\star}}
\end{aligned}
$$

+Math. Proc. Cambridge Philos. Soc. 85 (1979), 91-109.
49.

$$
\begin{aligned}
& \rightarrow \operatorname{Lp}_{\underline{J}}(!) \circ \mathrm{id}_{\underline{H}[\mathrm{~J}, \underline{\mathrm{CAT}}]} \circ \overline{\mathrm{p}_{\underline{\mathrm{J}}}^{\mathrm{J}}} \\
& =\operatorname{Lp}_{\underline{J}}(1) \circ \overline{\mathrm{p}_{\underline{\mathrm{J}}}^{*}}
\end{aligned}
$$

B. 8. 14 LENMA The functor $K: I \rightarrow J$ is a simplicial weak equivalence iff the natural transformation

$$
\operatorname{Lp}_{\underline{I}}(!) \circ \overline{p_{\underline{I}}^{\bar{I}}} \rightarrow \operatorname{Lp}_{\underline{J}}(!) \circ \overline{\bar{p}_{\underline{J}}^{\bar{J}}}
$$

is a natural isomorphism.
PROOF Given a small category \mathbb{C}, the arrow

$$
\begin{aligned}
\mathrm{I}_{W_{\infty}}(\underline{I} \times \underline{C}) & =\underline{I} \times \underline{C} \\
& \approx\left(\operatorname{Lp}_{\underline{I}}(1) \circ \overline{\bar{p}_{\underline{I}}^{\bar{I}}}\right)\left(\mathrm{I}_{W_{\infty}} \underline{C}\right) \\
& \rightarrow\left(\operatorname{Lp}_{\underline{J}}(1) \circ \overline{\bar{p}_{\underline{J}}}\right)\left(\mathrm{L}_{W_{\infty}} \underline{C}\right) \\
& \approx \underline{I} \times \underline{C}=L_{W_{\infty}}(\underline{J} \times \underline{C})
\end{aligned}
$$

is precisely $\mathrm{I}_{\mathrm{w}_{\infty}}\left(\mathrm{K} \times i \mathrm{C}_{\underline{C}}\right)$ which is an isomorphism iff $\mathrm{K} \times \mathrm{id} \underline{C}$ is a simplicial weak equivalence (ω_{∞} is saturated (cf. 2.3.20)).
[Note: The product of two simplicial weak equivalences is a simplicial weak equivalence. On the other hand, if $\forall \underset{\mathrm{C}}{\mathrm{C}}, \mathrm{K} \times i \mathrm{C}_{\underline{C}}$ is a simplicial weak equivalence, then K is a simplicial weak equivalence (take $\underline{C}=\underline{1}$).]

The position of the adjoint pair

$$
\left.\right|_{-} ^{-} \begin{gathered}
\Gamma_{\underline{I}} \\
\\
{ }^{\mathrm{INT}} \mathrm{I}
\end{gathered}
$$

is clarified if CAT is equipped with its internal structure (cf. 0.12) (which is inherited by CAT $/ \mathcal{I}$) and (\underline{I}, CAT] is given the associated projective structure (thus the weak equivalences are levelwise as are the fibrations).
B. 8. 15 LEMMA 'The adjoint situation ($\Gamma_{\underline{I}}, \underline{I N T}_{\underline{I}}$) is a model pair.

PROOF If $F, G \in O[\underline{I}, C A T]$, if $\Xi \in \operatorname{Nat}(F, G)$, and if $\forall i \in O B I, \Xi_{i}: F i \rightarrow G i$ is an equivalence of categories, then the opfibered functor

$$
\underline{I N T}_{\underline{\mathrm{I}}}^{\mathrm{E}}: \underline{\mathrm{INT}}_{\underline{\mathrm{I}}}^{\mathrm{F}} \rightarrow \underline{\mathrm{INT}}_{\underline{\mathrm{I}}}^{\mathrm{G}}
$$

is an equivalence (cf. A.l.32). Accordingly, we have only to show that $\operatorname{INT}_{\mathrm{I}}$ preserves fibrations. So suppose that $E: F \rightarrow G$ is a levelwise fibration, the claim being that

$$
\mathrm{INT}_{\mathrm{I}} \mathrm{E}: \underline{\mathrm{NT}}_{\mathrm{I}}^{\mathrm{F}} \rightarrow \underline{\mathrm{INT}}_{\underline{I}}^{G}
$$

is a fibration in CAT/I (Internal Structure). To establish this, let (i,X) \in

$$
\left(\underline{I N T}_{I}^{E}\right)(i, X)=\left(i, E_{i} X\right)
$$

and $\psi=(\delta, g)$, where $\delta: i \rightarrow j$ is an isomorphism in I and $g:(G \delta) \Xi_{i} X\left(=\Xi_{j}(F \delta) X\right) \rightarrow Y$ is an isomorphism in $G j$. Since $\Xi_{j}: F j \rightarrow G j$ is a fibration, \exists an isomorphism $\gamma:(F \delta) X \rightarrow X^{\prime}$ in $F j$ such that $\Xi_{j} \gamma=g$. Now put $\phi=(\delta, \gamma)$, thus $\phi:(i, X) \rightarrow\left(j, X^{\prime}\right)$ and

$$
\left(\underline{\mathrm{INT}}_{\mathrm{I}} \Xi\right) \phi=\left(\delta, \Xi_{j} \gamma\right)=(\delta, g)=\psi
$$

B.8.16 REMARK If \underline{I} is a groupoid, then the model pair ($\mathrm{I}_{\mathrm{I}}, \mathrm{INT}_{\mathrm{I}}$) is a model equivalence.

C: CORRESPONDENCES

C. 1 Fundamental localizers
C. 2 SORITES
C. 3 Stabtlity
C. 4 SEGMENTS
C. 5 STRUCTURE THEORY
C. 6 PASSAGE TO PRESHEAVES
C. 7 minimality
C. 8 TEST CATEGORIES
C. 9 CISINSKI THEORY (bis)
C. 10 CRITERIA

C: CORRESPONDENCES

C. 1 FUNDAMENTAL LOCALIZERS

Suppose that (CAT, (V) is a category pair, where $W \subset$ Mor CAT is weakly saturated (cf. 2.3.14).
[Note: Therefore W contains the isomorphisms of CAT.]

C.1.1 DEFTNITION W is a fundamental localizer provided:

(1) If $I \in O B \underline{C A T}$ admits a final object, then the canonical arrow $p_{\underline{I}}: \underline{I} \rightarrow \underline{1}$ is in W.
(2) If $I \in O b$ CAT, if

$$
\left[\begin{array}{l}
\underset{\longrightarrow}{\mathrm{C}} \xrightarrow{\mathrm{p}} \mathrm{I} \\
\underline{\mathrm{D}} \xrightarrow{\mathrm{q}} \mathrm{I}
\end{array}\right.
$$

are objects in CAT/ \underline{I}, and if $\Phi:(\underline{C}, p) \rightarrow(\underline{D}, q)$ is a morphism in CAT/I ($q \circ \Phi=p$) such that $\forall i \in O$ I, the arrow

$$
\Phi / i: C / i \rightarrow D / i
$$

is in W, then Φ is in W.
C.1.2 EXAMPIE The class $W_{t r}$ consisting of all the elements of Mor CAT is a fundamental localizer, the trivial fundamental localizer.
C.1.3 EXAMPIE The class $W_{g r}$ consisting of $i d_{\underline{0}}: \underline{0} \rightarrow \underline{0}$ and all functors $F: \underline{I} \rightarrow \underline{\mathbb{I}}$, where $\underline{I} \neq \underline{0}$ and $\underline{J} \neq \underline{0}$, is a fundamental localizer, the coarse fundamental localizer.
N.B. If W is a fundamental localizer and if

$$
w_{g r}=w \in w_{t r^{\prime}}
$$

then either $W=w_{g r}$ or $W=w_{t r}$ (cf. C.5.2).
C.1.4 EXAMPLE ω_{∞} is a fundamental localizer.
[W_{∞} is saturated (being the weak equivalences for CAT (External Structure),
so 2.3.20 can be cited), hence W_{∞} is weakly saturated (cf, 2.3.15).
Ad (I): If I has a final object, then I is contractible and the canonical arrow $P_{\underline{I}}: \underline{I} \rightarrow \underline{\underline{1}}$ is a simplicial weak equivalence.

Ad (2): This is B. 6.5 verbatim.]
C.1.5 RAPPEL If X and Y are simplicial sets and if $f: X \rightarrow Y$ is a simplicial map, then f is an n-equivalence ($n \geq 0$) if $\pi_{0}(f): \pi_{0}(X) \rightarrow \pi_{0}(Y)$ is bijective and if $\forall x \in X_{0}, f$ induces an isomorphism

$$
\pi_{k}(X, X) \rightarrow \pi_{k}(Y, f(x)) \quad(1 \leq k \leq n)
$$

of homotopy groups.
C.1.6 EXAMPLE The class $\omega_{n}(n \geq 0)$ consisting of those functors $F: I \rightarrow J$ such that ner $F: n e r \underline{I} \rightarrow$ ner \underline{J} is an n-equivalence is a fundamental localizer.
N.B. We have

$$
w_{\infty} \subset w_{n} \subset w_{m} \subset w_{0} \subset w_{g r} \subset w_{\operatorname{tr}} \quad(m \leq n)
$$

and

$$
w_{\infty}=\bigcap_{n \geq 0} W_{n} .
$$

C.1.7 EXAMPLE Given a fundanental localizer W, form the derivator $D_{(\text {CAT, }}$, w) (cf. 3.2.1) -- then

$$
\left.W_{D(C A T}, w\right) \quad \text { (cf. 3.5.2) }
$$

coincides with W (cf. C.l.13).
[Note: Fundamental localizers are necessarily saturated (cf. C.9.3).]
C.1.8 REMARK Suppose that D is a right (left) homotopy theory -- then ω_{D} is a fundamental localizer (cf. 3.5.17).

Let C © Mor CAT -- then the fundamental localizer generated by C, denoted $W(C)$, is the intersection of all the fundamental localizers containing C. The minimal fundamental localizer is $(\mathbb{U}(\varnothing)$ (\varnothing the enpty set of morphisms).
N.B. It turns out that $W(\varnothing)=W_{\infty}$ (cf. C.7.1).
C.1.9 DEFINITION A fundamental localizer is admissible if it is generated by a set of morphisms of CAT.
C.1.10 EXAMPLE $W_{t r}$ is an admissible fundamental localizer. In fact,

$$
w(\{\underline{0} \rightarrow 1\})=w_{\operatorname{tr}} .
$$

C.l.11 EXAMPLE $w_{g r}$ is an admissible fundamental localizer. In fact, $W(\{\underline{1} \perp \underline{1} \rightarrow 1\})=\omega_{g r} \quad(\mathrm{cf} . \mathrm{C} .5 .4)$.

The formal aspects of "fimdamental localizer theory" are spelled out in sections C. 2 and C. 3 below. Here I want to point out that certain important results that were stated and proved earlier for $\omega=\omega_{\infty}$ are true for any ω. In particular: This is the case of B.7.1, B.8.6, and B.8.11.
C.1.12 EXAMPLE Take $\omega=\omega_{0}$ - then $\forall I \in O$ CAI, π_{0} induces an isomorphism

$$
W_{0, \underline{I}}^{-1}[\underline{I}, \mathrm{CAT}] \rightarrow[\underline{I}, \mathrm{SET}]
$$

If $\mathrm{K}: \underline{I} \rightarrow$ J is a functor, then

$$
\overline{K^{\star}}: W_{0, \underline{U}}^{-1}[\underline{U}, C A T] \rightarrow W_{0, I}^{-1}[I, C A T]
$$

is identified with the functor

$$
\mathrm{K}^{*}:[\underline{\mathrm{J}}, \mathrm{SET}] \rightarrow[\underline{\mathrm{I}}, \underline{\mathrm{SET}}]
$$

and the functor

$$
\operatorname{LK}(1): W_{0, \underline{I}}^{-1}[\underline{I}, \underline{C A T}] \rightarrow W_{0, \underline{U}}^{-1}[\underline{U}, \underline{C A I I}]
$$

is identified with the functor

$$
\mathrm{K}_{!}:[\underline{I}, \mathrm{SEI}] \rightarrow[\underline{J}, \underline{\mathrm{SET}}]
$$

C.1.13 Remark since W is saturated (cf. C.9.3), B.8.14 goes through with no change.
C. 2 SORITES

Fix a fumdamental localizer ω.
C.2.1 DEFINITION A functor $F: I \rightarrow X$ is aspherical if $\forall j \in O$, \mathcal{I}, the functor

$$
F / j: I / j \rightarrow \underline{J} / j
$$

is in ω.
[Note: It then follows that F itself is in W (specialize condition (2) of C.l.1 in the obvious way (cf. B.6.6)).]
C.2.2 DEFINTTION An object $I \in O$ CAT is aspherical if $p_{\underline{I}}: I \rightarrow 1$ is aspherical (or, equivalently, if $p_{I}: \underline{I} \rightarrow \underline{\underline{1}}$ is in W).
[Note: Condition (1) of C.1.1 thus says that if I admits a final object, then I is aspherical.]
C.2.3 REMARK If $W \neq W_{z r}$, then

$$
\underline{I} \text { aspherical } \Rightarrow>\underline{I} \neq \underline{0} \text { (cf. C.5.1). }
$$

C.2.4 LENMA The functor $F: \underline{I} \rightarrow \underline{J}$ is aspherical iff $\forall j \in O B \underline{J}$, the category I/j is aspherical.

PROOF Since J / j has a final object, it is aspherical, thus the arrow $\mathrm{J} / \mathrm{j} \rightarrow \underline{1}$ is in W. This said, consider the commatative diagram

C.2.5 IEMMA Suppose that the functor $F: \underline{I} \rightarrow \underline{J}$ admits a right adjoint $G: \underline{I} \rightarrow \underline{I}-$ then F is aspherical.

Proof $\forall i \in O b I$ and $\forall j \in O b J$, we have

$$
\operatorname{Mor}(F i, j) \approx \operatorname{Mor}(i, G j)
$$

Therefore the category I / j is isomorphic to the category $I / G j$. But $I / G j$ has a final object, thus $I / G j$ is aspherical, hence the same is true of I / j and one may then quote C.2.4.
C.2.6 EXAMPLE An equivalence of small categories is aspherical.
C.2.7 LEMMA If $I \in O B C A T$ admits an initial object i_{0}, then I is aspherical. PROOF The functor $P_{I}: I \rightarrow 1$ is a right adjoint for the functor $K_{i_{0}}: \underline{I} \rightarrow$. Therefore $K_{i_{0}}$ is aspherical (cf. C.2.5). But $P_{\underline{I}}{ }^{\circ} K_{i_{0}}=i d_{\underline{1}}$, thus $p_{\underline{I}}: I \rightarrow \underline{I}$ is aspherical, i.e., I is aspherical.
C.2.8 LEMMA Let $\underline{C}, \underline{D}$ be small categories, $F: \underline{C} \rightarrow \underline{D}$ functor. Assume: F is a Grothendieck preopfibration -- then F is aspherical iff $\forall Y \in O D D$, the fiber C_{Y} is aspherical.

PROOF The canonical functor

$$
\underline{C}_{Y}+\underline{C} / Y \quad\left(X \rightarrow\left(X, i d_{Y}\right)\right)
$$

has a left adjoint $\underline{C} / Y \rightarrow G_{Y}$ (cf. A.l.10), which is therefore aspherical (cf. C.2.5). Taking into account $\mathbf{C . 2 . 4}$, consider the conmutative diagram

C.2.9 LEMMA Let $F: \underline{I} \rightarrow \underline{J}$ be a functor - then F is in ψ iff $F^{O P}: \underline{I}^{O P} \rightarrow \underline{J}^{O P}$ is in W.

PROOF Consider the commatative diagram

Here the arrows $s_{I^{\prime}} t_{\underline{I}}, s_{\underline{J}}, t_{\underline{J}}$ are Grothendieck opfibrations and since their fibers admit an initial object, it follows from $C .2 .7$ and $C .2 .8$ that $\underline{I}_{\underline{\prime}} t_{I^{\prime}} S_{\underline{J}} t_{\underline{J}}$ are aspherical, hence are in W (cf. C.2.1). Accordingly, if F is in W, then the unlabeled vertical arrow is in W, which implies that $F^{O P}$ is in W and conversely.
C.2.10 APPLICATION Let $I \in O b$ CAT - then I is aspherical iff $I^{O P}$ is aspherical.
C.2.11 IEMMA Let $F: \underline{I} \rightarrow \underline{J}$ be a functor. Assume: F is a Grothendieck prefibration and $\forall j \in O B \underline{I}$, the fiber I_{j} is aspherical - then F is in W.
[The functor $F^{O P}: \underline{I}^{O P} \rightarrow \underline{J}^{O P}$ is a Grothendieck preopfibration and $\forall j \in \mathrm{Ob}$ I, $\left.\left(\underline{I}^{O P}\right)_{j}=\left(I_{j}\right){ }^{O P} \cdot\right]$
C.2.12 IEMMA Suppose that I is aspherical -- then \forall J, the projection $\underline{I} \times \underline{J} \rightarrow \mathbf{J}$ is in W.

PROOF It suffices to show that $\forall j \in O B J$, the category ($\underline{I} \times \underline{J}$)/j is aspherical (cf. C.2.4). But

$$
(\underline{I} \times \underline{J}) / j \approx \underline{I} \times(\underline{J} / \mathbf{j})
$$

and there is a commatative diagram

so, since $\underline{p}_{\underline{I}}: \underline{I} \rightarrow \underline{1}$ is aspherical by hypothesis, one has only to prove that the arrow $I \times(\mathrm{J} / \mathrm{j}) \rightarrow I$ is in W. And to this end, it suffices to show that $\forall i \in O b I$,
the category

$$
(\underline{I} \times(\underline{U} / \mathrm{j})) / \mathbf{i}
$$

is aspherical (cf. C.2.4). But

$$
(\underline{I} \times(\underline{J} / j)) / i \approx I / i \times I / j
$$

and the category on the RHS admits a final object, hence is aspherical.
C.2.13 LEMMA If $\Phi: \underline{C} \rightarrow \underline{D}$ is in W, then $\forall \underline{I}$, the arrow

$$
\underline{\mathrm{C}} \times \underline{\mathrm{I}} \xrightarrow{\Phi \times \mathrm{id}_{\underline{I}}} \underline{\mathrm{D}} \times \underline{\mathrm{I}}
$$

is in ω.
[This is the relative version of $C .2 .12$ (take $\underline{C}=\underline{I}, \underline{I}=\underline{J}, \underline{D}=\underline{\underline{1}}, \Phi=p_{\underline{I}}$) and its proof runs along similar lines.]

C. 2.14 LEMMA If $I \in O b$ CAT, if

$$
\left[\begin{array}{rl}
\underline{\mathrm{C}} \xrightarrow{\mathrm{p}} \xrightarrow{ } \\
\underline{\mathrm{D}} \xrightarrow{\mathrm{q}} &
\end{array}\right.
$$

are objects in CAT/ \underline{I}, and if $\Phi:(\underline{C}, p) \rightarrow(\underline{D}, q)$ is a morphisn in CAT/ $\underline{I}(q \circ \Phi=p$) which is aspherical, then $\forall i \in O b I$, the arrow

$$
\Phi / i: \subseteq / i \rightarrow D / i
$$

is aspherical.
C.2.15 LEMMA If $I \in O$ CAT, if

$$
\left\lvert\, \begin{aligned}
\underline{C} \xrightarrow{p} I \\
\underline{D} \longrightarrow \underline{I}
\end{aligned}\right.
$$

are objects in $\mathrm{CAT} / \underline{I}$, and if $\Phi:(\underline{\mathrm{C}}, \mathrm{p}) \rightarrow(\underline{\mathrm{D}}, \mathrm{q})$ is a morphism in CAT/I $(\mathrm{q} \circ \Phi=\mathrm{p})$ which is aspherical, then p is aspherical iff q is aspherical.

PROOF Given i $\in O B$ I, consider the cormatative diagram

Then Φ / i is aspherical (cf. C.2.14), hence is in W. Therefore p / i is in W iff q / i is in W, so p is aspherical iff q is aspherical.
C.2.16 DEFINITION Let $F: I \rightarrow J$ be in W-- then F is universally in \mathbb{W} if for every pullback square

F^{\prime} is in W.
C.2.17 EXAMPLE If $p_{\underline{I}}: I \rightarrow \underline{1}$ is in W, then $p_{\underline{I}}$ is universally in W (cf. C.2.12) and conversely.
C.2.18 LEMMA If $F: I \rightarrow J$ is universally in W, then F is aspherical. PROOF $\forall j \in O D$, there is a pullback square

C. 3 STABILITY

Fix a fundamental localizer w.
C.3.1 LEMMA If $I_{k}(k=1, \ldots, n)$ are aspherical, then so is their product.

$$
\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{k}}
$$

PROOF Take $\mathrm{n}=2$ - then the projection $\mathrm{I}_{1} \times \mathrm{I}_{2} \rightarrow \mathrm{I}_{2}$ is in W (cf. C.2.12). But $\mathrm{p}_{\mathrm{I}_{2}}: \mathrm{I}_{2} \rightarrow \underline{1}$ is in W, thus

$$
\mathrm{p}_{\mathrm{I}_{1}} \times \mathrm{I}_{2}: \mathrm{I}_{1} \times \underline{I}_{2} \rightarrow 1
$$

is in W.
C.3.2 LEMMA If

$$
F_{k}: I_{k} \rightarrow J_{-k} \quad(k=1, \ldots, n)
$$

are aspherical, then so is their product

$$
\prod_{k=1}^{n} F_{k}: \prod_{k=1}^{n} I_{k} \rightarrow \prod_{k=1}^{n} I_{k}
$$

PROOF Take $n=2$ and let $\left(j_{1}, j_{2}\right) \in O b \underline{J}_{1} \times \underline{J}_{2}$ - then

$$
\left(\underline{I}_{1} \times \underline{I}_{2}\right) /\left(j_{1}, j_{2}\right) \approx \underline{I}_{1} / j_{1} \times I_{2} / j_{2}
$$

But the product on the RHS is aspherical (cf. C.3.1), thus $F_{1} \times F_{2}$ is aspherical (cf. C.2.4).
C.3.3 LEMMA If

$$
F_{k}: I_{k} \rightarrow J_{k} \quad(k=1, \ldots, n)
$$

are in ω, then so is their product

$$
\prod_{k=1}^{n} F_{k}: \prod_{k=1}^{n} I_{k} \rightarrow \prod_{k=1}^{n} J_{k} .
$$

PROOF Take $\mathrm{n}=2$, deconpose

$$
\mathrm{F}_{1} \times \mathrm{F}_{2}: \mathrm{I}_{1} \times \underline{\mathrm{I}}_{2} \rightarrow \mathrm{~J}_{1} \times \mathrm{J}_{2}
$$

as the composition

$$
\underline{I}_{1} \times \mathrm{I}_{2} \xrightarrow{\mathrm{~F}_{1} \times \mathrm{id}_{\mathrm{I}_{2}}} \mathrm{~J}_{1} \times \mathrm{I}_{2} \xrightarrow{\mathrm{id}_{-1} \times \mathrm{F}_{2}} \mathrm{I}_{1} \times \underline{I}_{2},
$$

and apply C.2.13.]
C. 3.4 LEMMA If S is a and if $\forall s \in S, F_{s}: \underline{I}_{S} \rightarrow \underline{J}_{S}$ is in W, then so is their coproduct

$$
\frac{\|}{s} F_{s}: \prod_{s} I_{s} \rightarrow \frac{\|}{s} J_{s} .
$$

PRCOF Let $F=\rfloor \perp F_{S}$ and let

$$
\left\lvert\, \begin{aligned}
& \underline{I}=\frac{1}{S} \underline{I}_{S} \\
& \underline{J}=\frac{11}{S} \underline{I} .
\end{aligned}\right.
$$

Then there is a commutative diagram

and $\forall s \in O$ dis S, the arrow $F / s: I / s \rightarrow J / s$ can be identified with the arrow
$\mathrm{F}_{\mathrm{S}}: \mathrm{I}_{\mathrm{S}} \rightarrow \mathrm{U}_{\mathrm{S}}$. Therefore F is in W (recall condition (2) of C.1.1).
C.3.5 LEMMA Suppose that I is a filtered category and $F, G: I \rightarrow C A T$ are functors. Let $E: F \rightarrow G$ be a natural transformation with the property that $\forall i \in O X I, E_{i}: F i \rightarrow G i$ is in W - then

$$
\text { colim E:colim F } \rightarrow \text { colim G }
$$

is in ω.
C.3.6 REMARK It follows that W is closed under the formation of retracts (take for I the category with one object and two morphisms $\left\{i d_{I}, p\right\}$, where $p^{2}=p$).
[Note: This is also a corollary to the fact that W is saturated (cf. C.9.3).]
C.3.7 LEMMA Suppose that $\left.\right|_{-} ^{\underline{C}}$ are small categories. Let $F, G: \underline{C} \rightarrow \underline{D}$ be functors, $E: F \rightarrow G$ a natural transformation - then F is in W iff G is in W. PROOF Pass to the functor

$$
E_{H}: C \times[1] \rightarrow \underline{D}
$$

and denote by

$$
\left\lvert\, \begin{aligned}
& e_{0}:[0] \rightarrow[1] \\
& \\
& e_{1}:[0] \rightarrow[1]
\end{aligned}\right.
$$

the obvious arrows -- then

$$
\begin{aligned}
& \underline{\mathrm{C}} \approx \underline{\mathrm{C}} \times[0] \xrightarrow{\mathrm{id}_{\underline{\mathrm{C}}} \times \mathrm{e}_{0}} \underline{\mathrm{C}} \times[1] \xrightarrow{\underline{\Xi}_{\mathrm{H}}} \underline{\mathrm{D}} \\
& \underline{\mathrm{C}} \approx \underline{\mathrm{C}} \times[0] \xrightarrow[\mathrm{id}_{\underline{\mathrm{C}}} \times \mathrm{e}_{1}]{ } \underline{\mathrm{C}} \times[1] \longrightarrow \underline{\mathrm{D}}
\end{aligned}
$$

with

$$
\left[\begin{array}{l}
F=\Xi_{\mathrm{H}} \circ\left(\mathrm{id}_{\mathrm{C}} \times \mathrm{e}_{0}\right) \\
\mathrm{G}=\Xi_{\mathrm{H}} \circ\left(\mathrm{id}_{\underline{C}} \times \mathrm{e}_{\mathrm{l}}\right)
\end{array}\right.
$$

Since [1] has a final object, it is aspherical, thus the projection

$$
\mathrm{C} \times[1] \xrightarrow{\mathrm{pr}} \mathrm{C}
$$

is in W (cf. C.2.12). But

$$
\operatorname{pro}\left(i d_{\underline{C}} \times e_{0}\right)=i d_{\underline{C}}=\operatorname{pro}_{\underline{C}}\left(i d_{\underline{C}} \times e_{1}\right)
$$

so

$$
\left.\right|_{-i d_{\underline{C}} \times e_{0}} ^{i d_{\underline{C}} \times e_{1}}
$$

are in W. Therefore $F(G)$ is in W iff Ξ_{H} is in W.

C. 4 SEGMENTS

Fix a fundamental localizer W.
C.4.1 DEFINITION A segment in CAT is a triple $\left({ }_{\text {C }}, \partial_{0}, \partial_{1}\right)$ where $И \in O D C A T$ is aspherical and $\partial_{0}, \partial_{1}: 1 \rightarrow K$ are morphisms in CAT.
C.4.2 EXAMPLE The triple ($[1], \mathrm{e}_{0}, \mathrm{e}_{1}$) figuring in C .3 .7 is a segment.

Given a segment $\left(K, \partial_{0}, \partial_{1}\right)$ and a small category \mathbb{C}, let $p r: \mathbb{C} \times U \rightarrow \mathbb{C}$ be the
projection -- then pr is in w (cf. C.2.12).
C.4.3 LEMMA $\forall \underline{C} \in O$ CAT, the morphisms

$$
\left.\right|_{-} ^{-i d_{\underline{C}} \times \partial_{0}} \begin{aligned}
& i d_{\mathbb{C}} \times \partial_{1}
\end{aligned}
$$

are in ω.
PROOF One has only to note that

$$
\operatorname{pr} \circ\left(i d_{\underline{C}} \times \partial_{0}\right)=i d_{\underline{C}}=\operatorname{pr} \circ\left(i d_{\underline{C}} \times \partial_{1}\right)
$$

C.4.4 DEFINITION Let $\left(K, \partial_{0}, \partial_{1}\right)$ be a segment in CAT. Suppose that $\left.\right|_{-} ^{-} \underline{C}$ are samll categories and let $F, G: \underline{C} \rightarrow \mathrm{D}$ be functors -- then F, G are said to be И-homotopic if \exists a morphism $H: \underline{C} \times И \rightarrow \underline{D}$ such that

$$
\begin{aligned}
& \mathrm{F}=\mathrm{H} \circ\left(\mathrm{id} \underset{\underline{C}}{ } \times \partial_{0}\right) \\
& G=H \circ(\underline{\mathrm{C}} \approx \underline{\mathrm{C}} \times \underline{1}) \\
& \left.\underline{\mathrm{C}} \times \partial_{1}\right)
\end{aligned}
$$

C.4.5 LEMMA If $\mathrm{F}, \mathrm{G}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ are K -homotopic, then $\mathrm{I}_{w} \mathrm{~F}=\mathrm{I}_{w} \mathrm{G}$. PROOF Since L_{W} pr is an isomorphism in W^{-1} CAT,

$$
\begin{array}{r}
\quad L_{W} p r \circ I_{W}\left(i d_{\underline{C}} \times \partial_{0}\right)=i d_{W W}=L_{W} p r \circ I_{W}\left(i d_{\underline{C}} \times \partial_{1}\right) \\
\Rightarrow \quad L_{W}\left(i d_{\underline{C}} \times \partial_{0}\right)=L_{W}\left(i d_{\underline{C}} \times \partial_{1}\right) .
\end{array}
$$

Therefore

$$
I_{W} F=L_{W} H \circ L_{W}\left(d_{\underline{C}} \times \partial_{0}\right)=I_{W} H \circ I_{W}\left(\mathrm{id}_{C} \times \partial_{1}\right)=I_{W} G .
$$

[Note: It follows that F and G are homotopic in the sense of 1.3.1.]
C.4.6 LEMMA If $F, G: C \rightarrow D$ are K-homotopic, then F is in \mathbb{W} iff G is in W.

PROOF In view of C.4.3, F(G) is in W iff H is in ω.
 \underline{C} is aspherical.

PROOF Because (\underline{C}, W) is a category pair, $i d_{\underline{C}}$ is in W, thus $K_{X}{ }^{\circ}{ }_{\underline{C}}$ is in W (cf. C.4.6) . On the other hand, the composition

$$
\underline{1} \xrightarrow{\mathrm{~K}_{\mathrm{X}}} \underline{\mathrm{C}} \xrightarrow{\mathrm{P}_{\underline{C}}} \underline{1}
$$

is id $\underline{\underline{1}}$. So, since W is weakly saturated, $p_{\underline{C}}$ is in W, i.e., \subseteq is aspherical.
C. 4.8 THEOREM Suppose that $\Xi \in \operatorname{Nat}\left(\mathrm{id}_{\underline{C}}, K_{X}{ }^{\circ}{ }_{\underline{C}}\right)(\exists \mathrm{X} \in \mathrm{O} \underline{\mathrm{C}})$-- then $\underline{\mathrm{C}}$ is aspherical.

PROOF In fact, $\mathrm{id}_{\underline{\mathrm{C}}}$ is U-homotopic to $\mathrm{K}_{\mathrm{X}}{ }^{\circ} \mathrm{P}_{\mathrm{C}}$, where

$$
\left(\Lambda, \partial_{0}, \partial_{1}\right)=\left([1], e_{0}, e_{1}\right) .
$$

[Note: Bear in mind that [l] has a final object, hence is aspherical.]
C.4.9 EXAMPIE Consider the category \triangle / I which is defined and discussed on pp. 28-30 of MATTERS SIMPLICIAL - then, under the assumption that I has a final object i_{0}, we exhibited

$$
\left\{\begin{array}{l}
\alpha \in \operatorname{Nat}\left(\mathrm{id}_{\triangle / I^{\prime}}{ }^{F}\right) \\
\beta \in \operatorname{Nat}\left(\mathrm{K}_{0}, \mathrm{~F}\right) .
\end{array}\right.
$$

Here

$$
\mathrm{K}_{0}=\mathrm{K}_{\left(0, \mathrm{~K}_{\mathbf{i}_{0}}\right)}{ }^{\circ} \mathrm{p}_{\underline{\Delta} / \underline{I}}
$$

So, with

$$
\left(\Lambda, \partial_{0}, \partial_{1}\right)=\left([1], e_{0}, e_{1}\right),
$$

$\mathrm{id}_{\underline{\Delta} / \underline{I}}$ is И-homotopic to F via α_{H} and K_{0} is И-homotopic to F via $\beta_{\mathrm{H}^{-}}$. Therefore F is in W, thus K_{0} is in W (cf. C.4.6). Reasoning now as in C.4.7, the conclusion is that $p_{\Delta / I}$ is in W or still, that Δ / I is aspherical.

C. 5 STRUCTURE THEORY

C.5.1 LEMMA If W is a fundamental localizer and if $W \neq W_{t r}$, then

$$
\underline{I} \text { aspherical } \Rightarrow \underline{I} \neq \underline{0} .
$$

PROOF Suppose that $\underline{0}$ is aspherical. Since $\forall I \in O b$ CAT, there is a pullback square

it follows that the arrow $\underline{0} \rightarrow \underline{I}$ is in W (cf. C.2.17), hence $P_{\underline{I}}$ is in W, i.e.,
\underline{I} is aspherical. But this means that every morphism $F: \underline{C} \rightarrow \underline{D}$ in $C A T$ is in W (write ${\underset{\mathrm{P}}{\underline{C}}}=\mathrm{p}_{\underline{\mathrm{D}}} \circ \mathrm{F}$), so $W=W_{\text {tr }}$, a contradiction.
C.5.2 APPLICATION If W is a fundamental localizer and if $W \supset W_{g r}$, then $w=w_{\text {tr }}$ or $w=w_{\text {gr }}$.
[Suppose that the containment ω د $\omega_{\text {gr }}$ is proper, hence that there exists an arrow $\underline{0} \rightarrow \underline{I}$ in $W(\underline{I} \neq \underline{0})$. Consider the commatative diagram

Then p_{I} is in $W_{g r}$, thus is in W. Therefore $p_{\underline{0}}$ is in W or still, $\underline{0}$ is aspherical, so $w=w_{\text {tr }} .1$
C.5.3 LEMMA If W is a fundamental localizer and if $W \neq W_{t r}, W_{g r}$, then

$$
\underline{I} \text { aspherical }=\underline{I} \neq \underline{0} \& \# \pi_{0}(\underline{I})=1
$$

PROOF Owing to C.5.1, one has only to show that I is connected. Suppose false -- then there is a decomposition $\underline{I}=I_{0} \| I_{1}$, where $I_{0}, I_{1} \neq 0$. Choose $i_{0} \in O B I_{0}, i_{1} \in O b I_{1}$ and let

$$
\left\{\begin{array}{l}
\partial_{0}: \underline{1} \rightarrow \underline{I} \\
\partial_{1}: \underline{I} \rightarrow \underline{I}
\end{array}\right.
$$

be the corresponding constant functors

$$
\left[\begin{array}{l}
k_{i_{0}}: \underline{I} \rightarrow \underline{I} \\
k_{i_{1}}: \underline{1} \rightarrow \underline{I} .
\end{array}\right.
$$

Then ($I_{2}, \partial_{0}, \partial_{1}$) is a segment (I being aspherical by assumption). Take now $\underline{C} \in O b \underline{C A T}(\underline{C} \neq \underline{0})$ and fix $\mathrm{x} \in \mathrm{Ob} \underline{\mathrm{C}}$. Denote by

$$
\left\{\begin{array}{l}
p_{0}: \underline{C} \times \underline{I}_{0} \rightarrow \underline{C} \\
p_{1}: \underline{C} \times I_{1} \rightarrow \underline{C}
\end{array}\right.
$$

the projections and define

$$
\mathrm{H}: \underline{\mathrm{C}} \times \underline{\mathrm{I}}=\left(\underline{\mathrm{C}} \times \underline{I}_{0}\right) \Perp\left(\underline{\mathrm{C}} \times \underline{I}_{1}\right) \rightarrow \underline{\mathrm{C}}
$$

by

$$
\left\lvert\, \begin{aligned}
& \mathrm{H} \mid\left(\underline{\mathrm{C}} \times \underline{I}_{0}\right)=\mathrm{p}_{0} \\
& \mathrm{H} \mid\left(\underline{\mathrm{C}} \times \underline{I}_{1}\right)=\mathrm{K}_{\mathrm{X}} \circ \mathrm{p}_{\underline{C}} \circ \mathrm{p}_{1} .
\end{aligned}\right.
$$

Then $\mathrm{id}_{\underline{\mathrm{C}}}$ is $\underline{\underline{I} \text {-homotopic to }} \mathrm{K}_{\mathrm{X}} \circ \mathrm{p}_{\mathrm{C}^{\prime}}$ thus $\underline{\mathrm{C}}$ is aspherical (cf. C.4.7). Therefore every functor between nonempty categories is in w, so $w \supset w_{g r}$, a contradiction.

C.5.4 APPLICATICN , he have

$$
w(\{\underline{1} \perp \underline{1} \rightarrow \underline{1}\})=w_{g r}{ }^{*}
$$

[Per $W(\{\underline{1} \not \Perp \underline{1} \rightarrow \underline{1}\}), \underline{1} \underline{\underline{1}}$ is aspherical, thus arguing as in C.5.3, one finds that every functor between nonempty categories is in $W(\{\underline{1} \| \underline{1} \rightarrow 1\})$, so

$$
w(\{\underline{1} \| \underline{1} \rightarrow \underline{1}\}) \supset w_{g r} .
$$

On the other hand, $\underline{1} \underline{1} \rightarrow \underline{1}$ is in $W_{\text {gr }}$ so

$$
\left.w_{g r}=W(\{\underline{1} \| \underline{1} \rightarrow 1\}) .\right]
$$

C.5.5 IEMMA If ω is a fundamental localizer and if $\omega \neq w_{\text {tr }}, w_{g r}$, then $w \in \omega_{0}$.
[Note: Recall that w_{0} consists of those $F: \underline{I} \rightarrow \underline{J}$ such that $\pi_{0}(F): \pi_{0}(\underline{I}) \rightarrow \pi_{0}(\underline{J})$ is bijective. $]$

C. 6 PASSAGE TO PRESHEAVES

Fix a fundamental localizer W.
C. 6.1 DEFINITION Let \underline{C} be a small category. Given $F, G \in \infty \hat{C} \underline{\hat{C}}$ and $E: F \rightarrow G$, call Ξ a W-equivalence if

$$
\mathrm{C} / \mathrm{E}: \mathrm{C} / \mathrm{F} \rightarrow \mathrm{C} / \mathrm{G}
$$

is in ω.
C. 6.2 NOTATION Write $W_{\hat{C}}$ for the class of W-equivalences in Mor $\hat{\underline{C}}$, thus

$$
{\underset{\hat{\mathbb{C}}}{ }}=i_{\underline{C}}^{-1}
$$

[Note: It is clear that $\left(\underline{\hat{\mathrm{C}}}, W_{\hat{\mathcal{C}}}\right)$ is a category pair and $\underset{\underline{\underline{C}}}{ }{ }_{\underline{\underline{C}}}$ satisfies the 2 out of 3 condition. Moreover,

$$
i_{\underline{C}}:\left(\underset{\left.\underline{\mathrm{C}}, w_{\hat{\mathrm{C}}}\right) \rightarrow(\underline{C A T}, w)}{ }\right.
$$

is a morphism of category pairs, thus there is a functor

$$
{\overline{i_{\mathrm{C}}}}: W_{\underline{\mathrm{C}}}^{-1} \hat{\mathrm{C}} \rightarrow W^{-1} \underline{\mathrm{CAT}} \quad \text { (cf. 1.4.5).] }
$$

C.6.3 REMARK To resolve a small matter of consistency, take $W=W_{\infty}$ and let $\underline{C}=\underline{\Delta}$ then a simplicial map $f: X \rightarrow Y$ is a simplicial weak equivalence iff
$\mathrm{gro}_{\triangle} \mathrm{f}: \mathrm{gro}_{\Delta} \mathrm{X} \rightarrow \mathrm{gro}_{\Delta} \mathrm{Y}$ is a simplicial weak equivalence or still, in different but equivalent notation, iff $\mathrm{i}_{\underline{\Delta}}^{\mathrm{F}}: \Delta / \mathrm{X} \rightarrow \Delta / \mathrm{Y}$ is a simplicial weak equivalence. Therefore

$$
W_{\infty}=i_{\Delta}^{-1} W_{\infty} \quad \text { (cf. } 0.24 .3 \text {) }
$$

C.6.4 LEMMA ${\underset{\widehat{C}}{ }}^{\text {is }}$ weakly saturated.
C.6.5 LEMMA ${\underset{W}{\widehat{C}}}^{\underline{\mathrm{C}}}$ is closed under the formation of retracts.

PROOF Suppose that E is a retract of Ω, say

But ${ }_{\underline{C}} \Omega \in W$ and W is closed under the formation of retracts (cf. C.3.6), so ${ }_{\underline{C}} \underline{E} \in \mathbb{W}$ or still, $\Xi \in \mathcal{W}_{\underline{\hat{C}}}$.
C. 6.6 THEOREM ${\underset{\underline{C}}{\hat{C}}}^{\cap} M$ is a stable class.
C.6.7 REMARK Recall the definition of $\hat{\hat{c}}$-localizer (cf. 0.21 .4) -- then $W_{\hat{\mathrm{C}}}$
satisfies conditions (1) and (3). However condition (2), which here would read
"every morphism of presheaves having the RLP w.r.t. the class $M \subset$ Mor $\hat{\mathrm{C}}$ of monomorphisms is in $W_{\wedge} "$, need not be true (for a characterization, cf. C.9.1). C
C. 6.8 LEMMA $\underset{\underline{\mathrm{C}}}{\mathcal{W}_{\underline{~}} \cap M \text { is a retract stable class. }}$
[Both W_{A} and M are stable under the formation of retracts.] \underline{C}
C. 6.9 APPLICATION Let

$$
\boldsymbol{J} \subset \mathbb{W}_{\widehat{\mathrm{C}}} \cap M
$$

be a set of morphisms - then

$$
\operatorname{cof} J=\operatorname{LIP}(\operatorname{RLP}(J)) \subset{\underset{W}{\hat{\mathrm{C}}}}^{\underline{\mathrm{L}}} \mathrm{M} \text { (cf. 0.20.4). }
$$

[Note: Bear in mind that $\underline{\hat{C}}$ is presentable.]
C. 7 MINIMALITY

Our objective in this section is to establish the following result (conjectured by Grothendieck and proved by Cisinski ${ }^{\dagger}$).
C.7.1 THEOREM If W is a fundamental localizer, then

$$
w_{\infty}=\omega .
$$

Postponing the details for now, if W is a fundamental localizer, then Δ / I
${ }^{+}$cahiers Topologie Gêom. Différentielle XIV-2 (2004), 109-140.
is aspherical provided I has a final object (cf. C.4.9).
N.B. From the definitions,

$$
\Delta / \underline{I}=\Delta / \text { ner } \underline{I}=\text { gro } \Delta \text { ner } \underline{I}=i_{\underline{\Delta}} \text { ner } \underline{I} .
$$

E. .g.:

$$
\Delta /[n]=i_{\Delta} \Delta[n] .
$$

Write

$$
\tau_{\underline{I}}: \Delta / \underline{I} \rightarrow \underline{I}
$$

for the functor that sends (m, u) to $u(m)$.

C.7.2 LEMMA A functor $\mathrm{F}: \underline{\mathrm{I}} \rightarrow \underline{\mathrm{J}}$ induces a functor

$$
\Delta / F: \Delta / \underline{I} \rightarrow \Delta / \mathcal{J}((\mathrm{m}, \mathrm{u}) \rightarrow(\mathrm{m}, \mathrm{~F} \circ \mathrm{u}))
$$

and the diagram

commates.
C. 7.3 IENMA The functor

$$
\tau_{\underline{I}}: \triangle / \underline{I} \rightarrow \underline{I}
$$

is aspherical.

$$
\text { PROOF } \forall i \in O b I,
$$

$$
(\underline{I} / \underline{I}) / i \approx \underline{\Delta} /(\underline{I} / i)
$$

But I / i has a final object, so $\Delta /(I / i)$ is aspherical (cf. C.4.9), from which the assertion (cf. C.2.4).
C.7.4 IFMMA We have

$$
w=\operatorname{ner}^{-1} i_{\Delta}^{-1} w,
$$

i.e.,

$$
\omega=\operatorname{ner}^{-1} \omega_{\hat{\Delta}} .
$$

PROOF Suppose that $F: \underline{I} \rightarrow \underline{J}$ is a functor -- then in the cormutative diagram

the vertical arrows are aspherical (cf. C.7.3), hence are in W. Therefore F is in W iff Δ / F is in W or still, F is in W iff i_{Δ} ner F is in W.
C.7.5 THEOREM If W is a fundamental localizer, then

$$
W_{\infty} \subset w_{\hat{\Delta}}\left(=i_{\Delta}^{-1} w\right) .
$$

Admit this result momentarily -- then

$$
\text { C.7.5 } \Rightarrow \text { C.7.1. }
$$

Proof:

$$
w_{\infty}=\operatorname{ner}^{-1} i_{\triangle}^{-1} w_{\infty} \quad \text { (cf. C.7.4) }
$$

$$
\begin{aligned}
& =\operatorname{ner}^{-1} W_{\infty} \quad \text { (cf. C.6.3) } \\
& =\operatorname{ner}^{-1} i_{\Delta}^{-1} \quad \text { (cf. c.7.5) } \\
& =\omega \quad \text { (cf. } C .7 .4 \text {) }
\end{aligned}
$$

To deal with C.7.5, take an $f \in W_{\infty}$ and using the Kan structure on $\hat{\Delta}$ (= SISET), factor f as the composite of an acyclic cofibration and a Kan fibration (which is then necessarily acyclic).
C.7.6 FACT Acyclic cofibrations are in $W_{\hat{A}}$.
[Let J be the set of inclusions $\Lambda[k, n] \rightarrow \Delta[n](0 \leq k \leq n, n \geq 1)$-- then J is contained in $\omega_{\text {a }} \cap M$ (cf. infra), hence

$$
\operatorname{cof} J=\operatorname{LLP}(\operatorname{RLP}(J)) \subset w_{\hat{\Delta}} \cap M \quad \text { (cf. C.6.9) }
$$

But cof J is precisely the class of acyclic cofibrations (cf. 0.20.15).]
[Note: The categories $i_{\Delta} \Lambda[k, n], i_{\Delta} \Delta[n]$ are aspherical, thus the arrow

$$
i_{\Delta} \Lambda[k, n] \rightarrow i_{\Delta} \Delta[n]
$$

is in W.]
C.7.7 IEMMA For every simplicial set X, the projection $X \times \Delta[1] \rightarrow X$ is in ω_{λ}. PROOF It suffices to show that the functor

$$
\mathbf{i}_{\Delta}(X \times \Delta[1]) \rightarrow i_{\Delta} X
$$

is aspherical and for this, we shall apply C.2.4. So let ([n],s) be an object of $i_{\Delta} X$-- then

$$
\begin{gathered}
(\Delta /(\mathrm{X} \times \Delta[\mathrm{l}])) /([\mathrm{n}], \mathrm{s}) \\
\quad \approx \underline{\Delta}(\Delta[\mathrm{n}] \times \Delta[1])
\end{gathered}
$$

```
# /(ner [n] \times ner[l])
# /ner ([n] x [1]).
```

Since the category [n] \times [1] has a final object,

$$
\Delta / \operatorname{ner}([n] \times[1]) \equiv \Delta /([n] \times[1])
$$

is aspherical (cf. C.4.9).
C.7.8 FACT Acyclic Kan fibrations are in $W_{\text {A }}$.
[Let p:X $\rightarrow \mathrm{B}$ be an acyclic Kan fibration. Because $\varnothing \rightarrow B$ is a cofibration, the commutative diagram

has a filler $s: B \rightarrow X$, hence $p \circ s=i d_{B}$. We then claim that $s \circ p$ is ${ }_{\hat{\Delta}}{ }_{\hat{\Delta}}$ which, in view of $C .6 .4$, will imply that p is in $W_{\hat{A}^{*}}$. To see this, denote by

$$
\phi: x \| x \rightarrow x
$$

the arrow arising from consideration of

Proceed next from

to get a cofibration

$$
\mathrm{x} \perp \mathrm{x} \xrightarrow{\mathrm{~h}} \mathrm{x} \times \Delta[I]
$$

Let.

$$
\mathrm{H}: \mathrm{X} \times \Delta[\mathrm{l}] \rightarrow \mathrm{X}
$$

be a filler for the cormutative diagram

Then H is a simplicial homotopy between id_{X} and s o p . But $\mathrm{pr} \in \mathcal{W}_{\hat{\Delta}}$ (cf. C.7.7). Therefore, arguing as in C.3.7,

$$
\left.i d_{\mathrm{X}} \in{\underset{\widehat{\Delta}}{\hat{\Delta}}} \Rightarrow s \circ p \in W_{\hat{\Delta}} \cdot\right]
$$

C. 8 TEST CATEGORIES

Fix a fundamental localizer w.
C.8.1 EXAMPLE Take $W=w_{\text {tr }}-$ then w^{-1} CAT is equivalent to 1 .
C.8.2 EXAMPLE Take $w=w_{\text {gr }}-$ then w^{-1} CAT is equivalent to [1].
C.8.3 EXAMPLE Take $w=w_{0}--$ then ω^{-1} CAT is equivalent to SET.
C.8.4 EXAMPIE Take $W=W_{\infty}--$ then W^{-1} CAT is equivalent to HCW .
C.8.5 LEMMA Let \mathbb{C} be a small category. Assume: The arrow

$$
{\overline{i_{\underline{C}}^{C}}}: W_{\underline{\hat{C}}}^{-1} \hat{\underline{\mathrm{C}}} \rightarrow W^{-1} \underline{\mathrm{CAT}}
$$

is an equivalence of metacategories - then C is aspherical.
PROOF To prove that $\underline{p}_{\underline{C}}: \underline{\mathrm{C}} \rightarrow \underline{1}$ is in ω, consider the commutative diagram

Then it need only be shown that $I_{W} P_{C}$ is an isomorphism (W being saturated (cf. C.9.3)). From the definitions, $i_{\underline{C}}\left({ }_{\underline{\hat{C}}}\right)=\underline{C}$. And

$$
\begin{aligned}
& I_{W}(\underline{C})=\left(I_{W} \circ i_{\underline{C}}\right)\left(*_{\underline{\hat{C}}}\right) \\
& =\left(\overline{i_{\underline{C}}} \cdot I_{W_{W}}\right)\left(*_{\hat{C}}\right) .
\end{aligned}
$$

Burt $L_{W_{\hat{\mathrm{C}}}}\left(*_{\hat{\mathrm{C}}}\right)$ is a final object in $W_{\hat{\mathrm{C}}}^{-l} \hat{\mathrm{C}}$ (cf. 1.9.2) and since $\overline{\mathrm{i}}_{\underline{\mathrm{C}}}$ is, by hypothesis,
an equivalence, hence sends final objects to final objects, it follows that I_{W} (C) is a final object in W^{-1} CAT. However $L_{W}(1)$ is also a final object in W^{-1} CAT (cf. 1.9.2), so

$$
\mathrm{I}_{w} \underline{D}_{\mathrm{C}}: \mathrm{L}_{w}(\mathrm{C}) \rightarrow \mathrm{L}_{w}(\underline{1})
$$

is an isomorphism.
C.8.6 DEFINITION Let \underline{C} be a small category -- then \underline{C} is said to satisfy condition 区 if $\forall I \in O$ CAT, the arrow of adjunction

$$
\nu_{\underline{I}}: i_{\underline{C}} \underline{i}_{\underline{E}}+\underline{I}
$$

is in w.
C. 8.7 REMARK Let

$$
\left\lvert\, \begin{aligned}
& \mathrm{c}_{1}=\hat{\mathrm{C}}, w_{1}=\hat{W}_{\hat{\mathrm{C}}} \\
& \mathrm{C}_{2}=\underline{\mathrm{CAT}}, \omega_{2}=w
\end{aligned}\right.
$$

and

$$
\left.\right|^{-\quad=i_{\mathbb{C}}} \begin{aligned}
& G=i_{\underline{C}}^{*}
\end{aligned}
$$

Then under the supposition that $\underline{\text { C satisfies condition } \mathbb{E} \text {, condition (1) of B.8.1 }}$ is in force (by definition, ${\underset{\hat{C}}{ }}^{\underline{C}} i_{\underline{C}}^{-1} w$). Therefore

$$
w={\left(i_{\underline{C}}^{*}\right)}^{-1} \omega_{\underline{\hat{C}}}
$$

and $\forall F \in O$ b \hat{C}, the arrow of adjunction

$$
\mu_{F}: F \rightarrow{\underset{\underline{C}}{\underline{\underline{T}}} \underset{\underline{E}}{*} F}^{F}
$$

is in $\mathbb{W}_{\underline{\mathrm{C}}}$. Furthermore

are an adjoint pair and the adjoint situation ($\overline{\bar{i}_{\underline{C}}}, \overline{\dot{i}_{\underline{E}}^{*}}, \bar{\mu}, \bar{v}$) is an adjoint equivalence of metacategories.
C.8.8 CRITERION Given $\subseteq \in O$ CAT, to verify condition \mathbb{E} for an arbitrary W, it suffices to verify condition \mathbb{E} for ω_{∞} (cf. C.7.1).
C. 8.9 LENMA If \subseteq satisfies condition \mathbb{d}, then \mathbb{C} is aspherical.
[This is implied by C.8.5, in conjunction with what was said above.]
C.8.10 DEFINITION A small category \mathbb{C} is a local test category if $\forall \mathrm{X} \in \mathrm{Ob} \underline{\mathrm{C}}$, C / x satisfies condition \mathbb{T}.
N.B. If C is a local test category, then $\forall \mathrm{X} \in \mathrm{Ob} \mathrm{C}, \mathrm{C} / \mathrm{X}$ is a local test category.
C.8.11 LFMMA If \underline{C} is a local test category, then $\forall F \in O b \underline{\mathcal{C}}, \underline{C} / F$ is a local test category.

PROOF Given (X, s) $\in \mathrm{Ob} \mathrm{C} / \mathrm{F}$, there is a canonical isomorphism

$$
(\mathrm{C} / \mathrm{F}) /(\mathrm{X}, \mathrm{~s}) \approx \mathrm{C} / \mathrm{X} .
$$

[Note: This property is characteristic: If \mathbb{C} is a small category such that $\forall F \in O \underline{\hat{C}}, \underline{C} / F$ is a local test category, then \underline{C} is a local test category.]
C.8.12 DEFINIMION A small category \mathbb{C} is a test category if
(1) \subseteq is a local test category
and
(2) \mathbb{C} satisfies condition \mathbb{E}.
N.B. If \subseteq is a test category, then the arrow

$$
\overline{i_{\underline{C}}}: W_{\underline{\hat{C}}}^{-1} \hat{\mathrm{C}} \rightarrow W^{-1} \underline{\mathrm{CAI}}
$$

is an equivalence of metacategories.
C.8.13 LEMMA Suppose that $\underset{\mathcal{C}}{ }$ is a local test category -- then \underline{C} is a test category iff \underline{C} is aspherical.
C.8.14 EXAMPLE Take $W=W_{t r}$-- then every small category is a test category.
C.8.15 EXAMPLE Take $W=W_{g r}-$ then the test categories are the small nonempty categories.
[In view of C.5.1, a small category \mathbb{C} is aspherical iff it is nonempty.]
C. 8.16 LemMA Suppose that \underline{C} admits a final object -- then \mathbb{C} is a local test category iff \mathbb{C} is a test category.
C.8.17 LEAMA A small category \subseteq is a local test category iff $\forall \mathrm{X} \in \mathrm{Ob} \mathrm{C}$, the category C / X is a test category.
C.8.18 RAPPEL Given a small category $\mathbb{C}, \mathcal{M} \subset$ Mor $\underline{\hat{C}}$ is the class of monorphisms and the elements of $R L P(M)$ are called the trivial fibrations (cf. 0.21).
C.8.19 THEOREM Let $\underline{\mathrm{C}}$ be a small category -- then $\underline{\mathrm{C}}$ is a local test category iff

$$
\operatorname{RLP}(M)={\underset{\underline{W}}{\hat{C}}}
$$

C.8.20 EXAMPLE \triangle is a test category. Thus note first that Δ has a final object. (viz. [0]), hence is aspherical. So, to establish that Δ is a local test category, it is enough to prove that Δ is a test category per w_{∞} (cf. C.8.8). To see this, consider $\hat{\Delta}$ in its Kan structure - then M is the class of cofibrations, RLP (M) is the class of acyclic Kan fibrations, and

$$
\left(w_{\infty}\right)_{\hat{\Delta}}=i_{\Delta}^{-1} w_{\infty}=W_{\infty} \quad \text { (cf.c.6.3) }
$$

Therefore

$$
\operatorname{RLP}(M) \subset\left(w_{\infty}\right)_{\hat{\Delta}}
$$

and C.8.19 is applicable.
[Note: Here $i_{\Delta}=$ gro ${ }_{\Delta}$ and there is a commutative diagram

where $\overline{g^{\prime r o}}$ is an equivalence of homotopy categories.]
C.8.21 REMARK A_{M} is aspherical and satisfies condtion ©. Still, if $\omega \neq \omega_{\text {tr }}, w_{g r}$, then A_{M} is not a local test category.
[Suppose that A_{M} is a local test category -- then the same is true of $A_{M} /[0] \approx \underline{1}$. But $\forall \underline{I} \in O b C A T,{ }_{\underline{1}} \underline{I}_{\underline{1}} \underline{\underline{E}}=I_{\text {dis }}$ (the discrete category with objects those of I). In particular: The discrete category $\{0,1\}=\dot{i}_{\underline{1}} \underline{i}_{\underline{1}}{ }^{[}[1]$ would be aspherical ($[1]$ is aspherical and the arrow $\{0,1\} \xrightarrow{{ }^{V} \underline{\longrightarrow}}[1]$ is in W). This, however, is possible only if $W=W_{t r}$ or $W=W_{G r}$ (cf. C.5.3).]
C.8.22 IEMMA Suppose that C is a local test category - then for every small category \underline{D}, the product $\underline{C} \times \underline{D}$ is a local test category.
C.8.23 LEMMA Suppose that C is a test category - then for every small aspherical category \underline{D}, the product $\underline{\mathcal{C}} \times \underline{\mathrm{D}}$ is a test category.
[Recall that the product of two aspherical categories is aspherical (cf. C.3.1).]
C. 8.24 EXAMPLE $\triangle \times \Delta$ is a test category.

$$
\text { C. } 9 \text { CISINSKI THEORY (bis) }
$$

Fix a fundamental localizer ω.
C.9.1 THEOREM Let C be a small category - then C is a local test category iff $W_{\hat{C}}$ is a $\hat{\mathrm{C}}$-localizer.

C

PROOF Taking into account C.6.7, one has only to quote C.8.19.
C.9.2 LEMMA Let $F: \underline{I} \rightarrow \underline{J}$ be a morphism in CAT -- then F is in W iff $i \star \underset{\Delta}{\text { * }}$ is in $w_{\text {. }}$.
Δ
PROOF Owing to $C .8 .20, \Delta$ is a test category, hence satisfies condition \mathbb{E} (cf. C.8.12). Therefore

$$
w=\left(i_{\underline{\Delta}}^{*}\right)^{-1} w_{\hat{\Delta}} \quad \text { (cf. c.8.7) }
$$

Consequently,

$$
F \in W \Leftrightarrow F \in\left(i_{\underline{\Delta}}^{*}\right)^{-1} W_{\hat{\Delta}} \Leftrightarrow i_{\Delta}^{*} F \in W_{\hat{\Delta}} .
$$

C.9.3 W is saturated: $w=\bar{\omega}$.

PROOF Since

$$
i_{\underline{\Delta}}^{*}:(\underline{(C A T}, \omega) \rightarrow\left(\underline{\hat{\Delta}}, \omega_{\hat{\Delta}}\right)
$$

is a morphism of category pairs (cf. C.9.2), there is a commutative diagram

Suppose now that $L_{W} F$ is an isomorphism in $W^{-1} \underline{C A T}$ - then $\bar{I}_{\triangle}^{E_{W}} L_{W} F$ is an isomorphism
in $W_{\hat{\Delta}}^{-1} \hat{\Delta}$ or still, $I_{W_{\hat{\Delta}}} i * F$ is an isomorphism in $W_{\hat{\Delta}}^{-1} \hat{\Delta}$. But $W_{\hat{\Delta}}$ is a $\hat{\Delta}$-localizer
 $F \in \mathbb{W}$.
C.9.4 REMARK The functor

$$
\bar{i}_{\underline{\Delta}}: W_{\hat{\Delta}}^{-1} \hat{\Delta} \rightarrow W^{-1} \underline{C A T}
$$

is conservative.
C.9.5 THEOREM Suppose that W is an admissible fundamental localizer and \underline{C} is a local test category - then $\underline{\hat{C}}$ admits a cofibrantly generated model structure whose class of weak equivalences are the elements of W, and whose cofibrations are C the monomorphisms:

$$
\underset{\underline{\underline{C}}}{W_{\hat{\prime}}} \operatorname{cof}=M, f i b=\operatorname{RLP}\left(W_{\hat{C}} \cap M\right) .
$$

The central point is to establish that $W_{\hat{C}}$ (which is a $\hat{\mathbf{C}}$-localizer (cf. C.9.1)) C
is necessarily admissible (for then one can cite 0.21 .7). This is done in two steps.
Step 1: Prove it in the special case when $\mathrm{C}=\Delta$.
[Note: If $w_{\hat{\Delta}}$ is an accessible subcategory of $\widehat{\Delta}(\rightarrow)$, then $W_{\hat{\Delta}}$ is necessarily $\underline{\Delta} \quad \widehat{\Delta}$ admissible (cf. 0.25 .9) but accessibility is not an a priori property.]

Step 2: Finesse the general case.
N.B. The composition

$$
\operatorname{ner} \circ \underline{i}_{\underline{C}}: \hat{C} \rightarrow \hat{\Delta}
$$

preserves colimits and monomorphisms. In addition,

$$
\left(\text { ner } \circ i_{\underline{C}}\right)^{-1}{ }_{\hat{\underline{\Delta}}}=w_{\hat{\underline{C}}}
$$

C.9.6 LEMMA Let $\underline{C}_{1}, \underline{C}_{2}$ be small categories and let $F: \hat{C}_{1} \rightarrow \hat{C}_{2}$ be a functor that preserves colimits and monomorphisms. Suppose that W_{2} is a $\hat{\mathrm{C}}_{2}$-localizer and that $W_{1}=F^{-1} W_{2}$ is a $\hat{\mathrm{C}}_{1}$-localizer - then

$$
W_{2} \text { admissible } \Rightarrow W_{1} \text { admissible. }
$$

[The argument is a lengthy workout in set-theoretic gymastics.]
C.9.7 RAPPFL Let \subseteq be a small category - then the Cisinski structures on $\hat{\mathbb{C}}$ are left proper (but not necessarily right proper).
C.9.8 DEFINITION An admissible fundamental localizer W is proper if for every test category $\underline{C}, \omega_{\hat{C}}$ is proper, i.e., if the Cisinski structure on $\hat{\underline{C}}$ detemined by $W_{\hat{C}}$ is proper.
C.9.9 LEMMA If ${\underset{\widehat{\Delta}}{ }}^{\text {is proper, }}$ then W is proper.
C.9.10 EXAMPLE The minimal fundanental localizer w_{∞} is admissible (being equal to $W(\varnothing))$ and proper.
[In fact,

$$
\left(w_{\infty}\right)_{\widehat{\Delta}}=i_{\underline{\Delta}}^{-1} w_{\infty}=w_{\infty}
$$

and the Cisinski structure on $\hat{\Delta}$ determined by W_{∞} is the Kan structure which is proper (cf. 0.3).]
C.9.11 REMARK It turns out that if W is proper, then for every local test category $\underline{C}, \quad \omega_{\underline{\hat{C}}}$ is proper.
C.9.12 THEOREM Suppose that W is an admissible fundamental localizer. Let $\underline{C}, \underline{C}^{\prime}$ be local test categories and let $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{C}}^{\prime}$ be an aspherical functor. Equip

$$
\left.\right|_{-} ^{-\hat{\underline{C}} \text { with its Cisinski structure per } w_{\hat{C}}} \begin{array}{r}
\underline{\underline{C}} \\
\underline{\underline{\prime}} \text { with its Cisinski structure per } \omega_{\hat{C}^{\prime}}
\end{array}
$$

Then the adjoint situation

$$
\left(\left(\mathrm{F}^{\mathrm{OP}}\right)^{*},\left(\mathrm{~F}^{\mathrm{OP}}\right)_{+}\right)
$$

is a model pair that, moreover, is a model equivalence.
C.9.13 DEFINITION A Thomason cofibration is a cofibration in CAT (External Structure) .
C.9.14 THEOREM Suppose that W is an admissible fundamental localizer -- then CAT admits a cofibrantly generated model structure whose class of weak equivalences are the elements of W and whose cofibrations are the Thomason cofibrations.
N.B. The proof is an elaboration of that used to equip CAT with its external structure (cf. 0.24.2).
C.9.15 REMARK The cofibrantly generated model structure on CAT determined by \mathfrak{W} is left proper and is right proper iff W is proper.

C. 10 CRITERIA

Fix a fundamental localizer ω.
C.10.1 LEMMA Let \mathbb{C} be a small category. Assume: $\forall I \in O b$ CAT which admits a final object, the category

$$
\underline{C} / i_{\underline{C}}^{*} \underline{I}
$$

is aspherical -- then \underline{C} satisfies condition \mathbb{Z}.
PROOF For any $I \in O B$ CAT, the arrow of adjunction

$$
\nu_{\underline{I}}: \underline{C}_{C_{C}}^{\mathbf{C}^{*}}+\underline{I}
$$

is aspherical, hence is in W (cf. C.2.1). In fact, $\forall i \in O b I$,

$$
\left(i_{C_{C}} i^{*} I\right) / i \approx i_{\underline{C}} i_{\underline{E}}^{*}(\underline{I})
$$

and I / i has a final object. Now apply C.2.4.
C. 10.2 DEFINITION Let $\subseteq \underline{C}$ be a small category -- then a presheaf $F \in O B \hat{\mathbb{C}}$ is said to satisfy the Ω-condition if $\forall X \in O b \underline{C}$, the category $\underset{C}{C} /\left(h_{X} \times F\right)$ is aspherical.
 hence $\left.\forall F \in O \underline{\hat{C}}, h_{A_{C}} \times F \approx F.\right]$
N.B. Given an $X \in O B \subseteq$ and an $F \in O B \underline{\hat{C}}$, let $F \mid(\underline{C} / X)$ be the presheaf induced by F on C / X - then

$$
(\underline{C} / X) /(F \mid(\underline{C} / X)) \approx \underline{C} / h x \times F)
$$

C.10.3 LEMMA Let C be a small category. Assume: $\forall I \in O b$ CAT which admits a final object, the presheaf $i \underline{\underline{C}} \underline{I}$ satisfies the Ω-condition -- then \mathbb{C} is a local test category.

PROOF The claim is that $\forall X \in O B \underline{C}, \underline{C} / X$ satisfies condition \mathbb{C} (cf. C.8.10). To establish this, it suffices to show that $\forall I \in O B$ CAT which admits a final object, the category

$$
(\mathrm{C} / \mathrm{X}) / \mathrm{i}_{\mathrm{C}}^{*} / \mathrm{x}^{I}
$$

is aspherical (cf. C.10.1). But

$$
\begin{aligned}
& (\underline{C} / X) / i_{\underline{C}}^{*} / x^{I} \\
& \approx(\underline{C} / \mathrm{X}) /\left(\mathrm{i}_{\underline{C}}^{\mathrm{C}} \mathrm{I} \mid(\underline{\mathrm{C}} / \mathrm{X})\right) \\
& \approx \underline{C} /\left(h_{X} \times \underline{\underline{C}}^{*}\right)
\end{aligned}
$$

and the latter is aspherical by assumption.
C.10.4 CRITERION Let $\underset{C}{ }$ be a small category. Assume: $i_{\underset{C}{*}}^{*}[1]$ satisfies the Ω-condition -- then \underline{C} is a local test category.
C.10.5 REMARK Using this criterion, Maltsiniotis ${ }^{\dagger}$ has given a direct elementary demonstration of the fact that Δ is a local test category (cf. C.8.20).
[Note: Here $i_{\underline{\Delta}}^{*}[1]=$ ner $[1]=\Delta[1]$, so it is a question of proving that $\Delta /(\Delta[\mathrm{n}] \times \Delta[1])$ is aspherical for all $\mathrm{n} \geq 0$.]

Let \underline{C} be a small category, $i: \underline{C} \rightarrow$ CAT a functor $-\infty$ then the nerve of i is the
\dagger Astérisque 301 (2005), 49-50.
functor

$$
\text { ner }_{i}: \underline{C A T} \rightarrow \hat{\mathrm{C}}
$$

defined by

$$
\operatorname{ner}_{q}(\underline{I})(X)=\operatorname{Mor}(1 X, I) \quad(X \in O b \underline{C}) .
$$

N.B. If $1: \underline{C} \rightarrow \underline{C A T}$ is the functor $\mathrm{X} \rightarrow \underline{\mathrm{C}} / \mathrm{x}$, then $\underline{\mathrm{C}} / \mathrm{X} \approx \mathrm{C} / \mathrm{h}_{\mathrm{x}}$ and

$$
\operatorname{Mor}(1 X, I) \approx \operatorname{Mor}\left(C / h_{X}, I\right)
$$

Therefore

$$
\text { ner }_{i} \approx i_{\underline{\mathrm{C}}}^{\star} \quad \text { (cf. B.1.10) }
$$

C.10.6 EXAMPLE Take $\underset{C}{C}=\Delta$ and let l be the inclusion $\triangle \rightarrow$ CAT -- then $\forall[n] \in$ Ob Δ,

$$
\operatorname{ner}_{q}(\underline{I})([n])=\operatorname{Mor}([n], I)=\operatorname{ner}_{n} I
$$

C.10.7 DEFINITION The functor $1: \underline{C} \rightarrow \underline{C A T}$ satisfies the finality hypothesis if $\forall X \in O B C$, $I X$ has a final object e_{X}.
C.10.8 EXAMPLE The inclusion $\Delta \rightarrow$ CAT satisfies the finality hypothesis: $n \in O D[n]$ is a final object for [n].
C.10.9 IENMA Suppose that $1: \underline{C}+$ CAT satisfies the finality hypothesis - then there is a natural transformation

$$
\mathrm{J}: \mathrm{i}_{\underline{C}} \circ \text { ner }_{\mathrm{q}} \longrightarrow \mathrm{id}_{\underline{\mathrm{CAT}}}
$$

PROOF Let $I \in O B C A T$ and recall that

$$
\mathrm{i}_{\underline{C}} \cdot \operatorname{ner}_{1} \underline{I}
$$

is the small category whose objects are the pairs (X, s), where $\mathrm{X} \in \mathrm{Ob} \mathrm{C}$ and
$s: L X \rightarrow I$ is a functor, and whose morphisms $(X, s) \rightarrow(Y, t)$ are the arrows $f: X \rightarrow Y$ such that $t \circ \mathfrak{l f})=s$ (cf. B.1.2). This said, define the functor
on objects by

$$
\mathrm{J}_{\underline{I}}(\mathrm{X}, \mathrm{~s})=\mathrm{s}\left(\mathrm{e}_{\mathrm{X}}\right)
$$

and on morphisms by

$$
{\pi_{I}}^{(f)}=s\left(e_{X}\right) \xrightarrow{f_{X, Y}} t\left(e_{Y}\right)
$$

Explicated:

$$
\begin{aligned}
& i(f): l X \rightarrow i Y \\
& \text { => } \\
& i(f)\left(e_{X}\right) \in O D i Y \\
& \text { => } \\
& l(f)\left(e_{X}\right) \xrightarrow{\exists l} e_{Y} \\
& \text { => } \\
& t\left(2(f)\left(e_{X}\right)\right) \xrightarrow{t(\exists!)} t\left(e_{Y}\right) .
\end{aligned}
$$

But

$$
s\left(e_{X}\right)=t\left(1(f)\left(e_{X}\right)\right)
$$

so

$$
f_{X, Y}=t(\exists!) .
$$

C.10.10 EXAMPLE Take $\subseteq=\triangle$ and let 1 be the inclusion $\triangle \rightarrow$ CAT -- then
$\forall I \in O B C A T, J_{I}$ is the canonical arrow

$$
\mathrm{gro}_{\Delta}(\text { ner } I) \rightarrow \underline{I} .
$$

C.10.11 IEMMA Suppose that $1: \underline{C} \rightarrow$ CAT satisfies the finality hypothesis then the following conditions are equivalent:
(1) $\forall I \in O B C A T$ which admits a final object, the category
$C /$ ner ${ }_{2}$ I
is aspherical.
(2) $\forall I \in O B C A T$, the functor

$$
\int_{\underline{I}}: i_{\underline{C}} \circ \operatorname{ner}_{1} \underline{I} \rightarrow \underline{I}
$$

is in W.
(3) $\forall I \in O B C A T$, the functor

$$
J_{\underline{I}}: i_{\underline{C}} \circ \operatorname{ner}_{1} I_{I} \rightarrow \underline{I}
$$

is aspherical.
PROOF It is clear that (3) => (2) (cf. C.2.1). As for (2) => (1), bear in mind that

$$
i_{C} \circ \operatorname{ner}_{1} \underline{I}=\mathcal{C} / \text { ner }{ }_{2} I
$$

and consider the commutative diagram

Since I has a final object, the arrow $I \rightarrow 1$ is in W. Therefore the arrow

$$
\underline{\mathrm{C}} / \mathrm{ner}_{1} \underline{I} \rightarrow \underline{1}
$$

is in W, i.e.,

$$
\mathrm{C} / \text { ner }_{1} \mathrm{I}
$$

is aspherical. Finally, (1) => (3). To see this, it suffices to show that $\forall i \in O B I$, the category

$$
\left(\mathrm{C} / \operatorname{ner}_{2} \mathrm{I}\right) / \mathrm{i}
$$

is aspherical (cf. C.2.4). But

$$
\left(\mathrm{C} / \text { ner }_{1} \mathrm{I}\right) / \mathrm{i} \approx \mathrm{C} / \text { ner }_{1}(\mathrm{I} / \mathrm{i})
$$

and I/i has a final object.
C.10.12 REMARK Maintain the assumptions of C.10.11 -- then

$$
\operatorname{ner}_{1}:(\underline{\mathrm{CAT}}, \mathrm{~W}) \rightarrow\left(\underline{\hat{\mathrm{C}}}, \omega_{\hat{\mathrm{C}}}\right)
$$

is a morphism of category pairs, thus there is a functor

$$
\overline{\operatorname{ner}_{I}}: w^{-1} \underline{\mathrm{CAT}} \rightarrow w_{\underline{\mathrm{C}}}^{-1} \hat{\mathrm{C}} \quad \text { (cf. 1.4.5) }
$$

and a natural isomorphism

$$
\overline{i_{C}} \circ \overline{\overline{n e r}_{2}} \rightarrow i d_{W^{-1}}
$$

[Note: The last point requires additional argumentation and is not an a priori part of the overall picture. One is then led to ask: Is $\overline{\text { ner }_{1}}$ an equivalence? The answer is affimative if \mathbb{C} satisfies condtion \mathbb{E} (under this supposition, $\mathbf{i}_{\underline{C}}$ is an equivalence (cf. C.8.7).]
C. 10.13 LEMMA Suppose that $1: \underline{C} \rightarrow$ CAT satisfies the finality hypothesis. Assume: $\forall I \in O B C A T$ which admits a final object, the presheaf ner ${ }_{1}$ satisfies the Ω-condition -- then C is a local test category.
C.10.14 CRITERION Suppose that $1: \underline{C} \rightarrow$ CAT satisfies the finality hypothesis. Assume: ner, $[1]$ satisfies the Ω-condition -- then \mathbb{C} is a local test category.
N.B. If $1: \underline{C} \rightarrow C A T$ is the functor $X \rightarrow C / X$, then 1 satisfies the finality hypothesis. Therefore $\mathbb{C} .10 .13$ encompasses C.10.3 and C.10.14 encompasses C.10.4.
C. 10. 15 REMARK Keeping to the setup of $\mathbb{C} .10 .13$, assume in addition that \underline{C} admits a final object -- then C is aspherical, hence is a test category (cf. C.8.13), so by definition, \mathbb{C} satisfies condition \mathbb{V}. On the other hand, $\forall I \in O B C A T$,

$$
{ }_{\underline{C_{\underline{C}}}}^{n_{1}} \times \operatorname{ner}_{1} \underline{I} \approx \operatorname{ner}_{1} \underline{I}
$$

thus

$$
\mathrm{C} / \mathrm{ner}_{1} \mathrm{I}
$$

is aspherical. Therefore

$$
\overline{\operatorname{ner}_{1}}: \omega^{-1} \underline{\mathrm{CAT}} \rightarrow \omega_{\underline{\mathrm{C}}}^{-1} \hat{\mathrm{C}}
$$

is an equivalence of categories (cf. C.10.12).
C.10.16 EXAMPLE Take $W=W_{\infty} \underline{C}=\underline{\Delta}, 1: \underline{\Delta}+\underline{C A T}$ the inclusion, ner ${\underset{\imath}{ }}=$ ner, and $i_{\Delta}=$ gro $_{\Delta}$-- then

$$
\overline{\mathrm{ner}}: \omega_{\infty}^{-1} \underline{C A T}+W_{\infty}^{-1} \widehat{\Delta}
$$

is an equivalence of categories and there are natural isamorphisms
44.

$$
\begin{aligned}
& \overline{\mathrm{gro}} \triangleq^{\overline{\mathrm{ner}} \longrightarrow i d \omega_{\infty}^{-1} \underline{\text { CAT }}} \\
& \overline{\text { ner }} \circ \overline{\text { gro }_{\Delta}} \longrightarrow \mathrm{id}_{W_{\infty}^{-1} \hat{\Delta}} \\
& \text { (cf. } 0.24 \text {). }
\end{aligned}
$$

D: LOCAL ISSUES

D. 1 A LOCAL CRITERION

D. 2 FAILURE OF UBIqUITY

D. 3 THEOREM B \Rightarrow THEOREM B

D: LOCAL ISSUES

D. 1 A LOCAL CRITERION

D.1.1 DEFINITION Let W be a fundamental localizer -- then a functor $F: \underline{I} \rightarrow \underline{J}$ is locally constant if for every morphism $j \rightarrow j$ ' in \mathbf{J}, the functor

$$
I / j \rightarrow I / j
$$

is in ω.
D.1.2 EXAMPIE If $F: \underline{I} \rightarrow \underline{J}$ is aspherical, then F is locally constant. To see this, consider the commutative diagram

Then the horizontal arrows are in W (F being aspherical). Furthermore, both

have final objects, thus are aspherical. Therefore the arrow $\underline{J} / \mathrm{j} \rightarrow \underline{J} / \mathrm{j}$ ' is in W, hence the arrow $I / j \rightarrow I / j$ is in W.
D.1.3 EXAMPLE Jet $F: I \rightarrow C A T$ be a functor with the property that for all morphisms $i \xrightarrow{\delta} j$ in I, the functor Fi $\xrightarrow{F \delta} F j$ is in W-- then the Grothendieck opfibration

$$
\theta_{\mathrm{F}}: \underline{\mathrm{INT}}_{\underline{I}}^{\mathrm{F}} \rightarrow \underline{I}
$$

is locally constant.
D. 1.4 THEOREM Take CAT in its external structure and let $\omega=\omega_{\infty}$. Suppose that $F: \underline{I} \rightarrow \underline{J}$ is locally constant -- then $\forall j \in O b \underline{J}$, the pullback square

is a homotopy pullback.
[This is Cisinski's formulation of Quillen's "Theorem B" (cf. D.3.3 ff.).]
D.1.5 REMARK Within the setting of D.1.4, the converse is valid, a corollary being that the locally constant functors (per W_{∞}) are composition stable.
D.1.6 RAPPEL In a right proper model category \mathbb{C}, a conmutative diagram

where f is a weak equivalence, is a homotopy pullback iff the arrow $\mathrm{W} \longrightarrow \mathrm{Y}$ is a weak equivalence (cf. 0.35.2).
D.1.7 APPLICATION Take CAT in its external structure and let $W=W_{\infty}$. Suppose that $F: \underline{I} \rightarrow \underline{J}$ is locally constant and a simplicial weak equivalence -- then $F: \underline{I} \rightarrow \underline{J}$ is aspherical.
[According to D.1.4, $\forall j \in O b$ J, the pullback square

is a homotopy pullback. But CAT (External Structure) is right proper, so the contention is implied by D.1.6.]
D.1.8 THEOREM Suppose that $W \subset W_{0}$ (cf. C.5.5) is a fundamental localizer. Assume: Every locally constant functor in W is aspherical -- then $W=W_{\infty}$.

Since $W_{\infty}=W$ (cf. C.7.1), it suffices to show that

$$
w_{\hat{\Delta}}=i_{\underline{\Delta}}^{-1} w=W_{\infty}
$$

Proof:

$$
\begin{aligned}
W & =\operatorname{ner}^{-1} W_{\widehat{\Delta}} \quad \text { (cf. C.7.4) } \\
& =\text { ner } \\
& =\text { ner }^{-1} W_{\infty} \underline{\Delta}^{-1} W_{\infty} \quad \text { (cf. C.6.3) } \\
& =W_{\infty} \quad \text { (cf. C.7.4) }
\end{aligned}
$$

D.1.9 LemMA Let $p: X \rightarrow Y$ be a Kan fibration. Assume: $p \in W_{\widehat{\Delta}}--$ then $p \in W_{\infty}$.

Granted this result, it is easy to conclude matters. Thus given $f \in \mathcal{W}_{\hat{\Delta}}$, write $f=p_{f} \circ i_{f}$, where i_{f} is an acyclic cofibration and p_{f} is a Kan fibration. So:

$$
\begin{aligned}
& \mathbf{i}_{\mathbf{f}} \in W_{\infty} \subset W_{\widehat{\Delta}} \\
& \Rightarrow p_{f} \in W_{\hat{\Delta}} \Rightarrow p_{f} \in W_{\infty} \Rightarrow f \in W_{\infty} . \\
& f \in W_{\widehat{\Delta}}
\end{aligned}
$$

N.B. For use below, recall that.

$$
i_{\triangle}=\hat{\Delta} \rightarrow \text { CAT }
$$

preserves pullbacks (cf. B.1.9).
D.1.10 DEFINITION Let W be a $\hat{\Delta}$-localizer - then a simplicial map $p: X \rightarrow Y$ is locally constant if given any diagram

the arrow g is in W.
D. 1.11 LEMMA A simplicial map $p: X \rightarrow Y$ is locally constant iff for any diagram

with $f \in W_{\infty^{\prime}}$ there follows $g \in W$.
D.1.12 LEMMA Take $\hat{\Delta}$ in its Kan structure and let $W=W_{\infty}-$ then $p: X \rightarrow Y$ is
locally constant iff for every simplicial map $Z \rightarrow Y$, the pullback square

is a homotopy pullback.
D.1.13 APPLICATION If $\mathrm{p}: \mathrm{X} \rightarrow \mathrm{Y}$ is a Kan fibration, then p is locally constant (per W_{∞}) (cf. D.1.12). So, in the notation of D.1.11,

$$
f \in W_{\infty} \Rightarrow g \in W_{\infty} \quad \text { (via propriety). }
$$

But $W_{\infty} \subset W_{\widehat{\Delta}}$ (cf. C.7.5). Therefore p is locally constant (per $W_{\hat{\Delta}}$).
D.1. 14 LEMMA Take $W=W_{\hat{\Delta}}$-- then a simplicial map $\mathrm{p}: \mathrm{X} \rightarrow \mathrm{Y}$ is locally constant (per $W_{\widehat{\Delta}}$) iff $i_{\triangle} p: i_{\Delta} X \rightarrow i_{\Delta} Y$ is locally constant (per (W).

PROOF Let $([n], s),([m], t)$ be objects in $\triangle / Y--$ then a morphism $([n], s) \rightarrow$ ($[\mathrm{m}], \mathrm{t}$) corresponds to a diagram

$$
\Delta[\mathrm{n}] \rightarrow \Delta[\mathrm{m}] \rightarrow Y
$$

of simplicial sets and the pullback squares

in SISET induce pullback squares

in CAT. The functor

$$
(\Delta / \mathrm{X}) /([\mathrm{n}], \mathrm{s}) \longrightarrow(\Delta / \mathrm{X}) /([\mathrm{m}], \mathrm{t})
$$

is therefore isomorphic to the functor

$$
\Delta /\left(\Delta[\mathrm{n}] \times_{\mathrm{Y}} \mathrm{X}\right) \longrightarrow \Delta /\left(\Delta[\mathrm{m}] \times_{\mathrm{Y}} \mathrm{X}\right) .
$$

In particular: If $p: X \rightarrow Y$ is a Kan fibration, then $i_{\Delta} p: i_{\Delta} X \rightarrow i_{\Delta} Y$ is locally constant (per W) (for p is locally constant (per $W_{\hat{\Delta}}$) (cf. D.1.13)).
D.1.15 LFMMA Let $\mathrm{p}: \mathrm{X} \rightarrow \mathrm{Y}$ be a simplicial map. Assume: p is locally constant (per $w_{\hat{人}}$) and in $W_{\hat{A}}$-- then for any puillback square

p^{\prime} is in $W_{\hat{\Delta}}$.
PROOF Pass to the pullback square

in CAT -- then $i_{\Delta} p$ is locally constant (per W (cf. D.1.14) and in W, thus is aspherical (by hypothesis) (cf. D.1.8). The claim is that $i_{\Delta} p^{\prime}$ is in W and for this, it will be enough to prove that $i_{\triangle} p^{\prime}$ is aspherical. Abusing the notation, let $y^{\prime} \in O b i_{\Delta} Y^{\prime}$ and let $y \in O b i_{\Delta} Y$ be its image. Consider the diagram

of pullback squares. Because $i_{\Delta} p$ is aspherical, the arrow

$$
i_{\triangle} \mathrm{X} / \mathrm{Y} \rightarrow \mathrm{i}_{\triangle} \mathrm{Y} / \mathrm{Y}
$$

is in W. On the other hand, both $i_{\Delta} Y^{\prime} / Y^{\prime}$ and $i_{\triangle} Y / Y$ have final objects, hence the arrow

$$
i_{\Delta} Y / Y^{\prime} \rightarrow i_{\Delta} Y / Y
$$

is in $W_{\infty} \subset W$. Now apply ner to get a diagram

of pullback squares in SISET. Since ner $i_{\Delta} p$ is locally constant (per $W_{\hat{\Delta}}$) and since the arrow

$$
\operatorname{ner} i_{\triangle} Y / y^{\prime} \rightarrow \operatorname{ner} i_{\Delta} Y / Y
$$

is in W_{∞}, it follows that the arrow

$$
\text { ner } i_{\underline{\Delta}} X^{\prime} / y^{\prime} \rightarrow \text { ner } i_{\underline{\Delta}} X / Y
$$

is in $W_{\hat{\Delta}}$ (cf. D.1.ll). Therefore the arrow

$$
i_{\Delta} X^{\prime} / Y^{\prime} \rightarrow i_{\Delta} X / Y
$$

is in W (cf. C.7.4), which implies that the arrow

$$
i_{\triangle} X^{\prime} / Y^{\prime}+i_{\Delta} Y^{\prime} / Y^{\prime}
$$

is in W, so $i_{\Delta} p$ ' is aspherical.

Consequently, if $p: X \rightarrow Y$ is a Kan fibration and if p is in $w_{\hat{A}}$, then for any pullback square

p^{\prime} is in $W_{\hat{\Delta}}$.
D. 1.16 EXAMPLE Let X be a Kan complex. Suppose that the arrow $X \rightarrow \Delta[0]$ is in $\omega_{\widehat{\Delta}}$-- then the projections

$$
\begin{aligned}
& \mathrm{pr}_{1}: \mathrm{X} \times \mathrm{x} \rightarrow \mathrm{X} \\
& \mathrm{pr}_{2}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}
\end{aligned}
$$

are in $W_{\hat{\Delta}}$.
[Consider the pullback square

bijective.
PROOF Consider the commutative diagram

Since the horizontal arrows are simplicial weak equivalences, $\pi_{0}(f)$ is bijective iff π_{0} (ner $i_{\Delta} f$) is bijective. But $i_{\Delta} f \in W$, so $\pi_{0}\left(i_{\Delta} f\right)$ is bijective (recall that by hypothesis, $W=W_{0}$ (cf. D.1.8)), hence $\pi_{0}\left(\right.$ ner $\left.i_{\Delta} f\right)$ is bijective.
D.1. 18 RAPPEL Let X be a Kan complex - then the arrow $X \rightarrow \Delta[0]$ is a simplicial weak equivalence iff x is connected, nonempty, and $\forall x \in x_{0} \& \forall n \geq 1, \pi_{n}(x, x)$ is trivial.
D.1.19 LEMMA Let X be a Kan complex. Assume: The arrow $X \rightarrow \Delta[0]$ is in $W_{\hat{\Delta}}-$ then the arrow $\mathrm{X} \rightarrow \Delta[0]$ is in W_{∞}.

PROOF Owing to D.1.17, $\# \pi_{0}(X)=1$, thus X is nonempty. This said, fix $x \in X_{0}$. Since X is Kan, the canonical arrow

$$
\operatorname{map}(\Delta[1], x) \xrightarrow{q} \operatorname{map}(\dot{\Delta}[1], x) \approx x \times x
$$

is a Kan fibration and the vertical arrows in the diagram

are Kan fibrations. The composite

$$
\operatorname{map}(\Delta[1], x) \rightarrow x
$$

is an acyclic Kan fibration, hence is in $W_{\hat{\Delta}}$ (cf. C.7.5). On the other hand, \triangle $\mathrm{pr}_{2}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ is in ${\underset{\widehat{\Delta}}{ }}$ (cf. D.1.16). Therefore q is in ${\underset{\underline{\Delta}}{\hat{\Delta}}}$. But q is also locally constant (per W_{\wedge}) (cf. D.1.13). Therefore the arrow $\Omega(X, x) \rightarrow \Delta[0]$ is in $W_{\hat{A}}$. \triangle

Proceeding from here by iteration, one obtains a sequence $\left\{\Omega^{n}(X, x)\right\}$ of Kan connplexes such that $\forall n \geq 1$, the arrow $\Omega^{n}(x, x) \rightarrow \Delta[0]$ is in $W_{\hat{\Delta}}$. And $\forall n \geq 1$, $\# \pi_{n}(X, x)=1$. That the arrow $X \rightarrow \Delta[0]$ is in W_{∞} is then inplied by D.1.18.
[Note: In the above, $\theta \mathrm{X}$ is the mapping space of (X, x) and $\Omega \mathrm{X}$ is the loop space of (x, x) :

$$
\begin{aligned}
& \theta X \approx \operatorname{map}_{*}(\Delta[1], \mathrm{X}) \\
& \left.\Omega \mathrm{X} \approx \operatorname{map}_{*}(\Delta[1] / \Delta[1], \mathrm{X}) \cdot\right]
\end{aligned}
$$

 (cf. D.1.9).

PROOF First, $\pi_{0}(\mathrm{p}): \pi_{0}(\mathrm{X}) \rightarrow \pi_{0}(\mathrm{Y})$ is bijective (cf. D.1.17). Therefore it need only be shown that $\forall \mathrm{x} \in \mathrm{X}_{0}$ and $\forall \mathrm{n} \geq 1$,

$$
\pi_{n}(x, x) \approx \pi_{n}(y, y) \quad(y=p(x))
$$

To this end, recall that the fiber X_{Y} of p over y is the Kan complex defined by the pullback square

Since p is locally constant (zer $W_{\hat{A}}$) (cf. D.1.13) and in $W_{\hat{\Delta}}$ (by bypothesis), the arrow $X_{Y} \rightarrow \Delta[0]$ is in $W_{\widehat{\Delta}}$ (cf. D.1.15), hence is in W_{∞} (cf. D.1.19). So, $\forall \mathrm{n} \geq 1$, $\pi_{n}\left(X_{y}, x\right)$ is trivial (cf. D.1.18). Conclude by applying the long exact sequence in homotopy.

D. 2 FAILURE OF UBIQUITY

Fix a proper fundemental localizer $W \subset W_{0}$ (cf. C.5.5) and equip CAT with the cofibrantly generated model structure determined by ω (cf. C.9.14) (itself necessarily right proper (cf. C.9.15)).
D. 2.1 THEOREM Assume: For every locally constant functor $F: \underline{I} \rightarrow \underline{I}$ and
$\forall j \in O b I$, the pullback square

is a homotopy pullback -- then $W=W_{\infty}$.
PROOF If $F: \underline{I} \rightarrow \underline{J}$ is locally constant and in W, then $\forall j \in O b \underline{J}$,

$$
F / j: \underline{I} / j \rightarrow \underline{J} / j
$$

is in W (cf. D.1.7). Therefore F is aspherical and one can quote D.1.8.

Moral: In the world of proper fundamental localizers $\omega \subset \omega_{0}, W_{\infty}$ is characterized by the validity of "Theorem B".

D. 3 THEOREM B \Rightarrow THEOREM B

Take SISET in its Kan structure and CAT in its external structure.

D.3.1 CRITERTON A commatative diagram

of simplicial sets is a homotopy pullback (per W_{∞}) iff the commatative diagram

of small categories is a homotopy pullback (per W_{∞}).
D.3.2 LEMMA The functor

$$
\text { ner: } \underline{C A T} \rightarrow \text { SISET }
$$

preserves homotopy pullbacks.
PROOF Suppose that

is a homotopy pullback in CAT - then the claim is that

is a homotopy pullback in SISEP and for this, it need only be shown that

is a hormotopy pullback in CAT (cf. D.3.1). To begin with, $i_{\Delta}=$ gro Δ_{Δ} thus there are simplicial weak equivalences

- Consider the commatative diagram

Then the first square is a homotopy pullback (cf. 0.35.2), as is the second square (by hypothesis). Therefore the rectangle

is a homotopy pullback (cf. 0.35.3).

- Consider the commutative diagram

Then the rectangle is a homotopy pullback (by the above), as is the second square (cf. 0.35.2). Therefore the first square

is a homotopy pullback (cf. 0.35.3).
D.3.3 THEOREM B Let $\underline{I}, \underline{J} \in O b$ CAT and let $F: \underline{I} \rightarrow \underline{J}$ be a functor. Assume: F is
locally constant -- then $\forall j \in O$ I, the pullback square

is a homotopy pullback.
[In view of D.3.2, this is imediate (cf. D.1.4).]

To complete the picture, we shall outline an approach to D.1.4.
D.3.4 Let \underline{C} be a small category, $F: \underline{C} \rightarrow C A T$ a functor. Assume: For every arrow $f: X \rightarrow Y$ in $C, F f: F X \rightarrow F Y$ is a simplicial weak equivalence -- then the Grothendieck opfibration

$$
\theta_{F}: \text { INT }_{\underline{C}} \mathrm{~F}+\mathrm{C}
$$

is a homotopy fibration (cf. 0.35.5).
D.3.5 EXAMPLE Let J be a small category. Consider the functor

$$
\left[\begin{array}{l}
\underline{J} \rightarrow \underline{C A T} \\
j \rightarrow I / j .
\end{array}\right.
$$

Then J / j has a final object, hence is contractible. So, for every morphism $j \rightarrow j^{\prime}$ in \underline{J}, the arrow $\underline{J} / \mathrm{j} \rightarrow \underline{J} / \mathrm{j}^{\prime}$ is a simplicial weak equivalence. Therefore the Grothendieck opfibration

$$
\theta_{\underline{J} /-}: \underline{I N T}_{\underline{J}}^{J} / \longrightarrow \rightarrow \underline{J}
$$

is a homotopy fibration.
D.3.6 EXAMPLE Let I, \underline{J} be small categories, $F: I \rightarrow X$ a locally constant functor. Consider the functor

$$
\left[\begin{array}{l}
\mathrm{J} \rightarrow \underline{\mathrm{CAT}} \\
\mathrm{j} \rightarrow \mathrm{I} / \mathrm{j} .
\end{array}\right.
$$

Then by definition, for every morphism $j \rightarrow j$ ' in \underline{J}, the functor

$$
I / j \rightarrow I / j^{\prime}
$$

is a simplicial weak equivalence. Therefore the Grothendieck opfibration

$$
\theta_{I /}: \mathrm{INT}_{\underline{J}} I / \longrightarrow \mathrm{J}
$$

is a homotopy fibration.
[Note: Needless to say, D.3.5 is a special case of D.3.6 (take $I=\underline{J}$ and $\left.\left.F=i d_{\underline{J}}\right) \cdot\right]$
D.3.7 RAPPEL Given a small category \mathbb{C} and a functor $F: C \rightarrow C A T$, there is a canonical arrow

$$
\mathrm{K}_{\mathrm{F}}:{\underset{\sim}{\operatorname{INT}}}_{\underline{C}}^{F} \rightarrow \operatorname{colirn}_{\underline{E}}^{F} \quad \text { (cf. B.2.15) }
$$

D.3.8 LEMMA If $\underline{I}, \underline{J}$ are small categories and if $F: \underline{I} \rightarrow \underline{J}$ is a functor, then

$$
\mathrm{K}_{\mathrm{I}} / \ldots: \mathrm{TNT}_{\underline{J}} \mathrm{I} /-\rightarrow \operatorname{colim} \underline{J}_{\underline{I}} /-=\underline{I}
$$

is a Grothendieck fibration with contractible fibers.

D.3.9 REMARK It follows that

$$
K_{I} / \ldots: \operatorname{INT}_{I} I /-\rightarrow \operatorname{colim}_{\underline{J}} I /-=\underline{I}
$$

is a simplicial weak equivalence (cf. B.6.13).

Here now is the data for the proof of D.1.4:

Each of the squares in this commutative diagram is a pullback square and the composition

is $\theta_{\underline{I} /}$

- Since $\Theta_{J /-}$ is a homotopy fibration (cf. D.3.5), the pullback square

is a homotopy pullback (cf. 0.35.4).
- Since ${ }^{\theta_{I /}}$ _ is a homotopy fibration (cf. D.3.6), the pullback square

Therefore the pullback square

is a homotopy pullback (cf. 0.35.3).

pullback square

is a homotopy pullback (cf. 0.35.2).
Therefore the pulliback square

is a homotopy pulliback (cf. 0.35.3), the contention of D.1.4.

CHAPTER 1: DERIVED FUNCTORS

1.1 LOCALIZATION

1.2 CALCULUS OF FRACTIONS
1.3 HOMOTOPY
1.4 TOTALITY
1.5 EXISTENCE
1.6 COMPOSITION
1.7 ADJOINTS
1.8 PARTIAL ADJOINTS
1.9 PRODUCTS

1.1 LOCALIZATION

Let \underline{C} be a category and let $W \in$ Mor \mathbb{C} be a class of morphisms.
1.1.1 DEFINITION ($(\underline{C}, W$) is a category pair if W is closed under composition and contains the identities of \underline{C}, the elements of W then being referred to as the weak equivalences.
E.g.: If $W_{\min }$ is the class of identities of \underline{C} and if $W_{\max }$ is Mor \underline{C} itself, then ($\mathrm{C}, \mathrm{W}_{\min }$) and ($\mathrm{C}, \mathrm{w}_{\text {max }}$) are category pairs.
[Note: An intermediate possibility is to take for W the class of isomorphisms of C.]
N.B. A category pair can be regarded as a subcategory of \underline{C} with the same objects.
1.1.2 DEFTNTIION Given a category pair (C, W, a localization of C at W is a pair $\left(W^{-1} \mathbb{C}, L_{W}\right)$, where $W^{-1} \underline{C}$ is a metacategory and $I_{W}: \subseteq \rightarrow W^{-1} \mathbb{C}$ is a functor such that $\forall W \in W$, $L_{W} W$ is an isomorphism, $\left(W^{-1} C, I^{W}\right)$ being initial among all pairs having this property, i.e., for any metacategory \underline{D} and for any functor $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ such that $\forall w \in W, F W$ is an isomorphism, there exists a unique functor $\bar{F}: W^{-1} \underline{C} \rightarrow \underline{D}$ such that $F=\bar{F} \circ L_{W}$.
1.1.3 THEOREM Iocalizations of \underline{C} at W exist and are unique up to isomorphism. Moreover, there is a representative $\left(W^{-1} \underline{C}, I_{W}\right)$ having the same objects as \underline{C} and for which I_{W} is the identity on objects.
1.1.4 EXAMPLE Take $\underline{\mathcal{C}}=\underline{T O P}$ and let $w \in M o r \underline{C}$ be the class of homotopy equivalences - then $\mathfrak{W}^{-1} \underline{\mathcal{C}}=\underline{H T O P}$.
1.1.5 DETATLS What follows is an outline of the proof of 1.1.3.

Step 1: Given $X, Y \in O B C$, a word

$$
\omega=\left(X, X_{1}, \ldots, X_{2 n-1}, Y\right)
$$

connecting X to Y is a finite chain of objects and morphisms of the form

$$
x \xrightarrow{f_{1}} x_{1}<\stackrel{w_{1}}{\longrightarrow} x_{2} \xrightarrow{f_{2}} \bullet \cdots \stackrel{w_{n-1}}{<} X_{2 n-2} \xrightarrow{f_{n}} x_{2 n-1} \stackrel{w_{n}}{\longleftrightarrow}
$$

in wich \longrightarrow and $<-$ alternate and the w_{i} are in W. Write $\Omega(X, Y)$ for the class of all words connecting X to Y .

Step 2: Two words $\omega, \omega^{\prime} \in \Omega(X, Y)$ are deemed equivalent $\left(\omega \sim \omega^{\prime}\right)$ if there is a finite sequence

$$
\omega=\omega_{1}, \omega_{2}, \ldots, \omega_{n}=\omega^{\prime}
$$

of words with the property that each ω_{i} is obtained from ω_{i-1} (or from ω_{i+1}) by one of the following operations.
(a) Replace

in ω_{i-1} (or ω_{i+1}) by

if there is a comutative diagram in \underline{C}

with $v v$ in W.
(b) Replace

$$
\bullet \stackrel{\mu}{\longleftrightarrow} \cdot \stackrel{f}{\longrightarrow} \cdot \stackrel{\nu}{\longrightarrow} \cdot \stackrel{g}{\longrightarrow} \cdot(\mu, \nu \in W)
$$

in ω_{i-1} (or ω_{i+1}) by

if there is a commutative diagram in \underline{C}

with $\mu \mathrm{u}$ in W .
(c) Replace

$$
\bullet \stackrel{\mathrm{f}_{1}}{\longrightarrow} \cdot \stackrel{\text { id }}{\longleftrightarrow} \stackrel{\mathrm{f}_{2}}{\longrightarrow} \cdot
$$

in ω_{i-1} (or ω_{i+1}) by

$$
\bullet \xrightarrow{\mathrm{f}_{2} \mathrm{f}_{1}}
$$

or vice-versa.
(d) Replace

$$
\bullet \stackrel{\mathrm{w}_{1}}{\stackrel{\text { id }}{\longrightarrow}} \stackrel{\mathrm{w}_{2}}{<}
$$

in ω_{i-1} (or ω_{i+1}) by

$$
\cdot \stackrel{w_{1} w_{2}}{\Perp}
$$

or vice-versa.

Step 4: Given words

$$
\left\{\begin{aligned}
\omega & =\left(\mathrm{X}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{2 \mathrm{n}-1}, \mathrm{Y}\right) \\
\omega^{\prime} & =\left(\mathrm{Y}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{2 \mathrm{~m}-1}, \mathrm{Z}\right)
\end{aligned}\right.
$$

let

$$
\omega * \omega^{\prime}=\left(X_{1}, X_{1}, \ldots, x_{2 n-1}, Y_{1}, Y_{1}, \ldots, Y_{2 m-1}, Z\right)
$$

Then the $*$-product is associative and the equivalence class of $\omega * \omega^{\prime}$ depends only on that of ω and ω^{\prime}.

Step 5: Now stipulate that the metacategory $\omega^{-1} \underline{C}$ has for its objects those of \underline{C} and for its morphisns from X to Y the elements $[\omega] \in \Omega(X, Y) / \sim$. Here composition is defined by

$$
\left[\omega^{\prime}\right] \circ[\omega]=\left[\omega * \omega^{\prime}\right]
$$

and the identity in $\Omega(\mathrm{X}, \mathrm{Y}) / \sim$ is

$$
\left[\mathrm{x} \xrightarrow{i d_{\mathrm{x}}} \mathrm{x} \stackrel{\mathrm{id}_{\mathrm{x}}}{<} \mathrm{x}\right] .
$$

As for the functor $I_{W}: \underline{C} \rightarrow W^{-1} \underline{C}$, on objects

$$
I_{W} X=X
$$

and on morphisms

$$
\mathrm{L}_{W_{W}} \mathrm{f}=\left[\mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Y} \stackrel{\mathrm{id}_{Y}}{\longleftrightarrow} \mathrm{Y}\right] .
$$

Step 6: Given a word $\omega \in \Omega(X, Y)$, suppose that its morphisms in either direction are elements of W-- then $[\omega]$ is an isomorphism in $W^{-1} \underline{C}$, its inverse being represented by ω written in reverse order. In particular: $\forall w \in \omega, L_{W} w$
is an iscrorphism.
Step 7: Let $F: \underline{C} \rightarrow \underline{D}$ be a functor such that $\forall W \in W$, $F W$ is an iscmorphism. Define $\bar{F}: W^{-1} \underline{C} \rightarrow \underline{D}$ on the $\mathrm{X} \in \mathrm{Ob} W^{-1} \underline{C}=\mathrm{Ob} \underline{C}$ by $\overline{\mathrm{F}}=\mathrm{FX}$ and given a word

$$
\omega=\left(X_{1}, X_{1}, \ldots, X_{2 n-1}, Y\right),
$$

put

$$
\bar{F} \omega=F\left(w_{n}\right)^{-1} \circ F f_{n} \circ \cdots \circ F\left(w_{1}\right)^{-1} \circ F f_{1}
$$

Then

$$
\omega \sim \omega^{\prime} \Rightarrow \bar{F} \omega=\bar{F} \omega^{\prime} .
$$

Therefore the assignment

$$
[\omega] \rightarrow \bar{F} \omega
$$

is welldefined. And $\overline{\mathrm{F}}: \mathrm{W}^{-1} \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a functor.
Step 8: $\forall x \in O B C$,

$$
\left(\bar{F} \circ \tau_{W}\right) X=\bar{F} \tau_{W} X=\overline{F X}=F X
$$

and $\forall f \in \operatorname{Mor}(X, Y)$,

$$
\begin{aligned}
\left(\bar{F} \circ L_{W}\right) £ & =\bar{F} L_{W} f \\
& =\bar{F}\left[X \longrightarrow Y<\frac{i d_{Y}}{\longleftrightarrow}\right] \\
& =F\left(i d_{Y}\right)^{-1} \circ \mathrm{Ff} \\
& =\left(i d_{F Y}\right)^{-1} \circ \mathrm{Ff}=F f
\end{aligned}
$$

Modulo uniqueness (which will be left to the reader), the proof is thus complete.
1.1.6 REMARK In general, the $\Omega(X, Y) / \sim$ need not be sets and $W^{-1} \underline{C}$ need not be iscmorphic to a category (but it will be if C is small).
1.1.7 LEMMA Every word

$$
\omega=\left(\mathrm{x}, \mathrm{x}_{1}, \ldots, \mathrm{X}_{2 \mathrm{n}-1}, \mathrm{Y}\right)
$$

is equivalent to

$$
\begin{aligned}
& \left(X \xrightarrow{\mathrm{f}_{1}} \mathrm{X}_{1} \stackrel{i d_{1}}{\longleftrightarrow} \mathrm{X}_{1}\right) *\left(\mathrm{X}_{1} \xrightarrow{\mathrm{id}_{1}} \mathrm{X}_{1} \stackrel{\mathrm{w}_{1}}{\longrightarrow} \mathrm{X}_{2}\right) * \cdots \\
& *\left(X_{2 n-2} \xrightarrow{f_{n}} X_{2 n-1} \stackrel{i d_{2 n-1}}{\longleftrightarrow} X_{2 n-1}\right) *\left(X_{2 n-1} \xrightarrow{i d_{2 n-1}} X_{2 n-1} \stackrel{{ }_{n}}{\longleftrightarrow}\right. \text {). }
\end{aligned}
$$

Therefore

$$
[\omega]=\left(I_{W} w_{n}\right)^{-1} \circ L_{W} f_{n} \circ \cdots \circ\left(L_{W} w_{1}\right)^{-1} \circ L_{W} f_{1} .
$$

1.1.8 LFNMA Suppose that ($\underline{C},(w)$ is a category pair whose weak equivalences are isomorphisms -- then $L_{W}: \underline{C} \rightarrow W^{-1} \underline{C}$ is an iscrorphism.

PROOF $\forall w \in W$, ${ }^{i d} \underline{C}^{W}$ is an isomorphism, hence there is a unique functor $\Phi: W^{-1} \underline{C} \rightarrow \underline{C}$ and a factorization $i d_{\underline{C}}=\Phi \circ L_{W}$ Meanwhile, $L_{W}=L_{W} \circ i d_{\underline{C}}=$ $I_{W} \circ\left(\Phi \circ I_{W}\right)=\left(I_{W} \circ \Phi\right) \circ I_{W} \Rightarrow I_{W} \circ \Phi=i d W_{W} \underline{\underline{C}}$.
1.1.9 DEFINITION Let (\underline{C}, w) be a category pair - then the saturation \bar{w} of w is the class of morphisms of \underline{C} which are sent by I_{w} to isomorphisms in $W^{-1} \underline{C}$.
N.B. $(\underline{C}, \overline{(W)}$ is a category pair.
1.10 LEMMA There is a canonical isomorphism

$$
w^{-1} \underline{\mathrm{C}} \rightarrow \bar{w}^{-1} \underline{C}
$$

of metacategories.
PROOF Since $W \subset \bar{W}$, there is a mique functor $\Delta: W^{-1} \underline{C} \rightarrow \bar{W}^{-1} \underline{C}$ such that $L_{\bar{W}}=\Delta{ }^{\circ} L_{W}$ on the other hand, $L_{W} \bar{W}$ is an isomorphism for all $\bar{W} \in \bar{W}$, so there is a unique functor $\bar{\Delta}: \bar{W}^{-1} \underline{C}+\bar{\omega}^{-1} \underline{C}$ such that $L_{W}=\bar{\Delta} \circ L_{\bar{W}}$. Therefore

$$
\begin{aligned}
& \Gamma_{\bar{\omega}}^{-}=\Delta \circ L_{\omega}=\Delta \circ \bar{\Delta} \circ L_{\bar{\omega}} \\
& I_{W}=\bar{\Delta} \circ L_{\bar{W}}=\bar{\Delta} \circ \Delta \circ I_{W} \\
& \text { => } \\
& {\left[\begin{array}{rl}
\Delta \circ \bar{\Delta} & =i d_{\bar{W}^{-1} \subseteq} \\
\bar{\Delta} \circ \Delta & =i d_{W^{-1}} .
\end{array}\right.}
\end{aligned}
$$

1.11 LEMMA Let (C, w) be a category pair -- then for every metacategory D, the precomposition arrow

$$
\left[\mathrm{w}^{-1} \underline{\mathrm{C}}, \underline{\underline{D}}\right] \rightarrow[\underline{\mathrm{C}}, \underline{\mathrm{D}}]
$$

corresponding to L_{W} induces an isomorphism from $\left[W^{-1} \underline{C}, \underline{D}\right]$ onto the full submetacategory $[\underline{C}, \underline{D}] W$ of $[\underline{C}, \underline{D}]$ whose objects are the functor $F: \underline{C}+\underline{D}$ such that $\forall w \in W$, FW is an isomorphism of D.

1.2 CALCULUS OF FRACTIONS

Let (\mathbb{C}, W) be a category pair -- then under certain conditions, the
description of the localization $\left(\omega^{-1} \underline{\mathbb{C}}, \mathrm{~L}_{\omega}\right)$ can be simplified.
1.2.1 DEFINITTON w is said to admit a calculus of left fractions if $\left(L F_{1}\right)$ Given a 2 -source $X^{\prime} \stackrel{W}{\longleftrightarrow} X \xrightarrow{f} Y(W \in W)$, there exists a commatative square

where $w^{\prime} \in W$;
$\left(L_{2}\right)$ Given $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{w}_{1}: \mathrm{X}^{\prime} \rightarrow \mathrm{X}\left(\mathrm{w}_{1} \in \mathbb{W}\right)$ such that $\mathrm{f} \circ \mathrm{w}_{1}=\mathrm{g} \circ \mathrm{w}_{1}$, there exists $w_{2}: Y \rightarrow Y^{\prime}\left(w_{2} \in \mathcal{W}\right)$ such that $w_{2} \circ f=w_{2} \circ g$.
[Note: Reverse the arrows to define "calculus of right fractions".]
1.2.2 REMARK If W admits a calculus of left fractions, then every morphism in $W^{-1} \underline{C}$ can be represented in the form $\left(I_{W} W^{W}\right)^{-1} \circ I_{W} f$ (cf. 1.1.7).
1.2.3 LEMMA Suppose that $\forall\left(w, w^{*}\right): w^{\prime} \circ w \in \mathbb{W} \mathcal{W} \in W \Rightarrow w^{1} \in W-$ then W
 be cormpleted to a weak pushout square

where $w^{\prime} \in \omega$.

1.3 HOMOTOPY

1.3.1 DEFINITION Iet ($\underline{C},(W)$ be a category pair - then morphisms $f, g: X \rightarrow Y$ in \underline{C} are homotopic (written $f \simeq g$) if $I_{w} f=I_{w} g$,
1.3.2 REMARK If W adnits a calculus of left fractions, then $£ \approx g=>$ $\exists \mathrm{w} \in \mathrm{W}: \mathrm{w} \circ \mathrm{f}=\mathrm{w} \circ \mathrm{g}$.

The homotopy relation \simeq is an equivalence relation on $\operatorname{Mor}(\mathrm{X}, \mathrm{Y})$ and one writes $[\mathrm{X}, \mathrm{Y}]$ for $\operatorname{Mor}(\mathrm{X}, \mathrm{Y}) / \simeq$.

Suppose that $f \simeq g: X \rightarrow Y-$ then for $u: X^{\prime} \rightarrow X, f \circ u \simeq g \circ u$ and for $v: Y \rightarrow Y^{\prime}$, $v \circ f \simeq v \circ g$. Consequently, there is a category $H_{W O} \mathrm{C}$ whose objects are those of \underline{C} and whose morphisms from X to Y are the quotients $\operatorname{Mor}(X, Y) / \simeq$. Moreover, there is a functor $\underline{H O}_{W} \omega \in W^{-1} \underline{C}$ and I_{W} factors as the composition $\underline{\mathrm{C}} \rightarrow \underline{H O}_{W} \mathrm{C} \rightarrow W^{-1} \underline{\mathrm{C}}$.
1.3.3 DEFINITION A morphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a homotopy equivalence if there exists a morphism $g: Y \rightarrow X$ such that $f \circ g \simeq i d_{Y}$ and $g \circ f \simeq i d_{X}$.

Write $E(w)$ for the class of f that are homotopy equivalences -- then $E(W) \subset \bar{W}$ (cf. 1.1.9).
1.3.4 LEMMA $E(w)=\bar{w}$ iff $L_{w}: \underline{C} \rightarrow w^{-1} \subseteq$ is full.

PROOF Suppose first that L_{W} is full, the claim then being that $\bar{W} \subset E(W)$.
But $\forall f \in \bar{W}, L_{W} f$ has an inverse and $\left(L_{(W} f\right)^{-1}=L_{W} g$ for some g, thus $f \in E(W)$. Tuming to the converse, recall that a generic morphism $[\omega]$ in $W^{-1} \underset{C}{ }$ can be factored:

$$
[\omega]=\left(I_{w_{n}}\right)^{-1} \circ I_{W} f_{n} \circ \ldots \circ\left(L_{W} W_{1}\right)^{-1} \circ I_{W_{W}} f_{1} \quad \text { (cf. 1.1.7). }
$$

However, $\forall \mathrm{i}$

$$
\mathbf{w}_{i} \in W \subset \bar{w}=\mathrm{E}(w),
$$

hence

$$
\left(L_{W} w_{i}\right)^{-1}=L_{W^{2}} z_{i}
$$

for some $z_{i} \in W$. Therefore

$$
[\omega]=L_{W}\left(z_{n} \circ f_{n} \circ \cdots \circ z_{1} \circ f_{1}\right),
$$

so I_{W} is full.

$$
1.4 \text { TOTALITY }
$$

If (\underline{C}, W) is a category pair and if $F: \underline{C} \rightarrow \underline{D}$ is a functor such that $\forall w \in W$, Fw is an iscmorphism, then there is a commutative diagram

1.4.1 DEFINIIION Let $(\underline{C},(W)$ be a category pair but let $F: \underline{C} \rightarrow \underline{D}$ be arbitrary -then a right derived functor of F is a left $K a n$ extension of F along $L_{l j}$, hence is a pair $\left(I_{W} F, \mu_{F}\right)$, where $\mathcal{L}_{W} F: W^{-1} \underline{C} \rightarrow D$ is a functor and $\mu_{F} \in \operatorname{Nat}\left(F, I_{W} F \circ I_{W}\right)$, with the following property: $\forall F^{\prime} \in O B\left[W^{-1} \underline{C}, \underline{D}\right]$ and $\forall \alpha \in \operatorname{Nat}\left(F, F^{\prime} \circ I_{W^{\prime}}\right)$, there is a unique $\beta \in \operatorname{Nat}\left(\mathrm{I}_{\mathrm{H}} \mathrm{F}, \mathrm{F}^{\prime}\right)$ such that $\alpha=8 I_{W} \circ \mu_{F}$.
1.4.2 NOTATION TO simplify, let

$$
R F=I_{W} F
$$

if no confusion is likely. So we have

1.4.3 DEFINITION A right derived functor $R F$ of F is said to be absolute if for every functor $\Phi: \underline{D} \rightarrow \underline{D}^{\prime}$, the pair ($\Phi \circ \mathrm{RF}, \Phi \mu_{\mathrm{F}}$) is a left Kan extension of $\Phi \circ \mathrm{F}$ along L_{W}.
1.4.4 EXAMPLE If $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ is a functor such that $\forall \mathrm{W} \in \mathbb{W}$, Fw is an isomorphism, then ($\bar{F}, i d_{F}$) is an absolute right derived functor of F (cf. 1.11).
1.4.5 DEFINITION A morphism

$$
F:\left(\underline{C}_{1}, w_{1}\right) \rightarrow\left(\underline{C}_{2}, w_{2}\right)
$$

of category pairs is a functor $F: \underline{C}_{1} \rightarrow \underline{C}_{2}$ such that $F W_{1} \subset W_{2}$, thus there is a unique functor $\bar{F}: w_{1}^{-1} C_{1} \rightarrow w_{2}^{-1} C_{2}$ for which the diagram

commutes (cf. 1.1.2).
1.4.6 DEFINITION Let $\left(\mathcal{C}_{1}, W_{1}\right),\left(\mathrm{C}_{2}, \mathrm{~W}_{2}\right)$ be category pairs but let $\mathrm{F}: \mathrm{C}_{1} \rightarrow \mathrm{C}_{2}$ be arbitrary -- then a total right derived functor of F is a right derived functor of $I_{W_{2}}$. F , which, to minimize the notational load, will be denoted as above by $\left(R F, \mu_{F}\right)$ although in this context $R F: W_{1}^{-1} C_{1} \rightarrow W_{2}^{-1} C_{2}$ and $\mu_{F} \in \operatorname{Nat}\left(I_{W_{2}} \circ F, R F \circ L_{W_{1}}\right)$, so $\forall F^{\prime} \in O$ b $\left[W_{1}^{-1} \underline{C}_{1}, W_{2}^{-1} \mathrm{C}_{2}\right]$ and $\forall \alpha \in \operatorname{Nat}\left(L_{W_{2}} \circ F, F^{\prime} \circ I_{W_{1}}\right)$, there is a unique $\beta \in \operatorname{Nat}\left(R F, F^{\prime}\right)$ such that $\alpha=\beta I_{W_{1}} \quad \circ \mu_{F^{*}}$
N.B. The designation "absolute" total right derived functor is to be assigned the obvious interpretation.
1.4.7 EXAMPLE If

$$
F:\left(C_{1}, w_{1}\right) \rightarrow\left(\underline{C}_{2}, w_{2}\right)
$$

is a morphism of category pairs, then $\left(\overline{\mathrm{F}}, \mathrm{id} \mathrm{L}_{\mathrm{WU}_{2}}{ }_{\mathrm{F}}\right.$) is an absolute total right derived functor of F.
1.4.8 REMARK The terms left derived functor, absolute left derived functor, total left derived functor, absolute total left derived functor are dual, as is the notation: ($L F, \nu_{F}$).

1.5 EXISTENCE

Suppose that $\left(\mathcal{C}_{1}, W_{1}\right),\left(\underline{C}_{2}, W_{2}\right)$ are category pairs and $F: C_{1} \rightarrow \mathrm{C}_{2}$ is a functor then the problem is to find conditions which ensure that F possesses an absolute total right derived functor ($R F, \mu_{F}$).
1.5.1 DEFINITION Iet

$$
K:\left(\mathrm{C}_{0}, W_{0}\right) \rightarrow\left(\mathrm{C}_{1}, W_{1}\right)
$$

be a morphism of category pairs - then K is resolvable to the right if
$\forall \mathrm{X}_{1} \in \mathrm{Ob} \mathrm{C}_{1}, \exists \mathrm{X}_{0} \in \mathrm{Ob} \mathrm{C}_{0}$ and an arrow $\mathrm{w}_{1}: \mathrm{X}_{1} \rightarrow \mathrm{KX} \mathrm{O}_{0}$, where $\mathrm{w}_{1} \in W_{1}$.
N.B. Fix $X_{1} \in O b C_{1}$ - then the category of K-resolutions to the right of X_{1} has for i ts objects the arrows $w_{1}: X_{1} \rightarrow \mathrm{KX}_{0}$, where $w_{1} \in \mathbb{U}$, a morphism

$$
\left(\mathrm{X}_{1} \xrightarrow{\mathrm{w}_{1}} \mathrm{KX}_{0}\right) \longrightarrow\left(\mathrm{X}_{1} \xrightarrow{{ }^{\mathrm{w}_{1}^{\prime}}} \mathrm{KX}_{0}^{\prime}\right)
$$

being an arrow $w_{0}: X_{0} \rightarrow X_{0}^{\prime}$, where $w_{0} \in W_{0}$, such that the diagram

cormates.

Let $\left(\mathrm{C}_{1}, W_{1}\right)$ be a category pair -- then a derivability structure to the right on (C_{1}, W_{1}) consists of a morphism

$$
K:\left(\underline{C}_{0}, w_{0}\right) \rightarrow\left(\underline{C}_{1}, \omega_{1}\right)
$$

of category pairs, where K is resolvable to the right, plus additional conditions on the data that serve to imply the validity of the following assertion.
1.5.2 THEOREM Fix a derivability structure to the right on ($\mathrm{C}_{1}, \mathrm{w}_{1}$) - then for any category pair ($\underline{C}_{2}, \mathrm{~N}_{2}$) and any functor $\mathrm{F}: \underline{\mathrm{C}}_{1} \rightarrow \mathrm{C}_{2}$ such that

$$
F \circ K:\left(\underline{C}_{0}, w_{0}\right) \rightarrow\left(\underline{C}_{2}, w_{2}\right)
$$

is a morphism of category pairs, F admits an absolute total right derived functor (RF, H_{F}).

$$
\begin{aligned}
& \text { 1.5.3 ADDENDA } \forall X_{1} \in O b C_{1} \text { and } \forall w_{1}: X_{1} \rightarrow K X_{0}\left(w_{1} \in W_{1}\right), \\
& I_{w_{2}}\left(F w_{1}\right): L_{w_{2}} F X_{1} \rightarrow I_{w_{2}} F K X_{0} .
\end{aligned}
$$

On the other hand,

$$
\left(\mu_{F}\right) X_{1}: L_{W_{2}} \mathrm{FX}_{1}+\mathrm{RFL}_{W_{1}} X_{1} .
$$

This said, the existence of a derivability structure to the right on ($\mathrm{C}_{1},\left(\mathrm{~N}_{1}\right)$ implies that there is a canonical isomorphism

$$
\mathrm{RFI}_{\mathrm{w}_{1}} \mathrm{X}_{1} \rightarrow \mathrm{I}_{\mathrm{w}_{2}} \mathrm{FKX}_{0}
$$

in $\omega_{2}^{-1} \mathrm{C}_{2}$ and a commutative diagram

where canonical refers to the category of k-resolutions to the right of X_{1} :

The specific choice of the conditions figuring in a derivability structure to the right depends on the details of the situation at hand and on ones ultimate objective. Accordingly, foregoing any pretence of a general theoretical study, we shall zero in on just one particular instance that will be of use in the sequel.
1.5.4 DEFINITION Let $\left(\underline{C}_{1}, W_{1}\right)$ be a category pair - then a right approximation to $\left(\mathrm{C}_{1}, \omega_{1}\right)$ is a morphism

$$
K:\left(C_{0}, W_{0}\right) \rightarrow\left(\underline{C}_{1}, \omega_{1}\right)
$$

of category pairs, where K is resolvable to the right, such that for any 2-source
$\mathrm{KX}_{0} \stackrel{\mathrm{w}_{1}}{\longrightarrow} \mathrm{X}_{1} \xrightarrow{\mathrm{f}_{1}} \mathrm{KX}_{0}^{\prime}\left(W_{1} \in W_{1}\right)$, there is a 2-source $\mathrm{X}_{0} \stackrel{{ }_{\mathrm{W}}^{0}}{\longrightarrow} X_{0}^{\prime \prime} \xrightarrow{\mathrm{f}_{0}} \mathrm{X}_{0}^{\prime}$ $\left(w_{0} \in W_{0}\right)$ and an arrow $w_{1}^{\prime \prime}: X_{1} \rightarrow K X_{0}^{\prime \prime}\left(w_{1}^{\prime} ' \in W_{1}\right)$ leading to a commative diagram

In addition, if $\left(\tilde{w}_{0}, \tilde{f}_{0}, \tilde{w}^{\prime}{ }_{1}^{\prime}\right)$ is another choice, then

$$
L_{w_{0}}{ }^{f} 0 \circ\left(L_{w_{0}} w_{0}\right)^{-1}=L_{w_{0}} \tilde{f}_{0} \circ\left(L_{w_{0}} \tilde{w}_{0}\right)^{-1}
$$

1.5.5 THEOREM A right approximation

$$
K:\left(\underline{C}_{0}, w_{0}\right) \rightarrow\left(\underline{C}_{1}, w_{1}\right)
$$

to $\left(\underline{C}_{1}, w_{1}\right)$ is a derivability structure to the right on $\left(\underline{C}_{1},\left(W_{1}\right)\right.$.
[For the proof, which we shall onit, consult Radulescu-Banu ${ }^{\dagger}$.]

Therefore the existence of a right approximation to $\left(\mathrm{C}_{1}, \omega_{1}\right)$ forces 1.5 .2 and 1.5 .3 . But here there is a bonus.
1.5.6 THEOREM The induced functor

$$
\overline{\mathrm{K}}: \omega_{0}^{-1} \mathrm{C}_{0} \rightarrow w_{1}^{-1} \mathrm{C}_{1}
$$

is an equivalence of metacategories.
1.5.7 REMARK The terms resolvable to the left, derivability structure to the left, left approximation are dual.

$$
1.6 \text { COMPOSITION }
$$

The result in question is this,
1.6.1 THEOREM $\operatorname{Let}\left(\underline{C}_{1},\left(\omega_{1}\right),\left(\underline{C}^{\prime}, W^{\prime}\right),\left(C_{2}, \omega_{2}\right)\right.$ be category pairs. Suppose that

$$
\left[\begin{array}{l}
\mathrm{K}:\left(\underline{C}_{0}, W_{0}\right) \rightarrow\left(\underline{C}_{1}, w_{1}\right) \\
\mathrm{K}^{\prime}:\left(\underline{C}_{0}^{\prime}, w_{0}^{\prime}\right) \rightarrow\left(\underline{\mathrm{C}}^{\prime}, w^{\prime}\right)
\end{array}\right.
$$

are derivability structures to the right. Let $F: \underline{C}_{1} \rightarrow \underline{C}^{\prime}, F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}_{2}$, and $\mathrm{F}_{0}: \mathrm{C}_{0} \rightarrow \mathrm{C}_{0}^{\prime}$ be functors. Assume:

$$
\left[\begin{array}{l}
K^{\prime} F_{0}=F K \\
F_{0} W_{0} \subset W_{0}^{\prime} \\
F^{\prime} K^{\prime} W_{0}^{\prime} \subset W_{2} .
\end{array}\right.
$$

Then F, F^{\prime}, and $F^{\prime \prime}=F^{\prime} \circ F$ admit absolute total right derived functors ($R F, H_{F}$), ($R F^{\prime}, \mu_{F^{\prime}}$), and ($\mathrm{RF}^{\prime}, \mu_{\mathrm{F}^{\prime} \prime^{\prime}}$). Furthemore

$$
R F^{\prime}=R F^{\prime} \circ R F .
$$

PROOF First of all

$$
\left[\begin{array}{l}
F K W_{0}=K^{\prime} F_{0} W_{0} \subset K^{\prime} W_{0}^{\prime} \subset W^{\prime} \\
F^{\prime} K^{\prime} W_{0}^{\prime} \subset W_{2} \\
F^{\prime \prime} K W_{0}=F^{\prime} F K W_{0} \subset F^{\prime} K^{\prime} W_{0}^{\prime} \subset W_{2} .
\end{array}\right.
$$

So, thanks to $1.5 .2,\left(R F, \mu_{F}\right),\left(R F^{\prime} \mu_{F} \mu^{\prime}\right)$, and (RF'', $\mu_{F^{\prime}}$) exist. Next, by universality, \exists a unique

$$
\Xi \in \operatorname{Nat}\left(\mathrm{RF}^{\prime}{ }^{\prime}, R F^{\prime} \circ R F\right)
$$

such that

$$
\left(\operatorname{RF}^{\prime} \mu_{F}\right) \circ\left(\mu_{F^{\prime}} F\right)=E L_{W_{1}} \circ \mu_{F^{\prime}}{ }^{\prime}
$$

and to conclude that

$$
R F^{\prime \prime} \approx R F^{\prime} \circ R F,
$$

it need only be shown that $\forall \mathrm{X}_{1} \in \mathrm{Ob} \mathrm{C}_{1}$,

$$
\Xi_{X_{1}}: R F^{\prime} ' X_{1} \rightarrow R F^{\prime}\left(R F X_{1}\right)
$$

is an isomorphism. Choose $X_{0} \in O b C_{0}$ and $w_{1}: X_{1} \rightarrow K X_{0}\left(w_{1} \in W_{1}\right)$. Owing to l.5.3, in $w^{\prime-1} \underline{C}^{\prime}$,

$$
\mathrm{RFX}_{1} \approx \mathrm{FKX}_{0}
$$

and in $W_{2}^{-1} C_{2}$,

$$
\mathrm{RF}^{\prime} \mathrm{X}_{1} \approx \mathrm{~F}^{\prime}{ }^{\prime} \mathrm{KX} X_{0}=\mathrm{F}^{\prime} \mathrm{FKX}_{0}
$$

But

$$
F K X_{0}=K^{\prime} F_{0} X_{0}
$$

and

$$
{ }_{K^{\prime} F_{0} X_{0}}: F K X_{0} \rightarrow K^{\prime} F_{0} X_{0} .
$$

Therefore, by 1.5 .3 again, in $W_{2}^{-1} \mathrm{C}_{2}$,

$$
R F^{\prime} F K X_{0} \approx F^{\prime} K^{\prime} F_{0} X_{0}=F^{\prime} F K X_{0}
$$

Consequently,

$$
\begin{aligned}
R F^{\prime} X_{1} & \approx R F^{\prime} F K X_{0} \\
& \approx \operatorname{RF}^{\prime}\left(\operatorname{RFX}_{1}\right),
\end{aligned}
$$

which, if unraveled, is $E_{X_{1}}$.

1.7 ADJOINTS

Let $\left(\underline{C}_{1}, \omega_{1}\right),\left(\underline{C}_{2}, \omega_{2}\right)$ be category pairs. Suppose that

$$
\left.\right|_{-\quad} \quad \begin{aligned}
& -C_{1} \\
& G: C_{2} \\
& C_{2}
\end{aligned}
$$

are an adjoint pair with arrows of adjunction

$$
\left.\right|_{\quad \begin{array}{l}
\mu: i d_{C_{1}}
\end{array} \rightarrow G \circ F} ^{v: F \circ G \rightarrow i d_{C_{2}}} .
$$

Assume:

$$
\left.\right|_{\quad} \mathrm{F} \text { admits an absolute total left derived functor }\left(L F, \nu_{F}\right)
$$

1.7.1 THEOREM The functors

$$
\left[\begin{array}{l}
L F: W_{1}^{-1} C_{1} \rightarrow W_{2}^{-1} C_{2} \\
\quad R F: W_{2}^{-1} C_{2} \rightarrow W_{1}^{-1} C_{1}
\end{array}\right.
$$

are an adjoint pair and one can choose the arrows of adjunction

$$
\left[\begin{array}{cc}
\underset{\underline{\mu}}{\mu}: i d W_{1}^{-1} \longrightarrow & R G \circ L F \\
\underline{\underline{v}}: L F \circ R G \longrightarrow i d & \omega_{2}^{-1} C_{2}
\end{array}\right.
$$

so that the diagrams

cormute.

Before establishing the existence of $\left.\right|_{-} ^{-\underline{\underline{u}}}$, it will be best to review the definitions.

- (RG, μ_{G}) is an absolute total right derived functor of G, thus is an absolute right derived functor of $L_{w_{1}} \circ G$.
- ($L F, \nu_{F}$) is an absolute total left derived functor of F, thus is an absolute left derived functor of $L_{W_{2}} \circ \mathrm{~F}$.

Therefore

- (LF $\left.\circ R G,(L F) \mu_{G}\right)$ is a right derived functor of $L F \circ L_{W_{1}} \circ G$.
- (RG•LF, $\left.(R G) \nu_{F}\right)$ is a left derived functor of $R G \circ L_{\omega_{2}} \circ F$.

Next, by universality,

- If $\Phi_{2}: W_{2}^{-1} \mathrm{C}_{2} \rightarrow W_{2}^{-1} \mathrm{C}_{2}$ is a functor and if

$$
E_{2} \in \operatorname{Nat}\left(L F \circ L_{w_{1}} \circ G, \Phi_{2} \circ L_{w_{2}}\right)
$$

then there exists a unique

$$
E_{2}^{\prime} \in \operatorname{Nat}\left(L F \circ R G, \Phi_{2}\right)
$$

such that

$$
E_{2}=\Xi_{2}^{\prime} L_{W_{2}} \circ(L F) \mu_{G}
$$

- If $\Phi_{1}: W_{1}^{-1} \underline{C}_{1} \rightarrow W_{1}^{-1} \mathbb{C}_{1}$ is a functor and if

$$
\Xi_{1} \in \operatorname{Nat}\left(\Phi_{1} \circ I_{w_{1}}, R G \circ I_{W_{2}} \circ F\right)
$$

then there exists a unique

$$
\Xi_{1}^{\prime} \in \operatorname{Nat}\left(\Phi_{1}, R G \circ L F\right)
$$

such that

$$
E_{1}=(R G) \nu_{F} \circ E_{1}^{\prime} I_{w_{1}}
$$

Now specialize and take

$$
\left.\right|_{-} ^{\Phi_{2}=i d} \omega_{2}^{-1} C_{2}
$$

and let

Then there exist unique

$$
\left[\begin{array}{l}
\underline{\underline{v}} \in \operatorname{Nat}\left(L F \circ R G, i d \omega_{2}^{-1} C_{2}\right) \\
\underline{\underline{y}} \in \operatorname{Nat}\left(i d \omega_{1}^{-1} C_{1}, R G \circ L F\right)
\end{array}\right.
$$

such that

$$
\left\lvert\, \begin{aligned}
& I_{W_{2}} \nu \circ \nu_{F} G=\underline{=} I_{w_{2}} \circ(L F) \mu_{G} \\
& \mu_{G} F \circ I_{W_{1}} \mu=(R G) \nu_{F} \circ \underline{\underline{\mu}} L_{W_{1}}^{\prime}
\end{aligned}\right.
$$

thus with these choices the diagrams in 1.7 .1 are cormutative but, of course, one still has to prove that $\left.\right|_{-} ^{-} \underset{=}{\underline{\nu}}$ are in fact arrows of adjunction. r.e.:

$$
\left[\begin{array}{l}
(R G) \underline{\underline{v}} \circ \underline{\underline{\mu}}(R G)=i d_{R G} \\
\underline{\underline{v}}(L F) \circ(L F) \underline{\underline{\mu}}=i d_{L F}
\end{array}\right.
$$

We shall verify the first of these relations, the argument for the second being analogous.

To begin with

$$
\mathrm{id}_{\mathrm{RG}^{\mathrm{I}}} \mathrm{w}_{2} \circ \mu_{\mathrm{G}}=\mu_{\mathrm{G}}
$$

Proof:

$$
\begin{aligned}
& \mu_{G} \in \operatorname{Nat}\left(L_{W_{1}} \circ G, R G \circ L_{w_{2}}\right) \\
\Rightarrow & \left(\mu_{G}\right)_{X_{2}}: L_{w_{1}} G X_{2} \rightarrow \operatorname{RGL}_{W_{2}} X_{2}
\end{aligned}
$$

Meanwhile

$$
\begin{aligned}
& \left(i d_{R G}{ }^{I} \omega_{2} \circ \mu_{G}\right)_{X_{2}}=\left(i d_{R G}{ }_{\omega_{2}}\right) X_{2} \circ\left(\mu_{G}\right)_{X_{2}} \\
& =\left(\left(L_{\omega_{2}}\right) * i d_{R G}\right) X_{2} \cdot\left(\mu_{G}\right)_{X_{2}} \\
& =\left(i d d_{R G}\right)_{\omega_{2}} X_{2}{ }^{\circ}\left(\mu_{G}\right)_{X_{2}} \\
& =i d_{\mathrm{RGI}_{\mathrm{HV}_{2}}} \mathrm{X}_{2} \circ\left(\mu_{\mathrm{G}}\right)_{\mathrm{X}_{2}}=\left(\mu_{\mathrm{G}}\right)_{\mathrm{X}_{2}} .
\end{aligned}
$$

Since $i d_{\text {dG }}$ is characterized by this property, it will be enough to show that

$$
((R G) \underline{\underline{v}} \circ \quad \underline{\underline{\mu}}(R G)) L_{W_{2}} \circ \mu_{G}=\mu_{G} \cdot
$$

Starting from the IHS, write

$$
\begin{aligned}
& ((R G) \underset{=}{\sim} \circ \underline{=}(R G)) L_{L_{2}} \circ \mu_{G} \\
& =((R G) \underline{=}) I_{w_{2}} \circ(\underline{\underline{\mu}}(R G)) I_{w_{2}} \circ \mu_{G} \\
& =((R G) \underset{=}{\nu}) L_{W_{2}} \circ \underline{=}\left(R G \circ L_{W_{2}}\right) \circ \mu_{G} \\
& =\left((R G) \underset{=}{\underline{V}}{\underset{W}{W_{2}}} \circ(R G \circ L F) \mu_{G} \circ \underline{\underline{\mu}}\left(L_{W_{1}} \circ G\right)\right. \\
& =\operatorname{RG}\left(\stackrel{\nu}{=} I_{W_{2}} \circ(L F) \mu_{G}\right) \circ \underline{=}\left(L_{\omega_{1}} \circ G\right) \\
& =R G\left(I_{W_{2}} \nu \circ \nu_{F} G\right) \circ \underline{=}\left(L_{w_{1}} \circ G\right) \\
& =\left(R G \circ L_{W_{2}}\right) \nu \circ\left((R G) \nu_{F}\right) G \circ \mu\left(L_{W_{1}} \circ G\right) \\
& \left.=\left(R G \circ I_{W_{2}}\right) \nu \circ\left((R G) \nu_{F} \circ \stackrel{\mu}{=} I_{W_{1}}\right) G\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(R G \circ L_{W_{2}}\right) \nu \circ\left(\mu_{G} F \circ L_{W_{1}}^{\mu}\right) G \\
& =\left(R G \circ L_{W_{2}}\right) \nu \circ \mu_{G}(F \circ G) \circ\left(L_{w_{1}}^{\mu}\right) G \\
& =\mu_{G} \circ\left(L_{w_{1}} \circ G\right) \vee \circ\left(L_{W_{1}} \mu\right) G \\
& =\mu_{G} \circ L_{W_{1}}((G) \circ(\mu G)) \\
& =\mu_{G} \circ L_{W_{1}}\left(i d_{G}\right) \\
& =\mu_{G} \circ i d_{L_{W_{1}}} \circ G \\
& =\mu_{G} \cdot
\end{aligned}
$$

N.B. Hidden within the preceding chain of equalities are two commutative diagrams.
\#1:

$$
\begin{aligned}
& R G \circ I_{W_{2}} \xrightarrow[\underline{\underline{\mu}}\left(R G \circ I_{W_{2}}\right)]{ } R G \circ L F \circ R G \circ I_{W_{W_{2}}} .
\end{aligned}
$$

Let

$$
\left\{\begin{aligned}
\mathrm{A} & =\mathrm{i} \cdot \mathrm{w}_{1}^{-1} \underline{C}_{1} \\
\mathrm{~B} & =\mathrm{RG} \circ \mathrm{LF} .
\end{aligned}\right.
$$

Fix $X \in O \mathrm{C}_{2}$, let

$$
\begin{aligned}
\mathrm{Y} & =I_{W_{1}} \mathrm{GX} \\
\mathrm{Z} & =\mathrm{RGL}_{W_{2}} \mathrm{X}
\end{aligned}
$$

and consider

Then $\underline{\underline{\mu}} \in \operatorname{Nat}(\mathrm{A}, \mathrm{B})$, thus the diagram commutes.
\#2:

Let

$$
\int_{-} \begin{aligned}
& A=L_{w_{1}} \circ G \\
& B=R G \circ L_{w_{2}} .
\end{aligned}
$$

Fix $\mathrm{X} \in \mathrm{O} \mathrm{C}_{2}$ and consider

Then $\mu_{G} \in \operatorname{Nat}(A, B)$, thus the diagram commutes.
1.7.2 THEOREM Let $\left(\underline{C}_{1}, W_{1}\right),\left(\underline{C}_{2}, W_{2}\right)$ be category pairs. Suppose that

$$
\left[\begin{array}{l}
F: C_{1} \rightarrow C_{2} \\
G: C_{2} \rightarrow C_{1}
\end{array}\right.
$$

are an adjoint pair. Assume:

$$
\left[\begin{array}{l}
\left(\underline{\mathrm{C}}_{\ell}, \mathrm{w}_{\ell}\right) \xrightarrow{L}\left(\underline{\mathrm{C}}_{1}, \mathrm{w}_{1}\right) \text { is a left approximation } \\
\left(\underline{\mathrm{C}}_{2}, \mathrm{w}_{2}\right) \stackrel{K}{\longleftrightarrow}\left(\underline{\mathrm{C}}_{r}, w_{r}\right) \text { is a right approximation }
\end{array}\right.
$$

and

$$
\left[\begin{array}{l}
\quad \mathrm{FL} w_{\ell} \subset w_{2} \\
\quad \operatorname{GK} w_{r} \subset w_{1}
\end{array}\right.
$$

Then the conclusions of 1.7 .1 obtain (cf. 1.5.5).
1.7.3 LEMMA Suppose that for

$$
\left.\forall\right|^{-\quad x_{\ell} \in O b C_{\ell}} \begin{aligned}
& x_{r} \in O b c_{r}
\end{aligned}
$$

an arrow

$$
\phi \in \operatorname{Mor}\left(\operatorname{FLX}_{\ell}, \mathrm{KX}_{r}\right)
$$

is a weak equivalence iff its adjoint

$$
\psi \in \operatorname{Mor}\left(\mathrm{LX}_{\ell}, \mathrm{GKX}_{r}\right)
$$

is a weak equivalence -- then the adjoint situation

$$
(L F, R G, \underline{\underline{\mu}}, \underline{\underline{N}})
$$

is an adjoint equivalence of metacategories.

1.8 PARTIAL ADJOINTS

Let $\underline{A}, \underline{B}, \underline{C}, \underline{D}$ be categories (or metacategories).

1.8.1 DEFINITION Consider a diagram

of functors -- then F_{1}, F_{2} is a partial adjoint w.r.t. T_{1}, T_{2} if it is possible to to assign to each ordered pair $\left.\right|_{-} ^{-} \begin{aligned} & A \in O B \underline{A} \\ & D \in O D\end{aligned}$ a bijective map

$$
\Xi_{A, D}: \operatorname{Mor}\left(F_{1} A, T_{2} D\right) \rightarrow \operatorname{Mor}\left(T_{1} A, F_{2} D\right)
$$

which is functorial in A and D.
N.B. Take $\underline{A}=\underline{C}, \underline{B}=\underline{D}, T_{1}=i d_{\underline{A}}, T_{2}=i d_{\underline{B}}$ to reduce to the usual scenario.
1.8.2 LAMMA If T_{1} has a right adjoint. S_{1} and T_{2} has a left adjoint S_{2}, then $S_{2} F_{1}$ is a left adjoint for $S_{1} F_{2}$.

PROOF In fact,

$$
\begin{aligned}
\operatorname{Mor}\left(S_{2} F_{1} A, D\right) & \approx \operatorname{Mor}\left(F_{1} A, T_{2} D\right) \\
& \approx \operatorname{Mor}\left(T_{1} A, F_{2} D\right) \\
& \approx \operatorname{Mor}\left(A, S_{1} F_{2} D\right)
\end{aligned}
$$

1.8.3 LEMMA If S_{1}, T_{1} and S_{2}, T_{2} are adjoint equivalences, then $F_{1} S_{1}$ is a left. adjoint for $\mathrm{F}_{2} \mathrm{~S}_{2}$ -

PROOF In fact,

$$
\begin{aligned}
\operatorname{Mor}\left(F_{1} S_{1} \mathrm{C}, \mathrm{~B}\right) & \approx \operatorname{Mor}\left(\mathrm{F}_{1} \mathrm{~S}_{1} \mathrm{C}, \mathrm{~T}_{2} \mathrm{~S}_{2} \mathrm{~B}\right) \\
& \approx \operatorname{Mor}\left(\mathrm{T}_{1} \mathrm{~S}_{1} \mathrm{C}_{1} \mathrm{~F}_{2} \mathrm{~S}_{2} \mathrm{~B}\right) \\
& \approx \operatorname{Mor}\left(\mathrm{C}_{1} \mathrm{~F}_{2} \mathrm{~S}_{2} B\right)
\end{aligned}
$$

Let $\left(C_{1},\left(W_{1}\right),\left(C_{2}, W_{2}\right)\right.$ be category pairs. Assume:

$$
\begin{aligned}
& \left(\underline{C}_{\ell}, w_{\ell}\right) \xrightarrow{L}\left(\underline{C}_{1}, w_{1}\right) \text { is a left approximation } \\
& \left(\underline{C}_{2}, w_{2}\right)<\frac{K}{\square}\left(\underline{C}_{r}, w_{r}\right) \text { is a right approximation. }
\end{aligned}
$$

29.

Suppose further that

$$
\left\lvert\, \begin{aligned}
& \Phi_{\ell}:\left(\underline{\mathrm{C}}_{\ell},\left(w_{\ell}\right) \rightarrow\left(\underline{\mathrm{C}}_{2}, \omega_{2}\right)\right. \\
& \Phi_{\mathrm{r}}:\left(\underline{\mathrm{C}}_{\mathrm{r}}, w_{\mathrm{r}}\right) \rightarrow\left(\mathrm{C}_{1}, w_{1}\right)
\end{aligned}\right.
$$

are morphisms of category pairs. Arrange the data:

1.8.4 THEOREM If $\Phi_{\ell}{ }^{\prime} \Phi_{r}$ is a partial adjoint w.r.t. I, K, then $\bar{\Phi}_{\ell}, \bar{\Phi}_{r}$ is a partial adjoint w.r.t. $\overline{\mathrm{L}}, \overline{\mathrm{K}}$:

thus

$$
\left.\right|_{-} ^{-x_{\ell} \in o b w_{\ell}^{-1} C_{\ell}} \begin{gathered}
x_{r} \in o b w_{r}^{-1} C_{r^{\prime}}
\end{gathered}
$$

30.

$$
\operatorname{Mor}\left(\bar{\Phi}_{\ell} X_{\ell}, \overline{\mathrm{K}}_{r}\right) \approx \operatorname{Mor}\left(\overline{\mathrm{L}}_{\ell}, \bar{\Phi}_{r} \mathrm{X}_{\mathrm{r}}\right)
$$

1.8.5 REMARK Recall that

$$
\left[\begin{array}{l}
\bar{L}: W_{\ell}^{-1} C_{\ell} \rightarrow w_{1}^{-1} C_{1} \\
\bar{K}: w_{r}^{-1} C_{r} \rightarrow w_{2}^{-1} C_{2}
\end{array}\right.
$$

are equivalences of metacategories (cf. 1.5.6), thus $\overline{\mathrm{L}}_{\mathrm{r}} \overline{\mathrm{K}}$ is part of an adjoint equivalence, say

$$
\left[\begin{array}{l}
\overline{\mathrm{L}}^{1}: W_{1}^{-1} \mathrm{C}_{1}+w_{l}^{-1} \mathrm{C}_{\ell} \\
\overline{\mathrm{K}}^{\prime}: W_{2}^{-1} \mathrm{C}_{2}+w_{\mathrm{r}}^{-1} \mathrm{C}_{\mathrm{r}} .
\end{array}\right.
$$

Let

$$
\left[\begin{array}{rl}
-\quad V_{1} & =\bar{\Phi}_{\ell} \circ \bar{L}^{\prime} \\
V_{2} & =\bar{\Phi}_{r} \circ \overline{\mathrm{~K}}^{\prime}
\end{array}\right.
$$

Then

$$
\left.\right|_{-} \begin{aligned}
& v_{1}: w_{1}^{-1} C_{1} \rightarrow w_{2}^{-1} C_{2} \\
& v_{2}: w_{2}^{-1} C_{2} \rightarrow w_{1}^{-1} C_{1}
\end{aligned}
$$

are an adjoint pair (cf. 1.8.3).
1.8.6 IEMMA Suppose that

$$
\left.\forall\right|_{-\infty} x_{\ell} \in \infty \mathrm{c}_{\ell}
$$

31.

an arrow

$$
\phi \in \operatorname{Mor}\left(\Phi_{\ell} X_{\ell}, K X_{r}\right)
$$

is a weak equivalence iff its partial adjoint

$$
\psi \in \operatorname{Mor}\left(L X_{\ell}, \Phi_{r} X_{r}\right)
$$

is a weak equivalence - then

$$
\begin{aligned}
& { }^{-} V_{1} \circ v_{2} \approx i d \omega_{2}^{-1} c_{2} \\
& V_{2} \circ V_{1} \approx i d \omega_{1}^{-1} C_{1},
\end{aligned}
$$

hence V_{1} and V_{2} are matually inverse equivalences.
1.9 PRODUCTS

Let

$$
\left(\underline{C}_{i}, w_{i}\right) \quad(i=1, \ldots, n)
$$

be category pairs.
1.9.1 LIMMA The canonical functor

$$
\left(\prod_{i=1}^{n} w_{i}\right)^{-1} \prod_{i=1}^{n} C_{i} \rightarrow \prod_{i=1}^{n} w_{i}^{-1} C_{i}
$$

is an isomorphism of metacategories.
PROOF By induction, it suffices to treat the case when $n=2$. But bearing in mind 1.11, for every metacategory D, there are functorial bijections

$$
\operatorname{Mor}\left(w_{1}^{-1} C_{1} \times W_{2}^{-1} C_{2}, D\right)
$$

$$
\begin{aligned}
& \approx \operatorname{Mor}\left(\omega_{1}^{-1} \mathrm{C}_{1},\left[\omega_{2}^{-1} \mathrm{C}_{2}, \underline{\mathrm{D}}\right]\right) \\
& \approx \operatorname{Mor}\left(W_{1}^{-1} \mathrm{C}_{1},\left[\mathrm{C}_{2}, \underline{\mathrm{D}}\right]_{W_{2}}\right) \\
& \approx \operatorname{Mor}\left[\underline{C}_{1},\left[\underline{C}_{2}, \mathrm{D}^{\mathrm{D}} \mathrm{\omega}_{2}\right]_{\omega_{1}}\right. \\
& \approx \operatorname{Mor}\left[\underline{C}_{1} \times \underline{C}_{2},{ }^{\mathrm{D}}\right] \omega_{1} \times \omega_{2} \\
& \approx \operatorname{Mor}\left(\left(\omega_{1} \times \omega_{2}\right)^{-1}\left(\underline{C}_{1} \times \underline{C}_{2}\right), \underline{D}\right) .
\end{aligned}
$$

N.B. Therefore the functor

$$
L_{w_{1}} \times L_{w_{2}}: C_{1} \times C_{2}+w_{1}^{-1} C_{1} \times w_{2}^{-1} C_{2}
$$

is a localization of $\mathrm{C}_{1} \times \mathrm{C}_{2}$ at $\omega_{1} \times \omega_{2}$.
1.9.2 LEMMA Let $\left(\underline{C}, W\right.$) be a category pair -- then L_{W} sends final objects in $\underline{\mathrm{C}}$ to final objects in $\mathfrak{w}^{-1} \underline{C}$.
1.9.3 LFPMA Let ($\underline{C},(\omega)$ be a category pair. Assume: \underline{C} has binary products and W is stable under the formation of products of pairs of arrows -- then $W^{-1} \mathbb{C}$ has binary products.

PROOF Since \underline{C} has binary products, the diagonal functor $\Delta_{\underline{C}}: \underline{C} \rightarrow \underline{C} \times \underline{C}$ has a right adjoint $\mathbb{\Pi}_{\underline{C}}: \underline{C} \times \underset{\sim}{C}$ C. In addition,

$$
\left\{\begin{array}{l}
\mathbb{A}_{\underline{C}}:(\underline{C}, w) \rightarrow(\underline{C} \times \underline{C}, w \times w) \\
\Pi_{\underline{C}}:(\underline{C} \times \underline{C}, w \times w) \rightarrow(\underline{C}, w)
\end{array}\right.
$$

are morphisms of category pairs, so

$$
\left[\begin{array}{l}
\overline{\Delta_{\underline{C}}}:\left(w^{-1} \underline{\mathrm{C}} \rightarrow(\omega \times w)^{-1}(\underline{\mathrm{C}} \times \underline{\mathrm{C}})\right. \\
\overline{\bar{T}}_{\underline{\mathrm{C}}}:(w \times w)^{-1}(\underline{\mathrm{C}} \times \underline{\mathrm{C}}) \rightarrow w^{-1} \underline{\mathrm{C}}
\end{array}\right.
$$

exist (cf. 1.4.5) and constitute an adjoint pair (cf. 1.7.1). But

$$
(\omega \times W)^{-1}(\underline{\mathrm{C}} \times \underline{\mathrm{C}}) \approx{\left.\omega^{-1} \underline{\mathrm{C}} \times \omega^{-1} \underline{\mathrm{C}} \quad \text { (cf. } 1.9 .1\right)}^{(W)}
$$

and under this isomorphism, $\overline{{ }_{\mathrm{C}}^{\mathrm{C}}}$isidentifiedwiththediagonalfunctor

$$
w^{-1} \underline{\mathrm{C}} \rightarrow \omega^{-1} \underline{\mathrm{C}} \times \omega^{-1} \underline{\mathrm{C}},
$$

which thus has a right adjoint, viz. the functor corresponding to $\overline{\bar{\Pi}}_{\underline{C}}$. Therefore $W^{-1} \subseteq$ has binary products.
[Note: $I_{W}: \underline{C} \rightarrow W^{-1} \subseteq$ preserves binary products: $\forall X, Y \in O B \underline{C}$,

$$
\left.L_{W}(X \times Y) \approx L_{W} X \times L_{W} Y .\right]
$$

1.9.4 SCHOLTUM Let (\underline{C}, W) be a category pair -- then $W^{-1} \underline{C}$ has finite products if $\subseteq \underline{C}$ has a final object and binary products and if W is stable under the formation of products of pairs of arrows.
1.9.5 REMARK What has been said above for products admits the obvious refonmulation in terms of coproducts.

CHAPTER 2: COFIBRATION CATEGORIES

2.1 THE SETUP

2.2 APPROXIMATIONS

2.3 SATURATION
2.4 FIBRANT MODELS
2.5 PRINCIPLES OF PERMANENCE
2.6 WEAK COLIMITS
2.7 WEAK MODEL CATEGORIES

CHAPTER 2: COFIBRATION CATEGORIES

2.1 THE SETUP

Consider a triple (\underline{C}, ω, cof), where \underline{C} is a category with an initial object \emptyset and
are two composition closed classes of morphisms termed

$$
\left[\begin{array}{l}
\text { weak equivalences }(\text { denoted } \xrightarrow{\sim}) \\
\xrightarrow{\text { cofibrations (denoted }>} \text {). }
\end{array}\right.
$$

Agreeing to call an object X cofibrant if the arrow $\emptyset \rightarrow X$ is a cofibration and a morphism $f: X \rightarrow Y$ an acyclic cofibration if it is both a weak equivalence and a cofibration, \underline{C} is then said to be a cofibration category provided that the following axioms are satisfied.
(COF - 1) The initial object \varnothing is cofibrant.
(COF - 2) All isomorphisms are weak equivalences and all isomorphisms with a cofibrant domain are cofibrations.
(COF - 3) Given composable morphisms f, g, if any two of $f, g, g \circ f$ are weak equivalences, so is the third.
(COF - 4) Every 2-source $X<\stackrel{f}{-} \mathrm{Z} \xrightarrow{g} \mathrm{y}$, where f is a cofibration (acyclic cofibration) and Z, Y are cofibrant, admits a pushout $X \xrightarrow{\xi} P \stackrel{\eta}{\longleftrightarrow} Y$, where n is a cofibration (acyclic cofibration):

(COF - 5) Every morphism with a cofibrant domain can be written as the composite of a cofibration and a weak equivalence.
N.B. (C,W) is a category pair.
2.1.1 EXAMPLE Take $\underline{C}=$ TOP -- then TOP is a cofibration category if weak equivalence $=$ homotopy equivalence, cofibration $=$ cofibration. All objects are cofibrant.
2.1.2 REMARK Given a cofibration category $\underset{C}{ }$, denote by $\mathrm{C}_{\text {cof }}$ the full subcategory of \underline{C} consisting of the cofibrant objects -- then $\underline{C}_{\text {cof }}$ is a cofibration category.
[Note: $\mathrm{C}_{\text {cof }}$ has finite coproducts (but this need not be true of C). Proof: For cofibrant X and Y , consider the pushout square

and observe that all arrows are cofibrations.]
2.1.3 DEFINITTION Let \underline{C} be a cofibration category - then \underline{C} is said to be homotopically cocomplete when the following conditions are met.

$$
(H-1) \text { If } f_{i}: X_{i} \rightarrow Y_{i}(i \in I) \text { is a set of cofibrations with } X_{i} \text { cofibrant }
$$

$\forall i$, then the coproducts $\frac{\|}{i} X_{i}, \frac{\|}{i} Y_{i}$ exist, are cofibrant, and $\prod_{i} f_{i}$ is a com fibration which is acyclic if this is the case of the f_{i}.

$$
(H-2) \text { Let }
$$

be a countable sequence of cofibrations (acyclic cofibrations) with X_{0} cofibrant -then colim X_{n} exists and the canonical arrow $X_{0}+\operatorname{colim} X_{n}$ is a cofibration (acyclic cofibration).

There is also the notion of a fibration category, the definition of which, to dispel any possible misumderstanding, will be provided in detail.
[Note: For the most part, the focus in the sequel will be on cofibration categories, the results for fibration categories being invariably dual.]

Consider a triple ($\mathbf{C}, w, f i b$), where \underline{C} is a category with final object * and

$$
\left.\right|_{-\quad \omega \subset \operatorname{Mor} \mathrm{C}} \quad \begin{aligned}
& \mathrm{fib} \subset \operatorname{Mor} \mathrm{C}
\end{aligned}
$$

are two composition closed classes of morphisns termed

Agreeing to call an object X fibrant if the arrow $\mathrm{X} \rightarrow$ * is a fibration and a morphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ an acyclic fibration if it is both a weak equivalence and a
fibration, $\underset{\sim}{C}$ is then said to be a fioration category provided that the following axioms are satisfied.
(FIB - 1) The final object * is fibrant.
(FIB - 2) All isomorphisms are weak equivalences and all isomorphisms with a fibrant codomain are fibrations.
(FIB - 3) Given composable morphisms f, g, if any two of $f, g, g \circ f$ are weak equivalences, so is the third.
(FIB - 4) Every 2-sink $X \xrightarrow{f} Z<\xrightarrow{g} Y$, where g is a fibration (acyclic fibration) and X, Z fibrant, admits a pullback $X \xrightarrow{\xi} P \xrightarrow{\eta} Y$, where ξ is a fibration (acyclic fibration):

(FIB - 5) Every morphism with a fibrant codomain can be written as the composite of a weak equivalence and a fibration.
N.B. (C, W) is a category pair.
2.1.4 EXAMPIE Take $\underline{C}=$ TOP -- then TOP is a fibration category if weak equivalence $=$ homotopy equivalence, fibration $=$ Hurewicz fibration. All objects are fibrant.
2.1.5 REMARK Given a fibration category C, denote by $C_{f i b}$ the full subcategory of \underline{C} consisting of the fibrant objects - then $\mathrm{C}_{\mathrm{fib}}$ is a fibration category.
[Note: $\underline{f}_{\text {fib }}$ has finite products (but this need not be true of C). Proof: For fibrant X and Y, consider the pullback square

and observe that all arrows are fibrations.]
2.1.6 DEFINITION Let $\subseteq \underline{C}$ be a fibration category -- then \underline{C} is said to be homotopically complete when the following conditions are met.

$$
(H-1) \text { If } f_{i}: X_{i} \rightarrow Y_{i}(i \in I) \text { is a set of fibrations with } Y_{i} \text { fibrant } \forall i \text {, }
$$ then the products $\prod_{i} x_{i}, \prod_{i} Y_{i}$ exist, are fibrant, and $\prod_{i} f_{i}$ is a fibration which is acyclic if this is the case of the f_{i}.

$$
\begin{aligned}
& \text { (H - 2) Let } \\
& \qquad \cdots \xrightarrow{\mathrm{f}_{2}}>\mathrm{X}_{2} \xrightarrow{\mathrm{f}_{1}} \gg \mathrm{X}_{1} \xrightarrow{\mathrm{f}_{0}} \gg \mathrm{X}_{0}
\end{aligned}
$$

be a countable sequence of fibrations (acyclic fibrations) with X_{0} fibrant -- then $\lim X_{n}$ exists and the canonical arrow $\lim X_{n} \rightarrow X_{0}$ is a fibration (acyclic fibration).
2.1.7 REMARK In the terminology of Cisinski, a cofibration category is a category which is derivable to the right and a fibration category is a category which is derivable to the left.

There is a short list of technical facts which are formal consequences of the axioms. Since the proofs run parallel to their analogs in model category theory, they can be safely omitted.
2.1.8 LEMMA Let \underline{C} be a cofibration category and let $f: X \rightarrow Y$ be a map between cofibrant objects - then f can be written as a composite r 。 f^{\prime}, where f^{\prime} is a cofibration and r is a weak equivalence which is a left inverse to an acyclic cofibration 5.
2.1.9 LENMA Let C be a cofibration category. If $f_{i}: X_{i} \rightarrow Y_{i}(i \in I)$ is a finite set of weak equivalences (cofibrations) between cofibrant objects, then $\frac{\|}{i} f_{i}$ is a weak equivalence (cofibration).
2.1.10 LEMMA Let $\underset{C}{C}$ be a cofibration category. Given a 2 -source $X<\xrightarrow{f} \mathrm{Z} \xrightarrow{\mathrm{g}} \mathrm{Y}$, define P by the pushout square

Assume: f is a cofibration and g is a weak equivalence -- then ξ is a weak equivalence provided Z,Y are cofibrant.

2.2 APPROXIMATIONS

Let \underline{C} be a cofibration category - then a cofibrant approximation to \underline{C} is a pair ($\underline{C}_{0}, \Lambda_{0}$), where C_{0} is a cofibration category and $\Lambda_{0}: C_{0} \rightarrow \mathrm{C}$ is a functor satisfying the following conditions.
(CFA - 1) All objects of C_{0} are cofibrant.
(CFA - 2) Λ_{0} preserves initial objects and cofibrations.
(CFA - 3) A morphism $f_{0} \in \operatorname{Mor} \underline{C}_{0}$ is a weak equivalence iff $A_{0} f_{0} \in \operatorname{Mor} \underline{C}$ is a weak equivalence.
(CFA - 4) If $X_{0} \stackrel{f_{0}}{\longleftrightarrow} Z_{0} \xrightarrow{g_{0}} Y_{0}$ is a 2-source in C_{0}, where f_{0}, g_{0} are cofibrations, then the induced arrow

$$
\Lambda_{0} X_{0} \frac{\Perp}{\Lambda_{0} Z_{0}} \Lambda_{0} Y_{0}+A_{0}\left(X_{0} \frac{\|}{Z_{0}} Y_{0}\right)
$$

is an isomorphism.

$$
(C F A-5) \text { Every } f: A_{0} X_{0} \rightarrow Y \text { factors as } f=r \circ A_{0} f_{0} \text {, where } f_{0} \text { is a cofibration }
$$ in C_{0} and r is a weak equivalence in C.

N.B. The definition of a fibrant approximation to a fibration category is dual.
2.2.1 EXAMPIE The inclusion $\underline{\mathrm{C}}_{\mathrm{C}}{ }^{\mathrm{l}} \xrightarrow{\mathrm{C}} \underline{\mathrm{C}}$ is a cofibrant approximation to $\underline{\mathrm{C}}$.

If $A_{0}: \underline{C}_{0} \rightarrow \underline{C}$ is a cofibrant approximation to \underline{C}, then it is clear that

$$
\Lambda_{0}:\left(\underline{C}_{0}, W_{0}\right) \rightarrow(\underline{C}, W)
$$

is a morphism of category pairs and Λ_{0} is resolvable to the left.
2.2.2 LEMMA A cofibrant approximation to C is a left approximation to $\underline{\mathrm{C}}$, hence is a derivability structure to the left on \underline{C} (cf. 1.5.5).
2.2.3 THEOREM If $\Lambda_{0}: C_{0} \rightarrow C$ is a cofibrant approximation to \underline{C}, then the induced functor

$$
\bar{\Lambda}_{0}: w_{0}^{-1} \underline{C}_{0} \rightarrow w^{-1} \underline{C}
$$

is an equivalence of metacategories (cf. 1.5.6).
2.2.4 THEOREM Let \subseteq be a cofibration category and let $\left(\mathrm{C}_{1}, \mathrm{~N}_{1}\right)$ be a category pair. Suppose that $F: \underline{C}+\underline{C}_{1}$ is a functor that sends acyclic cofibrations between cofibrant objects to weak equivalences - then F admits an absolute total left derived functor ($L F, v_{F}$).

PROOF Consider

$$
\mathrm{C}_{\mathrm{cof}} \xrightarrow{\mathrm{l}} \mathrm{C} \xrightarrow{\mathrm{~F}} \mathrm{C}_{1} .
$$

To apply 1.5.2, let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a weak equivalence, where X and Y are cofibrant -then the claim is that Fif $\equiv \mathrm{Ff}: \mathrm{FX} \rightarrow \mathrm{FY}$ is a weak equivalence. To see this, use 2.1.8 and write $f=r \circ f$. Since f and r are weak equivalences, the same holds for f^{\prime}. Therefore f^{\prime} is an acyclic cofibration between cofibrant objects, thus by hypothesis, Ff' is a weak equivalence. On the other hand, $r \circ s=i d$ and s is an acyclic cofibration between cofibrant objects, so too Fs is a weak equivalence. But this implies that Fr is a weak equivalence, hence finally $F f$ is a weak equivalence.
2.2.5 THEORHM Let \underline{C} be a cofibration category and let $\left(\underline{C}_{1}, W_{1}\right)$ be a category pair. Let $\Lambda_{0}: C_{0} \rightarrow \underline{C}$ be a cofibrant approximation to C and suppose that $F: C \rightarrow C_{1}$ is a functor such that $F \circ \Lambda_{0}$ sends acyclic cofibrations to weak equivalences then F adruits an absolute total left derived functor ($L F, v_{F}$).

Let \underline{C} be a cofibration category with cofibrant approximation $\Lambda_{0}: C_{0} \rightarrow \underline{C}$ and let \underline{C}^{\prime} be a fibration category with fibrant approximation $\Lambda_{0}^{\prime}: C_{0}^{\prime} \rightarrow C^{\prime}$. Suppose that

$$
\left[\begin{array}{l}
F: \underline{C} \rightarrow \underline{C}^{\prime} \\
F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}
\end{array}\right.
$$

are an adjoint pair, thus schematically

2.2.6 THEOREM Assume that $F \circ \Lambda_{0}$ sends acyclic cofibrations to weak equivalences and F^{\prime} o Λ_{0}^{\prime} sends acyclic fibrations to weak equivalences -- then the functors

$$
\left\lvert\, \begin{aligned}
& L F: W^{-1} \underline{C} \rightarrow W^{-1} \underline{C} \\
& R F^{\prime}: W^{\prime-1} \underline{C}^{\prime} \rightarrow W^{-1} \underline{C}
\end{aligned}\right.
$$

exist and are an adjoint pair.

2.3 SATURATION

Let $\underset{\sim}{C}$ be a cofibration category.
2.3.1 DEFINITION Suppose that $X \in O B C$ is cofibrant - then a cylinder object for X is an object $I X$ in $\underset{C}{ }$ together with a diagram $X \| X \gg I X \xrightarrow{\sim} X$ that factors the folding map $X \| X \xrightarrow{\nabla} X$. Write $\left\lvert\, \begin{gathered}- \\ i_{0}: X \rightarrow I X \\ i_{1}: X \rightarrow I X\end{gathered}\right.$ for the arrows $\left.\right|_{-} ^{-} \quad 1 \circ i n_{0} \quad$ then $\left\lvert\, \begin{array}{lll}i_{0} & \\ & & i_{1}\end{array}\right.$ are acyclic cofibrations.
N.B. Cylinder objects exist (in general, nonfunctrorially).
2.3.2 EXAMPIE For any topological space X, the inclusion

$$
i_{0} X \cup i_{1} X \rightarrow X \times[0,1]
$$

is a closed cofibration, thus if TOP is viewed as a model category per its Strdim structure, then a choice for IX is $X \times[0,1]$. On the other hand, the inclusion

$$
i_{0} X \cup i_{1} X \rightarrow X \times[0,1]
$$

need not be a cofibration in the Quillen structure but it will be if X is cofibrant (e.g., if X is a CW complex).
2.3.3 DEFINITION Morphisms $f, g: X \rightarrow Y$ between cofibrant X and Y are said to be left homotopic if \exists a cylinder object $I X$ for X, an acyclic cofibration $Y \xrightarrow{W} Y^{\prime}$, and a morphism $H: I X \rightarrow Y^{\prime}$ such that $H \circ i_{0}=w \circ f, H \circ i_{1}=w \circ g$. Notation: $f \simeq g$.
2.3.4 IEMMA Suppose that $f \approx g$ - then E is a weak equivalence iff g is a weak equivalence.

PROOF Say, e.g., that f is a weak equivalence. Since $H \circ i_{0}=w \circ f$ and i_{0} is a weak equivalence, it follows that H is a weak equivalence. But $\mathrm{H} \circ \mathrm{i}_{1}=\mathrm{w} \circ \mathrm{g}$, thus g is a weak equivalence.
2.3.5 THEOREM † If $f, g: X \rightarrow Y$ are morphisms between cofibrant X and Y, then f,g are left homotopic iff they are homotopic:

$$
\mathrm{f} \tilde{\bar{\ell}} \mathrm{~g} \Leftrightarrow \mathrm{f} \simeq g .
$$

${ }^{\dagger}$ Brown, Trans. Amer. Math. Soc. 186 (1973), 419-458.
2.3.6 APPLICATION Let \underline{C} be a model category. Suppose that X is cofibrant and Y is fibrant -- then $f \underset{\ell}{\tilde{\ell}}$ iff \exists a cylinder object $I X$ for X and a morphism $H: I X \rightarrow Y$ such that $H \circ i_{0}=f, H \circ i_{1}=g$.
[Assume first that H exists:

$$
\begin{aligned}
& \nabla \nabla \circ i n_{0}=w \circ 1 \circ i n_{0}=i d_{X} \\
& \nabla \circ i n_{l}=w \circ L \circ i n_{l}=i \sigma_{X} \\
& \Rightarrow \quad \mathrm{I}_{W}(\mathrm{w} \circ \mathrm{o} \\
& \Rightarrow L_{W}\left(1 \quad \circ \quad i n_{0}\right)=L_{W}\left(\begin{array}{lll}
1 & \circ & i n_{1}
\end{array}\right) \Rightarrow i_{0} \simeq i_{1} \\
& \Rightarrow H \circ i_{0} \simeq H \circ i_{1} \Rightarrow f \simeq g .
\end{aligned}
$$

Conversely, assume that $f \simeq g$. Choose an acyclic fibration $r: Y^{\prime} \rightarrow Y$ with Y^{\prime} cofibrant. Since X is cofibrant, the commutative diagrams

admit fillers

$$
\left[\begin{array}{ll}
f^{\prime}: X \rightarrow Y^{\prime} & \left(r \circ f^{\prime}=f\right) \\
g^{\prime}: X \rightarrow Y^{\prime} & \left(r \circ g^{\prime}=g\right) .
\end{array}\right.
$$

But

$$
\left.\right|_{-W} ^{L_{W}\left(r \circ f^{\prime}\right)=L_{W} r \circ L_{W} f^{\prime}=L_{W} f} \begin{aligned}
& L_{W}\left(r \circ g^{\prime}\right)=L_{W} r \circ L_{W} g^{\prime}=L_{W} g
\end{aligned}
$$

So

$$
\begin{aligned}
L_{w} f=L_{w} g & \Rightarrow L_{w} \Sigma \circ L_{W} f^{\prime}=L_{W} \Sigma \circ L_{w} g^{\prime} \\
& \Rightarrow L_{w} f^{\prime}=L_{W} g^{\prime} \\
& \Rightarrow f^{\prime} \simeq g^{\prime} \\
& \left.\Rightarrow f^{\prime} \simeq g^{\prime} \quad \text { (cf. } 2.3 .5\right)
\end{aligned}
$$

Using the notation of 2.3.3, fix an acyclic cofibration $Y^{\prime} \xrightarrow{W^{\prime}} Y^{\prime \prime}$ and a morphism $H^{\prime}: I X \rightarrow Y^{\prime \prime}$ such that $H^{\prime} \circ i_{0}=w^{\prime} \circ f^{\prime}, H^{\prime} \circ i_{1}=W^{\prime} \circ g^{\prime}$. Let $h: Y^{\prime \prime} \rightarrow Y$ be a filler for

and put $\mathrm{H}=\mathrm{h} \circ \mathrm{H}^{\prime}-$ then

$$
\begin{aligned}
& H \circ i_{0}=h \circ H^{\prime} \circ i_{0}=h \circ W^{\prime} \circ f^{\prime}=r \circ f^{\prime}=f \\
& \left.H \circ i_{1}=h \circ H^{\prime} \circ i_{1}=h \circ W^{\prime} \circ g^{\prime}=r \circ g^{\prime}=g .\right]
\end{aligned}
$$

2.3.7 LEMMA Suppose that X and Y are cofibrant and $w: X \rightarrow Y$ is a weak equivalence -- then any $f \in \operatorname{Mor}(X, Y)$ which is homotopic to w is necessarily a weak equivalence.

PROOF The assumption is that $L_{W} w=L_{\| f} f$ or still, that $w \simeq f$. But then $w \approx \frac{f}{\ell}$ (cf. 2.3.5), so 2.3.4 is applicable.
2.3.8 THEOREM ${ }^{\dagger}$ Every morphism $[\omega]$ in $W^{-1} \underline{C}$ between objects X and Y which are cofibrant in \underline{C} can be written as a left fraction $\left(L_{W} W^{W}\right) ~ o I_{W} f$, where f is a cofibration and w is an acyclic cofibration:
$[\omega]=\left[\mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Y}^{\prime} \stackrel{\mathrm{W}}{\longleftrightarrow} \mathrm{Y}\right]$.
2.3.9 LENMA Suppose that $f: X \rightarrow Y$ is a morphism in C with X and Y cofibrant then $I_{W} f$ has a left inverse in $W^{-1} \underline{C}$ iff there is a cofibration $f^{\prime}: Y \rightarrow Y^{\prime}$ such that $\mathrm{f}^{\prime} \circ \mathrm{f}$ is a weak equivalence.

PROOF The inplication \ll is obvious. In the other direction, if $[\omega] \circ L_{\omega} f=$ id, write, using 2.3.8,

$$
[\omega]=\left(I_{(w)}\right)^{-1} \circ L_{w} f^{\prime},
$$

hence

$$
L_{W W}=I_{W} f^{\prime} \circ L_{W} f
$$

or still, $w \simeq f^{\prime} \circ f$. But this means that $f^{\prime} \circ f$ is a weak equivalence (cf. 2.3.7).
2.3.10 LENMA Suppose that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a morphism in C with X and Y cofibrant -then $I_{W} f$ is an isomorphism in $W^{-1} \underline{C}$ iff there are cofibrations $f^{\prime}: Y \rightarrow Y^{\prime}, f^{\prime \prime}: Y^{\prime} \rightarrow Y^{\prime \prime}$ such that $f^{\prime} \circ f, f^{\prime \prime} \circ f^{\prime}$ are weak equivalences.

PROOF First, if $f^{\prime} \circ f=W(w \in W)$, then

$$
L_{W} f^{\prime} \circ\left(L_{W} f \circ\left(L_{W} w^{w)}-1\right)=i d\right.
$$

$50 L_{w^{\prime}} f^{\prime}$ is a retraction, and second, if $f^{\prime \prime} \circ f^{\prime}=w^{\prime}\left(w^{\prime} \in(N)\right.$, then $L_{w^{\prime}} f^{\prime}$ is a monomorphism. Therefore $L_{W} f^{\prime}$ is an isomorphism, hence $L_{W} f$ is an iscmorphism. The
${ }^{\dagger}$ Brown, ibid.
converse follows from a double application of 2.3.9.
2.3.11 THEOREM Let \underline{C} be a cofibration category and suppose that $H-2$ is in force -- then $w=\bar{w}$.

PROOF It is enough to prove that a cofibration $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ in $\overline{\mathrm{W}}$ between cofibrant X and Y is in W. Using 2.3.10, construct by induction a countable sequence of cofibrations

$$
\mathrm{x}_{0} \stackrel{\mathrm{f}_{0}}{\longrightarrow} \mathrm{x}_{1} \gg{ }^{\mathrm{f}_{1}} \mathrm{x}_{2} \xrightarrow{\mathrm{f}_{2}} \cdots
$$

with $X_{0}=X, X_{1}=Y, f_{0}=f$ and such that $\forall n \geq 0$, the composition

$$
x_{n} \longrightarrow x_{n+1} \longrightarrow x_{n+2}
$$

is an acyclic cofibration -- then there are acyclic cofibrations

$$
\left[\begin{array}{l}
X \rightarrow \operatorname{colim} X_{2 n+1} \\
Y \rightarrow \operatorname{colim} X_{2 n^{\prime}}
\end{array}\right.
$$

canonical iscmorphisms

$$
\operatorname{colim} x_{2 n+1} \approx \operatorname{colim} x_{n} \approx \operatorname{colim} x_{2 n^{\prime}}
$$

and a commutative diagram

Since the vertical arrows are acyclic cofibrations, it follows that f is an acyclic cofibration.
[Note: The reduction to a cofibration $f: X \rightarrow Y$ between cofibrant X and Y runs as follows.

Step 1: Fix a cofibrant X^{\prime} and a weak equivalence $X^{\prime} \xrightarrow{w} X-$ then $L_{W}(£ \circ W)=L_{W} f \circ L_{W} W$, so if $f \circ W \in W$, then $f \in W$. One can therefore assume that the domain of f is cofibrant.

Step 2: Write $f=r \circ f^{\prime}$, where f^{\prime} is a cofibration with a cofibrant domain and r is a weak equivalence -- then $L_{W} f=L_{W}{ }^{r} \circ L_{W} f^{\prime}$, so if $f^{\prime} \in W$, then $f \in W$. One can therefore assume that f is a cofibration with a cofibrant domain and codomain.]
2.3.12 DEFINTIION Let ($(\underline{C}, \mathcal{W})$ be a category pair - then w satisfies the 2 out of 5 condition if whenever $f, g, h \in \operatorname{Mor} \underset{C}{ }$ have the property that $g \circ f, h \circ g$ exist and are in W, then f, g, h are in W.
2.3.13 REMARK Let ($\mathcal{C},(W)$ be a category pair -- then ω satisfies the 2 out of 3 condition if for composable $f, g \in$ Mor \underline{C}, the assumption that two of f, g, g of are in W implies that the third is in W. This said, it is then clear that
"2 out of 5 " $\Rightarrow>$ " 2 out of 3 ".
[Note: In the case of a cofibration category, the 2 out of 3 condition is assumption COF - 3.]
2.3.14 DEFINITION Let (C, W) be a category pair -- then W is weakly saturated if W satisfies the 2 out of 3 condition and has the following property:
If $\left\lvert\, \begin{aligned} & i: X \rightarrow Y \\ & r: Y \rightarrow X\end{aligned}\right.$, if $r \circ i=i d_{X}$, and if $i \circ r \in W$, then $i, r \in \mathbb{W}$.
2.3.15 LEMMA If W is saturated, then W is weakly saturated.

PROOF That $W(=\bar{w})$ satisfies the 2 out of 3 condition is obvious. Suppose now
that i and r are as above and write

$$
L_{W}(i \circ r)=L_{W} i \circ L_{W} r
$$

to see that $\mathrm{L}_{W} \mathrm{i}$ is an epimorphism. But

$$
L_{w}{ }_{W} \circ L_{W} i=i d_{L_{W}} X
$$

and

$$
\left.\begin{array}{rl}
\left(L_{W} i\right. & \left.\circ L_{W} r\right)
\end{array}\right) L_{W} i
$$

Therefore $i \in \mathbb{W}$ and lastly $r \in \mathcal{W}$.
2.3.16 LFMMA If W satisfies the 2 out of 5 condition, then W is weakly saturated. PROOF Take i and r as above and consider

$$
X \xrightarrow{i} Y \xrightarrow{r} X \xrightarrow{i} Y
$$

2.3.17 IEMMA If W satisfies the 2 out of 3 condition and is closed under the formation of retracts, then ω is weakly saturated.

PROOF Take i and r as above and note that the diagram

exhibits r as a retract of $i \circ r$.
2.3.18 THEOREM Let \underline{C} be a cofibration category - then the following are equivalent.
(1) W is weakly saturated.
(2) W satisfies the 2 out of 5 condition.
(3) W is closed under the formation of retracts.
(4) W is saturated.

PROOF We have $(2)=>(1),(3)=>(1),(4) \Rightarrow(1),(2),(3)$, so the only point at issue is (1) => (4) and for this it is enough to prove that a cofibration $f: X \rightarrow Y$ in \bar{W} between cofibrant X and Y is in W. Put $X_{0}=X, X_{1}=Y$ and construct a cofibration $g: X_{1}+X_{2}$ and a morphism $h: X_{2} \rightarrow X_{1}$ such that $g \circ f \in W$ and $h \circ g=i d_{X_{1}}$ (see below) -- then

$$
\mathrm{L}_{W}(\mathrm{~g} \circ \mathrm{f})=\mathrm{I}_{W} g \circ \mathrm{~L}_{W} f,
$$

so $g \in \bar{w} . \quad$ And

$$
\begin{array}{cc}
& h \circ g=i d_{X_{1}} \Rightarrow g \circ h \circ g=g \\
\Rightarrow \quad & L_{W}(g \circ h) \circ L_{W} g=L_{W} g
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & I_{W}(g \circ h)=i d_{L_{W}} X_{2}=I_{W}\left(i d_{X_{2}}\right) \\
\Rightarrow & g \circ h \simeq i d_{X_{2}} \\
\Rightarrow & g \circ h \in W \quad \text { (cf. 2.3.7) } \\
& \quad g G \in W \Rightarrow f \in W .
\end{array}
$$

2.3.19 DETAILS The category C / Y is a cofibration category (via the forgetful functor $\mathrm{C} / \mathrm{Y} \rightarrow \mathrm{Y})$. Denoting by $W_{Y} \subset$ Mor C / Y its class of weak equivalences, the image of the morphism

in $W_{Y}^{-1} \mathbb{C} / Y$ is an isamorphism. On the other hand, $\varnothing \rightarrow Y$ is an initial object in C / Y and there are conmutative diagrams

Since $\left.\right|_{-} ^{-} \mathrm{X}$ are cofibrant, the arrows $\left.\right|_{-} ^{-} \varnothing \rightarrow X$ are cofibrations in C, thus the arrows

$$
\left.\right|_{-} ^{-}(\emptyset \longrightarrow \mathrm{Y}) \longrightarrow(\mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Y})
$$

are cofibrations in C / Y, i.e., the objects

$$
\left[\begin{array}{r}
\mathrm{X} \xrightarrow[\mathrm{id}]{\mathrm{Y}} \\
\mathrm{Y} \xrightarrow{\mathrm{f}} \mathrm{Y}
\end{array}\right.
$$

are cofibrant in C / Y. One can therefore apply 2.3 .10 to C / Y to get a cofibration

in C / Y such that

is a weak equivalence in C / Y. So f^{\prime} is a cofibration in C and $f^{\prime} \circ f \in W$. Reverting back to the notation of 2.3 .18 , let $X_{0}=X, X_{1}=Y, X_{2}=Y^{\prime}, g=f^{\prime}$, $\mathrm{h}=\mathrm{g}^{\prime}-$ then

$$
g \circ f=f^{\prime} \circ f \in W
$$

and

$$
h \circ g=g^{\prime} \circ f^{\prime}=i d_{y}=i d_{X_{1}}
$$

2.3.20 APPLICATION Suppose that C is a model category -- then W is closed under the formation of retracts, hence \mathbb{U} is saturated.
[Note: For us, a model category is finitely complete and finitely cocomplete, so it would be illegal in general to quote 2.3.11.]
2.3.21 THEOREM Suppose that ($C,(\omega$, cof) is a oofibration category - then (C, \bar{W}, cof) is a cofibration category.

2.4 FIBRANT MODELS

Let \mathbb{C} be a cofibration category -- then an object Y in \mathbb{C} is a fibrant model if for any 2 -source $\mathrm{X} \stackrel{\mathrm{f}}{\leftrightarrows} \mathrm{Z} \xrightarrow{\mathrm{g}} \mathrm{Y}$, where Z is cofibrant and f is an acyclic cofibration, $\exists \mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ such that $\mathrm{h} \circ \mathrm{f}=\mathrm{g}$.
N.B. If C has a final object *, then Y is a fibrant model iff the arrow $\mathrm{Y} \rightarrow$ * has the RLP w.r.t. all acyclic cofibrations that have a cofibrant domain.
E.g.: The fibrant objects of a model category are fibrant models.
2.4.1 RAPPEL The functor $H \mathrm{HO}_{W} \subset W^{-1} \mathrm{C}$ is faithful, so $\forall \mathrm{X}, \mathrm{Y} \in \mathrm{Ob} \mathrm{C}$, the induced map

$$
[\mathrm{X}, \mathrm{Y}] \rightarrow \operatorname{Mor}(\mathrm{X}, \mathrm{Y})
$$

is injective.
2.4.2 LEMMA If X is cofibrant and Y is a fibrant model, then the induced map

$$
[\mathrm{X}, \mathrm{Y}] \rightarrow \operatorname{Mor}(\mathrm{X}, \mathrm{Y})
$$

is surjective.
PROOF Let $[\omega] \in \operatorname{Mor}(X, Y)$. Fix a cofibrant Y^{\prime} and a weak equivalence $W^{\prime}: Y^{\prime} \rightarrow Y \rightarrow$ then

$$
\left(L_{W} w^{w^{\prime}}\right)^{-1} \circ[w] \in \operatorname{Mor}\left(X, Y^{\prime}\right)
$$

so, using 2.3.8, we can write

$$
\begin{aligned}
\left(L_{W} W^{\prime}\right)^{-1} \circ[\omega] & =\left(L_{W} W\right)^{-1} \circ L_{W} f \\
& =\left[X \xrightarrow{f} Y^{\prime} \stackrel{W}{\longleftrightarrow}-Y^{\prime}\right],
\end{aligned}
$$

thus

$$
[w]=L_{w} w^{\prime} \circ\left(L_{w} w^{w}\right)^{-1} \circ L_{w} \mathrm{f}
$$

Consider the 2 -source $Y^{\prime \prime} \stackrel{W}{\longrightarrow} Y^{\prime} \xrightarrow{W^{\prime}} Y$. Since by construction w is an acyclic cofibration and since Y is a fibrant model, $\exists \Lambda: Y^{\prime \prime} \rightarrow Y$ such that $\Lambda \circ w=w^{\prime}$. Therefore

$$
\begin{aligned}
{[\omega] } & =L_{w}(\Lambda \circ w) \circ\left(L_{W} w\right)^{-1} \circ L_{W} f \\
& =I_{W} \Lambda \circ L_{W} w \circ\left(L_{W} w\right)^{-1} \circ L_{W} f \\
& =L_{w}(\Lambda \circ f),
\end{aligned}
$$

from which the surjectivity.
2.4.3 CRITERION Let \underline{C} be a cofibration category with the following property: Given any cofibrant X, \exists a fibrant model X^{\prime} and a weak equivalence $X \rightarrow X^{\prime}-$ then $\omega^{-1} \subseteq$ is a category (and not just a metacategory).
[This is implied by 2.4.2.]
2.4.4 THEOREM Suppose that \underline{C} is a model category -- then HC is a category (and not just a metacategory).
2.4.5 REMARK Let $\underline{\mathrm{C}}$ be a category. Suppose given a composition closed class $\omega \subset$ Mor \subseteq containing the isomorphisms of \subseteq such that for oomposable morphisms f, g,
if any two of f, g, g o f are in W, so is the third. Problem: Does $w^{-1} \mathbb{C}$ exist as a category? The assumption that W admits a calculus of left or right fractions does not suffice to resolve the issue. However, one strategy that will work is to somehow place on \mathbb{C} the structure of a model category in which W appears as the class of weak equivalences.

2.5 PRINCIPLES OF PERMANENCE

Fix a small category I.
2.5.1 DEFINITION Let \mathcal{C} be a cofibration cabegory and suppose that $\Xi \in M O r[I, C]$, say $E: F \rightarrow G$.

- E is a levelwise weak equivalence if $\forall i \in O D I, E_{i}: F i \rightarrow G i$ is a weak equivalence in C.
- Ξ is a levelwise oofibration if $\forall i \in O B I^{\prime} E_{i}: F i \rightarrow G i$ is a cofibration in C .
2.5.2 DFFINITION The injective structure on $[\underline{I}, \underline{C}]$ is the pair consisting of the levelwise weak equivalences and the levelwise cofibrations.
2.5.3 THEOREM Suppose that $\underset{C}{C}$ is a homotopically cocomplete cofibration category then $[\underline{I}, \underline{C}]$, equipped with its injective structure, is a homotropically cocomplete cofibration category.
2.5.4 DEFINITION Let $\underset{C}{C}$ be a fibration category and suppose that $E \in M o r[\underline{I}, \mathcal{C}]$, say $E: F \rightarrow G$.
- Ξ is a levelwise weak equivalence if $\forall i \in O D I_{i}: E_{i} i \rightarrow G i$ is a weak equivalence in C.
- E is a levelwise fibration if $\forall i \in O B I, \Xi_{i}: F i \rightarrow G i$ is a fibration in C.
2.5.5 DEFINITION The projective structure on [I, C] is the pair consisting of the levelwise weak ecquivalences and the levelwise fibrations.
2.5.6 THEOREM Suppose that $\underline{\mathcal{C}}$ is a homotopically complete fibration category -then $[\underline{I}, \underline{C}]$, equipped with its projective structure, is a homotopically complete fibration category.

Let \underline{I} and \underline{J} be small categories, $K: I \rightarrow \underline{J}$ a functor. Given a category pair $(\underline{C},(w)$, let

$$
\left[\begin{array}{l}
W_{\underline{I}}=\text { the levelwise weak equivalences in } \operatorname{Mor}[\underline{I}, \mathbb{C}] \\
W_{\underline{J}}=\text { the levelwise weak equivalences in } \operatorname{Mor}[\underline{\mathrm{J}}, \mathrm{C}] .
\end{array}\right.
$$

Then the functor $K^{*}:[\underline{J}, \underline{C}] \rightarrow[\underline{I}, \underline{C}]$ preserves levelwise weak equivalences, so there is a commutative diagram

- If \underline{C} is a cocomplete cofibration category, then K^{*} has a left adjoint

$$
\mathrm{K}_{!}:[\underline{I}, \underline{C}] \rightarrow[\underline{\mathrm{J}}, \underline{C}] .
$$

- If $\underline{\mathcal{C}}$ is a complete fibration category, then K^{*} has a right adjoint

$$
\mathrm{K}_{\mathrm{f}}:[\underline{\mathrm{I}}, \underline{\mathrm{C}}] \rightarrow[\underline{\mathrm{J}}, \underline{\mathrm{C}}] .
$$

2.5.7 THEOREM Suppose that $\underset{\underset{C}{C}}{ }$ is a cocomplete cofibration category -- then $K_{\text {! }}$ possesses an absolute total left derived functor ($\mathrm{LK}_{!}, \nu_{\mathrm{K}_{!}}$) and

are an adjoint pair.
[Note: The assumption that $\underline{\mathrm{C}}$ is cocomplete can be weakened to homotopically cocomplete. Matters then become more complicated as $K_{!}$need not exist. Nevertheless, it is still the case that $\overline{K^{*}}$ admits a left adjoint which, in an abuse of notation, is denoted by LK_{1} and called the homotopy colimit of K.$]$
2.5.8 THEOREM Suppose that C is a complete fibration category -- then K_{\dagger} possesses an absolute total right derived functor $\left(\mathrm{RK}_{\mathrm{H}}, \mu_{\mathrm{K}_{\dagger}}\right)$ and

$$
\int_{-}^{-\mathrm{RK}_{\dagger}}
$$

are an adjoint pair.
[Note: The assumption that C is complete can be weakened to homotopically complete. Matters then become more complicated as K_{\dagger} need not exist. Nevertheless, it is still the case that $\overline{K^{K}}$ admits a right adjoint which, in an abuse of notation, is denoted by RK_{\dagger} and called the homotopy limit of K.]

2.6 WEAK COLIMITS

Let (C, W) be a category pair -- then for any small category I, there are arrows

from which an arrow

$$
\operatorname{dgm}_{\underline{I}}: W_{\underline{I}}^{-1}[\underline{I}, \mathrm{C}] \rightarrow\left[\underline{I}, W^{-1} \underline{\mathrm{C}}\right]
$$

rendering the triangle conmutative:

$$
\operatorname{dgm}_{\underline{I}} \cdot I_{W_{\underline{I}}}=\left(L_{W}\right)_{*}
$$

[Note: Given $\Xi \in \operatorname{Mor}[\underline{I}, \mathrm{C}]$, we have

$$
\left(\left(I_{W}\right)_{*} \Xi\right)_{i}=L_{W}{ }^{\Xi} i \quad(i \in O b I) .
$$

And

$$
\left.\Xi \in W_{\underline{I}} \Rightarrow \Xi_{i} \in W \quad(i \in O \underline{I}) .\right]
$$

2.6.1 LEMMA If C is a homotopically cocomplete cofibration category, then the functor $d g m_{I}$ is conservative.

Suppose that \underline{C} is a hamotopically cocomplete cofibration category - - then $\omega^{-1} \underline{C}$ has coproducts but, in general, does not have coequalizers or pushouts, thus $W^{-1} \mathrm{C}$ need not be cocomplete.
2.6.2 RAPPEL Let I be a small category, $\underline{\text { C }}$ a cocomplete category -- then the
constant diagram functor $\mathrm{K}: \underline{\mathrm{C}} \rightarrow[\underline{\mathrm{I}}, \underline{\mathrm{C}}]$ has a left adjoint, viz, colim $\underline{\underline{\mathrm{I}}}:[\underline{\mathrm{I}}, \underline{\mathrm{C}}] \rightarrow \underline{\mathrm{C}}$. So, for any diagram $\Delta: \underline{I} \rightarrow \underline{C}$, for any $X \in O B \underline{C}$, and for any morphism $f: \Delta \rightarrow K X$ there exists a unique morphism $g: \operatorname{colim}_{I_{\Delta}} \Delta \rightarrow X$ such that $f=K g \circ \mu_{\Delta}:$

where $\mu_{\Delta}: \Delta \rightarrow K$ colim \underline{I}^{Δ} is the arrow of adjunction.
2.6.3 DEFINITION Let I be a small category, \mathbb{C} a metacategory and let $\Delta: \underline{I} \rightarrow \underline{C}$ be a diagram -- then a weak colimit of $\Delta_{\text {r }}$, if it exists, is an object wcolim $I_{\underline{I}} \in \mathrm{Ob} \mathrm{C}$ and a morphism

$$
\mu_{\Delta}: \Delta \rightarrow K \text { wcolim_ }{ }_{\Phi}^{\Delta}
$$

with the property that for any other object $X \in O B \underline{C}$ and morphism $f: \Delta \rightarrow K X$ there exists a (not necessarily unique) morphism g :wcolim $\underline{I}^{\Delta}+X$ such that $f=K g \circ \mu_{\Delta}$:

2.6.4 THEOREM Suppose that \underline{C} is a homotopically cocomplete cofibration category.

Assume:

$$
\operatorname{dgm}_{\underline{I}}: W_{\underline{I}}^{-1}[\underline{I}, \underline{C}] \rightarrow\left[\underline{I}, W^{-1} \underline{C}\right]
$$

is full and has a representative image -- then every diagram $\Delta: \underline{I} \rightarrow W^{-1} \underline{C}$ has a weak colimit woolim \underline{I}^{Δ} which is unique up to (noncanonical) isomorphism.

PROOF Choose $\Delta^{\prime} \in$ Ob $W_{\underline{I}}^{-1}[\underline{I}, \underline{C}]: \mathrm{dgm}_{\underline{I}} \Delta^{\prime} \approx \Delta$. Taking $\underline{J}=\underline{1}$ in the theory developed in 2.5, let

$$
\mu_{\Delta^{\prime}}: \Delta^{\prime} \rightarrow \overline{K^{\star}} L_{K_{!}} \Delta^{\prime}
$$

be the arrow of adjunction and put

$$
\operatorname{wcolim}_{\underline{I}} \Delta=\operatorname{dgm}_{\underline{1}} \operatorname{LK}_{!} \Delta^{\prime}
$$

which can be viewed as an element of Ob C -- then there is an arrow

$$
\mu_{\Delta}: \Delta \rightarrow \operatorname{dgm}_{\underline{\underline{K}}} \overline{k^{*} L K_{\underline{!}}} \Delta^{\prime}
$$

But the diagram

conmutes, so

$$
\mu_{\Delta}: \Delta \longrightarrow K * \operatorname{dgm}_{J} L K_{!} \tilde{\Delta}
$$

or still,

$$
\mu_{\Delta}: \Delta \longrightarrow K^{*} \text { wcolim }_{I^{\prime}} \Delta
$$

or still,

$$
\mu_{\Delta}: \Delta \longrightarrow K_{\underline{I^{2}}} \quad\left(K^{\star} \approx K\right) .
$$

Therefore the pair

$$
\left(\operatorname{wcolim}_{\underline{I}} \Delta_{I} \mu_{\Delta}\right)
$$

is a weak colimit of Δ. If the process is repeated with $\Delta^{\prime \prime} \in O O_{\underline{I}}^{-1}[\underline{I}, \mathrm{C}]$, thus

$$
\operatorname{dgm}_{\underline{I}} \Delta^{\prime \prime \prime} \approx \Delta,
$$

then one can find an $f \in \operatorname{Mor}\left(\Delta^{\prime}, \Delta^{\prime}\right)$ such that dgm \underline{I}^{f} implements the isomorphism

$$
\operatorname{dgm}_{\underline{I}} \Delta^{\prime} \approx \operatorname{dgm}_{\underline{I}}^{\Delta^{\prime \prime}}
$$

But dgm ${ }_{I}$ is conservative (cf. 2.6.1), hence f is an isomorphism. Consequently, wcolin ${ }_{I} \Delta$ (as constructed) is unique up to (noncanonical) isomorphism.
2.6.5 DEFINTTION A small category I is free if it is isomorphic to a category in the image of the left adjoint to the forgetful functor U:CAT \rightarrow PRECAT.
[Note: A finite, free category is both direct and inverse.]
2.6.6 LEMMA If I is a small category which is free and direct, then for any homotopically cocomplete cofibration category C , the functor

$$
\mathrm{dgm}_{\underline{I}}: W_{\underline{I}}^{-1}[\underline{I}, \underline{C}] \rightarrow\left[\underline{I}, w^{-1} \underline{C}\right]
$$

is full and has a representative image.
2.6.7 EXAMPIE The categories

are free and direct.
2.6.8 APPLICATION Every homotopically cocomplete cofibration category admits weak coequalizers and weak pushouts.
[Note: The story for homotopically complete fibration categories is analogous.]

2.7 WEAK MODEL CATEGORIES

Let \subseteq be a category and let ω, cof, fib be three composition closed classes of morphisms such that

$$
(C, \omega, \operatorname{cof})
$$

is a homotopically cocomplete cofibration category and
($C, W, f i b$)
is a homotopically complete fibration category.
2.7.1 DEFINITION \mathbb{C} is said to be a weak model category provided that the following axioms are satisfied.
(WMC - 1) W is closed under the formation of retracts.
(WMC - 2) Acyclic cofibrations with cofibrant domain have the LLP w.r.t. fibrations with fibrant codomain.
(WMC - 3) Cofibrations with cofibrant domain have the LLP w.r.t. acyclic fibrations with fibrant codomain.
2.7.2 REMARK Every complete and cocomplete model category is a weak model category (but not conversely).
2.7.3 IEMMA Suppose that \underline{C} is a weak model category -- then W is saturated (cf. 2.3.18).
2.7.4 IEMMA Suppose that \mathbb{C} is a weak model category -- then $W^{-1} \mathbb{C}$ is a category (cf. 2.4.3).

Fix a small category I.
2.7.5 THEOREM ${ }^{\dagger}$ Let $\underline{\mathrm{C}}$ be a weak model category - then [$\underline{I}, \underline{\mathrm{C}}$] admits a weak model structure in which the weak equivalences are the levelwise weak equivalences and the cofibrations are the levelwise cofibrations.
[Note: The description of the fibrations is somewhat involved but they are, at least, levelwise. $]$
2.7.6 THBOREM † Let \underline{C} be a weak model category -- then $[\underline{I}, \underline{C}]$ admits a weak model structure in which the weak equivalences are the levelwise weak equivalences and the fibrations are the levelwise fibrations.
[Note: The description of the cofibrations is somewhat involved but they are, at least, levelwise.]
2.7.7 REMARK In either weak model structure on [I, C], W_{I} is the class of weak equivalences and $W_{\underline{I}}^{-1}[\underline{I}, \underline{C}]$ is a category (cf. 2.7.4).
${ }^{\dagger}$ Cisinski, Bull. Soc. Math. France 138 (2010), 317-393.

CHAPTER 3: HOMOTOPY THEORIES

3.1 THE STAR PRODUCT
3.2 DERIVATORS
3.3 TECHNICALITIES
3.4 AXIOMS
3.5 D-EQUIVALENCES
3.6 PRINCIPAL EXAMPLES
3.7 UNIVERSAL PROPERTIES

CHAPTER 3: HOMOTOPY THEORIES

3.1 THE STAR PRODUCT

Let $F, F^{\prime}: \underline{C} \rightarrow \underline{D}$ and $G, G^{\prime}: \underline{D} \rightarrow \underline{E}$ be functors; let

$$
\left.\right|_{-} ^{-} \Xi \in \operatorname{Nat}\left(\mathrm{F}, \mathrm{~F}^{\prime}\right) .
$$

Then $\forall \mathrm{X} \in \mathrm{O} \mathrm{C} \underline{\mathrm{C}}$, there is a conmutative diagram

3.1.1 DEFINITION The star product of Ω and Ξ is defined by

$$
\Omega * E=G^{\prime} E \circ \Omega F
$$

or still,

$$
\Omega * \Xi=\Omega F^{\prime} \circ G E .
$$

[Note: The star product is associative and in suggestive notation,

$$
\left.\left(\Omega^{\prime} \circ \Omega\right) *\left(\Xi^{\prime} \circ \Xi\right)=\left(\Omega^{\prime} * \Xi^{\prime}\right) \circ\left(\Omega^{*} \Xi\right) .\right]
$$

N.B.

$$
\Omega * \Xi \in \operatorname{Nat}\left(G \circ F, G^{\prime} \circ F^{\prime}\right)
$$

3.1.2 EXAMPLE We have

$$
\begin{array}{ll}
\Omega F=\Omega * i d_{F} \\
G E=i d_{G} * E & \text { and } i d_{G} * i d_{F}=i d_{G} \cdot F^{*}
\end{array}
$$

3.2 DERIVATORS

A derivator D is a prescription that assigns to each small category 1 a metacategory $D I$, to each functor $F: \underline{I} \rightarrow \mathbb{J}$ a functor

$$
\mathrm{DF}: \underline{\mathrm{D}} \rightarrow \mathrm{DI},
$$

and to each natural transformation $E: F \rightarrow G$ a natural transformation

$$
D E: D G \rightarrow D F,
$$

the data being subject to the following assmptions.

- For all $\underline{I}, \operatorname{Did}_{\underline{I}}=i d_{\underline{I}}$ and given $\underline{\longrightarrow} \xrightarrow{F} \underline{\mathrm{~J}} \xrightarrow{\mathrm{G}}$, we have $D(G \circ F)=D F \circ D G$.
- For all $\mathrm{F}, \mathrm{Did}_{\mathrm{F}}=\mathrm{id} \mathrm{DF}$ and given $\mathrm{F} \xrightarrow{\Xi} \mathrm{G} \xrightarrow{\Omega} \mathrm{H}$, we have

$$
\mathrm{D}(\Omega \circ E)=\mathrm{DE} \circ \mathrm{D} \Omega .
$$

- If

$$
\xrightarrow[\mathrm{F}^{\prime}]{\text { I }} \xrightarrow{\text { F }}
$$

and if

$$
\left[\begin{array}{l}
-\quad \Xi \in \operatorname{Nat}\left(F, F^{\prime}\right) \\
\Omega \in \operatorname{Nat}\left(G, G^{\prime}\right)
\end{array}\right.
$$

then

$$
D(\Omega * \Xi)=D E * D \Omega .
$$

N.B. If D is a derivator, then its opposite $D^{O P}$ is the derivator that sends I to $(\mathrm{DI})^{\mathrm{OP}}, \mathrm{OP}$.
3.2.1 EXAMPLE Let (C, W) be a category pair. Given $\mathrm{I} \in \mathrm{Ob}$ CAT, let $W_{\underline{I}}$ Op be the levelwise weak equivalences in $\operatorname{Mor}\left[\underline{I}^{\mathrm{OP}}, \mathrm{C}\right]$ - then

$$
\left(\left[\underline{I}^{\mathrm{OP}}, \underline{\mathrm{C}}\right], \mathrm{f} \mathrm{I}_{\underline{\mathrm{OP}}}\right)
$$

is a category pair, thus it makes sense to form the localization of [$\underline{I}^{O P}$, \underline{C}] at $\omega_{\mathrm{I}} \mathrm{OP}:$

$$
W_{\underline{I}}^{-1} \mathrm{OP}^{\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \mathrm{C}\right]} \quad \text { (cf. 1.1.2) }
$$

Define now a derivator $\mathrm{D}_{\underline{(\mathrm{C}}, \mathrm{w})}$ by first specifying that

$$
\mathrm{D}_{(\underline{\mathrm{C}}, \mathrm{~W})} \underline{\underline{\mathrm{I}}={\underset{\underline{\mathrm{I}}}{ }}_{-1}^{\mathrm{OP}}\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \underline{\mathrm{C}}\right]}
$$

Next, given $F: I \rightarrow \underline{I}$, pass to $F^{O P}: \underline{I}^{O P} \rightarrow \underline{J}^{O P}$ and note that the induced functor

$$
\left(\mathrm{F}^{\mathrm{OP}}\right)^{*}:\left[\underline{\mathrm{J}}^{\mathrm{OP}}, \underline{\mathrm{C}}\right] \rightarrow\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \underline{\mathrm{C}}\right]
$$

is a morphism of category pairs (i.e., $\left(F^{O P}\right){ }_{\underline{J}}^{*}{ }_{O P}=W_{I} O P$, which leads to a functor

$$
\left.\overline{\left(F^{O P}\right)^{*}}: W_{\underline{J}}^{-1}\left[\underline{J}^{O P}, \underline{C}\right] \rightarrow{\underset{\underline{I}}{O P}}_{-1}^{W^{[I P}}, \underline{C}\right] \quad \text { (cf. 1.4.5) }
$$

call it $\mathrm{D}_{(\underline{C}, \mathrm{~W})} \mathrm{F}$. Finally, from a natural transformation $\mathrm{E}: \mathrm{F} \rightarrow \mathrm{G}$ there results a natural transformation

$$
\left(\Xi^{O P}\right)^{*}:\left(G^{O P}\right)^{*} \rightarrow\left(\mathrm{~F}^{\mathrm{OP}}\right)^{*}
$$

that gives rise in turn to a natural transformation
characterized by the property that
[Note: Take $\underline{I}=\underline{1}$ - then

$$
D_{(C, W)}=w^{-1} \underline{C} .1
$$

3.2.2 LEMMA Let D be a derivator. Suppose that

$$
\left\lvert\, \begin{aligned}
& F: I \rightarrow I^{\prime} \\
& F^{\prime}: I^{\prime} \rightarrow I
\end{aligned}\right.
$$

are an adjoint pair with arrows of adjunction

$$
\left[\begin{array}{l}
\mu: i d_{\underline{I}} \longrightarrow F^{\prime} \circ F \\
\mu^{\prime}: F \circ F^{\prime} \longrightarrow \operatorname{id}_{I^{\prime}} .
\end{array}\right.
$$

Then

$$
\left\lvert\, \begin{aligned}
& D F: D \underline{I}{ }^{\prime} \rightarrow D \underline{I} \\
& D F \cdot: D \underline{I} \rightarrow D \underline{I}^{\prime}
\end{aligned}\right.
$$

are an adjoint pair with arrows of adjunction

$$
\begin{aligned}
& \left.\right|^{-} \quad D \mu^{\prime} \in \operatorname{Nat}\left(\mathrm{id} \underline{D I}^{\prime}, D F^{\prime} \circ D F\right) \\
& \mathrm{D} \mu \in \operatorname{Nat}\left(\mathrm{DF} \circ \mathrm{DF}, \mathrm{id}_{\mathrm{DI}}\right) .
\end{aligned}
$$

PROOF Starting from
we have

$$
\left[\begin{array}{l}
\operatorname{id}_{D F^{\prime}}=\operatorname{Did}_{F^{\prime}}=D\left(\mu F^{\prime}\right) \circ D\left(F^{\prime} \mu^{\prime}\right)=\left(D F^{\prime}\right) D \mu \circ D \mu^{\prime}\left(D F^{\prime}\right) \\
i d_{D F}=D i d_{F}=D(F \mu) \circ D\left(\mu^{\prime} F\right)=D \mu(D F) \circ(D F) D \mu^{\prime}
\end{array}\right.
$$

which leads at once to the contention.
3.2.3 LEMMA Let D be a derivator. Suppose that

$$
\left.\right|_{-} ^{F} \quad \begin{aligned}
& \underline{I} \rightarrow \underline{I}^{\prime} \\
& F^{\prime}: \underline{I}^{\prime} \rightarrow \underline{I}
\end{aligned}
$$

are an adjoint pair with arrows of adjunction

$$
\left[\begin{array}{c}
\mu: i d_{\underline{I}} \rightarrow F^{\prime} \circ F \\
\mu^{\prime}: F \circ F^{\prime} \rightarrow i \underline{I}^{\prime}
\end{array}\right.
$$

Then

PROOF E.g.: If F is fully faithful, then μ is a natural isomorphism, thus $\mathrm{D} \mu$ is a natural isomorphism and this, in view of 3.2 .2 , implies that $D F^{\prime}$ is fully faithful.
3.2.4 DEFINITION A morphism $\Phi: D \rightarrow D^{\prime}$ of derivators is a pair (Φ, ϕ), where $\forall \underline{I}$,

$$
\Phi_{\underline{I}}: D I \rightarrow D^{\prime} I
$$

is a functor, and $\forall \mathrm{F}: \underline{I} \rightarrow \underline{J}$,

$$
\phi_{F}: D^{\prime} F \circ \Phi_{\underline{J}} \rightarrow \Phi_{\underline{I}} \circ D F
$$

is a natural isomorphism, there being two conditions on Φ.
[Note: The square per ϕ_{F} is

- Given $I \xrightarrow{\text { F }} \underset{\longrightarrow}{\mathbf{G}} \underset{\sim}{K}$, we have

$$
\left[\begin{array}{c}
\phi_{F}: D^{\prime} F \circ \Phi_{\underline{J}} \longrightarrow \Phi_{\underline{I}} \circ D F \\
\phi_{G}: D^{\prime} G \circ \Phi_{\underline{K}} \longrightarrow \Phi_{\underline{J}} \circ D G
\end{array}\right.
$$

from which

$$
\begin{aligned}
& \phi_{F}(D G): D^{\prime} F \circ \Phi_{\underline{J}} \circ D G \longrightarrow \Phi_{\underline{I}} \circ D F \circ D G \\
& \left(D^{\prime} F\right) \phi_{G}: D^{\prime} F \circ D^{\prime} G \circ \Phi_{\underline{K}} \longrightarrow D^{\prime} F \circ \Phi_{\underline{J}} \circ D G .
\end{aligned}
$$

On the other hand,

$$
\phi_{G} \circ F=D^{\prime} F \circ D^{\prime} G \circ \Phi_{\underline{K}} \rightarrow \Phi_{\underline{I}} \circ D F \circ D G
$$

The assumption then is that

$$
\phi_{G} \circ F=\phi_{F}(D G) \circ\left(D^{\prime} F\right) \phi_{G}
$$

- Given $\Xi \in \operatorname{Nat}(F, G)$, we have

$$
\left\lvert\, \begin{gathered}
D E: D G \rightarrow D F \\
\quad D^{\prime} E: D^{\prime} G \rightarrow D^{\prime} F,
\end{gathered}\right.
$$

from which the square

and the supposition is that it commutes.
3.2.5 EXAMPLE Let

$$
F:\left(\mathrm{C}_{1}, \mathrm{~W}_{1}\right) \rightarrow\left(\mathrm{C}_{2},\left(\mathrm{~V}_{2}\right)\right.
$$

be a morphism of category pairs (cf. 1.4.5) - then F induces a morphia

$$
{ }^{D}\left(\underline{C}_{1}, \underline{w}_{1}\right) \quad{ }^{D}\left(\underline{C}_{2}, \underline{w}_{2}\right)
$$

of derivators.

Given morphisms

$$
\left\lvert\, \begin{aligned}
& \Phi: D \rightarrow D^{\prime} \\
& -\Phi^{\prime}: D^{\prime} \rightarrow D^{\prime \prime}
\end{aligned}\right.
$$

of derivators, it is clear how to define their composition

$$
\Phi^{\prime} \circ \Phi: D \rightarrow D^{\prime \prime}
$$

which again is a morphism of derivators, thus there is a metacategory DER whose objects are the derivators.

If now $D, D^{\prime} \in O B$ DER and if

$$
\left.\right|_{-} \Phi=D \rightarrow D^{\prime} \in \operatorname{Mor}\left(D, D^{\prime}\right),
$$

then a natural transformation $\Xi: \Phi \rightarrow \Psi$ is the assignment to each I of a natural transformation

$$
\underline{\underline{I}}_{\underline{\underline{I}}}: \Phi_{\underline{I}} \rightarrow \Psi_{\underline{I}}
$$

such that $\forall F: \underline{I} \rightarrow \underline{J}$, the diagram

commutes.
3.2.6 LEMMA Let

$$
\Phi, \Psi, \underline{\theta} \in \operatorname{Mor}\left(D, D^{\prime}\right)
$$

Suppos that

$$
\left.\right|_{-\underline{\Omega}: \underline{\Phi} \rightarrow \underline{\Psi}}+\underline{\underline{\theta}}
$$

are natural transformations. Define $\Omega_{\Omega} \circ$ by

$$
(\Omega \circ E)_{\underline{I}}=\Omega_{\underline{I}} \circ \Xi_{\underline{I}} .
$$

Then $\underline{\Omega} \circ \underline{E}$ is a natural transformation from Φ to $\underline{\theta}$.
PROOF It is a question of showing that

$$
\left(\Omega_{\underline{I}} \circ \Xi_{\underline{I}}\right)(D F) \circ \phi_{F}=\theta_{F} \circ\left(D^{\prime} F\right)\left(\Omega_{\underline{J}} \circ \Xi_{\underline{J}}\right)
$$

But

$$
\begin{aligned}
\left(\Omega_{\underline{I}} \circ \Xi_{\underline{I}}\right)(F) \circ \phi_{F} & =\Omega_{\underline{I}}(D F) \circ \Xi_{\underline{I}}(0 F) \circ \phi_{F} \\
& =\Omega_{\underline{I}}(D F) \circ \psi_{F} \circ\left(D^{\prime} F\right) \Xi_{\underline{J}} \\
& =\theta_{F} \circ\left(D^{\prime} F\right) \Omega_{\underline{J}} \circ\left(D^{\prime} F\right) \Xi_{\underline{J}} \\
& =\theta_{F} \circ\left(D^{\prime} F\right)\left(\Omega_{\underline{J}} \circ \Xi_{\underline{J}}\right)
\end{aligned}
$$

3.2.7 NOTATTON Given derivators D, D^{\prime}, let HOM $\left(D, D^{\prime}\right)$ stand for the metacategory whose objects are the derivator morphisms $\Phi: D \rightarrow D^{\prime}$ and whose morphisns are the natural transformations $\operatorname{Nat}(\underline{\Phi}, \underline{\psi})$ from Φ to Ψ.
3.2.8 EXAMPLE Let 1 be the constant derivator with value 1 -- then for every derivator $D, H O M(1, D)$ is equivalent to 01.
3.2.9 DEFTNTTION Let $\Phi \in \operatorname{Mor}\left(D, D^{\prime}\right)-$ then Φ is an equivalence if $\forall I$,

$$
\Phi_{\underline{I}}: D \underline{I} \rightarrow D^{\prime} \underline{\underline{I}}
$$

is an equivalence of metacategories.
3.2.10 LEMMA A morphism $\Phi: D \rightarrow D^{\prime}$ is an equivalence iff there exists a morphism $\Phi^{\prime}: D^{\prime} \rightarrow \mathcal{D}$ such that $\Phi^{\prime} \circ \Phi$ is isomorphic to $i d_{0}$ and $\Phi \circ \Phi^{\prime}$ is isomorphic to id D^{\prime}
3.2.11 EXAMPLE Let \underline{C} be a complete and cocomplete model category, W its class of weak equivalences -- then there are morphisms

$$
\left[\begin{array}{l}
\left(\underline{C}_{\text {cof }}, w_{\text {cof }}\right) \rightarrow(\underline{C}, \omega) \\
\left(\underline{C}_{f i b}, \omega_{f i b}\right) \rightarrow(\underline{C}, w)
\end{array}\right.
$$

of category pairs, hence induced morphisms

$$
\left[\begin{array}{c}
D_{\left(\underline{C}_{\text {cof }}, \omega_{\text {cof }}\right)} \rightarrow D_{(\underline{C}, w)} \\
\left.D_{\left(\underline{C}_{\text {fib }}\right.} w_{\text {fib }}\right)
\end{array} D_{(\underline{C}, w)}\right.
$$

of derivators that, in fact, are equivalences.
3.2.12 NOTATION In 3.2.1, take for W the identities in \underline{C} and write D_{C} in place of $D_{(\underline{C}, W)}$, hence $\forall I \in O$ CAT,

$$
D_{\underline{C}^{I}}=\left[\underline{I}^{O P}, \underline{C}\right] .
$$

3.2.13 EXAMPLE Let (\mathbb{C}, W) be a category pair -- then W contains the identities of \underline{C}, so there is a morphism

$$
\mathrm{D}_{\mathrm{C}} \rightarrow 0_{(\underline{C}, w)}
$$

of derivators.
3.2.14 EXAMPLE If $F: \underline{C} \rightarrow \underline{C}^{\prime}$ is a functor and if $\underline{I} \in O b \underline{C A T}$, then

$$
\mathrm{F}_{*}:\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \underline{\mathrm{C}}\right] \rightarrow\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \underline{\mathrm{C}}^{\mathrm{t}}\right]
$$

and there is an induced morphism $D_{\underline{C}} \rightarrow \underline{C}_{\underline{C}}$, of derivators.
3.2.15 LEMMA Suppose that C is small -- then for every derivator D, there is a canonical equivalence

$$
\left.\underline{\operatorname{HOM}}_{\left(\underline{C}_{\underline{C}}\right.} \mathrm{D}\right) \rightarrow \underline{\mathrm{C}}^{\mathrm{OP}}
$$

of metacategories.
[Given $\Phi: D_{\underline{C}} \rightarrow D$, let $\underline{I}=\underline{C}^{O P}$, thus

$$
{ }_{\underline{C}}{ }_{O P}:[\underline{C}, \underline{C}] \rightarrow \underline{D C}^{O P}
$$

and by definition

$$
\left.\left.\Phi \longrightarrow \Phi_{\underline{\mathrm{C}}} \mathrm{OP}^{(\mathrm{id}} \mathrm{C}_{\mathrm{C}}\right) \cdot\right]
$$

[Note: This is the Yoneda lemma for derivators.]

3.3 TECHNICALITIES

3.3.1 DEFINITION Let D be a derivator.

- A functor $K: I \rightarrow J$ admits a right homotopy Kan extension in D if the
functor

$$
\mathrm{DK}: \mathrm{DI} \rightarrow \mathrm{DI}
$$

has a right adjoint

$$
\mathrm{DK}_{\dagger}: \mathrm{DI} \rightarrow \mathrm{DJ} .
$$

- A functor K:I $\rightarrow \underline{I}$ admits a left homotopy Kan extension in D if the functor

$$
D K: D J .
$$

has a left ad joint

$$
D K_{!}: D \underline{I} \rightarrow D \underline{J} .
$$

3.3.2 EXAMPLE Take $D=D_{\underline{C}}$ (cf. 3.2.12).

- Assume that \mathbb{C} is complete -- then every $K: \underline{I} \rightarrow \underline{J}$ admits a right homo topy Kan extension in $\underline{\mathrm{C}}_{\underline{\mathrm{C}}}$
- Assume that \underline{C} is cocomplete -- then every $K: \underline{I} \rightarrow \underline{J}$ admits a left homotopy Kan extension in $\underline{\mathrm{C}}_{\underline{\mathrm{C}}}$
3.3.3 REMARK Let \mathbb{C} be a model category, W its class of weak equivalences then in the context of the derivator $D_{(\underline{C},(w)}$ (cf. 3.2.1), one uses the term hamotopy limit of $K^{O P}$ rather than right homotopy Kan extension of K and the term homotopy Colimit of K^{OP} rather than the term left hornotopy Kan extension of K .
[Note: The explanation for the appearance of K^{OP} is to keep matters consistent. Thus suppose that. \underline{C} is combinatorial -- then in the notation of 0.26 .19 and 0.26 .20 , we introduced

$$
\int_{-} \begin{array}{r}
\mathrm{LK} \\
\mathrm{RK}_{+}
\end{array}
$$

which were called

respectively. So here

$$
\left[\begin{array}{l}
D_{(C, w)} K_{!}=L K_{!}^{O P} \\
D_{(C, w)} K_{f}=R K_{+}^{O P}
\end{array}\right.
$$

See also 2.5.7 and 2.5.8.]
3.3.4 NOTATION Let $I \in O B C A T$ and let $p_{\underline{I}}: I \rightarrow \underline{1}$ be the canonical arrow.

- Suppose that $p_{\underline{I}}$ adnits a right homotopy Kan extension in D-- then
$\forall X \in O b D I$, we let

$$
\Gamma_{\ddagger}(\underline{I}, X)=D \underline{\underline{I}}_{\underline{I}+} X
$$

- Suppose that $p_{\underline{I}}$ admits a left homotopy Kan extension in D-- then
$\forall X \in O D D$, we let

$$
\Gamma_{!}(\underline{I}, X)=D p_{\underline{I}!} X
$$

3.3.5 DEFINITION A 2-diagram of categories (or metacategories) is a square

together with a natural transfomation from $F \circ u$ to $V \circ F^{\prime}$ or from $V \circ F^{\prime}$ to Fou.

Let D be a derivator -- then a 2 -diagram

of small categories induces a 2-diagram

of metacategories, where

$$
D E: D\left(v \circ F^{\prime}\right) \rightarrow D(F \circ u)
$$

N.B. We have

$$
\left\{\begin{array}{l}
D\left(v \circ F^{\prime}\right)=D F^{\prime} \circ D v \\
D(F \circ u)=D u \circ D F .
\end{array}\right.
$$

3.3.6 CONSTRUCTION Assume that both F and F^{\prime} admit a right homotopy Kan extension in D. Starting from the arrow of adjunction $\mathrm{DF} \circ \mathrm{DF}_{+} \rightarrow \mathrm{id}_{\mathrm{DI}}$, proceed to $\mathrm{Du} \circ \mathrm{DF} \circ \mathrm{DF}_{\dagger} \rightarrow \mathrm{Du}$
or still, using

$$
D E: D F^{\prime} \circ D v+D u \circ D F,
$$

to

$$
D F^{\prime} \circ D v \circ D F_{+} \rightarrow \mathrm{Du}
$$

or still, by adjunction, to

$$
\mathrm{W}: D v \circ D F_{+} \rightarrow D F_{+}^{\prime} \circ D u_{,}
$$

leading thereby to another 2 -diagram

of metacategories.
[Note: The natural transformation III is called the base change morphism induced by E.]
3.3.7 EXAMPLE Iet $F: I \rightarrow J$ be a functor. Given $j \in O b I$, write I / j for the corma category $\left|F, K_{j}\right|$, the objects of which are the pairs (i, g), where $i \in O D I$, $g \in \operatorname{Mor} J$, and $g: F i \rightarrow j$. Consider the square

Then there is a natural transformation

$$
\Xi: F \circ \mathrm{pro}_{j} \rightarrow K_{j} \circ \mathrm{p}_{\mathrm{I} / j^{\prime}}
$$

viz.

$$
\Xi_{(i, g)}=g .
$$

Assume now that F admits a right homotopy Kan extension in D and $\forall j \in O b I$, $\mathrm{P}_{\underline{I} / j}$ admits a right homotopy Kan extension in D. Accordingly, on the basis of 3.3.6, there is a natural transformation

$$
\mathrm{II}: \mathrm{DK}_{j} \circ \mathrm{DF}_{\dagger} \rightarrow \mathrm{Dp}_{\mathrm{I} / \mathrm{j} \dagger} \circ \mathrm{Dpro}_{j}
$$

[Note: From the definitions,

$$
\text { Dpro }_{j}: D I \rightarrow D I / j
$$

so $\forall X \in O B D I, D_{j} X \in O D D I / j$, call it X / j - then

$$
D p_{I / j \dagger} X / j=\Gamma_{\dagger}(\underline{I} / j, X / j) \quad \text { (cf. 3.3.4.] }
$$

Let. D be a derivator - then a 2-diagram

of small categories induces a 2-diagram

of metacategories, where

$$
D E: D(F \circ u) \rightarrow D\left(v \circ F^{\prime}\right) .
$$

N.B. We have

$$
\left\lvert\, \begin{aligned}
& D(F \circ \mathrm{u})=D \mathrm{u} \circ D \mathrm{~F} \\
& D\left(\mathrm{v} \circ \mathrm{~F}^{\prime}\right)=D F^{\prime} \circ D \mathrm{v} .
\end{aligned}\right.
$$

3.3.8 CONSIRUCTION Assume that both F and F^{\prime} admit a left homotopy Kan extension in D. Starting from the arrow of adjunction $i d_{D I} \rightarrow D F \circ D F_{!}$, proceed to

$$
\mathrm{Du} \rightarrow \mathrm{Du} \circ \mathrm{DF} \circ \mathrm{DF}_{!}
$$

or still, using

$$
D E: D u \circ D F \rightarrow D F^{\prime} \circ D v,
$$

to

$$
\mathrm{Du} \rightarrow \mathrm{DF}{ }^{\prime} \circ \mathrm{Dv} \circ \mathrm{DF}!
$$

or still, by adjunction, to

$$
\mathrm{II}: D F!\circ D u \rightarrow D v \circ D F!
$$

leading thereby to another 2-diagram

of metacategories.
[Note: The natural transformation III is called the base change morphism induced by E.]
3.3.9 EXAMPLE Let $F: \underline{I} \rightarrow \underline{J}$ be a functor. Given $j \in O b \underline{J}$, write $j \backslash \underline{I}$ for the

Corma category $\left|\mathrm{K}_{\mathrm{j}} \mathrm{F}\right|$, the objects of which are the pairs (g, i), where $\mathrm{g} \in \mathrm{Mor} \mathrm{J}$, $i \in O b I$, and $g: j \rightarrow F i$. Consider the square

Then there is a natural transformation

$$
K_{j} \circ p_{j \backslash I} \rightarrow F \circ{ }_{j} p r o,
$$

viz.

$$
E_{(g, i)}=g .
$$

Assume now that F admits a left homotopy Kan extension in D and $\forall j \in O b \underline{J}, P_{j \backslash I}$ admits a left homotopy Kan extension in D. Accordingly, on the basis of 3.3.8, there is a natural transformation

$$
\text { H:Dp }{ }_{j \backslash I!} \circ D_{j} \text { pro } \rightarrow D K_{j} \circ D F_{!}
$$

[Note: From the definitions,

$$
\mathrm{D}_{\mathrm{j}} \mathrm{pro:DI} \rightarrow \mathrm{D}_{\mathrm{j}} \backslash \underline{I},
$$

so $\forall X \in O B D I, D_{j}$ pro $X \in O D D j \backslash I$, call it $j \backslash X$ - then

$$
D p_{j \backslash I!} j \backslash X=\Gamma_{!}(j \backslash \underline{I}, j \backslash X) \quad \text { (cf. 3.3.4).] }
$$

3.3.10 NOTATION Suppose that D is a derivator - then for all $I, J \in O B C A T$, there is a canonical functor

$$
\mathrm{d}_{\underline{\mathrm{I}}, \underline{J}}: \mathrm{D}(\underline{\mathrm{I}} \times \underline{\mathrm{J}}) \rightarrow\left[\underline{I}^{\mathrm{OP}}, \underline{\mathrm{~J}}\right] .
$$

19.

In fact:

1. There is a functor

$$
[\underline{J}, \underline{I} \times \underline{\underline{J}}]^{O P} \rightarrow[D(\underline{I} \times \underline{J}), \underline{D}]
$$

2. There is a functor

$$
[\underline{J}, \underline{I} \times \underline{J}]^{O P} \times D(\underline{I} \times \underline{J}) \rightarrow \underline{D} .
$$

3. There is a functor

$$
D(\underline{I} \times \underline{J}) \rightarrow\left[[\underline{J}, \underline{I} \times \underline{J}]^{O P}, \underline{D J}\right]
$$

4. There is a functor

$$
\underline{I} \rightarrow[J, \underline{I} \times \underline{I}]
$$

or still, a functor

$$
\underline{I}^{O P} \rightarrow[\underline{I}, \underline{I} \times \underline{I}]^{O P}
$$

So, in conclusion, there is a functor

$$
\mathrm{d}_{\underline{I}, \underline{U}}: \mathrm{D}(\underline{\mathrm{I}} \times \underline{\mathrm{J}}) \rightarrow[\underline{\underline{O P}}, \mathrm{DJ}] .
$$

Let $d_{\underline{I}}=d_{\underline{I}, \underline{\prime}}$, thus

$$
\mathrm{d}_{\underline{\mathrm{I}}}: \mathrm{DI} \rightarrow\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \mathrm{D} \underline{\underline{1}}\right]
$$

[Note: If $D=D_{(\underline{C}, W)}$, where (\mathbb{C}, W) is a category pair, then d_{I} is what was labeled dgrn in 2.6 .1
3.3.11 LEMMA Suppose that $F: \underline{I} \rightarrow \underline{J}-$ then the diagram

commates.

3.4 AXIOMS

What follows is a list of conditions that a derivator D might satisfy but which are not part of the setup per se.
(DER - 1) For any finite set I_{1}, \ldots, I_{n} of small categories, the canonical functor

$$
D\left(\prod_{k=1}^{n} I_{k}\right) \rightarrow \prod_{k=1}^{n} D\left(I_{k}\right)
$$

induced by the inclusions

$$
I_{\ell} \rightarrow \prod_{k=1}^{n} I_{k} \quad(1 \leq \ell \leq n)
$$

is an equivalence and $\mathbb{O} \underline{0}$ is equivalent to 1 .
(DER - 2) For any small category I, the functors

$$
D K_{i}: D \underline{I} \rightarrow D \underline{1} \quad(i \in O \underline{I})
$$

constitute a conservative family, i.e., if $X, Y \in O D D I$ and if $f: X \rightarrow Y$ is a morphism such that $\forall i \in O B I, D K_{i} f$ is an isomorphism in $D \underline{1}$, then f is an isomorphism in DI. (RDER - 3) Every $F \in$ Mor CAT admits a right homotopy Kan extension in 0.
(LDER - 3) Every $F \in$ Mor CAT admits a left homotopy Kan extension in D. (RDER - 4) For any $F: \underline{I} \rightarrow \underline{J}$ and for any $j \in O$ U,

$$
\Pi: D K_{j} \circ \mathrm{DF}_{\dagger} \rightarrow \mathrm{Dp}_{\mathrm{I} / j \dagger} \circ \mathrm{Dpro}_{j}
$$

is a natural isomorphism.
(LDER - 4) For any $F: \underline{I} \rightarrow \underline{J}$ and for any $j \in O$ I.

$$
\text { III: } D \mathrm{p}_{\mathrm{j} \backslash I!} \circ \mathrm{D}_{\mathrm{j}} \text { pro } \rightarrow D \mathrm{~K}_{\mathrm{j}} \circ D F_{t}
$$

is a natural iscrorphism.
(DER - 5) For any finite, free category I and for any small category J, the functor

$$
\mathrm{d}_{\underline{I}, \underline{I}}: D(\underline{I} \times \underline{\mathrm{I}}) \rightarrow\left[\underline{I}^{O P}, \mathrm{D} \underline{]}\right]
$$

is full and has a representative image.
N.B. Tacitly, RDER - 4 presupposes RDER - 3 and LDER - 4 presupposes IDER - 3 .
3.4.1 DEFINITION Let D be a derivator.

- D is said to be a right homotopy theory if DER - 1, DER - 2, RDER - 3, and RDER - 4 are satisfied.
- D is said to be a left homotopy theory if $\operatorname{DER}-1, \operatorname{DER}-2$, IDER - 3, and IDER - 4 are satisfied.
N.B. D is said to be a homotopy theory if D is both a right and left homotopy theory.
3.4.2 EXAMPLE Let \underline{C} be a category and take $D=D_{\underline{C}}$ (cf. 3.2.12).
- Assume that \mathbb{C} is complete -- then $D_{\underline{C}}$ is a right homotopy theory.
- Assume that $\underset{C}{ }$ is cocomplete -- then ${\underset{C}{C}}$ is a left homotopy theory.
3.4.3 IEMMA Suppose that DER - 1 and RDER - 3 are in force - then $\forall \underline{I}$, $D \underline{I}$ has finite products.

PROOF It suffices to prove that $\underset{C}{C}$ has binary products and a final object. —— Recall that DI has binary products iff the diagonal functor $\Delta_{\mathrm{DI}}: D \underline{I} \rightarrow D \underline{I} \times D \underline{I}$ has a right adjoint. Let $\nabla_{\underline{I}}: \underline{I} \underline{\|} \rightarrow \underline{I}$ be the folding map then there is a commutative diagram

Since $D \nabla_{\text {I }}$ has a right adjoint and since the vertical arrow on the right is an equivalence, it follows that $\Delta_{D I}$ has a right adjoint.
—_- Recall that $D \underline{I}$ has a final object iff the functor $P_{D \underline{I}}: D \underline{I} \rightarrow \underline{1}$ has a right adjoint. Iet $i_{\underline{I}}: 0 \rightarrow I$ be the insertion - then there is a commutative diagram

Since $\mathrm{Di}_{\underline{I}}$ has a right adjoint and since the vertical arrow on the right is an equivalence, it follows that p_{DI} has a right adjoint.
3.4.4 LEMMA Suppose that DER - 1 and LDER - 3 are in force -- then $\forall I$, DI has finite coproducts.

Let D be a derivator -- then for any small category I and any $i \in O b I$, there is a commatative diagram

3.4.5 LEMMA The derivator D satisfies DER - 2 iff $\forall I \in O b$ CAT, the functor ${ }^{d}$ is conservative.

PROOF The (K_{i}) ${ }^{\text {* }}$ constitute a conservative family.
[Note: It is clear that the derivator D_{C} attached to a category C satisfies DER - 2 (levelwise isomorphisms are isomorphisms).]

3.5 D-EQUIVALENCES

Let D be a derivator. Suppose that $\underline{I}, \underline{J}$ are small categories and $F: \underline{I} \rightarrow \underline{J}$ is a functor - then upon application of D, the commutative diagram

leads to a commutative diagram

So, for any pair $X, Y \in O D D \underline{1}$, there is an arrow

$$
\phi_{X, Y}: \operatorname{Mor}\left(\operatorname{Dp}_{\underline{J}} X, D \underline{\underline{J}}_{\underline{J}} Y\right) \rightarrow \operatorname{Mor}\left(\operatorname{Dp}_{\underline{I}} X, D \underline{p}_{\underline{I}} Y\right)
$$

namely

$$
\phi_{X, Y} \mathrm{Y}^{\mathrm{F}}=\mathrm{DF} \mathrm{f},
$$

i.e.,

$$
\mathrm{Dp}_{\underline{\mathrm{J}}} \mathrm{X} \xrightarrow{\mathrm{E}} \mathrm{Dp}_{\underline{J}} \mathrm{Y}
$$

is sent by $\phi_{X, Y}$ to

$$
D p_{\underline{I}} \mathrm{X}=\mathrm{DF} \circ D \mathrm{p}_{\underline{J}} \mathrm{X} \xrightarrow{\mathrm{DFf}} \mathrm{DF} \circ D{p_{\underline{J}} \mathrm{Y}}_{\underline{D}} \mathrm{Dp}_{\underline{I}} \mathrm{Y} .
$$

3.5.1 DEFINITION A functor $F: \underline{I} \rightarrow \underline{J}$ is a D-equivalence if $\forall X, Y \in O D D \underline{1}$, the arrow

$$
\phi_{X, Y}: \operatorname{Mor}\left(\mathrm{Dp}_{\underline{J}} \mathrm{X}, \mathrm{Dp}_{\underline{J}} \mathrm{Y}\right) \rightarrow \operatorname{Mor}\left(\mathrm{Dp}_{\underline{I}} \mathrm{X}, \mathrm{Dp}_{\underline{I}} \mathrm{Y}\right)
$$

is bijective.
3.5.2 NOTATION Write W_{D} for the class of D-equivalences in Mor CAT.
N.B. It is clear that (CAT, ω_{D}) is a category pair.
3.5.3 LEMAA W_{D} is saturated (that is, $W_{D}=\bar{W}_{D}$ (cf. 1.1.9)).

PROOF Given $X, Y \in O D$ Dl, define a functor

$$
\Phi_{\mathrm{X}, \mathrm{Y}}: \underline{\mathrm{CAT}} \rightarrow \underline{\mathrm{SET}}^{\mathrm{OP}}
$$

by the specification

$$
\underline{I} \rightarrow \operatorname{Mor}\left(\mathrm{D}_{\underline{I}} \mathrm{X}, \mathrm{Dp}_{\underline{I}} \mathrm{Y}\right) \text { and } \mathrm{F} \rightarrow \phi_{\mathrm{X}, \mathrm{Y}}
$$

Accordingly, from the definitions, if F is a D-equivalence, then $\Phi_{X, Y} F$ is a bijection, so there is a commatative diagram

Suppose now that $I_{W_{D}} F_{0}$ is an isomorphism ($F_{0}: I_{0} \rightarrow \mathcal{J}_{0}$) -- then $\bar{\Phi}_{X, Y} I_{w_{D}} F_{0}$ is an isomorphism or still, $\Phi_{X, Y} F_{0}$ is a bijection. Since this is true of all $X, Y \in O B D 1$, it follows that F_{0} is a D-equivalence: $F_{0} \in W_{D}$.
N.B. It is a corollary that W_{D} is weakly saturated (cf. 2.3.15).
3.5.4 DFFINITION An object $I \in O$ CAT is \underline{D}-aspherical if $\underline{P}_{\underline{I}}: \underline{I} \rightarrow \underline{1}$ is a D-equivalence.
3.5.5 LEMMA I is D-aspherical iff the functor $D p_{I}: D I \rightarrow D I$ is fully faithful.

PROOF Given $X, Y \in O D D 1$, to say that the arrow

$$
\operatorname{Mor}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{Mor}\left(\mathrm{Dp}_{\underline{\mathrm{I}}} \mathrm{X}, \mathrm{Dp}_{\mathrm{I}} \mathrm{Y}\right)
$$

is bijective amounts to saying that the functor $D_{\underline{I}}: D \underline{\underline{I}} \rightarrow D \underline{I}$ is fully faithful.
3.5.6 IEMMA Suppose that I has a final object - then I is D-aspherical.

PROOF If I has a final object, then $\underline{p}_{\underline{I}}$ has a right adjoint which is necessarily fully faithful. Therefore $\mathrm{Dp}_{\underline{I}}$ is fully faithful (cf. 3.2.3), so 3.5 .5 is applicable.
3.5.7 DFFINITION A functor $F: \underline{I} \rightarrow \underline{J}$ is D-aspherical if $\forall j \in O b \underline{J}$, the functor

$$
F / j: I / j \rightarrow J / j
$$

is a D-equivalence.
3.5.8 LEMMA The functor $F: I \rightarrow \underline{J}$ is D-aspherical iff $\forall j \in O b J$, the category I/j is D-aspherical.

PROOF Since J/j has a final object, it is D-aspherical (cf. 3.5.6), thus the arrow $\mathrm{J} / \mathrm{j} \rightarrow \underline{1}$ is a D-equivalence. This said, consider the commatative diagram

3.5.9 LEMMA Suppose that the functor $F: I \rightarrow \underline{J}$ admits a right adjoint $G: \underline{J} \rightarrow \underline{I}$ then F is D-aspherical.

PROOF $\forall i \in O b I$ and $\forall j \in O b I$, we have

$$
\operatorname{Mor}(F i, j) \approx \operatorname{Mor}(i, G j)
$$

Therefore the category I / j is isomorphic to the category $I / G j$. But $I / G j$ has a final object, thus $I / G j$ is D-aspherical (cf. 3.5.6), hence the same is true of I/j and one may then quote 3.5.8.
3.5.10 EXAMPLE An equivalence of small categories is D-aspherical.

Suppose that RDER - 3 is in force. Let $F: I \rightarrow J$ be a functor - then the cormutative diagram

generates an arrow

$$
\mathrm{Dp}_{\underline{\mathrm{J}}} \rightarrow \mathrm{DF}_{+} \circ \mathrm{Dp}_{\underline{\mathrm{I}}} \quad \text { (cf. 3.3.6) }
$$

or still, upon postcomposing with $\mathrm{Dp}_{\mathrm{J} \dagger}$, an arrow

$$
\begin{aligned}
& D \underline{p}_{\underline{\mathrm{J}}}{ }^{\circ} \circ D \underline{p}_{\underline{\mathrm{J}}} \rightarrow D \underline{\mathrm{p}}_{\underline{\mathrm{J}}}+D F_{+} \circ D \mathrm{p}_{\underline{\mathrm{I}}} \\
& =D\left(\underline{p}_{\underline{J}} \circ F\right)_{+} \circ \mathrm{Dp}_{\underline{I}} \\
& =D \underline{P}_{I+}{ }^{\circ} D P_{I} .
\end{aligned}
$$

3.5.11 LEMMA Under RDER - 3, a functor $F: \underline{I} \rightarrow \mathbb{J}$ is a D-equivalence iff the arrow

$$
\mathrm{Dp}_{\underline{\mathrm{I}}+} \circ \mathrm{Dp}_{\underline{\mathrm{I}}} \rightarrow \mathrm{Dp}_{\underline{\mathrm{I}}+} \circ \mathrm{Dp}_{\underline{\mathrm{I}}}
$$

is an isomorphism (in [D1, D1]).

PROOF If $F: \underline{I} \rightarrow \underline{J}$ is a D-equivalence, then $\forall Y, X \in O b D \underline{1}$, the arrow

$$
\operatorname{Mor}\left(\mathrm{Dp}_{\underline{\mathrm{J}}} \mathrm{Y}, \mathrm{Dp}_{\underline{J}} \mathrm{X}\right) \rightarrow \operatorname{Mor}\left(\mathrm{Dp}_{\underline{I}} \mathrm{Y}, \mathrm{Dp}_{\underline{I}} \mathrm{X}\right)
$$

is bijective or still, by adjunction, the arrow

$$
\operatorname{Mor}\left(\mathrm{Y}, \mathrm{Dp}_{\underline{I}}!\circ \mathrm{Dp}_{\underline{J}} X\right) \rightarrow \operatorname{Mor}\left(\mathrm{Y}, \mathrm{Dp}_{\underline{I}!} \circ \mathrm{Dp}_{\underline{I}} \mathrm{X}\right)
$$

is bijective, which implies that the arrow

$$
\mathrm{Dp}_{\underline{\mathrm{I}}!} \circ \mathrm{DP}_{\underline{\mathrm{U}}} \mathrm{X} \rightarrow \mathrm{Dp}_{\underline{I}}!\circ \mathrm{Dp}_{\underline{I}} \mathrm{X}
$$

is an isomorphism. Rum the argument backwards for the converse.

Henceforth it will be assumed that D satisfies DER - 2, RDER - 3, and RDER - 4 .
3.5.12 LEMMA Let $F: \underline{I} \rightarrow \mathbf{J}$ be a functor - then the arrow

$$
D \mathrm{p}_{\underline{J}}+\mathrm{DF}+\circ \mathrm{Dp}_{\underline{I}}
$$

is an isonorphism (in [D1, DJ]) iff $\forall j \in O B$ J, the arrow

$$
D K_{j} \circ D p_{\mathcal{J}} \rightarrow D K_{j} \circ D F_{+} \circ D p_{I}
$$

is an isomorphism (in [D1, D1]) (cf. DER - 2).
[Note: The composition $\underline{\longrightarrow} \xrightarrow{K_{j}} \underset{\longrightarrow}{\underline{p}_{\underline{J}}} \underline{\underline{1}}$ is id $_{\underline{1}}$, so $D\left(\underline{p}_{\underline{J}} \circ K_{j}\right)=D K_{j} \circ D p_{\underline{J}}$ is $\left.\mathrm{id}_{\mathrm{DI}}.\right]$
3.5.13 LEMMA Let $F: \underline{I} \rightarrow \underline{J}$ be a functor. Assume: The arrow

$$
D \underline{p}_{\underline{J}}+D F_{+} \circ D \underline{p}_{\underline{I}}
$$

is an iscmorphism - then F is D-aspherical.

PROOF Given $j \in O$ I, consider the diagram

(cf. 3.3.7).

Then

$$
p_{\underline{I}} \circ \text { pro }_{j}=p_{I / j} \Rightarrow D \mathrm{pro}_{j} \circ D \underline{p}_{\underline{I}}=D p_{\underline{I} / j}
$$

And, thanks to RDER - 4, there is an iscomorphism

$$
D K_{j} \circ D F_{\dagger} \rightarrow D p_{I / j \dagger} \circ D \mathrm{DrO}_{j}
$$

or still, an isomorphism

$$
\begin{aligned}
\mathrm{DK}_{j} \circ \mathrm{DF}_{+} \circ \mathrm{Dp}_{I} & \rightarrow D \mathrm{p}_{\mathrm{I} / j+} \circ \mathrm{DPro}_{j} \circ \mathrm{Dp}_{I} \\
& =D p_{I / j+} \circ \mathrm{Dp}_{I / j}
\end{aligned}
$$

or still, an isomorphism

$$
i d_{D \underline{I}} \rightarrow D p_{I / j \dagger}{ }^{\circ} \mathrm{Dp}_{\underline{I} / \mathrm{j}}
$$

But this means that $0 p_{\underline{I} / j}$ is fully faithful (the last arrow being an arrow of adjunction), hence I / j is D-aspherical (cf. 3.5.5). Since this is the case of every $j \in O b$, it follows that F is D-aspherical (cf. 3.5.8).
3.5.14 LEMMA Let $F: I \rightarrow J$ be a functor. Assume: F is D-aspherical - then the arrow

$$
D p_{\underline{J}} \rightarrow D F_{+} \cdot \mathrm{Dp}_{\underline{I}}
$$

30.

is an isomorphism.
PROOF Owing to 3.5.8, $\forall j \in O D$ J, I/j is D-aspherical, thus the functor $\mathrm{Op}_{\mathrm{I} / j}$ is fully faithful (cf. 3.5.5). Using the notation of 3.5 .13 , form the commatative diagram

to see that the arrow

$$
\mathrm{id}_{\mathrm{D} \underline{1}} \longrightarrow \mathrm{DK}_{\mathrm{j}} \circ \mathrm{DF}_{+} \circ \mathrm{DP}_{\underline{I}}
$$

is an isomorphism. But $j \in O D J$ is arbitrary, thus the arrow

$$
\mathrm{Dp}_{\underline{\mathrm{J}}} \longrightarrow \mathrm{DF}_{+} \circ \mathrm{Dp}_{\underline{\mathrm{I}}}
$$

is an isomorphism (cf. 3.5.12).
3.5.15 LENMA If $F: \underline{I} \rightarrow \underline{J}$ is D-aspherical, then F is a D-equivalence. PROOF The arrow

$$
\mathrm{Dp}_{\underline{J}} \rightarrow D F_{+} \circ \mathrm{Dp}_{\underline{I}}
$$

is an isomorphism (cf. 3.5.14). Therefore the arrow

$$
\begin{aligned}
\mathrm{Dp}_{\underline{\mathrm{J}}+} \circ \mathrm{Dp}_{\underline{\mathrm{J}}} & \rightarrow \mathrm{Dp}_{\underline{\mathrm{J}}+} \circ \mathrm{DF}_{+} \circ \mathrm{Dp}_{\underline{\mathrm{I}}} \\
& =\mathrm{D}\left(\mathrm{p}_{\underline{\mathrm{I}}} \circ \mathrm{~F}\right)_{+} \circ \mathrm{Dp}_{\underline{\mathrm{I}}} \\
& =\mathrm{Dp}_{\underline{\mathrm{I}}+} \circ \mathrm{Dp}_{\underline{\mathrm{I}}}
\end{aligned}
$$

is an iscmorphism, so F is a D-equivalence (cf. 3.5.11).
3.5.16 REMARK Consider a comutative diagram

of small categories. Assume: $\forall k \in O b \underline{K}$, the arrow $I / k \rightarrow J / k$ is a D-equivalence -then F is a D-equivalence.
[This is the relative version of 3.5 .15 and its proof rums along similar lines.]
N.B. The developments leading to 3.5 .15 and 3.5 .16 were predicated on the supposition that D satisfies DER - 2, RDER - 3, and RDER - 4. The same conclusions obtain if instead 0 satisfies DER - 2, IDER - 3, and IDER - 4.
3.5.17 THEOREM Suppose that D is a right (left) homotopy theory - then w_{D} is a fundamental localizer.

PROOF' One has only to cite $3.5 .3,3.5 .6$, and 3.5.16.
3.5.18 REMARK Consequently, if D is a right (left) homotopy theory, then $w_{\infty}=w_{D}$ (cf. C.7.1).
3.5.19 LEMMA Suppose that D is a homotopy theory. Let $F: I \rightarrow I$ be a functor, $F^{O P}: \underline{I}^{O P} \rightarrow \underline{J}^{O P}$ its opposite - then F is a D-equivalence iff $F^{O P}$ is a D-equivalence (cf. C.2.9).
3.5.20 IEMMA Suppose that D is a homotopy theory. Let $F: I \rightarrow \underline{J}$ be a functor, $F^{O P}: \underline{I}^{O P} \rightarrow \underline{J}^{O P}$ its opposite - then F is a D-equivalence iff $F^{O P}$ is a $D^{O P}$-equivalence.
3.5.21 SCHOLIUM We have

$$
W_{D}=w_{D} O P
$$

if D is a homotopy theory.

3.6 PRINCIPAL EXAMPLES

Recall that if (\underline{C}, W) is a category pair, then $\bar{D}_{(\underline{C},(W)}$ is the derivator that sends

$$
\left.\underline{I} \in O b \underline{C A T} \text { to }{\underset{\underline{I}}{-1}}_{O P}^{\left[\underline{I}^{O P}\right.}, \underline{C}\right] \quad \text { (cf. 3.2.1). }
$$

3.6.1 THEOREM Let \subseteq be a complete model category, W its class of weak equivalences -- then $D_{(\underline{C},(w)}$ is a right homotopy theory.
3.6.2 THEORFM Let C be a cocomplete model category, W its class of weak equivalences -- then $D_{(\underline{C}, w)}$ is a left homotopy theory.
3.6.3 THEOREM Let \subseteq be a complete and cocomplete model category, w its class of weak equivalences -- then $\mathrm{D}_{(\underline{C}, W)}$ is a homotopy theory.
3.6.4 EXAMPLE Using the notation of 0.24 .3 , ner induces an equivalence

$$
\left.\left.\underline{\text { ner: }} \mathrm{D}_{(\mathrm{CAT},}, w_{\infty}\right) \rightarrow \mathrm{D}_{(\text {SISET },}, W_{\infty}\right)
$$

of homotopy theories.
[Note: It is an interesting point of detail that W_{∞} coincides with the class of $D_{\left(\underline{C A T}, w_{\infty}\right)}$-equivalences (cf. B.8.14).]

Let $\underline{C}, \underline{C}^{\prime}$ be complete and cocomplete model categories. Suppose that

$$
\left[\begin{array}{c}
F: \underline{C} \rightarrow \underline{C}^{\prime} \\
F^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}
\end{array}\right.
$$

are a model pair -- then the functors

$$
\left\lvert\, \begin{array}{r}
L F: H C+H C^{\prime} \\
R^{\prime}: \underline{H C}{ }^{\prime} \rightarrow H C
\end{array}\right.
$$

exist and are an adjoint pair.
In general, there are arrows

$$
\left[\begin{array}{l}
{\left[\underline{I}^{O P}, \underline{C}\right] \xrightarrow[F^{\prime}]{F_{*}^{\prime}}\left[\underline{I}^{O P}, \underline{C}^{\prime}\right]} \\
{\left[\underline{I}^{O P}, \underline{C}^{\prime}\right] \longrightarrow\left[\underline{I}^{O P}, \underline{C}\right]}
\end{array}\right.
$$

and these functor categories are complete and cocomplete but there is no claim that they are model categories with weak equivalences

$$
\left[\begin{array}{c}
w_{\mathrm{OP}} \\
\mathrm{I}_{-} \mathrm{I}^{1} \mathrm{OP}
\end{array}\right.
$$

[Note: Recall, however, that they are at least weak model categories (cf. 2.7.5 and 2.7.6).]
3.6.5 THEOREM There exist

$$
\left\{\begin{array}{l}
\underline{F} \in \operatorname{Mor}\left(D{ }_{(\underline{C}, W)},{ }_{\left(\underline{C^{\prime}}, W^{\prime}\right)}\right) \\
\underline{F}^{\prime} \in \operatorname{Mor}\left(D\left(\underline{C}^{\prime}, W^{\prime}\right)^{\prime}(\underline{D},(W))\right.
\end{array}\right.
$$

such that $\forall I$,

$$
\mathrm{F}_{\underline{I}}: \mathrm{D}_{(\underline{C},(w)}^{\underline{I}} \rightarrow \mathrm{D}_{\left(\underline{C^{\prime}}, W^{\prime}\right)} \underline{I}
$$

is the left derived functor of F_{*} and

$$
\left.\underline{I}_{\underline{I}}^{\prime}: D_{(\underline{C}}, w^{\prime}\right)^{\underline{I}} \rightarrow D_{(\underline{C}, w)}^{\underline{I}}
$$

is the right derived functor of F_{*}^{\prime}. Moreover, $\left(F_{I}, F_{\underline{I}}^{\prime}\right)$ is an adjoint pair.
N..B. These results are due to Cisinski ${ }^{\dagger}$.

The assumption that $\underset{\sim}{C}$ is a model category (complete, cocomplete, or both) can be substantially weakened.
3.6.6 THPOREM Let \subseteq be a homotopically complete fibration category, W its class of weak equivalences -- then $\mathrm{D}_{(\underline{C},(w)}$ is a right homotopy theory.
3.6.7 THEOREM Let \subseteq be a homotopically cocomplete cofibration category, w its class of weak equivalences - then $D_{(\underline{C}, w)}$ is a left homotopy theory.
3.6.8 THEOREM Let C be a weak model category, W its class of weak equivalences -then ${ }_{(\underline{C}, W)}$ is a homotopy theory.
N.B. These results are due to Radulescu-Banu ${ }^{\dagger \dagger}$.
† Ann. Math. Blaise Pascal 10 (2003), 195-244.
${ }^{\dagger \dagger}$ arXiv:math/0610009
3.6.9 REMARK All the derivators $D_{(\underline{C},(v)}$ arising above also verify DER - 5 .

Turning to the proofs, we obviously have

$$
\begin{aligned}
& 3.6 .6 \Rightarrow 3.6 .1 \\
& 3.6 .7=>3.6 .2 \\
& 3.6 .8 \Rightarrow 3.6 .3
\end{aligned}
$$

and, of course,

$$
\begin{aligned}
3.6 .1+3.6 .2 & \Rightarrow 3.6 .3 \\
\quad 3.6 .6+3.6 .7 & \Rightarrow 3.6 .8
\end{aligned}
$$

To illustrate the main ideas, we shall consider 3.6.1, the discussion per 3.6 .6 being similar but more ocmplicated.
3.6.10 NOTATION Given a small category I, let A_{M} / \underline{I} be the category whose objects are the pairs (m, u), where $m \geq 0$ is an integer and $u:[m] \rightarrow I$ is a functor, a morphism $(m, u) \rightarrow(n, v)$ being a morphism $f:[m] \rightarrow[n]$ of A_{M} such that the diagram

commutes.
3.6.11 LEMMA The category $A_{\mathrm{N}} / \underline{I}$ is direct.
[Define deg: 0 b ${\underset{\Delta v}{m}}^{N} / \underline{I} \rightarrow \underline{Z}_{\geq 0}$ by $\operatorname{deg}(m, u)=m$.]

Write

$$
{ }^{\tau}{ }_{\underline{I}}: A_{M} / \underline{I} \rightarrow \underline{I}
$$

for the functor that sends (m, u) to $u(m)$.
3.6.12 LEXMA A functor $F: I \rightarrow J$ induces a functor

$$
\Delta_{M} / F: \Delta_{M} / \underline{I} \rightarrow \Delta_{M} / \underline{J}((m, u) \rightarrow(m, F \circ u))
$$

and the diagram

commutes.

Let \mathcal{C} be a complete model category, W its class of weak equivalences. Put

$$
D=D_{(\underline{C}, w} \cdot
$$

3.6.13 LEMMA Given a small category I, the functor

$$
D \tau_{\underline{I}}: D \underline{I} \rightarrow D A_{M} / \underline{I}
$$

is fully faithful and has a right adjoint

$$
D \tau_{\underline{I}+}=D A_{M} / \underline{I} \rightarrow D \underline{I}
$$

[Note: To ground this in reality, take $I=\underline{I}-$ then $A_{A} / \underline{1} \approx A_{A^{*}}$ But A_{M} is D-aspherical, thus the functor

$$
\mathrm{Dp}_{\hat{A}_{\mathrm{M}}}: \mathrm{D} \underline{\rightarrow} \rightarrow \mathrm{~A}_{\mathrm{M}}
$$

is fully faithful (cf. 3.5.5). Since both 1 and A_{M} are direct, the existence of $\mathrm{Dp}_{\mathrm{AM}_{\mathrm{M}}}+$ is automatic ($\mathrm{cf}, 3.6 .17$).]
3.6.14 RAPPEL Suppose that $\underline{\mathcal{C}}$ is a complete model category and let \underline{I} be a direct category -- then [$\left.\underline{I}^{O P}, \mathrm{C}\right]$ in its injective structure is a model category (cf. 0.27.6).

Ad DER - 1: The canonical functor

$$
D\left(\prod_{k=1}^{n} I_{k}\right) \rightarrow \prod_{k=1}^{n} D\left(I_{k}\right)
$$

is bijective on objects, thus it need only be shown that it is fully faithful. To this end, form the commutative diagram

Then the functors
are fully faithful (cf. 3.6.13). On the other hand,

$$
\begin{aligned}
& {\left[\prod_{k=1}^{n}\left(A_{M} / \underline{I}_{k}\right)^{O P}, \underline{C}\right]} \\
& \quad=\prod_{k=1}^{n}\left[\left(A_{M} / I_{k}\right)^{O P}, \underline{C}\right]
\end{aligned}
$$

and $\forall k$,

$$
\left[\left(\mathrm{A}_{\mathrm{N}} / I_{k}\right)^{\mathrm{OP}}, \underline{\mathrm{C}}\right]
$$

is a model category (cf. 3.6.14). Therefore the arrow

$$
\begin{aligned}
& D\left(\prod_{k=1}^{n} A_{M} / \underline{I}_{k}\right)=\underline{H} \prod_{k=1}^{n}\left[\left\langle\Delta_{M} / I_{k}\right)^{O P}, \underline{C}\right] \\
& \longrightarrow \prod_{k=1}^{n} D\left(A_{M} / I_{k}\right)=\prod_{k=1}^{n} \underline{H}^{[}\left[\left(\Delta_{M} / \underline{I}_{k}\right)^{O P}, \underline{C}\right]
\end{aligned}
$$

is an equivalence of categories (cf. 0.1.29).
[Note: Here $\mathrm{DO}=1$.]
3.6.15 LEMMA Let I be a small category, \underline{C} a model category. Suppose that [I,C] admits a model structure in which the weak equivalences are levelwise -- then the

$$
D K_{i}: \underline{H}[\underline{I}, \underline{C}] \rightarrow \underline{H C} \quad(i \in O b I)
$$

constitute a conservative family.
PROOF Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an arrow in $\mathrm{H}[\underline{\mathrm{I}}, \underline{\mathrm{C}}]$. Replacing X by a cofibrant object and Y by a fibrant object, one can assume that f is an arrow in [I,C] (cf. 2.4.2). But then the result is obvious (consider $\mathrm{D}_{[\underline{I}, \underline{C}]}$).

Ad DER - 2: Let I be a small category and let $f \in$ Mor $D I$ be a morphism such that $\forall i \in O B I, X_{i} f$ is an iscorophism in $D \underline{1}$-- then the claim is that f is an isomorphism in DI . Given $(\mathrm{m}, \mathrm{u}) \in \mathrm{Ob} \mathrm{A}_{\mathrm{H}} / \underline{I}$,

$$
\tau_{\underline{I}}^{\circ} \mathrm{K}_{(\mathrm{m}, \mathrm{u})}: \underline{\underline{I}} \rightarrow \underline{\underline{I}}
$$

equals

$$
\mathrm{K}_{\mathrm{U}(\mathrm{~m})}: \underline{1}+\underline{1} .
$$

And so

$$
\begin{aligned}
D K_{(m, u)}{ }^{D \tau_{\underline{I}}} \mathbf{f} & =D\left(\tau_{\underline{I}}{ }^{\left.\circ K_{(m, u)}\right) f}\right. \\
& =D K_{u(m)}
\end{aligned}
$$

is an iscmorphism in D1. But $\left[\left(\mathrm{AM}_{\mathrm{M}} / \mathrm{I}\right)^{\mathrm{OP}}\right.$, C$]$ is a model category (cf. 3.6.14), hence the

$$
D K_{(m, u)}: \underline{H}\left[\left(\Delta_{M} / I\right)^{O P}, C\right] \rightarrow \underline{H C}\left((m, u) \in O b \Delta_{M} / I\right)
$$

constitute a conservative family (cf. 3.6.15). Therefore $\mathrm{Dt}_{\underline{I^{f}}}$ is an iscmorphism in ${ }^{D} A_{M} / I$, thus f is an isomorphism in $D I$ (cf. 3.6.13) ($\mathrm{DT}_{\underline{I}}$ is fully faithful, hence reflects iscmorphisms).
3.6.16 REMARK The generalization of the preceding considerations is embodied in the dual of 2.6 .1 (i.e., with \mathbb{C} a homotopically complete fibration category).
3.6.17 RAPPEL Suppose that $\underline{\mathbb{C}}$ is a complete model category. Let $\underline{I}, \underline{J}$ be direct categories and let $F: \underline{I} \rightarrow \underline{J}$ be a functor. Equip

$$
\left\lvert\, \begin{aligned}
& {\left[\underline{\underline{I}}^{\mathrm{OP}}, \underline{\mathrm{C}}\right]} \\
& {\left[\underline{\mathrm{O}}^{\mathrm{OP}}, \underline{\mathrm{C}}\right]}
\end{aligned}\right.
$$

with their injective structures (cf. 3.6.14) - - then the arrow

$$
\left(\mathrm{F} \mathrm{OP}^{*}: \mathrm{H}\left[\underline{J}^{\mathrm{OP}}, \mathrm{C}\right] \rightarrow \underline{\mathrm{H}}\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \mathrm{C}\right]\right.
$$

has a right adjoint

$$
\mathrm{R}\left(\mathrm{~F}^{\left.\left.\mathrm{OP})_{+}: \underline{\mathrm{H}}\left[\underline{\mathrm{I}}^{\mathrm{OP}}, \underline{\mathrm{C}}\right] \rightarrow \underline{\mathrm{H}}^{[\underline{\mathrm{T}}}{ }^{\mathrm{OP}}, \underline{C}\right] \quad \text { (cf. } 0.26 .17\right) . . .}\right.
$$

[Note: The supposition in this citation that $\underset{\mathbb{C}}{ }$ is combinatorial was made there only to ensure the existence of the injective model structure, thus is not needed here. In terms of the derivator $D_{(}(\underline{C}, \omega)$, we have

$$
\begin{aligned}
& \mathrm{D}_{(\underline{\mathrm{C}}, \omega)} \mathrm{F}=\overline{\left(\mathrm{F}^{\mathrm{OP}}\right)^{*}} \\
& \mathrm{D}_{(\underline{C}, \omega)^{\mathrm{F}}}+\mathrm{R}\left(\mathrm{~F}^{\left.\mathrm{OP})_{+} \cdot\right]}\right.
\end{aligned}
$$

Ad RDER - 3: The claim is that for every functor $F: I \rightarrow$, the functor

$$
\mathrm{DF}: \mathrm{DI} \rightarrow \mathrm{DI}
$$

has a right adjoint

$$
D F_{f}: D \underline{I} \rightarrow D \underline{J} .
$$

Io establish this, form the cormutative diagram

and pass to the square

$$
\begin{aligned}
& { }^{\mathrm{D}} \mathrm{MM}_{\mathrm{M}} / \mathrm{I} \xrightarrow{\mathrm{DA}_{\mathrm{M}^{\prime}} / \mathrm{F}_{\dagger}}{ }^{D \Delta_{M} / \mathrm{J}} \\
& D \tau_{\underline{I}} \uparrow \quad \mid D \tau_{\underline{J}+} \quad \text { (cf. 3.6.13) } \\
& \text { DI > DI , } \\
& \mathrm{DF}_{+}
\end{aligned}
$$

$D F_{+}$being defined as the composition

$$
D \tau_{\underline{I}+} \circ D \Delta_{M} / F_{+} \cdot D \tau_{\underline{I}}
$$

Bearing in mind that $D \tau_{I}$ is fully faithful (cf. 3.6.13), $D F_{+}$is seen to be a right adjoint for DF.

Ad RDER - 4: Let $F: \underline{I} \rightarrow \underline{I}$ be a functor and fix $j \in \infty \underline{J} \rightarrow$ then the claim is that the arrow

$$
\mathrm{DK}_{j} \circ \mathrm{DF}_{\dagger} \rightarrow \mathrm{Dp}_{I} / j \dagger \circ \mathrm{Dpro}_{j}
$$

is a natural isomorphism.
Step 1: Check that the claim holds when I is direct.
Step 2: Take I arbitrary and consider the 2-diagram (cf. 3.3.7)

Then by Step 1,

$$
D K_{j} \circ D\left(F \circ \underline{T}_{\underline{I}}\right)^{\prime} \approx\left(\mathrm{Dp}_{\mathrm{AN}_{\mathrm{N}} / \underline{I} / j}\right)^{\circ} \mathrm{Dpro}_{j}
$$

Step 3: Since the functors $D \tau_{\underline{I}}$ and $D \tau_{\underline{I} / j}$ are fully faithful (cf. 3.6.13), it follows that

$$
\begin{aligned}
D K_{j} \circ D F_{\dagger} & \approx D K_{j} \circ D F_{\dagger} \circ D \tau_{\underline{I} \dagger} \circ D \tau_{\underline{I}} \\
& \approx D K_{j} \circ D\left(F \circ \tau_{\underline{I}}\right)^{\prime} \circ D \tau_{\underline{I}} \\
& \approx\left(D p_{A M / I / j}\right)_{\dagger} \circ D p r o_{j} \circ D \tau_{\underline{I}} \\
& \approx D p_{I / j \dagger} \circ D \tau_{I / j \dagger} \circ D p_{j} \circ D \tau \underline{I} \\
& \approx D p_{\underline{I} / j \dagger} \circ D \tau_{I / j \dagger} \circ D \tau_{I / j} \circ D p r o_{j} \\
& \approx D p_{I / j \dagger} \circ D p r o_{j}
\end{aligned}
$$

as desired.
[Note: The canonical arrow

$$
A_{M} /(I / j) \rightarrow\left(A_{M} / I\right) / j
$$

is an isomorphism and the diagram

commutes.]
3.6.18 EXAMPLE Let \underline{C} be a complete model category, W its class of weak equivalences - then ${ }_{(\underline{C},(W)}$ is a right homotopy theory (cf. 3.6.1). Given $F: \underline{I} \rightarrow \underline{J}$, write

$$
\left[\begin{array}{l}
\text { holim }_{\underline{I}} \text { in place of } D_{(\underline{C},(w)} p_{\underline{I} \dagger} \\
\text { holim }_{\mathcal{J}^{O P}} \text { in place of } D_{(\underline{C},(w)} p_{\underline{I}+} .
\end{array}\right.
$$

Then F is a $D_{(\underline{C},(w)}$ equivalence iff $\forall X \in O B \subseteq(=O b \underline{H C})$, the arrow

$$
\operatorname{holim}_{\mathcal{J}^{\circ}} \mathrm{X} \rightarrow \operatorname{In}_{\underline{I}}^{\mathrm{OP}^{X}}
$$

is an iscmorphism, there being an abuse of notation in that

3.7 UNIVERSAL PROPERTIES

Given categories \underline{C} and \underline{D}, write [$\underline{C}, \underline{D}$] for the full subcategory of $[\underline{C}, \underline{D}$] whose objects are the $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ that preserve colimits.
3.7.1 RAPPEL Suppose that \underline{C} is small and \underline{S} is cocomplete -- then precomposition with $\mathrm{Y}_{\underline{C}}: \underline{C} \rightarrow \hat{\mathrm{C}}$ induces an equivalence

$$
[\hat{\mathrm{c}}, \underline{\mathrm{~s}}]!\rightarrow[\underline{\mathrm{c}}, \underline{\mathrm{~s}}]
$$

of categories.
3.7.2 EXAMPLE Take $\underline{\mathrm{C}}=\underline{1}-$ then $\hat{\tilde{1}} \approx \underline{\mathrm{SET}}$ and there is an equivalence

$$
[\underline{S E T}, \underline{S}]!\rightarrow \underline{S}(F \rightarrow F\{*\})
$$

hence in particular there is an equivalence

$$
[\mathrm{SET}, \mathrm{SETP}] \rightarrow \operatorname{SET}(\mathrm{F} \rightarrow \mathrm{~F}\{\star\})
$$

under which $\mathrm{id}_{\underline{\text { SET }}}$ corresponds to a final object in SET.

Let D, D^{\prime} be homotopy theories and let $\Phi \in \operatorname{Mor}\left(D, D^{\prime}\right)--$ then given $F: I \rightarrow \underline{J}$, there is a square

and a canonical arrow

$$
D^{\prime} F_{!} \circ \Phi_{\underline{I}} \rightarrow \Phi_{\underline{J}} \circ D F_{!}
$$

3.7.3 NOIAITON Write $H_{M}\left(D, D^{\prime}\right)$ for the full submetacategory of HOM(D, D^{\prime}) whose objects are the Φ such that the arrow

$$
D^{\prime} F_{!} \circ \Phi_{\underline{I}} \rightarrow \Phi_{\underline{\mathbf{J}}}{ }^{\circ} \mathrm{DF}_{!}
$$

is an isamorphisn $\forall F: \underline{I} \rightarrow \underline{J}$.

Let I be a small category -- then there is a canonical arrow

Here

$$
\text { SPREI }=\left[\underline{I}^{\mathcal{O P}} \text {,SISET }\right],
$$

which we shall endow with its projective structure (cf. 0.26.6). Let $H 0 T_{I}$ be the hormotopy theory arising therefrom.
3.7.4 THEOREM The functor sY_{I} induces a morphism

$$
\mathrm{D}_{\underline{I}}+H 0 T_{\underline{I}}
$$

of derivators and for every homotopy theory D, there is an equivalence

$$
\underline{H C M}_{l}\left(\mathrm{HOT}_{I^{\prime}} \mathrm{D}\right) \rightarrow{\underline{\mathrm{HOM}}\left(\mathrm{D}_{\underline{I}}, \mathrm{D}\right)}
$$

of metacategories.
3.7.5 EXAMPLE Take $\underline{I}=\underline{1}$ and let $H O T=H O T_{1}$, thus

$$
H 0 T=D_{\left(\underline{\text { SISET }}, W_{\infty}\right)}
$$

Then for every homotopy theory D, there is an equivalence

$$
\underline{H O M}_{1}(H O T, D) \rightarrow D \underline{1}\left(\Phi \rightarrow \Phi_{\underline{1}} \Delta[0]\right)
$$

of metacategories (cf. 3.2.15). Accondingly, choosing $D=H O T$, it follows that up to equivalence,

$$
\mathrm{HOM}_{1}(\mathrm{HOT}, \mathrm{HOT})
$$

"is"

$$
\text { HOT } \underline{1}=W_{\infty}^{-1} \text { SISET }=\text { HSISET. }
$$

Let D be a homotopy theory and let $C \in$ Mor Dl be a class of morphisms.
3.7.6 DEFINITION A homotopical localization of D at C is a pair ($L_{\mathcal{C}} D, L_{\mathcal{C}}$), where $L_{C} D$ is a homotopy theory and

$$
L_{C}: D \rightarrow L_{C} D
$$

is an object in HOM! $\left(D, L_{C} D\right)$ such that the functor

$$
L_{C \underline{1}}: D \underline{1} \rightarrow L_{C} D
$$

sends the elements of C to isomorphisms in $L_{C} O 1$ and is miversal w.r.t. this condition: For every homotopy theory D^{\prime}, the arrow

$$
\mathrm{HOM}_{!}\left(\mathrm{L}_{\mathcal{C}^{\mathrm{D}}, \mathrm{D}^{\prime}}\right) \rightarrow \mathrm{HOM}_{!}, \mathrm{C}^{\left(D, D^{\prime}\right)}
$$

induced by L_{C} is an equivalence of metacategories, the symbol on the RHS standing for the full submetacategory of HOM $\left(D, D^{\prime}\right)$ whose objects Φ have the property that the functor

$$
\Phi_{\underline{1}}: D \underline{1} \rightarrow D^{\prime} \underline{1}
$$

sends the elements of C to isomorphisms in D'l.
3.7.7 THEOREM † Let $\subseteq \underline{C}$ be a left proper combinatorial model category, $c \subset$ Mor \mathbb{C} a set. Form the model localization ($\underline{L}_{C} \underline{C}^{\prime} L_{\mathcal{C}}$) of \underline{C} at C per 0.33 .5 - then $L_{C}: \underline{C} \rightarrow \underline{L}_{C} \underline{C}$ induces a morphism

$$
D_{(\underline{C}, w)} \rightarrow D_{\left(\underline{L}_{C} \underline{C}, w_{C}\right)}
$$

of homotopy theories which is a homotopical localization of $\mathcal{D}_{(\mathrm{C}, \mathrm{W})}$ at $\mathrm{I}_{W} \mathrm{C}$ (the

[Note: Therefore

$$
\mathrm{L}_{\mathrm{L}_{W}} \mathrm{C}_{(\underline{\mathrm{C}}, \omega)}=\mathrm{D}_{\left(\underline{\underline{L}}_{C} \underline{C}, \omega_{C}\right)} \cdot{ }^{1}
$$

3.7.8 REMARK The homotopy theories that are equivalent to the $D_{(C, W)}$, where C is a left proper combinatorial model category, are the homotopical localizations of the $\mathrm{HOT}_{\mathrm{I}}$ for some small category I (cf. 0.33.7).
4.1 SISET ENRICHMENTS
4.2 MISCELLANEOUS EXAMPLES
4.3 S-CAT
4.4 SIMPLICIAL ACTIONS
4.5 SMC
4.6 SIC
4.7 SIMPLICIAL DIAGRAM CATEGORIES
4.8 REALIZATION AND TOTALIZATION
4.9 HOMOTOPICAL ALGEBRA

CHAPTER 4: SIMPLICIAL MODEL CATEGORIES

4.1 SISET ENRICHMENTS

What follows is a review of the terminology employed in enriched category theory specialized to the case when the underlying symmetric monoidal category is SISET.
4.1.1 DEPINITION An S-category in consists of a class O (the objects) and a function that assigns to each ordered pair $X, Y \in O$ a simplicial set $H O M(X, Y)$ plus simplicial maps

$$
\mathrm{C}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}: \operatorname{HOM}(\mathrm{X}, \mathrm{Y}) \times \operatorname{HOM}(\mathrm{Y}, \mathrm{Z}) \rightarrow \operatorname{HOM}(\mathrm{X}, \mathrm{Z})
$$

and

$$
I_{X}: \Delta[0] \rightarrow H O M(X, X)
$$

satisfying the following conditions.
(S-1) The diagram

commutes.
(S-2) The diagram

commutes.

The underlying category un of an S-category mas for its class of objects the class O, $\operatorname{Mor}(X, Y)$ being the set $\operatorname{Nat}(\triangle[0], \operatorname{HOM}(X, Y))\left(=H O M(X, Y){ }_{0}\right)$. Composition

$$
\operatorname{Mor}(\mathrm{X}, \mathrm{Y}) \times \operatorname{Mor}(\mathrm{Y}, \mathrm{Z}) \rightarrow \operatorname{Mor}(\mathrm{X}, \mathrm{Z})
$$

is calculated from

$$
\Delta[0] \approx \Delta[0] \times \Delta[0] \xrightarrow{\mathrm{f} \times \mathrm{g}} \mathrm{HOM}(\mathrm{X}, \mathrm{Y}) \times \operatorname{HOM}(\mathrm{Y}, \mathrm{Z}) \rightarrow \operatorname{HOM}(\mathrm{X}, \mathrm{Z}),
$$

while I_{X} serves as the identity in $\operatorname{Mor}(X, X)$.
4.1.2 EXAMPLE Every category \mathbb{C} can be regarded as an S-category: Replace Mor (X,Y) by

$$
\operatorname{HOM}(X, Y) \equiv \operatorname{si} \operatorname{Mbr}(X, Y) .
$$

The associated underlying category is then isomorphic to C . In fact,

$$
\begin{aligned}
& \operatorname{Nat}(\Delta[0], \text { si } \operatorname{Mor}(X, Y)) \\
& \quad \approx \operatorname{si} \operatorname{Mor}(X, Y)_{0}=\operatorname{Mor}(X, Y) .
\end{aligned}
$$

4.1.3 LEMMA Fix a class 0 . Consider the metacategory cAd $_{O}$ whose objects are the categories with object class 0 , the morphisms being the functors which are the identity on objects -- then the S-categories with object class O can be identified
with the simplicial objects in CAI ${ }_{0}$.
[An S-category Il gives rise to a simplicial object $\underline{M}: \Delta^{O P} \rightarrow \mathbb{C A E}_{\mathrm{O}}$ via $[n] \rightarrow M_{n}$, where for $X, Y \in O b M_{n}=0, \operatorname{Mor}_{M_{-n}}(X, Y)=H C M(X, Y){ }_{n}$. Conversely, a simplicial object $M: \Delta^{O P} \rightarrow$ CAX $_{O}$ determines an S-category in for $X, Y \in O$,

$$
\left.H O M(X, Y)_{n}=\left\{f \in \operatorname{Mor} M_{\mathrm{n}}: d o m f=X \& \operatorname{cod} f=Y\right\} .\right]
$$

N.B. An object of [$\underline{\mathrm{OP}}^{\mathrm{OP}}$,CAT] corresponds to an S-category iff its underlying simplicial set of objects is a constant simplicial set, say si 0 for some set 0 .
4.1.4 CONSTRUCIION Suppose that III is an S-category with object class 0 -- then its opposite m^{OP} is the S -category defined by

- $0^{\mathrm{OP}}=0$;
- $\operatorname{HOM}^{O P}(\mathrm{X}, \mathrm{Y})=\operatorname{HOM}(\mathrm{Y}, \mathrm{X})$;
- $C_{X, Y, Z}^{O P}=C_{Z, Y, X}{ }^{\circ}{ }^{\top} \operatorname{HOM}(Y, X), \operatorname{HOM}(Z, Y) ;$
- $I_{X}^{O P}=I_{X}$.
4.1.5 CONSTRUCTION Suppose that III and II' are S-categories with object classes 0 and $O^{\prime}-$ then their product $\pi \times M$ is the S-category with object class $0 \times O^{\prime}$ and

$$
\operatorname{HOM}\left(\left(X, X^{\prime}\right),\left(Y, Y^{\prime}\right)\right)=\operatorname{HOM}(X, Y) \times \operatorname{HOM}\left(X^{\prime}, Y^{\prime}\right) .
$$

[Note: The definitions of

$$
C_{\left(X, X^{\prime}\right),\left(Y, Y^{\prime}\right),\left(Z, Z^{\prime}\right)} \text { and } I_{\left(X, X^{\prime}\right)}
$$

are "what they have to be".]
4.1.6 DEFINITION Suppose that III and m^{\prime} are S-categories with object classes O and $O^{\prime}-$ then an S-functor $F: M I I A^{\prime \prime}$ is the specification of a rule that assigns to each object $X \in O$ an object $F X \in O^{\prime}$ and the specification of a rule that assigns to each ordered pair $X, Y \in O$ a morphism

$$
\mathrm{F}_{\mathrm{X}, \mathrm{Y}}: \operatorname{HOM}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{HOM}(\mathrm{FX}, \mathrm{FY})
$$

of sinplicial sets such that the diagram

conmates and the equality $\mathrm{F}_{\mathrm{X}, \mathrm{X}} \circ \mathrm{I}_{\mathrm{X}}=\mathrm{I}_{\mathrm{FX}}$ obtains.
[Note: The underlying functor UF:UM \rightarrow UAl' sends X to $F X$ and $f: \Delta[0] \rightarrow H O M(X, Y)$ to $\left.\mathrm{F}_{\mathrm{X}, \mathrm{Y}} \circ \mathrm{f}_{\mathrm{l}}\right]$
4.1.7 EXAMPLE For any S-category m ,

$$
\text { HOM: } \mathrm{il}^{\mathrm{OP}} \times \mathrm{nl} \rightarrow \underline{\text { SISET }}
$$

is an 5 -functor.
N.B. The opposite of an S-functor $\mathrm{F}: \mathrm{Hi}^{\prime} \rightarrow \mathrm{nll}^{\prime}$ is an S-functor $\mathrm{F}^{\mathrm{OP}}: \mathrm{ml}^{\mathrm{OP}} \rightarrow \mathrm{Hl}^{\prime} \mathrm{OP}$.
4.1.8 NOTATION Let S-CAT denote the metacategory whose objects are the S-categories and whose morphisms are the S-functors between them.
4.1.9 DEFINITION Suppose that m, I^{\prime} are S-categories and $F, G: M^{\prime} \rightarrow M^{\prime}$ are

S-functors - then an S-natural transformation E from F to G is a collection of simplicial maps

$$
E_{X}: \triangle[0] \rightarrow \operatorname{HOM}(\mathrm{FX}, \mathrm{GX})
$$

for which the diagram

commutes.
[Note: Take ill $^{\prime}=$ SISET (viewed as an S-category per 4.2.1) - then here an S-natural transformation Ξ fram F to G is a collection of simplicial maps

$$
\Xi_{X}: F X+G X
$$

rendering the diagram

commatative.]

S-functors $m \rightarrow M^{\prime}$ and given S-functors $F, G: M \rightarrow M^{\prime}$, let $\mathrm{Nat}_{S}(F, G)$ stand for the S-natural transformations Ξ from F to $G--$ then by $[m, m ']_{S}$ we shall understand the metacategory whose objects are the elements of $\mathrm{Mor}_{\mathrm{S}}\left(\mathrm{m}^{\prime} \mathrm{m}^{1}\right)$ and whose morphisms are the S-natural transformations.

4.2 MISCELLANEOUS EXAMPLES

One way to produce S-categories is to start with a category \mathbb{C} and then introduce

$$
\operatorname{HCM}(X, Y), C_{X, Y}, Z^{\prime} \text { and } I_{X^{\prime}}
$$

subject to S-1 and S-2. In some situations, the underlying category is isomorphic to \underline{C} itself but this need not be the case in general (cf. 4.2 .5 infra).
4.2.1 EXAMPLE SISET is an S-category if

$$
\operatorname{HOM}(X, Y=\operatorname{map}(X, Y) .
$$

The associated underlying category is then isomorphic to SISET. In fact,

$$
\begin{aligned}
\operatorname{Nat}(\triangle[0], \operatorname{HOM}(X, Y)) & \approx \operatorname{Nat}(\Delta[0], \operatorname{map}(X, Y)) \\
& \approx \operatorname{map}(X, Y)_{0} \\
& \approx \operatorname{Nat}(X, Y) .
\end{aligned}
$$

4.2.2 EXAMPLE CAT is an S-category if

$$
\operatorname{HOM}(\underline{I}, \underline{J})=\operatorname{ner}[\underline{\underline{I}}, \underline{\mathrm{I}}]
$$

Here $\mathrm{C}_{\underline{\underline{I}}, \underline{J}, \underline{K}}$ is the composition

$$
\begin{aligned}
& \operatorname{ner}[\underline{I}, \underline{J}] \times \operatorname{ner}[\underline{U}, \underline{K}] \\
\approx & \operatorname{ner}([\underline{I}, \underline{J}] \times[\underline{J}, \underline{K}]) \rightarrow \operatorname{ner}[\underline{I}, \underline{K}]
\end{aligned}
$$

and

$$
\mathrm{I}_{\underline{I}}: \Delta[0] \rightarrow \operatorname{ner}[\underline{\mathrm{I}}, \mathrm{I}]
$$

is the result of applying ner to the canonical arrow $[0] \rightarrow[\underline{I}, \underline{I}]\left(0 \rightarrow i d_{\underline{I}}\right)$.
[Note: We have

$$
\begin{aligned}
& \operatorname{Nat}(\Delta[0], \operatorname{ner}[\underline{I}, \underline{J}]) \approx \operatorname{Nat}(\operatorname{ner}[0], \operatorname{ner}[\underline{I}, \underline{J}]) \\
& \quad \approx \operatorname{Mor}([0],[\underline{I}, \underline{J}]) \\
& \quad \approx \operatorname{Ob}[\underline{I}, \underline{J}] \approx \operatorname{Mor}(\underline{I}, \underline{J}) .
\end{aligned}
$$

Therefore the associated underlying category is isomorphic to CAT.]
4.2.3 EXAMPLE CGH is an S -category if $\mathrm{HOM}(\mathrm{X}, \mathrm{Y})$ is the simplicial set which at level n is given by

$$
\operatorname{HOM}(X, Y)_{n}=C\left(X \times_{k} \Delta^{n}, Y\right) \quad(n \geq 0) .
$$

The associated underlying category is then iscmorphic to GGH. In fact,

$$
\begin{aligned}
& \operatorname{Nat}(\Delta[0], \operatorname{HOM}(X, Y)) \\
& \quad \approx \operatorname{HOM}(X, Y) 0 \\
& \quad \approx C\left(X \times_{K} \Delta[0], Y\right) \\
& \quad \approx C(X, Y) .
\end{aligned}
$$

4.2.4 REMARK Let \mathbb{C} be a category with finite products. Suppose that $\Gamma: \Delta \rightarrow C$ is a cosimplicial object such that $\Gamma([0])$ is a final object in \mathbb{C}-- then the prescription

$$
\operatorname{HOM}(X, Y)_{n}=\operatorname{Mor}(X \times \Gamma([n]), Y) \quad(n \geq 0)
$$

equips \underline{C} with the structure of an S-category whose underlying category is iscmonphic to C .
[Note:

- Take $\underline{C}=\underline{\text { SISET }}$ and let $\Gamma([n])=\Delta[n]$ to recover 4.2.1.
- Take $\underline{C}=\underline{\text { CAT }}$ and let $\Gamma([n])=[n]$ to recover 4.2.2.
$[\forall n \geq 0$,

$$
\left.\operatorname{Mor}(\underline{I} \times[n], \underline{J}) \approx \operatorname{Mor}([n],[\underline{I}, \underline{J}]) \approx \operatorname{ner}_{n}[\underline{I}, \underline{J}] .\right]
$$

- Take $\underline{C}=\underline{C G H}$ and let $\Gamma([n])=\Delta^{n}$ to recover 4.2.3.]
4.2.4 EXAMPLE Define a functor $\Delta^{O P} \rightarrow$ SISET by sending $[n]$ to $\Delta[1]^{n}$ and

$$
\begin{aligned}
& s_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(\alpha_{1}, \ldots, \alpha_{i}, 0, \alpha_{i+1}, \ldots, \alpha_{n}\right) .
\end{aligned}
$$

Now fix a small category C. Given $X, Y \in O b \underset{C}{ }$, let $C=C(X, Y)$ be the cosimplicial set specified by taking for $C(X, Y)^{n}$ the set of all functors $F:[n+1] \rightarrow \underline{C}$ with $\mathrm{F}_{0}=\mathrm{X}, \mathrm{F}_{\mathrm{n}+\mathrm{l}}=\mathrm{Y}$ and letting

$$
\left.\right|_{-} \quad \delta_{i}: c^{n} \rightarrow c^{n+1}, ~ c \sigma_{i}: c^{n}+c^{n-1}
$$

be the assigmnents

$$
\left[\begin{array}{l}
\left(f_{0}, \ldots, f_{n}\right) \rightarrow\left(f_{0}, \ldots, f_{i-1}, i d, f_{i}, \ldots, f_{n}\right) \\
\left(f_{0}, \ldots, f_{n}\right) \rightarrow\left(f_{0}, \ldots, f_{i+1} \circ f_{i}, \ldots, f_{n}\right)
\end{array}\right.
$$

Put

$$
\operatorname{HOM}(X, Y)=f^{[n]} \Delta[I]^{n} \times C(X, Y)^{n} .
$$

Since

$$
\operatorname{HOM}(\mathrm{X}, \mathrm{Y})_{\mathrm{m}}=\delta^{[\mathrm{n}]} \Delta[\mathrm{l}]_{\mathrm{m}}^{\mathrm{n}} \times \mathrm{C}(\mathrm{X}, \mathrm{y})^{\mathrm{n}},
$$

one can introduce a "composition" rule and a "unit" rule satisfying the axiams. The upshot, therefore, is an S-category fRe with $0=0 \mathrm{~b}$.
[Note: The underlying category UFRE is the free category on Ob \underline{C} having one generator for each nonidentity morphism in C.]

4.3 S-CAT

An S-category is small if its class of objects is a set.
4.3.1 NOTATION Let S-CAT denote the category whose objects are the small S-categories and whose morphisms are the S-functors between them.
N.B. Typically, elements of S-CAT are denoted by $\mathfrak{I}, \mathfrak{J}, K, \ldots$ and their object sets by $|\mathcal{I}|,|\mathcal{J}|,|K|, \ldots$.
4.3.2 THEOREM $^{\dagger} \mathrm{S}^{\text {S-CAT }}$ is complete and cocomplete.
4.3.3 THEOREM $^{\dagger \dagger}$ S-CAT $^{\text {- }}$ is presentable.
4.3.4 LEMMA S-CAT is a symmetric monoidal category (cf. 4.1.5).

Suppose that I is a small S-category and π is an arbitrary S-category -- then

```
\(\dagger\) Wolff, J. Pure Appl. Algebra \(\underline{4}\) (1974), 123-135.
\({ }^{\dagger \dagger}\) Kelly-Lack, Theory Appl. Categ. 8 (2001), 555-575.
```

$\operatorname{Mor}_{\mathrm{S}}(\mathrm{I}, \mathrm{M})$ is the object class of an S-category

$$
S[I, I I] .
$$

Proof: Given S-functors $F, G: I \rightarrow M$, let $\operatorname{HOM}(F, G)$ be the equalizer

$$
\operatorname{HOM}(F, G) \longrightarrow \prod_{i \in|I|} \operatorname{HOM}(F i, G i) \longrightarrow \prod_{i, j \in|I|} \operatorname{map}(\operatorname{HOM}(i, j), \operatorname{HOM}(F i, G j))
$$

in SISET.
[Note: There is an S-functor

$$
\mathrm{E}: S[\mathrm{I}, \mathrm{M}] \times \mathrm{I} \rightarrow \mathrm{Il}
$$

called evaluation.]
N.B. The underlying category

$$
\mathrm{US}[\mathrm{I}, \mathrm{II}]
$$

is isomorphic to $[\mathcal{I}, \mathrm{It}]$.
4.3.5 LEMMA If

$$
F: I \rightarrow \text { SISET }
$$

or if

$$
\mathrm{F}: \mathrm{I}^{\mathrm{OP}} \rightarrow \text { SISET },
$$

then in SISET,

$$
\operatorname{HOM}(H O M(i,-), F) \approx F i
$$

or

$$
\operatorname{HOM}(\operatorname{HOM}(-, i), F) \approx \mathrm{Fi} .
$$

[This is the "enriched" Yoneda lemma.]
4.3.6 LLPMMA Let $\operatorname{I}, \mathfrak{J}, \mathrm{K}$ be small S-categories -- then

$$
\operatorname{Mor}_{S}(I \times J, K) \approx \operatorname{Mor}_{S}(I, S[J, K])
$$

4.3.7 SCHOLIUM S-CAT is cartesian closed.

It is also true that S-CAT is an S-category.
4.3.8 OONSTRUUCTION Let I be a small S-category. Given $n \geq 0$, define a small

S-category $\mathfrak{I}^{(\mathrm{n})}$ by stipulating that $\left|\mathfrak{I}^{(\mathrm{n})}\right|=|\mathcal{I}|$ and

$$
\operatorname{HOM}^{(n)}(i, j)=\operatorname{map}(\Delta[n], \operatorname{HOM}(i, j)) .
$$

Then

$$
\begin{aligned}
& \operatorname{map}(\Delta[0], \operatorname{HOM}(i, j))([n]) \\
& \approx \operatorname{Nat}(\Delta[0] \times \Delta[n], \operatorname{HOM}(i, j)) \\
& \approx \operatorname{Nat}(\Delta[n], \operatorname{HOM}(i, j)) \\
& \approx \operatorname{HOM}(i, j)_{n} \\
& \Rightarrow \quad \\
& \quad \mathfrak{I}^{(0)} \approx \mathfrak{I} .
\end{aligned}
$$

And there are canonical arrows

$$
I \longrightarrow I^{(n)} \quad(\Delta[n] \longrightarrow \Delta[0])
$$

$$
\mathfrak{I}^{(n)(n)} \longrightarrow \mathfrak{I}^{(n)}(\Delta[n] \xrightarrow{\text { dia }} \Delta[n] \times \Delta[n])
$$

Suppose now that I and \mathfrak{I} are small S-categories -- then the prescription

$$
\operatorname{HOM}(I, J){ }_{n}=\operatorname{Mor}_{S}\left(I, J^{(n)}\right) \quad(n \geq 0)
$$

defines a simplicial set $\operatorname{HOM}(1, \mathfrak{J})$.
4.3.9 IEMMA Under the preceding operations, S-CAT is an S-category.
[To define

$$
C_{I, J, K}: \operatorname{HCM}(I, J) \times \operatorname{HOM}(J, K) \rightarrow \operatorname{HOM}(I, K),
$$

consider

$$
\operatorname{Mor}_{S}(\mathfrak{I}, \mathfrak{J}(\mathrm{n})) \times \operatorname{Mor}_{S}\left(\mathcal{J}, K^{(n)}\right)
$$

Then one arrives at

$$
\operatorname{Mor}_{S}\left(I, K^{(n)}\right)
$$

via the diagram

Every small category C can be regarded as a small S-category (cf. 4.1.2) and this association defines a functor

$$
{ }^{\mathrm{l}}:=\mathrm{CAT} \rightarrow \mathrm{~S}-\mathrm{CAT} .
$$

4.3.10 LEMMA The functor ${ }^{1} \mathrm{~S}$ has a right adjoint S -CAT \rightarrow CAT, viz. the rule that sends a given $I \in O D S$ S-CAT to its underlying category UI.
4.3.11 REMARK Given a small category \subseteq and an S-category Im , there is an isomorphism

$$
[\mathrm{C}, \mathrm{Un}] \longleftrightarrow\left[{ }_{\mathrm{l}} \mathrm{~S}, \mathrm{Cm} \mathrm{~S}\right.
$$

of categories.
4.3.12 LEMMA The functor ${ }^{1} \mathrm{~S}$ has a left adjoint, viz. the rule that sends a given $I \in O B S$-CAT to the category $\pi_{0} I$ whose objects are those of I with

$$
\operatorname{Mor}(i, j)=\pi_{0}(\operatorname{HOM}(i, j)) \quad(i, j \in|I|)
$$

4.3.13 DEFINITION Let $\mathfrak{X}, \mathfrak{J}$ be small S -categories, $\mathrm{F}: \mathcal{I} \rightarrow \mathfrak{J}$ an S -functor then F is a DK-equivalence if $\forall i, j \in|x|$, the simplicial map

$$
F_{i, j}: \operatorname{HOM}(i, j) \rightarrow \operatorname{HOM}(F i, F j)
$$

is a simplicial weak equivalence and

$$
\pi_{0} F: \pi_{0} \mathfrak{I} \rightarrow \pi_{0} \mathfrak{J}
$$

is surjective on isomorphism classes.
4.3.14 EXAMPLE Let $\underline{C}, \underline{D}$ be small categories -- then the DK-equivalences ${ }^{1} S \mathbb{C} \rightarrow{ }^{1} S \underline{D}$ are in a one-to-one correspondence with the equivalences $\underline{C} \rightarrow \underline{D}$.
[If X is a set, then the geonetric realization of si X is X equipped with the discrete topology. And if A,B are topological spaces, each with the discrete topology, and if $\phi: A \rightarrow B$ is a homotopy equivalence, then ϕ is bijective.]
4.3.15 DEFINITION Let \mathcal{I}, \mathcal{J} be small S-categories, $F: \mathcal{I} \rightarrow \mathfrak{J}$ an S-functor -- then F is a DK-fibration if $\forall i, j \in|\mathcal{I}|$, the simplicial map

$$
F_{i, j}: H O M(i, j) \rightarrow H O M(F i, F j)
$$

is a fibration in SISET (Kan Structure) and

$$
\pi_{0} F: \pi_{0} I \rightarrow \pi_{0} \mathfrak{J}
$$

is a fibration in CAT (Internal Structure).
4.3.16 THEOREM ${ }^{\dagger}$ S-CAT admits a cofibrantly generated model structure in which the weak equivalences are the DK-equivalences and the fibrations are the DK-fibrations.
\dagger Bergner, Trans. Amer. Math. Soc. 359 (2007), 2043-2058; see also Lurie, Annals of Math. Studies 170 (2009), 852-863.
[Note: We shall refer to this model structure as the Bergner structure (which is therefore combinatorial (cf. 4.3.3)).]

Here are some additional facts.

- If $\mathrm{F}: \mathcal{I} \rightarrow \mathfrak{J}$ is a cofibration in the Bergner structure, then $\forall i, j \in|\mathcal{I}|$,

$$
F_{i, j}: \operatorname{HOM}(i, j) \rightarrow \operatorname{HOM}(F i, F j)
$$

is an injective simplicial map, thus is a cofibration in SISET (Kan Structure).

- The Bergner structure is proper (Bergner proved right proper and Lurie proved left proper).
- A small S-category I is fibrant in the Bergner structure iff $\forall i, j \in|I|$, HOM(i, j) is a Kan complex, thus is fibrant in SISET (Kan Structure).

It is also possible to explicate the generating sets $\left.\right|_{-} ^{-} I$, matters being simplest for I.
4.3.17 NOTATION Given a simplicial set X, let Σ_{X} be the small S-category with two objects a, b and

$$
\left\{\begin{aligned}
-\operatorname{HOM}(a, a)=\Delta[0] & \operatorname{HOM}(a, b)=X \\
\operatorname{HOM}(b, b)=\Delta[0], & \operatorname{HOM}(b, a)=\dot{\Delta}[0]
\end{aligned}\right.
$$

4.3.18 NOTATION Iet $[0] S$ be the small S-category with one object x and $\operatorname{HOM}(x, x)=\Delta[0]$.

One can then take for I the arrows $\Sigma_{\dot{\Delta}[n]} \rightarrow \Sigma_{\Delta[n]}(n \geq 0)$ plus the arrow $\emptyset \rightarrow[0]_{S}$ (\emptyset the small S-category with no objects).
[Note: The arrows $\Sigma_{\Lambda[k, n]} \rightarrow \Sigma_{\Delta I n]}(0 \leq k \leq n, n \geq 1)$ are part of J but the full description requires more input.]
4.3.19 DEFINTTICN Let

$$
\varepsilon: \underline{\triangle} \rightarrow S-\mathrm{CAT}
$$

be the functor that sends $[\mathrm{n}]$ to the small S -category whose objects are those of [n] and with

$$
\operatorname{HOM}(i, j)= \begin{cases}\Delta[1]^{j-i-1} & (j>i) \\ \Delta[0] & (j=i) \\ \Delta[0] & (j<i) .\end{cases}
$$

[Note: Let $P_{i, j}$ be the poset of all subsets of $\{i, i+1, \ldots, j\}$ containing i and j (ordered by inclusion) - then the nerve of $P_{i, j}$ is isomorphic to $(\Delta[1])^{j-i-1}$ if $j>i, \Delta[0]$ if $j=i$, and $\dot{\Delta}[0]$ if $j<i$. Composition is defined using the pairings

$$
P_{i, j} \times P_{j, k} \rightarrow P_{i, k}
$$

given by taking unions.]

Bearing in mind that $S-C A T$ is, in particular, cocomplete (cf. 4.3.2), pass from

$$
c \in \mathrm{Ob}[\underline{\triangle}, \mathrm{~S}-\mathrm{CAT}]
$$

to the realization functor

$$
r_{c} \in O b[\underline{\Delta}, S-\underline{C A T}]
$$

thus

$$
\Gamma_{c} X=f^{[n]} X_{n} \cdot c[n]
$$

and

$$
\left|r_{c^{x}}\right|=x_{0} .
$$

4.3.20 LEMMA Let $f: X \rightarrow Y$ be a simplicial map -- then f is a categorical weak equivalence iff $\Gamma_{C^{f}}: \Gamma_{C}^{X} \rightarrow \Gamma_{c} Y$ is a $D K$-equivalence.

Denote the singular functor $\sin _{C}$ by ner ${ }_{S}$, so

$$
\text { ner }_{S}: S-\text { CAT } \rightarrow \text { SISET }
$$

and

$$
\operatorname{ner}_{S} \mathrm{I}([n])=\operatorname{Mor}_{S}(\mathbb{C}[n], I)
$$

4.3.21 REMARK There is no a priori connection between ner S^{I} and ner UI. On the other hand, for any small category C ,

$$
\text { ner } \mathrm{C} \approx \operatorname{ner}_{S}{ }_{S} \mathrm{C} .
$$

4.3.22 THEOREM Consider the setup

Then (Γ_{C}, ner $_{S}$) is a model equivalence, thus the adjoint pair ($L_{C}, \operatorname{Rner}_{S}$) is an
adjoint equivalence of homotopy categories:

[Note: Compare this assertion with that of 0.22.5.]
4.3.23 REMARK It is not difficult to see that $\Gamma_{\boldsymbol{c}}$ preserves cofibrations. Accordingly, in view of 4.3.20, ($\Gamma^{\prime}{ }^{\text {ner }}{ }_{S}$) is at least a model pair. However, the verification that ($\Gamma_{e^{\prime}}$ ner $_{S}$) is actually a model equivalence lies deeper (complete details can be found in Dugger-Spivak ${ }^{\dagger}$).

4.4 SIMPLICIAL ACTIONS

4.4.1 RAPPEL Given a category $\underline{C}, \underline{S I C}$ is the functor category $[\underline{\triangle P}, \underline{C}]$ and a simplicial object in \underline{C} is an object in SIC.
4.4.2 DEFINITION Let \underline{C} be a category. Suppose that X, Y are simplicial objects in C and let K be a simplicial set - then a formality $\mathrm{f}:\left.\mathrm{X}\right|^{-} \mid \mathrm{K} \rightarrow \mathrm{Y}$ is a collection of morphisns $f_{n}(k): X_{n} \rightarrow Y_{n}$ in $\underset{C}{ }$, one for each $n \geq 0$ and $k \in K_{n}$, such that

$$
Y_{\alpha} \circ f_{n}(k)=f_{m}((k \alpha) k) \circ X \alpha
$$

where $\alpha:[\mathrm{m}] \rightarrow[\mathrm{n}]$.
4.4.3 NOTATION Let

$$
\operatorname{For}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Y}\right)
$$

be the set of formalities $\mathrm{f}:\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K} \rightarrow \mathrm{Y}$.
[Note: As it stands, $\left.x\right|^{-} \mid K$ is just a symbol, not an object in SIC (but see below).]
4.4.4 EXAMPLE For $\left(\left.X\right|_{-} ^{-} \mid \triangle[0], Y\right)$ can be identified with $\operatorname{Nat}(X, Y)$.
4.4.5 LEMMA Let \underline{C} be a category - then the class of sinplicial objects in C is the object class of an S-category SIMC.

PROOF Define $H O M(X, Y)$ by the prescription

$$
\operatorname{HOM}(X, Y)_{n}=\operatorname{For}\left(\left.X\right|_{-} ^{-} \mid \Delta[n], Y\right) \quad(n \geq 0) .
$$

[Note:

$$
\begin{aligned}
\operatorname{Nat}(\Delta[0], \operatorname{HOM}(X, Y)) & \approx \operatorname{HOM}(X, Y) 0 \\
& \approx \operatorname{For}\left(\left.X\right|_{-} ^{-} \mid \Delta[0], Y\right) \\
& \approx \operatorname{Nat}(X, Y) \text { (cf. 4.4.4). }
\end{aligned}
$$

Therefore the underlying category USIMC is iscmorphic to SIC.]
4.4.6 DEFINITION Given a category \mathbb{C}, a simplicial action on \underline{C} is a functor

$$
\left.\right|_{\underline{-} \mid}: \underline{\mathrm{C}} \times \underline{\text { SISET }} \rightarrow \underline{\underline{C}}
$$

together with natural isomorphisms A and R, where

$$
A_{X, K, L}:\left.\left.X\right|_{-} ^{-}(\mathrm{K} \times \mathrm{L}) \rightarrow\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}\right)\right|_{-} ^{-} \mid \mathrm{L}
$$

and

$$
\mathrm{R}_{\mathrm{X}}:\left.\mathrm{X}\right|_{-} ^{-} \mid \Delta[0] \rightarrow \mathrm{X},
$$

subject to the following assumptions.
$\left(\mathrm{SA}_{1}\right)$ The diagram

commates.
$\left(\mathrm{SA}_{2}\right)$ The diagram

$$
\begin{aligned}
& \left.\mathrm{x}\right|_{-} ^{-}\left|(\Delta[0] \times \mathrm{K}) \xrightarrow{\mathrm{A}}\left(\left.\mathrm{x}\right|_{-} ^{-} \mid \Delta[0]\right)\right|_{-}^{-} \mid K \\
& \left.\mathrm{id}\right|_{-} ^{-}|L|^{-} \\
& \left.\mathrm{x}\right|_{-} ^{-}|K \longrightarrow \mathrm{R}|_{-}^{-} \mid \mathrm{id} \\
& \longrightarrow
\end{aligned}
$$

commutes.
[Note: Every category admits a simplicial action, viz, the trivial simplicial action.]
N.B. It is automatic that the diagram

conmutes.
4.4.7 EXAMPLE If $\left.\right|_{-} ^{-}$is a simplicial action on \underline{C}, then for every small category I, the composition

$$
\begin{aligned}
{[\underline{I}, \underline{\underline{C}}] \times \underline{\text { SISET }} } & \rightarrow[\underline{\underline{I}, \underline{C}] \times[\underline{I}, \underline{\text { SISET }}]} \\
& \approx\left[\underline{I}, \underline{C} \times \underline{\text { SISET }]} \xrightarrow{\left[\underline{I},\left.\right|_{-} ^{-} \mid\right]}[\underline{I}, \underline{C}]\right.
\end{aligned}
$$

is a simplicial action on [I,C].
4.4.8 THBOREM Let \underline{C} be a category. Assume: \underline{C} admits a simplicial action $\left.\right|_{-} ^{-} \mid$-- then there is an S-category $\left.\right|_{-} ^{-} \mid \mathbb{C}$ such that \mathbb{C} is iscmorphic to the underlying category $\left.\mathrm{U}\right|_{-} ^{-} \mid \underline{\mathrm{C}}$.

PROOF Put $O=O B \underline{C}$ and assign to each ordered pair $X, Y \in O$ the simplicial set $\operatorname{HOM}(X, Y)$ defined by

$$
\operatorname{HOM}(X, Y)_{n}=\operatorname{Mor}\left(\left.X\right|_{-} ^{-} \mid \Delta[n], Y\right) \quad(n \geq 0) .
$$

- Given X,Y,2, let

$$
C_{X, Y, Z}: \operatorname{HOM}(X, Y) \times \operatorname{HOM}(Y, Z) \rightarrow \operatorname{HOM}(X, Z)
$$

be the simplicial map that sends

$$
\left\lvert\, \begin{aligned}
& \mathrm{f}:\left.\mathrm{X}\right|_{-} ^{-} \mid \Delta[\mathrm{n}] \rightarrow \mathrm{Y} \\
& \mathrm{~g}: \mathrm{Y}_{-}^{\rightarrow} \mid \Delta[\mathrm{n}] \rightarrow \mathrm{Z}
\end{aligned}\right.
$$

to the composite

$$
\begin{aligned}
& \left.x\right|_{-} ^{-}\left|\Delta[n] \xrightarrow{\text { id }\left.\right|_{-} ^{-} \mid \text {dia }} x\right|_{-}^{-} \mid(\Delta[n] \times \Delta[n]) \\
& \left.\xrightarrow{A}\left(\left.X\right|_{-} ^{-} \mid \Delta[n]\right)\right|_{-} ^{-}\left|\Delta[n] \xrightarrow{\left.\mathrm{f}\right|_{-} ^{-} \mid \mathrm{id}} Y\right|_{-}^{-} \mid \Delta[n] \xrightarrow{\mathrm{G}} \mathrm{Z} .
\end{aligned}
$$

- Given X, let

$$
I_{X}: \Delta[0] \rightarrow \operatorname{HOM}(X, X)
$$

be the simplicial map that sends $[\mathrm{n}] \rightarrow[0]$ to

$$
\left.x\right|_{-} ^{-}|\Delta[n] \rightarrow x|_{-}^{-} \mid \Delta[0] \xrightarrow{R} x .
$$

Call $\left.\right|_{-} ^{-} \mid \underline{C}$ the S-category arising from this data. That \underline{C} is isomorphic to the underlying category $U_{-}^{-} \mid \underline{C}$ can be seen by considering the functor which is the
identity on objects and sends a morphism $f: X \rightarrow Y$ in \underline{C} to

$$
\left.\mathrm{X}\right|_{-} ^{-} \mid \Delta[0] \xrightarrow{\mathrm{R}} \mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Y},
$$

an element of

$$
\operatorname{Mor}\left(\left.X\right|_{-} ^{-} \mid \Delta[0], Y\right)=\operatorname{HOM}(X, Y)_{0} \approx \operatorname{Nat}(\Delta[0], \operatorname{HOM}(X, Y))
$$

N.B. If $\left.\right|^{-} \mid$is the trivial simplicial action, then

$$
\operatorname{HOM}(X, Y)=\operatorname{si} \operatorname{Mor}(X, Y) .
$$

4.4.9 EXAMPLE SISET admits a simplicial action:

$$
\left.\mathrm{K}\right|_{-} ^{-} \mid \mathrm{L}=\mathrm{K} \times \mathrm{L} .
$$

Therefore

$$
\operatorname{HOM}(K, L)=\operatorname{map}(K, L) \quad \text { (cf. 4.2.1) }
$$

[Note: Let I be a small category -- then there is an induced simplicial action on [I, SISET], viz.

$$
\left(\left.F\right|_{-} ^{-} \mid K\right) i=F i \times K \quad(c f .4 .4 .7)
$$

And

$$
\operatorname{HOM}(F, G) \approx \delta_{i} \operatorname{map}(F i, G i)
$$

In fact,

$$
\begin{aligned}
\operatorname{HOM}(\mathrm{F}, \mathrm{G})_{\mathrm{n}} & \approx \operatorname{Nat}(\mathrm{~F}|-| \Delta[\mathrm{n}], \mathrm{G}) \\
& \approx \delta_{\mathrm{i}} \operatorname{Nat}(\mathrm{Fi} \times \Delta[\mathrm{n}], \mathrm{Gi}) \\
& \approx \delta_{\mathrm{i}} \operatorname{Nat}(\Delta[\mathrm{n}], \operatorname{map}(\mathrm{Fi}, \mathrm{Gi})) \\
& \approx \operatorname{Nat}\left(\Delta[\mathrm{n}], \delta_{\mathrm{i}} \operatorname{map}(\mathrm{Fi}, \mathrm{Gi})\right) \\
& \left.\approx\left(\delta_{\mathrm{i}} \operatorname{map}(\mathrm{Fi}, \mathrm{Gi})\right)_{\mathrm{n}} .\right]
\end{aligned}
$$

4.4.10 EXAMPLE OGH admits a simplicial action:

$$
\left.\mathrm{x}\right|_{-} ^{-}\left|\mathrm{K}=\mathrm{X} \times_{\mathrm{k}}\right| \mathrm{K} \mid .
$$

Therefore

$$
\operatorname{HCM}(X, Y)_{n}=C\left(X x_{k} \Delta^{n}, Y\right) \quad(n \geq 0) \quad(c f .4 .2 .3) .
$$

[Note: $\underline{G G H}$ is cartesian closed, the exponential object being $\mathrm{Y}^{\mathrm{X}}=\mathrm{kC}(\mathrm{X}, \mathrm{Y})$, where $\mathrm{C}(\mathrm{X}, \mathrm{Y})$ carries the compact open topology. Accordingly,

$$
\begin{aligned}
C\left(X x_{k} \Delta^{n}, Y\right) & \approx C\left(\Delta^{n} x_{k} X, Y\right) \\
& \approx C\left(\Delta^{n}, Y^{X}\right) \\
& \approx \sin Y^{X}([n]),
\end{aligned}
$$

so

$$
\left.\operatorname{HOM}(X, Y) \approx \sin Y^{X} .\right]
$$

4.4.11 THEOREM Let \mathbb{C} be a category. Assume: \mathbb{C} has coproducts -- then SIC admits a simplicial action $\left.\right|_{-} ^{-} \mid$such that $\left.\right|_{-} ^{-} \mid$SIC is isomorphic to SIMC (cf. 4.4.5) .

PROOF Define $\left.X\right|_{-} ^{-} \mid k$ by $\left(\left.x\right|_{-} ^{-} \mid K\right)_{n}=K_{n} \cdot X_{n}$, thus for $\alpha:[m] \rightarrow[n]$,

$$
\mathrm{K}_{\mathrm{n}} \cdot \mathrm{x}_{\mathrm{n}} \xrightarrow{\mathrm{x}_{\alpha}} \mathrm{K}_{\mathrm{n}} \cdot \mathrm{x}_{\mathrm{m}} \xrightarrow{\mathrm{~K} \alpha} \mathrm{~K}_{\mathrm{m}} \cdot \mathrm{x}_{\mathrm{m}} .
$$

The symbol $\left.X\right|_{-} ^{-} \mid K$ also has another connotation (cf. 4.4.3). To resolve the ambigrity, note that there is a formality in: $\left.\mathrm{X}\right|_{-} ^{-}|\mathrm{K} \rightarrow \mathrm{X}|_{-}^{-} \mid \mathrm{K}$, where

$$
\operatorname{in}_{n}(k): x_{n} \rightarrow\left(\left.x\right|_{-} ^{-} \mid K\right)_{n}
$$

is the injection from X_{n} to $K_{n} \cdot X_{n}$ corresponding to $k \in K_{n}$. Moreover,

$$
\text { in* }: \operatorname{Nat}\left(\left.X\right|_{-} ^{-} \mid K, Y\right) \rightarrow \operatorname{For}\left(\left.X\right|_{-} ^{-} \mid K, Y\right)
$$

is bijective and functorial. Therefore $\left.\right|_{\text {ISIC }}$ and SIMC are isomorphic. [Note: $\left.\right|_{-} ^{-} \mid$is the canonical simplicial action on SIC.]
N.B. Take $\underline{C}=\underline{S E T}$ - then the canonical simplicial action on SISETY is the simplicial action of 4.4.9. In fact,

$$
\left.x\right|_{-} ^{-} \mid \mathrm{K}=\mathrm{x} \times \mathrm{K}
$$

and

$$
\left(x \times K_{n}=x_{n} \times K_{n} \approx K_{n} \times x_{n}=K_{n} \cdot x_{n} .\right.
$$

4.4.12 DEFINITION A simplicial action $\left.\right|_{-} ^{-} \mid$on a category \underline{C} is said to be cartesian if $\forall X \in O B \underline{C}$, the functor

$$
\left.\mathrm{X}\right|_{-}-\underline{\text { SISET }} \rightarrow \underline{\mathrm{C}}
$$

has a right adjoint.
4.4.13 LEMMA Let \mathbb{C} be a category. Assume: \mathbb{C} has coproducts - then the canonical simplicial action $\left.\right|_{-} \mid$on SIC is cartesian.

PROOF Let $H O M(X, Y)$ be the simplicial set figuring in the definition of SIMC, so

$$
\operatorname{HOM}(X, Y)_{n}=\operatorname{For}\left(\left.X\right|_{-} ^{-} \mid \Delta[n], Y\right) \quad(c f .4 .4 .5)
$$

Define

$$
\mathrm{ev} \in \operatorname{For}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \operatorname{HCM}(\mathrm{X}, \mathrm{Y}), \mathrm{Y}\right)
$$

by

$$
\mathrm{ev}_{\mathrm{n}}(\mathrm{f})=\mathrm{f}_{\mathrm{n}}(\mathrm{id}[\mathrm{n}]): X_{\mathrm{n}} \rightarrow Y_{\mathrm{n}}(\mathrm{n} \geq 0) .
$$

Viewing ev as "evaluation", there is an induced functorial bijection

$$
\operatorname{Nat}(\mathrm{K}, \mathrm{HOM}(\mathrm{X}, \mathrm{Y})) \rightarrow \operatorname{For}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Y}\right) .
$$

But

$$
\operatorname{For}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Y}\right) \approx \operatorname{Nat}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Y}\right) \quad \text { (cf. 4.4.11). }
$$

Therefore ${ }^{-} \mid$is cartesian.
4.4.14 ImmA Suppose that the simplicial action $\left.\right|_{-} ^{-} \mid$on \underline{C} is cartesian - then $\forall X \in O b \underline{C}$,

$$
\operatorname{HOM}(\mathrm{X},--): \underline{\mathrm{C}} \rightarrow \text { SISET }
$$

is a right adjoint for

$$
\left.x\right|_{-} ^{-} \mid-: S I S E T \rightarrow C .
$$

PROOF The functor $\left.\mathrm{x}\right|_{-} ^{-} \mid$- is a left adjoint, hence preserves colimits. This said, given a simplicial set K, write

$$
\mathrm{k} \approx \operatorname{colim}_{\mathrm{i}} \Delta\left[\mathrm{n}_{\mathrm{i}}\right]
$$

Then

$$
\begin{aligned}
& \operatorname{Mor}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Y}\right) \approx \operatorname{Mor}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \operatorname{colim}_{i} \Delta\left[\mathrm{n}_{\mathrm{i}}\right], \mathrm{Y}\right) \\
& \approx \operatorname{Mor}\left(\left.\operatorname{colim}_{i} X\right|_{-} ^{-} \mid \Delta\left[n_{i}\right], Y\right) \\
& \approx \lim _{i} \operatorname{Mor}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \Delta\left[\mathrm{n}_{\mathrm{i}}\right], \mathrm{Y}\right) \\
& \approx \lim _{i} \operatorname{HOM}(X, Y)_{n_{i}} \\
& \approx \lim _{i} \operatorname{Nat}\left(\Delta\left[n_{i}\right], H O M(X, Y)\right) \\
& \approx \operatorname{Nat}\left(\operatorname{colim} \mathrm{i}_{\mathrm{i}} \Delta\left[\mathrm{n}_{\mathrm{i}}\right], \operatorname{HOM}(\mathrm{X}, \mathrm{Y})\right) \\
& \approx \operatorname{Nat}(\mathrm{K}, \mathrm{HOM}(\mathrm{X}, \mathrm{Y})) .
\end{aligned}
$$

[Note: Here, of course, we are viewing \subseteq as an S-category per 4.4.8.]
4.4.15 DEFINITION A simplicial action |- \mid on a category \mathbb{C} is said to be closed provided that it is cartesian and each of the functors $-\left.\right|_{-} ^{-} \underline{K} \rightarrow \underline{C}$ has a right adjoint $X \rightarrow \operatorname{hom}(K, X)$, so

$$
\operatorname{Mor}\left(\left.X\right|^{-} \mid K, Y\right) \approx \operatorname{Mor}(X, \operatorname{hczn}(K, Y))
$$

4.4.16 EXAMPLE The simplicial action on SISET is closed (cf. 4.4.9), as is the simplicial action on OGH (cf. 4.4.10).
4.4.17 EXAMPIE Take $\underline{C}=$ CAT. Bearing in mind that

$$
\text { cat:SISET } \rightarrow \text { CAT }
$$

preserves finite products, define a simplicial action

$$
\left.\right|_{-} ^{-}: \text {CAT } \times S I S E T \rightarrow C A T
$$

by the prescription

$$
\left.I\right|_{-} ^{-} \mid K=I \times \text { cat } K .
$$

Then

$$
\begin{aligned}
\operatorname{Mor}\left(\left.\underline{I}\right|_{-} ^{-} \mid K, \underline{J}\right) & =\operatorname{Mor}(\underline{I} \times \operatorname{cat} K, \underline{J}) \\
& \approx \operatorname{Mor}(\operatorname{cat} K,[\underline{I}, \underline{J}]) \\
& \approx \operatorname{Nat}(\mathbb{K}, \operatorname{ner}[\underline{I}, \underline{J}])
\end{aligned}
$$

Therefore I_| is cartesian and

$$
\operatorname{HCM}(\underline{I}, \underline{J})=\operatorname{ner}[\underline{I}, \underline{J}] \quad \text { (cf. 4.2.2) }
$$

In addition, $\left.\right|^{-} \mid$is closed with

$$
\operatorname{hom}(K, X)=[\operatorname{cat} K, X]
$$

4.4.18 EXAMPLE Take $\underline{C}=$ CAT. Since π_{1} 。 cat preserves finite products and $1: G R D \rightarrow$ CAT is a right adjoint, the prescription

$$
\left.I\right|_{-} \mid K=x \times i \circ \pi_{1} \circ \text { cat } K
$$

defines a simplicial action

$$
\left.\right|_{-} ^{-} \mid: \underline{C A T} \times \underline{\text { SISET }} \rightarrow \underline{\text { CAT }} .
$$

Here

$$
\begin{aligned}
\operatorname{Mor}\left(\left.\underline{I}\right|^{-} \mid K, \underline{J}\right) & =\operatorname{Mor}\left(\underline{I} \times 1 \circ \pi_{1} \circ \text { cat } K, \underline{J}\right) \\
& \approx \operatorname{Mor}\left(1 \circ \pi_{1} \circ \text { cat } K,[\underline{I}, \underline{J}]\right) \\
& \approx \operatorname{Mor}\left(\pi_{1} \circ \text { cat } K, i s o[\underline{I}, \underline{J}]\right) \\
& \approx \operatorname{Mor}(\text { cat } K, i \circ \text { iso }[\underline{I}, \underline{J}]) \\
& \approx \operatorname{Nat}(K, \text { ner } \circ 1 \circ \text { iso }[\underline{I}, \underline{J}])
\end{aligned}
$$

from which it follows that $\left.\right|_{-} ^{-} \mid$is cartesian and

$$
\operatorname{HOM}(\underline{I}, \underline{J})=\text { ner } \circ\{\circ \text { iso }[\underline{I}, \underline{J}] .
$$

Furthermore, |-| is closed:

$$
\operatorname{hom}(\mathrm{K}, \mathrm{X})=\left[\begin{array}{lll}
1 & \circ & \pi_{1}
\end{array}{ }^{\circ} \operatorname{cat} \mathrm{K}, \mathrm{X}\right] .
$$

4.4.19 IEMMA Suppose that the simplicial action |- on $\underline{\mathrm{C}}$ is closed - then

$$
\operatorname{HOM}\left(\left.X\right|_{-} ^{-} \mid K, Y\right) \approx \operatorname{map}(K, H O M(X, Y)) \approx \operatorname{HOM}(X, \operatorname{hom}(K, Y)) .
$$

4.4.20 REMARK Fram the perspective of enriched category theory, this just means that the S-category $\left.\right|_{-} ^{-} \mid \underline{C}$ is "tensored" and "cotensored" (cf. 4.7.14).
4.4.21 IEMMA Suppose that $\left.\right|_{-} ^{-} \mid$is a closed simplicial action on C. Assume: $K=\operatorname{colim}_{i} K_{i}-$ then $\forall X, Y \in O B C$,

$$
\operatorname{Mor}\left(X, \operatorname{hom}\left(\operatorname{colim} \mathrm{C}_{i} \mathrm{~K}_{i}, Y\right)\right) \approx \lim _{i} \operatorname{Mor}\left(X, \operatorname{hom}\left(K_{i}, Y\right)\right)
$$

PROOF In fact,

$$
\begin{aligned}
\text { LHS } & \approx \operatorname{Mor}\left(\left.X\right|_{-} ^{-\mid c o l i m} \mathrm{~K}_{\mathrm{i}}, \mathrm{Y}\right) \\
& \approx \operatorname{Mor}\left(\left.\operatorname{colim} \mathrm{m}_{i} X\right|_{-} ^{-} \mid K_{i}, Y\right)
\end{aligned}
$$

$$
\approx \lim _{i} \operatorname{Mor}\left(\left.X\right|_{-} ^{-} \mid K_{i}, Y\right) \approx \operatorname{RHS} .
$$

4.4.22 NOTATION Let \underline{C} be a complete category. Given a sinplicial object X in \mathbb{C} and a simplicial set K, put

$$
x \nmid K=\int_{[n]}\left(x_{n}\right)^{K},
$$

an object in C .
4.4.23 EXAMPLE In view of the integral Yoneda lenma,

$$
x \approx \delta_{[k]}\left(X_{k}\right)^{\operatorname{Mor}([k],-)}
$$

Therefore

$$
\begin{aligned}
x_{n} & \approx \int_{[k]}\left(X_{k}\right)^{\operatorname{Mor}([k],[n])} \\
& \approx \int_{[k]}\left(x_{k}\right)^{\Delta[n]([k])} \\
& \approx \delta_{[k]}\left(x_{k}\right)^{\Delta[n]} k \\
& \approx x \pitchfork \Delta[n] .
\end{aligned}
$$

[Note: We have

$$
M_{\mathrm{n}} \mathrm{X} \approx \mathrm{X} \dagger \dot{\Delta}[\mathrm{n}] \quad \text { (cf. } 0.27 .22 \text {) }
$$

And the inclusion $\dot{\Delta}[n] \rightarrow \Delta[n]$ induces the canonical arrow $X_{n} \rightarrow M_{n} X$.]
4.4.24 EXAMPLE $\forall X \in O B \subseteq \mathbb{C} \& \forall \in O B \underline{\text { SIC, }}$

$$
\operatorname{Mor}(\mathrm{X}, \mathrm{Y} \pitchfork \mathrm{~K}) \approx \operatorname{Mor}\left(\mathrm{X}, \mathrm{f}_{[\mathrm{n}]}\left(\mathrm{Y}_{\mathrm{n}}\right)^{\mathrm{K}} \mathrm{n}^{\prime}\right)
$$

$$
\begin{aligned}
& \approx \int_{[n]} \operatorname{Mor}\left(X,\left(Y_{n}\right){ }^{K_{n}}\right) \\
& \approx \int_{\left.[n]^{\operatorname{Mor}\left(X, Y_{n}\right.}\right)}{ }^{K} \\
& \approx \delta_{[n]} \operatorname{Mor}\left(K_{n}, \operatorname{Mor}\left(X, Y_{n}\right)\right) .
\end{aligned}
$$

Suppose that $\left.\right|_{-} ^{-\mid}$is a closed simplicial action on \subseteq - then there is a functor $\underline{C} \rightarrow$ SIC that sends an object X in \underline{C} to $X^{\Delta[]}$, where

$$
\left.x^{\Delta[]^{\prime}}(n]\right)=\operatorname{hom}(\Delta[n], x)
$$

4.4.25 THEORFM Suppose that $\left.\right|_{-} ^{-} \mid$is a closed simplicial action on C. Assume: \underline{C} is complete - then

$$
\operatorname{hom}(\mathrm{K}, \mathrm{X}) \approx \mathrm{x}^{\Delta[]} \dagger \mathrm{K}
$$

PROOF $\forall X, Y \in O B C$,

$$
\begin{aligned}
& \left.\left.\operatorname{Mor}\left(X, Y^{\Delta[}\right] \nmid K\right) \approx \operatorname{Mor}\left(X, f_{[n]}\left(Y^{\Delta[}\right]_{n}\right)_{n}\right) \\
& \approx \operatorname{Mor}\left(\mathrm{X}, \mathrm{f}_{[\mathrm{n}]} \operatorname{hom}(\Delta[\mathrm{n}], \mathrm{Y})^{\mathrm{K}_{\mathrm{n}}}\right) \\
& \approx f_{[\mathrm{n}]} \operatorname{Mor}\left(\mathrm{X}, \operatorname{hom}(\Delta[\mathrm{n}], \mathrm{Y}){ }^{\mathrm{K}_{\mathrm{n}}}\right) \\
& \left.\approx \delta_{[\mathrm{n}]} \operatorname{Mor}(\mathrm{X}, \operatorname{hom}(\mathrm{Din}], \mathrm{Y})\right)^{\mathrm{K}_{\mathrm{n}}} \\
& \approx \int_{[\mathrm{n}]} \operatorname{Mor}\left(\left.\mathrm{X}\right|_{-} ^{--} \mid \Delta[\mathrm{n}], \mathrm{Y}\right){ }^{\mathrm{K}_{\mathrm{n}}} \\
& \approx \delta_{[n]} \operatorname{Mor}\left(K_{n}, \operatorname{Mor}\left(\left.X\right|_{-} ^{-} \mid \Delta[n], Y\right)\right) \\
& \approx \int_{[\mathrm{n}]} \operatorname{Mor}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{HCM}(\mathrm{X}, \mathrm{Y})_{\mathrm{n}}\right) \quad \text { (cf. 4.4.8) }
\end{aligned}
$$

$$
\begin{aligned}
& \approx \operatorname{Nat}(\mathrm{K}, \operatorname{HOM}(\mathrm{X}, \mathrm{Y})) \\
& \approx \operatorname{map}(\mathrm{K}, \operatorname{HOM}(\mathrm{X}, \mathrm{Y}))_{0} \\
& \approx \operatorname{HOM}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Y}\right)_{0} \quad \text { (cf. 4.4.19) } \\
& \approx \operatorname{Mor}\left(\left.\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}\right)\right|_{\sim} ^{-} \mid \Delta[0], \mathrm{Y}\right) \\
& \approx \operatorname{Mor}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid(\mathrm{K} \times \Delta[0]), \mathrm{Y}\right) \\
& \approx \operatorname{Mor}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Y}\right) \\
& \approx \operatorname{Mor}(\mathrm{X}, \operatorname{hom}(\mathrm{~K}, \mathrm{Y}))
\end{aligned}
$$

4.4.26 NOTATION Given a category C and a simplicial object X in C , write h_{X} for the functor $C^{O P} \rightarrow$ SISET defined by $\left(h_{X} A_{n}=\operatorname{Mor}\left(A_{1} X_{n}\right)\right.$.
[Note: For all $\mathrm{X}, \mathrm{Y} \in \mathrm{Ob}$ SIC,

$$
\left.\operatorname{Nat}(\mathrm{X}, \mathrm{Y}) \approx \operatorname{Nat}\left(\mathrm{h}_{\mathrm{X}}, \mathrm{~h}_{\mathrm{Y}}\right) \quad(\text { simplicial Yoneda }) .\right]
$$

4.4.27 THEOREM Let \underline{C} be a category. Assume: \underline{C} has coproducts and is conplete -then the canonical simplicial action $\left.\right|_{-} ^{-}$on SIC is closed (|-| is necessarily cartesian (cf. 4.4.13)).

PROOF Given a simplicial set K, write

$$
\mathrm{K} \times \Delta[\mathrm{n}] \approx \operatorname{colim}_{i} \Delta\left[\mathrm{n}_{\mathrm{i}}\right] .
$$

Then $\forall A \in O B C$,

$$
\begin{aligned}
\operatorname{Nat}\left(K \times \Delta[n], h_{X} A\right) & \approx \lim _{i} \operatorname{Nat}\left(\Delta\left[n_{i}\right], h_{X} A\right) \\
& \approx \lim _{i} \operatorname{Mor}\left(A, X_{n_{i}}\right) \\
& \approx \operatorname{Mor}\left(A, l i m_{i} X_{n_{i}}\right) \\
& \approx \operatorname{Mor}\left(A, \operatorname{Mam}(K, X)_{n}\right)
\end{aligned}
$$

where by definition,

$$
\operatorname{ham}(\mathrm{K}, \mathrm{X})_{\mathrm{n}}=\lim _{\mathrm{i}} \mathrm{X}_{\mathrm{n}_{\mathrm{i}}}
$$

In other words, hom $(\mathrm{K}, \mathrm{X})_{\mathrm{n}}$ represents

$$
A \rightarrow \operatorname{Nat}\left(K \times \Delta[n], h_{X} A\right)
$$

Varying n yields a simplicial object ham(K, X) in C with

$$
\mathrm{h}_{\operatorname{hom}(\mathrm{K}, \mathrm{X})} \approx \operatorname{map}\left(\mathrm{K}, \mathrm{~h}_{\mathrm{X}}\right) .
$$

Agreeing to let $\left.h_{X}\right|^{-} \mid K$ be the cofunctor $\underline{C} \rightarrow$ SISET that sends A to $h_{X} A \times K$, we have

$$
\begin{aligned}
\operatorname{Nat}\left(\left.X\right|_{-} ^{-} \mid K, Y\right) & \approx \operatorname{Nat}\left(\left.h_{X}\right|_{-} ^{-} \mid K^{\prime} h_{Y}\right) \\
& \approx \operatorname{Nat}\left(\left.h_{X}\right|_{-} ^{-} \mid K, h_{Y}\right) \\
& \approx \operatorname{Nat}\left(h_{X^{\prime}} \operatorname{map}\left(K, h_{Y}\right)\right) \\
& \approx \operatorname{Nat}\left(h_{X^{\prime}} h_{h o m}(K, Y)\right. \\
& \approx \operatorname{Nat}(X, \operatorname{hom}(K, Y))
\end{aligned}
$$

which proves that |_| is closed.
4.4.28 EXAMPLE The canonical simplicial action $\left.\right|_{-} ^{-}$on SIGR or SIAB is closed.
4.4.29 REMARK If $\left.\right|_{-} ^{-}$| is a closed simplicial action on \mathbb{C}, then the composition

$$
\begin{aligned}
{\left[\underline{\Delta}^{\mathrm{OP}}, \underline{C}\right] \times \underline{S I S E T} } & \rightarrow\left[\underline{\Delta}^{\mathrm{OP}}, \underline{C}\right] \times\left[\underline{\underline{O P}}^{\mathrm{OP}}, \underline{\text { SISET }]}\right. \\
& \approx\left[\underline{\Delta}^{\mathrm{OP}}, \underline{\mathrm{C}} \times \underline{\text { SISET }]} \xrightarrow{\left[\left.\underline{\Delta}^{\mathrm{OP}} \cdot\right|_{-} ^{-} \mid\right]}\left[\underline{\Delta}^{\mathrm{OP}}, \underline{C}\right]\right.
\end{aligned}
$$

is a closed simplicial action on $\left[\triangle^{O P}, \underline{C}\right] \equiv$ SIC. When \mathbb{C} has coproducts and is
complete, the canonical simplicial action on SIC is also closed. However, in general, these two actions are not the same.

Let K be a simplicial set. Assume: C has coproducts -- then K determines a functor

$$
K \cdot-: \underline{C} \rightarrow \text { SIC }
$$

by writing

$$
(K \cdot x)([n])=K_{n} \cdot x
$$

4.4.30 LEMMA Assume: \underline{C} has coproducts and is complete -- then $K \cdot$ - is a left adjoint for

$$
-巾 \mathrm{~K}: \underline{\mathrm{SIC}} \rightarrow \mathrm{C} .
$$

PROOF $\forall X \in O B \underset{C}{C} \& Y \in O B S I C$,

$$
\begin{aligned}
\operatorname{Nat}(K \cdot X, Y) & \approx \delta_{[n]} \operatorname{Mor}\left(K_{n} \cdot X, Y_{n}\right) \\
& \approx \delta_{[n]} \operatorname{Mor}\left(X, Y_{n}\right)^{K_{n}} \\
& \approx \delta_{[n]} \operatorname{Mor}\left(X,\left(Y_{n}\right)^{K_{n}}\right) \\
& \approx \operatorname{Mor}\left(X, \delta_{[n]}\left(Y_{n}\right)^{K_{n}}\right) \\
& \approx \operatorname{Mor}(X, Y \pitchfork K) .
\end{aligned}
$$

4.4.31 LEMMA Assume: \underline{C} has coproducts and is complete. Suppose that $K=\infty \lim _{i} K_{i}-$ then for every simplicial object X in \underline{C},

$$
x \nmid k \approx \lim _{i} x \nmid K_{i}
$$

PROOF Given $A \in O B C$, let $A \in O B$ SIC be the constant simplicial object determined by A, thus

$$
\begin{aligned}
& \operatorname{Mor}(\mathrm{A}, \mathrm{X} \nmid \mathrm{~K}) \approx \operatorname{Mor}(\mathrm{K} \cdot \mathrm{~A}, \mathrm{X}) \\
& \approx \operatorname{Mor}\left(\left.\underset{-}{\mathbf{A}}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{X}\right) \\
& \approx \operatorname{Mor}\left(\left.\operatorname{colim}_{i} A\right|_{-} ^{-} \mid K_{i}, X\right) \\
& \approx \lim _{i} \operatorname{Mor}\left(\left.\underline{\underline{A}}\right|_{-} ^{-} \mid K_{i}, X\right) \\
& \approx \lim _{\mathbf{i}} \operatorname{Mor}\left(K_{i} \cdot \mathrm{~A}, \mathrm{X}\right) \\
& \approx \lim _{i} \operatorname{Mor}\left(\mathrm{~A}, \mathrm{X} \pitchfork \mathrm{~K}_{\mathrm{i}}\right) \\
& \approx \operatorname{Mor}\left(\mathrm{A}, \lim _{\mathrm{i}} \mathrm{x} \not \mathrm{~K}_{\mathrm{i}}\right) .
\end{aligned}
$$

4.4.32 LEMMA Assume: \underline{C} has coproducts and is complete - then

$$
\operatorname{hom}(\mathrm{K}, \mathrm{X})_{\mathrm{n}} \approx \mathrm{x} \phi(\mathrm{~K} \times \Delta[\mathrm{n}]) .
$$

PROOF Write

$$
\mathrm{K} \times \Delta[\mathrm{n}]=\operatorname{colim}_{\mathrm{i}} \Delta\left[\mathrm{n}_{\mathrm{i}}\right]
$$

Then

$$
\begin{aligned}
x 巾(\mathrm{~K} \times \Delta[\mathrm{n}]) & \approx \lim _{i} \times \pitchfork \Delta\left[n_{i}\right] \quad \text { (cf. 4.4.31) } \\
& \approx \lim _{i} X_{n_{i}} \quad \text { (cf. 4.4.23) } \\
& \approx \operatorname{hom}(\mathrm{K}, \mathrm{X})_{\mathrm{n}}
\end{aligned}
$$

4.4.33 EXAMPLE Under the preceding assumptions on C , for all simplicial sets K and L,

$$
\operatorname{hom}(\mathrm{K}, \mathrm{X}) 巾 \mathrm{~L} \approx \mathrm{X} \phi(\mathrm{~K} \times \mathrm{L}) .
$$

4.5 SMC

4.5.1 DEFINITION A simplicial model category is a model category C equipped with a closed simplicial action |-| satisfying
(SMC) Suppose that $A \rightarrow Y$ is a cofibration and $X \rightarrow B$ is a fibration - then the arrow

$$
\operatorname{HOM}(Y, X) \rightarrow \operatorname{HOM}(A, X) \times \underset{\operatorname{HOM}(A, B)}{\operatorname{HOM}(Y, B)}
$$

is a Kan fibration which is a simplicial weak equivalence if $A \rightarrow Y$ or $X \rightarrow B$ is acyclic.
[Note: Associated with |_| is an S-category $\left.\right|_{-} ^{-} \mid \underline{C}$ such that $U_{-}^{-} \mid \underline{C}$ is isomorphic to \underline{C} (cf. 4.4.8).]
N.B.

- If A is cofibrant, then the arrow

$$
\operatorname{HOM}(A, X) \rightarrow \operatorname{HOM}(A, B)
$$

is a Kan fibration. Therefore the pullback square

is a homotopy pullback (cf. 0.35.1).

- If B is fibrant, then the arrow

$$
\operatorname{HOM}(Y, B) \rightarrow \operatorname{HOM}(A, B)
$$

is a Kan fibration. Therefore the pullback square

is a homotopy pullback (cf. 0.35.1).
4.5.2 EXAMPLE Take $C=$ SISET (Kan Structure) and take I'| per $^{-}$4.4.9 - then $\left.\right|^{-} \mid$is closed and SISET is a simplicial model category.
[Note: SISET is also a simplicial model category if the Kan structure is replaced by the HG-structure but it is not a simplicial model category if the Kan structure is replaced by the Joyal structure.]
4.5.3 EXAMPLE Take $\underline{\mathcal{C}}=\underline{C H}$ (Quillen Structure) and take $\left.\right|_{\text {- }}$ I per 4.4.10 - then [-| is closed and CGH is a simplicial model category.
4.5.4 EXAMPLE Take $C=$ CAT (External Structure) and take |-| per 4.4.17 -- then $\left.\right|^{-} \mid$is closed and CAT is a simplicial model category.
4.5.5 EXAMPLE Take $\underline{C}=\underline{C A T}$ (Internal Structure) and take $\left.\right|_{-} ^{-} \mid$per 4.4.18 -- then $\left.\right|_{-} ^{-} \mid$is closed and CAT is a simplicial model category.
4.5.6 REMARK It is not clear whether S-CAT (Bergner Structure) admits a closed simplicial action making it a simplicial model category.
4.5.7 EXAMPIE Take $\underline{C}=[\underline{I}$, SISET $]$ (Structure L) and take ${ }^{-}$-| per 4.4 .7 -- then $\left.\right|^{-} \mid$is closed and [I,SISET] is a simplicial model category.
4.5.8 LENMA In a simplicial model category $\mathrm{C}:(\mathrm{I}) \mathrm{X} \mid \triangle[0] \approx \mathrm{X}$; (2) hom($\triangle[0], \mathrm{X}) \approx$ X ; (3) $\left.\varnothing\right|_{-} ^{-} \mid \mathrm{K} \approx \not \subset ;(4) \operatorname{ham}(\mathrm{K}, *) \approx *$; (5) $\operatorname{HOM}(\varnothing, \mathrm{X}) \approx \Delta[0]$; (6) $\operatorname{HOM}(\mathrm{X}, *) \approx \Delta[0]$; (7) $\left.x\right|_{-} ^{-} \mid \varnothing \approx \varnothing$; (8) ham $(\varnothing, X) \approx$.

What follows is strictly sorital... .
4.5.9 LEMMA Suppose that $\left.\right|^{-\mid}$is a closed simplicial action on a model category \mathcal{C}-- then $\underline{\mathcal{C}}$ is a simplicial model category iff whenever $A \rightarrow Y$ is a cofibration in \underline{C} and $L \rightarrow K$ is an inclusion of simplicial sets, the arrow

$$
\underset{\left.\mathrm{A}\right|_{ـ}|\mathrm{~K}|_{-}^{-} \mid \mathrm{L}}{\mathrm{I}_{-}^{-}|\mathrm{L} \rightarrow \mathrm{Y}|_{-}^{-} \mid \mathrm{K}}
$$

is a cofibration which is acyclic if $A \rightarrow Y$ or $L \rightarrow K$ is acyclic.
4.5.10 APPLICATION Let $\underset{\sim}{C}$ be a simplicial model category.
(i) Suppose that $\mathrm{A} \rightarrow \mathrm{Y}$ is a cofibration in \underline{C} - then for every simplicial set K, the arrow $\left.A\right|_{-} ^{-}|K \rightarrow Y|_{-}^{-} \mid K$ is a cofibration which is acyclic if $A \rightarrow Y$ is acyclic.
(ii) Suppose that Y is cofibrant and $\mathrm{L} \rightarrow \mathrm{K}$ is an inclusion of simplicial sets - then the arrow $\left.Y\right|_{-} ^{-}|L \rightarrow Y|_{-}^{-} \mid K$ is a cofibration which is acyclic if $L \rightarrow K$ is acyclic.
[Note: In particular, Y cofibrant $=>\mathrm{Y}^{-} \mid \mathrm{K}$ cofibrant.]
4.5.11 CRITERION Suppose that $\left.\right|_{\text {- }}$ | is a closed simplicial action on a model category $\underline{\mathrm{C}}$ - then $\underline{\mathrm{C}}$ is a simplicial model category iff whenever $\mathrm{A} \rightarrow \mathrm{Y}$ is a co fibration in C , the arrows

$$
\left.A\right|_{-} ^{-}|\Delta[n] \quad|_{-}|\quad Y|_{-}^{-}|\dot{\Delta}[n]+Y|_{-}^{-} \mid \Delta[n] \quad(n \geq 0)
$$

are cofibrations which are acyclic if $\mathrm{A} \rightarrow \mathrm{Y}$ is acyclic and the arrows

$$
\left.\left.A\right|_{-} ^{-\mid \Delta[1]} \underset{\left.A\right|_{-} ^{-} \mid \Lambda[i, 1]}{\left.\right|_{-} \mid} Y\right|_{-} ^{-}|A[i, 1] \rightarrow Y|_{-}^{-} \mid \Delta[1] \quad(i=0,1)
$$

are acyclic cofibrations.
4.5.12 LEMMA Suppose that $\left.\right|_{-} ^{-} \mid$is a closed simplicial action on a model category \underline{C}-- then $\subseteq \underline{C}$ is a simplicial nodel category iff whenever $L \rightarrow K$ is an inclusion of simplicial sets and $X \rightarrow B$ is a fibration in C, the arrow

$$
\operatorname{ham}(K, X) \rightarrow \text { ham }(L, X) \times h^{h a m}(L, B) \text { hom }(K, B)
$$

is a fibration which is acyclic if $L \rightarrow K$ or $X \rightarrow B$ is acyclic.
4.5.13 APPLICATION Let \underline{C} be a simplicial model category.
(i) Suppose that $L \rightarrow K$ is an inclusion of simplicial sets and X is fibrant -then the arrow hom $(K, X) \rightarrow$ hom (L, X) is a fibration which is acyclic if $L \rightarrow K$ is acyclic.
(ii) Suppose that $X \rightarrow B$ is a fibration in C-- then for every simplicial set K, the arrow ham $(K, X) \rightarrow$ hom (K, B) is a fibration which is acyclic if $X \rightarrow B$ is acyclic.
[Note: In particular, X fibrant $=>$ ham(K, X) fibrant.]
4.5.14 CRITERTON Suppose that $\left.\right|_{-} ^{-} \mid$is a closed simplicial action on a model category $\underline{C}-$ then \underline{C} is a simplicial model category iff whenever $X \rightarrow B$ is a fibration in C , the arrows

$$
\operatorname{harm}(\Delta[n], x) \rightarrow \operatorname{hom}(\dot{\Delta}[n], x) \times \underset{\operatorname{hom}(\dot{\Delta}[n], B)}{\operatorname{ham}(\Delta[n], B) \quad(n \geq 0)}
$$

are fibrations which are acyclic if $\mathrm{X} \rightarrow \mathrm{B}$ is acyclic and the arrows

$$
\operatorname{hom}(\Delta[1], X) \rightarrow \operatorname{hom}(\Lambda[i, 1], x) \times \operatorname{hom}(\Lambda[i, 1], B)^{\operatorname{ham}(\Delta[1], B) \quad(i=0,1)}
$$

are acyclic fibrations.

Apart from these structural formalities, there are a few things to be said about the weak equivalences.
4.5.15 LEMMA Let X, Y, and Z be objects in a simplicial model category C.
(i) If $f: X \rightarrow Y$ is an acyclic cofibration and Z is fibrant, then $\mathrm{f}^{*}: \operatorname{HOM}(\mathrm{Y}, \mathrm{Z}) \rightarrow \operatorname{HCM}(\mathrm{X}, \mathrm{Z})$ is a simplicial weak equivalence.
(ii) If $g: Y \rightarrow Z$ is an acyclic fibration and X is cofibrant, then $g_{*}: H O M(X, Y) \rightarrow H C M(X, Z)$ is a simplicial weak equivalence.
4.5.16 LAMMA Let X, Y, and Z be objects in a simplicial model category C .
(i) If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a weak equivalence between cofibrant objects and Z is fibrant, then $\mathrm{f}^{*}: \operatorname{HOM}(\mathrm{Y}, \mathrm{Z}) \rightarrow \operatorname{HOM}(\mathrm{X}, \mathrm{Z})$ is a simplicial weak equivalence.
(ii) If $g: Y \rightarrow Z$ is a weak equivalence between fibrant objects and X is cofibrant, then $g_{*}: \operatorname{HOM}(X, Y) \rightarrow \operatorname{HOM}(X, Z)$ is a simplicial weak equivalence.
4.5.17 EXAMPLE Take $\underline{C}=$ CGH (Quillen Structure) - then all objects are fibrant, so if $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is a weak homotopy equivalence and X is cofibrant, then $\mathrm{g}_{\star}: H O M(\mathrm{X}, \mathrm{Y}) \rightarrow$ HOM (X, Z) is a simplicial weak equivalence. But

$$
\left.\right|_{-} \quad \operatorname{HOM}(X, Y) \approx \sin \left(Y^{X}\right) \quad \text { (cf. 4.4.10) }
$$

thus $g_{*}: Y^{X} \rightarrow Z^{X}$ is a weak hamotopy equivalence.
[Note: There is a commatative diagram

and the vertical arrows are weak homotopy equivalences.]
4.5.18 THEORFM Let \mathbb{C} be a simplicial model category -- then a morphism $f: X \rightarrow Y$ is a weak equivalence if for every fibrant $Z, f *: H O M(Y, Z) \rightarrow H O M(X, Z)$ is a simplicial weak equivalence.
[Note: The result can also be formalated in terms of the arrows $g_{*}: H O M(X, Y) \rightarrow$ HOM(X,Z) (X ©ofibrant).]
4.5.19 APPLICATION Let $\underset{C}{C}$ be a simplicial model category. Suppose that $f: X \rightarrow Y$ is a weak equivalence between cofibrant objects - then $\forall \mathrm{K}$,

$$
\mathrm{f}^{1-}\left|i d_{K}: X\right|_{-}^{-}|K \rightarrow Y|_{-}^{-} \mid K
$$

is a weak equivalence between cofibrant objects (cf. 4.5.10).
[Take any fibrant Z and consider the arrow

$$
\operatorname{HOM}\left(\left.Y\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Z}\right) \rightarrow \operatorname{HOM}\left(\left.\mathrm{X}\right|_{-} ^{-} \mid \mathrm{K}, \mathrm{Z}\right)
$$

or still, the arrow

$$
\operatorname{HCM}(Y, \operatorname{hom}(K, Z)) \rightarrow \operatorname{HOM}(X, \operatorname{ham}(K, Z)) .
$$

Because hom(K, Z) is fibrant (cf. 4.5.13), the latter is a simplicial weak equivalence (cf. 4.5.16), hence the same is true of the former. Therefore $\left.f\right|_{-} \mid i d_{K}$ is a weak equivalence (cf. 4.5.18).]
4.5.20 EXAMPLE Fix a small category I and view the functor category [${ }^{\circ}$. ${ }^{(S T S E T \text {] }]}$ as a simplicial model category (cf. 4.5.7). Suppose that $L \rightarrow K$ is a weak equivalence, where L,K:I $\underline{I}^{\text {OP }} \rightarrow$ SISET are cofibrant - then $\forall \mathrm{f}: \underline{I} \rightarrow$ SISEI, the induced map

$$
\int^{i} \mathrm{Li} \times \mathrm{Fi} \rightarrow \int^{i} \mathrm{Ki} \times F i
$$

of simplicial sets is a simplicial weak equivalence.
[To see this, use 4.5.18. Thus take any fibrant z and consider the arrow

$$
\operatorname{map}\left(f^{i} K i \times F i, Z\right) \rightarrow \operatorname{map}\left(f^{i_{L i}} \times F i, z\right)
$$

i.e., the arrow

$$
\int_{i} \operatorname{map}(\mathrm{Ki} \times \mathrm{Fi}, Z) \rightarrow \int_{\mathrm{i}} \operatorname{map}(\mathrm{Li} \times \mathrm{Fi}, Z),
$$

i.e., the arrow

$$
f_{i} \operatorname{map}(K i, \operatorname{map}(F i, z)) \rightarrow f_{i} \operatorname{map}(\operatorname{Li}, \operatorname{map}(F i, z)),
$$

i.e., the arrow

$$
\operatorname{HCM}(K, \operatorname{map}(F, Z)) \rightarrow \operatorname{HOM}(L, \operatorname{map}(F, Z)) \quad(c f .4 .4 .9),
$$

which is a sinplicial weak equivalence (cf. 4.5.16).]
[Note: Here map (F, Z) is the functor $\underline{I}^{O P} \rightarrow$ SISET defined by $i \rightarrow \operatorname{map}(F i, Z)$, thus map (F, Z) is a fibrant object in [${ }^{\text {OP }}$, SISEI] .]

4.6 SIC

Let \mathbb{C} be a category. Assume: \underline{C} is complete and cocomplete and there is an adjoint pair (F, G), where

$$
\left\{\begin{array}{l}
\mathrm{F}: \underline{\text { SISET }}+\text { SIC } \\
\mathrm{G}: \underline{\text { SIC }} \rightarrow \text { SISET },
\end{array}\right.
$$

subject to the requirement that G preserves filtered colimits.
4.6.1 THEOREM Call a morphism $f: X \rightarrow Y$ a weak equivalence if $G f$ is a simplicial weak equivalence, a fibration if $G f$ is a Kan fibration, and a cofibration if f has the ILP w.r.t. acyclic fibrations -- then with these choices, SIC is a model category provided that every cofibration with the ILP w.r.t. fibrations is a weak equivalence (cf. infra).
N.B. This result is an instance of the overall theme of "transfer of structure". Thus one works with the $F \dot{\Delta}[n] \rightarrow F \Delta[n](n \geq 0)$ to show that every f can be written as the composite of a cofibration and an acyclic fibration and one works with the $F A[k, n] \rightarrow F \Delta[n](0 \leq k \leq n, n \geq 1)$ to show that every f can be written as the composite of a cofibration that has the LLP w.r.t. fibrations and a fibration. This leads to MC-5 under the assumption that every cofibration with the LUP w.r.t. fibrations is a weak equivalence, which is also needed to establish the nontrivial half of MC-4. In practice, this condition can be forced.
4.6.2 SUBLEMMA Let $\left.\right|_{-} ^{-} \mathrm{X}$ be topological spaces, $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ a continuous function; let $\phi: X^{\prime} \rightarrow X, \psi: Y \rightarrow Y^{\prime}$ be continuous functions. Assume: $f \circ \phi, \psi \circ f$ are weak homotopy equivalences -- then f is a weak homotopy equivalence.
4.6.3 LEMMA Suppose that there is a functor T:SIC \rightarrow SIC and a natural transformation $\varepsilon:$ id $_{\text {SIC }} \rightarrow T$ such that $\forall X, \varepsilon_{X}: X \rightarrow T X$ is a weak equivalence and $T X \rightarrow *$ is a fibration -- then every cofibration with the LLP w.r.t. fibrations is a weak equivalence.

PROOF Let $i: A \rightarrow Y$ be a cofibration with the stated properties. Fix a filler $w: Y \rightarrow T A$ for

Consider the commutative diagram

where f is the arrow

$$
\mathrm{A} \xrightarrow{\mathrm{i}} \mathrm{Y} \xrightarrow{\varepsilon_{Y}} T Y \approx \operatorname{hom}(\Delta[0], T Y) \longrightarrow \operatorname{hom}(\Delta[1], T Y)
$$

and g is the arrow

$$
\left.\left.\left.\right|_{-\mathrm{Y} \xrightarrow{\mathrm{Y}_{\mathrm{Y}}} \mathrm{TY}} \begin{array}{l}
\mathrm{W} \\
\mathrm{TA} \xrightarrow{\mathrm{Ti}} \mathrm{TY}
\end{array} \quad \text { (hom(} \dot{\Delta}[\mathrm{l}], \mathrm{TY}\right) \approx \mathrm{TY} \times \mathrm{TY}\right) .
$$

Since GTY is fibrant and

$$
\left\lvert\, \begin{aligned}
-\operatorname{Grom}(\Delta[1], Y) & \approx \operatorname{map}(\Delta[1], G I Y) \\
\operatorname{Ghom}(\dot{\Delta}[1], Y) & \approx \operatorname{map}(\dot{\Delta}[1], G T Y)
\end{aligned}\right.
$$

it follows that II is a fibration, thus our diagram admits a filler

$$
\mathrm{H}: \mathrm{Y} \rightarrow \operatorname{ham}(\Delta[1], T Y) .
$$

But ε_{Y} is a weak equivalence, hence $T i$ o w is a weak equivalence, i.e.,
$|G T i| \circ\left|G_{w}\right|$ is a weak homotopy equivalence. Assemble the data:

$$
|G A| \xrightarrow{|G i|}|G Y| \xrightarrow{|G W|}|G T A| \xrightarrow{|G t i|}|G T Y| .
$$

Because $|G W| \circ|G i|=\left|G \varepsilon_{A}\right|$ is a weak homotopy equivalence, one can apply the sublemma and conclude that $\left.\right|_{G} \mid$ is a weak homotopy equivalence. Therefore $|G i|$
is a weak homotopy equivalence which means by definition that is a weak equivalence.
4.6.4 RAPPEL Suppose that $L \rightarrow K$ is an inclusion of simplicial sets and $X \rightarrow B$ is a Kan fibration -. then the arnow

$$
\operatorname{map}(K, X) \rightarrow \operatorname{map}(L, X) \times \operatorname{map}(L, B) \operatorname{map}(K, B)
$$

is a Kan fibration which is a simplicial weak equivalence if this is the case of $L \rightarrow K$ or $X \rightarrow B$.
4.6.5 THEOREM Equip SIC with its model structure per 4.6.1 and let $\left.\right|_{-} ^{-} \mid=$ canonical simplicial action (cf. 4.4.11) - then SIC is a simplicial model category.

PROOF Thanks to 4.4.27, |_| is closed. This said, we have

$$
\operatorname{Ghom}(\mathrm{K}, \mathrm{Y}) \approx \operatorname{map}(\mathrm{K}, \mathrm{GY}) .
$$

Proof:

- $\operatorname{Nat}(F(X \times K), Y) \approx \operatorname{Nat}(X \times K, G Y)$

$$
\approx \operatorname{Nat}(X, \operatorname{map}(K, G Y)) .
$$

- $\operatorname{Nat}\left(\left.F X\right|_{-} ^{-} \mid K, Y\right) \approx \operatorname{Nat}(F X, \operatorname{hom}(K, Y))$

$$
\approx \operatorname{Nat}(X, \operatorname{Ghom}(K, Y)) .
$$

Let now $L \rightarrow K$ be an inclusion of simplicial sets and $X \rightarrow B$ a fibration in SIC. Apply G to the arrow

$$
\operatorname{ham}(K, X) \rightarrow \operatorname{hom}(L, X) \times \operatorname{hom}(L, B) \text { ham }(K, B)
$$

to get

$$
\operatorname{Ghom}(\mathrm{K}, \mathrm{X}) \rightarrow \operatorname{Ghom}(\mathrm{L}, \mathrm{X}) \times \underset{\operatorname{Gham}(\mathrm{L}, \mathrm{~B})}{ } \text { Ghom(} \mathrm{K}, \mathrm{~B})
$$

or still,

$$
\operatorname{map}(\mathrm{K}, \mathrm{GX}) \rightarrow \operatorname{map}(\mathrm{L}, \mathrm{GX}) \times \operatorname{map}(\mathrm{L}, \mathrm{~GB}) \operatorname{map}(\mathrm{K}, \mathrm{~GB}) .
$$

Taking into account 4.6.4 and the definitions, it remains only to quote 4.5.12.
4.6.6 EXAMPLE The hypotheses of 4.6 .3 are trivially met if $\forall \mathrm{X}, \mathrm{X} \rightarrow *$ is a fibration. So, for instance, $\underline{\text { SIC }}$ is a simplicial model category if $\underline{C}=\underline{G R}$ or AB (cf. 4.4.28).
4.6.7 CONSTRUCIION Retaining the supposition that \subseteq is camplete and cocomplete, let us assume in addition that \underline{C} has a set of separators and is cowellpowered. Given a simplicial object X in \underline{C}, the functor $\underline{C}^{O P} \rightarrow \underline{\text { SEI }}$ defined by $A \rightarrow(\operatorname{ExHOM}(A, X))_{n}$ ($\mathrm{n} \geq 0$) is representable (view A as a constant simplicial object). Indeed, HOM (-, X) converts colimits into limits and Ex preserves limits. The assertion is then a consequence of the special adjoint functor theorem. Accordingly, \exists an object $(E X X)_{n}$ in \underline{C} and a natural iscmorphism $\operatorname{Mor}\left(A,(E x X)_{n}\right) \approx(\operatorname{ExHOM}(A, X))_{n}$. Thus there is a functor Ex:SIC \rightarrow SIC, where $\forall X, E x X([n])=(E X X)_{n}(n \geq 0)$, with $\operatorname{HOM}(A, E X X) \approx$ $\operatorname{ExHOM}(A, X) \quad\left(\right.$ since $\left.\operatorname{HOM}(A, E x X)_{n} \approx \operatorname{Nat}\left(\left.A\right|_{-} ^{-} \mid \triangle[n], E x X\right) \approx \operatorname{Mor}\left(A,(E X X)_{n}\right) \approx(\operatorname{ExHOM}(A, X))_{n}\right)$. Iterate to arrive at $E X^{\infty}: \underline{S I C} \rightarrow \underline{\text { SIC }}$ and $\varepsilon^{\infty}:$ id $_{\underline{S I C}} \rightarrow \mathrm{Ex}^{\infty}$. Now fix a $P \in O b \underline{C}$ such that $\operatorname{Mor}(\mathrm{P},-): \underline{\mathrm{C}} \rightarrow \underline{\text { SET }}$ preserves filtered colimits. Viewing P as a constant simplicial object, define $G: \underline{S I C} \rightarrow$ SISET by $G X=H O M(P, X)--$ then G has a left adjoint F, viz. $\mathrm{FK}=\left.\mathrm{P}\right|^{-} \mid \mathrm{K}$, and G preserves filtered colimits:

$$
\left(G \operatorname{colim} X_{i}\right)_{n} \approx \operatorname{HOM}\left(P, \operatorname{colim} X_{i}\right)_{n}
$$

$$
\begin{aligned}
& \approx \operatorname{Nat}\left(\left.P\right|_{-} ^{-} \mid \Delta[n], \operatorname{colim} X_{i}\right) \\
& \approx \operatorname{Mor}\left(P,\left(\operatorname{colim} X_{i}\right) n\right) \\
& \approx \operatorname{Mor}\left(P, \operatorname{colim}\left(X_{i}\right)_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \approx \operatorname{colim} \operatorname{Mor}\left(P,\left(X_{i}\right)_{n}\right) \\
& \approx \operatorname{colim} \operatorname{Nat}\left(\left.P\right|_{-} ^{-} \mid \Delta[n], X_{i}\right) \\
& \approx \operatorname{colim} \operatorname{HOM}\left(P, X_{i}\right)_{n} \\
& \approx\left(\operatorname{colim} G X_{i}\right)_{n} .
\end{aligned}
$$

In 4.6.3, take $T=E x^{\infty}, \varepsilon=\varepsilon^{\infty}$. Since

$$
\begin{aligned}
\operatorname{HOM}\left(P, E^{\infty} X\right) & \approx \operatorname{HCM}\left(P, \operatorname{colim} E X^{n} X\right) \\
& \approx \operatorname{Colim} \operatorname{HOM}\left(P, \operatorname{EX}^{n} X\right) \\
& \approx E X^{\infty} H O M(P, X),
\end{aligned}
$$

it follows that $\forall X, \varepsilon_{X}^{\infty}: X \rightarrow E X^{\infty} X$ is a weak equivalence and $E X X \rightarrow *$ is a fibration. Therefore SIC admits the structure of a simplicial model category in which a morphism $f: X \rightarrow Y$ is a weak equivalence or a fibration if this is the case of the sinplicial map $f_{*}: \operatorname{HOM}(P, X) \rightarrow \operatorname{HOM}(P, Y)$.
4.6.7 EXAMPLE In the small object construction, take $\underline{C}=\underline{\text { SISET }}-$ then every finite simplicial set P determines a simplicial model category structure on [$\underline{-}^{\mathrm{OP}}$, SISETI].
4.6.8 RAPPEL Let \underline{C} be a complete and cocomplete model category - then SIC in the Reedy structure is a model category (cf. 0.27.28).
[Note: For the record, if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is a morphism in SIC, then f is a weak equivalence if $\forall n, f_{n}: X_{n} \rightarrow Y_{n}$ is a weak equivalence in C, a cofibration if $\forall n$,
the arrow $X_{n} \bigcup_{L_{n}} X I_{n} Y \rightarrow Y_{n}$ is a cofibration in C, a fibration if $\forall n$, the arrow $X_{n} \rightarrow M_{n} X \times{ }_{M_{n} Y} Y_{n}$ is a fibration in $\mathbb{C} .1$
4.6.9 LEMMA Suppose further that $\subseteq \mathbb{C}$ is a simplicial model category. Equip SIC with the closed simplicial action derived from that on \underline{C} (cf. 4.4.29) -- then SIC (Reedy Structure) is a simplicial model category.

PROOF It will be convenient to employ 4.5.9. So let $A \rightarrow Y$ be a cofibration in SIC and let $L \rightarrow K$ be an inclusion of simplicial sets - then the claim is that the arrow

$$
\left.A\right|_{--} ^{-}|K|_{-}^{-} \mid L
$$

is a cofibration which is acyclic if $A \rightarrow Y$ or $L \rightarrow K$ is acyclic. Thus fix n and consider the arrow
or, equivalently, the arrow

$$
\left.\underset{L_{n} A}{\left.\left(A_{n}\left|_\right| L_{n} Y\right)\right|_{-} ^{-}|K|} \underset{L_{n} A}{L_{n} \mid} \mid L_{n} Y\right)\left.\left.\right|_{-} ^{-}\left|Y_{n} Y_{-}^{-}\right| L \rightarrow Y_{n}\right|_{-} ^{-} \mid K
$$

from which one can read off the assertion.
4.6.10 REMARK Let $\left.\right|_{-} ^{-} \mid$be the canonical simplicial action on sIC - then $\left.\right|_{-} ^{-} \mid$is closed (cf. 4.4.27) but it is not compatible with the Reedy Structure on SIC. Specifically: If $A \rightarrow Y$ is a cofibration in SIC and $L \rightarrow K$ is an inclusion of
simplicial sets, then the arrow

$$
\left.\left.A\right|_{-} ^{-}|K|_{\left.A\right|_{-} ^{-} \mid L} Y\right|_{-} ^{-}|L \rightarrow Y|_{-}^{-} \mid K
$$

is a cofibration which is acyclic if $A \rightarrow Y$ is acyclic but it need not be acyclic if $L \rightarrow K$ is acyclic (take a Reedy cofibrant A and look at the arrow $\left.A\right|_{-} ^{-} \mid \Delta[0] \rightarrow$ $\left.A\right|_{-} ^{-} \mid \Delta[1]$ (in degree 0 , this is the map $A_{0} \rightarrow A_{0} \| A_{0}$).

4.7 SIMPLICIAL DIAGRAM CATEGORIES

Let I be a small S-category, \mathbb{C} a simplicial model category -- then $\underset{C}{C}$ can be regarded as an S-category $\mathbb{C}\left(=\left.\right|^{-} \mid \mathbf{C}\right)(c f .4 .4 .8)$.
4.7.1 RAPPEU $[I, C]_{S}$ is the category whose objects are the elements of $\operatorname{Mor}_{S}(\mathbb{I}, \mathbb{C})$ and whose morphisms are the S-natural transformations (cf. 4.1.10).
N.B. Given an S-functor $F: \mathcal{I} \rightarrow \mathbb{C}$, we have

$$
\operatorname{Nat}(\operatorname{HOM}(i, j), \operatorname{HOM}(F i, F j)) \approx \operatorname{Mor}\left(\left.F i\right|_{-} ^{-} \mid \operatorname{HCM}(i, j), F j\right),
$$

thus the

$$
F_{i, j}: \operatorname{HOM}(i, j) \rightarrow \operatorname{HOM}(F i, F j)
$$

can equivalently be construed as morphisms

$$
\mathrm{F}_{i, j}:\left.F i\right|_{-} ^{-} \mid \mathrm{HOM}(i, j) \rightarrow F j
$$

in C. An S-natural transfommation $\Xi: F \rightarrow G$ is then a collection of morphisms $\Xi_{i}: F i \rightarrow G i$ in \underline{C} such that the diagram

cormmites.
4.7.2 DEFINTMION Let $\Xi \in \operatorname{Nat}_{S}(\mathrm{~F}, \mathrm{G})$.

- Ξ is a levelwise weak equivalence if $\forall i \in|\mathfrak{I}|, \Xi_{i}: F i \rightarrow G i$ is a weak equivalence in C .
- Ξ is a levelwise fibration if $\forall i \in|\mathcal{I}|, \Xi_{i}: F i \rightarrow G i$ is a fibration in C.
- Eis a projective cofibration if it has the LLP w.r.t. those morphisms which are simultaneously a levelwise weak equivalence and a levelwise fibration.
4.7.3 DEFINITION The triple consisting of the classes of levelwise weak equivalences, levelwise fibrations, and projective cofibrations is called the projective structure on $[I, c]_{S}$.
4.7.4 THEOREM Suppose that \subseteq is a combinatorial simplicial model category then for every I, the projective structure on $[I, \tau]_{S}$ is a model structure that, moreover, is combinatorial.
4.7.5 DEFINITION Let $\Xi \in \operatorname{Nat}_{S}(\mathrm{~F}, \mathrm{G})$.
- E is a levelwise weak equivalence if $\forall i \in|I|, \Xi_{i}: F i \rightarrow G i$ is a weak equivalence in C .
- E is a levelwise cofibration if $\forall i \in|I|, \Xi_{i}: F i \rightarrow G i$ is a cofibration in C .
- E is an injective fibration if it has the RLP w.r.t. those morphisms which are similtaneously a levelwise weak equivalence and a levelwise cofibration.
4.7.6 DEFINITION The triple consisting of the classes of levelwise weak equivalences, levelwise cofibrations, and injective fibrations is called the injective structure on $[\mathrm{I}, \mathrm{C}]$.
4.7.7 THEOREM Suppose that \underline{C} is a combinatorial simplicial model category -then for every I, the injective structure on $[I, C]_{S}$ is a model structure that, moreover, is combinatorial.
N.B.
- Every projective cofibration is necessarily levelwise, hence is a cofibration in the injective structure.
- Every injective fibration is necessarily levelwise, hence is a fibration in the projective structure.
4.7.8 REMARK The category $[\mathcal{I}, \mathrm{C}]$ inherits a closed simplicial action from that on \underline{C} and is a simplicial model category in either the projective structure or the injective structure.
[To deal with the projective structure, use 4.5 .12 , the claim being that $\forall i \in|I|$, the arrow

$$
\text { hom }(\mathrm{K}, \mathrm{Xi}) \rightarrow \text { harm }(\mathrm{L}, \mathrm{Xi}) \times \operatorname{ham}(\mathrm{L}, \mathrm{Bi}) \text { harn(} \mathrm{K}, \mathrm{Bi})
$$

is a fibration in $\subseteq \underline{C}$ which is acyclic if $L \rightarrow K$ or $X \rightarrow B$ is acyclic. But this is
obvious (matters are levelwise). As for the injective structure, apply 4.5.9.]
[Note: Spelled out, given $F \in$ Mor $_{S}(I, C)$,

$$
\left(\left.F\right|_{-} ^{-} \mid K\right) i=\left.F i\right|_{-} \mid K
$$

and

$$
\begin{aligned}
\left(\left.F\right|_{-} ^{-} \mid K\right)_{i, j} & :\left.\left(\left.F\right|_{-} ^{-} \mid K\right) i\right|_{-} ^{-} \mid \operatorname{HOM}(i, j) \\
& \left.\approx\left(\left.F i\right|_{-} ^{-} \mid K\right)\right|_{-} ^{-} \mid \operatorname{HOM}(i, j) \\
& \left.\approx F i\right|_{-} ^{-} \mid(K \times \operatorname{HOM}(i, j)) \\
& \left.\approx F i\right|_{-} ^{-} \mid(\operatorname{HOM}(i, j) \times K) \\
& \left.\approx\left(\left.F i\right|_{-} ^{-} \mid \operatorname{HOM}(i, j)\right)\right|_{-} ^{-} \mid K \\
& \xrightarrow{\left.F_{i, j}\right|_{-} ^{-} \mid i d} \\
& \left.\left.F j\right|_{-} ^{-} \mid K \approx\left(\left.F\right|_{-} ^{-} \mid K\right) j .\right]
\end{aligned}
$$

To proceed further, it will be necessary to cite some facts from enriched category theory sticking as always to the case when the underlying symmetric monoidal category is SISET.

The following terms will be admitted without explanation:

$$
\left[\begin{array}{l}
\text { S-complete } \\
\text { S-cocomplete. }
\end{array}\right.
$$

E.g.: SISET is S-complete and S-cocamplete.
4.7.9 RAPPEL If I is a small category, then [I,SET] is complete and cocomplete.
4.7.10 EXAMPLE If I is a small S-category, then $S[I, S I S E T]$ is S-complete and S-cocamplete.
4.7.11 THEOREM Let I be a small S-category.

- If $\mathfrak{I l}$ is S -complete, then $\mathrm{S}[\mathrm{I}, \mathrm{Il}]$ is S -complete.
- If ill is S-cocomplete, then $S[I, M]$ is S-cocomplete.
4.7.12 DEFINITION Let m_{i} ' ${ }^{\prime}$ be S -categories and let

$$
\left[\begin{array}{l}
F: m \rightarrow m^{\prime} \\
F^{\prime}: n^{\prime} \rightarrow \text { In }
\end{array}\right.
$$

be S-functors - then F is a left S-adjoint for F^{\prime} and F^{\prime} is a right S-adjoint for F if there exist isomorphisms

$$
\operatorname{HOM}\left(F X, X^{\prime}\right) \approx \operatorname{HOM}\left(X, F^{\prime} X^{\prime}\right)
$$

natural in $X \in O, X^{\prime} \in O^{\prime}$.

4.7.13 EXAMPLE Let $\subseteq \underline{C}$ be a simplicial model category -- then the S-functor

$$
\left.\left.\mathrm{X}\right|_{-} ^{-}\right|_{-}: \text {SISET } \rightarrow \mathbb{C}
$$

is a left S-adjoint for

$$
\operatorname{HOM}(X, \longrightarrow): \ell \rightarrow \text { SISET }
$$

and the S-functor

$$
-\mid K: \mathbb{C} \rightarrow \mathbb{C}
$$

is a left S-adjoint for

$$
\text { hom }(K, \longrightarrow): \mathbb{C} \rightarrow \mathbb{C}
$$

[The simplicial action $\left.\right|_{-} ^{-}$on \underline{C} is closed, so one can quote 4.4.19.]
4.7.14 DEFINITICN Let M be an S-category.

- 1 is tensored if every S-functor
has a left S-adjoint.
[Note: If in is tensored, then $\forall X \& \forall K$, there is an object $X \otimes K \in O$ and isomorphisms

$$
\operatorname{HOM}(X \otimes K, Y) \approx \operatorname{map}(K, \operatorname{HOM}(X, Y)) .]
$$

- Ill is cotensored if every S-functor

$$
\text { HOM }(-, X): \mathbb{M}^{\mathrm{OP}} \rightarrow \text { SISET }
$$

has a left S-adjoint.
[Note: If II is cotensored, then $\forall X \& \forall K$, there is an object $X^{K} \in O$ and i.samorphisms

$$
\left.\operatorname{HOM}^{O P}\left(X^{K}, Y\right) \approx \operatorname{map}(K, \operatorname{HOM}(Y, X)) .\right]
$$

4.7.15 LEMMA Let ill be an S-category.

- Suppose that ill is tensored - then $\forall \mathrm{K}$, the correspondence

$$
X \rightarrow X Q K
$$

induces an S -functor $\mathrm{m} \rightarrow \mathrm{m}$.

- Suppose that \mathfrak{n} is cotensoned -- then $\forall \mathrm{K}$, the correspondence

$$
x \rightarrow x^{K}
$$

induces an S-functor $\mathrm{ml} \rightarrow \mathrm{m}$.
E.g.: SISET is tensored and cotensored:
4.7.16 EXAMPLE Let \mathfrak{I} be a small S-category - then $S[I$, SISET] is tensored and cotensored.
[Let $\mathrm{F}: 1 \rightarrow$ SISET be an S-functor.

- Given K, put

$$
(F \otimes K) i=F i \times K
$$

and define

$$
(F \cap K)_{i, j}: H C M(i, j) \rightarrow \operatorname{map}((F \otimes K) i,(F \otimes K) j)
$$

by

$$
\begin{aligned}
& \underset{H(i, j) \xrightarrow{F_{i, j}}}{\xrightarrow{(-W K)} \operatorname{map}(F i, F j)} \\
& \xrightarrow{(-F j} \operatorname{map}(F i \times K, F j \times K) .
\end{aligned}
$$

- Given K, put

$$
\left(F^{K}\right) i=\operatorname{map}(K, F i)
$$

and define

$$
\left(F^{K}\right)_{i, j}: \operatorname{HOM}(i, j) \rightarrow \operatorname{map}\left(\left(F^{K}\right) i,\left(F^{K}\right) j\right)
$$

by

$$
\underset{H M(i, j)}{F_{i, j}} \operatorname{map}(F i, F j)
$$

$$
\left((-)^{\mathrm{K}}\right)_{\mathrm{Fi}, \mathrm{Fj}}
$$

$$
>\operatorname{map}(\operatorname{map}(K, F i), \operatorname{map}(K, F j)) .]
$$

4.7.17 EXAMPLE S-CAT is an S-category (cf. 4.3.9). As such, it is tensored and cotensored.
[The cotensored situation is this. If K is connected, then $\left|I^{K}\right|=|I|$ and

$$
\operatorname{HOM}^{(K)}(i, j)=\operatorname{map}(K, \operatorname{HOM}(i, j)) .
$$

In general,

$$
I^{K}=\prod_{K \in \pi_{0}(K)} I^{K_{K}}
$$

where K_{k} is a component of K, thus

$$
\left.\left|\mathrm{I}^{\mathrm{K}}\right|=|\mathcal{I}|^{\pi_{0}^{(\mathrm{K})}} \cdot\right]
$$

[Note: Take $K=\Delta[n]$ - then

$$
\begin{aligned}
\operatorname{HOM}^{(\Delta[n])}(i, j) & =\operatorname{map}(\Delta[n], \operatorname{HOM}(i, j)) \\
\Rightarrow & \\
& \left.I^{\Delta[n]}=\mathbb{I}^{(n)} .\right]
\end{aligned}
$$

N.B. We have

$$
|I \otimes K|=|I| \times \pi_{0}(K)=\pi_{0}(K) \cdot|I|
$$

4.7.18 THEOREM Let $3 l$ be an S-category. Assume: ill is tensored and cotensored.

- m^{\prime} is S -complete iff Un is complete.
- \mathfrak{m} is S-cocomplete iff U is cocomplete.
4.7.19 REMARK let \subseteq be a category. Assume: \subseteq admits a closed simplicial action $\left.\right|_{-} ^{-} \mid-$then the S-category $\left.\right|_{-} ^{-} \mid \underline{C}$ is tensored and cotensored (cf. 4.4.20). Recalling that $\left.U\right|^{-} \mid \mathbb{C}$ is isomorphic to \underline{C}, it follows that

$$
\left\lvert\, \begin{aligned}
& \mathrm{I}_{-}^{-} \underline{C} \text { is S-complete iff } \underline{C} \text { is complete } \\
& \left.\right|_{-} ^{-} \underline{C} \text { is S-cocomplete iff } \underline{C} \text { is cocomplete. }
\end{aligned}\right.
$$

[Note: This applies in particular if C is presentable.]
4.7.20 THEOREM Let $\left.\right|_{J} ^{-}$be small S-categories and let ill be a tensored and
cotensored S-category. Suppose that $K: I \rightarrow J$ is an S-functor and

$$
K^{*}: S[\mathfrak{J}, \mathrm{Ml}] \rightarrow \mathrm{S}[\mathrm{I}, \mathrm{~m}]
$$

is the induced S-functor.

- If \mathfrak{m} is S-complete, then $K *$ has a right adjoint

$$
K_{t}: S[I, i l l] \rightarrow S[\mathcal{J}, m]
$$

- If Ill is S-cocomplete, then K^{*} has a left adjoint

$$
K_{!}: S[I, m] \rightarrow S[J, m]
$$

So, if Ill is S-complete and S-cocomplete (as well as tensored and cotensored), then

$$
\mathrm{K}^{*} \equiv \mathrm{UK} * \mathrm{US}[\mathcal{J}, \mathrm{ml}] \rightarrow \mathrm{US}[\mathcal{I}, \mathrm{Il}]
$$

has a right adjoint

$$
K_{t} \equiv U K_{t}: U S[I, n l] \rightarrow U S[J, \sharp n]
$$

and a left adjoint

$$
K_{!} \equiv \mathrm{UK}_{!}: \mathrm{US}[\mathrm{I}, \mathrm{~m}] \rightarrow \operatorname{US}[\mathrm{I}, \mathrm{ml}] .
$$

But

$$
\left.\left.\right|_{-} \operatorname{US}[\mathrm{I}, \mathrm{mi}] \approx[\mathrm{I}, \mathrm{~m}] \mathrm{S}[\mathrm{~J}, \mathrm{~m}] \approx[\mathrm{J}, \mathrm{~m}]\right]_{S} .
$$

Therefore the constituents of the setup become

$$
\mathrm{K}^{*}:[\mathrm{J}, \mathrm{~m}]_{\mathrm{S}} \rightarrow[\mathrm{I}, \mathrm{~m}]_{\mathrm{S}}
$$

and

$$
\left\lvert\, \begin{aligned}
& \mathrm{K}_{+}:[\mathrm{I}, \mathrm{~m}]_{S} \rightarrow[\mathrm{~J}, \mathrm{~m}]_{S} \\
& \mathrm{~K}_{!}:[\mathrm{I}, \mathrm{~m}]_{S} \rightarrow[\mathrm{~J}, \mathrm{~m}]_{S}
\end{aligned}\right.
$$

Assume now that \mathbb{C} is a combinatorial simplicial model category -- then the S-category $\mathbb{C}\left(=\left.\right|^{-} \mid \mathrm{C}\right)$ is tensored and cotensored, S -complete and S -cocomplete (cf. 4.7.19). The preceding machinery is thus applicable (replace fin by \mathbb{C}). Accordingly, bearing in mind 4.7.4 and 4.7.7, we see that 0.26 .16 and 0.26 .17 go through with no change, i.e.,

$$
\left[\begin{array}{l}
\left(K_{1}, K^{*}\right) \text { is a model pair (Projective Structure) } \\
\left(K^{*}, K_{4}\right) \text { is a model pair (Injective Structure). }
\end{array}\right.
$$

4.7.21 THEOREM † If $K: I \rightarrow J$ is a DK-equivalence, then the model pairs

$$
\left.\right|_{-} ^{-}\left(K_{!}, K^{*}\right), ~\left(K^{*}, K_{+}\right) .
$$

are model equivalences (cf. 0.26.18).

4.8 REALIZATION AND TOTALIZATION

Let \underline{C} be a simplicial model category. Assume: \underline{C} is complete and cocomplete.
4.8.1 DEFINITION Given an X in SIC, put

$$
|x|=\left.\int^{[n]} x_{n}\right|^{-} \mid \Delta[n] .
$$

[^1]Then $|x|$ is called the realization of X.
N.B. The assignment $\mathrm{X} \rightarrow|\mathrm{X}|$ is a functor SIC \rightarrow C.
4.8.2 LEMMA | | admits a right adjoint $\sin : \underline{C} \rightarrow \underline{\text { SIC, }}$, where

$$
\sin _{\mathrm{n}} \mathrm{Y}=\operatorname{hom}(\Delta[\mathrm{n}], \mathrm{Y})
$$

PROOF In fact,

$$
\begin{aligned}
\operatorname{Mor}(|\mathrm{x}|, \mathrm{Y}) & \approx \operatorname{Mor}\left(\left.f^{[\mathrm{n}]} \mathrm{X}_{\mathrm{n}}\right|_{-} ^{-} \mid \Delta[\mathrm{n}], \mathrm{Y}\right) \\
& \approx \delta_{[\mathrm{n}]} \operatorname{Mor}\left(\left.\mathrm{X}_{\mathrm{n}}\right|_{-} ^{-} \mid \Delta[\mathrm{n}], \mathrm{Y}\right) \\
& \approx \delta_{[\mathrm{n}]} \operatorname{Mor}\left(\mathrm{X}_{\mathrm{n}}, \operatorname{han}(\Delta[\mathrm{n}], \mathrm{Y})\right) \\
& \approx \delta_{[\mathrm{n}]} \operatorname{Mor}\left(\mathrm{X}_{\mathrm{n}}, \sin \mathrm{~S}_{\mathrm{n}} \mathrm{Y}\right) \\
& \approx \operatorname{Nat}(\mathrm{X}, \sin \mathrm{Y})
\end{aligned}
$$

4.8.3 EXAMPLE Take $\underline{C}=\underline{O G H}$, thus

$$
\mid \text { |:SIOGH }+\underline{\text { OGH. }}
$$

Now let X be a simplicial set thought of as a discrete simplicial space, i.e., as an object dis X of SICGH -- then

$$
\mid \text { dis } x|\approx| x \mid
$$

the entity on the RHS being the geometric realization of X .
4.8.4 EXAMPLE Take $\underline{C}=\underline{\text { SISET }}$ and let X be a simplicial object in C . One can fix $[m]$ and form $\left|x_{m}^{h}\right|$, the geometric realization of $[n] \rightarrow X([n],[m])$, and one can fix $[\mathrm{n}]$ and form $\left|\mathrm{X}_{\mathrm{n}}^{\mathrm{V}}\right|$, the gecmetric realization of $[\mathrm{m}] \rightarrow \mathrm{X}([\mathrm{n}],[\mathrm{m}])$. The
assignments $\left.\right|_{-} ^{[m] \rightarrow\left|x_{m}^{h}\right|}\left[\begin{array}{l}{[n] \rightarrow\left|x_{n}^{V}\right|}\end{array}\right.$ define simplicial objects $\left.\right|_{-\quad x^{h}} ^{x^{v}}$ in CGH and their realizations $\left.\right|_{-} ^{-}\left|x^{h}\right|$ are homeomorphic to the geometric realization of $|x|$.
4.8.5 REMARK In 4.4, $\sin Y$ was denoted by the symbol $Y^{\Delta[]}$ and there it was shown that

$$
\operatorname{hom}(\mathrm{K}, \mathrm{Y}) \approx \mathrm{Y}^{\Delta[]_{\mathrm{C}} \mathrm{~K}} \quad \text { (cf. 4.4.25) }
$$

Therefore

$$
\left.M_{n} \sin Y=M_{n} X^{\Delta I}\right] \approx \operatorname{hom}(\dot{\Delta}[n], Y) \quad(c f .4 .4 .23)
$$

4.8.6 THEOREM Equip SIC with its Reedy structure - then the adjoint situation (| |,sin) is a model pair.

PROOF It suffices to show that sin preserves fibrations and acyclic fibrations. So let $\mathrm{Y} \rightarrow \mathrm{Y}^{\prime}$ be a fibration in C and consider the arrow

$$
\sin _{n} Y \rightarrow M_{n} \sin Y \times M_{n} \sin Y^{\prime} \sin _{n} Y^{\prime}
$$

or still, the arrow

$$
\operatorname{hom}(\Delta[n], Y) \rightarrow \operatorname{ham}(\dot{\Delta}[n], Y) \times \underset{\operatorname{ham}\left(\dot{\Delta}[n], Y^{\prime}\right)}{\operatorname{hom}\left(\Delta[n], Y^{\prime}\right) .}
$$

Then this arrow is a fibration in \mathbb{C} that, moreover, is acyclic if $Y \rightarrow Y^{\prime}$ is acyclic (cf. 4.5.12) .
4.8.7 COROLIARY The realization functor
$|\mid:$ SIC (Reedy Structure) $\rightarrow \underline{C}$
preserves cofibrations and acyclic cofibrations.
4.8.8 LEMMA Let X be a simplicial object in C -- then

$$
|x| \approx \operatorname{colim}_{n}|x|_{n^{\prime}}
$$

where

$$
|\mathrm{x}|_{\mathrm{n}}=\left.f^{[\mathrm{k}]} \mathrm{x}_{\mathrm{k}}\right|_{-} ^{-} \mid \Delta[\mathrm{k}]^{(\mathrm{n})}
$$

PROOF The functors $\left.X_{n}\right|_{-} ^{-}$- are left adjoints, hence preserve colimits, so

$$
\begin{aligned}
|x| & =\left.f^{[n]} x_{n}\right|_{-} ^{-} \mid \Delta[n] \\
& \left.\approx \rho^{[n]} x_{n}\right|_{-} ^{-} \mid \operatorname{colim} k_{k} \Delta[n](k) \\
& \left.\approx f^{[n]} \operatorname{colim}_{k} x_{n}\right|_{-} ^{-} \mid \Delta[n](k) \\
& \left.\approx \operatorname{colim}_{n} \rho^{[k]} x_{k}\right|_{-} ^{-} \mid \Delta[k] \\
& \approx \operatorname{colim}_{n}|x|_{n} .
\end{aligned}
$$

4.8.9 LinMA $\forall \mathrm{n}>0$, there is a pushout square

$$
\begin{aligned}
& \left.\left.\mathrm{I}_{\mathrm{n}} \mathrm{X}\right|_{-} ^{-}\left|\Delta[\mathrm{n}] \underset{\left.\mathrm{L}_{\mathrm{n}} \mathrm{X}\right|_{-} ^{-} \mid \dot{\Delta}[\mathrm{n}]}{\mathrm{U}} \mathrm{X}_{\mathrm{n}}\right|_{-}^{-}|\dot{\Delta}[\mathrm{n}] \longrightarrow| \mathrm{X}\right|_{\mathrm{n}-1} \\
& \underset{x_{n}}{\stackrel{\downarrow}{-} \mid \Delta[n]} \xrightarrow{\left.\stackrel{+}{x}\right|_{n}}
\end{aligned}
$$

4.8.10 LEMMA If X is a cofibrant object in SIC (Reedy Structure), then $\forall \mathrm{n}>0$, the arrow $|\mathrm{x}|_{\mathrm{n}-1} \rightarrow|\mathrm{x}|_{\mathrm{n}}$ is a cofibration in C.

PROOF The latching morphism $L_{n} X \rightarrow X_{n}$ is a cofibration in C. Therefore the arrow

$$
\left.\mathrm{L}_{\mathrm{n}} \mathrm{x}\right|_{-} ^{-}\left|\Delta[\mathrm{n}] \underset{\left.\mathrm{L}_{\mathrm{n}} \mathrm{x}\right|_{--} ^{-} \mid \dot{\Delta}[\mathrm{n}]}{\mathrm{U}} \mathrm{X}_{\mathrm{n}}\right|_{-}^{-}\left|\dot{\Delta}[\mathrm{n}] \longrightarrow \mathrm{x}_{\mathrm{n}}\right|_{-}^{-} \mid \Delta[\mathrm{n}]
$$

is a cofibration in \subseteq (cf. 4.5.9), from which the assertion.
N.B. If X is a cofibrant object in SIC (Reedy Structure), then both $L_{n} X$ and X_{n} are cofibrant objects in C, thus $\left.\mathrm{L}_{\mathrm{n}} \mathrm{X}\right|_{-} ^{-}\left|\dot{\Delta}[\mathrm{n}], \mathrm{L}_{\mathrm{n}} \mathrm{X}\right|_{-}^{-} \mid \Delta[\mathrm{n}]$, and $\left.\mathrm{X}_{\mathrm{n}}\right|_{-} ^{-} \mid \dot{\Delta}[\mathrm{n}]$ are cofibrant objects in C , so

$$
\left.\left.\mathrm{L}_{\mathrm{n}} \mathrm{x}\right|_{-} ^{-\mid \Delta[n]} \underset{\left.L_{n} x\right|_{-} ^{-} \mid \dot{\Delta}[n]}{U} \mathrm{x}_{\mathrm{n}}\right|_{-} ^{-} \mid \dot{\Delta}[\mathrm{n}]
$$

is a cofibrant object in \mathbb{C} (cf. 4.5.10).
4.8.11 LEMMA Suppose that $\left.\right|_{-} ^{-} \mathrm{X}$ are cofibrant objects in SIC (Reedy Structure)
and $f: X \rightarrow Y$ is a weak equivalence - then the arrow

$$
\begin{aligned}
& \left.L_{n} X\right|_{-} ^{-\mid \Delta[n]} \underset{\left.L_{n} X\right|_{-} ^{-} \mid \dot{\Delta}[n]}{U} X_{n} L_{-}^{-\mid \dot{\Delta}[n]} \\
& \left.\longrightarrow L_{n} Y\right|_{-} ^{-}\left|\Delta[n] \quad L_{n} Y\right|_{-}^{-} \mid \dot{\Delta}[n]
\end{aligned}
$$

is a weak equivalence in C .
PROOF The functor $\mathrm{L}_{\mathrm{n}}: \underline{S I C} \rightarrow \underline{C}$ sends acyclic cofibrations between cofibrant objects to weak equivalences, hence preserves weak equivalences between cofibrant objects (cf. 2.2.4). This said, consider the commatative diagram

Then the horizontal arrows are cofibrations (cf. 4.5.10) and the vertical arrows are weak equivalences (cf. 4.5.19). Now apply 0.1.20.
4.8.12 THEOREM Suppose that $\left.\right|_{-} ^{X}$ are cofibrant objects in SIC (Reedy Structure) and $f: X \rightarrow Y$ is a weak equivalence - then $|f|:|X| \rightarrow|Y|$ is a weak equivalence.

PROOF Since $\left\{\begin{array}{c}-\quad|x|_{0}=x_{0} \\ |y|_{0}=y_{0}\end{array}\right.$ and since $\forall n,\left\{\begin{array}{c}|x|_{n+1} \longrightarrow|y|_{n+1} \\ |y|_{n} \longrightarrow \mid\end{array}\right.$ is a
cofibration in C (cf. 4.8.10), one may view $\left.\right|_{\left\{|\mathrm{X}|_{\mathrm{n}}: n \geq 0\right\}} \quad\left\{|\mathrm{Y}|_{\mathrm{n}}: \mathrm{n} \geq 0\right\}$, as cofibrant objects
in $\mathrm{FIL}(\mathrm{C})$ (cf. 0.1.13). So, to prove that $|\mathrm{f}|:|\mathrm{X}| \rightarrow|\mathrm{Y}|$ is a weak equivalence, it need anly be shown that $\forall n,|f|_{n}:|X|_{n} \rightarrow|y|_{n}$ is a weak equivalence. To this end, work with
and use induction.
4.8.13 EXAMPLE Take $\underline{C}=\underline{\text { SISET }}$ (Kan Structure) and suppose that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a weak equivalence, i.e., $\forall n, f_{n}: X_{n} \rightarrow Y_{n}$ is a simplicial weak equivalence -- then $|\mathrm{f}|:|\mathrm{X}| \rightarrow|\mathrm{Y}|$ is a simplicial weak equivalence.
[All simplicial objects in $\hat{\Delta}$ are cofibrant in the Reedy structure (a.k.a. structure R).]

Let \underline{C} be a simplicial model category. Assume: $\subseteq \underline{C}$ is complete and cocomplete.
4.8.14 DEFINITION Given an X in COSIC, put

$$
\text { tot } x=\int_{[n]} \text { hom }\left(\Delta[n], x_{n}\right)
$$

Then tot X is called the totalization of X .
N.B. The assignment $X \rightarrow$ tot X is a functor COSIC $\rightarrow C$.
4.8.15 LEMMA tot admits a left adjoint cosin: $\underline{C} \rightarrow$ COSIC, where

$$
\operatorname{cosin}_{\mathrm{n}} \mathrm{Y}=\left.\mathrm{Y}_{\mathrm{n}}\right|_{-} ^{-} \mid \Delta[\mathrm{n}]
$$

PROOF In fact,

$$
\begin{aligned}
\operatorname{Mor}(Y, \text { tot } X) & \approx \operatorname{Mor}\left(Y, \delta_{[n]} \operatorname{hom}\left(\Delta[n], X_{n}\right)\right) \\
& \approx \delta_{[n]} \operatorname{Mor}\left(Y, \operatorname{hom}\left(\Delta[n], X_{n}\right)\right) \\
& \approx \delta_{[n]} \operatorname{Mor}\left(\left.Y\right|_{-} ^{-} \mid \Delta[n], X_{n}\right) \\
& \approx \delta_{[n]} \operatorname{Mor}\left(\operatorname{cosin}_{\mathrm{n}} \mathrm{Y}, X_{\mathrm{n}}\right) \\
& \approx \operatorname{Nat}(\operatorname{cosin} Y, X) .
\end{aligned}
$$

4.8.16 EXAMPLE Take $\underline{C}=$ SISET and in 4.4.9, let $I=\triangle-$ then

$$
\mathrm{HOM}(\mathrm{~F}, \mathrm{G}) \approx \delta_{[\mathrm{n}]} \operatorname{map}(\mathrm{F}[\mathrm{n}], \mathrm{G}[\mathrm{n}])
$$

Specialize to $\left.\right|_{-} ^{-} F=Y_{\Delta}$, thus

$$
\begin{aligned}
\operatorname{HOM}\left(Y_{\Delta^{\prime}} X\right) & \approx \delta_{[n]} \operatorname{map}\left(Y_{\Delta}[n], X[n]\right) \\
& \approx \delta_{[n]} \operatorname{map}\left(\Delta[n], X_{n}\right) \\
& \approx \delta_{[n]} \operatorname{ham}\left(\Delta[n], X_{n}\right) \\
& \approx \text { tot } X .
\end{aligned}
$$

4.8.17 EXAMPLE Given a simplicial set K and a compactly generated Hausdorff space X, let X^{K} be the cosimplicial object in OGH with $\left(X^{K}\right)_{n}=X^{K}{ }^{K}-$ then $^{|K|}$ \therefore tot x^{K}.
4.8.18 REMARK There are obvious analogs for tot of 4.8 .6 and 4.8.12: Take COSIC in its Reedy structure - then the adjoint situation (cosin, tot) is a model pair and if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a weak equivalence, where X, Y are fibrant, then tot $\mathrm{f}:$ tot $\mathrm{X} \rightarrow$ tot Y is a weak equivalence.
4.8.19 NOTATION Given a simolicial set K, put.

$$
\Delta K=\text { gro }_{\Delta} K\left(\text { a.k.a. } i_{\Delta} K(\equiv \Delta / K)\right)
$$

and let $\Delta^{\mathrm{OP}} \mathrm{K}$ be its opposite - then there are functors

$$
\Delta K: \Delta K \rightarrow \text { SISET }
$$

and

$$
\Delta \mathrm{OP}_{\mathrm{K}: \triangle^{O P}}^{\mathrm{K}} \rightarrow \underline{\text { SISET }}^{\mathrm{OP}}
$$

4.8.20 NOTATION Given a category C, write K-SIC for the functor category $\left[\underline{\Delta}^{O P} K, \underline{Q}\right]$ and K-COSIC for the functor category $[\underline{A K}, \underline{C}]$.
4.8.21 DEFINITION A K-simplicial object in C is an object in K-SIC and a K-cosimplicial object in C is an object in K -COSIC.
[Note: Take $K=\Delta[0]$ to recover SIC and COSIC.]
4.8.22. LEMMA $\triangle K$ and $\triangleq^{O P} K$ are Reedy categories.
[Note: Generalizing 0.27.39, take $I=\unlhd^{O P} \mathrm{~K}$ to realize 0.27 .35 and take $I=\Delta K$ to realize 0.27 .37.$]$

Consequently, if C is a complete and cocomplete model category, then

K -SIC and K -COSIC
are model categories (Reedy Structure).
Assume now that \underline{C} is, in addition, a simplicial model category.

- There is a realization functor

$$
\left|\left.\right|_{K}: K-\underline{S I C}+\underline{C}\right.
$$

that sends X to

$$
|\mathrm{x}|_{\mathrm{K}}=\left.f^{\Delta K} \mathrm{x}\right|_{-} ^{-} \mid \Delta K,
$$

where

$$
\left.\mathrm{x}\right|_{-} ^{-} \mid \Delta K: \Delta^{O P} \mathrm{~K} \times \Delta K+\mathrm{C}
$$

is the composite

- There is a totalization functor

$$
\operatorname{tot}_{\mathrm{K}}: \mathrm{K}-\cos I \mathrm{C} \rightarrow \mathrm{C}
$$

that sends X to

$$
\text { tot }_{K} X=\delta_{\Delta K} \operatorname{hom}(\Delta K, X)
$$

where

$$
\operatorname{ham}(\Delta K, X): \underline{\Delta}^{O P} \mathrm{~K} \times \underline{\mathrm{K}} \rightarrow \underline{\mathrm{C}}
$$

is the composite

$$
\Delta^{\mathrm{OP}} \mathrm{~K} \times \Delta \mathrm{K} \xrightarrow{\Delta^{\mathrm{OP}} \mathrm{~K} \times \mathrm{X}} \underline{\text { SISET }}^{\mathrm{OP}} \times \underline{\mathrm{c}} \xrightarrow{\text { hom }} \underset{ }{\mathrm{c}} .
$$

Let $p_{K}: K \rightarrow \Delta[0]$ be the canonical arrow -n then

$$
\underline{\Delta K} \rightarrow \Delta \Delta[0]=\Delta
$$

and

$$
\Delta^{\mathrm{OP}} \mathrm{~K} \rightarrow \Delta^{\mathrm{OP}} \Delta[0]=\underline{\Delta}^{\mathrm{OP}}
$$

- The induced map

$$
\underline{\text { SIC }} \rightarrow \mathrm{K}-\mathrm{SIC}
$$

has a left adjoint

$$
\operatorname{lan}_{\mathrm{K}}: K-S I C+S I C
$$

and there is a commatative diagram

N.B. $\left|\left.\right|_{\mathrm{K}}\right.$ admits a right adjoint

$$
\sin _{\mathrm{K}}: \underline{C} \rightarrow K-\underline{S I C}
$$

and the adjoint situation ($\left|\left.\right|_{K^{\prime}} \sin _{K}\right.$) is a model pair.

- The induced map

$$
\underline{\cos I C} \rightarrow K-\cos I C
$$

has a right adjoint

$$
\operatorname{ran}_{\mathrm{K}}: \mathrm{K}-\operatorname{cosic} \rightarrow \operatorname{cosic}
$$

and there is a commatative diagram

N.B. tot ${ }_{K}$ admits a left adjoint

$$
\operatorname{cosin}_{K}: \underline{C} \rightarrow K-\cos I C
$$

and the adjoint situation (cosin ${ }_{K}$, tot ${ }_{K}$) is a model pair.

$$
\text { 4.8.23 THEOREM Suppose that }\left.\right|_{-} ^{--} \mathrm{X} \text { are cofibrant objects in K-SIC (Reedy }
$$

Structure) and $f: X \rightarrow Y$ is a weak equivalence - then $|f|_{K}:|X|_{K} \rightarrow|Y|_{K}$ is a weak equivalence.
4.8.24 THEOREM Suppose that $\left.\right|_{\mathrm{X}} ^{-\mathrm{X}}$ are fibrant objects in K-COSIC (Reedy Structure) and $f: X \rightarrow Y$ is a weak equivalence \rightarrow then $\operatorname{tot}_{K} f: \operatorname{tot}_{K} X \rightarrow \operatorname{tot}_{K} Y$ is a
weak equivalence.

4.9 HOMOTOPICAL ALGEBRA

4.9.1 NOIATION Let I be a small category -- then

$$
\Delta / I=\Delta / \text { ner } I=g_{\Delta} \text { ner } I=i_{\Delta} \text { ner } I=\Delta \text { ner } I .
$$

Abbreviate and call any of these renditions ΔI, thus ΔI is iscmorphic to the comma category

$$
\left|1, \mathrm{~K}_{\underline{\mathrm{I}}}\right|: \quad \mathrm{u} \left\lvert\, \begin{array}{ll}
[\mathrm{m}] \xrightarrow{\mathrm{f}} \mathrm{n}] \\
& \\
\underline{I}=\underline{\mathrm{I}}
\end{array}\right.
$$

and

$$
\underline{\Delta}^{O P} \underline{I} \equiv(\Delta I)^{O P}
$$

- Define $\tau_{\underline{I}}: \underline{\Delta I} \rightarrow \underline{I}$ by

$$
{ }_{\underline{I}}([\mathrm{~m}] \xrightarrow{\mathrm{u}} \underline{I})=u(\mathrm{~m}) .
$$

- Define $\sigma_{\underline{I}}: \Delta^{O P_{I}} \rightarrow I$ by

$$
\sigma_{\underline{I}}([\mathrm{~m}] \xrightarrow{u} \underline{I})=u(0) .
$$

4.9.2 EXAMPLE We have

$$
\Delta I=\Delta \text { and } \underline{\Delta}^{O P} \underline{\underline{1}}=\Delta^{O P}
$$

4.9.3 LEMMA Let $\underline{\mathcal{C}}$ be a cormplete and cocomplete model category. Suppose that $F: \underline{I} \rightarrow \underline{C}$ is a functor such that $\forall i \in O B I, F i$ is cofibrant (fibrant) -- then $F \circ \sigma_{\underline{I}}\left(F \circ \tau_{I}\right)$ is a cofibrant (fibrant) object in $\left[\triangle^{O P_{I}} \underset{\underline{C}}{ }\right]$ ($[\Delta I, C]$) (Reedy Structure) (cf. 4.8.22)).

Let \underline{C} be a sinplicial model category. Assume: \underline{C} is complete and cocomplete. Fix a small category I.

- The uncorrected homotopy colimit of a functor $F: \underline{I} \rightarrow \underline{C}$ is the coend

denoted

$$
\text { hocoling }_{\underline{I}} F .
$$

- The uncorrected hamotopy limit of a functor $F: \underline{I} \rightarrow \underline{C}$ is the end

$$
f_{I} \operatorname{hom}(\text { ner }(I / \longrightarrow), F),
$$

denoted

$$
\text { holim }{ }_{\underline{I}} F \text {. }
$$

4.9.4 EXAMPLE Take $\mathrm{C}=$ SISET (Kan Stracture) -- then (cf. 4.5.2)

$$
\left.\mathrm{Fi}\right|_{\sim} ^{-} \mid \operatorname{ner}(i \backslash I)=\mathrm{Fi} \times \operatorname{ner}(\mathrm{i} \backslash I)
$$

and

$$
\operatorname{hom}(\operatorname{ner}(\underline{I} / i), F i)=\operatorname{map}(\operatorname{ner}(I / i), F i) .
$$

4.9.5 EXAMPLE Take $\underline{\mathrm{C}}=\mathbf{O H H}$ (Quillen Structure) -- then (cf. 4.5.3)

$$
\left.F i\right|_{-} \mid \operatorname{ner}(i \backslash I)=F i x_{k} B(i \backslash I)
$$

and

$$
\operatorname{hom}(\operatorname{ner}(\underline{I} / i), F i)=F i^{B(I / i)}
$$

4.9.6 APPLICATION

- Let $F: \underline{I} \rightarrow \underline{\text { SISET }}$ be a functor -- then

$$
\begin{aligned}
\mid \text { hocolim }_{\underline{I}} F \mid & =\left|f^{i} F i \times \operatorname{ner}(i \backslash I)\right| \\
& \approx f^{i}|F i \times \operatorname{ner}(i \backslash I)| \\
& \approx \delta^{i}|F i| \times \times_{k} B(i \backslash I) \\
& \approx \text { hocom }_{I}|F|
\end{aligned}
$$

a natural homeomorphism of compactly generated Hausdorff spaces.

- Let $F: I \rightarrow$ CGH be a functor - then

$$
\begin{aligned}
\sin \text { holim }_{I} F & =\sin \int_{i} F i^{B(I / i)} \\
& \approx \int_{i} \sin F i^{B(I / i)} \\
& \approx \int_{i} \operatorname{map}(\operatorname{ner}(I / i), \sin F i) \\
& =\operatorname{holim}_{I} \sin F,
\end{aligned}
$$

a natural isomorphism of simplicial sets.
[Note: If K is a simplicial set and if X is a compactly generated Hausdorff space, then

$$
\sin x^{|K|} \approx \operatorname{map}(K, \sin X) .
$$

Proof:

$$
\begin{aligned}
\sin x^{|K|}([n]) & \approx C\left(\Delta^{n}, x^{|K|}\right) \\
& \approx C\left(\Delta^{n} x_{k}|K|, x\right) \\
& \approx C(|\Delta[n] \times K|, x) \\
& \approx \operatorname{Nat}(K \times \Delta[n], \sin X) \\
& \left.\approx \operatorname{map}_{n}(K, \sin x) .\right]
\end{aligned}
$$

4.9.7 EXAMPLE Take $\underline{C}=C$ CAT (External Structure) -- then (cf. 4.5.4)

$$
\begin{aligned}
\left.F i\right|_{-} ^{-} \mid \operatorname{ner}(i \backslash \underline{I}) & =F i \times \text { cat } 0 \operatorname{ner}(i \backslash \underline{I}) \\
& \approx F i \times i \backslash \underline{I}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{hom}(\operatorname{ner}(I / i), F i) & =[\text { cat } \circ \operatorname{ner}(I / i), F i] \\
& \approx[\underline{I} / i, F i] .
\end{aligned}
$$

[Note: Therefore

$$
\operatorname{hocolim}_{\underline{I}} F \approx \underline{I N T}_{\underline{I}} F \quad \text { (cf. B.5) }
$$

a conclusion that is in agreement with B.8.13. Here is another point:

$$
\begin{aligned}
\text { holim }_{I} \text { ner } \circ F & =\int_{i} \operatorname{map}(\text { ner (I/i), ner Fi) } \\
& \approx S_{i} \operatorname{ner}[I / i, F i] \\
& \left.\approx \operatorname{ner}\left(\int_{i}[I / i, F i]\right) .\right]
\end{aligned}
$$

N.B. One can also explicate matters for CAT (Internal Structure) (cf. 4.5.5).
4.9.8 REMARK The functor

$$
\text { hocolim }_{\underline{I}}:[\underline{I}, \underline{C}] \rightarrow \underline{C}
$$

has a right adjoint, viz.

$$
\text { hom }(\operatorname{ner}(-\backslash I), \longrightarrow)
$$

and the functor

$$
\text { holiru } \underset{\underline{I}}{ }:[\underline{I}, \underline{C}] \rightarrow \underline{C}
$$

has a left adjoint, viz.
$\left.—\right|^{-} \mid \operatorname{ner}(\underline{I} / \longrightarrow$.
4.9.9 LEMMA Fix $\mathrm{F} \in \mathrm{Ob}[\mathrm{I}, \mathrm{C}]$-- then

$$
\operatorname{hocolim}_{\underline{I}} \approx f^{\Delta I} F \circ \sigma_{\underline{I}}|I| \Delta n e r \underline{I}\left(=\left|F \circ \sigma_{\underline{I}}\right|_{\text {ner }}\right)
$$

and

$$
\operatorname{holim}_{\underline{I}}^{F} \approx \int_{\Delta I} \operatorname{hom}\left(\Delta n e r \underline{I}, F \circ \tau_{\underline{I}}\right)\left(=\operatorname{tot}_{\text {ner }}{ }_{\underline{F}} \circ \tau_{\underline{I}}\right)
$$

4.9.10 THEOREM Let $F, G: I \rightarrow \underline{C}$ be functors and let $\Xi: F \rightarrow G$ be a natural transformation. Assume: $\forall i, E_{i}: F i \rightarrow G i$ is a weak equivalence - then

$$
\text { hocolim }_{\underline{I}}=\text { hocolim }_{\underline{I}} F \rightarrow \text { hocolim }_{\underline{I}}
$$

is a weak equivalence if $\forall \mathrm{i},\left.\right|_{-} ^{-}$Fi is cofibrant and

$$
\operatorname{holim}_{\underline{I}}^{E: h o l i m} \underset{\underline{I}}{F} \rightarrow \text { holim }_{\underline{I}}
$$

is a weak equivalence if $\forall \mathrm{i},\left.\right|_{-\mathrm{Gi}} ^{-\mathrm{Fi}}$ is fibrant.
PROOF Apply 4.8.23 and 4.8.24 (4.9.3 and 4.9.9 set the stage).
[Note: Take $\mathrm{C}=\underline{\text { CAT }}$ (External Structure) (cf. 4.9.7) - then 4.9.10 does not specialize to B.7.1 (the latter makes no cofibrancy assumptions).]
4.9.11 EXAMPLE Let $F: \underline{I} \rightarrow$ GHi be a functor such that $\forall i, F i$ is cofibrant then there is a natural simplicial weak equivalence

$$
\operatorname{hocolim}_{\underline{I}} \sin F \rightarrow \sin \text { hocolim}_{\underline{I}} F .
$$

[Consider the natural transformation $|\sin F| \rightarrow F: \forall i,|\sin F i|$ is cofibrant and the arrow $\mid \sin$ Fi| \rightarrow Fi is a weak homotopy equivalence, thus the arrow

$$
\text { hocolim }_{\underline{I}}|\sin F| \rightarrow \text { hocolim }_{\underline{I}} F
$$

is a weak homotopy equivalence (cf. 4.9.10). But

$$
\text { hocolim }_{\underline{I}} \sin F \mid \approx \text { hocolim }_{\underline{I}}|\sin F| \quad \text { (cf. 4.9.6) }
$$

so taking adjoints leads to the conclusion.]
[Note: In the same vein, if $F: \underline{I} \rightarrow \underline{\text { SISET }}$ is a functor such that $\forall i$, Fi is fibrant, then there is a natural weak homotopy equivalence

$$
\left.\mid \text { holiml }_{\underline{I}}^{F}\left|\rightarrow \operatorname{holim}_{\underline{I}}\right| F \mid \cdot\right]
$$

4.9.12 REMARK A corollary to 4.9 .10 is the fact that

$$
\text { hocolim_ }_{\underline{I}} \approx\left|\operatorname{lan}_{\text {ner } I}\left(F \circ \sigma_{\underline{I}}\right)\right|
$$

and

$$
\text { holim }_{\underline{I}} F \approx \text { tot } \operatorname{ran}_{\text {ner }}\left(F \circ \tau_{\underline{I}}\right) .
$$

4.9.13 LEMMA (STMPLICIAL REPLACEMENT) Fix $F \in O$ [$\mathrm{I}, \mathrm{C}]$. Define $\| \mathrm{F}$ in SIC by

$$
(\| F)_{n}=\underset{[n] \stackrel{\leftrightarrows}{\leftrightarrows} \underset{\underline{I}}{\|} F f 0 .}{ }
$$

Then

$$
\| F \approx \operatorname{lan}_{\text {ner } I}\left(F \circ \sigma_{\underline{I}}\right)
$$

[Note: Therefore

$$
\text { hocolim }_{\underline{\underline{I}}} F \approx \mid\lfloor F \mid \cdot]
$$

4.9.14 LEMMA (COSTMPLICIAL REPLACEMENT) Fix $F \in O b[\underline{I}, \mathrm{C}]$. Define $\Pi \mathrm{F}$ in COSIC by

$$
\left(\prod F\right)_{\mathrm{n}}=\prod_{[\mathrm{n}] \stackrel{\mathrm{f}}{\rightarrow} \mathrm{I}} \mathrm{Ffn} .
$$

Then

$$
\Pi F \approx \operatorname{ran}_{\text {ner } I}\left(F \circ \tau_{I}\right)
$$

[Note: Therefore

$$
\operatorname{holim}_{\underline{I}} F \approx \text { tot } \Pi \text { F.] }
$$

$$
\begin{aligned}
\text { 4.9.15 EXAMPLE Given } \mathrm{X}: \underline{\Delta}^{\mathrm{OP}} \rightarrow & \underline{\text { SISET, define dia } \mathrm{X}: \underline{\Delta}^{\mathrm{OP}} \rightarrow \underline{\text { SET }} \text { by }} \\
& \text { dia } \mathrm{X}([\mathrm{n}])=\mathrm{X}([\mathrm{n}])([\mathrm{n}]) .
\end{aligned}
$$

But also, by definition, $|x|: \underline{\Delta}^{O P} \rightarrow \underline{\text { SET }}$ and, up to natural iscmorphism, dia and | | are the same (both are left adjoints for \sin). Now form $\downarrow \times$ per 4.9.13,
thus

$$
1 \Perp \mathrm{x}: \underline{\Delta}^{\mathrm{OP}} \rightarrow \text { SISET. }
$$

And then

$$
\operatorname{hocolim}_{\triangle} \mathrm{OP}^{\mathrm{X}} \approx|\underline{x}| \approx \text { dia } \Perp \mathrm{x} .
$$

APPENDIX

Recall that \underline{I} is a small category and \underline{C} is a simplicial model category which is both complete and cocomplete.

If $F: \underline{I} \rightarrow C$ is a functor, then

$$
\text { hocolim }_{\underline{I}} \mathbf{F}=\left.f^{\underline{I}^{\mathrm{OP}}} \mathrm{~F}\right|_{-} ^{-} \mid \text {ner }(-\backslash \underline{I})
$$

is its uncorrected homotopy colimit and

$$
\left.\operatorname{holim}_{\underline{I}} F=\delta_{\underline{I}} \text { hom(ner }(I /-), F\right)
$$

is its uncorrected homotopy limit. Here we shall explain the origin of this terminology and for that it will be enough to consider hocolim ${ }_{I}$.

RAPPEL View \mathbb{C} as a cofibration category and place on [$\underline{I}, \underline{C}$] its injective structure, so [$\mathrm{I}, \mathrm{C}]$ is a coconplete cofibration category (cf. 2.5.3).

Let $\underline{p}_{\underline{I}}: \underline{I} \rightarrow \underline{1}$ be the canonical arrow - then $p_{\underline{I}}^{*}$ has a left adjoint $p_{\underline{I}}$, viz.

$$
\operatorname{colim}_{\underline{I}}:[\underline{I}, \underline{C}] \rightarrow \underline{C},
$$

that in turn admits an absolute total left derived functor

$$
\operatorname{Loolim}_{\underline{I}}: W_{\underline{I}}^{-1}[\underline{I}, \underline{C}] \rightarrow W^{-1} \underline{C} \quad \text { (cf. 2.5.7) }
$$

the "true" homotopy colimit.
Now refer back to 4.9.10. Since the weak equivalences in [I, C] are levelwise and since the cofibrant objects in [I, C] are levelwise, it follows that

$$
\text { hocolim }_{\underline{I}}:[\underline{\mathrm{I}}, \mathrm{C}] \rightarrow \mathrm{C}
$$

also admits an absolute total left derived functor

$$
\text { Lhocolim }{ }_{\underline{I}}:\left(W_{I}^{-1}[\underline{I}, \underline{C}] \rightarrow W^{-1} \underline{C} \quad\right. \text { (cf. 2.2.4) }
$$

And, on general grounds, if $F \in O b[\underline{I}, \underline{C}]$ is cofibrant, then the natural map

$$
\operatorname{Lhocolim}_{\underline{I}} F \rightarrow \text { hocolim } F
$$

is an iscomorphism in $W^{-1} \underline{C}$.

ASSUMPTION The w.f.s.

$$
\text { (cof, } 0 \cap \mathrm{fi})
$$

is functorial (cf. 0.19.3).

NOTATION Given $F \in O b[I, C]$, define $L F$ levelwise:

$$
(\underline{L F})(i)=L(F i) .
$$

N.B. The functor

$$
\mathrm{F} \rightarrow \operatorname{hocolim}_{\underline{\mathrm{I}}}^{\mathrm{L}}-\mathrm{F}
$$

is a morphism

$$
\left([\underline{I}, \underline{\underline{C}}], W_{\underline{I}}\right) \rightarrow(\underline{C}, W)
$$

of category pairs (cf. 4.9.10), thus there is a unique functor

$$
\overline{\text { hocolim }}_{\underline{I}} \underline{I}_{\underline{L}}: W_{\underline{I}}^{-1}[\underline{I}, \underline{C}] \rightarrow W^{-1} \underline{C}
$$

for which the diagram

commutes (cf. 1.4.5).
THEOREM ${ }^{\dagger}$ The functor

$$
\text { hocolim }_{\underline{I}}{ }^{\circ}
$$

"is"

$$
\operatorname{Lcolim}_{\underline{I}}
$$

REMARK Changing the cofibrant replacement functor from \underline{L} to \underline{L} leads to another model for Loolim.

[^2]CHAPTER 5: CUBICAL THEORY

5.1 II: DEFINITION AND PROPERTIES

5.2 CUBICAL SETS

CHAPTER 5: CUBBICAL THEORY

$5.1|-|=D E F I N I T I O N$ AND PROPERTIES

Given an integer $\mathrm{n} \geq 0$, let I^{n} be the set-theoretic product $\{0,1\}^{\mathrm{n}}$.

- For $n \geq 1,1 \leq i \leq n, \varepsilon=0,1$, define

$$
\delta_{i, \varepsilon}^{n}: I^{n-1} \rightarrow I^{n}
$$

by

$$
\delta_{i, \varepsilon}^{n}\left(x_{1}, \ldots, x_{n-1}\right)=\left(x_{1}, \ldots x_{i-1}, \varepsilon, x_{i}, \ldots, x_{n-1}\right) .
$$

- For $\mathrm{n} \geq 0, \mathrm{l} \leq \mathrm{i} \leq \mathrm{n}+1$, define

$$
\sigma_{i}^{n}: I^{n+1} \rightarrow I^{n}
$$

by

$$
\sigma_{i}^{n}\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right)
$$

5.1.1 DEFINITION $\left.\right|_{-} ^{-} \mid$is the category whose objects are the I^{n} and whose morphisms are generated by the $\delta_{i, \varepsilon}^{n}$ and the σ_{i}^{n}.
[Note: |I| has a final object, viz. I ${ }^{0}$.]
5.1.2 LIAMMA we have

$$
\left\{\begin{aligned}
\delta_{j, \eta}^{n} \circ \delta_{i, \varepsilon}^{n-1} & =\delta_{i, \varepsilon}^{n} \circ \delta_{j-1, \eta}^{n-1} & (i<j) \\
\sigma_{j}^{n} \circ \sigma_{i}^{n+1} & =\sigma_{i}^{n} \circ \sigma_{j+1}^{n+1} & (i \leq j)
\end{aligned}\right.
$$

and

$$
\sigma_{j}^{n} \circ \delta_{i, \varepsilon}^{n+1}=\left\{\begin{array}{cc}
-\delta_{i, \varepsilon}^{n} \circ \sigma_{j-1}^{n-1} & (i<j) \\
i d_{I^{n}} & (i=j) \\
\delta_{i-1, \varepsilon}^{n} \circ \sigma_{j}^{n-1} & (i>j)
\end{array}\right.
$$

N.B. In particular

$$
\begin{aligned}
& \sigma_{1}^{0} \circ \delta_{1,0}^{1}=i d_{\mathrm{I}}^{0} \\
& \sigma_{1}^{0} \circ \delta_{1,1}^{1}=i d_{\mathrm{I}} 0
\end{aligned}
$$

5.1.3 LFMMA \mid is a strict monoidal category.
[Define

$$
\text { \&: } \underline{\mid--})_{-1}^{\left.\right|_{-} ^{-} \mid} \rightarrow \underline{\left.\right|_{-} ^{-} \mid}
$$

by

$$
\left(\mathrm{I}^{\mathrm{m}}, \mathrm{I}^{\mathrm{n}}\right) \rightarrow \mathrm{I}^{\mathrm{m}} \otimes \mathrm{I}^{\mathrm{n}}=\mathrm{I}^{\mathrm{m}+\mathrm{n}}
$$

and let $\left.e=I^{0}.\right]$
5.1.4 DEFINITION Let ($\underline{V}, \otimes, \mathrm{e}$) be a strict monoidal category -- then a cylinder in \underline{V} is a 4 -tuple ($\left.I, d_{0}, d_{1}, p\right)$, where $I \in O b \underline{V}$ and $d_{0}, d_{1}: e \rightarrow I, p: I \rightarrow e$ are morphisms of V such that

$$
\mathrm{pd}_{0}=\mathrm{id} d_{e}=\mathrm{pd}_{1} .
$$

5.1.5 EXAMPIE Take $\underline{V}=\square_{-}^{-}$(cf. 5.1.3) -- then $\left(I^{1}, \delta_{1,0}^{1}, \delta_{1,1}^{1}, \delta_{1}^{0}\right)$ is a cylinder in |-|.
5.1.6 LEMMA Let ($\underline{V}, \otimes, \mathrm{e}$) be a strict monoidal category -- then the association that sends a functor $\mathrm{F}:\left.\right|_{-} ^{-} \mid \rightarrow \underline{\mathrm{V}}$ to the 4-tuple

$$
\left(F\left(I^{1}\right), F\left(\delta_{1,0}^{1}\right), F\left(\delta_{1,1}^{1}\right), F\left(\sigma_{1}^{0}\right)\right)
$$

is a bijection between the set of strict monoidal functors from $\left.\right|_{-} ^{-} \mid$to $\underline{\mathrm{V}}$ and the cylinders in V .
5.1.7 SCHOLIUM There is a strict monoidal functor $c:\left.\right|_{-} ^{-} \mid \rightarrow$ CAT $^{\text {with }} I^{n} \rightarrow[1]^{n}$.
[Send I^{1} to $[1], \delta_{1,0}^{1}$ to $\delta_{1}^{1}, \delta_{1,1}^{1}$ to δ_{0}^{1}, and σ_{1}^{0} to σ_{0}^{0}]]
5.1.8 LENMA $\left.\right|_{-} ^{-}$is a Reedy category.
[Put

$$
\operatorname{deg}\left(I^{n}\right)=n
$$

and let

$$
\left[\begin{array}{l}
\frac{\left.\right|_{-} \mid}{+}=\text {subcategory of }\left.\right|_{-} ^{-} \mid \text {generated by the } \delta_{i, \varepsilon}^{n} \\
\left.\right|_{-} ^{+} \mid
\end{array}\right.
$$

5.1.9 IRMMA |_| is a local test category per ω_{∞}.
[The functor $c:\left.\right|_{-\mid} ^{-\mid} \rightarrow$ CAT satisfies the finality hypothesis, thus it is enough to prove that nerf ${ }_{c}[1]$ satisfies the Ω-condition (cf. C.10.14), i.e., that the
categories

are aspherical. But it is possible to proceed homotopically and construct an equivalence between

$$
L_{-}^{-} \mid /\left(\mid(n) \times \operatorname{ner}_{c}^{[1]}\right) \text { and }\left.\right|_{-} ^{-} / /\left.\right|_{-} ^{-} \mid(n),
$$

which suffices (since $\left.\right|_{-} ^{-}\left|/\left.\right|_{-} ^{-}\right|(n)$ has a final object, hence is aspherical).]

is applicable: $\left.\right|_{\underline{-}} \mid$ admits a cofibrantly generated model structure whose class of weak equivalences are the elements of $\left({ }_{\left(l_{\infty}\right)}\right)$ and whose cofibrations are the monomorphisms. $\underset{-}{-1}$
[Note: The $\left.\right|_{-} ^{-} \mid$-localizer generated by the arrows $\left.\right|_{-} ^{-}|(n) \rightarrow|_{-}^{-} \mid(0)(n \geq 0)$ is $\left(\omega_{\infty}\right)$. ${ }^{\cdot}$

I-1
N.B. This model structure on $\hat{-}_{\underline{-} \mid}$ is proper (cf. C.9.10).
5.2 CUBICAL SETS
5.2.1 DEFINITION A cubical set is a functor $\mathrm{X}: \boldsymbol{l}^{\mathrm{OP}} \rightarrow$ SETT.
5.2.2 NOTATION CUSET is the category whose objects are the cubical sets and whose morphisms are the natural transformations between them.
[Note: A morphism in CUSET is called a cubical map.]

The cubical standard n-cube is the cubical set $\Gamma_{-} \mid(n)=\operatorname{Mor}\left(-, I^{n}\right)$. If X is a cubical set and if $X_{n}=X\left(I^{n}\right)$, then

$$
\operatorname{Mor}\left(\left.\right|_{-} ^{-} \mid(n), x\right) \approx X_{n}
$$

N.B. If $\alpha: I^{m} \rightarrow I^{n}$, then

$$
I_{-}^{-}\left|(\alpha):\left.\right|_{-} ^{-}\right|(m) \rightarrow \mid(n) .
$$

A cubical subset of a cubical set X is a cubical set Y such that Y is a subfunctor of X, i.e., $Y_{n} \subset X_{n}$ for all n and the inclusion $Y \rightarrow X$ is a cubical map.
5.2.3 DEFINITION The frontier of $\left.\right|_{-} ^{-} \mid(n)$ is the cubical subset $\left.a\right|_{-} ^{-} \mid(n)$ ($n \geq 0$) of $\left.\right|_{-} ^{-} \mid(n)$ given by

$$
\left.\partial\right|_{-} ^{-} \mid(n)\left(I^{m}\right)=\left\{f: I^{m} \rightarrow I^{n}: \exists \text { a factorization } f: I^{m} \rightarrow I^{k} \rightarrow I^{n}(k<n)\right\}
$$

5.2.4 RAPPEL Suppose that $\underline{\mathrm{C}}$ is a small category - then $M \subset$ Mor $\underline{\hat{C}}$ is the class of manomorphisms.
5.2.5 EXAMPLE Let $\mathrm{C}=\triangleq$ and let

$$
M=\{\dot{\Delta}[n] \rightarrow \Delta[n]: n \geq 0\}
$$

Then

$$
M=L I P(\operatorname{RLP}(M))=\operatorname{cof} M \quad \text { (cf. } 0.20 .5)
$$

5.2.6 LEMMA Let $\underline{C}=\underline{\square}$ and let

$$
M=\left\{\left.\partial\right|_{-} ^{-}|(n) \rightarrow|_{-}^{-} \mid(n): n \geq 0\right\} .
$$

Then

$$
M=\operatorname{LIP}(\operatorname{RLP}(M))=\operatorname{cof} M
$$

N.B. Expanding on 5.1.10, one can take for "I" the set

$$
\left\{\left.\partial\right|_{-}|(n) \rightarrow|_{-}^{-} \mid(n): n \geq 0\right\} .
$$

5.2.7 REMARK Iet $\prod_{i, \epsilon}^{n}(n \geq 1,1 \leq i \leq n, \varepsilon=0,1)$ be the cubical subset of $\square_{-} \mid(n)$ given by

$$
\prod_{i, \varepsilon}^{n}\left(I^{m}\right)=\left\{f: I^{m} \rightarrow I^{n}: \exists \text { a factorization } f: I^{m} \rightarrow I^{n-1} \xrightarrow{\alpha} I^{n}\left(\alpha \neq \delta_{i, \varepsilon}^{n}\right)\right\}
$$

Then one can take for " J " the set

$$
\left\{\left.\prod_{i, \varepsilon}^{n} \rightarrow\right|_{-} ^{-} \mid(n)\right\}
$$

In the current setting, the machinery of Kan extensions assigns to each $T \in O B\left[\left.\right|_{-} ^{-} \mid, \hat{\Delta}\right]$ its realization functor $\Gamma_{T} \in O B\left[\left.\right|_{-} ^{\hat{-}} \mid, \hat{\Delta}\right]$, itself a left adjoint for the singular functor $\sin _{\mathrm{T}}: \widehat{\widehat{\Delta}} \rightarrow \mid-_{|-|}$

Specialize and let T be the composite

$$
\xrightarrow{-\mid} \stackrel{c}{C A T} \xrightarrow{\text { ner }} \hat{\longrightarrow}
$$

Put

$$
\left\{\begin{array}{l}
c_{!}=\Gamma_{\text {ner }} \circ c \\
c^{*}=\sin _{\text {ner }} \circ c
\end{array}\right.
$$

Then

$$
\left[\begin{array}{l}
c_{1}: \hat{\left.\right|_{-}} \mid \rightarrow \hat{\Delta} \\
c^{*}: \hat{\Delta} \rightarrow \hat{I_{-}} \mid .
\end{array}\right.
$$

So $\forall \mathrm{n}$,

$$
\left.c_{!}\right|_{-} ^{-} \mid(n)=\Delta[1]^{n}
$$

and $\forall x \in O b \widehat{\Delta}$,

$$
\left(\mathrm{c}^{*} \mathrm{X}\right)_{\mathrm{n}}=\operatorname{Mor}\left(\Delta[1]^{\mathrm{n}}, \mathrm{x}\right)
$$

5.2.8 REMARK If C is a small category, then

$$
\operatorname{ner}_{c} \mathrm{C} \approx c^{\star} \text { ner } \mathrm{C} .
$$

In fact,

$$
\begin{aligned}
\left(\mathrm{c}^{\star} \text { ner } \underline{\mathrm{C}}\right)_{\mathrm{n}} & =\operatorname{Mor}\left(\Delta[1]^{\mathrm{n}}, \text { ner } \underline{\mathrm{C}}\right) \\
& \approx \operatorname{Mor}\left(\operatorname{cat} \Delta[1]^{\mathrm{n}}, \mathrm{C}\right) \\
& \approx \operatorname{Mor}\left((\operatorname{cat} \Delta[1])^{\mathrm{n}}, \underline{C}\right) \\
& \approx \operatorname{Mor}\left([1]^{\mathrm{n}}, \underline{\mathrm{C}}\right) \\
& =\operatorname{ner}_{\mathrm{C}}(\mathrm{C})\left(\mathrm{I}^{\mathrm{n}}\right)
\end{aligned}
$$

Equip $\left.\right|_{-} ^{\hat{\mid}}$ with its Cisinski structure and $\hat{\Delta}$ with its Kan structure.
5.2.9 LEMMA The adjoint situation ($c_{!}, c^{\star}$) is a model pair.

More is true: The model pair $\left(c_{1}, c^{*}\right)$ is a model equivalence. Therefore the categories

are canonically equivalent.

APPENDIX

CATEGORICAL BACKGROUND

TOPICS

DEFINITIONS AND NOTATION
EXAMPLES
COMMA CATEGORIES
FUNCTOR CATEGORIES
YONEDA THEORY
MORPHISMS
IDEMPOTENTS
SEPARATION AND COSEPARATION
INJECTIVES
SOURCES AND SINKS
LIMITS AND COLIMITS
PROOUCTS AND COPRODUCTS
EQUALIZERS AND COEQUALIZERS
PULLBACKS AND PUSHOUTS
FILTERED CATEGORIES AND FINAL FUNCTORS
COMPLETENESS AND COCOMPLETENESS
PRESERVATION
PRESENTABTLITY
ACCESSIBILITY
ADJOINTS
THE SOLUTION SET CONDITION
REFLECTORS AND COREFLECTORS
ENDS AND COENDS
KAN EXTENSIONS

CATEGORICAL BACKGROUNO

DEFINITIONS AND NOTATION

Given a category \mathbb{C}, denote by $O b \underset{C}{ }$ its class of objects and by Mor \underline{C} its class of morphisms. If $X, Y \in O D C$ is an ordered pair of objects, then $\operatorname{Mor}(X, Y)$ is the set of moxphisms (or arrows) from X to Y. An element $f \in \operatorname{Mor}(X, Y)$ is said to have domain X and codomain Y. One writes $f: X \rightarrow Y$ or $X \xrightarrow{f} Y$. Composition

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

is denoted by g of.
A morphism $f: X \rightarrow Y$ in a category \underline{C} is said to be an isomorphism if there exists a morphism $g: Y \rightarrow X$ such that $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$. If g exists, then g is unique. It is called the inverse of f and is denoted by f^{-1}. Objects $X, Y \in O b \subseteq$ are said to be ismorphic, written $X \approx Y$, provided there is an iscmorphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$. The relation "isomorphic to" is an equivalence relation on Ob C .

A functor $F: \underline{C} \rightarrow \underline{D}$ is said to be faithful (full) if for any ordered pair $X, Y \in O B C$, the map $\operatorname{Mor}(X, Y) \rightarrow \operatorname{Mor}(F X, F Y)$ is injective (surjective). If F is full and faithful, then F reflects isomorphisns or still, is conservative, i.e., f is an isomorphism iff Ff is an isomorphism.

A functor $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \mathrm{D}$ is said to be an isomorphism if there exists a functor $G: \underline{D}+\underline{C}$ such that $G \circ F=i d_{\underline{C}}$ and $F \circ G=i d_{\underline{D}}$. A functor is an isomorphism iff it is full, faithful, and bijective on objects. Categories \underline{C} and \underline{D} are said to be isomorphic provided there is an isomorphism $F: \underline{C} \rightarrow$ D.
[Note: An isomorphism between categories is the same as an isomorphism in the "category of categories".]

A functor $F: \underline{C} \rightarrow \underline{D}$ is said to be an equivalence if there exists a functor $\mathrm{G}: \underline{\mathrm{D}} \rightarrow \underline{\mathrm{C}}$ such that $\mathrm{G} \circ \mathrm{F} \approx i \mathrm{~d}_{\mathrm{C}}$ and $\mathrm{F} \circ \mathrm{G} \approx i d_{\underline{D}^{\prime}}$ the symbol \approx standing for natural isomorphistn. A functor is an equivalence iff it is full, faithful, and has a representative image, i.e., for any $Y \in O D$ there exists an $X \in O$ © such that FX is isamorphic to Y. Categories \underline{C} and \underline{D} are said to be equivalent provided that there is an equivalence $F: \underline{C} \rightarrow \underline{D}$. The object iscmorphism types of equivalent categories are in a one-to-one correspondence.
[Note: If F and G are injective on objects, then $\underline{\mathrm{C}}$ and $\underline{\mathrm{D}}$ are isomorphic (categorical "Schroeder-Bernstein").]
N.B. If $\mathbb{C}, \underline{D}$ are equivalent and \underline{D}, E are equivalent, then $\mathbb{C}, \underline{E}$ are equivalent.

A category is skeletal if isomorphic objects are equal. Given a category C, a skeleton of \underline{C} is a full, skeletal subcategory $\overline{\underline{C}}$ for which the inclusion $\underline{\overline{\mathrm{C}}} \rightarrow \underline{\mathrm{C}}$ has a representative image (hence is an equivalence). Every category has a skeleton and any two skeletons of a category are isamorphic.

A category is said to be discrete if all its morphisms are identities. Every class is the class of objects of a discrete category.
[Note: A category is small if its class of objects is a set; otherwise it is large. A category is finite (countable) if its class of morphisms is a finite (countable) set.]

EXAMPLES

Here is a list of cammonly occurring categories.
(1) SEP, the category of sets, and SET $_{\star}$, the category of pointed sets. If $X, Y \in O b S E T$, then $\operatorname{Mor}(X, Y)=F(X, Y)$, the functions from X to Y, and if $\left(X, x_{0}\right)$, $\left(Y, Y_{0}\right) \in O b$ SET $_{*}$, then $\operatorname{Mor}\left(\left(X, x_{0}\right),\left(Y, Y_{0}\right)\right)=F\left(X, X_{0} ; Y_{,}, Y_{0}\right)$, the base point preserving
functions from X to Y .
(2) TOP, the category of topological spaces, and TOP ${ }_{\star}$, the category of pointed topological spaces. If $X, Y \in O$ (TOP, then $\operatorname{Mor}(X, Y)=C(X, Y)$, the continuous functions from X to Y, and if $\left(X, x_{0}\right),\left(X, Y_{0}\right) \in O b$ TOP $_{\star}$, then $\operatorname{Mor}\left(\left(X, x_{0}\right)\right.$, $\left.\left(X, Y_{0}\right)\right)=C\left(X, x_{0} ; Y, Y_{0}\right)$, the base point preserving continuous functions from X to Y.
(3) HTOP, the homotopy category of topological spaces, and HHOP_{\star}, the homotopy category of pointed topological spaces. If $X, Y \in O b$ HTOP, then $\operatorname{Mor}(X, Y)=$ $[\mathrm{X}, \mathrm{Y}]$, the homotopy classes in $\mathrm{C}(\mathrm{X}, \mathrm{Y})$, and if $\left(\mathrm{X}, \mathrm{x}_{0}\right),\left(\mathrm{Y}, \mathrm{Y}_{0}\right) \in \mathrm{Ob} \mathrm{HIOP}_{*}$, then $\operatorname{Mor}\left(\left(X, X_{0}\right),\left(Y, Y_{0}\right)\right)=\left[X, X_{0} ; Y, Y_{0}\right]$, the homotopy classes in $C\left(X, X_{0} ; Y, Y_{0}\right)$.
(4) HAUS, the full subcategory of TOP whose objects are the Hausdorff spaces and CPTHAUS, the full subcategory of HAUS whose objects are the compact spaces.
(5) IX, the fundamental groupoid of a topological space X .
(6) GR, $A B$, RG (A-MOD or MOD-A), the category of groups, abelian groups, rings with unit (left or right A-modules, $A \in O b$ RG).
(7) 0 , the category with no objects and no arrows. 1, the category with one object and one arrow. 2, the category with two objects and one arrow not the identity.
(8) CAT, the category whose objects are the small categories and whose morphisms are the functors between them.
(9) GRD, the full subcategory of CAT whose objects are the groupoids, i.e., the small categories in which every morphism is invertible.
(10) PRECAT, the category whose objects are the small precategories (a.k.a. graphs) and whose morphisms are the prefunctors between them.

EXAMPLE Every arrow $f: X \rightarrow Y$ of \underline{C} appears as an arrow $f^{O P}: Y \rightarrow X$ of $\underline{C}^{O P}$. This said, define a functor $O P: C A T \rightarrow$ CAT on objects by

$$
\mathrm{OP}(\underline{\mathrm{C}})=\underline{\mathrm{C}}^{\mathrm{OP}}
$$

and on morphisms $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ by

$$
\mathrm{F}^{\mathrm{OP}}\left(\mathrm{Y} \xrightarrow{\mathrm{f}^{\mathrm{OP}}} \mathrm{X}\right)=(\mathrm{Ff})^{\mathrm{OP}}
$$

Then

$$
\mathrm{OP} \circ \mathrm{OP}=\mathrm{id}_{\mathrm{CAT}}
$$

EXAMPIE The assignment

$$
\left.\right|_{-} ^{-} \underline{T O P} \rightarrow \underline{\text { GRD }}
$$

is a functor.
[Note: A continuous function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ induces a functor $\mathrm{F}_{\mathrm{f}}: \mathrm{IIX} \rightarrow$ IY, viz. $\left.F_{f} x=f(x), F_{f}[\gamma]=[f \circ \gamma] \quad(\gamma \in C([0,1], X)).\right]$

In this book, the foundation for category theory is the "one universe" approach taken by Herrlich-Strecker ${ }^{\dagger}$. The key words are "set", "class", and "conglomerate". Thus the issue is not only one of size but also of membership (every set is a class and every class is a conglomerate). Example: \{Ob SET\} is a conglomerate, not a class (the members of a class are sets).

A metacategory is defined in the same way as a category except that the objects and the morphisms are allowed to be conglomerates and the requirement that the conglanerate of morphisms between two objects be a set is dropped.

[^3]While there are exceptions, most categorical concepts have metacategorical analogs or interpretations.
[Note: Every category is a metacategory. On the other hand, it can happen that a metacategory is isomorphic to a category but is not itself a category. Still, the convention is to overlook this technical nicety and treat such a metacategory as a category.]
N.B. Additional discussion and infonmation can be found in Shulman ${ }^{\dagger}$.

NOTATION CAC, the metacategory whose objects are the categories and whose morphisms are the functors between them.

COMMA CATEGORIES

is the category whose objects are the triples $(X, f, Y):\left.\right|_{-X \in O B} ^{X}$
\& $f \in \operatorname{Mor}(T X, S Y)$ and whose morphisms $(X, F, Y) \rightarrow\left(X^{\prime}, f^{\prime}, Y^{\prime}\right)$ are the pairs
$(\phi, \psi):\left.\right|_{-\phi \in \operatorname{Mor}\left(X, X^{\prime}\right)} \quad$ for which the square

commites. Composition is defined componentwise and the identity attached to (X, f, Y) is $\left(i d_{X}, i d_{Y}\right)$.

LEMMA There are functors

$$
\left[\begin{array}{l}
\mathrm{P}:|\mathrm{T}, \mathrm{~S}| \rightarrow \underline{\mathrm{A}} \\
\mathrm{Q}:|\mathrm{T}, \mathrm{~S}| \rightarrow \underline{\mathrm{B}}
\end{array}\right.
$$

and a canonical natural transformation

$$
T \circ P \rightarrow S \circ Q
$$

PROOF Let

$$
\left.\left.\right|_{-\quad P(X, f, Y)=X} \quad \begin{array}{r}
\quad P(\phi, \psi)=\phi
\end{array} \right\rvert\, \begin{array}{r}
Q(X, f, Y)=Y \\
Q(\phi, \psi)=\psi
\end{array}
$$

and define

$$
\Xi \in \operatorname{Nat}(T \circ P, S \circ Q)
$$

by

$$
\Xi_{(X, f, Y)}=f .
$$

[Note: In general, the diagram

does not commute.]
(A\C) Let $A \in O B \subseteq$ and write K_{A} for the constant functor $\underline{1} \rightarrow \mathbb{C}$ with value A -- then

$$
A \backslash \underline{C} \equiv\left|K_{A}, i d_{\underline{C}}\right|
$$

is the category of objects under A.
(C/B) Let $\mathrm{B} \in \mathrm{Ob} \underline{\mathrm{C}}$ and write K_{B} for the constant functor $\underline{1} \rightarrow \underline{\mathcal{C}}$ with value B -- then

$$
\underline{C} / B \equiv\left|i d_{C^{\prime}} K_{B}\right|
$$

is the category of objects over B.
N.B. The comma category $\left|K_{A}, K_{B}\right|$ is Mor (A, B) viewed as a discrete category. The arrow category $\underset{C}{(+)}$ of \subseteq is the corma category $\left|\mathrm{id}_{\underline{C}}, \mathrm{id}_{\underline{C}}\right|$.

FUNCTOR CATEGORIES

is a function that assigns to each $X \in O B \underline{C}$ an element $\Xi_{X} \in M o r(F X, G X)$ such that for every $f \in \operatorname{Mor}(X, Y)$ the square

commutes, \equiv being termed a natural isomorphism if all the Ξ_{X} are iscrorphisms, in which case F and G are said to be naturally isomorphic, written $F \approx G$. Given categories $\left.\right|_{-} ^{-} \underline{\underline{D}}$, the functor category $[\underline{C}, \underline{D}]$ is the metacategory
whose objects are the functors $\mathrm{F}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}$ and whose morphisms are the natural
transformations $\operatorname{Nat}(\mathrm{F}, \mathrm{G})$ from F to G . In general, [C,D] need not be isomorphic to a category, although this will be true if \underline{C} is small.
[Note: The isomorphisms in [C,D] are the natural iscmorphisms.]
N.B. The identity $i d_{F} \in \operatorname{Nat}(F, F)$ is defined by $\left(i d_{F}\right)_{X}=i d_{F X}$ and if
$\mathrm{F} \xrightarrow{\Xi} \mathrm{G}, \mathrm{G} \xrightarrow{\Omega} \mathrm{H}$ are natural transformations, then $\Omega \circ \Xi: F \rightarrow H$ is the natural transformation that assigns to each X the composition $\Omega_{X}{ }^{\circ} \Xi_{X}: F X \rightarrow H X$.
$\left(K^{*}\right)$ Let $K: \underline{A} \rightarrow \underline{C}$ be a functor - then there is an induced functor

$$
\mathrm{K}^{*}:[\underline{\underline{C}, \underline{D}] \rightarrow[\underline{A}, \underline{D}]}
$$

given on objects by

$$
K \star F=F \circ K
$$

and on morphisms by

$$
\left(K^{*} \Xi\right)_{A}=\Xi_{K A} .
$$

$\left(L_{*}\right)$ Let $L: \underline{D} \rightarrow \underline{B}$ be a functor -- then there is an induced functor

$$
\mathrm{L}_{\star}:[\underline{\mathrm{C}}, \underline{\mathrm{D}}] \rightarrow[\underline{\mathrm{C}}, \underline{\mathrm{~B}}]
$$

given on objects by

$$
L_{\star} F=L \circ F
$$

and on morphisms by

$$
\begin{aligned}
& \left(L_{*} E\right)_{X}=L E_{X} . \\
& \text { Write }\left.\right|_{-L E} ^{\Xi K} \text { in place of }\left.\right|_{-L_{*} E} ^{-} \text {, so } L(E K)=\text { (LE) } K \text {-- then }
\end{aligned}
$$

Associated with any object X in a category C is the functor $\operatorname{Mor}(\mathrm{X}, \rightarrow) \in$ $\mathrm{Ob}[\mathrm{C}, \underline{\mathrm{SETr}}]$ and the functor $\operatorname{Mor}(-, \mathrm{X}) \in \mathrm{Ob}[\underline{\mathrm{CP}}, \underline{\mathrm{SET}}]$. If $\mathrm{F} \in \mathrm{Ob}[\underline{C}, \underline{S E T}]$ is a functor or if $F \in O B\left[\underline{C}^{O P}, S E T\right]$ is a functor, then the Yoneda lemma establishes a bijection 1_{X} between $\operatorname{Nat}(\operatorname{Mor}(X, \longrightarrow), F)$ or $\operatorname{Nat}(\operatorname{Mor}(-, X), F)$ and $F X$, viz. ${ }^{i} X(\Xi)=\Xi_{X}\left(\right.$ id $\left._{X}\right) . \quad$ Therefore the assignments $\left\{\begin{array}{l}\quad X \rightarrow \operatorname{Mor}(X, \rightarrow) \\ X \rightarrow \operatorname{Mor}(-, X)\end{array}\right.$ lead to functors $]^{-} \underline{\mathrm{C}}^{\mathrm{OP}} \rightarrow[\underline{\mathrm{C}}, \underline{\mathrm{SET}}]$ that are full, faithful, and injective on objects, the Yoneda $1 _\underline{C} \rightarrow\left[\underline{C}^{\mathrm{OP}}, \underline{S E T}\right]$
embeddings. One says that. F is representable (by X) if F is naturally isomorphic to $\operatorname{Mor}(\mathrm{X}, \longrightarrow)$ or $\operatorname{Mor}(-, \mathrm{X})$. Representing objects are isomorphic.

EXAMPLE The forgetful functor $\mathrm{U}:$ TOP \rightarrow SET is representable:

$$
\forall \mathrm{x}, \operatorname{Mor}(\{\star\}, \mathrm{X}) \approx \mathrm{UX}
$$

The forgetful functor $U: G R \rightarrow$ SET is representable:

$$
\forall X, \operatorname{Mor}(Z, X) \approx U X .
$$

The forgetful functor U:RG \rightarrow SET is representable:

$$
\forall x, \operatorname{Mor}(Z[t], X) \approx u x .
$$

It is traditional to write

$$
\underline{\hat{\mathrm{C}}}=\left[\underline{\mathrm{C}}^{\mathrm{OP}}, \underline{\mathrm{SET}}\right]
$$

and call an object of $\hat{\underline{C}}$ a presheaf (of sets) on \underline{C}.
EXAMPLE We have

$$
\left[\begin{array}{l}
\hat{\hat{0}}=\underline{1} \\
\underline{\hat{1}} \approx \underline{\mathrm{SET}}
\end{array}\right.
$$

Given $X \in O B C$, put

$$
h_{X}=\operatorname{Mor}(-, X) .
$$

Then

$$
\operatorname{Mor}(X, Y) \approx \operatorname{Nat}\left(h_{X}, h_{Y}\right)
$$

and in this notation the Yoneda embedding

$$
\mathrm{Y}_{\underline{\mathrm{C}}}: \underline{\mathrm{C}} \rightarrow \hat{\mathrm{C}}
$$

sends X to h_{X}.

EXAMPLE Let $F: S E T{ }^{O P} \rightarrow$ SET be the functor that sends X to 2^{X} (the set of all subsets of X) and sends $f: X \rightarrow Y$ to $f^{-1}: 2^{Y} \rightarrow 2^{X}$ - then F is representable:

$$
\mathrm{F} \approx \mathrm{~h}_{\{0,1\}}
$$

EXAMPLE Let $F:$ TOP $^{O P} \rightarrow$ SET be the functor that sends X to τ_{X} (the set of open subsets of X) and sends $f: X \rightarrow Y$ to $f^{-1}: \tau_{Y} \rightarrow \tau_{X}--$ then F is representable:

$$
F \approx h_{\{0,1\}^{\prime}}
$$

\{0,1\} being Sierpinski space.
[Note: This fails if TOP is replaced by HAUS.]

MORPHISMS

A morphism $f: X \rightarrow Y$ in a category \underline{C} is said to be a monomorphism if it is left cancellable with respect to composition, i.e., for any pair of morphisms $u, v: Z \rightarrow X$ such that $f \circ u=f \circ v_{r}$ there follows $u=v$.

A morphism $f: X \rightarrow Y$ in a category \subseteq is said to be an epimorphism if it is right cancellable with respect to composition, i.e., for any pair of morphisms
$u, v: Y \rightarrow Z$ such that $u \circ f=v \circ f$, there follows $u=v$.
A morphism is said to be a bimorphism if it is both a monomorphism and an epimorphism. Every isomorphism is a bimorphism. A category is said to be balanced if every bimorphism is an isomorphism. The categories SET, $G R$, and $A B$ are balanced but the category TOP is not.

EXAMPLE In SET, $G R$, and $A B$, a morphism is a monomorphism (epimorphism) iff it is injective (surjective). In any full subcategory of TOP, a morphism is a monomorphism iff it is injective, In the full subcategory of TOP, whose objects are the connected spaces, there are monomorphisms that are not injective on the underlying sets (covering projections in this category are monomorphisms). In TOP, a morphism is an epimorphism iff it is surjective but in HAUS, a morphism is an epimorphism iff it has a dense range. The homotopy class of a monomorphism (epimorphism) in TOP need not be a monomorphism (epimorphism) in HIOP. In CAT, a morphism is a monomorphism iff it is injective on objects and fully faithful. On the other hand, in CAT there are epimorphisms which are surjective on objects but which are not surjective on morphism sets.

LFMMA Let \underline{C} be a small category -- then a morphism E in [$\mathbb{C}, \underline{S E T]}$ is a monomorphism iff $\forall \mathrm{X} \in \mathrm{O} \underline{\underline{C},} \Xi_{\mathrm{X}}$ is a monomorphism in SET.
[Note: This can fail if SET is replaced by an arbitrary category D.]

Given a category \mathbb{C} and an object X in \underline{C}, let $M(X)$ be the class of all pairs (Y, f), where $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}$ is a monomorphism. Two elements (Y, f) and (Z, g) of $\mathrm{M}(\mathrm{X})$ are deemed equivalent if there exists an isomorphism $\phi: Y \rightarrow Z$ such that $f=g \circ \phi$. A representative class of monomorphisms in $M(X)$ is a subclass of $M(X)$ that is a
system of representatives for this equivalence relation. C is said to be wellpowered provided that each of its objects has a representative class of monomorphisms which is a set.

Given a category C and an object X in C , let $\mathrm{E}(\mathrm{X})$ be the class of all pairs (V, f), where $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is an epimorphism. Two elements (Y, f) and (Z, g) of $\mathrm{E}(\mathrm{X})$ are deemed equivalent if there exists an isomorphism $\phi: Y \rightarrow Z$ such that $g=\phi \circ f$. A representative class of epimorphisns in $E(X)$ is a subclass of $E(X)$ that is a system of representatives for this equivalence relation. C is said to be covellpowered provided that each of its objects has a representative class of epimorphisms which is a set.

EXAMPLE SEI, GR, AB, TOP (or HAUS) are wellpowered and cowellpowered.

THEOREM CAT is wellpowered and cowellpowered.

A monomorphism $f: X \rightarrow Y$ in a category \subseteq is said to be extremal provided that in any factorization $f=h \circ g$, if g is an epimorphism, then g is an isomorphism. An epimorphism $f: X \rightarrow Y$ in a category C is said to be extremal provided that in any factorization $f=h \circ g$, if h is a monomorphism, then h is an iscmorphism. In a balanced category, every monomorphism (epimorphism) is extremal. In any category, a morphism is an isomorphism iff it is both a monomorphism and an extremal epimorphism iff it is both an extremal monomorphism and an epimorphism.

EXAMPLE In TOP, a monomorphism is extremal iff it is an embedding but in HAUS, a monomorphism is extremal iff it is a closed embedding. In TOP or HAUS, an epimorphism is extremal iff it is a quotient map,

A morphism $r: Y \rightarrow X$ in a category C is called a retraction if there exists a
morphim i: $X \rightarrow Y$ such that $r \circ i=i d_{X}$ in which case X is said to be a retract of Y.

EXAMPLE Consider the arrow category $\mathrm{C}(\rightarrow)$ and suppose that $\left\lvert\, \begin{aligned} & \mathrm{f} \in \operatorname{Mor}\left(\mathrm{X}, \mathrm{X}^{\prime}\right) \\ & \mathrm{g} \in \operatorname{Mor}\left(\mathrm{Y}, \mathrm{Y}^{\prime}\right)\end{aligned}-\right.$ then to say that f is a retract of g means that there exists a pair
and a pair

$$
\left(r, r^{\prime}\right):\left.\right|_{-} ^{r \in \operatorname{Mor}(Y, X)} \begin{aligned}
& r^{\prime} \in \operatorname{Mor}\left(Y^{\prime}, X^{\prime}\right)
\end{aligned}
$$

such that

$$
\left(r, r^{\prime}\right) \circ\left(i, i^{\prime}\right)=i d_{f}
$$

or still,

$$
\left(r \circ i, r^{\prime} \circ i^{\prime}\right)=\left(i d_{X^{\prime}}, i d{ }_{X^{\prime}}\right)
$$

In other words, there is a comutative diagram

where $r \circ i=i d_{X^{\prime}}, r^{\prime} \circ i^{\prime}=i d X^{\prime}$.
[Note: If g is an isomorphism and if f is a retract of g, then f is an isomorphism.]

IDEMPOTENTS

A morphism $e: X \rightarrow X$ in a category C is idempotent if $e \circ e=e$. An idempotent. $e: X \rightarrow X$ is split if $\exists Y \in O$ C \underline{X} and morphisms $\phi: X \rightarrow Y, \psi: Y \rightarrow X$ such that $e=\psi \circ \phi$ and $\phi \circ \psi=i d_{Y}$.

EXAMPLE Every idempotent in SET is split.

Given a category $\underline{\mathcal{C}}$, there is a category $\underline{\tilde{C}}$ in which idempotents split and a functor $E: C \rightarrow \tilde{C}$ that is full, faithful, and injective on objects with the following property: Every functor from C to a category in which idempotents split has an extension to \tilde{C}, unique up to natural isomorphism.

SEPARATION AND COSEPARATION

Given a category \mathbb{C}, a set U of objects in \underline{C} is said to be a separating set if for every pair $X \underset{\mathrm{~g}}{\mathrm{f}} Y$ of distinct morphisms, there exists a $U \in U$ and a morphism $\sigma: U \rightarrow X$ such that $\mathrm{f} \circ \sigma \neq \mathrm{g} \circ \sigma$. An object U in C is said to be a separator if $\{U\}$ is a separating set, i.e., if the functor $\operatorname{Mor}(U,-): \underline{C} \rightarrow \underline{S E T}$ is faithful. If \underline{C} is balanced, finitely complete, and has a separating set, then \underline{C} is wellpowered. Every cocomplete cowellpowered category with a separator is wellpowered and complete. If \mathcal{C} has coproducts, then $a \in \mathcal{U} \in \mathbb{C}$ is a separator iff each $X \in O b \subset$ admits an epimorphism $\| \mathrm{U} \rightarrow \mathrm{X}$.
[Note: Suppose that \mathbb{C} is small - then the representable functors are a separating set for [C,SEY].]

EXAMPLE Every nonempty set is a separator for SEYP. SEY \times SEI has no separators but the set $\{(\varnothing,\{0\}),(\{0\}, \varnothing)\}$ is a separating set. Every nonempty discrete topological space is a separator for TOP (or HAUS). Z is a separator for $G R$ and $A B$, while $Z[t]$ is a separator for RG. In A-MOD, A (as a left A-module) is a separator and in MOD-A, A (as a right A-module) is a separator.

Given a category \mathbb{C}, a set U of objects in C is said to be a coseparating set if for every pair $X \underset{\mathrm{~g}}{\mathrm{f}} \mathrm{Y}$ of distinct morphisms, there exists $a \mathrm{U} \in U$ and a morphism $\sigma: Y \rightarrow U$ such that $\sigma \circ f \neq \sigma \circ \mathrm{g}$. An object U in \underline{C} is said to be a coseparator if $\{\mathrm{U}\}$ is a coseparating set, i.e., if the cofunctor Mor (-, U) : $\underline{\mathrm{C}} \rightarrow \underline{\mathrm{SET}}$ is faithful. If \underline{C} is balanced, finitely cocomplete, and has a coseparating set, then \underline{C} is cowellpowered. Every complete wellpowered category with a coseparator is cowellpowered and cocomplete. If C has products, then $\mathrm{a} U \in \mathrm{Ob} \underline{\mathrm{C}}$ is a coseparator iff each $X \in O b \subseteq$ admits a monomorphism $X \rightarrow \prod U$.

EXAMPLE Every set with at least two elements is a coseparator for SET. Every indiscrete topological space with at least two elements is a coseparator for TOP. Q / Z is a coseparator for $A B$. None of the categories $G R$, RG, HAUS has a coseparating set.

INJECTIVES

Given a category \underline{C}, an object Q in \underline{C} is said to be injective if the cofunctor $\operatorname{Mor}(-, Q): \underline{C} \rightarrow$ SET converts monomorphisms into epimorphisms. In other words: Q is injective iff for each monomorphism $f: X \rightarrow Y$ and each morphism $\phi: X \rightarrow Q$, there exists a morphism $g: Y \rightarrow Q$ such that $g \circ f=\phi$. A product of injective objects is injective.

A category \subseteq is said to have enough injectives provided that for any $X \in O$, C, there is a monomorphism $X \rightarrow Q$, with Q injective. If a category has products and an injective ooseparator, then it has enough injectives.

EXAMPIE The injective objects in the category of Banach spaces and linear contractions are, up to isomorphisn, the $C(X)$, where X is an extremally disconnected compact Hausdorff space. In $A B$, the injective objects are the divisible abelian groups (and Q/Z is an injective cospparator) but the only injective objects in GR or RG are the final objects.

SOURCES AND SINKS

A source in a category \subseteq is a collection of morphisns $f_{i}: X \rightarrow X_{i}$ indexed by a set I and having a common domain. An $\underline{n-s o u r c e}$ is a source for which $\# I=n$.

A sink in a category \underline{C} is a collection of morphisms $f_{i}: X_{i} \rightarrow X$ indexed by a set I and having a common codomain. An $\underline{n-\operatorname{sink}}$ is a sink for which \#I $=n$.

LIMITS AND COLIMITS

A diagram in a category \underline{C} is a functor $\Delta: \underline{I} \rightarrow \underline{C}$, where \underline{I} is a small category, the indexing category. To facilitate the introduction of sources and sinks associated with $\Delta_{\text {, }}$, we shall write Δ_{i} for the inage in $O b \subseteq$ of $i \in O X I$.
(iim) Let $\Delta: \underline{I} \rightarrow \underline{C}$ be a diagram - then a source $\left\{f_{i}: X \rightarrow \Delta_{i}\right\}$ is said to δ
be natural if for each $\delta \in$ Mor $I_{\text {, say }} i \rightarrow j, \Delta \delta \circ f_{i}=f_{j}$. A limit of Δ is a natural source $\left\{\ell_{i}: L \rightarrow \Delta_{i}\right\}$ with the property that if $\left\{f_{i}: X \rightarrow \Delta_{i}\right\}$ is a natural source, then there exists a unique morphism $\phi: X \rightarrow L$ such that $f_{i}=\ell_{i} \circ \phi$ for all
$i \in O b I$. Limits are essentially unique. Notation: $L=\lim _{\underline{I}} \Delta($ or $\lim \Delta)$. (colim) Iet $\Delta: \underline{I} \rightarrow \underline{C}$ be a diagram - then a $\operatorname{sink}\left\{f_{i}: \Delta_{i} \rightarrow X\right\}$ is said to δ
be natural if for each $\delta \in$ Mor I, say $i \rightarrow j, f_{i}=f_{j} \circ \Delta \delta$. A colimit of Δ is a natural sink $\left\{\ell_{i}: \Delta_{i} \rightarrow L\right\}$ with the property that if $\left\{f_{i}: \Delta_{i} \rightarrow X\right\}$ is a natural sink, then there exists a mique morphism $\phi: L \rightarrow X$ such that $f_{i}=\phi \circ \ell_{i}$ for all $i \in O$ I. Colimits are essentially umique. Notation: $L=\operatorname{colim}_{\underline{I}}{ }^{\Delta}$ (or colim Δ). There are a number of basic constructions that can be viewed as a limit or colimit of a suitable diagram.

PRODUCTS AND COPRODUCTS

Let I be a set; let I be the discrete category with $O b I=I$. Given a collection $\left\{X_{i}: i \in I\right\}$ of objects in \underline{C}, define a diagram $\Delta: I \rightarrow \underline{C}$ by $\Delta_{i}=X_{i}(i \in I)$. (Products) A limit $\left\{\ell_{i}: L \rightarrow \Delta_{i}\right\}$ of Δ is said to be a product of the X_{i}. Notation: $L=\prod_{i} x_{i}$ (or X^{I} if $X_{i}=X$ for all i), $l_{i}=p r_{i}$, the projection from $\prod_{i} X_{i}$ to X_{i}. Briefly put: Products are limits of diagrams with discrete indexing categories. In particular, the limit of a diagram having $\mathbf{0}$ for its indexing category is a final object in C.
[Note: An object X in a category C is said to be final if for each object Y there is exactly one morphism from Y to X.
(Coproducts) A colimit $\left\{\ell_{i}: \Delta_{i} \rightarrow L\right\}$ of Δ is said to be a coproduct of the x_{i}. Notation: $L=\frac{\prod_{i}}{} x_{i}$ (or I $\cdot X$ if $X_{i}=X$ for all i), $l_{i}=i n_{i}$, the injection
from X_{i} to $\frac{\|_{i}}{i} X_{i}$. Briefly put: Coproducts are colimits of diagrams with discrete indexing categories. In particular, the colimit of a diagram having $\underline{0}$ for its indexing category is an initial object in C .
[Note: An object X in a category \mathbb{C} is said to be initial if for each object Y there is exactly one morphism from X to Y.

EXAMPIE In the full subcategory of TOP whose objects are the locally connected spaces, the product is the product in SET equipped with the coarsest locally connected topology that is finer than the product topology. In the full subcategory of TOP whose objects are the compact Hausdorff spaces, the coproduct is the StoneKech compactification of the coproduct in TOP.

EQUALIZERS AND COEQUALIZERS

Let I be the category $1 \bullet \xrightarrow[b]{a}$ 2. Given a pair of morphisms $u, v: X \rightarrow Y$ in \underline{C}, define a diagram $\Delta: \underline{I} \rightarrow \underline{C}$ by $\left.\left.\right|_{-} ^{\Delta_{1}=x} \begin{gathered}\Delta_{2}=Y\end{gathered}\right|_{-} ^{-\quad \Delta a=u} \begin{aligned} & \quad \Delta \mathrm{b}=\mathrm{v}\end{aligned}$.
(Equalizers) An equalizer in a category C of a pair of morphisms $u, v: X \rightarrow Y$ is a morphism $f: Z \rightarrow X$ with $u \circ f=V \circ f$ such that for any morphism $f^{\prime}: Z^{\prime} \rightarrow X$ with $u \circ f^{\prime}=v \circ f^{\prime}$ there exists a unique morphism $\phi: Z^{\prime} \rightarrow z$ such that $f^{\prime}=f \circ \phi$. The 2-source $X \stackrel{f}{\hookrightarrow} \mathrm{Z} \xrightarrow{u \circ f} \mathrm{Y}$ is a limit of Δ iff $\mathrm{Z} \stackrel{\mathrm{f}}{\rightarrow} \mathrm{X}$ is an equalizer of $\mathrm{u}, \mathrm{V}: \mathrm{X} \rightarrow \mathrm{Y}$. Notation: $Z=e q(u, v)$.
[Note: Every equalizer is a monomorphisn. A monomorphism is regular if it is an equalizer. A regular monomorphism is extremal.]
(Coequalizers) A coequalizer in a category C of a pair of morphisms $u, v: X \rightarrow Y$ is a morphism $f: Y \rightarrow Z$ with $f \circ u=f \circ v$ such that for any moxphism $f^{\prime}: Y \rightarrow Z^{\prime}$ with $f^{\prime} \circ u=f^{\prime} \circ v$ there exists a mique morphism $\phi: Z \rightarrow Z^{\prime}$ such that $f^{\prime}=\phi \circ f$. The 2-sink $Y \xrightarrow{f} Z \stackrel{f \circ u}{\longleftrightarrow} X$ is a colimit of Δ iff $Y \xrightarrow{f} Z$ is a coequalizer of $u, v: X \rightarrow Y$. Notation: $Z=\operatorname{coeq}(u, v)$.
[Note: Every coequalizer is an epimorphism. An epimorphism is regular if it is a coequalizer. A regular epimorphism is extremal.]

REMARK There are two aspects to the notion of equalizer or coequalizer, namely: (1) Existence of f and (2) Uniqueness of ϕ. Given (1), (2) is equivalent to requiring that f be a monomorphism or an epimorphism. If (l) is retained and (2) is abandoned, then the terrinology is weak equalizer or weak coequalizer. For example, HTOP_{4} thas neither equalizers nor coequalizers but does have weak equalizers and weak coequalizers.

EXAMPLE Given objects $\mathbb{C}, \underline{D}$ in CAT and morphisms $F, G: \underset{\sim}{C} \rightarrow \underline{D}$ in CAT, their equalizer eq(F, G) is the inclusion inc of the subcategory of \underline{C} on which F, G coincide:

where

$$
\left\{\begin{array}{l}
\quad \mathrm{Ob} \text { eq }(\mathrm{F}, \mathrm{G})=\{\mathrm{X} \in \mathrm{Ob} \mathrm{C}: \mathrm{FX}=\mathrm{GX}\} \\
\quad \text { Mor eq }(\mathrm{F}, \mathrm{G})=\{\mathrm{f} \in \operatorname{Mor} \mathrm{C}: \mathrm{Ff}=\mathrm{Gf}\}
\end{array}\right.
$$

EXAMPLE Take $\underset{\sim}{C}=\underline{S E T}$ and consider a pair of morphisms $u, v: X \rightarrow Y$. Let \sim be
the equivalence relation generated by $\{(u(x), v(x)): x \in X\}$-- then the canonical map $Y \rightarrow Y / \sim$ which assigns to each $y \in Y$ its equivalence class [y] is a coequalizer of u, v.

PULLBACKS AND PUSHOUTS

Let I be the category $1 \bullet \longrightarrow-\frac{b}{\longrightarrow}$ 2. Given morphisms $\left.\right|_{-} ^{-} \begin{aligned} & f: X \rightarrow z\end{aligned}$ in
C, define a diagram $\Delta: \underline{I} \rightarrow \underline{C}$ by $\left|\begin{array}{l}\Delta_{1}=\mathrm{X} \\ \Delta_{2}=Y \\ \Delta_{3}=Z\end{array} \quad \&\right|_{-}^{-\quad \Delta \mathrm{a}=\mathrm{f}} \begin{aligned} & -\mathrm{b}=\mathrm{g}\end{aligned}$.
(Pullbacks) Given a $2-\operatorname{sink} \mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Z} \stackrel{\mathrm{g}}{\longrightarrow} \mathrm{Y}$, a commatative diagram

with $f \circ \xi^{\prime}=g \circ \eta^{\prime}$ there exists a unique morphism $\phi: P^{\prime} \rightarrow P$ such that $\xi^{\prime}=\xi \circ \phi$ and $\eta^{\prime}=\eta$. ϕ. The 2-source $X \stackrel{\xi}{\longleftrightarrow} P \xrightarrow{\eta} Y$ is called a pullback of the 2-sink $\mathrm{X} \xrightarrow{\mathrm{f}} \mathrm{Z}<\frac{\mathrm{g}}{-} \mathrm{Y}$. Notation: $\mathrm{P}=\mathrm{X} \quad \mathrm{X}_{\mathrm{Z}} \mathrm{Y}$. Limits of Δ are pullback squares and conversely.

Let I be the category $1 \bullet<\frac{a}{\longrightarrow} \bullet$ 2. Given morphisms $\left.\right|_{-} ^{-} \begin{aligned} & f: Z \rightarrow X \\ & g: Z \rightarrow Y\end{aligned}$ in
C, define a diagram $\Delta: I \rightarrow C$ by $\left|\begin{array}{l}\Delta_{1}=X \\ \Delta_{2}=Y \\ \Delta_{3}=Z\end{array} \quad \&\right|_{-}^{\Delta a=f} \begin{gathered}\Delta b=g\end{gathered}$.
(Pushouts) Given a 2 -source $\mathrm{X} \stackrel{\mathrm{f}}{-\mathrm{g}} \xrightarrow{\text { Y, a conmuta tive diagram }}$

with $\xi^{\prime} \circ f=\eta^{\prime} \circ g$ there exists a unique morphism $\phi: P \rightarrow P^{\prime}$ such that $\xi^{\prime}=\phi \circ \xi$ and $\eta^{\prime}=\phi \circ \eta$. The $2-\operatorname{sink} X \xrightarrow{\xi} P \stackrel{\eta}{\longleftrightarrow} Y$ is called a pushout of the 2 -source $\mathrm{X} \stackrel{\mathrm{f}}{-\mathrm{g}} \xrightarrow{\mathrm{F}} \mathrm{Y}$. Notation: $\mathrm{P}=\mathrm{X} \underset{\mathrm{Z}}{\mathrm{Y}} \mathrm{Y}$. Colimits of Δ are pushout squares and conversely.

REMARK The result of dropping uniqueness in ϕ is weak pullback or weak pushout. Examples are the commutative squares that define fibration and cofibration in TOP.

EXAMPLE Let X and Y be topological spaces. Let $\mathrm{A} \rightarrow \mathrm{X}$ be a closed embedding and let $f: A \rightarrow Y$ be a continuous function - then the adjunction space $X L_{\mathrm{f}} \mathrm{Y}$ corresponding to the 2 -source $\mathrm{X} \longleftarrow \mathrm{A} \xrightarrow{\mathrm{f}} \mathrm{Y}$ is defined by the pushout square

f being the attaching map. Agreeing to identify A with its image in X, the restriction of the projection $\mathrm{p}: \mathrm{X} 山 \mathrm{Y} \rightarrow \mathrm{X}{L_{\mathrm{f}} \mathrm{Y} \text { to }\left.\right|_{-} ^{-} \mathrm{X}-\mathrm{A}}_{\mathrm{Y}}$ is a homeamonphisn of $\left.\right|_{-} ^{X-A}$ onto an $\left.\right|_{-} ^{-} \begin{aligned} & \text { open } \\ & \text { closed }\end{aligned}$ subset of $X \cup_{f} Y$ and the images $\left.\right|_{-} ^{-} p(X-A)$ partition $X U_{\mathrm{f}} \mathrm{Y}$.

Let $\underline{I} \neq \underline{0}$ be a small category -- then I is said to be filtered if
(F_{1}) Given any pair of objects i, j in I, there exists an object k and morphisms $\left\lvert\, \begin{aligned} & i \rightarrow k \\ & \quad j \rightarrow k\end{aligned}\right. ;$
$\left(F_{2}\right)$ Given any pair of morphisms $a, b: i \rightarrow j$ in I, there exists an object k and a morphism $c: j \rightarrow k$ such that $c \circ a=c \circ b$.

Every nonempty directed set (1,5) can be viewed as a filtered category 1 , where $O b I=I$ and $\operatorname{Mor}(i, j)$ is a one element set when $i \leq j$ but is empty otherwise.

EXAMPIE Let [N] be the filtered category associated with the directed set of non-negative integers. Given a category \mathbb{C}, denote by FIL (C) the functor category $[[N], \underline{C}]-$ then an object $(\underline{X}, \underline{f})$ in $F I L(\underline{C})$ is a sequence $\left\{X_{n}, f_{n}\right\}$, where $X_{\mathrm{n}} \in \mathrm{Ob} \underline{\mathrm{C}} \& \mathrm{f}_{\mathrm{n}} \in \operatorname{Mor}\left(\mathrm{X}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}+1}\right)$, and a morphism $\phi:(\underline{X}, \underline{f}) \rightarrow(\underline{\mathrm{Y}}, \mathrm{g})$ in $\mathrm{FIL}(\underline{\mathrm{C}})$ is a sequence $\left\{\phi_{n}\right\}$, where $\phi_{n} \in \operatorname{Mor}\left(X_{n}, Y_{n}\right) \& g_{n} \circ \phi_{n}=\phi_{n+1} \circ f_{n}$.
(Filtered Colimits) A filtered colimit in \underline{C} is the colimit of a diagram $\Delta: \underline{I} \rightarrow \underline{C}$, where I is filtered.
(Cofiltered Limits) A cofiltered limit in \underline{C} is the limit of a diagram $\Delta: I \rightarrow C$, where I is cofiltered.
[Note: A small category $\underline{I} \neq 0$ is said to be cofiltered provided that $\underline{I}^{O P}$ is filtered.]

EXAMPLE A Hausdorff space is compactly generated iff it is the filtered Colimit in TOP of its compact subspaces. Every compact Hausdorff space is the cofiltered limit in TOP of compact metrizable spaces.

Given a small category \underline{C}, a path in \underline{C} is a diagram σ of the form $X_{0} \rightarrow$ $x_{1} \leftarrow \cdots \rightarrow x_{2 n-1} \leftarrow x_{2 n}(n \geq 0)$. one says that σ begins at X_{0} and ends at $X_{2 n}$. The quotient of $\mathrm{Ob} \underline{C}$ with respect to the equivalence relation obtained by declaring that $X^{\prime} \sim X^{\prime \prime}$ iff there exists a path in \mathbb{C} which begins at X^{\prime} and ends at $X^{\prime \prime}$ is the set $\pi_{0}(\underline{C})$ of components of $\underline{C}, \underline{C}$ being called connected when the cardinality of $\pi_{0}(\underline{C})$ is one. The full subcategory of \underline{C} determined by a carmonent is connected and is maximal with respect to this property. If $\underset{C}{ }$ has an initial object or a final object, then \subseteq is connected.
[Note: The concept of "path" makes sense in any category.]

EXAMPLE The assigmment

$$
\left.\right|_{-} ^{-} \frac{T O P}{X \rightarrow \pi_{0}(I X)}
$$

is a functor.
[Note: The elements of π_{0} (IX) are the path components of X.]

Let $I \neq \underline{0}$ be a small category -- then I is said to be pseudofiltered if $\left(\mathrm{PF}_{1}\right)$ Given any pair of morphisms $\left.\right|_{-} ^{-} a: i \rightarrow j \rightarrow k$ in I, there exists an object ℓ and morphisms $\left.\right|_{-} ^{-} \mathrm{c}: j \rightarrow \ell . \mathrm{j} \rightarrow \ell$. such that $\mathrm{c} \circ \mathrm{a}=\mathrm{d} \circ \mathrm{b}$;
$\left(\mathrm{PF}_{2}\right)$ Given any pair of morphisms $\mathrm{a}, \mathrm{b}: \mathrm{i} \rightarrow j$ in I , there exists a morphism $c: j \rightarrow k$ such that $c \circ a=c \circ b$.

I is filtered iff I is connected and pseudofiltered. I is pseudofiltered iff its components are filtered.

Given small categories $\left.\right|_{-} ^{-} \underset{\sim}{\underline{J}}$, a functor $\nabla: J \rightarrow I$ is said to be final provided that for every $i \in O b I$, the comma category $\left|K_{i}, \nabla\right|$ is nonempty and connected. If \underline{U} is filtered and $\nabla: \underline{J} \rightarrow I$ is final, then I is filtered.
[Note: A subcategory of a small category is final if the inclusion is a final functor.]

Let $\nabla: \underline{I} \rightarrow I$ be final. Suppose that $\Delta: \underline{I} \rightarrow \underline{C}$ is a diagram for which colim $\Delta \circ \nabla$ exists -- then colim Δ exists and the arrow colim $\Delta \circ \nabla \rightarrow$ colim Δ is an isomorphism. Corollary: If i is a final object in I, then colim $\Delta \approx \Delta_{i}$.
[Note: Analogous considerations apply to limits so long as "final" is replaced throughout by "initial".]

REMARK Let I be a filtered category -- then there exists a directed set (J, \leq) and a final functor $\nabla: \underline{I} \rightarrow I$.

Limits commute with limits. In other words, if $\Delta: \underline{I} \times \underline{J} \rightarrow \underline{C}$ is a diagram, then under the obvious assumptions

$$
\lim _{\underline{I}} \lim _{\underline{J}} \Delta \approx \lim _{\underline{I} \times \underline{I}} \Delta \approx \lim _{\underline{J} \times \underline{I}} \Delta \approx \lim _{\underline{J}} \lim _{\underline{I}} \Delta .
$$

Likewise, colimits commite with colimits. In general, limits do not comute with colimits. However, if $\Delta: \underline{I} \times \underline{J} \rightarrow \underline{S E T}$ and if \underline{I} is finite and \underline{J} is filtered, then the arrow colimg $\lim _{\underline{I}} \Delta \rightarrow \lim _{\underline{I}}$ colim $\underline{U}_{\underline{I}} \Delta$ is a bijection, so that in SET filtered colimits commute with finite limits.
[Note: It is also true that in $G R$ or $A B$, filtered colimits commate with finite limits. But, e.g., filtered colimits do not commute with finite limits in SET ${ }^{\circ P}$.]

COMPLETENESS AND COCOMPLETENESS

A category \mathbb{C} is said to be complete (cooomplete) if for each small category I, every $\Delta \in O$ [$\underline{I}, \underline{C}]$ has a limit (colimit). The following are equivalent.
(1) \underline{C} is complete (cocomplete).
(2) \subseteq has products and equalizers (coproducts and coequalizers).
(3) C has products and pullbacks (coproducts and pushouts).

EXAMPLE The categories SET, $G R$, and $A B$ are complete and cocomplete. The same holds for $\underline{T O P}$ and TOP_{\star} but not for $\mathrm{HIOP}^{\text {and }} \underline{H T O P}_{\star}$.
[NOte: HAUS is complete; it is also cocomplete, being epireflective in TOP.]

THEOREM CAT is complete and cocomplete.
[Note: $\underline{0}$ is an initial object in CAT and $\underline{1}$ is a final object in CAT.]

A category \mathbb{C} is said to be finitely complete (finitely cocomplete) if for each finite category I, every $\Delta \in O b[\underline{I}, C]$ has a limit (colimit). The following are equivalent.
(1) \subseteq is finitely complete (finitely cocomplete).
(2) \subseteq has finite products and equalizers (finite coproducts and coequalizers).
(3) \subseteq has finite products and pullbacks (finite coproducts and pushouts).

EXAMPLE The full subcategory of TOP whose objects are the finite topological spaces is finitely complete and finitely cocomplete but neither complete nor cocomplete. A nontrivial group, considered as a category, is neither finitely complete nor finitely cocomplete.

If \underline{C} is small and D is finitely complete and wellpowered (finitely cocomplete and cowellpowered), then [C,D] is wellpowered (cowellpowered).

EUAMPLE SET $(\rightarrow), \operatorname{GR}(\rightarrow), \mathrm{AB}(\rightarrow), \operatorname{TOP}(\rightarrow)$ (or HAUS $(\rightarrow)), \operatorname{CAT}(\rightarrow)$ are wellpowered and cowellpowered.
[Note: The arrow category $C(\rightarrow)$ of any category C is ismorphic to [$2, C]$.]

PRESERVATION

Let $\mathrm{F}: \underline{C} \rightarrow \mathrm{D}$ be a functor.
(a) F is said to preserve a limit $\left\{\ell_{i}: L \rightarrow \Delta_{i}\right\}$ (oolimit $\left\{\ell_{i}: \Delta_{i} \rightarrow L\right\}$) of a diagram $\Delta: \underline{I} \rightarrow \underset{C}{ }$ if $\left\{F \ell_{i}: F L \rightarrow F \Delta_{\mathbf{i}}\right\}\left(\left\{F \ell_{i}: F \Delta_{i} \rightarrow F L\right\}\right.$) is a limit (colimit) of the diagram F o $\Delta: \underline{I} \rightarrow \underline{D}$.
(b) F is said to preserve limits (colimits) over an indexing category I if F preserves all limits (oolimits) of diagrams $\Delta: I \rightarrow C$.
(c) F is said to preserve limits (colimits) if F preserves limits (colimits) over all indexing categories I.

EXAMPLE The forgetful functor TOP \rightarrow SET preserves limits and colimits. The forgetful functor $G R \rightarrow$ SEP preserves limits and filtered colimits but not coproducts. The inclusion HAUS \rightarrow TOP preserves limits and coproducts but not coequalizers. The inclusion $A B \rightarrow G R$ preserves limits but not colimits.

There are two rules that determine the behavior of $\left.\right|_{-} ^{-} \operatorname{Mor}(X,-)$ with respect to limits and colimits.
(1) The functor Mor $(\mathrm{X},-): \underline{\mathrm{C}} \rightarrow \underline{\text { SET }}$ preserves limits. Symbolically, therefore, $\operatorname{Mor}(X, \lim \Delta) \approx \lim (\operatorname{Mor}(X, \rightarrow) \circ \Delta)$.
(2) The functor $\operatorname{Mor}(-, X): \mathbb{C}^{O P} \rightarrow \underline{\text { SEI }}$ converts colimits into limits. Symbolically, therefore, $\operatorname{Mor}(\infty \lim \Delta, X) \approx \lim (\operatorname{Mor}(-, X) \circ \Delta)$.

Iimits and colimits in functor categories are computed "object by object". So, if \underline{C} is a small category, then \underline{D} (finitely) complete $=>$ [$\underline{\underline{D}}, \underline{D}$] (finitely) complete and \underline{D} (finitely) cocomplete $=>$ [$\underline{C}, \underline{D}]$ (finitely) cocomplete.

In particular: $\underline{\hat{C}}=\left[\underline{C^{O P}}\right.$, SEIP] is complete and cocomplete.
[Note: An initial object $\emptyset_{\hat{\mathrm{A}}}$ in $\underline{\hat{\mathrm{C}}}$ is the constant presheaf with value \varnothing. C

A final object * ${ }_{\hat{C}}$ in $\hat{\mathbb{C}}$ is the constant presheaf with value $\left.\{*\}.\right]$
C
N.B. The Yoneda embedding $\mathrm{Y}_{\underline{\mathrm{C}}}: \underline{\mathrm{C}} \rightarrow \hat{\mathrm{C}}$ preserves limits; it need not, however, preserve finite colimits. E.g.: Suppose that \underline{C} has an initial object $\emptyset_{\underline{C}}$-- then $h_{\underline{C}}$ and $\emptyset_{\underline{\hat{C}}}$ are not isomorphic.

EXAMPLE Let G be a nontrivial group, considered as a category G-- then the category of right G-sets is the category $\left[\underline{G}^{O P}, \underline{S E T]}\right.$, thus is complete and cocomplete.

THEOREM Let C be a small category -- then every presheaf F is a colimit of representable presheaves: There exists a small category I_{F} and a functor $\Delta_{F}: I_{F} \rightarrow C$ such that

$$
\operatorname{colim} Y_{C} \circ \Delta_{F} \approx F
$$

[Let I_{F} be the category whose objects are the pairs (X, x), where $X \in O b \underline{C}$
and $x \in F X$, and whose morphisms $(X, x) \rightarrow\left(X^{\prime}, X^{\prime}\right)$ are the $f \in \operatorname{Mor}\left(X, X^{\prime}\right)$ such that (Ff) $x^{\prime}=x--$ then I_{F} is a small category and the assignment

$$
\left[\begin{array}{l}
(x, x) \longrightarrow X \\
\left((X, x) \xrightarrow{E}\left(X^{\prime}, x^{\prime}\right)\right) \rightarrow f
\end{array}\right.
$$

defines a functor $A_{F}: I_{F} \rightarrow \underline{C}$ with the stated properties. In this connection, bear in mind that

$$
\operatorname{Nat}\left(h_{\mathrm{X}}, \mathrm{~F}\right) \longleftrightarrow \mathrm{FX},
$$

so each $(X, x) \in O D I_{F}$ determines a natural transformation $\bar{\Xi}_{(X, x)}: h_{X} \rightarrow F$ and $\forall f:(X, x) \rightarrow\left(X^{\prime}, x^{\prime}\right)$, we have

$$
\Xi_{(X, x)}=\Xi_{\left(X^{\prime}, X^{\prime}\right)} \circ Y_{\underline{C}}(f)
$$

[Note: Take $F=h_{X}-$ then $I_{h_{X}}$ has a final object, namely the pair $\left.\left(x, i d_{X}\right) \cdot\right]$

REMARK Let $C / F=I_{F}$-- then the canonical arrow

$$
\widehat{C / F} \rightarrow \hat{C} / F
$$

is an equivalence.
[Note: Some authorities write ${ }^{g r o}{ }_{\underline{C}} F$ for I_{F}, and call it the Grothendieck construction on F.]

PRESENTABILITY

Fix a regular cardinal k and let $\underline{I} \neq \underline{0}$ be a small category - then I is said to be k-filtered if
($F_{1}-k$) Given any set $\left\{\mathbf{i}_{\alpha}: \alpha \in A\right.$) of objects in I with $\# A<\kappa$, there exists an object k and morphisms $i_{\alpha} \rightarrow k$;
$\left(\mathrm{F}_{2}-k\right)$ Given any set $\left\{i \xrightarrow{\mathrm{f}_{\alpha}} j: \alpha \in \mathrm{A}\right\}$ of morphisms in I with \#A $<k$, there exists an object k and a morphism $f: j \rightarrow k$ such that $f \circ f_{\alpha}$ is independent of α.
N.B. Take $k=\mathcal{S}\}_{0}-$ then $\left\{\mathcal{S}_{0}-\right.$ filtered $=$ filtered and k-filtered \Rightarrow filtered.

Let \underline{C} be a cocomplete category -- then an object $X \in O B C$ is k-definite if Mor (X, \rightarrow) preserves k-filtered colimits, i.e., if for every k-filtered category I and for every diagram $\Delta: \underline{I} \rightarrow \underline{C}$, the canonical arrow

$$
\operatorname{colim}_{\underline{I}} \operatorname{Mor}\left(X, \Delta_{i}\right) \rightarrow \operatorname{Mor}\left(X, \operatorname{colim} \underline{I}_{\underline{I}} \Delta_{i}\right)
$$

is bijective.
[Note: Obviously, if $k^{\prime}>k$ (k^{\prime} regular), then

$$
\text { X k-definite }=>\text { X k'-definite.] }
$$

EXAMPLE Take $\underline{C}=\underline{S E T}-$ then X is k-definite iff $\# X<\kappa$. On the other hand, in $\underset{\subseteq}{C}=\underline{T O P}$, no nondiscrete X is K -definite.

Let C be a cocomplete category - then C is said to be k-presentable if up to isomorphism, there exists a set of κ-definite objects and every object in C is a k-filtered colimit of k-definite objects.
N.B. If \underline{C} is k-presentable and if $k^{\prime}>\kappa\left(\kappa^{\prime}\right.$ regular), then \underline{C} is κ^{\prime}-presentable.
[Note: This becomes clear in view of the following characterization: A cocomplete category $\underset{C}{ }$ is κ-presentable iff it admits a set $\left\{G_{i}\right\}$ of strong separators, where each G_{i} is k-definite.]

EXAMPLE SEI and CAT are $\delta\}_{0}$-presentable but TOP is not k-presentable for any K .

In SET, k-filtered colimits commute with k-limits.
[Note: In this context, "K-limit" means the limit of a functor F:C \rightarrow SET, where \underline{C} is a small category with "Mor $\underline{C}<\kappa$.]

LEMMA Suppose that \subseteq is k-presentable -- then $\forall X \in O b \underset{C}{C}$, there exists a regular cardinal k_{X} such that X is K_{X}-definite.

PROOF Fix a K-filtered category I and a diagram $\Delta: \underline{I} \rightarrow \underline{C}$ such that $X=\operatorname{colim} \underline{I}_{i}$, where $\forall i, \Delta_{i}$ is k-definite. Choose a regular cardinal $k_{X} \equiv \kappa^{\prime}>k$ such that \#Mor $I<k^{\prime}$ - then $\forall i, \Delta_{i}$ is k^{\prime}-definite and for any k^{\prime}-filtered category I^{\prime} and any diagram $\Delta^{\prime}: \underline{I}^{\prime} \rightarrow \underline{C}$, we have

$$
\begin{aligned}
& \operatorname{colim}_{I^{\prime}} \operatorname{Mor}\left(\mathrm{X}, \Delta^{\prime}{ }^{\prime}{ }^{\prime}\right) \\
& \approx \operatorname{colim}_{I}, \operatorname{Mor}\left(\operatorname{colim}_{I} \Delta_{i}, \Delta_{i}^{\prime}\right) \\
& \approx \operatorname{colim}_{\underline{I}^{\prime}} \lim _{\underline{I}} \operatorname{Mor}\left(\Delta_{i}, \Delta_{i^{\prime}}\right) \\
& \approx \lim _{\underline{I}} \operatorname{colim} \underline{I}^{\prime} \operatorname{Mor}\left(\Delta_{i}, \Delta_{I^{\prime}}^{\prime}\right) \\
& \approx \lim _{\underline{I}} \operatorname{Mor}\left(\Delta_{i^{\prime}}, \operatorname{colim}{\underline{I^{\prime}}}^{\Delta_{i^{\prime}}^{\prime}}\right)
\end{aligned}
$$

```
\(\approx \operatorname{Mor}\left(\operatorname{colim} I_{I} \Delta_{i}, \operatorname{colim} I^{\prime} \Delta^{\prime}{ }^{\prime}\right)\)
\(\approx \operatorname{Mor}\left(\mathrm{X}\right.\), colim \(\left.\Delta^{\prime}\right)\).
    \(I^{\prime} i^{\prime}\)
```

If \underline{C} is k-presentable, then for all $A, B \in O b \underline{C}$, the categories $A \backslash \underline{C}, \underline{C} / B$ are k-presentable.

If \underline{C} is k-presentable and if I is a small category, then [I, C] is k-presentable and the k-definite objects in $[\underline{I}, \underline{C}]$ are the functors $\Delta: \underline{I} \rightarrow \underset{C}{C}$ such that $\forall i \in O b I$, Δ_{i} is K-definite. So, e.g.,

$$
\underline{C} k \text {-presentable }=>\underline{C}(\rightarrow)<\text {-presentable. }
$$

EXAMPIE If \underline{C} is a small category, then

$$
\hat{\mathrm{C}}=\left[\underline{C}^{\mathrm{OP}}, \underline{\mathrm{SET}}\right]
$$

is H_{0}-presentable.
[Note: Every full, reflective subcategory of $\hat{\mathrm{C}}$ which is closed under the formation of k-filtered colimits is κ-presentable.]

A category \subseteq is presentable if it is κ-presentable for some κ. Every presentable category is complete and cocomplete, wellpowered and cowellpowered.

EXAMPIE Suppose that $\underline{\mathcal{C}}$ is a Grothendieck category with a separator -- then \underline{C} is presentable.

ACCESSIBILITY

Let k be a regular cardinal. Suppose that \underline{C} is a category which has k-filtered
colimits -- then \underline{C} is said to be k-accessible if up to iscmorphism, there exists a set of k-definite objects and every object in C is a k-filtered colimit of K-definite objects.
[Note: Obviously,

$$
\text { C k-presentable => } \underset{\text { C }}{ } \text { к-accessible.] }
$$

EXAMPLE The category \underline{C} whose objects are the sets and whose morphisms are the injections is $\left\langle H_{0}\right.$-accessible but not presentable.

REMARK If $k^{\prime}>k$ (k^{\prime} regular), then it need not be true that

$$
\subseteq K \text {-accessible } \Rightarrow \subseteq K^{\prime} \text {-accessible. }
$$

Still, there is a transitive relation \gg on the regular cardinals such that

$$
k^{\prime} \gg k \Rightarrow k^{\prime}>k
$$

and if $k^{\prime} \gg k$, then

$$
\underline{\mathcal{C}} \kappa \text {-accessible }=>\underline{C} \kappa^{\prime} \text {-accessible. }
$$

In addition, for any set K of regular cardinals, one can find a regular cardinal K^{\prime} such that $K^{\prime} \gg k$ for all $k \in K$.

A category C is accessible if it is k-accessible for some k.
[Note: On the basis of the foregoing, there exist arbitrarily large regular cardinals K such that \underline{C} is k-accessible.]

REMARK In an accessible category, idempotents split. On the other hand, every small category in which idempotents split is accessible.
N.B. Suppose that \underline{C} is accessible -- then $\forall X \in O B \underline{C}$, there exists a regular
cardinal κ_{X} such that X is K_{X}-definite.

IEMMA The following conditions on an accessible category \underline{C} are equivalent.
(a) \mathbb{C} is presentable.
(b) \mathbb{C} is cocomplete.
(c) $\underline{\mathrm{C}}$ is complete.

If \underline{C} is accessible, then for all $A, B \in O b \underline{C}$, the categories $A \backslash \underline{C}, \underline{C} / B$ are accessible.

If \subseteq is accessible and if I is a small category, then $[I, C]$ is accessible.
[Note: In contrast to what happens in the presentable situation, the degree of accessibility of [$\underline{I}, \mathrm{C}$] may be strictly larger than that of C . However, in the special case when $\underline{C}=2$, we have

$$
\underline{C} K \text {-accessible }=>\subseteq(\rightarrow) K \text {-accessible. J }
$$

Suppose that \underline{C} and \underline{D} are k-accessible -- then a functor $F: \underline{C} \rightarrow \underline{D}$ is k-accessible if F preserves k -filtered colimits.
[Note: F is accessible if it is k-accessible for some k.]
E.g.: If \subseteq is accessible, then the $\operatorname{Mor}(X,-)(X \in O b \subseteq)$ are accessible.

LEMMA A functor $F: \underline{C} \rightarrow \underline{\text { SET }}$ is accessible iff F is a colimit of representable functors:

$$
F=\operatorname{colim}_{\underline{I}} \operatorname{Mor}\left(X_{i}, \longrightarrow\right)
$$

EXAMPIE Take $\underline{C}=\underline{S E T}, \underline{D}=\underline{S E T}$ and let $F: \underline{S E T} \rightarrow \underline{\text { SET }}$ be the functor that sends X to 2^{X} (the set of all subsets of X) and sends $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ to the arrow

$$
\left.\right|_{\quad \begin{array}{l}
2^{X}
\end{array} 2^{Y}} \quad \text {-- then } F \text { is not accessible. }
$$

IFRMA Let \underline{C} and \underline{D} be accessible categories -- then a functor $F: \underline{C} \rightarrow \underline{D}$ is accessible iff $\forall Y \in O b \underline{D}$, the cormosition $\operatorname{Mor}(Y,-) \circ F: \underline{C} \rightarrow \underline{\text { SET }}$ is accessible.

If $\left\{F_{i}: i \in I\right\}$ is a set of accessible functors, then there exist arbitrarily large regular cardinals k such that each F_{i} is k-accessible and preserves k-definite objects (i.e., $X \quad k$-definite $=>F_{i} X \quad k$-definite).

ADJOINTS

Given categories $\left.\right|_{-\underline{D}} ^{-}$, functors $\left.\right|_{-} ^{-} \begin{aligned} & -\underline{C} \rightarrow \underline{D} \\ & G: \underline{D} \rightarrow \underline{C}\end{aligned}$ are said to be an adjoint pair
if the functors $\left.\right|_{-} ^{-} \begin{array}{llll}\text { Mor } & \left(F^{O P} \times i d_{D}\right) \\ \text { Mor } \circ & (i d & C^{O P} & \times G)\end{array}$ from $\underline{C}^{O P} \times \underline{D}$ to SET are naturally isomorphic,
i.e., if it is possible to assign to each ordered pair $\left.\right|_{-} ^{-} \begin{aligned} & X \in O B \underline{C} \\ & \underline{D}\end{aligned}$ a bijective map $E_{X, Y}: \operatorname{Mor}(F X, Y) \rightarrow \operatorname{Mor}(X, G Y)$ which is functorial in X and Y. When this is $s o, F$ is a left adjoint for G and G is a right adjoint for F. Any two left (right) adjoints for $G(F)$ are naturally isomorphic. Left adjoints preserve colimits; right adjoints preserve limits. In order that (F, G) be an adjoint pair, it is necessary and and sufficient that there exist natural transformations $\left\{\begin{array}{l}\mu \in \operatorname{Nat}\left(i d_{\underline{C}}, G \circ F\right) \\ v \in \operatorname{Nat}\left(F \circ G, i d_{\underline{D}}\right)\end{array}\right.$
subject to $\left\lvert\, \begin{array}{l}(G \nu) \circ(\mu G)=i d_{G} \\ (\nu F) \circ(F \mu)=i d_{F}\end{array}\right.$. The data ($\left.F, G, \mu, \nu\right)$ is referred to as an adjoint situation, the natural transformations $\left\lvert\, \begin{gathered}\mu: i d_{\underline{C}} \rightarrow G \circ F \\ v: F \circ G \rightarrow i d_{\underline{D}}\end{gathered}\right.$ being the arrows of adjunction.

$$
\text { N.B. }\left.\right|_{-} ^{-} \forall \mathrm{X} \in \mathrm{Ob} \underline{\mathrm{C}}, \text {, we have }
$$

Therefore, when explicated, the relations $\left\lvert\, \begin{aligned} & (G \nu) \circ(\mu G)=i d_{G} \\ & (V F) \circ(F \mu)=i d_{F}\end{aligned}\right.$ becone

$$
\left\lvert\, \begin{gathered}
\mathrm{GY} \xrightarrow{\mu_{\mathrm{GY}}} \mathrm{GFGY} \xrightarrow{\mathrm{GV} \mathrm{Y}} \mathrm{GY} \\
\underset{\mathrm{FX}}{ } \xrightarrow{\mathrm{~F}_{\mathrm{X}}} \mathrm{FGFX} \xrightarrow{\nu_{\mathrm{FX}}} \mathrm{FX}
\end{gathered}\right.
$$

with

$$
\left[\begin{array}{l}
G \nu_{Y} \circ \mu_{G Y}=i d_{G Y} \\
v_{F X} \circ F u_{X}=i d_{F X} .
\end{array}\right.
$$

REMARK Given an adjoint situation ($\mathrm{F}, \mathrm{G}, \mu, \nu$), $\forall \mathrm{X} \in \mathrm{Ob} \subseteq \in \forall \mathrm{Y} \in \mathrm{Ob}$,

$$
\Xi_{X, Y}: \operatorname{Mor}(F X, Y) \rightarrow \operatorname{Mor}(X, G Y)
$$

sends $g \in \operatorname{Mor}(F X, Y)$ to $G g \circ \mu_{X} \in \operatorname{Mor}(X, G Y)$, so $\forall f \in \operatorname{Mor}(X, G Y)$ there exists a
unique $g \in \operatorname{Mor}(F X, Y)$ such that $f=G g \circ \mu_{X}$. Conversely, starting from

$$
E_{X, Y}: \operatorname{Mor}(F X, Y) \rightarrow \operatorname{Mor}(X, G Y),
$$

specialize and take $\mathrm{Y}=\mathrm{FX}$-- then the

$$
\mu_{X}=\Xi_{X, X}\left(i d_{F X}\right) \in \operatorname{Mor}(X, G F X)
$$

are the components of a $\mu \in \operatorname{Nat}\left(\mathrm{id}_{\underline{C}}, \mathrm{G} \circ \mathrm{F}\right)$.
[Note: The story for E^{-1} and v is analogous.]

LEMMA Let I be a small category, C a complete and cocomplete category -- then the constant diagram functor $\mathrm{K}: \underline{\mathrm{C}} \rightarrow[\underline{I}, \underline{C}]$ has a left adjoint, viz. colim$\underline{I}_{\underline{I}}:[\underline{I}, \underline{C}] \rightarrow \underline{C}$, and a right ad joint, viz. $\lim _{\underline{I}}:[\underline{I}, \underline{C}] \rightarrow \mathrm{C}$.

EXAMPLE The forgetful functor $U: G R \rightarrow$ SET has a left adjoint that sends a set X to the free group on X.

EXAMPLE The forgetful functor $U: T O P \rightarrow$ SET has a left adjoint that wnds a set X to the pair (X, τ), where τ is the discrete topology, and a right adjoint that sends a set X to the pair (X, τ), where τ is the indiscrete topology.

EXAMPLE The forgetful functor U:CAT \rightarrow PRECAT has a left adjoint that sends a precategory G to the free category generated by G.

EXAMPLE Let $\pi_{0}: C A T \rightarrow$ SEP be the functor that send C to $\pi_{0}(\underline{C})$, the set of components of C ; let dis:SET \rightarrow CAT be the functor that sends X to dis X , the discrete category on X; let ob:CAT \rightarrow SET be the functor that sends \underline{C} to $O b$, the set of objects in C ; let grd:SET \rightarrow CAT be the functor that sends X to grd X , the
category whose objects are the elements of X and whose morphisms are the elenents of $X \times X--$ then π_{0} is a left adjoint for dis, dis is a left adjoint for $o b$, and ob is a left adjoint for grd.
[Note: π_{0} preserves finite products; it need not preserve arbitrary products.]

EXAMPLE Let iso:CAT \rightarrow GRD be the functor that sends \underline{C} to iso \underline{C}, the groupoid whose objects are those of \underline{C} and whose morphisms are the invertible morphisms in C -- then iso is a right adjoint for the inclusion GRD \rightarrow CAT. Let $\pi_{1}:$ CAP \rightarrow GRD be the functor that sends $\underline{\mathcal{C}}$ to $\pi_{1}(\underline{C})$, the fundamental groupoid of \underline{C}, i.e., the localization of \underline{C} at Mor $\underline{C}-$ then π_{1} is a left adjoint for the inclusion GRD \rightarrow CAT.

EXAMPLE Suppose that $\underset{C}{ }$ has finite products and finite coproducts -- then the diagonal functor $\Delta: \underline{C} \rightarrow \underline{C} \times \underline{C}$ has the coproduct $\underline{\|}: \underline{C} \times \underline{C} \rightarrow \underline{C}$ as a left adjoint and the product $\times: \underline{C} \times \underline{C} \rightarrow \underline{\mathcal{C}}$ as a right adjoint.

EXAMPLE Let $\Sigma:$ TOP $_{*} \rightarrow \underline{T O P}_{*}$ be the suspension functor and let $\Omega: \underline{T O P}_{*} \rightarrow \underline{T O P}_{*}$ be the loop space functor - then (Σ, Ω) is an adjoint pair and drops to $H_{T O P}:[\Sigma \mathrm{X}, \mathrm{Y}] \approx$ [$\mathrm{X}, \mathrm{SK}]$.

An adjoint equivalence of categories is an adjoint situation (F, G, μ, v) in which both μ and v are natural isomorphisms.

LEMMA A functor $F: \underline{C} \rightarrow \underline{D}$ is an equivalence iff F is part of an adjoint equivalence.

REMARK Replacing categories by equivalent categories need not lead to equivalent results.

$$
\left.\left(\mathrm{F}_{1}, \mathrm{G}_{1}, \mathrm{H}_{1}, \nu_{1}\right)\right|_{-\underline{\mathrm{C}}} ^{\mathrm{F}_{1}: \underline{\mathrm{C}} \rightarrow \underline{\mathrm{D}}} \begin{aligned}
& \mathrm{G}_{1}: \underline{\mathrm{D}} \rightarrow \underline{\mathrm{C}}
\end{aligned}
$$

and

$$
\left.\left(F_{2}, G_{2}, H_{2}, \nu_{2}\right)\right|_{-} ^{F_{2}: \underline{D} \rightarrow \underline{E}} \begin{aligned}
& G_{2}: \underline{E} \rightarrow \underline{D}
\end{aligned}
$$

be adjoint situations -- then their composition is the adjoint situation

$$
\left(F_{2} \circ F_{1}, G_{1} \circ G_{2}, \mu_{21}, v_{12}\right),
$$

where μ_{21} is corputed as

$$
\mathrm{id}_{\underline{\mathrm{C}}} \xrightarrow{\mu_{1}} \mathrm{G}_{1} \circ \mathrm{~F}_{1}=\mathrm{G}_{1} \circ \mathrm{id}_{\underline{\mathrm{D}}} \circ \mathrm{~F}_{1} \xrightarrow{\mathrm{G}_{1} \mu_{2} \mathrm{~F}_{1}} \mathrm{G}_{1} \circ \mathrm{G}_{2} \circ \mathrm{~F}_{2} \circ \mathrm{~F}_{1}
$$

and v_{21} is computed as

$$
F_{2} \circ F_{1} \circ G_{1} \circ G_{2} \xrightarrow{\mathrm{~F}_{2} \nu_{1} G_{2}} F_{2} \circ i d_{\underline{D}} \circ G_{2}=F_{2} \circ G_{2} \xrightarrow{\nu_{2}} i d_{\underline{E}}
$$

SPECIAL ADJOINT FUNCIOR THEOREM Given a complete wellpowered category \underline{D} which has a cosparating $\mathfrak{r e t}$, a functor $G: \underline{D} \rightarrow \underline{C}$ has a left adjoint iff G preserves limits.

EXAMPIE A functor from SET, $A B$ or TOP to a category \subseteq has a left adjoint iff it preserves limits.

LFMMA Every left or right adjoint functor between accessible categories is accessible.

THE SOLLTIION SET CONDITION

Let \underline{C} and \underline{D} be categories and let $F: \underline{C} \rightarrow \underline{D}$ be a functor - then F satisfies the solution set condition if for each $Y \in O D D$, there exists a source $\left\{g_{i}: Y \rightarrow \mathrm{FX}_{i}\right\}$ such that for every $g: Y \rightarrow F x$, there is an i and an $f: X_{i} \rightarrow X$ such that $g=F f \circ g_{i}$:

E.g.: Every accessible functor satisfies the solution set condition.

GENERAL ADJOINT FUNCTOR THEOREM Given a complete category D, a functor $\mathrm{G}: \underline{\mathrm{D}} \rightarrow \underline{\mathrm{C}}$ has a left adjoint iff G preserves limits and satisfies the solution set condition.

ADJOINI FUNCIOR THEOREM Given presentable categories \underline{C} and \underline{D}, a functor $\mathrm{G}: \underline{\mathrm{D}} \rightarrow \mathrm{C}$ has a left adjoint iff G preserves limits and k-filtered colimits for some regular cardinal k.

A full, isomorphism closed subcategory \underline{C}^{\prime} of an accessible category \underline{C} is accessibly embedded if there is a regular cardinal κ such that \underline{C}^{\prime} is closed under K-filtered colimits.

THEOREM Let \underline{C} be an accessible category and let $\underset{C}{\prime}$ be an accessibly embedded subcategory - then \underline{C}^{\prime} is accessible iff the inclusion functor $\underline{C}^{\prime} \rightarrow \underline{C}$ satisfies the solution set condition.

A full, isomorphism closed subcategory \underline{C}^{\prime} of an accessiole category \underline{C} is said to be an accessible subcategory if \underline{C}^{\prime} is accessible and the inclusion functor $\imath^{\prime}: \underline{C}^{\prime} \rightarrow \underline{C}$ is an accessible functor.

REMARK If \underline{C}^{\prime} is an accessible subcategory of \underline{C}, then \underline{C}^{\prime} is accessibly embedded in \underline{C} and 1' satisfies the solution set condition.

If \underline{C} is an accessible category and if $\left\{C_{i}: i \in I\right\}$ is a set of accessible subcategories, then $\prod_{i \in I} C_{i}$ is an accessible subcategory of C .

If $F: \underline{C}+\underline{D}$ is an accessible functor and if \underline{D}^{\prime} is an accessible subcategory of \underline{D}, then the inverse image F^{-1} (\underline{D}^{\prime}) is an accessible subcategory of \underline{C}.
[Note: Define $F^{-1}\left(\underline{D}^{\prime}\right)$ by the pullback square

REFLECTORS AND COREFLECTORS

A full, isomorphism closed subcategory \underline{D} of a category \underline{C} is said to be a reflective (coreflective) subcategory of $\underset{C}{\text { C }}$ if the inclusion $\underline{D} \rightarrow \underline{C}$ has a left (right) adjoint R, a reflector (coreflector) for D.
[Note: A full subcategory \underline{D} of a category \mathbb{C} is isomorphism closed provided that every object in $\subseteq \underline{C}$ wich is isomorphic to an object in \underline{D} is itself an object in D. $]$

EXAMPLE Fix a topological space X - then the category of sheaves of sets on
X is a reflective subcategory of the category of presheaves of sets on X.

EXAMPLE The category $O G$ of compactly generated topological spaces is a coreflective subcategory of TOP, the coreflector $k: \underline{T O P} \rightarrow C G$ sending X to $k X$, its compactly generated modification.

Let \underline{D} be a reflective subcategory of C, R a reflector for D - then one may attach to each $X \in O b \underline{C}$ a morphism $r_{X}: X \rightarrow R X$ in \underline{C} with the following property: Given any $Y \in O B D$ and any morphism $f: X \rightarrow Y$ in C, there exists a unique morphism $g: R X \rightarrow Y$ in \underline{D} such that $f=g^{\circ} r_{X}$. If the r_{X} are epimorphisms, then D is said to be an epireflective subcategory of C .

EXAMPIE $A B$ is an epireflective subcategory of $G R$, the reflector sending X to its abelianization $\mathrm{X} /[\mathrm{X}, \mathrm{X}]$.

A reflective subcategory \underline{D} of a complete (cocomplete) category \underline{C} is complete (cocomplete).
[Note: Let $\Delta: \underline{I} \rightarrow \underline{\mathrm{D}}$ be a diagram in D .
(1) To calculate a limit of Δ, postcompose Δ with the inclusion $\underline{D} \rightarrow \underset{C}{ }$ and let $\left\{\ell_{i}: L \rightarrow \Delta_{i}\right\}$ be its limit in $\underline{C}-$ then $L \in O b \underline{D}$ and $\left\{\ell_{i}: L \rightarrow \Delta_{i}\right\}$ is a limit of Δ.
(2) To calculate a colimit of Δ, postcompose Δ with the inclusion $\underline{D} \rightarrow \underline{C}$ and let $\left\{\ell_{i}: \Delta_{i} \rightarrow L\right\}$ be its colimit in $\underset{C}{--}$ then $\left\{r_{L} \circ \ell_{i}: \Delta_{i} \rightarrow R L\right\}$ is a colimit of Δ.]

EPIREFLECTIVE CHARACIERIZATION THEOREM If a category C is complete, wellpowered, and cowellpowered, then a full, isomorphism closed subcategory D of C is an epireflective subcategory of \underline{C} iff \underline{D} is closed under the formation in \underline{C} of products and extremal monomorphisms.

ENDS AND COENDS

(Ends) A source $\left\{f_{i}: X \rightarrow \Delta_{i, i}\right\}$ is said to be dinatural if for each $\delta \in$ Mor I, δ
say $i \longrightarrow j$,

$$
\Delta(i d, \delta) \circ f_{i}=\Delta(\delta, i d) \circ f_{j}
$$

An end of Δ is a dinatural source $\left\{e_{i}: E \rightarrow \Delta_{i, i}\right\}$ with the property that if $\left\{f_{i}: X \rightarrow \Delta_{i, i}\right\}$ is a dinatural source, then there exists a unique morphism $\phi: X \rightarrow E$ such that $f_{i}=e_{i} \circ \phi$ for all $i \in O b I$. Every end is a limit (and every limit is an end). Notation: $E=\int_{i} \Delta_{i, i}$ (or $\int_{I} \Delta$).
(Coends) $A \operatorname{sink}\left\{f_{i}: \Delta_{i, i} \rightarrow X\right\}$ is said to be dinatural if for each $\delta \in \operatorname{Mor} I$, say $i \xrightarrow{\delta}$ j,

$$
f_{i} \circ \Delta(\delta, i d)=f_{j} \circ \Delta(i d, \delta)
$$

A coend of Δ is a dinatural $\operatorname{sink}\left\{e_{i}: \Delta_{i, i}, E\right\}$ with the property that if $\left\{f_{i}: \Delta_{i, i} \rightarrow X\right\}$ is a dinatural sink, then there exists a unique morphism $\phi: E \rightarrow X$ such that $f_{i}=\phi \circ e_{i}$ for all $i \in O B I$. Every coend is a colinit (and every colimit is a coend). Notation: $E=\int^{i} \Delta_{i, i}$ (or $f^{\underline{I}} \Delta$).

There are a number of basic constructions that can be viewed as an end or coend of a suitable diagram.

EXAMPLE Let I be a small category and let $\left.\right|_{-} ^{-F: \underline{I} \rightarrow \underline{C}} \begin{aligned} & G: \underline{I} \rightarrow \underline{C}\end{aligned}$ be functors - then the assignment $(i, j) \rightarrow \operatorname{Mor}(F i, G j)$ defines a diagram $\underline{I}^{O P} \times I \rightarrow \underline{\operatorname{SET}}$ and $\operatorname{Nat}(F, G)$ is the end $f_{i} \operatorname{Mor}(F i, G i)$.

EXAMPIE Suppose that A is a ring with unit -- then a right A-module X and a left A-module Y define a diagram $A P \times A \rightarrow \underline{A B}$ (tensor product over Z) and the coend $f^{A} X \otimes Y$ is $X \otimes_{A} Y$, the tensor product over A.
[Note: In context, view A as a category with one object.]

LEMMA Let I be a small category, \mathbf{C} a complete and cocomplete category.
(L) Let

$$
\mathrm{L}: \underline{\mathrm{C}} \rightarrow\left[\underline{\mathrm{I}}^{\mathrm{OP}} \times \underline{\mathrm{I}}, \underline{\mathrm{C}}\right]
$$

be the functor given on objects by

$$
\operatorname{LX}(i, j)=\operatorname{Mor}(i, j) \cdot X .
$$

Then L is a left adjoint for

$$
\text { end: }\left[\underline{I}^{\mathrm{OP}} \times \underline{I}, \underline{\mathrm{C}}\right] \rightarrow \underline{\mathrm{C}} .
$$

(R) Let

$$
\mathrm{R}: \underline{\mathrm{C}} \rightarrow\left[\underline{\mathrm{I}}^{\mathrm{OP}} \times \underline{\mathrm{I}}, \underline{\mathrm{C}}\right]
$$

be the functor given on objects by

$$
R X(i, j)=X^{\operatorname{Mor}(j, i)}
$$

Then R is a right adjoint for

$$
\text { coend: }\left[\underline{I}^{\mathrm{OP}} \times \underline{I}, \mathrm{C}\right] \rightarrow \mathrm{C} .
$$

INIEGRAL YONEDA LFMMA Let I be a small category, C a complete and cocomplete category -- then for every $\mathrm{F} \in \mathrm{Ob}\left[\mathrm{I}^{\mathrm{OP}}, \mathrm{C}\right]$,

$$
f^{i} \operatorname{Mor}(-, i) \cdot F_{i} \approx F \approx \delta_{i} \operatorname{Fi}^{\operatorname{Mor}(i,-)}
$$

[We shall verify the first of these relations. So teke $G \in O b\left[I^{O P}, \underline{C}\right]$ and compute:

$$
\begin{aligned}
& \operatorname{Nat}\left(f^{i} \operatorname{Mor}(-, i) \cdot F i, G\right) \\
& \approx \int_{j} \operatorname{Mor}\left(f^{i} \operatorname{Mor}(j, i) \cdot F i, G j\right) \\
& \approx \int_{j} f_{i} \operatorname{Mor}(\operatorname{Mor}(\mathrm{j}, \mathrm{i}) \cdot \mathrm{Fi}, \mathrm{Gj}) \\
& \approx \delta_{i} \int_{j} \operatorname{Mor}(\operatorname{Mor}(j, i) \cdot \operatorname{Fi}, G j) \\
& \approx \int_{i} f_{j} \operatorname{Mor}(F i, G j) \quad \operatorname{Mor}(j, i) \\
& \approx \int_{i} \int_{j} \operatorname{Mor}(\operatorname{Mor}(j, i), \operatorname{Mor}(F i, G j)) \\
& \approx \int_{i} \operatorname{Nat}\left(\mathrm{~h}_{\mathrm{i}}, \operatorname{Mor}(\mathrm{Fi}, \mathrm{G}-)\right) \\
& \approx f_{i} \operatorname{Mor}(F i, G i) \quad \text { (Yoneda lemma) } \\
& \approx \operatorname{Nat}(F, G) .
\end{aligned}
$$

Since G is arbitrary, it follows that

$$
\left.f^{i} \operatorname{Mor}(-, i) \cdot F i \approx F .\right]
$$

EXAMPLE If X is a simplicial set, then

$$
\begin{gathered}
f^{[\mathrm{n}]} \operatorname{Mor}(-,[\mathrm{n}]) \cdot \mathrm{X}_{\mathrm{n}} \approx \mathrm{X} \approx \delta_{[\mathrm{n}]}\left(\mathrm{X}_{\mathrm{n}}\right)^{\operatorname{Mor}([\mathrm{n}],-)} . \\
\text { KAN EXTENSTONS }
\end{gathered}
$$

THEOREM Given small categories $\left.\right|_{-\underline{D}} ^{-}$, a complete category \underline{S}, and a functor $K: \underline{C} \rightarrow \underline{D}$, the functor $K^{*}:[\underline{D}, \underline{S}] \rightarrow[\underline{C}, \underline{S}]$ has a right adjoint $K_{+}:[\underline{C}, \underline{S}] \rightarrow[\underline{D}, \underline{S}]$.

Let $T \in O[\underline{C}, \underline{S}]$-- then $K_{\dagger} T$ is called the right Kan extension of T along K. In terms of ends,

$$
\left(K_{f} T\right) Y=\int_{X} T X^{\operatorname{Mor}(Y, K X)}
$$

There is a canonical natural transformation $K_{+} T \circ \mathrm{~K} \xrightarrow{{ }^{V_{T}}} T$. It is a natural isomorphism if K is full and faithful.
[Note: In general, the diagram

does not conmute.]

THEOREM Given small categories $\left.\right|_{-\underline{\mathrm{D}}} ^{\underline{\mathrm{D}}}$, a cocomplete category \underline{S}, and a functor
$K: \underline{C} \rightarrow \underline{D}$, the functor $K^{*}:[\underline{D}, \underline{S}] \rightarrow[\underline{C}, \underline{S}]$ has a left adjoint $K_{\underline{1}}:[\underline{C}, \underline{S}] \rightarrow[\underline{D}, \underline{S}]$.

Let $T \in O B[C, S]$-- then K, T is called the left Kan extension of T along K.

In terms of coends,

$$
\left(K_{1}, T\right) Y=f^{X} \operatorname{Mor}(K X, Y) \cdot T X
$$

There is a canonical natural transformation $T \xrightarrow{\mu_{T}}\left(K_{T} T\right) \circ K$. It is a natural isomorphigm if K is full and faithful.
[Note: In general, the diagram

does not commute.]

EXAMPLE Suppose that \mathcal{C} and D are small categories and let $K: \underline{C} \rightarrow$ be a functor -- then $K^{O P}: \underline{C}^{O P} \rightarrow \underline{D}^{O P}$ and the precomposition functor $\underline{\hat{D}} \rightarrow \hat{\mathbb{C}}$ has a left adjoint $\hat{\mathrm{C}} \rightarrow \hat{\mathrm{D}}$, call if $\hat{\mathrm{K}}$ (technically, $\hat{\mathrm{K}}=\left(\mathrm{K}^{\mathrm{OP}}\right.$)). Given $\mathrm{X} \in \mathrm{Ob} \underline{\mathrm{C}}$ and $\mathrm{G} \in \mathrm{Ob} \underline{\hat{\mathrm{D}}}$, we have

$$
\begin{aligned}
& \operatorname{Nat}\left(\left(\hat{K} \circ Y_{C}\right)(X), G\right) \\
& \quad \approx \operatorname{Nat}\left(\hat{K}_{\underline{K}}\left(h_{X}\right), G\right) \\
& \quad \approx \operatorname{Nat}\left(h_{X}, G \circ K^{O P}\right) \\
& \quad \approx G(K X) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left.\operatorname{Nat}\left(Y_{\underline{D}} \circ K\right)(X), G\right) \\
& \quad \approx \operatorname{Nat}\left(h_{K X^{\prime}}, G\right) \\
& \quad \approx G(K X)
\end{aligned}
$$

Therefore

$$
\hat{\mathrm{K}} \circ \mathrm{Y}_{\underline{C}} \approx \mathrm{Y}_{\underline{D}} \circ \mathrm{~K} .
$$

[Note: One can arrange matters so that

$$
\left.\hat{K} \circ Y_{\underline{C}}=Y_{\underline{D}} \circ \mathrm{~K} .\right]
$$

REMARK The functor $K_{!}:[\underline{C}, \underline{S}] \rightarrow[\underline{D}, \underline{S}]$ preserves colimits but it need not preserve finite limits. E.g.: Take $\underline{C}=\underline{d 2}$ (the discrete category with two objects), $\underline{D}=\underline{1}, \underline{S}=\underline{S E T}-$ then $K_{!}$is the arrow

$$
\underline{S E T} \times \underline{\text { SET }} \rightarrow \text { SET }
$$

that sends (X, Y) to $\mathrm{X} \| \mathrm{Y}$ and coproducts do not commute with products in SET.

The construction of the right (left) adjoint of K^{*} does not use the assumption that \underline{D} is small, its role being to ensure that [$\underline{D}, \underline{S}]$ is a category. For example, if \underline{C} is small and \underline{S} is cocomplete, then taking $K=\underline{Y}_{\underline{C^{\prime}}}$ the functor $Y_{\underline{\underline{C}}}:[\hat{\mathbb{C}}, \underline{S}] \rightarrow$ [C,S] has a left adjoint that sends $T \in O D[\underline{C}, \underline{S}]$ to $\Gamma_{T} \in O b[\underline{\underline{C}}, \underline{S}]$, where $T \approx \Gamma_{T}{ }^{\circ} \underline{Y}_{\underline{C}}$. On an object F of $\hat{\underline{C}}$,

$$
\begin{aligned}
\Gamma_{\mathrm{T}} \mathrm{~F} & =\int^{X} \operatorname{Nat}\left(\mathrm{Y}_{\underline{C}} \mathrm{X}, \mathrm{~F}\right) \cdot \mathrm{TX} \\
& \approx \int^{X} \operatorname{Nat}\left(\mathrm{~h}_{X}, F\right) \cdot \mathrm{TX} \\
& \approx \int^{X} \mathrm{FX} \cdot \mathrm{TX} .
\end{aligned}
$$

N.B. Γ_{T} is the realization functor; it is a left adjoint for the singular functor $\sin _{T}: \underline{S} \rightarrow \hat{\mathrm{C}}$ which is defined by the prescription
48.

$$
\left(\sin _{T} \mathrm{Y}\right) \mathrm{X}=\operatorname{Mor}(\mathrm{TX}, \mathrm{Y})
$$

[Note: The arrow of adjunction $\Gamma_{T} \circ S_{T} \rightarrow i d_{S}$ is a natural isomorphism iff S_{T} is full and faithful.]

EXAMPLE While not reflected in the notation, the pair $\left(\Gamma_{T}, S_{T}\right)$ depends, of cours, on the choice of S . E.g. : Take $\mathrm{S}=\hat{\mathrm{C}}-$ then $\forall \mathrm{T} \in \mathrm{Ob}[\underline{\mathrm{C}}, \hat{\mathrm{C}}]$,

$$
\Gamma_{\mathrm{T}} \mathrm{~F} \approx \operatorname{colim}\left(\mathrm{grO}_{\underline{C}} \mathrm{~F} \xrightarrow{\pi_{\mathrm{F}}} \underset{\longrightarrow}{\mathrm{C}} \hat{\mathrm{C}}\right),
$$

$\pi_{F}:{ }^{g r o} \underset{C}{C} F$ Che projection. Specialize further and take $T=Y_{\underline{C}}$:

$$
\Gamma_{Y_{\underline{C}}} F \in O b \underline{\hat{\mathrm{C}}}
$$

and $\forall Y \in O B C$,

$$
\begin{aligned}
\left(\Gamma_{Y_{C}}^{F}\right) Y & =f^{X} F X \cdot \underline{Y}_{\underline{C}}(X) \\
& \approx \int_{F X}^{X} \cdot \operatorname{Mor}(Y, X) \\
& \approx \int^{X} \underset{F X}{ } \times \operatorname{Mor}(Y, X) \\
& \approx f^{X} \operatorname{Mor}(Y, X) \times F X \\
& \approx f^{X} \operatorname{Mor}(Y, X) \cdot F X \\
& \approx F Y \text { (integral Yoneda lemma). }
\end{aligned}
$$

I.e.:

$$
\mathrm{P}_{\mathrm{Y}_{\mathrm{C}}} \mathrm{~F} \approx \mathrm{~F} \approx \operatorname{colim}\left(\mathrm{gro}_{\mathrm{C}} \mathrm{~F} \xrightarrow{\pi_{\mathrm{F}}} \mathrm{C} \xrightarrow{\mathrm{Y}_{\mathrm{C}}} \hat{\mathrm{C}}\right)
$$

49.

REMARK Take $\underline{S}=\underline{C A T}$ and let $\gamma \in O B[\underline{C}, C A T]$ be the functor that sends X to C / X - then the realization functor Γ_{γ} assigns to each F in \hat{C} its Grothendieck construction:

$$
\Gamma_{\gamma} F \approx g r o_{C} F .
$$

From the definitions,

$$
\operatorname{Nat}\left(K, T, T^{\prime}\right) \approx \operatorname{Nat}\left(T, K^{*} T^{\prime}\right)=\operatorname{Nat}\left(T, T^{\prime} \circ K\right)
$$

where

$$
\left.\right|_{-T \in O b[\underline{C}, \underline{s}]} ^{T} T^{\prime} \in \mathrm{Ob}[\underline{\mathrm{D}}, \underline{\mathrm{~s}}] .
$$

So, $\forall \alpha \in \operatorname{Nat}\left(T, T^{\prime} \circ K\right)$, there is a unique $\beta \in \operatorname{Nat}\left(K, T, T^{\prime}\right)$ such that

$$
\alpha=K * \beta \circ \mu_{T}=\beta K \circ \mu_{T}
$$

Now drop the assumptions on $\left.\right|_{-} ^{-} \underline{\mathrm{C}}$ and \underline{S} and suppose that they are arbitrary.
Let $K: \underline{C} \rightarrow \underline{D}$ be a functor and let $T: \underline{C} \rightarrow \underline{S}$ be a functor -- then a left Kan extension of T along K is a pair ($\underline{L}_{-} T, \mu_{T}$), where $\underline{I}_{K} T: \underline{D} \rightarrow \underline{S}$ is a functor and $\mu_{T} \in \operatorname{Nat}\left(T, \underline{I}_{-} T^{T} \circ K\right)$, with the following property: $\forall T^{\prime} \in O B[\underline{D}, \underline{S}]$ and $\forall \alpha \in \operatorname{Nat}\left(T, T^{\prime} \circ \mathrm{K}\right)$, there is a unique $\beta \in \operatorname{Nat}\left(\mathrm{I}_{K^{2}} \mathrm{~T}^{\prime} \mathrm{T}^{\prime}\right)$ such that $\alpha=\beta \mathrm{K} \circ \mu_{\mathrm{T}}$. Schematically:

N. B. If ($L_{-}^{\prime} T, \mu_{T}^{\prime}$), ($I_{-}^{\prime}{ }^{\prime} T, \mu_{T}^{\prime \prime}$) are left Kan extensions of T along K, then \exists a mique natural isomorphism $\Xi: L_{K}^{\prime} T \rightarrow L_{-}^{\prime} ' T$ such that $\mu_{T}^{\prime \prime}=\Xi K \circ \mu_{T}^{\prime}$
[Note: Conversely, given a left Kan extension ($L_{-}^{\prime} T, \mu_{T}^{\prime}$) of T along K, a
 then ($\operatorname{lo}_{K}^{\prime \prime} T, \mu_{T}^{\prime \prime}$) is a left Kan extension of T along K. Proof: Determine $\beta \in \operatorname{Nat}\left(L_{k}^{\prime} T^{\prime}, T^{\prime}\right)$ uniquely per $\alpha \in \operatorname{Nat}\left(T, T^{\prime} \circ K\right)$ and write

$$
\begin{aligned}
\left(\beta \circ \Xi^{-1}\right) K \circ \mu_{T}^{\prime \prime} & =\left(\beta \circ \Xi^{-1}\right) K \circ E K \circ \mu_{T}^{\prime} \\
= & \beta K \circ \Xi^{-1} K \circ E K \circ \mu_{T}^{\prime}=\beta K \circ\left(E^{-1} \circ \Xi\right) K \circ \mu_{T}^{\prime} \\
& =\left(\beta \circ \Xi^{-1} \circ \Xi\right) K \circ \mu_{T}^{\prime}=\beta K \circ \mu_{T}^{\prime}=\alpha
\end{aligned}
$$

which settles existence. Uniqueness is clear.]

IEMMA Suppose that $K: \underline{C} \rightarrow \underline{D}$ has a right adjoint L and let

$$
\left[\begin{array}{l}
\phi: i d_{\underline{C}} \rightarrow L \circ K \\
\psi: K \circ L \rightarrow i d_{\underline{D}}
\end{array}\right.
$$

be the arrows of adjunction -- then the pair ($T \circ L, T \phi$) is a left Kan extension of T along K .

REMARK The notion of a right Kan extension ($\mathrm{R}_{\mathrm{K}} \mathrm{T}, \mathrm{V}_{\mathrm{T}}$) is dual.

[^0]: ${ }^{\dagger}$ Nico, Houston J. Math. 9 (1983), 71-99.

[^1]: ${ }^{\dagger}$ Dwyer-Kan, Annals of Math. Studies 113 (1987), 180-205.

[^2]: \dagger Shulman, arXiv:math/0610194; see also González, arXiv:1104.0646

[^3]: ${ }^{+}$Category Theory, Heldermann Verlag, 1979.

