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IN THE MOUNTAINS

There is WINTER.

Then there is the melting time.
Then there is sumer.

Then there is the waiting time.

Then there is WINTER.



ABSTRACT

The purpose of this book is two fold.
(1) To give a systematic introduction to topos theory from a purely
categorical point of view, thus ignoring all logical and algebraic issues,
(2) To give an account of the homotopy theory of the simplicial objects
in a Grothendieck topos.

* k k k% %k *

EDITORIAL COMMENT I have always found the traditional homotopical treatments
to be somewhat contrived and ad hoc. There is, however, a way out: Use Cisinski's
"localizer theory". For then the classical results are mere instances of the

output of this powerful machine which has the effect of sweeping all before it.
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§1. PARTIAL ORDERS

Iet X be a class — then a binary relation < on X is said t be a reorder

L
1A

isreflexive: v X € X, X £ X;

® < is transitive: VX,y,2€ XX £ Y& Y £ 2 =>X < 2.

A rerder is a partial order if in addition

Y ¥, X' E X,

Every meorder (X,5) givesrise to a category CX,<): The objectsof C X, <)

are the elanents of X and

|

Mor &,¥y)

idx = (er)t

4 otherwise,

and

y,z)elx, ¥} = &,2).

1.1 LEMMA Tet X,<) be a preorder —— then every arrow in C(X,<) islotha

monomorphise and an epimorphism.

1.2 IEMMA Tet X,<) be a partial order —— then the only icomorphisns in C X, <)

are the identities.
1.3 DEFINITION A poset isa st X equipped with a mrtial order.

If ®,s), {¥,2) are ppsets, then a functor £:CH,<) ~ C{,2) is smply a

fimc tion f:X » ¥ which is monotonic, i.e.,



X< inX= f{x) « £f&') inY.

1.4 LA Let (X,<), (Y,<) be posets amd let

£:C(X,<) > CY,2)

g:C¥,g) » CH,s)
be functors — then £ is a left adpint for g if for all x e Xamd y € ¥,
fX) sy<=xsgly).
1.5 DEFINITION Supmse that (X,<) is a ppset — then (X,<) is a lattice if
C {X,<) has bimary poducts and bimary copoducts, written

XAYEXXY

xvyEx_J__y.
[Note: Accordingly,
T oxAaysEx Tz <x
& = Z<XAY
X AYySY oz =sy
and
T oxs<xVy T o x gz
& =>x vy < z.}
yE<x vy V<2

1.6 DEFINITION Suppose that (X,<) is a lattice — then (X,5) is said to be
bourdad if C({X,s) admits a fimal object, demotad by 1, and an initial object,
dermnteal by 0.




T ox Al
Mote: So, YyxX € X, 0<x <1 and .]
_OVx

I
»

li
»

1.7 LBMA Let (X,=) be a peorder -~ then a commuitative diagram

Wo—> Y
X —> z

in C{X,=2) is a pullback square iff w is a product of x and v or is a pushout
sauare iff z is a coproduct of x and vy.

1.8 RAPPEL Let C be a category — then C is finitely complete iff C has
pallbacks and a final object and C is finitely cocomplete iff C has pushouts

and an initial object.

1.9 SCHOLIIM I (X,<) is a bounded lattice, then C(X,<) is finitely complete

ard finitely cocomplete.

1.10 REMARK Suppose that (X,<) is a boundal lattice -- then € (X,<} has

roducts iff it has comoducts. Therefore C{X,s)} is complete iff it is cocomplete.

Let {X,<) be a boundal lattice.

e (X,s) is distributive if v x,vy,z € X:

X A (v vaz)

x AyIvik A 2)

il

X v (¥ A 2) x vylalx vz).

o (X,5) isccxn;ﬂ.emmhedifv:{ex,a—.—[xe}{:

xf\_lx=0anix v-—»’x=l.



[Note: In a distributive lattice, a complement —, x of x, if it exists,

is unique.]

1.11 DEFINITION A boolean algebra is a boundel lattice (X,s) which is both

distributive and compl enented,

N.B. In a boolean algebra (X,s), v x € X, — = X = X.
[For
- — KA — — x =0
— X V— — x=1

and complanents are unique, ]

1.12 LFMMA Let (X,s) be a boolean algebra — then v x,v € X,

— &Vvy) =— xA—y

— XA Y)=— X V— ¥.

{ I

[Mote: These rdlations are called the laws of de Morgan.]

1.13 EXaMPLE If S is a set, then its power set PS5 is a boolean algebra.



§2. SUBOBJECTS

Given a category C and an object X in C, let M(X) be the class of all mirs
(y,f}, where £:¥ - X is a monomoryhism —- then M{X) is the object class of a full

subcategory M(X) of C/X.

Given {v,f), (Z,9) in M({X), write (Y,f) 5 (z,g) if there exists a morrphism

h:Y - Z such that £ = g o h, i.e., if there exists

£ g
>Xr Z*-*-——b‘X).

h e Morg /X (Y
[Note: h is necessarily unique and is itself a monomorphism. ]

2.1 IEMMA The binary relation % is a preorder on M(X).

N.B. So, in the notation of §1,

M) =COMX, ).

*x
2.2 DEFINITION Two elanents (Y,f) and (Z2,q9) of M{X) are deamed egquivalent,
written (Y,£) ~% (z,9), if there exists an isomorphism ¢:Y ~ Z such that £ =g ¢ ¢.

2.3 LEMMA The binary relation ~x is an equivalence relation on M(X).

2.4 DEFINITION A subobject of X 1s an equivalence class of monomorphisms

undexr e

2.5 REMARK In mractice, people tend to blur the distinction between a mono-

morphism £:¥ > X and its associated subobiject, a potentially confusirng abuse of



the language.

Let SubC X stand for M(X)/~,, let [ ] denote an equivalence class, and let

[£] Sy [g] have the obvious commptation —— then the preorder on Subc X is a partial

order. In fact,

(¥, £) sy (Z,9)

(Z rg) 5}{ {Y,f})

imply that (Y,f) ~x (Z2,g9) or still, [f] = [g].

2.6 EXAMPLE Let (X,<) be a bounded lattice and take for C the category C(X,s)--
then

SUbC(x,s) 1<

—> X.

2.7 EXAMPLE Let X be a topological space and take for C the category Sh(X)

(the sheaves of sets on X} — then

[Mote: T

% is the topology on X and the correspondence « assigns to U € T,

X
lifvey

the sheaf h _, where h V = «]
hU hU gitv£u

2.8 DEFINITION A representative class of monomorphisms in M(X) is a subclass

of M(X) which is a system of representatives for ~ge

2.9 EXAMPLE Suppose that € has an initial object ﬂC. Let £:Y + ﬁc be an



element of M(ﬂc) — then f is an isomorrhism, hence f’“g id Therefore

¢ %o

—

SUbQ ,Gg = [idgcl .

2.10 RAPPEL A category C is said to be wellpowered provided that each of
its objects has a representative class of monomorphisms that can be indexed by a

set.

2.11 EXAMPLE Take C = SET and fix X — then a subobject of X is an equivalence
class of injective maps.
e Every subobject of X contains exactly one inclusion of a subset of X
into X and that subset is the image of every element in the subobject.
® The subsets of X together with their inclusion maps form a representative
set of monomorphisms in M(X).

[Note: Therefore SET is wellpowered. ]

2.12 EXAMPLE TOP is wellpowered.

[Let (X,TX) be a topplogical space — then a remresentative set of mono-

morphisms in M(X,TX) are the mirs ((Y,TY) ,iY) , where Y is a subset of X, Ty is

a topology on Y finer than TXIY, and i :¥ > X is the (continuous) inclusion.]

2.13 CRITERICN If C is a small category and if D is a finitely camplete,

wellpowered category, then the functor category [C,D] is wellpowered.

2.14 EXAMPLE If C is a small category, then the presheaf category

c = ,SET]



is wellpwered. In particular:

SISET = [AOF

b=

/SET]

is wellpowered.

2.15 RAPPEL Consider a pullback square

n
P > Y
sl lg
X > &
£

in a category C. Assume: f is a monomorphism —- then n is a monomorphism.

2.16 DEFINITION Let C be a category with pullbacks., Given an object X in

fl:Yl - X
C, suprose that € M(X) — then their intersection is the mair
f.:¥,. - X
_2t2
(Yl n Yz,&l 2) & M{X), where Yl f Y2 is defined by the pullback square
r
Yl i Y2 o Y2
£,
Yl = X
£
and
ﬁl,Z:Yl N Y2 + X

is the corner arrow.



5.

2.17 SCHOLIM If C is wellpowered and has pullbacks, then ¥ X € Cb C, the

category _C‘;(SubC X,sx) associated with the poset (Subc X, sx) has binary products.

2,18 DEFINITION Let C be a category. Given an object X in C, suppose that

{(Yi,fi) :1 € I} is a set—indexad collection of elenents of M(X} ~- then an eleanent

{(Y,f) € M(X) is called an intersection of the (Yi,fi) movided that

vi, (0 5 (L5

u
and for any object U

> X in ¢/X such that

u fJ'.

> X, Yi

Vl,E!giEI\bc/x {0

> X)),

there exists a

u £
g € Mo > X, ¥

r(-:/x (U s X).

[Note: If I = {1,2}, then matters reduce to that of 2.16 (universal property
of millbacks).]

N.B. Intersections are unique up to isomorphism and the intersection of the

anpty collection of monomorphisms with codomain X is :i_d.x:X + X.

2.19 DEFINITION A category C is said to have {finite) intersections if for

each X € Ob C ard any {(finite} set-indexed collection of elements of M{X), there

exists an intersection.

2.20 IEMMA If C is a finitely camplete category, then C has finite inter-

sections, and if C is a complete category, then C has intersections.



[Note: An intersection ("finite or infinite") is a multiple pullback and

a mitiple pallback is a limit.]

2.2]1 SCHOLIM If C is wellpowered and (finitely) complete, then v X € Ob C,

the category C (SuhC X, sx) assoclated with the poset (Subc X } has (finite)

, <
X

moducts.



§3. DECOMPOSITIONS

Let C be a category, £:X + Y an epimorphism — then there are various re-
strictions that can be imposeai on f.
{1) £ is a coequalizer, i.e., 3 2 € Ob C and u,v € Mor(Z,X} such that
f = coeglu,v}.
(2) £ has the left lifting mroperty w.r.t. monamorphisms, i.e., every

commatative diagram

X > A
Y > B,
b

where i:A -~ B is a monomorphism, admits a filler w:Y - A (thus wo f=a, i o w=Db,
and w is necessarily unique).
[Note: Epimorphisms with this moperty are closed under composition.)
(3) £ is extremal, i.e., in any factorization £ = h o g, if h is a mono-
morphism, then h is an iscmorphism.
In general,
(L) => (2} = (3)

and none of the implications can be reversed.

3.1 LEMMA Suppose that € is finitely complete — then an epimorphism f:X + Y

satisfies (2) iff it satisfies (3).

3.2 EXAMPLE In CAT, there are extremal epimorphisms that are not coequalizers.



3.3 DEFINITION A finitely camplete category C fulfills the standard conditions

if C has coequalizers and the epimorphisms that are coequalizers are pullback
stable.

3.4 EXAMPLE In SET, every epimorphism is a coequalizer and surjective functions
are pullback stable., Therefore SET fulfills the standard conditions.

3.5 EXAMPLE In TOP, an epimorphism is extremal iff it is a quotient map, thus
"(1) = (3)". Still, TOP does not fulfill the standard conditions since quotient

maps are not pullback stable.

3.6 REMARK If C fulfills the standard conditions and if I is small, then the

functor category [I,C] fulfills the standard conditions.

3.7 ILEMMA Suppose that € fulfills the standard conditions —— then an epi-

morthism £:X » Y satisfies (1) iff it satisfies (2).

3.8 DEFINITION Let £:X ~ Y be an arrow in a category C -- then a decomposition

k m
of £ is a pair of arrows X ~ M > Y such that £ = m ¢ k, where k is an

epimorphism and m is a moncrorphism. The decomposition (k,m) of f is said to be
minimal (and M is said to be the image of £, denoted im f) if for any other

£ n
factorization X > N > Y of £ with n a monomorphism, there ig an h:M >+ N

suwchthat he k=£ andno h=m (= Mm <y {N,n)).

3.9 LEMMA Suppose that C fulfills the standard conditions — then every

morphism £:X + ¥ in C admits a decomposition £ = m ¢ k, where k is an epimorphism



satisfying "(1) = (2)" and m is a monomorphism.

PROOF Form the pullback square

v
> K
ul lf
X ~ Y ,
f

Then u and v are epimorphisms., Pass now to coeq(u,v):

u
> £
P X > Y
e
v
kl
Z.

Since £ e u = f o v, there is a unique m:Z2 -~ ¥ such that £ = m ¢ k and the claim

is that m is a monomorphism. To see this, form the pullback square

r

Q > 4

SJ m

Z > Y .
m

Then
mokeuyu=mekeow,
so there is a unique morphism q:? > Q such that
reg=keou, scog=kev.
But g is an epimorphism (cf. infra) amd k o u = k o v, hence r = s which implies
that m is a monomorphism.

[Note: PFrom the definitions

©Q
i
5]
X
L]



and there is a camutative diagram

a
XXYX >Z><YX > X
cl b k
XXYZ >Z><YZ > 2
d
l m
X > 4 > Y
k m

of pullback squares. Since ¢ fulfills the standard conditions and k is a co-
equalizer, the arrows a,b,¢,d are coequalizers as well. Thereforeg=b e a =

d ¢ ¢ is an epimorphism.

3.10 THEOREM Suppose that C fulfills the standard conditions — then every
morphism £:X -~ Y in C admits a minimal decomposition £ = m ¢ k unique up to iso-

morphism.

N.B. The decomposition of £ secured by 3.9 turns out to be minimal but there

are two points of detail that will have to be addressed before this can be estab-

lished.
e Suprose given two decompositions of £ pexr 3.9, hencem ¢ k = m' o k',
vhere
- k m
X > M > ¥
k' m'
X > M’ > Y.

Then we claim that there exists an isoworyhism ¢:M » M' such that

pok=k'andm=m' o ¢.




Thus consider the cammtative diagram

K
X > M
k! m
M’ > Y .
ml

Then by the left lifting property w.r.t. monomorphisms.

ki

o
]
?‘a
H

3 uM - M st

Ju':M' +M st

Accordingly,

metw' conek=m"ek'l=mek =>1u'ou

1y

mok =m'ok' ='>L1°u'=id]4,.

m' o ueu' e k'

It remains only to take ¢ = u.

[Note: This is what is meant by "unique up to iscmorphisnm® in 3.10.]

® Suppose given a commtative diagram

k m
X > M > Y
u v
X' > M' > YT,
k! m'
T f=moX
where are decomnpositions per 3.9 — then there exists a unique

fl =mlokl'



wo k=Kk"ou

w:M » M' such that The uniqueness of w is, of course, clear.

m'ew=swvoem.

As for the existence of w, use 3.9 again and write

’_ k' ou=noe £

vem=n'"og',

say
- £ m' o n
X > N > Y!
£' o k n’
X > N? > Y'.
Since
m' o k' eu=vomek
and since

n' ¢ (£' ¢ k)

il

]_ m'" en) e L =m' o kX" ou

vemek ,

it follows from what has been said above that there exists an isomorphism ¢:N -+ N’

such that
T o l=2L"ek
‘_ m' o n=n' o ¢.
Now put
W=n0¢_lo.€'.
Then

il
Il
1

T wek nocp“lo‘ﬁ'ok nol=%"ou
m'ow=m'onog eL'=n"ol'= vom,

as desired.



[Note:

{u,v) € lvbrg(+) (£,£")

(u,w} Mc:arg ) (k,k")

(w,v) € Mor, {(m,m") .}

Proof of 3.10 Write £ = m o k per 3.9 —— then this decamnposition is minimal.

For suppose as in 3.8 that £ = n o £ and using 3.9 once more, write £ =nm' » k',

Thanks {0 the preceding discussion, the camwmtative diagram

k i}

k! nem'
gives rise to a unique w:M - M' such that

wok=kX"andnem' e w=m.

Put h = m' ¢ w — then h:M + N and

i
=

'% hek=m"eweok=m"ok'

neh=nom®" ecw=m.

neh=m

=>h = h', n being a

neh =m

[Note: Such an h is unique. For

ronomorphism. )



3.11 DEFINITION Let C be a category. Given an object X in ¢, suppose that

{(Yi,fi) i € I} is a set~indexed oollection of elements of M{Y) — then an element
(Y,£) € M(X) is called a union of the (Yi,fi) provided that
v i, (Yi,fi} Sy (¥,f)

u

and for any element U > X of M{X) such that

£.
i u

> X, U > X,

v i, agiemrg/x ¥

there exists a

£ u

> X, U > X).

qEMorg/X (Y

[Note:s The definition of union is not the exact analog of the definition of

intersection (cf. 2.18).]

3.12 DEFINITION A category C is said to have (finite) unions if for each

X € Ob ¢ and any (finite) set—indexed collection of elements of M(X), there exists

a union.

3.13 LEMMA Suppose that C fulfills the standard conditions and has finite
coproducts — then C has finite unions.
PROCF Fix X € Ob C and let {(Yi,fi) :1 € I} be a finite collection of objects

of M{(X} (I = ). Denote by



the canonical arrows. Write f =m ¢ k per 3.10, thus

Then (M,m) is a union of the (Yi,fi). To begin with, k © ini:Yi + M and

f.=Ffo inimmo k o ini => (Yi,fi) £X (M,m} .

Assume next that U > X is an element of M(X) and

f.
i u

> X, U

Vi,EIgiEMor =~ X},

oz Yy

sofi=uogi—thenthereexistsauniqueg: J_]_Yi+Usuchtl'1athini=g..

i€1 1
But
uogoini=uogiwfi=foini
=>ygog=Ff (definition of coproduct).
Now display the data:
k m

JJ_ Yi > M > X

i€l L

i ¥, > U s X .

ier g u

Since the decomposition £f = m ¢ k is minimal and since u is a monomorphism, there

is an h:M > U for whichu s h=m, i.e.,
M,m) < (U,u).

[Note: The union of the empty collection of monomorphisms with codamain X




10.

is initial in M(X).]

N.B. The same argument works for an arbitrary index set so long as C has
coproducts.

3.14 SCHOLIM If C is wellpowered, fulfills the standard conditions, and

has {finite) coproducts, then the category (_:(Subc X, sX) associated with the

poset (SubC X, SX) has (finite) coproducts.



§4. SLICES

Let C be a category.
4.1 THEOREM If C is finitely camwplete, then so are the C/X.

4.2 REMARK It can happen that the C/X are finitely camplete, yet C itself
is not finitely camplete.

[Take C = TOP,,., the category whose objects are the topological spaces and

whose morphisms are the local homeamorphisms — then TOP. 4 has pullbacks but does

not have a final object, hence is not finitely coamplete {(cf. 1.8). On the other

hand, the TOP ./X are finitely complete.]

4,3 ITEMMA If C has pullbacks, then the C/X have binary products.

u v
PROCOF Given cbjects U > X and V > X in C/X, form the pullback square
n
> V
U > X
u
u v
in ¢ =- then the c¢ormer arrow P > X is a product of U > X and V > X

in ¢/X.

4.4 ILEMMA If the C/X have binary products, then C has pullbacks.

— u
u v U > X
~ X < Vin(_:_,thus EOb(_J/X.

PROCF Consider a 2=sink U

v > X




Tet

m u v
> X = (U > XY % {V

P > X).

Then there are cammutative diagrams

Pry Pry
> U )5 > V
d [ f
X X X X
or still, a caommtative diagram
Pry
P > V
prul lv
U » X
u

witich is a pullback square in C.

Let X,Y € Ob C and let £:X + ¥ be a morphism — then f induces a functor

£,:C/X »~ C/Y via postcomposition,

4.5 LEMMA Suppose that C has pullbacks — then vV £, £, has a right adjoint f*.

u

PROOF Given an object U > Y in ¢/Y, form the pullback square

P > U
| ]
X- > ¥
£
and let
u P

£*{U > ¥) =P > X.




Then this prescription defines a functor £*:C/Y > C/X and (f,,£*) is an adjoint

pair.
£ g
4.6 REMARK Let X > Y » 2 — then
- £ 9y
/X ——> /Y ——> ¢/
g* f*
C/Z > C/Y > C/X.
And

but in general

f* o g* = (g o £)*,

Given X € Ob ¢, denote by i, the inclusion M(X) ~ C/X.

4.7 LEMMA Suppose that C fulfills the standard conditions — then :LX has a

left adjoint
:me(_l/}{ > M(X).
u k m
[Given U > X € Ob C/X, write u = m ¢ k per 3.10, so U > M > X.
Put
u m
imx{U > X) =M > X.1

If C has pullbacks and if f£:X -+ Y is a morphism, then f£*:C/Y - C/X restricts

to a functor £ V:MY) > M(X) (cf. 2.15).



4.8 LEMMA Suppose that C fulfills the standard conditions —- then f"l has
a left adjoint

3g:M(X) > M(Y).
[Take for 3 the composite

ix £ im,
M(X) > C/X > C/Y

> M{Y).]

4.9 REMARK If C fulfills the standard conditions, then so do the C/X.



§5. CARTESTAN CLOSED CATEGORTES
Iet C be a category with finite products.

5.1 DEFINITION C is cartesian closed provided that each of the functors

— x ¥:C » C has a right adjoint 2 + z°, so

Mor(¥X x Y,2) = Mor(X,ZY) .
N.B. The property of being cartesian closed is invariant under equivalence.

5.2 EXBMPLE SET is cartesian closed but S}E.‘I'OP is not cartesian closed. The
full subcategory of SET whose objects are finite is cartesian closed. On the other
hand, the full subcategory of SET whose objects are at most countable is not

cartesian closed.

5.3 BXAMPLE TOP is not cartesian closed but does have full, cartesian c¢losed

subcategories, e.g., the category of campactly generated Hausdorff spaces.

5.4 EXAMPLE CAT is cartesian closed:

D
Mor(C x D,E) ¥ Mor(C,E ),

D
vhere E = [D,El.

5.5 EXAMPLE Suppose that (X,c) is a boolean algebra. Put z5 = — Yy vz--
then

XAY<2Z<=>xs 3z,
E.g.: Given that x A y £ z, write

X =x iw\lﬂxf\(~—~ly\f’y)




*(xa\——l v v {xAy)
s(xa\——} y) v z
s—«lyvz=zy.

Therefore

Mor({x A v,2) = !\br(x,zy) {cf. 1.4},

hence C(X,<} is cartesian closed.
Let C be a cartesian closed category.

5.6 DEFINITION The object ZY is called an exponential obhject, the evaluation

morphism Ny o being the arrow
¥
2% XY » 7
withthepropertythatforeveryf:}(xY+Zthereisauniqueg:X+ZY such that
f= &y g ° (g x id,}.
One may view the association (Y,Z) ZY as a bifunctor, covariant in 2 and
contravariant in Y.

e The functor

( —r1fc o
is defined on objects Z by

(—)g=12"

f
and on morphisms A > B by
Y
f f
( —)'(a —>B) =4 > BY,




where fY is the unigue arrow rendering the diagram

av
AY XY — o A
fY x id £
BY x Y > B
ev
commutative.
e The functor
Z( —}
is defined on objects Y by
2t 7y =2
f
and on morphisms A > B by
f
z{ —) (A > B) = 2®
where zf is the unique arrow rendering the diagram
id x £
Pxa . 7®xs
Zf x id ev
ZA ¥ A ~ 2
ev
comuitative.
5.7 LEMMA The functor
Z( — ):QOP ~c
admits a left adjoint, viz.
{ — ), 0P opP



N.B. { — )Y preserves limits while z' — ) sends colimits to limits,

5.8 LEMMA In a cartesian closed category C,

1
Y x g Y.z i Y5
(1 X ~ (X% (3) x =TT xh;
i
@ (TTx) =TT &5 @ xx vy =l ®xvy).
. i . i — i — i
1 1 1 1

5.9 LEMMA In a cartesian closed category C, finite products of epimorphisms

are epimorphisms.

5.10 RAPPEL A full, isamorphism closed subcategory D of a category € is said
to be a reflective subcategory of C if the inclusion 1:D » C has a left adjoint

R, a reflector for D.

[Note: A reflective subcategory D of a category C is closed under the forma-

tion of limits in C.]

Let D be a reflective subcategory of a category C, R a reflector for D —
thenonemayattachtoeachXEObgamrj_:hismrx:X+RXJ'.ngwiththefollwing
property: Given any Y € Ob D and any morphism f:X + Y in C, there exists a unique

morphismg:RX*Yin]gsuchthatf=g°rx.

idg.

N.B. Matters can always be arranged in such a way as to ensure that R o 1 =

5.11 LEMMA Suppose that C is cartesian closed and let D be a reflective

subcategory of C. Assume: The reflector R:C + D preserves finite products -- then



D is cartesian closed.

[If ¥,2 € Ob D, then 2¥ is isgmorphic to an object in D, hence z¥ € ob D.]

Let C be cartesian closed — then for any final object *_,, we have

5.12 DEFINITION Let C be a category with an initial object ‘GC — then ﬁc is

strict if every morphism £:X - ﬂc with codamain ﬁc is an isomorphism.

[Note: Any morphism to an initial object is an epimorphism.]

5.13 LEMMA Let C be a category with finite products and an initial object

,Gc-wthenﬁcisstrictiffVXEObg,

X P = A

PROOF If ﬁc is strict, then the projection X x ﬁc + ﬁc is an isomorphism.

Conversely, let f:X - ‘GC be a morphism —— then there is a commutative diagram

X x4

<
! - id
X < ﬁc >ﬁc
id.x £ =

from which it follows that f is a split monomorphism (I ¢ £ = idx) . But f is




alsc an epimorphism. Therefore £ is an isamorphism.

5.14 APPLICATION Iet C be a cartesian closed category with an initial object

,GC -~= then ,GC is strict.

[The functor — x X preserves colimits, in particular initial objects, so

,GCXXzﬁC. And

ﬁCXX:Xxﬂg,]

5.15 EXAMPLE Under the preceding assumptions,

%

X = *(_3'
IGiven A € Ob C,
e
Mor{A,X )} = Mor(A x ﬂC,X)
= Mor{ﬂc,x) .
¢ g
But there is a unique arrow g, - X, s0 there is a unique arrow A ~ X  and this

g C
means that X ~ is a final object.]
5.16 LEMMA Let C be a cartesian closed category with an initial object ﬂc -

!
> X is a monamorphism, thus is an

tkaXEObg,thecamnicalarrowﬁC

element of M{X).

PROOFSupposethata,b:A+ﬂcaremrphismssuchthat!oa=!ob. Since

t
> X is a monomorphism.

A is initial {,ﬁc being strict), a = b, hence ﬂc




5.17 EXAMPLE Under the preceding assumptions

X
I € M(*C) .

[The functor ( — )X preserves limits, in particular monomorphisms. Therefore

X
X G X
(ﬁg) >(*9)

is a monomorphism. But

(*g)x o~ *g!
s0

X

i

1 € M(*g) |

!
{Note: M(*C) is an exponential ideal in the sense that if Z > %o is a

I
monamorphism, then v ¥ € Ob C, ZY

> * is a monomorphism.}

5.18 RAPPEL An object in a category C is called a zero object if it is both

an initial object and a final object.

5.19 LEMMA Suppose that C is cartesian closed — then C has a zero object iff

C is equivalent to 1.

5.20 EXAMPLE Neither SET, nor TOP, is cartesian closed.

5.21 THEOREM Let C be a small category — then @ is cartesian closed.

PROOF Given F,G € Ob C, define



by the rule
G (%) = Nat(h, x F,G) (X €0bC).
5.22 EXAMPLE ﬁ = SISET is cartesian closed:

Nat (X x ¥,2) = Nat(X,2%),

i

where

2% ([n])

Nat{Afn] x ¥,Z} (Aln] = h[n]}'

5.23 DEFINITION A category C is locally cartesian closed if v X € Ob C, the

category C/X is cartesian closed.
[Note: A locally cartesian closed category with a final obiject is cartesian

closed. ]

5.24 EXAMPLE SET is locally cartesian closed. Proof: SET/X is equivalent

to SET.

5.25 EXAMPLE CAT is cartesian closed but CAT is not locally cartesian closed.

5.26 EXAMPLE TOP g 18 locally eartesian closed but ‘IVOPI i 18 not cartesian closed.

5.27 THEQOREM Let C be a small category — then _6_ is locally cartesian closed.

PROOF Given F € (b é, write C/F in place of gro, F — thent the canonical arrow

~

A
C/F —— C/F

N\
is an equivalence and C/F is cartesian closed {cf. 5.21},



5.28 THEOREM Let C be a category with pullbacks. Assume: V £, £* has a
right adjoint f, — then C is locally cartesian closed.
PROOF Thanks to 4.3, ¢/X has binary products. Since C/X also admits a final

object (viz. idx:x + X), it follows that C/X has finite products. This said, fix

ull + X
objects in C/X and realize u x v as the corner arrow P + X in the
vV > X

pullback square

1
> V
3 v
9) > X,
u

vu.

uXv:uoE:von:vl

Then for any £:Y -+ X, we have

Mor(u x v,f) Mor (v, v*u, £}

Mor (v*u,v¥*f)

1

Mor (u,v,v*f).

[¢]

Definition:

£ = v,v*f.

Suppose that C is finitely complete. Given X € Ob C, denote hy

X,:C/X + C

the forgetful functor and by

X*:C + C/X



10.

the functor that sends ¥ to X < ¥ + X,

5.29 CRITERIN The functor — x X has a right adjoint iff the functor X* has

a ricght adjoint.

5.30 IEMMA If C is locally cartesian closed, then vV X € Ob C, the category
C/X is locally cartesian closed.

PROCF For every object A » X of C/X,

C/X/A + X = C/A.

5.31 ILEMMA If C is locally cartesian closed, then ¥ X € Ob ¢, the category
C/X is finitely camplete.

PROCF Since the C/X are cartesian closed, they have products, in particular
binary products, hence C has pullbacks (cf. 4.4). 8o v X € Cb C, C/X has pullbacks
(pullbacks in C/X are computed as in C (cf. 4.1)). But C/X has a final object,

thus C/X is finitely camplete (cf. 1.8).

5.32 LEMMA If C is locally cartesian closed, then v f, f1 has a right adjoint

f£*.

[Because, as noted above, C has pullbacks.]

5.33 THEOREM If C is locally cartesian closed, then v f, f* has a right
adjoint f,.

[A morphism £:X + Y is an object of C/Y and

!
» Y

J____ "

Y -



ll.

Therefore 5.29 is applicable.]

N.B. f* preserves exponential objects.



§6., SUBOBJECT CLASSIFIERS

Let C be a finitely complete category.

6.1 DEFINITION A subobject classifier for C is a pair (Q,7), where T:*C > Q

is a moncmorphism with the property that for each object X in C and every mono-

morphism £:Y -+ X there exists a unigue morphism Xf=X -+ £ such that the diagram

10y

Xg

is a pullback square.
[Note: The morphism xf:x + §1 is called the classifying arrow of (¥,f) in X.]

6.2 EXAMPLE idR is the classifyving arrow of (*C,T) in &.

6.3 IEMMA If (2, T) and (2',7") are subobiect classifiers, then Q and R' are
isamorphic.

PROOF Fram the definitions, there are pullback sguares

*g *9 *g-

*c
T! ‘ T T T!
£

2 = 2' .
X X'

Q' ———

Therefore x' < ¥ is the classifyving arrow of (*C,T') in Q'



9]
»
L9

50, by uniqueness, x' o x = id . 2nd, analogously, y ¢ y' = idg.
Ql

6.4 EXAMPLE Take C = SET, let *, = {1}, & = {0,1}, and define Tk, > Q by

- —

serding 1 to 1. Given X, if Y is a subset of X and if f:Y -+ X ig the inclusion,
then there is a pullback square

Yy — 5 {1}
X — {0,1},
Xy

vhere . is the characteristic function of Y.

6.5 LEMMA Tet ({, 7) be a subobject classifier -- then VX € 0b C,
X x *C —_— X
idX X T
xR —s X
is a subobject classifier in C/X.

[Note: Recall that C/X is finitely complete (cf. 4.1).]

6.6 RAPPEL A category C is balanced if every morphism that is simultaneously




a monomorphism and an epimorphism is an isomorphism.

6.7 EXAMPLE SET is balanced but TOP is not balanced.

6.8 LEMMA Let C be a category and let f:X +~ Y be a morphism. Assume:

equalizer and an epimorphism -~ then f is an iscmworphism.

f is an

PROOF Suppose that £ = eq{u,v), hence u o £ = v ¢ £, so u = v (£ being an

epimorphism) . But the equalizer of u = v is idY, hence there is a unique arrow

g:Y+XStlchthatf0g=idY:

o
v

And then

Therefore £ is an iscmorphism.

6.9 LEMMA If C admits a subobject classifier (Q,T), then every moncmorphism

f:¥ - X is an equalizer,

PROCOF Consider the pullback square

e
3
*

10




Then T is a split monomorphism, hence the same is truve of £f. And a split mono-

morphism is an equalizer.
6.10 SCHOLIUM A category with a subobject classifier is balanced.
Assume: C admits a subobject classifier (Q,71).

6.11 L¥MMA Let (Y,f), (Z,g) be elements of M(X) — then (Y,f) ~y (Z,g) iff

Xg = Xgr

6.12 LEMMA Given ¥ € Mor(X,), form the pullback square

[

'I‘henxf=x.

6.13 THEQREM The map [f] - Xg is a bijection between the class SubC X of
subobjects of X and the set Mor(X,0).
[Note: Therefore Subc ¥ "is a set", i.e., has a representative class of

moncorphisms which is a set, thus C is wellpowered.]

Consider pullback squares

¥t — s Y zZt — —— 7
| LY 5
X emor— = X X —— X .

k! k'



6.14 IEMMA If (Y,f) ~y (2,9), then (¥',£%) ~ (2',9'}.
Therefore not only is a pullback of a moncmorphism a monomorphism but a
pullback of a subobject is a subobject.

Denote by SubC the association QOP + SET that sends X to Subc X and k":X' > ¥

to St:;bC k', where

' 1
Subg k .Subg X~ Subc X

is the arrow [f] - [£'].

6.15 LEMMA Subc is a functor.

PROCF Tt is clear that SubC sends the identity of X to the identity of Subc X.
As for campositions, if

k':Xx' - X

k":x" > X',

then the claim is that

' 0y = n t
Subg(k o k") Subck oSubgk.

To see this, pass fram the pullback squares

x" > Y Y! > Y
f“l 1 fl ’ f'l lf
x" > X! X' > X
kﬂ kl
to the puallback sdquare
M — Y
fll fl
xl i X .

k' o k!l



6.16 THEOREM The presheaf Subc is represented by Q: ¥V X € Cb C,

SubC X = Mor(X,8).

[Note: The natural isomorphism

Sub ., -+ Mor (——,82)

0

sends a subobject [f] of X to its classifying arrow Xf‘]

6.17 LEMMA Every moncamorphism £:8 + @ is an isomorphism.

PRDOFItsufficestDslwwthatfof=idQ. Form the pullback squares

@
[@]

£ g

——

Since £ is a monomorphism, the arrcow U >*Cisamonmorphimandsincegis

a monamorphism, the arrow V ——%,, is a monomorphism, thus the squares in the

¢

diagram

5

(]
]
<
1
<
AY)
<
W
o
W
¥

10

-—

-—
te]

—_—

2
-

¢ £

I
-

are pullback squares, so by uniqueness, £ ¢ 7 ¢ | = g, which implies that




fofog:foTojz-g:goidU

or still, that the square

4] > U

g g

Q s £
fof

commutes. Working through the definitions and bearing in mind that £ o £ is a
monomorphism, it follows that this square is in fact a pullback square. Therefore
the outer rectangle

idy !
U > U >*9
g g T
Q )Q '}Q
fef £

is a pullback square, hence by uniqueness,

f°f°f=f=f°idﬂ=>fo idQ.

h
I



§7. STEVES

Let C be a small category.

7.1 DEFINITION Tet X € Ob C — then a sieve over X is a subset § of Cb C/X

9 £ f

such that the composition 2 > Y > X belongs to § if v > X belongs to $.

7.2 DEFINITION A subfunctor of a functor F:(_:OP ~+ SET is a functor ngo'P + SET

such that v X € Ob C, GX is a subset of FX and the corresponding inclusions con-
stitute a natural transformation G + F, so v £:¥ + X there is a commutative
diagram

y

7.3 IEMMA Fix an cobject X in C —- then there is a one-to-one corresporndence

betweenthesievesover}{andthesubfunctorsofhx.
PROOF If § is a sieve over ¥, then the designation

GY = {f:¥Y > X & f € %}

g

defines a subfunctor ofhX (given 2z > ¥, Gq:GY -~ GZ is themap £ - £ ¢ g).
Conversely, if G is a subfunctor of hx' then GY < Mor({¥,X) and

F=UuUGY
Y



is a sieve over X.

7.4 EXAMPLE The maximal sieve over X is § = Ob C/X and the associated

subfunctorofhxishxitself. 'Ihemini:ralsieveoverxisﬁmin=ﬁandthe

associated subfunctor of hy, is . (the initial object of é) .
C

Consider now the functor category

Op

C=Ic™,sen.

N.B. Q is wellpowered (cf. 2.14).

10

7.5 LEMMA The monomorphisms in é are levelwise, i.e,, an arrow Z:G + F in
is a moncmorphism iff v X € Ob C,

EX:GX + FX

is a monomorphism in SET.

Suppose that 5:G > F isammrmrphismin(ﬁ—-trm (G,Z) € M(F}, s0
vXeobg,

(GX,EX) & M(FX)
(@{lEx) '"FX (G‘XrE;{)r
where G'X is a subset of FX and E;i is the inclusion G'X = F¥X.

7.6 IFMMA G' is a subfunctor of F.

It follows that there is a one-to-one correspondence between the subobjects

of P and the subfunctors of ¥.



7.7 THEOREM Let C be a small category —— then § admits a subobject classifier.

Definition of {i There are two ways to proceed.

® Define

0:¢F 5 gET

on an cobject X by letting (X be the set of all subfunctors of hx and on a morphism

f:Y - X by letting Rf:0X + (¥ operate via the pullback square

GG —— G
b, —— hy
hf
® Define
R:C” > SET

aon an object X by letting {X be the set of all sieves over X and on a morphism

£1Y¥ + X by letting Qf: X ~» ¥ be the rule § + § - £, where § - £ = {g:f o g € 8}.

Definition of T:x, > Q In terms of subfunctors, TX(*) = h}( and in terms of
C

sleves, Tx(*) =5 .

The claim then is that the pair (,7) is a subobject classifier for C and
for this we shall work with sieves, the details in the subfunctor picture being
analogous. So let Z:G + F be a monomorphism, where w.l.0.g9., G is a subfunctor
of F - then the classifying arrow XE:F + Q of (G,5) in F at a given X € Ob C
is the map

(XE)X:EX -+ X



that sends x € FX to the sieve

f
(Xg)y (%) = {y
Since
()(5} (x) = 5max <=>x & GX,
the diagram
B — %
Ex lTX
FX ———— (X
(XE)X

is a pullback sguare in SET, thus the diagram

G >

»

n
1y >
]

H]
v
=

Xz

> X: (Ff)x € GYJ.

is a pullback square in (ﬁ This completes the verification, modulo unicqueness,

i.e., if

39
) ——
ia:
—

is a pullback square, then y = o -.. .



7.8 EXAMPLE Let G be a group, considered as a category G — then the category
of right G-sets is the functor category [gop (SET], thus is cartesian closed (cf.
5.21) and admits a subobject classifier (cf. 7.7}.

Let C be a small category — then

e C fulfills the standard conditions (cf. 3.4 and 3.6);
L é admits a subcbkject classifier (cf. 7.7).

7.9 LEMMA Every epimorphism in é is a coequalizer.

PROOF Suppose that Z:F » G is an epimorphism. Write Z =m o k per 3.9, thus
m is a monaomorphism and k is a coequalizer. But then m is necessarily an epi-

morphism and (:: is balanced (¢f. 6.10). Therefore m is an isomorphism, hence E is

a coequalizer.



88. HEVTING ALGEBRAS

A bounded lattice (X,<) is called a Heyting algebra if C{X,<}) is cartesian

closed (as a category with finite products).

N.B. If x,v,z € X, then
XAy <z<=>x<2z (cf. 1.4).
So, e.q.,

y £z<=gz =1,
In particular: v x € X, x. = 1. and
2 Ay < z.

In particular: Y x € X, x A 0° = 0,
8.1 EXAMPIE Every boolean algebra is a Heyting algebra (cf. 5.5).

8.2 IEMMA Iet (X,<) be a poset which is linearly ordered (v x,y € X, either
X < yory<x axd with least and greatest elements 0 and 1 — then (¥,<) is a
bounded lattice and, as such, is a Heyting algebra.

PROOF C(X,<} has binary products:

T o xifxzsvy
XAy=

_yify=sx
and binary coproducts:
T o yifx=zvy
XVvy-=
_ xifys=sx
This said, the prescription
lifx=sy

yifysx&y=x




defines an exponential object, so C(X,s) is cartesian closed.

8.3 EXaMPLE The closed unit interval [0,1] < R in its usual ordering is a

Heyting algebra (but not a boolean algebra}.
8.4 LEMMA A Heyting algebra is necessarily a distributive lattice.

The difference between a boolean algebra and a Heyting algebra lies in the

notion of complement.

8.5 DEFINITIN Let (X,s) be a Heyting algebra. Given x € X, put — X =

0° — then — X is called the pseuwdocomplenent of x.

N.B. In a boolean algebra {X,s),

0"=-—L xvO0=— x (cf.5.5).

8.6 LEMMA Let (X,<) be a Heyting algebra - then v x € X,

—, x = viy:x Ay =0}

8.7 EXAMPIE Iet 8 be an infinite set and let X be the subset of the power
set PS consisting of all finite subsets of S together with S itself — then (X,<)
is a distributive lattice but it is not a Heyting algebra.

[If x € X and x = @, then the set of y € S such that x N y = f§ has no largest

member . ]

To recapitalate:

boolean algebra => Heyting algebra => distributiwve lattice




and none of the implications are reversible.

8.8 RULES In a Heyting algebra (X,<),

1) — 0=1, — 1=0; ) xcy=>— — X3 — — Vi

(Y xgsy= — ¥ — X (7) x £ — — x5

3) — x=— — — x; 8) vy — — — X = — K

4) — Kvy)=—xa— ¥ (9) — — XAY) =— — xXA-— — ¥;
(8) — x vy v ) — — = — —p

[Note: This list is by no means exhaustive ut suffices for our purposes
(there is another list to the effect that any Heyting algebra satisfies the axioms

of the intuitionistic propositional calculus).]

8.9 LEMMA et (X,<) be a Heyting algebra — then (X,<) is a boolean algebra
iffvxeX, xv— x=1.

[Note: In any Heyting algebra, x A —; x = 0.]

8.10 LEMRA Let (X,<) be a Heyting algebra — then (X,<) is a boolean algebra

iff‘v‘xEX,—| —Ixm}{.

8.11 EXAMPLE Given a topological space X, let O{X) be the set of open subsets

of X, thus under the operations

UaAavVv=UnvVWVv
U<V<=>0UcV, »0=§8,1=X,
Uvv=0yV

0(X) is a bounded lattice. Denote by O(X) the category underlying O(X) —— then



0(X) is cartesian closed:

VU“—'UW(WHUCV).

Therefore O(X) is a Heyting algebra. Here

— U= =int@-v) =x-ctu
=>
— — U=int cl U> U.

{Note: In general, G(X) is not a boolean algebra (cf. 8.9 and 8.10).)

8.12 DEFINITION Let (X,<) be a Heyting algebra —— then an x € X is boolean if

[Note: It is always the case that x < - xX.]

8.13 EXAMPIE In 8.11, an open set U is boolean iff it coincides with the

interior of its closure.

8.14 NOTATION (Xb,s) is the subposet of (X,5) whose elements are the boolean
elements of X.
8.15 THEOREM (xb,g) is a boolean algebra.
PROOF First,
— — 0=10
— — 1 =1,
s0 0 and 1 are boolean. Next, if X,y € X are boolean, then

—t ) BAY) E— — XA — ¥ FXAY,



thus X A y is boolean. On the other hand, x v y is not necessarily boolean. To
remedy this, put

XYYy=— — vy

|
i
£l
<
=
i
|
|
|

— {(x vy

— — &Vy)=xvy.
So, with these definitions, (Xb,s) is a bounded lattice (which, in general, is not

a sublattice of (¥X,2)). There ramins the claim that (Xb,s) is distributive and
camplemented.

® VXyzEX:

H

XA {yvV 2z XA— — (y v 2)
= Ty XA — Y Vo2)

= e — {x A (y v 2Z))

== — (Ay) Vv (x4 2))

N

xAy) v (xaz).

Analogously,

b
<

v (y A 2z) xvylaxyvz).

® VXEXb:

xA——|x=0



=— (= xA— — %)
=_i ("""""i XAK)
=.......__| 0

8.16 THEOREM Let C be a small category — then v F € Ob C, the poset Sub, F
c

is a Heyting algebra.

PROOF Suppose that G, .G, are subfunctors of F — then under the operations

(G1 A G2)X = G;X N GX
_ (Gl vV Gy)X = Glx U G,X
Gl G

Sub, F is a bounded lattice. As for the exponential object 6,0, take (@,9)X to

C

be the set of x € FX which have the property that if f:¥ + X and if (Ff)xEGl,

then (Ff)x € G,.Y.

2
[Note: So, if G is a subfunctor of F, then {(—| G)X is the set of x € FX

such that for all f:Y + X, (Ff)x &€ GY.]

8.17 EXAMPLE Consider the functor category [gOP,SET] per 7.8 ~~ then for

every right G-set X, the Heyting algebra Sub, X is actually a boolean algebra.
G



§9. LOCALES

A locale is a Heyting algebra (X,s) for which the category C(X,s) is complete
and coconmplete (cf. 1.10).

[Note: If C(X,<) is camplete and cocamplete, then (_B(xb,s) is complete and

cocanplete, hence the boolean algebra (Xb,s) {cf. 8.15) is also a locale.]

9.1 EXAMPLE The closed unit interval [0,1] < R in its usual ordering is a
locale {cf. 8.3).

9.2 EXBMPLE If X is a topological space, then O(X) is a locale (cf. 8.11).
[Here v U, = U u while A U is the largest open set contained in all
ieT i€l icl
the Ui']

9.3 EXAMPLE If C is a small category and if F € b C, then Sub, F is a locale
(cE. 8.16).

1}

9.4 ILEMMA Suppose that (X,<) is a locale — then for any index set I,

xa (v y:.)= v (xavy,).
ier 't e *

[Recall that left adjoints preserve colimits.]

[Note: If (X,s<) is a bourded lattice for which the category C(X,<) is
complete and cocamplete (cf. 1.10) and with the property that "arbitrary joins
distribute over finite meets", i.e., the conclusion of 9.4, then (X,<) is a Heyting

algebra or still, is a locale. Proof: Put

27 = v{x:x A y < z}.]




Generically, locales are denoted by L,M, ... and are to be regarded as

categories.

9.5 LEMMA let L be a locale. Given x € L, put

T ix={ye€ Lix £y}
_ ¥x={y € Ly < x}.
Tox
Then the subposets are locales.
+x

9.6 DEFINITION Let L,M be locales — then a localic arrow f:L > M is a pair

of functors
fo:l > M

fr:M ~ L

such that f* is a left adjoint for f, and f* preserves finite products.

9.7 REMARK There is a one-to-one correspondence between the localic arrows

f:L > M and the functors £*:M + [ such that

i

() B4 (v y) = v £*(y.),
ier ier

(2) £*{y A y") = £*(y) A £*{"),
3) £%{1) =1,
for all indexing sets I and elements yi,y,y' of M.

[If f* satisfies these conditions, then by quoting the appropriate "adjoint

functor theorem* one infers the existence of f, (f, is uniquely determined by f




(in a poset, the only isomorphisms are the identities (cf. 1.2))). Specifically:

f.(x) = viy € M:E*(y) < x} {cf., 1.4).]

3.8 EXAMPLE Let X,Y be topological spaces and let £:X + Y be a continuous
function — then f induces a localic arrow £:0X) > O(Y).

[Take £* = f-l, hence

£,0) = U {Veom:£Lw < u)
or still,

£ (U) = Y - EX0).]

9.9 NOTATION LOC is the category whose objects are the locales and whose

morphisms are the localic arrows.
9.10 THEOREM ILOC is complete and cocomplete.

N.B. An initial object for LOC is {#} and a final object for LOC is {0,1}.
[E.g.: Given L, a localic arrow f:L - {0,1} must have the property that
£*¥(0) = 0, f*(1) = 1 implying thereby the uniqueness of £ as well as its existence

{ef. 9.7).}

9.1l DEFINITION A point of a locale L is a localic arrow p:{0,1} -~ L.

9.12 DEFINITION An element x of a locale [ is prime if ¥ a,b € L,

aanbsx=aszxorbz=<zx

1A

9.13 IEMMA Iet L be a locale —— then there is a bijection between the points
of | and the prime elements of L.




PROOF Given a point p of [, put
x = via € L:ip*(a) = 0}.
Then p*(x) = 0, hence x # 1 (p*{l) = 1). And x is prime:
arnbsx=>ptlaab)=0
=> p*{a} A p*(b) =0
=> p*{a) = 0 or p*() =0
=>a<xorbzsx
Oonversely, if x € L is prime, define p*:L - {0,1} by

T0ifa sx
p*(a) =
_lif a g x.
Then p* satisfies (1), (2), (3) of 9.7, so p* is the left adjoint constituent of
a localic arrow p:{0,1} ~ L.
e Start with a point p, form the prime element x as above, and consider

the point ¢ associated with x. Given a € L,

g¥la) = 0 <=> a £ x <> p*{a) = 0.
Therefore gq* = p* or still, g = p.
® Start with a prime element X, pass to the point p corresponding to x,
thence to the prime element y corresponding to p. Given a € L,
a < x <=>p*{a) = 0 <=>a sy,

Therefore x = v.

9.14 EXAMPIE Let X be a topological space —— then each x € X determines a



point pX:{O,l} + O(X), thus

p(U) = 0 <=> x £ U,

the prime element per Py being X ~ {x}.

9.15 NOTATION Given a locale L, let

pt(l) = Mor({0,1},L),

the set of points of .
[Note: It can happen that pt(L) = #. E.g., take the real line R in its

usual topology and let
L= (OR),, 2.
Then [ has no prime element, thus pt(L) = @ (cf. 2.13).]
9.16 LEMMA Iet L be a locale. Given x € L, put
U, = {p € pt(l)sp*(x) = 1L
Then the collection {Ux:x € L} is a topology on pt(Ll).

[Note: We have

Uy = pt(l),

N.B. If f:L = M is a localic arrow, then postcomposition

pt(£) :pt (L) -+ pt{M) (p+ £ o p)

is continmaous.




[In fact,

PE(D (U = Upy (-]
Therefore these definitions give rise to a functor
pt:LOC > TOP.
In the other direction, let
toc:TOP > 10C
be the functor that sends X teo O(X) and f£:X + Y to its associated localic arrow

£:0(X) -~ O(Y) (cf. 9.8).

9.17 THEOREM The functor pt is a right adjoint for the functor foc.

[Note: The arrows of adjunction

u € Nat(id‘IDP' pt o foc)

v« Nat(f.oc < Pt; ldI. OC)

e Given a topological space X,
Wy X —> pt(0(X))
sends x € X to Py (cf. 9.14);
® Given a locale L, the left adjoint part of

> b

\)L=0(Pt(L))
is the functor
\)t:L — O(pt (L))

thatsendstLton.]




2.18 RAPPEL Let X be a topological space —— then a nonempty closed subset

8 ¢ X is irreducible if for all closed subsets Sl,S of %,

2

SCS]_U52=>SCS or 8c b5

1 27
i.e., if X - 8 € O(X) is prime. E.g.: Vv x € X, (X} is an irreducible closed
subset of X.

[Nocte: The only irreducible closed subsets of a Hausdorff space are single-

tons. ]

9.19 DEFINITION A topological space X is sober provided that every irreducible
closed subset 5 of X is the closure of a unique point x € X:8 = 1x}.

[Note: Consider the map x + {x} From the points of X to the irreducible
closed subsets of X —— then X is Ty iff this map is injective and X is sober iff

this map is bijective.]
9.20 EXAMPLE The spectrum of a commitative ring with unit in its Zariski
topology is sober.
9,21 CRITERION A topological space X is sober iff the arrow of adjunction
Uy X > Pt (0(X))
is bijective.
9.22 LEMMA Iet [ be a locale —- then pt(l) is a sober topological space.
PROOF It is a gquestion of applying 9.21 when X = pt(L}. So let

Q:{0,1} » O(pt(L))

be an element of pt(0{pt(Ll))) —~- then there is a unique point g € pt(l) such that



pq = @ (here
p;(ux) =0<=>qgUu,  (cf. 9.14)).
To see this, let
y = vix € L:0*(U)) = 0.

Then Q*(Uy) =0, hence y # 1 (Q*(Ul) = Q*(pt(L)) = 1) and it is immediate that

y is prime. Let now q € pt(L) be the point corresponding to y, thus

0 if x gy
ag¥i{x) = {cf. 9.13).
lifx{y

Claim: pq =¢. Proof: v xcl,
& = ™
Pq(Ux) 0 <=> q & U,

E> XY

— % -
<=> Q) (Ux) 0.
That ¢ is unigue can be established by a similar calculation.
9.23 DEFINITION A locale L is spatial if U =U = x = y.
N.B. In other words, L is spatial if
\Jf:L + Q(pt(l))
is injective (it is surjective by definition).

9.24 FEXAMPLE Iet X be a topological space «- then the locale O(X) is spatial.



[Given U € 0(X),

\%(X) (U} = {p € pt{O(X}):p* (U} = 1}.

Py € Vi) (O <=> x € U.
Therefore
* .
V) :0{X) » O(pt{0(X)))
is injective.]
The reason for introducing "sober topological spaces"” and "spatial locales"

is the following easy consequence of 9.17.

9.25 THEOREM The category of sober topological spaces is equivalent to the
category of spatial locales.
Details:
® A topological space X is sober iff the arrow of adjunction
uX:X -+ pt(0(X))}
is a homeomorphism.
[If X is a topological space, then My is continuous (being a morphism in
TOP) and if in addition X is sober, then Wy is bijective {(cf. 9.21), hence open:
uX(U) = UU —_—
® & locale L is spatial iff the arrow of adjunction
\)L:Otpt(L)) > L

is an iscmorphism of locales.



10.

[If L is a spatial locale, then \Jt is bijective. Moreover, \Jt preserves

the poset structure (clear) and reflects it:

UXCUy=>UXAy“—“‘UxﬂUy=UX,

so by injectivity, x A y = x or still, x < y.]

Turning to 9.25, the image of the functor pt is contained in the full sub-
category of TOP whose objects are the sober topological spaces (cf. 9.22) and the
image of the functor {oc is contained in the full subcategory of LOC whose objects
are the spatial locales (¢cf. 9.24). Therefore the adjunction (foc, pt) restricts
to an adjunction on these smaller subcategories and by the above observations, the

restricted arrows of adjunction are natural isomorphisms.

5.26 SCHOLIUM Iet X be a topological space — then the locale O(X) is iso~
morphic to the locale of open subsets of a sober topological space.
[For O(X) is spatial (cf. 9.24), hence

Yo () :0(pt (0(X))} - O(X)

is an isomorphism of locales. But pt(O(X)) is sober (cf. 9.22}.]



§10. SITES
Iet C be a small category.

10.1 NOTATION Given a sieve § over X and a morphism £:¥ > X, put

£f*$ = {greccd g =Y & £ = g € §}.

Then £*$ is a sieve over Y.

10.2 DEFINITION A Grothendieck topology on € is a function t that assigns to

each X € Ob C a set Ty of sieves over X subject to the following assumptions.

(1) The maximal sieve 5ma.x e Ty

(2) If 8 & Txand if f:¥ » X is a morphiam, then f*§ ¢ Ty

(3) IfSETXandifs' isasieveoverXsuchthatf*S'ETonrall

f:¥y - X in &, thens'ETX.

10.3 DEFINITION A site is a pair {(C,t), where C is a small category and T is

a Grothendieck topology on C.

10.4 EXAMPLE Iet | be a locale., Given x € [, a sieve over x is a subset § of

¥x (cf£. 9.5) which is hereditary in the sense that

Ve€ES Yvaecl, a<csg=>ac€Eg.
One then says that $ covers x if x = v 8. DenotingbyTxtheset of all such 5,
the assignment x -~ T, is a Grothendieck topeology T on L.
[It is straightforward to check (1), (2), and (3).

Ad (1) Here 5max = Jx and it is obvious that

vy = K.
y=x




ad (2) IfﬁETxandifysx(f:y*x),then

t*$ = {s < yis € $} = {8 A y:s € §}

and the claim is that £*% € ‘ry. In fact,

y=x Ay = (v8) Ay =v{s A yis € §} = vi*g,

Ad (3) Given %', suppose that

y=vis' ay:s' € 81 (y e 8.

Then
X=vdE= v s5= V v 8'as= v v st A s
SES s€g s'¢g’ s'cs' scg
= v (8" A {v 8))= Vv s' Ax = v s'.
SIGSI 365 Siesl Sleﬁl

Therefore $' € TX.]

N.B. Take | = Q0(X), where X is a topological space — then a sieve 3 over an

open subset U of X is a set of open subsets V ¢ U such that V! <« Ve §=>V' € §.

And
SE‘EU<ﬁ> U V=1
ves
10.5 LEMMA Tet (g,t}beasite——thenvxedbg,
$€TX&5¢:$'=>S'ETX
and

8,3 € 14 => g§ng' € Tye

10.6 REMARK Suppose that we have an assigment X -+ Tye satisfying (1), (2) of



10.2 and for which

| - ]
SETX&SCS => £ ETX.

Then to check (3) of 10.2, it suffices to consider those $' such that &' < §.

Iet C be a small category -— then by 1, we shall understand the set of

C

Grothendieck topologies on C.

10.7 EXAMPIE Take C = 1 — then C has two Grothendieck topologies: {8}

and {Sminfﬁmx} .

10.8 DEFINITICN

e The minimal Grothendieck topelogy on C is the assigment X > {Smax}'

e The maximal Grothendieck topology on C is the assignment X + {$}, where

§ runs through all the sieves over X.

Given 17,7’ € T, Write T = 7' If VX E O C, T CT}I{'

C(

10.9 ILEMMA The poset Tc is a bounded lattice.

—_

PROOF If T1,1' € Tas let T A T' be their set theoretical intersection and let

T v T' be the smallest Grothendieck topology containing their set theoretical union.
As for 0 and 1, take 0 to be the minimal Grothendieck topology and 1 to be the

maximal Grothendieck topology.

10.10 THEOREM The bounded lattice o is a locale.

—

Tet C be a small category with pullbacks.



10.11 DEFINITTON A coverage on C is a function K that assigns to each

X € Ob C a set K, of subsets of Ob (/X subject to the following assumptions.
(1) If £:Y¥ - X is an isomorphism, then {f:Y » X} is in KX

{2) If {fj_:Yi +X {(1€I)} is in Kye then for any morphism g:Z > X,

Pty
v, =, 2 > %2 {1 €1)}
15 1n Kz.
[Note: Here
Pry
Y, %y Z S/
g
Yi » X
f.
1l
is a pullback square.]
(3) 1f {£;:7, + X (1 € I)} is in K, and if v i €1, {gij:zij ~Y, (¢ Ii)}

is J.nKy, then
i

{fi o gij:zij ~X(ieI, je Ii)}

is in K.
10.12 EXAMPIE let L be a locale. Given X € L, let K, be the set of all subsets
of +x consisting of those set indexed collections {xi:i € I} such that v X =X ==

iex
then the assigmment x - K, is a coverage K on (.



10.13 DEFINITTON Let K be a coverage on C — then the Grothendieck topology

T on C generated by K is the prescription

5ETX<=>3REKX:R=5.

10.14 EXAMPLE Iet L be a locale — then the Grothendieck topology on L per

10.4 is generated by the coverage on L per 10.12.

10.15 REMARK Suppose still that C is a small category with pullbacks. ILet
T be a Grothendieck topology on C -- then there is a coverage K that generates T,
viz.
R € K <=> <R> € Tyr

<B> = {f o g:f € R, dom f = cod gl.



§11. SHEAVES

Iet C be a small category,

11.1 RAPPEL For any X € Ob C, the sieves over X are in a one-to-one corre-

spondence with the subfunctors of hX (cf. 7.3).

Because of this, the notion of Grothendieck topology can be reformilated.

11.2 NOTATION Given a subfunctor G of hX and a morphism f£:¥ » X, define £*G
by the pullback square

£*G G
if*G iG
——D
T

in (:\; -— then £*G is a subfunctor of hy.

11.3 DEFINITION A Grothendieck topology on C is a function 7 that assigns

to each X € Ob C a set Ty of subfunctors of hx subject to the following assumptions.

{1} 'The subfunctor hX g Ty

(2) If G e Txand if f:¥ + X is a morphism, then f*GETY.

{3) If g e Ty and if G' is a subfunctor of hX such that f*G' ¢ Ty for all
f € GY, then G' € Ty

[Note: For use below, observe that 10.5 and 10.6 can be stated in terms of




subfunctors instead of sieves.]

Suppose that § is a reflective subcategory of é Denote the reflector by
a —— then there is an adjoint pair {a,1), 1:8 » § the inclusion.

Assume: a preserves finite limits.

[Note: It is autcmatic that a preserves colimits.]

i
G>hx

is an isomorphism -- then the assignment X -+ Ty is a Grothendieck

11.4 THEOREM Given X € b C, let Ty be the set of those subfumctors G
such that giG
topology T on C.

PROOF Since
afl idhX) = id ’
= éh>(

it follows that hX S Tyr hence (1) is satisfied. As for (2), by assumption a

preserves finite limits, so in particular a preserves pullbacks, thus

af*G —— aG
lexa al-
ahy —— &
ahg
is a pullback square in S. But a_xiG is an isomorphism. Therefore C:i-if*G is an
isomorphism, i.e., £*G € Tye The verification of (3}, however, is more complicated.

e SupposetkthETXandGisambfunctorofG':




r 1:G > G'.
_ iG,:G' + hX
Then
1. =1 ° i=> giG = _in, ° ai.
But g_iG is an isomorphism, hence
id=ai_, oalo (ai) *
— Gl - — G r

which implies that _aliG, is a split epimorphism. On the other hand, a preserves

monomorphisms, hence giG, is a monomeorphism. Therefore giG, is an isomorphism,

i.e., G' c Ty

e It remains to establish (3) under the restriction that G' is a subfunctor
of G. Using the Yoneda lemma, identify each f € GY with f € Nat (hY,G) and display

the data in the diagram

iy g G N ———

i i i
£

hy >G> by

f i

There is one such diagram for each Y and each f € GY, so upon consolidation we have

HG'
J_| _Ll_ hY X G el

Y f

IR i

JSJ{_JEL hY > G .




Now i1 is an equalizer (all monomorphisms in (E_ are equalizers), thus ai is an
equalizer (by the assumption on aj. But the assumption on G' is that v ¥ and

v £ ¢ GY, gif is an isamorphism, thus ai is an epimorphism (see 11.8 below}.
And this means that al is an isamorphism {cf. 6.8). Finally,

i,=4i,¢i=>ai,, =ai

¢ - o G G ° &t

Therefore ai., is an isawrphism, i.e., G' € 1

=G X’

11.5 RAPPEL Given a category C, a set U of objects in C is said to be a
£ >
separating set if for every pair X ¥ of distinct morphisms, there exists
g
g

a Ue i and a morphism ¢:U ~ X such that £ ¢ ¢ 2 g ¢ g,

11.6 EXAMPLE Suppose that C is small -~ then the hY (Y € Ob C) are a separating

set for C.

11.7 LEMMA Let C be a category with coproducts and let U be a separating set —-

then v X € Ob C, the unique morphism

] || dom £

veli £ € Mor (U,X)

> X

such that v £, T, ¢ in

X e = f is an epimorphism,

11.8 APPLICATION Suppose that C is small. Working with C, take X = G in
11.7 — then

> G

LAl by

Y £ s



[Note: To finish the argument that al is an epimorphism, start with the

relation

Toell [l ig=1°T,-

alg e at [| | 3p) = al o all,.

Since I‘G is an epimorphism, the same is true of gl"G (left adjoints preserve epi-

morphisms). 2and
al [| 1l ip =11 11 ai
is an iscmorphism, call it ¢, hence

al,=ai ¢ (all,, o &

G

Therefore ai is an epimorphism.]

11.9 NOTATION Denote by §, the "set" of reflective subcategories g of E_:) with

the property that the inclusion 1:§ -+ é has a left adjoint a_t:(:: + S that preserves
finite limits.
11.10 DEFINITION Fix a Grothendieck topology T € Te then a presheaf
FEOb(:;iscalledaT-sheaf ifVXEObganiVGETX, the precamposition map
ia:Nat(hX,F) + Nat (G,F)
is bijective.
Write Sh_(C) for the full subcategory of C whose objects are the 1-sheaves,

11.11 EXAaMPLE Take for 1 the minimal Grothendieck topology on C — then
_SllT C) =¢C.



Note: In particular, Sh_(1) = 1 = SET.]

11.12 EXAMPLE Take for 1 the maximal Grothendieck topology on C -~ then the
obiects of §_11T (C) are the final objects in §

[First, v X € Gb C, #, »~ h,. But §, is initial, thus the condition that F
C C

be a t-sheaf amounts to the existence for each X of a unique morphism hX > P,

Meanwhile, by Yoneda, Nat(hX,F) = FX,]
11.13 EXAMPLE Given T € Tor define (JT by the rule

{0} if d e+
C

X

0 (%) =
g oifp, £,

1]

Then 0T is a 1-sheaf and, moreover, is an initial object in :E‘ET Q).

11.14 THEOREM The inclusion 1_:Sh _(C) - C admits a left adjoint a_:C ~ $h_(Q)
that preserves finite limits.

lote: We can and will assume that 2, ° 1. is the identity.]

Various categorical generalities can then be specialized to the situation at

hand.

11.15 DEFINITION A morphism £:A > B and an object X in a category C are said
o0 be orthogonal (f 1L X) if the precamposition map £*:Mor(B,X) - Mor(A,X) is bi-

jective.



11.16 RAPPEL Let D be a reflective subcategory of a category C, R a reflector

for D (cf. 5.10). Iet WD be the class of morphisms in C rendered invertible by R.

® letXeMC--thenXcODIffvEel, f1tX

® Iethbbr(_I——-thenfEWDiffVXEObQ,fJ_X.

11.17 NOTATION Let wT be the class of morphisms in é rendered invertible by

a .

=T
11.18 EXAMPLE If F € Ob C, then F is a t-sheaf iff VE € U/, T L F.
11.19 EXaMPLE If & € Mor (:3, then E € tUT iff for ewery t-sheaf F, E 1L F.
[Note: If X € Ob Cand if G € Tyr then for every t-sheaf F, iG t F, thus

is € WT.]

11.20 RAPPEL Let D be a reflective subcategory of a category C, R a reflector

for D (cf. 5.10) — then the localization w[_)l(_: is equivalent to D.

11.21 APPLICATION The localization WG is equivalent to Sh_ ().

11.22 RAPPEL Let D be a reflective subcategory of a finitely camplete category
C, R a reflector for D (cf. 5.10) —— then R preserves finite limits iff wD is pull-
back stable. )

[Mote: When this is the case, (UD is saturated (i.e., £ € wD iff Rf is an

iscmorphism) . ]




11.23 APPLICATION Since a_:C > gh_(C) preserves finite limits, it follows

that (JJT is pullback stable (and saturated).

11.24 EXMMPLE Take C = 1, so 1 =~ SET — then 1, = 2. On the other hand,

SET has precisely 3 reflective subcategories: SET itself, the full subcategory
of final objects, and the full subcategory of final objects plus the empty set
(#Rx. = 1 if X 2 @, RF = ). In terms of Grothendieck topologies, the first two
are accounted for by 11.11 and 11.12. But the third cannot be a category of
sheaves per a Grothendieck topology on € = 1. To see this, note that the class of
morphisms rendered invertible by R consists of all functions f:X » Ywith X =2 @
as well as the function # > @ {(thus the arrows @ +~ X (X 2 @) are excluded}.
Suppose now that 7 is a nonampty set and X,Y are nonempty subsets of 2 with an

empty intersection. Consider the pullback square

~
4
(5]

where 1x’lY are the inclusions — then RJY is an isamorphism but RAJU_Y is not an
isomorphism. Therefore the class of morphisms rendered invertible by R is not
paliback stable,

11.25 NOTATION Let F € Ob C be a presheaf. Given X € Gb C, let T,(F) be the




set of subfunctors iG:G > hX such that for any morphism £:¥ -+ ¥, the precomposition

arrow

(if*G) *:Nat. (hY,F) > Nat(f*G,F)

is bijective.
11.26 LEMMA The assigment X - TX(F) is a Grothendieck topology 1(F) on C.

N.B. T(F) is the largest Grothendieck topology in which F is a sheaf.

11.27 SCHOLITM For any class F of presheaves, there exists a largest Grothen—

dieck topology 7{(F} on C in which the F € F are sheaves.

11.28 DEFINITION The cancnical Grothendieck topology Tean O C is the largest
Grothendieck topology on C in which the h (X € Ob C) are sheaves.

[Note: Let‘rE‘ccw—then‘cissaidtobesubcamnicalifthehx(XGObg)

are T-sheaves, ]

11.29 EXAMPIE Iet L be a locale — then the Grothendieck topology T on L
defined in 10.4 is the canonical Grothendieck topology.
[Note: This applies in particular to the locale Q(X), where X is a topological

space, —S—~}1'c (O{X)} being the traditional sheaves of sets on X, i.e., Sh{X}.]

11.30 EXAMPLE Take for X the Sierpinski space (so X = {0,1} with topoloqgy

{X,8,{0}}) — then Sh{(X) (cf. 11.29)is the arrow category SET(-}.



§12. LOCAL T1SOMORPHISMS

Iet C be a small category.

12.1 RAPPEL C fulfills the standard conditions (cf. 3.4 and 3.6) and is

balanced (cf. 6.10 and 7.7).

I

let H,K € Ob é be presheaves and let Z € Nat(H,K). Form the pullback square

i*)
R4

[£31

Then p and g are epimorphisms.

12.2 NOTATTON GH:H + H %, H is the canonical arrow associated with idH, thus

K
p°6H=idH=q°5H'

N.B. SH is a mongmorphism.

12.3 ILEMMA E is a monomorphism iff GH is an epimorphism.

[Note: Consequently, if Z is a monomorphism, then GH is an isamorphism. ]

Fix a Grothendieck topology T € Tor

12.4 DEFINITION Iet H,K € b (E be presheaves and let F € Nat{H,K). Factor =

per 3.9:




Then F is a t-local epimorphism if for any f:hY -+ K, the subfunctor f*M of hY

defined by the pullback square

MM s M
if*M m
hY — = K
£
is in Ty,

12,5 LEMMA Every epimorphism in é is a t-local epimorphism.

12.6 DEFINITION Let H,K € Ob C be presheaves and let Z € Nat{H,K) - then

[1]

is a t=local moncmorphism if 'SH is a 1-local epimorphism (cf. 12.3).

12,7 IEMA Every moncmorphism in é is a t-local monomorphism.

12.8 DEFINITION Let H,K € Ob C be presheaves and let E € Nat(H,K) ~- then

(1}

is a t-local isomorphism if £ is both a t-local epimorphism and a t-local mono—

morphism.

12.9 EXAMPIE If G € T, then i.:G ~hy is a t-local isomorphism.

Xf
[For any f:¥ + X, there is a pullback square

05%HE e G

if*GJ llG

T h

in é ard £*G € Ty {cf. 11.3}, thus iG is a 1-local epimprphism. On the other hand,



iG is a monomorphism, hence iG is a t-local monomorphism (cf. 12.7).)
12.10 THEOREM wT is the class of t~local iscmorphisms.

12.11 APPLICATION Iet H € Ob § —— then the canonical arrow

H—> 1Te_1TH

is a 1-local isaworphism.

12.12 APPLICATION let G € T

x = then QTi is an isomorphism (cf. 11.19).

G

(Note: Suppose that iG:G - hX is a subfunctor — then iG is a monomorphism,

hence iG is a 1-local monomorphism (cof. 12.7). Assume in addition that i(, is a

T-local epimorphism, Claim: G € 1,. Proof: Take f = idX and consider

X
G G
iG iG
e

We shall now proceed to establish the "fundamental correspondence".

12.13 THEOREM The arrows

(cf. 11.4)

> T

{cf. 11.14)

are mutually inverse.



To dispatch the second of these, consider the composite

Tg —_— §§ —_ ‘rg.

Take a T € Te and pass to ih_q_(g) —- then the Grothendieck topology on € determined
by %‘r (C) via 11.4 assigns to each X € Cb C the set of those subfunctors i.:G - hx
such that é-riG is an iscmorphism or, equivalently, those subfunctors iG:G - hX

such that iG is a t-local isomorphism (cf. 12.10). But, as has been seen above,

the subfunctors of hX with this property are precisely the elements of Ty There—

fore the composite

is the identity map.
It remains to prove that the composite

— e &

%

is the identity map. So take an § € S produce a Grothendieck topology 1 on C

per 11.4, and pass to Sh (C) —~ then § < Sh (C). Thus let F € Ob 5, the claim being
that F € Ob glq(g) or still, that F is a 1-sheaf, or still, that v X ¢ Ob C and

v GE Tyr iG L F, which is clear since iG e wT {cf. 11.19). To reverse matters

and deduce that »Sﬂ‘r (C} < S, one has only to show that if Z:H - K is a morphism

in § and if aZ is an isamorphism, then gTE is an isomorphism. To this end, factor

E per 3.9:
k m
H >~ M > K.




Then a& = am o ak. But at is an isomorphism and am is a monomorphism (a preserves
finite limits). Therefore ak is a monomorphism. But ak is a coequalizer (a is a
left adjoint), thus ak is an isaworphism (cf. 6.8). And then am is an isomorphism
as well.

® Assume that af is an isamorphism, where T is a monomorphism — then

a & is an isomorphism.

[Bearing in mind that here H = M, consider a pullback square

f*H — - H
lf*H =
hY e e K -
£

Then the assumption that af is an isomprphism implies that a_if*H is an isomorphism

which in turn implies that if*H € Ty- Therefore £ is a t-local epimorphism or still,

F is a t-local iscmorphism, hence = € wT (cf. 12.10}, =0 ‘3-1*: is an isomorphism, ]

e Assume that aZf is an isomorphism, where % is a coequalizer — then a =
is an isomorphism.
[Because a = is a coequalizer, to conclude that E_iTE is an isomorphism, it
suffices to verify that gTE is a monomorphism (cf. 6.8). For this purpose, consider
the pullback square

o
(n

{11



Then c‘}H is a monomorphism and there are pullback squares

aq ad
ap ‘23 ap a.-=
aH — > ak ’ a.H —>a K .
an
< -1
But §6H = SE‘.H is an iscmorphism (cf. 12.3), thus QTGH = 6§TH is an isomorphism

{(cf. supra), so QTE is a monomorphism (cf. 12.3).]

12.14 THEOREM Let H,K € (b C be presheaves and let Z € Nat(H,K) — then

a tia H+ak is an epimorphism in Sh (C) iff E is a t-local epimorphism.

12.15 APPLICATION The epimorphisms in §ll‘t {C) are pullback stable.

[The class of t-local epimorphisms is pullback stable.]



§13, SORITES

The category _S_h_T (C) associated with a site (C,T) has a number of properties
that will be cataloged below.

13.1 1= %T {C) is complete and cocamplete.

[This is because Sh_(C) is a reflective subcategory of é which is both com-
plete and cocamplete. Accordingly, limits in §~h—‘r {C) are computed as in é while

colimits in &T (C) are camputed by applying a to the corresponding colimits in é.]

13.2 1=MMA §1_1_T (C} is cartesian closed.

[Since QT:Q -+ &T {C) preserves finite limits, it preserves finite products so
one can quote 5.11.]

[Note: Recall that é is cartesian closed (cf. 5.21).1]

13.3 IEMA Sh. {C) admits a subobject classifier,

[Note: Therefore §_h_T (C) is wellpowered (cf. 6.13).]

The proof of this result will be broken up into several steps (tacitly em-
ploying the license provided by 7.6).

Step 1 Given F € Ob é and a subfunctor i:G + F, define a subfunctor IE; + F
by the pullback square

Gl
v
1
A
@

el
q —
_(_—
~
'.i
1
—
._l-




Step 2 There is a cammitative diagram

F > L& F

Y

G
v
Gl

G—m—> 1,36

[u]
(—
-

-

T
G 1

ket
g

a5

commite.

Step 3 Definition: G is closed if G = G. We have

(1) G < G;
(2) G H=>G c H;
(3) G = G.
In addition, closed subfunctors are stable under pullbacks.
[Note: To make the last point precise, suppose given an arrow f:F' -~ F in é

Define G' by the pullback square

G — = G
Fr— s F




and define G' by the pullback square

G —

o G
k-

F' — — L F.
£
'I‘Ide115T=a',so
G=5=>G'=é'ﬂ@7.]
Step 4 VF € ObC,
F=F.
In particular: ¥ X € 0b ¢,
=y

Step 5 Let (0, T) be the subobject classifier for (2 {cf. 7.7). Define

°:c% . ser

on an object X by letting .QG&X be the set of all closed subfunctors of 11X and on

a morphigm f:Y » X by letting Qcaf:ﬁcg( > chY operate via the pullback square

e — o 6
hy ——> Dy
he
and define
ct: . - QCE




by factoring

Tix, + Q

17

through oct {which makes sense since h_xu = hy,). With these agrecments, ¢t isa

subfunctor of {1, say ic'a:QCf‘ -+ 5.

Step 6 Consider the pullback square

G —— %

Then the classifying arrow X3 factors through & ¢ iff G is closed.

Step 7 If F is a T-sheaf, then it and its t-subsheaves G are closed. This

said, consider the cammtative diagram

c c
1 ITGE \T
F > Qc'g > 2.
cl N4
Xy 1

Here X3 = ic'?’ o Xiz and both squares are pullbacks. TIf y:F - 9°£ is another

morphism and if



5.

G =N
¢
i iTCE
F > .ch

icK it x?_'ﬁ, hence y = X(J.:_K.

Step 8 *_is a t-sheaf {obviocus) and ch is a 1-sheaf (...). Therefore

1>

the pair (S?c’a,Tc“E) is a subobject classifier for &T .

13.4 LEMMA sh_(C) is balanced.

[Taking into account 13.3, one has only to cite 6.10.]

13.5 LEMMA Every monomorphism in —Sl-l-r {C) is an equalizer.
[In view of 13.3, this is a special case of 6.9.]

[Note: It is easy to proceed directly. Thus le
in @T(g) -= then 1 = F + 1 G is a monomorphism in @, hence is an equalizer. But

Z:F > G be a monomorphism

a, presexrves equalizers (since it preserves finite limits).]
N.B. Monamorphisms in gl_(g) are pushout stable.

13.6 LEMMA Every epimorphism in @T {C) is a coequalizer.

PROOF Given an epimorphism Z:F + G in _SET(Q), form the pullback square




v
|4 > F
u =
F > G
in Sh_(C) - then
1w
1R > 1 F
lTu 11_
1TF >1TG

11]

1
T

is a pullback square in é Factor 1TE per 3.9:

k m

ITF > M > ITG.

Then by construction there is a coequalizer diagram

-
[ £9]

1 P ITF —— 1TG

in é Now apply a to get a coequalizer diagram




u
> -
P F > G
T
v
ak am
gTM aM
in ﬂ,[ (C). &ince
E=ameoalk
=T =T

and since £ is an epimorphism, it follows that a.m is an epimorphism. But a_m
is also a moncmorphism. Therefore a_m is an isomorphism (cf. 13.4) and £ is a

coequalizer, thus being the case of ng.

13.7 LEMMA @T(Q) fulfills the standard conditions.
[Epimorphisms in %rr {C) are pullback stable (cf. 12.15) and every epimorphism

in Sh_(C) is a coequalizer (cf. 13.6).]
13.8 ILEMMA In gh_T (C), filtered colimits commite with finite limits.

13.9 RAPPEL Coproducts in C are disjoint.

[In other words, if F = || F. is a coproduct of a set of presheaves F,, then
iel

viel, ini:Fi+Fisamrmnrphismandvi,jeI (i = j), the pullback

F; xp Fy is the initial object in C.]




13.10 1EMMA Coproducts in _.S.llT (C) are disjoint.

13.11 RAPPEL Coproducts in C are pullback stable.

[In other words, 1f F = ‘l_l_ F. is a coproduct of a set of presheaves Fi,
ieT

then for every arrow F' -+ F,

J_l_ F' x F, = ¥'.]
iex Foa

13.12 IL.EMMA Coproducts in %1_ (C) are pullback stable.

13.13 DEFINITION Let C be a category which fulfills the standard conditions.

u
>

Suppose that R X is an equivalence relation on an object X in C. Consider
o>

v
the coequalizer diagram

u

>
R X
>

" >X/R = coeq{u,v).

Vi

Then there is a cammtative diagram

R—0——7 = X
X o—— s X/R

and a pullback square



aq
X X > X
P )
X > %/R .

One then says that R is effective if the canonical arrow

R-«——>X><X/RX

is an isomorphism (it is always a monomorphism).

[Note: C has effective equivalence relations if every equivalence relation

is effective.]

13.14 1EMMA Equivalence relations in §_h_T (C) are effective.

[The usnal methods apply: Edquivalence relations in SET are effective, hence
equivalence relations in é are effective etc.]

13.15 LEMMA The a hy (X € Ob C) are a separating set for Sh_(C).

PROOF Iet 5,8':F + G be distinct arrows in Sh_(C) -- then the claim is that
3X€0bCandoigh, ~F such that ¥ ° 0 # E' o 0. But £ # I’ implies that
EX:AE}‘{ (3 X € Ob C) which implies that Exxx E)'Lx (3 x € FX). Owing to the Yoneda
lama, FX = Nat(hX,F), g0 x corresponds to a g' € I\Iat(hx,F)jr thus Z o g’ # E' o ¢!

Determine o:gthx - F by the diagram




10.

Then 2 ¢ g = ' o @,

N.B., All epimorphisms in §_h__[(g) are coequalizers (cf. 13.6). So, for every
t—sheaf F, the epimorphism I‘F of 11.7 is automatically a coequalizer. Therefore
the gThx (X € Ob C) are a “strong” separating set for ngq <.

[Note: This barogque technicality is used implicitly in 13.16 below.]

A summary of the theory of presentable categories can be found in the Appendix
to CHT and will not be repeated here.

[Note: As a point of terminology, let C be a cocamplete category and let k
be a regular cardinal -— then an object X € Cb C is k—definite if Mor(X,—) pre~
serves k-filtered colimits.]

13.16 IeMA gh (C) is presentable.

PROOF Fix a regular cardinal « > #Mor € —— then ¥ X € Cb C, hXEObE_\:is
x—definite, the contention being that v X € Cb C, Erhx € Ob gh_T {C) is x—definite,

which suffices (cf. 13.15). To see this, note first that a «k—filtered colimit of
t~sheaves can be computed levelwise, i.e., its k~filtered colimit per é is a

T-sheaf. Now fix a x~filtered category I and let A:I -~ _S_ET (C) be a diagram — then

[1;

1\‘1&11:(g,th.x,r::c;lirnI ai) Nat(g_[hx,colimz I‘E&i)

Nat {hx,cu::olimI ITAi)

i

4

colimI Nat (hx, 1Tai)

i

c:olimI Nat (a—lThX'ﬂi) .

13.17 REMARK Tt is a fact that a presentable category is camplete and co-

conplete, wellpowered and cowellpowered.




§14. TOPOS THEORY:FORMALITIES
Let E be a category.

14.1 DEFINITION E is a topos if

e E is finitely complete;

e [ is cartesian closed;

o [ has a subobject classifier (Q,71}.
[Note: The defining properties of a topos are invariant under equivalence.)
N.B. Every topos is wellpowered.

14.2 EXAMPIE SET is a topos.
[Note: The full subcategory of SET whose objects are finite is a topos. On
the other hand, the full subcategory of SET whose objects are at most countable

has a subobject classifier but is not cartesian closed, hence is not a topos.]
14.3 EXAMPLE Let C be a small category — then C is a topos (cf. 5.21 and 7.7).

14.4 EXAMPIE Let (C,T) be a site —— then _SET (C) is a topos (cf. 13.2 and 13.3).

14.5 THEOREM Every topos is finitely cocamplete.
14.6 THEOREM Every topos fulfills the standard conditions.

14.7 LEMMA Let E be a topos.

(1) Every monomorphism in £ is an equalizer.



(2) Every epimorphism in E is a coequalizer.

(3) Every morphism in E which is both a monomorphism and an epimorphism
is an iscmorphism.
(4} Every morphism in E admits a minimal decomposition unique up to iso-

morphism.

14.8 EXAMPLE Not all moncmorphisms in CAT are equalizers and not all epimor—

rhisms in CAT are coequalizers. Therefore CAT is not a topos.
14.9 ILEMMA Every topos has effective equivalence relations.

14.10 EXAMPLE In POS (the category whose objects are the posets and whose

morphiisms are the order preserving maps), not all equivalence relations are effective.

14.11 CRITERION In a topos E, consider a pushout square

Asgaume: f is a monomorphism —- then n is a monomorphism and the square is a pullback.

14.12 TFMA In a topos £, finite coproducts are disjoint.

PROOF Let A,B € (b E =~ then on general grounds, there is a pushout square




b

ﬁé > B

a - 5 A|_15 .
hp

On the other hand, a and b are monomorphiasms (cf. 5.16}. Therefore :i.nA and 1nB

are monomorphisms and the square is a pullback (cf. 14.11}.

14.13 IEMMA In a topos E, finite coproducts are pullback stable.
[Note: Finiteness is not needed provided that the coproducts in question exist.

£ £

> A:i € I} is a coproduct diagram in E. Iet B

Thus suppose that {Ai > A

and for each 1 € I, define Bi by the pullback square

B A,
1
B A

> B:i € I} is a coproduct diagram in £. To see this, use 15.3:

_—

i

————

£

94

Then {Bi

Consider the composition

A% £* B )
> E/A > E/B

E

> E.

Each of the functors A*, f£*, B, has a right adjoint, hence preserve colimits, in

particular coproducts. On the other hand, given an arrow X + A, define an arrow



BXAX+Bhyfommgthepullbacksquare

Bx X

W

P X

-]

o —

B, o f* o A¥(X > A) =B><AX~*B.]

Iet € be a topos.

14,14 NOTATION Given A € (b E, let SA:A + A x A be the diagonal —— then cSA

is a monamorphism, so there is a pullback square

5 ok

O
el
§:)<—_|In1

Mor (A x A,9) = Mor(a,).

Therefore

=a € Mor{A x A,Q)

corresponds O an element

(-}, € wora,d,

the sﬁ" leton on A.



14.15 LEMMA {-}A is a monamorphism, hence

(A,{-}A) € M(SZA) .

14.16 EXAMPLE Take E = SET -- then {-}A:A—> o sends a € A to the character-
istic function of {a} (cf. 6.4). Identifying o with PA (the power set of A), it

follows that {-},:A ~ ® sends a to {al.

14.17 RAPPEL Given a category C, an object Q in C is said to be injective if
for each monomorphism £:X + Y and each morphism ¢:X + Q, there exists a morphism

g:¥ +~ 0 such that g » £ = ¢.

14.18 IEMMA In a topos £, the object Q is injective.
PROOF Let £:X + Y be a monomorphism and let y:X »  be a morphism, Define

(i,%) € M(X) by the pullback square
X
'f“j
X

y {cf. 6.12). Consider now the commtative diagram

Il

Then y.

- i
WX
l T
5 Y

£ X ~

f

o ——




Put g = ¥ .- Since the squares are pullbacks, the commtative diagram
fof

a——

Fh ¢
Mo M2

is a pullback square, so y. =g ¢ £f. But
£
Yo =X =>ge £ =y,
£

14.19 LEMMA In a topos E, the object & (A € Ob E) is injective.

PROOFLetf:X+YbeamanrphismaJﬁlet¢:X+QAbeamrphism—-then

there is a commutative diagram

Mor (YrQA) s> MDI (X,RA)

“! \

Mor{Y x A,0) — = Mor(X x Aa,0).

~—

Since O is injective, the bottom map is surjective, thus the same is true of the

top map.

14.20 RAPPEL A category C has enough injectives provided that for any X € Cb C,

there is a monomorphism X » ¢ with ¢ injective.

14.21 ILEMMA A topos E has enough injectives.




PROOF If A € Cb E, then QA is injective and {-}A:A > QA is a monomorphism

(cE. 14.15).

14.22 LEMVA The injective objects in E are the retracts of the ¢* (A € Ob E).



815. TOPOS THEORY: SLICES AND SUBOBJECTS
Let E be a topos.

15.1 THEOREM For every A € Ob E, the category E/A is a topos.
[since E is finitely complete, the same is txrue of E/A (cf. 4.1). Let Ta

! T
be the composition A > % » {}. Bearing in mind that idA:A > A is a final

object in E/A, define

<idA'TA> : (idA:A > A} - {prA:A X 0 > A)

by consideration of

X{luc...o:ﬂd

D
v

Then <idA, TA> is a monomorphism (its damein being a final object in E/A) and the
pair

(pry:A x Q > A, <idA,TA>)
is a subobject classifier for E/A. The crux is therefore to establish that E/A

is cartesian closed.]
In particular: E is locally cartesian closed (cf. 5.23}.

15.2 EXAMPLE v X, w is a topos but 'I!Z)P_ILI is not a topos {(recall that



TOPIH iz not finitely complete (cf. 4.2)).

15.3 THEOREM Suppose that f:A ~ B is a morphism in E — then f*:E/B -~ E/A
has a left adjoint £,:E/A - E/B and a right adjoint f,:E/A > E/B.
[This is a special case of 5.32 and 5.33.]

{Note: f* preserves exponential objects and subobject classifiers.]

15.4 LEMMA Let A € Ob E — then the poset Sub. A is a bounded lattice,

[Simply apply 2.2]) and 3.14. However, for the record, suppose that

- o
s > A
T
_ T > A
are monomorphisms. Definition:
T SAT=8ANT
Sv T=8 U T,
To complete the picture, let
T l= (id,:A » A)

0= (!:ﬁE + A) {cf. 5.14 and 5.16).

J— —

15.5 REMARK The scquare



is both a pullback and a pushout.

15.6 THEOREM Iet A € Cb £ —- then the bounded lattice Su!oE A is a Heyting

algebra.

PROOF Given monomorphisms

o
8 > A
T
N T > A,
define T’s as the equalizer
>
™, A Q

-

ofxgafﬁxe (where SN T ~ A 1s the cormer arrow). Iet R » A be a mono~

morphism -~ then, from the properties of an equalizer,

RSATS<=>XO°p=x8°p.
But

XU°D=X8°D<=>RHSSAT-

[Note: There is a pullback square

RNANS — s B
R > A,
o]

the classifying arrow of the monomorphism R N S + A being Xg © P and there is a



pullback square

RN(SNT) ————SNT

R > A,
P

the classifying arrow of the monomorphism R N (S N T} -+ A being Xg © p.]

15.7 REMARK If (C,7) is a site and if E = Sh_{C), then Sub. A is a locale.

15.8 NOTATION
® Define a moncmorphism

<T,T> t%. + § X §

by consideration of the diagram

L
*
*

I

-
O im
O IM

-

b B R )

— QX ——

and denote its classifying arrow by n, thus

N2 x Q=+ &,
1 T
oLefI:TQbetheccmpositimQ > *p > £ —— then there is a pullback
square
!
94 >*}_f
ldQ r
£ T > 8,



X' = T -
:ut:“iQ 9)

e Define a morphism

<TQ,idQ> 1l <id$2 T8 lJa>axq

by consideration of the diagram

Q—«———->Q| 9 <
<T.Q'ldQ> : <1erT
v
xR —— QxR 2% 8,
factor it per 3.9, hence
k m
QLLQ > M > 0 X §,
andputu=)<m:
M >*§
QO x 8 5~ 50,
U
Given monomorphisms
— ]
5 ~ B
T
T >Ar

define a morphism

by consideration of the diagram



el

i)

W oL ras e w

0
Ay
o
)
v

15.9 ILEMMA Form the pullback sguare

o
A

Xoﬂ'r

Xsnt ™ ne KgrXe”e

15.10 1EMMA Form the pullback square

Xy ut

= < >
Xg g g =Y ° XgrX>

15.11 NOTATION Let (S_Q'eQ) be the equalizer of



R
-
0x0 £,
_—
Pry
thiis
n
€n
Sy —————> O X Q
Yy

and let =>:0 x Q -+ 2 be its classifying arrow, thus

*

=0
A"
(3]




PROOF Consider the diagram

v !
: > 2 "'
u |T
A > xR — 50,
<XG'XT> =>
prl N
Q

where the squares are pullbacks and

Py © %erXe” T Xg

T XX T X
By construction, the classifying arrow of u is => o KX and the claim is that
P = TS {(cf. 15.6) or still, that u is the equalizer of Xy and Xgrr OF still, that

u is the equalizer of Pry © <XgeXg” and N o XgrX, > But
prl o <XU'XT> o 1] = prl [ eQ o v

= o =
n eg v

e <X0 XT> e u.
And if

prl o <XU,XT> o x =] e <XU'XT> e x (x:X->P),




then
Kgrke> X =eg oy (yiX > <)

from which a unique z:X - P such that

y=v ooz,

15.13 NOTATION

e Denote the classifying arrow of the monomorphism ‘GE > ke by L.
Schematically:
!
P o
1 j-r
*y ~ 5.
E L
® Denote the classifying arrow of the moncmorphism *E .0 by —.

Schematically:

-
O Iim

15.14 IFMMA Given a moncreorphism S > A, form the pullback square




14.

P

[Note: The monomorphism — S ——— A represents the pseudocomplement of

[c] in the Heyting algebra SubE A. E.g.: Take d =9, 8 = *E' g = T -- then

X——{T=__| oXT=._.._.I oidQ=_|=X-L.

Therefore 1 is the pseudocomplement of T in SubE 2.1

15,15 PEFINITION A topos E is a boolean topos if for every A € Ob £, the

Heytimg algebra SubE A is a boolean algebra.

15.16 THEOREM A topos € is a boolean topos iff SubE ! is a boolean algebra.

15.17 REMARK If £ is a boolean topos, then for every A € Ob E, the topos E/A

{cf. 15.1) is a boolean topos.

15.18 LEMMA A topos E is a boolean topos iff — o — = idQ.

g

[To see that the condition is sufficient, consider a monomorphism S > A —




11.

then

Y = e—p ey 0y = XG {cf. 15.14),

ag

— 9 " © (cf£. 6.11).

Therefore Sub. A is a boolean algebra (cf. 8.12 and 8.15).

E

15.19 ILEMMA A topos £ is a boolean topos iff the pair

(xg 1]+ ing)

-—

is a subobject classifier.

[To see that the condition is sufficient, define an isomorphism

T]lLc *Fl_l*E—>5'2

—_— -—

by consideration of the diagram

Then the arrow

| 18 + @ corresponds to the involution which interchanges the

factors of +; 11 *ze]

15.20 EXAMPLE Let C be a small category —— then the topos é is a bhoolean




12,

topes iff C is a groupoid (in particular, SET = 1 is a boolean topos).

[Note: Let G be a group — then the category of right G-sets is a boolean

topos (cf. 7.8).]

15.21 EXAMPIE Let X be a topological space and take sSh(X) per 11.29 —- then
Sh(X) is a boolean topos iff every open subset of X is closed.

[In fact, Sh(X) is a boolean topos iff v UEOX), Uy — U=X. Bat — U=
int(X - U) (ef. 8.11), thus Sh{X) is a boolean topos iff Y U€ O{X), X - U=
int(X - U) or still, iff v U€ OX), X ~ U € 0{X).]

[Note: This condition is met if ¥ is discrete, the conwverse being true if X

is in addition TO' For if every open set is closed, then every closed set is open,
so X:TO =3 X:Tz. But then every subset is a union of closed subsets, hence is a

union of open subsets, hence is open.]

15.22 DEFINITION A topos £ is said to satisfy the axiom of choice if every epi-

morphism in £ has a section.

15.23 REMARK If E satisfies the axiom of choice, then for every A € Ob E, the

topos E/A (cf. 15.1) satifies the axiam of choice.

15.24 THEOREM Iet E be a topos. Assume: E satisfies the axiom of choice ——

then E is a boolean topos.

15.25 EXAMPIE Let G be a group - then the category of right G-sets is a
boclean topos (cf. 15.20) but it satisfies the axiom of choice iff G is trivial.

[Suppose that G is nontrivial and view G as operating to the right on itself.
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Let {#} be the final right G-set -~ then G > {#} is an epimorphism but there

is no morphism {*} » G of right G-sets.]

15.26 EXAMPLE let | be a locale and take Sh{l) per 11.29 -- then the following
conditions are eguivalent.

(1) Sh(l) satisfies the axiom of choice.
(2} Sh(l) is a boolean topos.
(3) L is a boolean algehra.

[Note: Recall that hy definition [ is a Heyting algebra whose underlying cat-

egory is complete and cocamplete.

15,27 DEFINITION Let C be a category with a final object ». —— then an object

C

i
-

X is said to be subfinal if the arrow X > is a moncmorphiam.

15.28 1IFMMA Suppose that the topos E satisfies the axiom of choice — then

there is a set of subfinal objects of *E which constitute a separating set for E.



§16. TOPOLOGIES
Iet E be a topos, {§,T) its subobject classifier.

16.1 DEFINITION A Lawvere-Tierney topology on £ is a morphism j:R > Q in

E with the following properties.

1y JeT=r.

3y Jen=n-e (jx3j.

it

(2 3 o3=73.

16.2 EXAMPIE idQ:Q + (0 is a Lawvere-Tierney topology on E.

16.3 EXAMPLE TQ:Q + {i is a Lawvere~Tierney topology on E.

16.4 EXAMPLE — © I RgRY: is a Lawvere-Tierney topology on E.

16.5 THEOREM Let C be a small category —- then there is a one-to-one corres-
pondence between the set of Grothendieck topologies on C and the set of Lawvere-

Tiemey topologies on é:

T >Jr
i T..
TN
PROOF Recall from 7.7 that
Q:COP + SET

is defined on an object X by letting OX be the set of all subfunctors of hX and

on a morphism £:¥Y + X by letting Qf:0X » QY operate via the pullback square



6 —0m7m0m0 e G
hy > by
he

e If T is a Grothendieck topology on C, then v € M(Q) and if jT = Xpr
then jr is a lawvere~Tierney topology on C.
e If j:0 -+ Q is a Lawvere-Tierney topology on (_’é and if

| T {(cf. 6.12},
£

J
then Tj is a Grothendieck topology on C.

[Note: These constructions are mutually inverse.]

16.6 EXAMPLE et L be a locale — then Ox is the set of all subfunctors of hx
or still, (x is the set of all sieves over x. Ietx—*rxbethe(;rothendieck

topology T on L determined by the sieves that cover x (¢f. 10.4) -——- then jT:Q + 0
is the natural transformation

(jT)X:QX + (&,
where

) s$={ysexiy= v (y A 8)}
0 2




16.7 DEFINITION Suppose that j:Q > 9 is a Lawvere-Tierney topology on E.

Iet (B,f) € M{(A) -~ then (B,f) is j-dense in A if j o Xg = Tp-

16.8 EXAMPIE Let (C,7) be a site and let G be a subfunctor of hX -— then
(G,:LG) is jT—dense in hX iff G € Ty-
16.9 DEFINITION Suppose that j:Q + Q is a lLawvere-Tierney topology on E —-
then an A € Ob E is a j-sheaf if for every B € Ob £, for every j—dense (S,s) in

B, and for every £ € Mor(S,3), there exists a unique g € Mor(B,A) such that

ges=f;
s
S > B
A A .

I.e.: The precamposition map
s*:Mor(B,A) +~ Mor(S,A)

is bijective.

16.10 EXAMPLE Since j is idempotent and E is finitely complete, J splits:
i=1er (rei=id), where
Toiq, - Q
Qj >
Qj = eq(j,ldg) and

r:$ - §..
]

But { is injective {cf. 14.18), thus Qj is injective (being a retract of )}, and

the claim is that szj is a j—sheaf. In fact, the existence of the relevant liftings



is then immediate which leaves the uniqueness... .

Write j&_a_j (E) for the full subcategory of E whose objects are the j-sheaves.

16.11 EXAMPLE Take j

id, -- then §~}1j (E) = E.

16.12 EXAMPLE Take j = — then &j (E) is the full subcategory of E whose

'
objects are the final objects.

16.13 THEOREM Fix a Lawvere-Tierney topology j:fl » § on £ — then the inclusion

Lj:&j (E) + E admits a left adjoint gl_jzg - _”sp_j {(E) that preserves finite limits.

N.B. Let Wj be the class of morphisms in £ rendered invertible by a; = then

the localization ijlg is equivalent to gj (E) (cf. 11.20).

16.14 IFVMMA Iet f:B + A be a monomorphism — then (B,f) is j—dense in A iff
gjf is an isomorphism.

16.15 SCHOLTUM Iet C be a small category. Suppose that j: -+ ! is a Lawvere-
Tierney topology on ?_: and let T be the associated Grothendieck topology on C
{cf. 16.5) — then

shy (© = grj ©.

[Viewing sh; (© as an element S of g, (cf. 11.9), introduce T € T, per 11.4,

!

thus TX is the set of those subfunctors G

> hX such that leG is an isomorphism
ge
or still, those subfunctors G

> h.x such that (G,iG) is j-dense in hy (cf. 16.14).



i
G
On the other hand, a subfunctor G

> hX is jTj-—dense in hX iff G € (Tj)x

(cf. 16.8). But i, =3 hence Ty = (Tj)x,

and therefore 1 = Tj‘ Since
3

@j C) = _E'il‘l_((_:) {cf. 12.13},
it follows that
(@) = s, @)

[Note: Consequently, ¥V T € TC,

Q=S (© =gy ©.]
T

16.16 REMARK Iet E be a topos — then it can be shown that the Lawvere-Tierney
topologies on E are in a one-~to-one correspondence with the reflective subcategories

of E whose reflector preserves finite limits (cf. 12.13).

16.17 THEOREM Fix a Lawvere-Tierney topology j:Q + @ on E -— then &j (E) is
a topos.

[Note: The pair (S?.j,‘fj) is a subobject classifier for %j (E). Here (cf. 16.10)

3

1dq

T T (Je7=m1.]

Kr
I

16.18 EXAMPLE Take j = — © — — then Sh __ (E) is a boolean topos.

[




§17. GEOMETRIC MORPHISMS
Let C, D be finitely complete categories.

17.1 DEFINITION A gecnetric morphism £:C -~ D is a pair (f*,f,), where

Fn
*
1o
"
1

*l'h
10
'
1=,

are hmctors and
f* is a left adjoint for £,

£* preserves finite limits.

[Hote: The second condition on f* is automatic if £* is a right adjoint.)

17.2 EXaMPLE let X,Y be topological spaces and let f:X - Y be a continuous
function — then f induces a gecmetric morphism £:Sh(X) - sh(Y), where f,:5h(X) -
sh(¥) is "direct image" and f*:Sh(Y) - gh{X} is "inverse image".

[Note: Here Sh(X), sh(Y} are taken per the canonical Grothendieck topology
on O(X), O(Y) {cf. 11.29).]

17.3 BXAMPLIE Iet G,H be groups and let $:G + H be a homomorphism — then ¢
induces a geometric morphism ¢ from right G-sets to right H-sets, i.e.,

9:16% ,seT) - [HF,8ET]  (cE. 7.8).

[There are three functors

4l
o i

€™ sEm < > seml,
b




where

¢, —I o* — Il g

il

e Definition of ¢*: Given a right H-set Y, ¢*(¥) = Y with the right

G-action induced by 4.

e Definition of ¢,: Given a right G-set X, ¢,(X) = Hom, (H,X), the set

G
of G-equivariant functions H - X.

e Definition of ¢,: Given a right G-set X, ¢, (X) X @, H, the cartesian

G
product X x H modulo the equivalence relation (x-g,h} ~ (x,¢(g)-h}).]
17.4 EXAMPLE Take C = SISET, D = CGH and consider the adjoint pair (] |,sin):

sin:CGH > SISET.

:SISET » CGH

Then | | preserves finite limits, hence {| |,sin) is a geametric morphism SISET -+ CGH.

17.5 EXAMPLE Iet E be a topos that has arbitrary copowers of *E. Define a

functor ' :E » SET by stipulating that

A= J_\Jbr(*E,A)

and define a functor I'*:SET -+ E by stipulating that
reg = || *p.

58 -
Then (T*,I',) is an adjoint pair and I'* preserves finite limits (cf. 18.2). There-

fore (I'*,I',) is a geometric morphism E -+ SET.




17.6 EXAMPLE Iet (C,T) be a site -- then the adjoint pair (QT,lT) is a gecmetric

rorphism Sh_(C) + C (cf. 11.14),

17.7 EXAMPLE Let E be a topos, j:50 » 2 a Lawvere-Tierney topology on E ~—- then

the adjoint pair (E_ij,‘tj) is a geometric morphism &j {E) ~ L.

17.8 EXAMPLE Let E be a topos. Suppose that £:A - B is a morphism in £ —— then
£*:E/B >~ E/A has a left adjoint f,:E/A » E/B and a right adjoint f,:E/A -~ E/B

(cf£. 15.3). Therefore the adjoint pair (f*,f,) is a geometric morphism E/A + E/B.

17.9 EXAMPLE Let I,J be small categories and let S be a complete and cocomplete

category. Suppose that F:I + J is a functor — then by the theory of Kan extensions,

F*:(3,5] > (L,8]

has a right adjoint
F,: [_I_r§] + [§;§]
and a left adjoint

Fy+{1,8] » [3,8].

Therefore F* preserves limits and the adjoint pair (¥*,F.) is a geametric morphism

[z,s1 » 13,8].

17.10 EXAMPIE Let L, M be locales and let f:L ~ M be a localic arrow {(cf. 9.6) —-
then f induces a geometric morphism Sh(l) ~ sh(M) (taken per the canonical Grothen-
dieck topology on LM (of. 11.29)), eall it T to forgo any possibility of confusion.

[Proceed as follows. The functor £*:M - L gives rise to a functor £4%. 0 o )

(technically, £** = ((£5)%)"), which then restricts to a functor £,:5h(L) - Sh(M).



On the other hand, £** has a left adjoint £#:M » L (take S = SET in 17.9).
Accordingly, denote the canposite

a
T - ! A =T

Sh () > i > 1L > Sh(L)

by £* — then f* iz a left adjoint for f,. Proof: Given F € Ob sh(l),
G € Ob sh(M),

Mor (£*G,F)

[

Mor (ng‘f‘lTG,F)

H

I*Jbr(f?1TG,1TF)

i

*%
Nbr(1TG,f 1TF)

1

Mor { 1TG, tTf*E‘)

It

Mor (G, F).

The final point is that f* preserves finite limits. Since this is true of 1. and
a., matters reduce to verifying it for f‘!“ {which is not an a priori property of
Kan estensions...).]

17.11 DEFINITION Let f,g:C > D be geametric morphisms -~- then a geometric

transformation £:f -+ g is a natural transformation £* > g*,

[MNoke: Since

f* —) £,

g* —l g*f

natural transformations f* -+ g* correspond bijectively to natural transformations

g* e f*-]



§18, GROTHENDIECK TOPOSES
let £ be a topos.

18.1 DEFINITION E is said to be defined over SET if E admits a geametric

morphiem E - SET.

18.2 THEOREM E is defined over SET iff E has arbitrary copowers of .

PROOF If £:E - SET is a geometric morphism, then f* preserves finite limits,

thus in particular £*x = *oo Therefore, since f* preserves colimits, for any set S,

f*S:f*M_*':_l_]f**zﬂ_*E.
S S s

Turning to the converse, define T,:E - SET by
TA = ]-\br(*ErA)
and define T*:SET ~ E by

F*S = J_l *E (F*ﬁ = gE)*
S - -

Here T*¢ (¢:S + T} is the unigue arrow in E such that v s € §, T*¢ o ;Lns = in¢(S):
ins [*¢
*E > UL+ Ry
[= B -
g (s)

It is clear that (T'*,T)) is an adjoint pair, so the issue is whether T'* preserves



finite limits and for this cone need only show that I'* preserves finite products
and equalizers.

® By construction, I'* sends final objects to final objects. Suppose now
that S and T are sets. Distinguish two cases: (1) S is empty or T is empty;
(2) S is not empty and T is not empty. If S is empty, then S x T=@ x T =g

and T*(# x T) = T*@ = ﬂE, while T*F x I'*T = JaE X T*T = ;aE {cf. 5.13 and 5.14).

If neither S nor T is empty, then

Ot the other hand,

f*sxr*TzJ_l_*Ex_U_*E

S T
= 1l =)
s T °
= _I_l_ g
5 x T
¢ " ¢
e Iet S szearrwsinS_Er;andletK=eq(¢,w),soK——>S 2'1‘.
P 12

Put A= T*3, B=T*7, C = I*K, f = I'*, g = T*, k = I'*c —- then the claim is that
£
> A > B
>
g

k
C

is an equalizer in E. Thus consider a morphism w:E ~ A and v s € 8, define Es by




the pullback square

Es 5 *E
1 l g
B ~ B .
1
ing
Then i, is a monomorphism (this being the case of in) and since {*E > A:s € S}

i

is a coproduct diagram in E, the same is true of {E S5 Eis € 8} (cf. 14.13).

IT.e.:

E= ||E.
s€§ °

If u equalizes f and g (=> £ e u =g o u}, then this time

ter £
And there are monomorphisms
Es e E¢(s)
{s € 8).
B ES > Ew(s)
E.g.: Given the situation
!
ES
! v
4 (s) > *E
s l¢(s){ ()
> B > B



f°u°ls=f°ms°!=m¢(s)°!'

fram whi i . sz i .
ch a unique arrow)\s ES +E¢(s) such that i, l¢{s) e X Moreover, A

S s

is a monomorphism (because is is a monamerphism) . Proceeding, the intersection

B o (s) n Eq; (s) is officially defined by the pullback square

Bysy M Bpe) T By
l (cf. 2.16)

Ed) (s) > E

but the answer is the same if instead we use the pullback square

Bosy " Bugs) — > By

|

By Ep(s) L Bye)-
The data provides us with a monamorphism

E

s Borsy M Byre) S €9

and if ¢(s) = (s), then E ) P ﬁE’ hence ES = @ Consequently,

o(s) E!b (s E°

E:|_|E

SEK

and u:E » A factors through k (uniquely).

[Note: The geometric morphism (T#,T,) extends to a geometric morphism

sié = (4,8 » [A%,8ET) = SISET

denoted by the same asvmbol.



® Define
I'*:8ISET » SIE
by
* =
(r*R) = || #¢ -
K -
n
® Define
T, :SIE -+ SISET
by
(T*X)n = Iubr(*é,xn) -]
18,3 LEMMA Suppose that £ has arbitrary copowers of *re Iet A € Cb [ and let
£5
(B, > A:i € I}  M(A) — then || B. exists.
1 ier *

PROOF First of all, the copower |J_ A exists, In fact,
I

x |1 *_ =

= BT
I

1l a
I T

Next, for each 1 € 1, let X4 he the classifyving arrow of (Bi,fi) in A:

Bl >y *E
f i T
A >
Xy

Determine X:J_J“A—rﬁviathexi (x o in; = y,) and form the pullback square
I



-

It

T (cf. 6.12}).

[ia}]
— W
0 A %

=
v

H|

X

Then for each 1 € I, there is a unicue arrow g;sB; > B such that the diagram

|

B. > B =

b
\'d
=
o

W

comutes (so 9; is necessarily a monomorphism)., Inspection of the rectangle and

the right hand square then implies that the left hand square

95
1 > B
£, £
A : S JiA
J..ni I
iny

> || A:i € T} is a coproduct diagram, the same is
I

is a pullback. Since {A

93

true of {Bi > B:i € I} {cf. 14.13), hence _U_ Bi exists.

ier



18.4 APPLICATION Under the preceding hypotheses, the copower J_|_ A exists (sic),

I
as does the power T A:
I

| *
T £ “E

A =7Ta ~ =77 a.
T

I

18.5 EXAMPLE Suppose that E has arbitrary copowers of *E — then it does not

follow that E has coproducts,

[Let € be the full subcategory of [ZOP,SE'I‘] whose objects are the right Z-sets
S with the property that mmltiplication by n is the identity on S for same positive

integer n ~- then £ is a topos and has arbitrary copowers of *_ but E does not have

E

coproducts (e.g., one cannot construct _|_l_ Z/nZ) ]
nzl

13,6 DEFINITION Let E be a topos —— then E is said to be a Grothendieck topos

if E is cocomplete and has a separating set.

[Note: 1In general, a cocomplete topos need not admit a separating set.]

18.7 EXAMPLE Let (C,T) be a site — then the topos j&_l_T (C} {cf. 14.4}) is a

Grothendieck topos (cf. 13.1 and 13.15).

18.8 DEFINITION Let £ be a topos —— then a subseparator is an object T in E

with the property that M(I') contains a separating set.
18.9 LEMMA Suppose that £ is a Grothendieck topos -- then E has a subseparator.
PROOF If U is a separating set, let

r=]|u.
Uel




Then I' is a subseparator.

18.10 RAPPEL An object X in a category C is a coseparator if for every pair
f,g:A -~ B of distinct morphisms in C, there exists a morphism o:B -+ X such that

go fwroog.

18.11 LEMMA let £ be a topos. Assume: [ is a subseparator — then QP is a

coseparator.
*

E
[Consider the simplest possibility, viz. when T' = # (=> Q Tz 0. Let

f,g:A > B be morphisms such that for any 0:B+ Q, 0 ¢ £f =0 o g. Claim: f = g,

To see this, let e:E » *r be a subfinal object and given a moyphism ¢:E + A, pass

to the pullback square

e
E >*§
fop T (E o ¢ € M(B)}.
B —_ 0
xf°¢»

Since Xe o ¢ € Mor(B,}), fram the assunptions

Xf°¢°f=Xf°¢;og'

TE=xfo¢°f°¢=Xfo¢,og°¢:

20 there exists a unique morphism €:E + E rendering the diagram



™

==

'—h

]

-y
By % <

_‘

g xf o ¢.
commutative. But Mor (E,E) = {idE}, hence & = id,, which implies that £ ° ¢ = g ¢ ¢.

Therefore £ = g (E and ¢ being arbitrary).]
[Note: In general, @ is not a coseparator but if @ is a coseparator, it does

not follow that *E is a subseparator.]

18.12 REMARK Let E be a Grothendieck topos —- then E satisfies the axiom of

choice iff E is a boolean topos and *r is a subseparator.

(E.g.: If E satisfies the axiom of choice, then E is a boolean topos (cf. 15.24)
and *e is a subseparator (cf. 15.28).]

18.13 IEMMA A topos E is a Grothendicek topos iff it is defined over SET and
has a subseparator.

PROCF That the conditions are necessary is implied by 18.2 and 18.9. As for
the sufficiency, since a topos is finitely cocomplete {cf. 14.5), to finish the
proof it suffices to show that E has coproducts. For this purpose, note first that
E has arbitrary powers of objects (¢f. 18.4) and has a coseparator, call if X {(cf.

18.11). Suppose now that {Ai:i € I} is a set—~indexed collection of cbjects of E.



10.

Choose a set S such that v 1 € I, Mor(3;,X) < S and put B = || X — then the mono-

S
morphism
A, > T X
Mor (Ai +X)
leads to a monamorphism A, - B. Therefore || A; can be constructed as an element
ie1
of M({]| B}.
I

18.14 LEMMA Every Grothendieck topos £ is complete.

PROOF Given a set-indexed collection of objects {Ai:i € I} of £, define Pi

by the pullback sguare

A. >|| .
1 ing iecr *t
Then
n P.=TTAi.

iex ' iex

18.15 ILEMMA If E is a Grothendieck topos, then v A € Ob £, the topos E/A
(cf£. 15.1) is a Grothendieck topos.
PROOF As a category, E/A is cocomplete (£ being cocamplete). This said, let

= {U} be a separating set {per £} and put

/A= {f:0+ A, UE l}.

Then U/A is a separating set (per E/A).
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18.16 THEOREM If E is a cocawplete topos, then for any small category I,

the functor category [I,E] is a cocomplete topos.

[Note: If E is a topos (hence finitely cocomplete (cf. 14.5), then for any

finite category I, the functor category [I,E] is a topos.]

18.17 1EMA If E is a Grothendieck topos, then for any small category I, the

functor category [I,E] is a Grothendieck topos.

PROOF If U = {U} is a separating set for E, then

{Fy U €U, 101

is a separating set for [I,E], where

Py, @ = 1 U (J€EtbI).
Mor(i,3)

ILet E be a Grothendieck topos, I a small category, and A:I -~ E a functor.

PutB=colimI&andletA-*Bbearrorphism“t}mViEOb;, there is a pullback

sguare

pl
v
¥

18.18 IFMA The canonical arrow
oolml (i->Aa *n f'_\i) > A

is an isomorphism.



iz2.

Given a set {xi:i € I} of objects in , put

X = lL X; e
iez

18.19 EXAMPLE ILet ¥ -+ X be a morphism -~ then the canonical arrow

i'[é1iixi X ¥ > Y

is an iscamorphism.
18.20 EXAMPIE Iet Y € Ob E — then

Il X, xY¥) =Xx¥Y (cf. 5.8).
ifer 1

[This is a special case of 18.19: Replace Y by X x ¥, consider the projection

X ®x ¥ + X, and note that

Xixx(XxY):xixY.]

The following result is Giraud's "recognition principle”.

18.21 THEOREM Suppose that E is a Grothendieck topos -~ then there exists a
site (C,T1) such that E is equivalent to §-111' ).

[Here is a sketch of the proof. Take for C the small full subcategory of E
whose objects are a separating set. Given X € Ob C, let Ty be the set of subfunctors

(:;—rhX such that the arrow

L|_ |_L Y+ %

YeOb ¢ geGY

is an epimorphism -- then the assigrment X - Ty defines a Grothendieck topology on C.



13.

Next, v A € Cb E, the presheaf hA|gOP is a t-sheaf (hA = Mor (—,A}) and the

specification A + hA|g_:OP defines a functor E - Sh_(Q) which at length can be

shown to be an equivalence of categories.]
[Note: Making a simple expansion, one can always arrange that € is finitely

complete, ]

18.22 REMARK The Grothendieck topology figuring in 18.21 is subcanonical.
However, it is possible to enlarge C so as to replace “subcanonical” by "canonical".

Thus let (! = {U} be a separating set and for each U € {i, let {Ui:ie IU} ba a set

of representatives for Sub,. U (£ is wellpowered (cf. 6.13)). Perform the con-

E

-—

struction of 18.21 on the full subcategory of € generated by the Ui (1c¢ IU’ ve ) —

then the resulting "t" is canonical.
18.23 ILEMMA Every Grothendieck topos E is presentable (cf. 13.16).
18.24 LEMMA Every Grothendieck topos E is cowellpowered {(cf. 13.17).

18.25 CRITERION Let E,F be Grothendieck toposes — then any functor F -+ E
which preserves colimits has a right adjoint E » F.
[The categories involved are cocomplete, cowellpowered, and have separating

sets. Now quote the appropriate "adjoint functor theorem®.]

13.26 NOTATION Given Grothendieck toposes E,F, write [E’E]gro for the meta-

category whose objects are the geometric morphisms £ + F and whose morphisms are

the geometric transformations.
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18.27 LEMMA Let E,F be Grothendieck toposes —- then [E,F] geo is a category.

[In other words, if f£,g:E + F are geametric morphisms, then there is hut a

set of natural transformations f* - g*,]

18.28 LEMMA Let E,F be Grothendieck toposes and suppose that f£:E -~ F is a

gecmetric morphism - then the following conditions are equivalent,

(1) £* is faithful:
(2) £* reflects isomorphisms;
(3) £* reflects epimorphisms:

(4) £* reflects monomorphisms.

18.29 THEOREM Let E be a Grothendieck topos — then there is a Grothendieck
topos B satisfying the axiom of choice and a geometric morphism £:8 ~ E such that

f* is faithful.



§19. POINTS
Let € be a Grothendieck topos.

19.1 DEFINITION A point of E is a geametric morphism £:SET » E.

N.B. Alternatively, a point of E is a functor p:E + SET which preserves colimits

and finite limits {cf. 18.15).

195.2 EXAMPLE Let X be a nonempty topological space —— then each x € X deter-

mines a point p :Sh(X) - SET, where Sh(X) is camputed per the canonical Grothendieck

topology on O(X}.
X
[Apply 17.2 to the continuous function {#}

> X, thus p,:8h(X) > gh({#}) =

SFET sends F to its stalk Fx at x.]

[Note: If X is sober, then this construction is exhaustive, i.e., up to

natural isomorphism, every point Sh(X) - SET is a "px“. In general, the full sub-

category of TOP whose objects are the sober topological spaces is reflective with

arrow of reflection X » sob X. But

0({X)<—> O(sob X) {cf. 9.26},

Sh(Xx) <—> Sh(sob X).

Therefore the points of sob X "parameterize" the points of Sh(X): If £:58T » Sh(X)
is a point, let U be the union of all open V ¢ X such that £V = § — then X -~ U

is an irreducible closed subset of X, thus is a point of sob X. (onversely, ... .]

19.3 REMARK If X is empty, then Sh(X) is the full subcategory of SET whose



objects are the final objects so there is no functor p:Sh(X) + SET which preserves
colimits and finite limits. Proof: All objects in Sh(X) are both initial and

final.

19.4 EBMPLE Let X be a noneampty Hausdorff topological space in which no
singletons are open -— then

Sh . (sh(X)) (cf. 16.18)
! I

has no points.
19.5 NOTATICN Given a Grothendieck topos E, let
PT(E) = [SE'I‘,'E“]geo (cf. 18.26).

N.B. PT(E) is a category (cf. 18.27).

[Note: It is not necessarily true that PT(E) is equivalent to a amall category

{(e.g., there are E for which PT(E) is equivalent to SET).]

19.6 RAPPEL Let ¢ be a small category -— then the functor Y2: [(E,@] -+ [C,SET]
has a left adjoint that sends T € Ob[C,SET] to T, € Ob[C,SET].

[Note: I‘T is the realization functor; it is a left adjoint for the singular

functor sinT:SE‘l‘ > é which is defined by the prescription

(sin, Y)X = Mor(TX,¥).]

19.7 IEMMA Let C be a small category. Suppose that f:SET - § is a point -

then there exists a functor T:C - SET such that f* is naturally isamorphic to FT.



19.8 DEFINITION Let C be a small category — then a functor T:C + SET is

said to be flat if FT preserves finite limits.

So, if T is flat, then the adjoint pair (I‘T,sinT) is a geometric morphism

SET + C, i.e., is a point of C. Moreover, up to natural isamorphism, all points

of é are of this form (¢cf. 19.7).
Write [C,SET] £lat for the full subcategory of [g,?_E_'.'_I‘__] whose objects are the
flat functors.
19.9 THEOREM There is an eguivalence
[C,SET] ¢ <> PT(O)

of categories.

[Send T to (T ;si_nT) and send f to f* o Yc.]

19.10 REMARK Let T be a Grothendieck topology on € ~- then E(Eh_—[ (C)) is
equivalent to the full subcategory of E(é) consisting of those points that factor

through Lo

19.11 DEFINITION Let C be a category. Suppose that the C_:i are categories

and the Fi:C > C; are functors -- then {Fi} is faithful if given distinct morphisms

f,9:X » Y in C, there exists an E‘i such that Fif z Fig.

19.12 EXAMPIE Take C = Sh(X) (X a nonempty topological space), let G, = SET

(x € X), and let pxz'&(x) + SET be as in 19.2 — then {px} is faithful.



19.13 DEFINITION Iet C be a category. Suppose that the C. are categories

and the F,;:C > C; are functors.

° {Fi} reflects isamorphisms if any f € Mor C with the property that

Fif is an isomorphism for all Fi must itself be an isomorphism in C.

° {Fi} reflects monamorphisms if any £ € Mor C with the property that
Ff is a moncmorphism for all F, must itself be a monomorphism in C.

. {Fi} reflects epimorphisms if any f € Mor C with the property that

Fif is an epimorphism for all Fi must itself be an epimorphism in C.

Iet P < Cb PT(E) be a class of points.

19.14 IEMMA Suppose that P is faithful =- then P reflects isomorphisms.
PROCF It is immediate that P reflects monomorphisms and epimorphisms. But E

is balanced (cf. 14.7).

19.15 LFMMA Suppose that P reflects isomorphisms —- then P is faithful.
PROOF Let f,g:A + B be morphiams in E and suppose that pf = pg for all p € P.

Form the equalizer dlagram

eq(f,g) —— A B.

g

Since p preserves finite limits, it preserves equalizers:

plealf,qg)) = eqlpf,pqg).




Therefore
pf
pk >
pleg(f.g)) ———— pA pB
g
Bg
is an equalizer diagram. But pf = pg, thus
. pf
id - N
RA > PA pB
g
o)

is also an equalizer diagram, which inplies that pk is an isomorphism, hence k is

an isomoxphism, hence f = g (f e k = g » k}.

19.16 DEFINITION E is said to have enough points if the class of all points

of E is faithful.
19.17 THEOREM If E has enough points, then E has a faithful set of points.

19.18 DEFINITION A weak point of £ is a functor p:E ~ SET which preserves
epimorphisms and finite limits.

N.B. Every point is a weak point.

19.19 IEMMA A class of weak points of E is faithful iff it reflects isomorphisms.

19.20 THEOREM The class of all weak points of E is faithful.
PROOF Take B and f:8 > E as in 18.29 —- then every epimorphism of B has a
section, thus v B € Ob B, the functor X » Mor (B,X) from B to SET is a weak point

of B, su ¥ B € B, the functor X > Mor (B,f*X) from £ to SET is a weak point of E



{£* preserves epimorphisms (being a left adjoint)). 2And: {pB:B € Ob B} is a

faithful class of weak points of E. Proof: Bearing in mind 19.19, suppose that

$:U > V is a morphism in g such that v B € Ob B,

Pt :Mor (B, £*U) ~ Mor (B, £*V)

is bijective —— then f*¢:£*U > £%V is an isomorphism. But f* reflects isomorphisms

(cf. 18.28), hence ¢ is an iscmorphism.

19.21 LEMMA Let p:E -~ SET be a weak point. Given a morphism £:A » B in E,

factor it per 3.9:
k m
A > M > B {(f=moek).

or still,
plim f)} = im pf.
PROOF Since p preserves epimorphisms and monomorphisms, pk is a surjection and
pu is an injection:

Pk o
pA > pM > pB (pf = pn o pk)

—
~

im pf.

19.22 LEMMA Suppose that {p} is a faithful class of weak points of E ~- then

{p} reflects epimorphisms.
m

PROOF First, f:A > B is an epimorphism iff the canonical arrow M > B is




an epimorphism, then v p, pm is an isomorphism (cf. 19.21), hence m is an iso-

morphism (cf. 19.19}).

19.23 SCHOLIUM A morphism f in E is an epimorphism iff v weak point p, pf is

19.24 LEMMA Suppose that R is an equivalence relation on X and p:f ~ SET is

a weak point —~ then pR is an equivalence relation on pX and
PX/PR = P(X/R).

19.25 APPLICATION Let £,g € Mor(X,Y) and let

(f,g): X+ ¥ x ¥,
Suppose that im(f,g) is an equivalence relation on Y and p:E - SET is a weak point —-
then p(im(f,g)) (= im p(f,g) (cf. 18.21)) is an equivalence relation on pY and the
canonical map

coker (pf,pg) + plccker(f,g))

is bijective.

19.26 LEMMA let R be a relation on X. Assume: VY weak point p:E + SET, pR is

an equivalence relation on pX -- then R is an equivalence relation on X, hence

PX/PR = p(¥/R).

19.27 APPLICATION Let £,9 ¢ Mor(X,Y) and let

(£,9):X + ¥ x Y.
Assume: V weak point p:f -+ SET, p(im(f,g)) (x im p(f,g) (cf. 19.21)) is an equiv-
alence relation on p¥ -—- then im{f,g) is an equivalence relation on Y and the

canonical map
coker (pf,pa) -+ ploocker (£,9))

is bijective,



§20. CISINSKIT THEQRY

Let E be a CGrothendieck topos -—- then the class M < Mor E of monomorphisms
is retract stable and the pair (M,RLP(M)) is a w.f.s. on E.

N.B. Elements of RIP (M) are called trivial fibrations.

20.1 THEORFM There exists a set M c M such that # = LIP(RLP(M}}, hehce

M = cof M (E being presentable (cf. 18.23)).

20.2 RAPPEL Let C be a category, W < Mor C a class of morphisms —— then (C,W)

is a category pair if W is closed under composition and contains the identities of C.

20.3 DEFINITION Suppose that (E,W) is a category pair — then W is an E-localizer
provided the following conditions are met.
(1) W satisfies the 2 out of 3 condition.
(2) W contains REP(M).
(3) Wn Mis a stable class, i.e., is closed under the formation of pushouts

and transfinite compositions.

Let C < Mor £ -- then the E-localizer generated by €, denoted W(C), is the

intersection of all the E-localizers containing €. The minimal E-localizer is

W(@) (# the empty set of morphisms).
[Note: Iet C:L,,C2 < Mor E —- then

H(C, U Cy) = W(N(C)) U H(Cy).]

20.4 DEFINITION An E-localizer is admissible if it is generated by a set of

T Asterdisque 308 (2006); see also Falsceaux Localement Aéph(;u'_que,é (2003} (preprint).



morphisms of E.
20,5 EXAMPLE Mor E is an admissible f~localizer. In fact,

w({gg -+ *E}) = Mor §.

20.6 EXAMPIE Take E = SISET ( = ) and let W_be the class of simplicial weak
equivalences — then W_is a z}-localizer.
e W_ is generated by the projections
PeiK X A[1] *K (K€ b A).
e W _ is generated by the maps Aln] -+ A[0] (n = 0).

N.B. It follows from the first description that W_ is closed under the forma-
tion of products of pairs of arrows and from the second description that W is
admissible.

[Note: In SISET, a simplicial weak equivalence is a simplicial map f:X + Y

*
-

such that |£

X| > |¥!| is a homotopy equivalence, ]

20.7 EXPAMPLE Take E = SET — then W({#) is the class

{g>atuv{:x>Y Xz Ml
20.8 NOTATION Given C <« Mor E, let cart C be the class of arrows of the form

£xid:Xxz>¥x72 (f€E€C( Z€0bf.

20.9 LEMMA The E-localizer generated by cart C is closed under the formation

of products of pairs of arrows and is admissible if C is a set.



20.10 APPLICATION The minimal E-localizer W(f) is closed under the formation
of products of pairs of arrows.

[Note: This is one way to distinguish a generic E-localizer W fram W(f).]

20.11 DEFINTTION A cofibrantly generated model structure on E is said to be

a Cisinski structure if the cofibrations are the monomorphisms.

[Note: The acyclic fibrations of a Cisinski structure are the trivial fi-

brations.]

20.12 THEOREM Suppose that (E,W) is a category pair — then W is an admissible
E-localizer iff there exists a cofibrantly generated model structure on E whose
class of weak equivalences are the elements of W and whose cofibrations are the

moncmorphisms.

20.13 SCHOLTIM The map
W WMERPMH N M)
induces a bijection hetween the class of admissible E-localizers and the class of

Cisinski structures on E.

20.14 REMARK The stable class W N M is retract stable. In addition, W is

necessarily saturated, i.e., W = W.

20.15 IEMMA Let W be an admissible E-localizer -—— then the cofibrantly

generated model structure on E determined by W is left proper.

20.16 EXAMPLE Take € = SISET and let W be the class of categorical weak equiv-
alences — then W is a @-localizer. As such, it is generated by the maps I[n] -+

Aln]l (n z 0), hence W is admissible. The resulting cofibrantly generated model



structure on SISET is the Joyal structure. It is left proper but not right proper.

[Note: 1In SISET, a categorical weak equivalence is a simplicial map f:}{l > x2

such that for every weak Kan camplex Y, the arrow

<y map[Xz,Y) > C map(Xl,Y)

0
is bijective.]

N.B. Every categorical weak equivalence is a simplicial weak ecquivalence.

20.17 CRITERION Let S < Mor £ be a set ~— then the cofibrantly generated model

structure on E corresponding to W(S) is right proper iff

e Vv arrow £f:X > Y in S,
e v Ffibration p:E - B with B fibrant,
e Y arrow u:Y - B,

the induced arrow

is in W(S).

[Note: One can replace the set S by a class C provided that W(() is admissible.]

N.B. Take S = § to see that the Cisinski structure on E corresponding to W(#)

is right proper.




20,18 1E2MMA I Xi (i € I) is a set of objects of E, then the E-localizer

generated by the projections X, x 2> 2 for all i and 2 is admissible (cf. 20.9)

and the associated Cisinski structure is right proper (hence proper (cf. 20.15)).

[To infer right proper, apply 20.17 and consider

(XiXZ) XBE—m>ZxBE—>E
J :
XiXZ > 2 ~> B
or still,
Xi>< (ZXBE) —-»—>Z><BE—~——>E

X, X 3 >
1

But the arrow

X-X(ZXBE)+Z>< E

is in cur generating class.]

20.19 EXAMPLE Take SISET in its Kan structure —- then this model structure is
proper.

[Since all objects are cofibrant, left proper is an application of standard
generalities while classically, right proper lies deeper in that it uses the fact
that the geometric realization of a Kan fibration is a Serre fibration. But, as

has been noted in 20.6, W _ is generated by the projections

ppiK x All] K (K€ Ob ).



Therefore right propver is immediate (cf. 20,18).

20.20 1730A Let $1+8, < Mor E be sets, Suppose that the Cisinski structures
corresponding to N(Sl) ,N(Sz) are right proper -- then the Cisinski structure

corresponding to w(sl U Sz) is right proper.

[To infer right proper, apply 20.17, noting that every fibration per N(Sl U 82)

is a fibration per W(Sl) and 4 (Sz) .

20.21 NOTATION Given an admissible E-localizer W and a small category I,

denote by W, < Mor[I,E] the class of morphisms E:F + G such that v i € 0b I,

Ei:Fi + Gi is in W.
N.B. Recall that [I,E} is a Grothendieck topos (cf. 18.17}.

20.22 LEMYA W, is an admissible (I,E]-localizer.

[Note: Therefore 20.12 is applicable with E replaced by [I,E] and W replaced
by wI‘]

APPENDTX

What follows is a summary of some basic facts from model category theory.

let C be a model category.

DEFINITION C is combinatorial if C is cofibrantly generated and presentable.

EXAMPLE If W is an admissible E-localizer, then E in the Cisinski structure




corresponding to W is combinatorial (recall that E is presentable (cf. 18.23)).
FPix a small category I.

DEFINITION Let C be a model category and suppose that = € Mor[1,Cl, say

Z5:F > Gl

e E is a levelwise weak equivalence if v i € Ob I, Ei:Fi + Gi is a weak

equivalence in C.

®
1

% is a levelwise fibration if v i € Ob T, Ei:Fi »+ Gi is a fibration

L
(1

Z is a projective cofibration if it has the LIP w.r.t. those morphisms

which are simultaneously a levelwise weak equivalence and a levelwise fibration.

DEFINITION The triple consisting of the classes of levelwise weak equivalences,

levelwise fibrations, and projective cofibrations is called the projective structure

on [I.Cl.

THEOREM Suppose that C is a combinatorial model category —— then for every T,
the projective structure on [I,C] is a model structure that, moreover, is combina-

torial.

DEFINITION Let C be a model category and suppose that Z € Mor(I,Cl, say
5:F > G.

® I is a levelwise weak equivalence if v i € Ob I, E;:FL > Gi is a weak

equivalence in C.

e © is a levelwise cofibration if v i € Ob I, Ei:Fi + Gl is a cofibration



® F is an injective fibration if it has the RIP w.r.t. those morphisms

which are simultaneously a levelwise weak equivalence and a levelwise cofibration.

DEFINITION The triple consisting of the classes of lewelwise weak equivalences,

levelwise cofibrations, and injective fibrations is called the injective structure

on {I,C].

THROREM Suppose that € is a cambinatorial model category — then for every I,
the injective structure on [I,C] is a model structure that, moreover, is combina-

torial.

FEMARK
e FEvery projective cofibration is necessarily levelwise, hence is a co-
fibration in the injective styucture,
e Ivery injective fibration is necessarily levelwise, hence is a fibration

in the projective structure.

EXAMPIE If W is an admissible E-localizer, then the Cisinski structure on
[I,E] corresponding to NI (cf. 20.22) is the injective structure (monomorphisms

are levelwise).

[Note: Of course one can also equip [I,E] with its projective structure.]

LFMMA Suppose that C is cambinatorial -— then

[T,C] (Projective Structure)
C left proper => left proper

[£,C] (Injective Structure)



and ~ [Z,C] (Projective Structure)

1l
A%

C right proper right proper.

[I,C] (Injective Structure)

RFMARK If W is an admissible E-localizer, then the Cisinski structure on

[T,E] corresponding to NI (cf. 20.22) is left proper (cf. 20.15) and is right

proper if the Cisinski structure on £ corresponding to W is right proper.
Let C and C' be model categories.

DEFINITION A left adjoint functor F:C + C' is a left model functor if F

presexrves cofibrations and acyclic cofibrations.

DEFINITION A right adjoint functor F':C' + C is a right model functor if F'

preserves fibrations and acyclic fibrations.

LEMMA Suppose that

are an adjoint pair -- then F is a left model functor iff F' is a right model

functor.

DEFINITIG A model pair is an adjoint sitvation (¥,F'), where F is a left

model functor and F' is a right model fumctor.

LEMVA The adjoint situation (F,F') is a model pair iff F preserves cofibrations

and F' preserves fibrations.
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LEMMA The adjoint situation (F,F') is a model pair iff F preserves acyclic

cofibrations and F' preserves acyclic fibrations.,

REMARK If C and C' are combinatorial and if

F

0
Q

Fl

is a model pair, then composition with F and F' determines a model pair

w.r.t. either the projective structure or the injective structure.

If the adjoint situation (F,F') is a model pair, then the derived functors
LF:I;_IQ + HC!
RE':HC! - HC

exist and are an adjoint pair.

DEFINTTION A model pair (F,F') is a model equivalence if the adjoint pair

(LF,RE'} is an adjoint equivalence of hoamotopy categories.

LEMMA Suppose that C is combinatorial and consider the setup
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[I,C] (Projective Structure) {I,C] (Injective Structure}.

Then (id[LQ] ’ id[;g]) is a model equivalence.




§21. SIMPLICIAL MACHINERY
Iet C be a category.

21.1 NOTATION SIC is the functor category [A>,C) and a simplicial object

X in C is an object in SIC.
21.2 RAPPFL Assume: C has coproducts. Define X| K by

(x|:|1<)n =K -X (= i X)-
K

|| :SIC x SISET =+ SIC

is a simplicial action, the canonical simplicial action.

[Mote: Therefore

4]

RS AR I ST}

x|~jal0] = ¥,

M

subject to the usual assugetions.]

N.B. Take C = SET —— then
X|T|K = X x K.
In fact,

(XXK)nmXHXKn

P
=
x
]
H

=
o

21.3 REMARK Thus there is an S-category |_|SIC such that SIC is isomorphic
to the underlying category U| _|SIC.

[Recall the construction: Put O = (b SIC and assign to each ordered pair




XY € 0 the simplicial set HOM(X,Y) defined by

HOM(X,Y) | = Mor(X|”|A[n],Y) (n = 0).]

21.4 LEMA Assume: C has ocoproducts — then v X € Cb SIC, the functor

X|”|—SISET + SIC
has a right adjoint, wviz. the functor

HOM(X,~—) :5IC + SISET.

21.5 LEMMA Assume: C has coproducts and is complete —— then v K € Ob é,

the functor
—I_Ik:81C > s1C
has a right adjoint, denoted by
X + hom(K,X).
N.B. In terms of §;§_,
T Mor(X| jK,Y) ~ Mor(K,HOM(X,Y))
‘__ Mor (X|”|K,¥) = Mor(X,hom(X,¥)),
and in terms of | |SIC,
T HOM(X| |R,Y) ~ map(K,HM{X,Y))
' HOM(X|”|K,Y) = HOM(X,hom(K,Y)).

[Note: Here is another point. On the one hand,
Mor (X| | (K x 1),Y) = Mor(X,hom(K x L,Y)),
while on the other hand,

Mor (X| | (K x L),¥) = Mor (x|Z]®) ||z, W)



it

Mor {X|”|K,hom (L, ¥))

u

Mor (X, hom (K, hom (L, Y) ) ) .
Therefore
hom(K % L,Y)

I

hem (K, hom (L, Y} ) . ]
21.6 LEMMA Assume: C has coproducts and is camplete. Suppose that
K = colimi Ki — then v X,Y¥ € Ob SIC,
MJr(X,h:m(colimi Ki,Y)) = limi Nbr(X,hcm(Ki,Y)) .

PROOF

IHS

]

Mor (X| |colinm, K,,Y)
— 1 1

Hi

Mor (colim; X|:|Ki,Y}

i

lim, Mor(X|_|K,,Y) = RHS,

21.7 NOTATION Let C be a camplete category. Given a simplicial object X in

C and a simplicial set K, put

‘s

_ n
Xh K= f[n] (X )

an cobject in C.

21.8 EXAaMPLE Take K = Aln] -- then it follows from the integral Yoneda lerma

that

XfTI Aln] z)(n.

Iet K be a simplicial set. Assume: C has coproducts — then K determines a
functor

K+« —:C +58



by writing

(K - X)[n] =Kn - X

21.9 LEMMA Assume: C has coproducts and is complete — then K » — is a
left adjoint for

— 0 K:SIC + ¢.

21.10 LEMVA Assume: C has coproducts and is camplete. Suppose that

K = colim, K; —- then v X € Ob SIC,
X h K= lim X K;.

PROOF Given A € Ob C, let A € Cb §IC be the constant simplicial object
determined by A, thus

Mor{a,X 0 K) = Mor(X - A,X)

n

R

Mor (A] TR, X)

14

Mor (colim, Al IR %)

1]

lim, Mor (A|_ [K,,X)

!

llmi Nbr(Ki « A,X)

u

lim; Mor(a,X th K;)

4

Mor (&, 1im; X th K;) e

21.11 LEMMA Assume: C has coproducts and is complete -- then v X € Ob SIC,
hOm(K,X)n = XA (K x Alnl).

PROOF Write

Kx Aln] = colmi f}.[ni] .




Xfh (K x Aln))

24

lim, X i Alny]

H

ll.mi Xni {cf. 21.8)

n

hom (%, X) -

[tlote: The not so cbvious final point is implicit in the proof of 21.5 (which

was anitted) .}

21.12 EXAMPIE Take n = O to get

hom(K,X) y ~ X 4 K
and then replace K by Aln] to get
hom(A[n] ,X) 5 = X t Aln) = X -
Note: Accordingly,
hom(K,X)n = hom (A [n] ,hcm(K,X))O

114

hom(K x Aln},X) -]

21.13 IPMMA Assume: C has coproducts and is complete — then v K,L € Gb é,

hom(K,X}) f L ~X A (K x L.

21.14 RAPPEL A simplicial set K is finite if it has a finite number of non-

degenerate simplexes.

21.15 FACT Suppose that K is finite — then there exists a finite category I

and a functor ¢:1 +ésuch that

K=oolimyY, o ¢

==



or still,

K = colimi zl[ni] (1€0bI, ¢i= A[ni]).

21.16 THEOREM Iet C, C' be categories. Assume: C, C' have coproducts and are

complete. Suppose that F:C + C' is a functor which preserves finite limits - then
Fo: 18,01 » 2% ,c
and vV X € Ob SIC and every finite K € Ob A, the canonical arrow

Fhom(K,X) + hom(K,F,X)
iz an iscmorphism.
PROOF Since

hfxn(K,X)n = hom(K % Aln] ,X)O {(cf. 21.12)
and since K x A[n} is finite, it will be enough to verify that
(F*h:m(K,X)}O = Hx:m(K,X)O = hom(K,F,X) 4.

Per 21.15, write

=
Q

c:ol::mi A [ni] .

i

Fham {K,X) 0 Fh:m(oolimi ﬁ\.[ni} . X) 0

it

R

F(lim, X f Afny1)  (ef. 21.10)

I

lim, F(X th Alng)

13

limi Fxni (cf. 21.8)

i

Limg (R,



4]

Lim, FyX f 2ln,]

i

FoX i colimi Mni]

14

FX K

H]

hom (K, F . X) 0

21.17 APPLICATION Let E be a Grothendieck topos. Suppose that p:E - SET
is a weak point -~ then for every simplicial object X in £ and for every finite
simplicial set K, the canonical arrow

p,ham(K,X) + ham(K,p,X)

is an isomorphism.



822. LIFTING

et E be a Grothendieck topos.
[Note: € is cocamplete (by definition), hence has coproducts, and is camplete

{cf. 18.14). Therefore the technology developed in §21 is applicable.]

22.1 DEFINITION A geometric family is a class Y of monomorphisms of finite

simplicial sets.

22.2 FXAMPLE The inclusions

Alnl > Aln] (o

3%

0)

constitute a geametric family.

22.3 EMPIE The inclusions

1A
w
1A

Alk,n] - Aln}l (0 n, nz1)

constitute a geometric family.
Given an element i:K -+ L of a geometric family Y and a morphism =:X + ¥ of
simplicial objects in £, there is a cammutative diagram

i*
hom (L, X) 5> hom (K, X)

[
[1]

l'm(LrY) > ham (K,Y)
i%*

which then leads to an arrow

(E*ri*) shom (L, X) > hom(L,Y) Xh{ITI(K,Y) hom (K, X)



or, upon evaluating at 0, to an arrow

(E*,i*)o:l'm(L,X)O - hcm(L,Y)O xhcxn(K,Y)o hom(K,X)o.

22.4 DEFINITION Z:X > Y has the local right lifting property w.r.t. U if

¥ 1:K - L in 4, the arrow (E,,,,,i“*)0 is an epimorphiem in E.

22,5 EXAMPLE Take E = SET — then Z:X » Y has the local right lifting property
w.r.t. 4 iff Z:X + Y has the right lifting property w.r.t. 4.
[For simplicial sets A and B,

hom(A,BY = map(A,B) => hom(A,B)O = Mor (A,B) . ]

22.6 NOTATION Given a geavetric family U, denote by IOCq(E) the class of
morphisms in SIE that have the local right lifting property w.r.t. Y.
22.7 LEMMA let E, T be Grothendieck toposes and let £:E -+ F be a geametric
morphism -~ then
(£%) [ LOCy (F) = LOCH(B) -

{Apply 21.16 (f* preserves finite limits).]

[Note: By definition, £*:F -~ E. Therefore

(£%),: 1808, F1 + 12°F,E1.]

Let Z:X > Y be a morphism of simplicial objects in E. Suppose that p:E ~ SET

is a weak point of E — then the compositions



are simplicial sets and
S:pX - pY
is a simplicial map.
iNote: Here, v n

(pX), = pPX

and (pE)n = pEn, thus

22.8 CRITERION Z:X -+ Y has the local right lifting property w.r.t. 4 iff for

every weak point p:E - SET, pE:pX + pY has the right lifting property w.r.t. 4.

It is obvious that LOCL{(E} contains the isomorphisms.

22.9 LEMMA The class DOCq(E) is composition stable, pullback stable, and closed

under the formation of retracts.

Let I be a small category — then [I,E] is a Grothendieck topos (cf. 18.17)

and epimorphisms are levelwise.




N.B. There is an identification

0%, (1,611 = [z, 2%, 8.

22.10 ILEMMA Denote by LOC,{(E)I the class of morphisms 5:F + G such that

viedbl, Ei:Fi+Giisin10Cq(§) —— then

IDC[{(_E_}I = T'DCL]([E"E]} .

22.11 = The class LOCq(_E) is closed under the formation of filtered co-

limits.
[If I is filtered, then the functor

colim :[T,E] > E

preserves finite limits. But c:olimI has a right adjoint, viz. the constant diagram

functor. In other words, the data provides us with a geametric morphism £ + [I,E].

Now quote 22.7 (modulo 22.10).]

22.12 IEMMA Z:X » Y has the local right lifting property w.r.t. Y if it has

the right lifting property w.r.t. the arrows

id, |Z)1:81 71K - AL,

where A runs through the objects of £ and i:X + L runs through the elements of Y,

i.e., if every coammtative diagram

i J——

iy |7l

= [11 s

AL —

admits a filler.



N.B. The arrow

R — -

is a moncmorphism.

ffrom the definitions,

1l
7
li
=
=)

and Kn injects into Ln']

22.13 REMARK There is a characterization, namely Z:X - ¥ has the local right
lifting property w.r.t. 4 iff for every A € Ob E, for every i:K ~ L in U, and for

every coramitative diagram

Ak — > x
Jdé|_'i ls
AL —m— 1,

one can find an A' € Ob E and an epimorphism 5:A' ~ A with the property that the

commutative diagram

v |7 d
AR —— sl lk—— > x
iy, K :
AR AL —— ¥
= Tl T

admits a filler.



§23. LOCALTZERS OF DESCENT
Iet E be a Grothendieck topos.

23.1 DEFINITION Let Z:X + Y be a morphism of simplicial objects in E -~ then

f1)

is said to be a hypercovering of SIE if it has the local right lifting property

w.r.t. the inclusions Afn] <+ An} (n = Q).

[Note: Recall that

[

hom(A[n] %)

%

(cf. 21.12).

I
v

hom (A [n] ,Y)O =

On the other hand,

ham(Afn},X) y = X @ Aln]

{cf. 21.11)
hom (A [n] ,Y)O = ¥ i Aln]
and
X b An] = M X
_ Y § Aln} = MY,
X
the symbols on the right standing for the matching object of familiar from
Y

"Reedy theory”, thus

T M X(= M) (cosk(n_l)x)n

g (n-1)

(cos

N MhY(= M[n]Y) Y)n,

the matching morphisms being the canonical arrows
Ky T
% MY



Therefore the demand is that v n = 0, the arrow

b4
Xn > Yn MnY Mnx

is an epimorphism in E.]
23.2 NOTATION HR(E) is the class of hypercoverings of SIE, so

HR (E)= TOC | .
{AIn] » A[n] {(n = 0)}

[Note: The stability properties formulated in 22.9 are in force here.)

23.3 EXAMPLE Take E = SET —- then in this situation, HR(E) is the class of

acyclic Kan fibrations (cf. 22.5).

23.4 LEMMA Every hypercovering 5:X + Y is an epimorphism.
PROCF Since epimorphisms in SIE are levelwise, it suffices to prove that ¥ n,

En:xn - Yn is an epimorphism in E. To this end, let p:E -+ SET be a weak point --

then pf:pX + pY has the right lifting property w.r.t. the :.S[n] >~ Aln] (n = 0) {cf.
22.8), hence is an acyclic Kan fibration, hence is an epimorphism (see below). But

pEn = (pE)n is an epimorphism in SET, thus one can quote 19.23.

[Note: In SISET, all objects are cofibrant, so in the commitative diagram

f———> X
PY —p¥ ,

there is an arrow w:pY ~ pX such that pE o w = id

Ly which implies that pZ is an

epimorphism. ]



23.5 LEMMA The hypercoverings are closed under the formation of products of
pairs of arrows.
PROOF Supprose that

El :Xl - Yl

By, > Y,

are hypercoverings -— then for any weak point p:E - SET,
p(E; x By} = p(5y) x p(E,).

— o5,
But are acyclic Kan fibrations and the product of two acyclic Xan fibrations
P=
2

is an acyclic Kan fibration. Now apply 22.8.

23.6 DEFINITION The SIf-localizer of descent is the SIL-localizer generated
by HR(E), i.e.,

WCHR(E)) «

N.B. The elements of W(HR(L)) are called the weak equivalences of descent.

23.7 EXAMPLE Take £ = SET — then

W(HR(E}) = W{(g),
the minimal A-localizer.
[Since HR(E) is the class of acyclic Kan fibrations {cf. 23.3), if W is a

g—localizer, then

W> RP(M) = Rp({An] ~ Al @ = O) )

HR(E) .



Therefore

W > WHR(E)).]

23.8 1EMMA W(HR(E)) is admissible.

Consequently, SIE admits a cofibrantly generated model structure whose class
of weak equivalences are the elements of W(HR(E)) and whose cofibrations are the

moncmorphisms (cf, 20.12).

23.9 REMARK The foregoing model structure on SIE is left proper (cf. 20.15)

and right proper {use 20.17 (the elements of HR(E) are pullback stable)).

N.B. W(HR{(E)) is closed under the formation of products of pairs of arrows
{use 20.92 (cf. 23.5)).

23.10 RAPPEL The geometric morphism {(I'*,T,) of 18.2 extends to a geometric
morphism SIE -+ SISET denoted by the same symbol. In particular:

I'*:SISET + S1E

is defined by the prescription

{F*K)n = -u- *E
K —
n
So v X € Ob SIE,
(X x P*K)n = Xn % (F*K)n
= Xn 5 (LKL *E)
n
= || X x % (cf. 18.20)



_II,{LXn= x|T|K),  (cf. 21.2).
Il

Therefore

X|7|K = X x I'*&.

43

23.11 NOTATION Given X € Ob £, X is the constant simplicial object in SIE.

23.12 DEFINITION Iet W be a A-localizer — then the SIE-localizer of W-descent,

denoted NE’ is the SIE-localizer generated by HR(E) and by the morphisms

id |7 EexI T+ x|,

where X € Ob E and £:K ~ L is an arrcw in W.

N.B. The elements of WE are called the weak equivalences of W-descent.

23.13 LEMMA Suppose that W = W(C} (C < Mor ﬁ) - then NE is generated by

HR(E) and by the morphisms

id, | |£:x| Ik » 5[,

where X € Ob £ and f:K +~ L is an arrow in C.

PROOF Ietting NE c be the SIE-localizer generated by the morphisms in question,

itisclearthatwfccwg. To go the other way, given X € Ob E, let
L,

Fy A - SIE

be the functor that sends K to X| K (= X x T*K) — then F;LHE cisa g—localizer
- =r
{cf. infra) and

¢ < F;lbl = W c F}_{lbl

E.C E,C°



Since this is true of all X € Cb E, it follows that I;JE c l».'E c

[Note: The claim is that F;(le o satisfies the three conditions of 20.3.

r

B.g., to check condition (2), let f:K - L be an acyclic Kan fibration -- then

I*£:T*K » 'L is a hypercovering {(cf. 22.7), thus the same is true of

idx X I‘*f:§ x T*K -+ X x I'*L, {cf. 23.5}).
I.e.:

id, x T*f € HR(E).

Therefore F;I'NE ¢ contains the class of acyclic Kan fibrations, as claimed.]
r

N.B. The SIE-localizer of W(ff)-descent is the SIE-localizer of descent.

23.14 EXAMPLE Consider the SIf-localizer generated by HR(E) and by the morphisms
id [Tlp, x| | R x A[LD) > X[T|K (K € 0b ).

Then this is the SIE-localizer of Nm-descmt {cf. 20.6).

23.15 1EMMA IFf | is admissible, then NE is admissible.

23.16 THEOREM If W is admissible, then SIE admits a cofibrantly generated model
structure whose class of weak equivalences are the elements of NE and whose co-
fibrations are the monomorphisms (cf. 20.12}. )

[Note: If the Cisinski structure on A per W is proper, then the Cisinski

structure on SIE per NE is proper.]

23.17 SCHOLIUM SIE admits a cofibrantly generated proper model structure whose



class of weak equivalences are the elements of (W) £ and whose cofibrations are

the monomorphisms.

23.18 1FPMMA Every trivial fibration Z:X » Y is a hypercovering.
PROOF By definition, % € RIP(M), where M < Mor SIE is the class of mono-

morphisms. Accordingly, every cammtative diagram

a|7|Aln] >

X
‘E (REeObE, nz0)
Y

1_k|:|!_\[n] >

admits a filler. Therefore = has the local right lifting property w.r.t. the
inclusions Aln] + Al (@ = 0) (cf. 22.12). And this just means that £ is a

hypercovering.

Let E, F be Grothendieck toposes and let f:E - E be a geametric morphism -—
then f induces a geometric morphism si £:SIE -+ SIF, thus there is an adjoint pair
{si £*, gi £.) and si f* preserves finite limits,

[Note: asi £* = (£*), (cf. 22.7).]

23.19 ILEMMA Suppose that W is admissible -~ then

si f*NF = NE.

PROOF Applying 22.7 (and bearing in mind 23.18), it follows that (si £%) _1NE

is a SIF-localizer which contains the hypercoverings. On the other hand, if

YeOb F and £:K >~ L is an arrow in W, then

(si £)*(idy |T|£) = ide, ||



Therefore

W, c (si £%) 1Y

irt
It

or still,

si £*. < W..

1+
im

23.20 THEOREM Suppose that W is admissible — then the adjoint situation
si f£*:8IF - SIE
si £,38IE » SIF

is a model pair.
PROCOF In fact, si £* preserves finite limits, hence preserves cofibrations
{these being the monamorphisms). Meamwhile, thanks to 23.19, si f* sends weak

equivalences to weak equivalences.

Let I be a gmall category — then [I,E] is a Grothendieck topos {cf. 18.17) and

Let W be an admissible é—localizer -— then W_ is an admissible SIE-localizer

E

{cf. 23.15), so it makes sense to form (W (cf. 20.21), which is an admissible

E'1
[I,8IE]-localizer (cf. 20.22),

23.21 LEMMA In [I,SIE],

Wiz,e = Mgt

Therefore the Cisinski structure on [I,SIE] per N[I £l is the injective
—,‘

structure on [I,S8IE] w.r.t. the Cisinski structure on SIE per W.




824. LOCAL FIBRATIONS AND LOCAL WEAK EQUIVALENCES
Let £ be a Grothendieck topos.

24.]1 DEFINITION Let Z:X + Y be a morphism of simplicial objects in E — then

£ is said to be a local fibration if it has the local right lifting property w.r.t.

the inclusions Alk,n] -+ Afn] (0 sk <n, n21).

24.2 LEMMA E:X + Y is a local fibration iff for every weak point p:E - SET,

PZipX ~ pY is a Kan fibration (cf. 22.8).
N.B. Therefore the hypercoverings are local fibrations.

24.3 LEMVA 1et E:X + Y be a local fibration and let i:K » L be a monamorphism

of finite simplicial sets ~— then the arrow

{2,,1%*) 1hom{L,X) » hom(L,Y) x haom (K, X)

hem{XK,Y)

is a local fibration which is a hypercovering if E is a hypercovering or i is a
simplicial weak egquivalence.
[Note: fThese conditions are reminiscent of those figuring in the definition

of "simplicial model category.]

24,4 DEFINITION Consider SIE in its Cisinski structure per an admissible
W< Mr A (cf. 23.16) —- then the elements of

RLP(NE n M

are called the fibrations of W-descent.

24.5 EXAMPLE Take W = W_ -- then every fibration 2:X + Y of W -descent is a



local fibration.

[In view of 22.12, it suffices to show that every camutative diagram
al7{Alk,n] —— X

{E RecObE 0<k<n, nzl)
.Z_\E[A[n] —_— Y

admits a filler. But this is plain: The arrow

Al"|Alk,n] — Al |Aln]

is both a weak equivalence of W _—descent and a monomorphism. ]

24.6 REMARK Suppose that E satisfies the axiam of choice — then in this case,

the fibrations of Nw—descent are precisely the local fibrations (Reszr) .

24.7 DEFINITION A simplicial object X in E is said to be locally fibrant if

the arrow X + *orE is a local fibration.

24.8 IEMMA X is locally fibrant iff for every weak point p:E » SET, pX is a

Kan complex.

24.9 EXAMPIE If X is locally fibrant and if K is a finite simplicial set,
then hom(K,X) is locally fibrant.

[In fact, v weak point p:E -+ SET,

p,hom(K,X) ~ hom(K,p,X)  (cf. 21.17)

in

map (K, p,X)

T arxXiv:math/9811038



or still, dropping the sulw-x,

phem(K,X) = map(K,pX).

pX Kan => map(K,pX) Kan.]

24.10 EXAMPIE If X is locally fibrant, then hom(A{l],X) is locally fibrant
and there is a local fibration
hom(A[1],X) » X x X.
[In 24.3, let K = A[0) || A[0], L = A[l].]

24,11 NOTATION Let SIEEoc be the full subcategory of SIE whose objects are

locally fibrant.

24.12 DEFINITION Iet Z:X -+ Y be a morphism of locally fibrant simplicial objects

in E — then E is said to be a local weak equivalence if for every weak point

p:E + SET, pE:pX ~ pY is a simplicial weak equivalence, i.e., pE € W_.

fNote: Take E = SET — then it is true but not obvious that "local weak equiv-

alence" coincides with "simplicial weak equivalence" (cf. 24.23).]

24.13 RAPPEL (onsider a triple (C,W,fib), where C is a category with a final

object * and

~_ W e Mor C

fib <« Mor C

are two ocomposition closed classes of morphisms termed

}_ weak equivalences

fibrations,




the acyclic fibrations being the elements of

W n fib.

Then C is said to be a category of fibrant ohjects provided that the following

axioms are satisfied.
(FIB-1} For every object X in C, the arrow X + * is a fibration.

(FIB-2} All isomorphisms are weak equivalences and all isomorphisms are
fibrations.

{FIB-3) Given composable morphisms f,g, if any two of f,g9,9 ¢ f are weak

equivalences, so is the third.

{FIB~4} BEvery 2-gink X £ 5> B o< g Y, where g is a fibration (acyclic

fibration), admits a pullback X « 2 p_—" Y, where £ is a fibration (acyclic

fibraticn) :

=
v

(FIB-5) Every morphism in C can be written as the composite of a weak equiv-

alence and a fibration.

24.14 THEOREM Take C = SIEE and let

{ = the local weak equivalences

fib = the local fibrations.

Then the triple (C,W,fib) is a category of fibrant objects and the acyclic fibrations




are the hypercoverings.

[Note: Given an arrow Z in SIEEOC’ one can write £ =g ¢ j, where g is a

local fibration and j is a local weak equivalence with the property that it has

a left inverse r which is a hypercovering (r o j = id}.]

24.15 LEMMA Suppose that Z:X »+ Y is a local weak equivalence — then £ is
a weak equivalence of descent,

PROOF Write = = q ¢ J per supra -— then q is a local weak equivalence {this
being the case of = and j). But g is also a local fibration, thus g is a hyper-
covering, thus ¢ is a weak equivalence of descent. as for j, it too is a weak
equivalence of descent. To see this, recall that W(HR(E)) is the class of weak

equivalences for a model structure on SIE, hence is saturated:
W(HR(E)) = WHR(E)) .

Therefore any arrow whose image in the homotopy category is an isomorphism is
necessarily in W(HR(E)). But r o j = id and r € HR(E), hence is invertible in the
homotopy category, hence the same holds for j, i.e., j is a weak equivalence of

descent.

The functor £ - SIE that sends X to X (cf. 23.11) has a left adjoint no:gg[é +E

that sends X to the coegualizer of the arrows

— dgi¥ > X

dlle > XO'




[Note: Take £ = SET —- then in the context of simplicial sets, Ty Preserves

finite products and TR can be identified with the set of camponents of X.]

24.16 LEMMA Suppose that X is locally fibrant —- then for every weak point
p:f » SET, the canonical map
TFOPX — pTTOX
is bijective.
PROCF let R be the image of the arrow

{dofdl) :Xl > XO x XO.

Then R is a relation on X, and vV weak point p:fL + SET, pX is a Kan complex and pR

is an equivalence relation on PXy- Therefore R is an equivalence relation on Xy
and the canonical map

ToPX —> ProX
is bijective (cf. 19.27).

24.17 RAPPEL The class of all weak points of E is faithful {(cf. 19.20), hence

reflects isomorphisms (cf. 19.19}).

24.18 1FMMA The restriction of Ty to SIEQ preserves finite products.

PROOF To check that the cancnical arrow

ﬁOIX X Y) ——> Mgk X Tg¥
is an isamorphism, let p:E - SET be a weak point and note that

pTTO(X X Y) = WOP(X x Y)

i

Ty (PX X pY)



u

'nopX X ﬂopY

12

prgX % proY

1

P(TrOX X TI'OY) .

[Note: It is clear that My Preserves final objects.]

24.19 ILEMMA Tet Z:X > Y be a local weak equivalence — then 'rrOE:ﬁOX > nOY
is an isaworphism.

PROOF Take a weak point p:E + SET and consider the commutative diagram

P&
pTTOX > p’TOY

o~ ~
~— —

nopX > TropY.
TFOPE

Since pt is a simplicial weak equivalence, the arrow

TropE:nOpX - 'r'ropY
is bijective. Therefore the arrow
PioE tPMpX > Ppry¥

is bijective.

The preceding considerations can be extended fram m, to M (n 2 1) but before

0
doing this it will be best to review how things go for simplicial sets (i.e., the

case £ = SET).



Thus given a Kan camplex X, let
TTnX a . ‘JéL Wn(xrxo) -
0 €%
Then there is a map Cn:TrnX > XO and nnx is a group object in SE'.':['/X0 (abelian if

nz=2).

{Note: The construction X - ':rnX is functorial in X and natural w.r.t. cn.]

N.B. Dencte by ™K the nth loop space of X — then K is a Kan camplex and

n‘ﬂn}(=ﬂX.
0 n

24.20 THEORTM Let X and Y be Kan complexes, £:X - ¥ a simplicial map -— then

f is a simplicial weak equivalence iff v . f:v.X > w.¥ is bijective and ¥ n 2 1, the

om0 0

cammutative diagram

7w X > Y
n

]

¢]
3
e
Q
=]

=

ig a pullback square.

while T shall amit the particulars, the story for an arbitrary E is analogous:
One can assign to each locally fibrant X its nth loop space sznx, a locally fibrant
simplicial object in E, and

QnX = TTnX.

o



N.B. There is a map cn:nnx -+ XO and for any zZ:X + ¥, there is a commutative

diagram
mE
1TnX — ﬁnY
Cn ©n
XO > YO.
“0

24.2]1 IEMMA Iet p:E + SET be a weak point — then
PﬂnXRSQnPX.

PROOF The formalities give rise to a pullback square

P > hom(A[1], 9P 1%)
X, . oy x Py,

the vertical arrow on the RHS being an instance of 24.10. Now apply p —- then the

commitative diagram

TS > phom(a[1], P 1x)
PXy s o % x p I

is a pullback sguare in SISET. Proceeding inductively, it can be assumed that

oy = P lpx,




10.

Here pX, = (pX), and

phom(A[1], %) = hom(A[1], o2 %) (cf. 21.17)

H

hom(A[1] 57 1px)

i

But the commutative diagram

anX > hem(A[1] .Qnﬁlpx)
(pX) g ———— oPlox x szn"lpx

is also a pullback square in SISET. Therefore

WHXZQHPX.

[Note: If n= 1, then there is a pullback square

X > hom{A1],X)

}_{0 > X x X
from which a pullback sguare

P ~————— phom(A[1],X)

29 > pX X pX

in SISET. But
phom(Af1],X} = hom{a[l],pX) ({(cf. 21.17)

and the commutative diagram

(pX > hom(A[1] ,pX)

| l

(PX) 4 > pX x pX




ll.

is also a pullback square in SISET. Therefore

piX = QpX.]

24.22 LEMMA Let p:E + SET be a weak point -~ then

ﬂan =2 pmnx.
PROOF In fact,
T pX = TI'OanX

i

'nopﬂnx (cf. 24.21)

~ prroﬂn)( {cf. 24.16)

pTrnx -

24,23 THEOREM Let X and Y be Kan complexes, £:X + ¥ a simplicial map -- then
f is a local weak equivalence iff f is a simplicial weak equivalence.

PROOF The nontrivial claim is that if f is a simplicial weak equivalence, then
for any weak point p:SET -+ SET, pf:pX - pY is a simplicial weak equivalence, and
to establish this, we shall apply 24.20.

& Oonsider the commitative diagram

m Opf
nopx > ﬂopY

#
4

pr. X > PrLY.
0 pTTOf 0

Then TTOf is bijective, hence pTrOf is bijective, hence T‘Fopf is bijective.



e The cammutative diagram

ﬂhx

%o

12.

is a pullback square, thus the commitative diagram

pr X

is a pullback square. But
pr X
ﬂan

Therefore the comautative diagram

1Tnf
ﬂnY
s Y 0
fO
pr £
= pﬂﬁY
C
n
> pYO
pfO
pr £
> anY
> ﬂan.
nnpf
Wnpf
> wan
©n
ey pYO

Pty
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is a pullback square.

24,24 THEORIM Let Z:X -+ Y be a morphism of locally fibrant simplicial objects
in E — then T is a local weak equivalence iff TTOE:TTOX > -nOY is an isomorphism

and Vv n 2 1, the commtative diagram

Il
'rrnX > TrnY
Cn lcn
X4 > ¥y
=0

is a pullback square.

Every local weak equivalence is a weak equivalence of descent (cf. 24.15),
hence is a weak equivalence of W_-descent. When E = SET, this can be twmed around:
Every weak equivalence of W -descent (a.k.a. simplicial weak equivalence) is a local

weak equivalence (cf. 24.23), a conclusion that persists to an arbitrary E.

24.25 1EMMA Tet Z:X - Y be a morphism of locally fibrant simplicial objects in
E. Assume: E is a weak equivalence of W _—descent — then = is a local weak equiv-
alence.

[The full proof is lengthy and technical but here is the strategy. First treat
the case when ¥ = % and use it to treat the case when in addition the arrow Y -+ %

is a fibration of Nw-descent. This done, factor ¥ -+ % as



14.

where j is an acyclic cofibration (thus a weak eguivalence of W_-descent) and

¥' + % ig a fibration of Nm-descmt. Consider

¥ 3
X > Y s> Y'.

Then j is a local weak equivalence and j o £ is a local weak equivalence. There-
fore E is a local weak equivalence.

[Note: Another appreach is to use 24.6 and prove it initially under the
assumption that E satisfies the axiom of choice. To proceed in general, take
f:B ~ E as in 18.29 -- then si f*Z is a weak eguivalence of W_-descent (cf. 23.19},
hence is a local weak equivalence. aAnd from there it is not difficult to see that

Z is a local weak equivalence.]

Using standard methods, one can introduce a functor

Ex :SIE -+ SIE

and a natural transformation

© oo

e ::LdSIE + Ex

with the property that if X is a locally fibrant simplicial object in E, then Bx X
is a locally fibrant simplicial object in E and the arrow ey :X + Ex X is a local

weak equivalence.

24.26 LEMMA If X is a locally fibrant simplicial object in E, then the arrow
e;:x + BEx X induces an isomorphism
TI'OX - TTOEX X {cf. 24.19)
and vn>1,

TTnX P 1TnEX X.



15.

PROOF The commutative diagram

TS _
nnx > TrnEx X
cn cn
[=3]
XO - > (Ex X)O
(ex)0

is a pullback square (cf. 24.24). But (e§)0 is an isomorphism and the pullback

of an isomorphism is an isomorphism. Therefore ﬂne§ is an isomorphism.

24.27 LEMYA If X is a simplicial object in E, then EX X is a locally fibrant

simplicial object in E and the arrow e;:X + Ex X is a weak equivalence of W_—descent.

[Note: Up to isamorphism, matters are consistent when X € Ob SIEE {cf. 24.26).]

24.29 THEOREM Let E:X > Y be a morphism of simplicial objects in E —— then the
following conditions are equivalent.
(1) £ is a weak equivalence of W_-descent.
(2) Bx Z is a weak equivalence of W_-descent.
(3) Ex % is a local weak equivalence.

(4) ToEmgX > mgY is an isomorphism and v n 2 1, the camutative diagram
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T =
n
TrnX > TTnY
c, {cn
XO > Yo
“0

is a pullback square,

PROOF Taking into account 24.27, the equivalence of (1) and (2) results upon
inspection of the commutative diagram

1)

X > Y
& Sy
o o0
¥ —— Ex Y,
EX Z

Next, since Ex X and Eme are locally fibrant, the equivalence of (2) and (3)

follows from 24.25. Finally, in view of 24.24, the eguivalence of (3) and (4)

can be read off from consideration of

'rrOE
1T0X > 1T0Y
o3 o0
TTOEX X - o TTOEX Y
TTOEX =



TrnEx )
(7] [+=]
‘rrnx = ’iTnEX X o T‘I'nEX Y= T‘I‘nY
Cn cn
XO: {Ex X)O > (Ex Y)O:YO.
m—-
(Ex “)0

W,

the local weak equivalences

(W_) E= the weak equivalences of Nm—descent.

24.30 1EMMA The arrow of inclusion

is a morphism of category pairs (cf. 25.9) and the induced functor

. -1 o ~1
i, Wy SIEE (Wm)E SI1E
is an equivalence of categories.

[Use Ex to construct a functor in the opposite direction.]

24.31 NOTATION Put

H SIE = (W) El_S_IE.

24.32 LEMMA The arrow

E -~ HSIE

L

that sends X to the image of X in the hawtopy category is fully faithful.



§25. COMPARISON PRINCIPLES

Let C be a small category -— then

sic = 8%, 1€, se11]
= ¥, (8%, smr
= [gOP,SISET].

25.1 15rvMA Let W be an admissible Ewlocalizer — then the slaments of W,. are
C

levelwise the elements of W.

PROCF In 23.21, let I = C* and E = SET.

25,2 REMARK Since

s1¢ ~ (¢*,sIsET),

it follows that if W is an admissible é—localizer and if the Cisinski structure on
SISET determined by W is proper, then the Cisinski structure on SIC determined by

W. is proper.
C

Let C be a small category, T a Grothendieck topology on C.

25.3 RAPPEL The inclusion 1 :sh_(C) + C admits a left adjoint a_:C ~ Sh,_(C)

that preserves finite limits (ef. 11.14).

Abusing the notation, we shall use the same symbols for the induced
adjoint pair -

SIC —— SIsh_(C)

SISh_(C) —> SIC.



25.4 DEFINITION Let EZ:X » Y be a morphism of simplicial objects in é -~ then

E is said to be a r-hypercovering if its image a i is a hypercovering of SISh (C).

25.5 DEFINITION Iet W be a g-localizer -= then the gf:_—localizer of (W,1)—dascent,

denoted W (1), is the @-localizer generated by the t-hypercoverings and by the
C

morphisms

idy | j£:X| "k » x| "L,

M:ereXEOb:Qamdf:K+LisanarerinN.

N.B. The elements of W (1) are called the weak equivalences of (W,1)}-descent
C

and the elements of

RP{W,. (1) n M)
C

are called the fibrations of (W,t)-descent.

25.6 EXAMPLE Take for T the minimal Grothendieck topology on C {cf. 11.1l} -—-

then Sh_(C) = C and Na('r} = Na.

25.7 LEMMA If X is a simplicial object in é, then the canonical arrow

X =+ 1T§TX is a weak equivalence of (W,T)}-descent.

25.8 THEOREM Iet W be a §-localizer -— then

] _
a N_SET © ~ W, (t)

c

-1
1 W (1) = W
TG sh_(C)




PROOF The pair (a Pl ) defines a geometric morphism sh C) ~ C and a wSh ©
is a §£§-localizer which contains W, {(cf. 23.19}. In particular: The
C

id ["f € a wShT(Q)'

But the t-hypercoverings are also in a w )? thus

Sh(C

2 wSh © > M-

As for 1 N (1), it is a SISh {C)-localizer and
C

N (t) o W
& Sh(C)

e Iet 5:X + Y be an element of a wSh (C) —~ then the claim is that

€W (1). To see this, consider the commutative diagram

C
T a_ =
=T
1T§TX o 1T§TY
X > ¥ .
Here
8% € Wg (o < 17 HA(D)
et C

rvazf W (1).
C

On the other hand, the vertical arrows are weak equivalences of (W,t)-descent



{cf. 25.7). But W, (1) satisfies the 2 out of 3 condition. Therefore = € W_(1).

¢ c
e Iet Z:X -+ Y be an element of 1;]":1,\(1) -~ then the claim is that
C
E e N&T(T)' Proof:
1LEed (1) =>a1 Eell
T & T T ih{(g)
=> Z € wgl}_T(Q) @, °1, =id).

25.9 RAPPEL A morphism

of category pairs is a functor FiC) ~ (_;2 such that le c wz, thus there is a unique

functor f‘:wzl(_:l - w;lgz for which the diagram
F
51 > &
Lwl Lw2
-1 ol
PR : > Wy Gy
F
cammutes.
e Take
- G =sIE Wy =, ()
c
_ ¢, = 818h_(Q) W, = N_s_h_T ©




and let

F=a_.
—T

Then gT:gl > 92 is a morphism of category pairs, so

a :[b‘_lC -+ W;lg .

S B 2
e Take
¢, = 8Ish (C) W, = N&T (©)
+
C, = 5IC w2 = W.(T)
- _ ¢
and let
F = 1 -
T

Then 1.:C, + G, is a morphism of category pairs, so

—. L -1
Ll TG G,

a
=T
25.10 THEOREM The functors ___ are an adjoint pair and induce an adjoint

Y

equivalence of metacategories.

[The arrows of adijunction are natural iscmorphisms.]
25.11 CRITERION let _15'1, §2 be Grothendieck toposes, let f1>:§1 - §2 be a functor,

and let W, be an admissible t,-localizer. Assume that ¢ preserves colimits and

finite limits and that ¢'lw2 is an E,~localizer -- then CIJ_lwz is admissible,

25,12 IFMMA If W is admissible, then W_{t) is admissible.
C



PROOF In 25.11, let El = SIC, §2 = SIShT(g), & = §T' Nz = N“SET(Q) — then
w&T(Q) is admissible {cf. 23.15) and
-1
a_ W = W, {1) {cf. 25.8).
T -S—h—T © C

25.13 REMARK Since W _{1) is admissible if W is admissible, @ admits a
C

cofibrantly generated model structure whose class of weak equivalences are the

elements of W, (1) and whose cofibrations are the monomorphisms {cf. 20.12).
c

Accordingly, in 25.10, the data gives rise to an adjoint equivalence of homotopy
categories.

[Note: If C is a model category, then HC (= WC) is a category (and not
just a metacategory).]

25.14 1EMMA Suppose that W is admissible and that the Cisinski structure on

g per W is proper -- then the Cisinski structure on SIC per W.(t) is proper.
C

PROOF To begin with, this is the case if t is the minimal Grothendieck topology

on C {cf. 25.1and 25.6). In general, there are two points.

(1) Since a_ preserves finite limits, hence preserves pullbacks, the
T-hypercoverings are pullback stable (cf. 22.9).

(2} Bvery fibration of W-descent per W, (1) is a fibration of W-descent per
C
W.. B

Now guote 20.17.

[Note: BAs always, it is right proper which is at issue (cf. 20.15).]



25.15 LEMMA Suppose that W is admissible and that the Cisinski structure on

g per W is proper — then the Cisinski structure on SIShT (C) per MSh (©) is proper.
—--—T —

PROOF Fibrations in §Ish (C) "are” fibrations in SIC and pullbacks in SIsh_(C)
"are" pullbacks in E(i

[To provide a modicum of detail, suppose that g:Y + Z is a fibration of
W-descent per @T (C) — then 1.9 is a fibration of W-descent per @ Thus

consider the lifting problem

v
where f is an acyclic cofibration —-- then

feu (1) = g_ff = {cf. 25.8).

: st (©)

But a_ preserves monamorphisms, hence

ng:gTA > aB

is an acyclic cofibration. Therefore the camwtative diagram

a_u
-1
QTA > Y
ng g (atT ] 1T = id}
E‘EB ~ D
av

has a filler W:E_lTB +>Y, i.e.,



weaf=au

°© W= a3 V.
g ar

Now form the commutative diagram

u
A > 1Y
o
o ¥ 1.au
=T
a
A >1TA >1TY
£ 1T_Tf 1Tg
! ¥
> 1_a B 1_Z
B 8 Tt 1av T
4 =T
8
B o 1TZ -
v

Then 1we B:B > R4 is a solution to our lifting problem:

w o c f=1we 1afoeqg= o Q=
L B 1 2ffea=1auca=u

1gei1Woef=1avoef=rv.
9 T B =T & ]

25.16 SCHOLIWM (cf. 23.17) PFix 1 € Ta and take W = Nw — then



admit a cofibrantly generated proper model structure whose class of weak equiv-

alences are the elements of

(W_).. (1)
C

(W)
«'sh_(C)

and whose cofibrations are the monomorphisms.
[Note: Here there is present an additional item of structure, wviz. that

these model categories are simplicial model categories.]



INTERNAL AFFAIRS

TA-1 NOTATION GRD is the full subcategory of CAT whose objects are the groupoids

{the morphisms are functors).

IA-2 IEMMA Let G, € Ob GRD and suppose that F:G + H is a functor.

e [ is fully faithful iff the diagram

F
Mor G > Mor H
(S:t)\ ‘(S,t)
Ob G x b G > Ob H x Ob H
Fx ¥

is a pullback in SET.

® F has a representative image iff the composite

5

Ob G %y .. MrH—> MrH

H >0b§

&

is surjective.

[Note: Here

N.B. These points characterize an equivalence between groupcids and provide

the motivation for the notion of "internal equivalence" infra.



IA-3 THEOREM GRD is a model category if weak equivalence = equivalence and

the cofibrations are those functors F:G +~ H such that the map

Ob G +0bH
X+ FK
is injective.

[Note: All objects are fibrant and cofihrant.]

IA-4 IEMMA Let G,H € Cb GRD, F:G + H a functor -— then F is an equivalence
iff the induced simplicial map ner F:ner G - ner H of nerves is a simplicial weak

equivalence.

IA-5 LEMMA Let G,H € Ob GRD, F:G + H a functor —- then F is a fibration iff

the induced simplicial map ner F:ner G -+ ner H of nerves is a Kan fibration.

In-6 IEMMA Let X,Y be simplicial sets and let £:X » Y be a simplicial map.
e If f is a simplicial weak equivalence, then the induced morphism
Mf:MX -+ MY of fundamental groupoids is an equivalence.
e If f is a cofibration, then the induced morphism Tf:IIX + [I¥Y of funda-

mental groupoids is injective on objects.

IA~7 REMARK Since
I:SISET - GRD
is a left adjoint for

ner:GRD + SISET,

it follows from the lemmas that 1T is a left model functor, i.e., preserves co-

fibrations and acyclic cofibrations, and ner is a right model functor, i.e.,




preserves fibrations and acyclic fibrations.

[Mote: Here the underlying model structure on SISET is, of course, the Kan

structure. To get a model equivalence, simply replace it by its truncation at
level 1 (thus now the weak equivalences are the l-equivalences (so the arrows are

isomorphisms at Ty and Trl)) .]

let E be a Grothendieck topos — then [ is complete so the formalism of
internal category theory is applicable. And, as will be seen below, the results

outlined above for the case £ = SET actually go through in general.

IA-8 NOTATION GRD(E) is the full subcategory of CAT(E) whose objects are the
groupoids in £ (the morphisms are internal functors).

[Note: Recall that an object G of GRD(E) is a pair (Gq,Gy) of objects of E

together with a battery of morphisms satisfying the usual axioms.]

IA-9 EXAMPLE Let C be a small category —— then

GRO(C) = IS, GROI.

TA-10 DEFINITION Let G,H € Ob GRD(E) and suppose that F:G + H is an internal

functor, hence F = (FO,F where

l)'

F0=G0 -+ HO

Fl:Gl -+ Hl

are morphisms in

1na

(subject to ...) == then F is said to be an internal equivalence if




(1) The diagram

is a pullback in E and

(2} The composite

is an epimorphism.

[Note: PHere

IA-11 THEOREM GRD(E)} is a model category if weak equivalence = intermal equiva-
lence and the cofibrations are those internal functors F:G ~ H such that the arrow
E":,:G0 -+ H0
is a monomorphism.



IA-12 RAPPFL Every category C in £ gives rise to a simplicial object ner C

in £ by letting ner,C = C,, ner.C = C., and

0 =0’ 1=

ner ¢ =0, x vse X C, (n factors).
0 Gt

[Note: An internal functor € -+ C' induces a morphism ner € -+ ner C' of

simplicial objects.]

IA-13 1LEMMA Let G,H € Ob GRD(E), F:G ~ H an internal functor —- then F is an

internal equivalence iff ner Finer G -~ ner H is a weak equivalence of W_-descent.

IA-14 REMARK The functor
nexr:GRD(E) + SIE
has a left adjoint

I:SIE > GRO(E) .

Working with the model structure on SIE per 23.17 (the weak equivalences thus being
the weak equivalences of W _-descent), what was said in IA-7 can be said again. In

particular: If G € Ob GRD(E) is fibrant, then ner G is fibrant.

Iet C be a small category, T a Grothendieck topology on C —— then SIE admits
a cofihrantly generated proper model structure whose class of weak equivalences are

the elements of

") . (1)
C

and whose cofibrations are the monomorphisms (cf. 25.16).

[Note: If 1 is the minimal Grothendieck topology on €, then

M) (1) = ().
C

—

Iy



and the elaments of (Nm) are levelwise the elements of wm (cf. 25.1). Therefore

¢

in this case the model structure on

SIC = [C,SISET)
is the injective structure.]
N.B.
o 1f G:¢ » GRD, then
op

ner G:C° -~ SISET,

e If GH:C > GRD and if 5:G > H, then

ner Z:mer G - ner H.

iA-15 THEOREM [QOP,GRD] is a model category if the weak equivalences are the
%:G 2> H such that ner Z is a weak equivalence of (NW,T)—descent and the fibrations

are the Z:G ~ H such that ner = is a fibration of (¥ ,T)-descent.

For ease of reference, call the objects of [gOP,SISEI'] simplicial presheaves

and the objects of [QOP,GIUD] simplicial groupoids.

IA-16 DEFINITION A fibrant model for a simplicial presheaf X is a fibrant

simplicial presheaf Xf and a weak equivalence of (W _,T)-descent X - Xf.

Ia-17 DEFINITION A simplicial presheaf X is said to satisfy descent if for

some fibrant model xf, the arrow

}ﬂJ+XfU

is a simplicial weak equivalence v U € Ob C.



Ia-138 LEMMA If A and B are fibrant simplicial presheaves and if £f:A + B is a
weak equivalence of (Nm,‘c)——descent, then v U € Cb C, the arrow AU » BU is a sim-

plicial weak equivalence.

IA-19 APPLICATION If X is a simplicial presheaf, if X_. and X! are fibrant

f f
models for X, and if v U € Ob C, the arrow

XU ~+ X0
is a simplicial weak equivalence, then v U € Ob C, the arrow
XU - X%U

is a simplicial weak equivalence.

[Choose $:Xe > X% such that the diagram

commites — then ¢ is a weak equivalence of (NW,T)—desce.nt {by the 2 out of 3

condition), hence ¥ U € Cb C, the arrow

X.FU - X_;_-U

is a simplicial weak equivalence, frcom which the assertion.]

(onsequently, the notion of "descent" is independent of the choice of a fibrant

model.

IA-20 DEFINITION Let G be a simplicial groupoid —— then G is said to be a



gtack if ner G satisfies descent.

IA-21 DEFINITION A stack completion of a presheaf of groupoids G is a weak

equivalence G » G', where G' is a stack.

It is a fact that a stack completion for a given G always exists. E.g.: One

possibility is to take G' = G-tors 3 (Jardine's "discrete G-torsors™).

IA=-22 REMARK The definition of stack is a moving target.



