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IN THE MOUNTAINS 

There is WINl'ER. 

Then there is the melting time. 

Then t-n.ere is sumner. 

Thm there is the waiting time. 

Then there is WINl'ER. 



The purpose of this l:::x::lok is two fold. 

(1) To give a systema.tic introduction to top::>s theory fran a purely 

categorical point of viaV', thus ignoring all logical anc1 algebraic issues. 

(2) To give an account of the ha:!otopy theory of the simplicial objects 

in a Grothendieck topes. 

* * * * * * 

EDITORIAL a::lMMENT I have always found the traditional harotopical treatments 

to be sanewhat contrived anc1 ad hoc. There is, however, a way out: Use Cisinski's 

"localizer theory". For then the classical results are mere instances of t.."1e 

output of this powerful machine which has the effect of sweeping all before it. 
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§1. PARTIAL ORVERS 

Let X be a class -- tlEn a binary relation ::s; on X is S3.id to be a p:"rorde::-

1£ 

• ::s; isrefl8{ive: V x E X, x::s; x; 

• ::s; is transitive: V x,y,z E X:x ::s; y & y::s; z => X ::s; z. 

A trEDrde::- is a :partial order if in ad.dit.ion 

x ::s; x' 
V X,X I E X, => X = Xl. 

Xl ::s; X 

Ever-y treorder- (X,:;;:) gives riEe to a ca tegory ~ (X,:;;:): 'nle obja:::ts of ~ (X,:;;:) 

are the elenents of X arrl 

{ (X, y)} if x ::s; y 
M:>r ~, y) = 

.0 0 t1::lE!rwi se , 

and 

(y,z) o (x,y) = (x,z). 

id = (x,x), 
x 

1.1 LEMMA Let (X,:;;:) be a treorder- - then e.Tery arrow in ~ (X,:;;:) is 1::0 th a 

nomnorphisn and an ep:inorphisn. 

1.2 LEMMA Let (X,::s;) be a p:rrtial order - tlEn tte only iSJITOrphisns in ~ (X,:;;:) 

are the identities. 

1.3 DEFINITION A IDset is a ret X equipped. with a p:rrtial order. 

If (X,:;;:), (Y,::s;) are IDrets, tla1 a functor f:~(X,:;;:) -+~(Y,::;;) is s:implya 

funct.ion f:X -+ Y which ism::motDnic, i.e., 
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x ::;; x' in X => f (x) ::;; f (x') in Y. 

1.4 LEMMA Let. (X,~), (Y,::;;) be }Dset.s an::llet. 

f:~ <X,::;;) -+ ~ (Y,~) 

g:~ (Y,~) -+ ~ (X,~) 

be fuoctnrs - then f is a left adj::>int for g if for all x E X ani y E Y, 

f (x) ~ y <=> x ~ g (y) • 

1. 5 DEFINITIDN Supp:>se that ex,~) is a }Dset. -- then (X,~) is a lattice if 

~ ex,~) has birery pxx:'iucts ani bimry cop:oducts, written 

X A Y X x Y 

X V Y =. x y. 

["N:>te: Accordin;:Jly, 

x A y ~ X Z ~ x 

& => z ~ X A Y 

X A Y ~ Y z ~ Y 

ani 

x ::;; z 

& => x v y ~ z.] 

y ~ z 

1. 6 DEFINITION Supp:>se that (X,~) is a lattice -- then ex,~) is said to be 

lx>urrlErl if g(X,~) admits a fim.l object, derotErl by 1, and. an initial object, 

derotErl by O. 
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[N:>te: So, V x EX, 0 :s; x :s; 1 and • J 
o v x = x 

1. 7 LEJI.1MA Let (X, be a p::-oorder -- then a com:ro.ltative diagram 

\'1 --> Y 

1 1 
X --> Z 

in g (X,:s;) is a p.lilback square j£f w is a p:.-oduct of x am y or is a p.1shout 

square j£f z is a coproduct of x and y. 

1.8 RAPPEL Let g be a cat8:jory - then g is finitely complete j£f g has 

p.Illbacks and a final obj ect and g is finitely cocomplete g has p.lShouts 

and an initial obj a:::t. 

1.9 SCHOLID-1: If (X,:s;) is a boundai latt:ice, then g (X,:s;) is finitely complete 

and finitely cocomplete. 

1.10 R.El'IIARK SuppJse that (X, is a bounded latt:ice -- tha1 g (X,:s;) has 

p:oducts it has cop::-oducts. 'lhereEore g (X,:S;) is complete iff it is cocomplete. 

Let (X,::;) be a bounded latt:ice. 

• (X,:s;) is distriliutive if V x,y,z E X: 

X A (Y v z) = (x A y) vex A z) 

x v {y A z} = (x v y) A (x v z) . 

• (X,::;) is complanmted if V x E X, 3 x E X: 

X A -[ x = 0 am x v x = 1. 
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[N:>te: In a distriliutive lattice, a complanent 

is unique.] 

x of x, if it EKists, 

1.11 DEFINITlON A lxol em algebra is a bounded lattice (X,.,;) which is both 

distributive ani complanentErl. 

N. B. In a boolean algebra (X,.,;), V x E X, -I 

[For 

X A 

x v-I 

ani complanents are unique.] 

x = 0 -I 

x = 1 

x = x. 

1.12 LEMMA Let (X,.,;) be a boolean algebra - then V x,y E X, 

(x v y) = x A -I Y 

(x A Y) = x v y. 

[Note: These relations are calle::l the laws of de lIbrgan.] 

1.13 EXAMPLE If S is a set, then its pJWEr set PS is a lxolam algebra. 
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§ 2. SUBOBJECTS 

Given a cate:jOry £ and an objoct X in £, let M(X) be the class of all p:rirs 

(Y,f), where f:Y -+ X is a m:monorprism -- then :r.1(X) is the objoct class of a full 

subcate3"Ory ~(X) of S/X. 

Given (Y,f), (Z,g) in M(X), write (Y,f) ~ (Z,g) if there edsts a rroq:hism 

h:Y -+ Z such that f = g 0 h, i. e., if there edsts 

f g 
h E Mor¢ (Y --'> X, Z --:;, X). 

[Note: h is nocessarily unique and is itself a rrononoq:hism.] 

2.1 LEMMA The binary relation ::Sx is a p::"€Order on M(X) • 

N.B. So, in the notation of Sl, 

2.2 DEFINITION TWo elements (Y,f) and (Z,g) of M(X) are deemEd equivalent, 

written (Y,f) -X (Z,g), if there ed.sts an isarrorpusm <I>:Y -+ Z such that f = g 0 <1>. 

2.3 LEMMA The binary relation -X is an a:J.Uivalence relation on M(X) • 

2. 4 DEFINITION A subobj oct of X is an equ.i val ence class of rrononorprisms 

u.rrler -X. 

2.5 REMARK In practice, :people tend to blur the distinction between a rrono­

rrorprism f:Y -+ X and its associatEd subobjoct, a p::>tentially confusing abuse of 
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the language. 

Let SubC X stand for M(X)/~X' let [ ] da10te an equivalence class, am let 

[f] S;x [g] have the obvious connotation - thm the };roorder on Sub
C 

X is a p3.rtial 

order. In fact, 

(Y,f) S;x (Z,g) 

(Z ,g) S;x (Y, f) 

imply that (Y,f) X (Z,g) or still, [f] = [g]. 

2.6 EXAMPLE Let (X, s;) be a bounderl lattice and take for g the cata;rory g (X, s;) --

thm 

Subg (X, s;) 1 <-;> X. 

2.7 EXAl.fi?LE Let X be a top:>logica1 sp3.ce and take for g the cate:Jory Sh(X) 

(the sheaves of sets on X) - thm 

SubSh(X} ~ <-;> LX· 

[Note: LX is the top:>logy on X and the corresp:mdmce +- assigns to U E LX' 

1ifVcU . ] the shffi.f ~, where ~V = 
~ifV;tU 

2.8 DEFINITION A re};resmtative class of rro:norroq:hisms in M{X} is a subclass 

of M(X) which is a systen of re};lresentatives for ~X. 

2.9 EXAMPLE SUppJse that g has an initial object ~C. Let f:Y ~ ~C be an 
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elanalt of M("C) - then f is an isorroqhism, hence f~% id%. Therefore 
C C 

SubC "c = [id% ]. 
c 

2.10 RAPPEL A cate;pry £ is said to be wellp:JW'ere:l pt::Ovidal that each of 

its objects has a repcesaltative class of mJIlOI.tDrprisms that can be irrlexal by a 

set. 

2.11 EXAMPLE Take £ = SEI' and fix X - thal a subobject of X is an e:;J1..1ivalalCe 

class of injective rra:r;s. 

• Every subobj ect of X contains exact! y one inclusion of a subset of X 

into X and that subset is the image of every elanalt in the subobj ect. 

• The subsets of X together with their inclusion IOa.P; fo:rm a repcesaltative 

set of rronom::>qilisms in M (X) • 

[Note: Therefore SEl' is wellp:JW'ere:l.] 

2.12 EXA.MPLE TOP is wellp:JW'ere:l. 

[Let (X, LX} be a top:>logical s'fB,ce -.- thal a repcesentative set of rrona-

rrorphisms in M (X, LX) are the 'fB,irs «Y, Ly ) ,~), where y is a subset of X, ly is 

a top:>logy on y finer than lxlY, and ~:y -+ X is the (continuous) inclusion.] 

2.13 CRITERION If g is a sma.ll category and if Q is a finitely complete, 

wellp:JW'ere:l category, then the functor cate;pry [g,Q] is wellp:JW'ere:l. 

2.14 EXAMPLE If g is a small category, then the presheaf category 

~ = [COp SEl'] 
~ '--
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is well p:JWera:1. In p:rrticular: 

is well p:JWera:1. 

2.15 RAPPEL Consider a p.lllback square 

n 
P >Y 

x > Z 
f 

in a cate:;Jory g. Assume: f is a rronorroq:hism -- then n is a rnonorroqirism. 

2.16 DEFINITION Let g be a category with p.lllbacks. Given an obje::::t X in 

g, supp:>se that 

f 1 :Yl -+ X 
E M (X) - then their interse::::tion is the :p3.ir 

f
2

:Y
2 

-+ X 

(YIn Y 2' 61 ,2) E M (X), where YIn Y 2 is defina:1 by the p.lllback square 

Y1 n Y2 ---> Y2 

1 1 f2 

and 

is the corner arrow. 



5. 

2.17 SCHOLIm.1 If g is well p::1ItJer-erl and has plllbacks, then. V X E Ob g, the 

catBJory g (Subc X,sX) associaterl with the p:>set (Subc X,sX) has binary products. 

2.18 DEFINITION Let g be a cat930ry. Given. an obje::::t X in g, supp:>se that 

{ (Y.,f.); i E I} is a set-indexe::1 colle::::tion of elanents of M(X} -- then. an elanent 
~ ~ 

(Y, f) E M (X) is calle::1 an inter-section of the (Y., f .) p::Dvided that 
~ ~ 

u 

Vi, (Y , f) Sx (Y., f . ) 
~ ~ 

and for any object U --> X in £IX such b;at 

f. 
u ~ 

V i, J gi E MJr£lX (U --> X, Yi > X), 

there edsts a 

u f 
g E MJr£lX (U --> X, Y --> X). 

[Note: If I = {l,2}, then matters re::1uce to that of 2.16 (universal property 

of p.lllbacks).] 

N. B. Inter-sa:tions are unique up to isorror};:hism and the intersa:tion of the 

anp:.y collection of nononor};:hisms with codomain X is i~:X -+ X. 

2.19 DEFINITION A category g is said to have (finite) inter-se::::tions for 

ea.ch X E Ob g and any (finite) set-indexed colle::::tion of elanents of M (X), ther-e 

eKists an inter-sa:tion. 

2.20 LEMMA If £ is a finitely complete category, then £ has finite inter-

se::::tions, and if g is a complete catBJory, then. g has inter-sa:tions. 
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[Note: An mter-sa::::tion (nfinite or infmiten) is a multiple plllback and 

a multiple p.1llback is a limit.] 

2.21 SCHOLIUM If S is well:p:mer-e::l and (finitely) complete, then V X E Ob S, 

the cate;Jory ~ (SUb
c 

X, s:x) associate::l with the :p::>set (SUbc X, s:X) has (finite) 

products. 

--... -~ ... -
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§3. VECOMPOSITIONS 

Let £: he a cate:Jory, f:X -+ Y an epinoq:i1ism - thm there are various re­

strictions that can he imp:>sed on f. 

(1) f is a coequalizer, Le., 3 Z E Oh £: and u,v E MDr(Z,X) such that 

f = COe:;I(u,v) • 

(2) f has the left lifting prop.erty w.r.t. rronarroq:hisms, i.e., every 

canmutative diagram 

a 
X----,> A 

Y ----> B, 
h 

where i:A -+ B is a rronorror:r;:hism, admits a filler w:Y -+ A (thus w 0 f = a, i 0 w = h, 

and w is necessarily unique) • 

[Note: Epinorphisms with this pLoperty are closed under canp:>sition.] 

(3) f is extremal, i.e., in any factorization f = hog, if h is a mono-

rror:r;:hism, thm h is an isorroqirism. 

In general, 

(1) => (2) => (3) 

and none of the implications can be reversal. 

3.1 LEMMA SuP};Ose that £: is finitely complete - thm an epinor:r;:hism f:X -+ Y 

satisfies (2) iff it satisfies (3). 

3.2 EXAMPLE In CNr, there are ertraral ep:i.nor:r;:hisms that are not coe::JUalizers. 
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3.3 DEFINITION A finitely complete cate:;ory g fulfills the standard conditions 

if g has ooequalizet:'s and the ep:i..m::>qilisms that are coequalizet:'s are p.lllback 

stable. 

3.4 EXAHPLE In SEl', €!\Jery ep:inoqilism is a coequalizer and surj ective flIDctions 

are p.lllback stable. Therefore SEl' fulfills the standard oonditions. 

3. 5 EXAHPLE In 'IDP, an epirroq:hism is extranal iff it is a quotient m:::l.p, thus 

"(1) = (3)". Still, 'IDP does not fulfill the standard conditions since quotient 

m:::l.FS are not p.lllback stable. 

3.6 R.EMARK If C fulfills the standard oonditions and if I is small, then the 

filllctor catB10ry [!,gl fulfills the standard oonditions. 

3.7 LEMMA Supp:>se that g fulfills the standard conditions - then an epi­

norpusm f:x + Y satisfies (1) iff it satisfies (2). 

3.8 DEFINITION Let f:X + Y be an arrCM' in a catB10ry g -- then a decomposition 

k m 
of f is a pair of arrCM'S X --'> M --'> Y such that f = m 0 k I where k is an 

ep:i..m::>rpusm and m is a nonan::>rpusm. The decom!=Osition (kim) of f is said to be 

m.:i.n.ima.l (and M is said to be the im:::tge of f I denote::i im f) if for any other 

l. n 
factorization X --» N --'> Y of f with n a nonarrorphism, there is an h:M + N 

such that h 0 k = l. and n 0 h = m (=> (M,m) '5y (N,n». 

3.9 LEMMA Supp:>se that g fulfills the standard conditions - then €!\Jery 

norIirlsm f:X + Y in g admits a decom!=Osition f = m 0 k, where k is an epirrorIirlsm 
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satisfying "(1) = (2)" am m is a rronorroq:hism. 

PROOF Fo:rm the pJ.llback square 

v 
P '> X 

x '> Y • 
f 

Then u and v are epi:rror:r;h.isms. Pass now to coeq (u I v) : 

U 

'> f 
P X '> Y 

'> 

kl 
v 

z. 

since f 0 u = f 0 v I there is a unique m: Z -+ Y such that f = m 0 k and the claim 

is that m is a rronaror:r;h.ism. To SeE! b~is, form the pJ.llback square 

Z '> Y • 
m 

Then 

m 0 k 0 u = m 0 k 0 v, 

so there is a unique rroq::hism q:P -+ Q such that 

r 0 g = k 0 u, s 0 q = k 0 v. 

rut g is an epinorp:lism (cf. infra) am k 0 u = k 0 v, hence r = s which implies 

that m is a rronorrorthism. 

[N::>te: From the definitions 

Q = Z Xy Z 
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a.rrl there is a carmutative diagram 

a 
X Xy X > Z Xy X > x 

cl lb lk 
X Xy Z > Z Xy Z > z 

1 

d 

1 1m 
X > Z > Y 

k m 

of r:u1lback squares. Since C fulfills the stand.ard conditions and k is a co-

equalizer, the arrows a,b,c,d are coa:jl.lalizers as well. Therefore q = boa = 

doc is an epinnq:bism. 

3.10 THEOREM SUHOse that g fulfills the standard conditions -- thal every 

noq:bism f:x + Y in g admits a minimal da:ammsition f = m 0 k unique up to iso­

norrtrlsm· 

N.B. The da:ommsition of f se::ure:l by 3.9 turns out to be miniroal but there 

are two mints of detail that will have to be addresse:l before this can be estab-

1ishe:l. 

• Supt:Ose given two decan:p:>sitions of f per 3.9, hence m 0 k = mt 0 k', 

where 

k m 
X ---'> M ---> Y 

k' mt 
X ---'> M'--.......;> Y. 

Thal we claim that there edsts an iSOJIPrIi1ism <p:M + W such that 

<p 0 k = k' and m = ro' 0 <p. 



5. 

Thus consider the carrm..rtati ve diagram 

k 
X ,>M 

k'l 1m 
r-1' '> y • 

m' 

Then by the left lifting property w.r. t. m::marorphisms. 

u 0 k = k' 
3 u:M + 1'1' st 

m' 0 u = m 

and 

u' 0 k' = k 
3 u' :M' + M st 

mou'=m'. 

Accordingly, 

m 0 u' 0 u 0 k = m' 0 k' = m 0 k => u' 0 u = i~ 

m' 0 u 0 u' 0 k' = m 0 k = m' 0 k' => u 0 u' = i<\il:'. 

It ranains only to take <P = u. 

[Note: This is what is meant by "unique up to isarorphism" in 3.10.] 

• Suppose given a camIUtative diagram 

k m 
X -----''> M ---'> Y 

X' ---'> M' ----''> Y', 
k' m' 

f = m 0 k 
where are dec<::irnp:)si tions per 3.9 - then there exists a unique 

f' = m' 0 k' 
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wok = k' 0 u 
w:I'-i -+ M' such that The uniqueness of w is, of course, clear. 

ml 0 w = v 0 m • 

As for the existence of w, use 3.9 again and write 

k' 0 u = n 0 i 

vom=n'oi', 

say 

ml 0 n 
x --------~> N ---------> y' 

i' 0 k n' 
X ---------'> N I ________ > y I • 

Since 

m' 0 kl 0 U = v 0 m 0 k 

and since 

(m Ion) 0 i = m' 0 k' 0 u 

n' 0 (i' 0 k) = v 0 m 0 k 

it follows from what has been said above that there exists an isorrorphism ¢:N -+ N' 

such that 

Now put 

as desired. 

¢oi=i'ok 

m' 0 n = nl 0 ¢. 

-1 
w=no¢ oi'. 

wok = n 0 ¢ -1 0 il 0 k = n 0 i = k' 0 u 

-1 m' 0 w = m' 0 n 0 ¢ 0 i' = n I 0 il = V 0 m, 
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[Note: 

(u,v) E Mbr£(~) (f,f') 

and 

(u,W) E Morg (-+) (k,k') 

(W,v) E Mor£{-+) (m,m').J 

Proof of 3.10 Write f = m 0 k per 3.9 -- then this decomposition is rni.nim:l.l. 

For suprose as in 3.8 that f = n 0 J!. and using 3.9 once nore, 'Write J!. = m ' 0 k' • 

Thanks to the preceding discussion, the carmutative diagram 

k m 
X -----'> 11 ------'> Y 

II 
X ------''> .M' ----'> Y 

k' nom' 

gives rise to a unique w:M -+ M' such that 

wok = kt and nom' 0 W = m. 

Put h = m 'oW -- then h:M -+ N and 

h 0 k = m' 0 wok = mt 0 k' = J!. 

n 0 h = nom' 0 W = m. 

noh=m 
[Note: Such an h is unique. For => h = h', n being a 

noh' = m 

nonanorphism. ] 
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3.11 DEFINITION Let g be a category. Given an object X in g, suppose that 

{(Y.,f.) :i E I} is a set-indexed collection of elements of H.(X) -- then an element 
]. ]. 

(Y, f) E M (X) is called a union of the (Y i ' f i) provided that 

u 
and for any element U --> X of M(X) such that 

f. 
]. U 

v i, 3 gi E r-t:>r£/X (Yi > X, U --> X) , 

there exists a 

f u 
g E M:::>rg/X (Y --> X, U --> X) • 

[Note: The definition of union is not the exact analog of the definition of 

intersection (cf. 2.18).] 

3.12 DEFINITION A category Q is said to have (finite) unions if for each 

X E Ob Q and any (finite) set-indexed collection of elements of ~-1 (X), there exists 

a union. 

3.13 I..EMM2\ Suppose that g fulfills the standard conditions and has finite 

copreXlucts -- then g has finite unions. 

PRCX>F Fix X E Ob C and let {(Y., f . ) : i E I} be a finite collection of objects 
]. ]. 

of M(X) (I;<:~). Denote by 

in.:Y. ~> II Y. 
].]. iEI]. 

f: II Y.->X 
iEI ]. 
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the canonical arrows. Write f = m 0 k per 3.10, thus 

u 

k m 
Y. --> M --> X. 

1 

f. = f 0 in. = m 0 k 0 in. => (Y.,f.) $x (M,m). 
1 1 111 

Assume next that U --> X is an element of M (X) and 

f. 
1 U 

V i, 3 gi E ~rg/x (Yi > X, u --> X), 

so f. = u 0 g. -- then there exists a unique g: II Y. + U such that 9 0 in. = g .. 
1 1 iEI 1 1 1 

But 

u 0 9 0 in. = u 0 g. = f. = f 0 in. 
111 1 

=> u 0 9 = f (definition of coproduct). 

Now display the data: 

k m 
J1 Yi --> M --> X 

ir I I 
11 Y. --> U --> X • 
iEI 1 9 u 

Since the decomposition f = m 0 k is :minin1a.l and since u is a rronarorphism, there 

is an h:M + U for which u 0 h = m, Le., 

(M,m) $X (U I u) . 

[Note: The union of the empty collection of rronam::>rphisms with codanain X 
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is initial in M(X) .] 

N.B. The same argum::mt works for an arbitrary index set so long as £: has 

coproducts. 

3.14 SCHOLTIlM If S is wellpowered, fulfills the standard conditions, and 

has (finite) coproducts, then the category £ (Subc X, ~X) associated with the 

fOset (SubC x, ~X) has (finite) coproducts. 
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§4. SLICES 

Let ~ be a catego:ry. 

4.1 THEOREM If C is finitely ccmplete, then so are the ~X. 

4.2 REMARK It can happen that the £IX are finitely ccmplete, yet Q itself 

is not finitely complete. 

[Take ~ = TOPrn, the catego:ry whose objects are the topological spaces and 

whose norphisrns are the local h.ome<::nnrphisrns - then TOP rn has pullbacks but does 

not have a final object, hence is not finitely complete (cf. 1.8). On the other 

hand, the TOPu!X are finitely camplete.] 

4.3 LEr-1MA If ~ has pullbacks, then the ~/x have bina:ry products. 

u v 
PRCX>F Given objects U --'> X and V --'> X in ~X, form the pullback square 

n 
P '> V 

U '> X 
U 

u v 
in C -- then the corner arrow P -+ X is a product of U --'> X and V --'> X 

in ~X. 

4.4 W1MA If the ~/X have bina:ry products, then Q has pullbacks. 

u 
u v 

PRCXJF Consider a 2-sink U --'> X <-- V in £, thus 
U --'> X 

v 
V--> X 

E Ob £IX. 
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Let 

7f U v 
P --> X = (U --:> X) x (V --> X) • 

Then there are ccmnutative diagrams 

pru prV 

P :> U P :>V 

7fl lu 7fl lv 

X X , X X 

or still, a ccmnutative diagram 

P ----'> V 

u 

which is a pullback square in ~. 

Let X, Y E Ob ~ and let f:X + Y be a rrorphism - then f induces a functor 

f ! :~/X + £/Y via postccnposition. 

4.5 LEMMA Suppose that ~ has pullbacks -- then V f, f! has a right adjoint f*. 

u 
PRCX)F Given an object U --:> Y in ~/Y I fo:r:m the pullback square 

P :> U 

pi lu 
x- :> Y 

f 

and let 

u p 
f*(U --> Y) = P --:> X. 
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Then this prescription defines a functor f* :g/Y -+ £IX and (f! ,f*) is an adjoint 

pair. 

f g 
4.6 REMARK Let X --> Y --> Z - then 

S;/X --.> S;/Y -----'> S;/z 

g* f* 
g;z ------'> g/Y ------'> g/X. 

And 

but in general 

f* 0 g* ~ (g 0 f)*. 

Given X E Ob g, denote by i:x the inclusion ~(X) -+ £IX. 

4. 7 I.EM1A Suppose that g fulfills the standard conditions -- then i:x has a 

left adjoint 

mx:g;x -+ ~(X) • 

u k m 
[Given U --> X E Ob £Ix, write u = m 0 k per 3.10, so U --> M --> X. 

Put 

u m 
mx{U --> X) = M --> X.l 

If g has pullbacks and if f:X -+ Y is a nnrphism, then f*:g/Y -+ £IX restricts 

-1 to a functor f :~(Y) -+ ~(X) (cf. 2.15). 
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4.8 LEMMA Suppose that S fulfills the standard conditions -- then f-l has 

a left adjoint 

:~(X) -+ ~(Y). 

[Take for 3f the canposite 

~ f! irry 
~(X) --> SIX > c;jY ---> ~ (Y) • ] 

4. 9 REMARK If S fulfills the standard conditions, then so do the SIX. 
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§5. CARTESIAN CLOSEV CATEGORIES 

Let g be a category with finite products. 

5.1 DEFINITION g is cartesian closed provided that each of the f1ll1ctors 

- x Y:g ..:,. g has a right adjoint z ..:,. zY, so 

N.B. The property of being cartesian closed is invariant under equivalence. 

5.2 EXAMPLE SEI' is cartesian closed but SEI'°P is not cartesian closed. The 

full subcategory of SEI' whose objects are finite is cartesian closed. On the other 

hand, the full subcategory of SEI' whose objects are at nost co1ll1tab1e is not 

cartesian closed. 

5.3 :EXAMPLE TOP is not cartesian closed but does have full, cartesian closed 

subcategories, e.g., the category of canpact1y generated Hausdorff spaces. 

5.4 EXAMPLE CAT is cartesian closed: 

D 

D 
Mbr(£ x Q,~) ~ Mor(g,~-), 

where E- = [Q,~]. 

5.5 EXAl.fPLE Suppose t.hat (X,s:) is a boolean algebra. Put zy = 

then 

X A Y s: Z <=> x s: zY. 

E.g.: Given that x A Y s: z, write 

x = X A 1 = X A (-I Y v y) 

y v z --
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= (x A --I y) V (X A Y) 

$ (X A Y) V Z 

$ -, Y V z = zY. 

Therefore 

Mor(x A y,z) ~ Mor(x,zY) (cf. 1.4), 

hence g (X, $) is cartesian closed. 

Let g be a cartesian closed category. 

5.6 DEFINITION The object zY is called an exponential object, the evaluation 

rrorphism evy , Z being the arrow 

with the property that for every f:X x Y + Z there is a unique g:x + zY such that 

f = ev 0 Y,Z (g x i<\r). 

One may view the association (Y,Z) + zY as a bifunctor, covariant in Z and. 

contravariant in Y. 

• The functor 

Y ( --) :g + g 

is defined on objects Z by 

f 
and. on rrorphisms A --> B by 

Y f Y fY Y 
( --) (A --'> B) = A --> B , 
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where fY is the unique arrow rendering the diagram 

ev 
A

Y 
x Y -------'> A 

fY x idi if 

BY x Y -----> B 

coomutati ve. 

• The functor 

is defined on objects Y by 

f 
and on rrorphisms A --> B by 

ev 

(- ) z 

where zf is the unique arrow rendering the diagram 

ZB x A 
id x f 

> ZB 

zf x idl 

x B 

1 
ev 

ZA x A > Z 
ev 

coomutative. 

5. 7 LEl1MA. The functor 

admits a left adjoint, viz. 
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N.B. (-) Y preserves limits while Z ( -) sends co1imits to limits. 

5.8 LEMMA In a cartesian close::! category g, 

_II Y. 
1 Y. Y x Z (XY) Z i i (1) X :::: (3) X :::: 1T (X 1) i 

i 

(2) 1T Y 1T y 
(4) X x _II _II X.) :::: (X.) ; ( Y. ) :::: (X x Y.). 

i 1 
i 1 

i 
1 

i 1 

5.9 LEMMA In a cartesian close::! category g, finite prcxiucts of epinorphisms 

are epinorphisms. 

5.10 RAPPEL A full, isarorphism close::! subcategory Q of a category g is said 

to be a reflective subcategory of g if the inclusion l:Q + g has a left adjoint 

R, a reflector for D. 

[Note: A reflective s~tegory Q of a category g is c1osOO under the forrm.­

tion of limits in g.] 

let Q be a reflective subcategory of a category g, R a reflector for D -

then one may attach to each X E Ob g a rrorphism rx:x + RX in g with the following 

pro:perty: Given any Y E Ob Q and any rrorphism f:X + Y in g, there exists a unique 

rrorphism g:RX + Y in Q such that f = g 0 r x • 

N.B. Matters can always be arrange::! in such a way as to ensure that R 0 1 = 

5.11 LEMMA Suppose that g is cartesian closed and let Q be a reflective 

subcategory of g. Assume: The reflector R:g + Q preserves finite prcxiucts -- then 
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D is cartesian closed. 

[If Y,Z E Ob ~, then ZY is iscm:>rphic to an object in ~, hence zY E Ob ~.] 

Let ~ be cartesian closed -- then for any final object *c' we have 

5.12 DEFINITION Let ~ be a category with an initial object ~c -- then ~c is 
- -

strict if every norphism f:X -+ ~c with ccd.ana.in ~c is an iscm:>rphism. 
- -

[Note: Any norphism to an initial object is an epiIrorphism.] 

5.13 1»t1A Let C be a category with finite products and an initial object - ' 

~C -- then ~C is strict iff V X E Ob g, 

X x ~C 1::l ~C· - -
PfO)F If ~C is strict, then the projection X x ~C -+ ~C is an iScm:>rphism. 

Conversely, let f:X -+ ~C be a norphism -- then there is a carrmutative diagram 

id 
X <------

fl 
X <----- X ----f--..... ;> ~g , 

from 'Which it follows that f is a split rroncm:>rphism (! 0 f = i~). But f is 

-------- .--.-~~ 
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also an epinorphism. Therefore f is an isarorphism. 

5.14 APPLICATION Let g be a cartesian closed category with an initial object 

~c - then ~c is strict. - -
['!be functor - x X preserves colimits, in particular initial objects, so 

~c x X :::: ~C. And 

~c x X z X x ~C.] 
- -

5.15 EXAMPLE Under the preceding assumptions, 

~c 
X - :::: 

[Given A E Ob g, 

~c 
Mor(A,X -) Z Mor(A x ~C,X) 

~c 
But there is a unique arrow ~c -+ X, 

~c 

so there is a unique arrow A -+ X - and this 

means that X - is a final object.] 

5.16 LEMMA Let g be a cartesian closed category with an initial object ~g --

then \f X E Ob g, the canonical arrow ~c --> X is a rronaIOrphism, thus is an 

elarent of M (X) . 

PR.(X)F Supp::>se that a,b:A -+ ~g are rrorphisms such that o a = o b. Since 

! 
A is initial (~c being strict), a = b, hence ~c --> X is a rrona:rorphism. 
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5.17 :E:X:M1PLE Under the preceding assumptions 

[The functor ( - )X preserves limits, in particular m::m.a::rorphisms. Therefore 

!X 
(¢c) X ---'> (* c) X 

is a m::>l1OIIOrphism. But 

(* )X c :::; *C' 

so 

[Note: ~1{*C) is an exrxmential ideal in the sense that if Z --> *C is a 

I Y . 
m::>:narorphism, then V Y E Ob g, Z --> *c is a m::>norrorphism.] 

5.18 RAPPEL An object in a category g is called a zero object if it is both 

an initial object and a final object. 

5.19 LEMMA Suppose that g is cartesian closed - then g has a zero object iff 

g is equivalent to !. 

5.20 EXAMPLE Neither SEI'* nor TOP* is cartesian closed. 

'" 5.21 THEOREM let g be a small category -- then g is cartesian closed. 

A 

PRO)F Given F ,G E Ob g, define 
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by the rule 

GF(X) = Nat(~ x F,G) (X E Ob £). 

" 5.22 EXAMPLE ~ = SISET is cartesian closed: 

Nat(X x Y,Z) z Nat(X,ZY}, 

where 

zY ([n]) = Nat (t;[n] x Y,Z) 

5.23 DEFINITlOO A category £ is locally cartesian closed if V X E Ob £, the 

category £/X is cartesian closed. 

[Note: A locally cartesian closed category with a final object is cartesian 

closed.] 

5.24 EXAMPLE SET is locally cartesian closed. Proof: SET/X is equivalent 

to~. 

5.25 EXAMPLE CAT is cartesian closed but CAT is not locally cartesian closed. 

5.26 EXAMPLE 'roPrn is locally cartesian closed but 'roP
LH 

is not cartesian closed. 

5.27 THEOREM Let £ be a ana11 category - then § is locally cartesian closed. 

A 

PROOF Given F E Ob g, write e/F in place of groc F - then the canonical arrow 

/\. " 
g/F --> £/F 

A 
is an equivalence and £/F is cartesian closed (cf. 5.21). 
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5.28 THEDREM Let s: be a category with pullbacks. Assume: V f, f* has a 

right adjoint f* -- then s: is locally cartesian closed. 

PR(X)F Thanks to 4.3, £:IX has binary products. Since £:IX also admits a final 

object (viz. i~:X -+ X), it follows that £:IX has finite products. This said, fix 

u:U -+ X 
objects in £:IX and realize u x v as the corner arrow P -+ X in the 

v:V -+ X 

pullback sq:uare 

P ----> V 

U ----> X , 
u 

thus 

u x v = u 0 S = v 0 fJ = v! v*u. 

Then for any f:Y -+ X, we have 

Mor(u x v,f) = Mor{v!v*u,f) 

::::; M::>r (v*u, v*f) 

Definition: 

Suppose that g is finitely canplete. Given X E Ob S:' denote by 

the forgetful functor and by 

X*:g -+ g/x 
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the functor that sends Y to X x Y + X. 

5.29 CRITERION The functor - x X has a right adjoint iff the functor X* has 

a right adjoint. 

5.30 LEMMA If g is locally cartesian closed, then V X E Ob g, the category 

g/X is locally cartesian closed. 

PROClF For every object A + X of g/X, 

g/X/A + X ;::; g/A. 

5.31 LEMMA If ~ is locally cartesian closed, then V X E Ob ~, the category 

£IX is finitely canplete. 

PROOF Since the g/x are cartesian closed, they have products, in particular 

binary products, hence g has pullbacks (cf. 4.4). So V X E Ob g, £IX has pullbacks 

(pullbacks in £IX are computed as in ~ (cf. 4.1)). But £IX has a final object, 

thus SIX is finitely canplete (cf. 1.8). 

5.32 LEMMA If g is locally cartesian closed, then V f, f! has a right adjoint 

f*. 

[Because, as noted above, ~ has pullbacks.] 

5.33 THIDREM If ~ is locally cartesian closed, then V f, f* has a right 

adjoint f*. 

[A norphism f:X + Y is an object of g/Y and 

X ----:> Y 

Y----Y 
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Therefore 5.29 is applicable.] 

N.B. f* preserves exponential objects. 
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§6. SUBOBJECT CLASSIFIERS 

Let ~ be a finitely canplete category. 

6.1 DEFINITION A subobject classifier for £ is a pair W,T), where T:*C -+ Q 

is a rronarorphism with the property that for each object X in ~ and every rronQ­

rrorphism f:Y -+ X t..l-tere exists a unique rrorphism Xf:X -+ Q such that the diagram 

Y ---->:> *C 

fT 
X -----'> Q 

is a pullback square. 

[Note: The rrorphism Xf:X -+ Q is called the classifying arrow of (Y,f) in X.] 

6.2 EXA."MPLE idQ is the classifying arrow of (* C' T) in Q. 

6. 3 I..El1MA If W, T) and W' IT') are subobject classifiers, then Q and Q' are 

isarrorphic. 

PR(X)F Fran the definitions, there are pullback squares 

*c ------ *c *c *C 

T·1- 1-T { fT' 
-----> Q Q > Q' • 

x Xl 

Therefore X I <:I X is the classifying arrow of (* C' T I) in Q I : 
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*c *c 

T' r fT' 
nl > nl 

Xl 0 X 

SO, by l.Uliqueness, X lOX = id • And , analogously, X 0 X I = idr.. 
nl ~. 

6.4 EXAMPLE Take £ = SEr, let *c = {l}, n = {O,l}, and define T:*C -+ n by 
- -

sending 1 to 1. Given X, if Y is a subset of X and f:Y -+ X is the inclusion, 

then there is a pullback square 

Y ------'> {l} 

1 
X -----'> {O,l}, 

Xy 

where Xy is the characteristic function of Y. 

6.5 I..ErJMA Let (n, T) be a subobject classifier -- then V X E Ob S, 

X x *C --~> X 

ia.x x 

X x n --~>X 

is a subobject classifier in £IX. 

[Note: Recall that SIX is finitely complete (cf. 4.l}.J 

6.6 RAPPEL A category g is balanced if every norphism that is simultaneously 



3. 

a monaoorphism and an epirrorphism is an isa:rorphism. 

6. 7 EXAMPLE SET is balanced but TOP is not balanced. 

6.8 W1t-1A Let S be a category and let f:X + Y be a morphism. Assume: f is an 

equalizer and an ep:in:orphism - then f is an isa:rorphism. 

PROOF Suppose that f = eq(u,v), hence u 0 f = v 0 f, so u = v (f being an 

epirrorphism). But the equalizer of u = v is i<\-, hence there is a unique arrOW' 

g:Y + X such that fog = i<\-: 

f 
X ------''> Y 

gl ri~ 
Y Y 

And then 

fog 0 f = i<\- 0 f = f = f 0 i~ 

=> 

g 0 f = i~. 

Therefore f is an isa:rorphism. 

6.9 LEMMA S admits a subobject classifier (Q, T), then every monanorphism 

f:Y + X is an equalizer. 

PRCOF Consider the pullback square 

Y ----> *c 

F 
X ----'> Q • 
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Then T is a split m:::>ncm:>rphism, hence the same is true of f. And a split nono­

m:::>rphism is an equalizer. 

6.10 SCHOLIUM A cate:Jory with a sul:x:>bject classifier is balanced. 

Assume: g admits a subobject classifier (n, T) • 

6.11 LEMMA Let (Y,f), (Z,g) be elanents of M(X) - then (Y,f) "'X (Z,g) iff 

6.12 LEMMA Given X E Mor(X,n), form the pullback square 

Y ----'> *c 

F 
X ----'> Q 

X 

Then Xf = X· 

6.13 THE:oREM The map [f] -+ Xf is a bijection between the class Sub
C 

X of 

sul:x:>bjects of X and the set Mor (X,n) • 

[Note: Therefore Subc X "is a setll
, i.e., has a representative class of 

m:::>narorphisms which is a set, thus g is well}X)W'ere:l. J 

Consider pullback squares 

y' '> Y Z' > z 

fll If g'l Ig 

x' '> X x' '> X • 
k' k' 



5. 

6.14 ~~ If (Y,f) X (Z,g), then (Y',ff) -X (ZI,gl). 

Therefore not only is a pullba.ck of a noru::xrorphism a noru::xrorphism but a 

pullba.ck of a subobject is a subobject. 

Denote by Sub
c 

the association g,oP 4 SEl' that sends X to Sub
C 

X and k I : X I 4 X 

to Subc k', where 

SubC k':Subc X 4 SubC XI 
- - -

is the arrOW' [f] 4 [f I.] • 

6.15 I..EMJJA. Subc is a functor. 

PROOF It is clear that Subc sends the identity of X to the identity of Subc X. 
- -

As for compositions, if 

k l :X 1 4X 

k" :x" 4 XI, 

then the claim is that 

Sub (k' 0 k"l = Sub k" Sub k' C C 0 C . 

To see this, pass fran the pullba.ck squares 

Y" c> yl y' c> Y 

f"l 1 f' , f'l if 
X" > Xl Xl c> X 

k" k' 

to the pullba.ck square 

y" '> Y 

f"l ~' 
Xl '> X 

k' 0 :It" 



6. 

6.16 THEX):RFl'l The presheaf Subc is represented by Q: lei X E Ob ~, 

[Note: The natural ison:orphism 

Sub
C 

+ Mor(-,Q) 

sends a sUbobject [f] of X to its classifying arrow Xf.] 

6.17 LEMMA Every rronarrorphism f: Q + Q is an isc:rrorphism. 

PRCX)F It suffices to sJ:loi,v that f 0 f = idQ" Form the pullback squares 

U ----'> *C V---.-.;> *C 

l~ 1 1~ 
Q ----> Q U ----'> Q • 

f 9 

Since f is a rronarorphism, the arrow U --> *C is a rronarrorphism and since 9 is 

a rronarrorphism, the arrow V ->*C is a IOOIlOItOrphism, thus the squares in the 

diagram 

u n V = V ----...... > V ---> U ----> * c 

1 1 F 
u -----> *C ---> Q --_ ...... > Q 

T f 

are pullback squares, so by uniqueness, f 0 T 0 = g, which implies that 
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f 0 fog = f 0 T 0 =g=goi<\J 

or still, that the square 

i<\J 
U > U 

91 1
9 

Q > Q 
f 0 f 

ccmrutes. Working through the definitions and bearing in mind that f 0 f is a 

:rronan:orphism, it follCMS that this square is in fact a pullback square. Therefore 

the outer rectangle 

U ----......;> U ----> *c 

r 
Q -----> Q ----> Q 

f 0 f f 

is a pullback square, hence by m:dqueness, 

f 0 f 0 f = f = f 0 idQ => f 0 f = idQ• 
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97. SIEVES 

Let g be a small category. 

7.1 DEFINITION Let X E Ob g - then a sieve over X is a subset ~ of Ob g;x 

g f f 
such that the camposition z --;> Y --> X belongs to ~ if Y --> X belongs to ~. 

OP. OP 7.2 DEFINrrION A subfunctor of a functor F:C + SET 1.S a functor G:C + SET - -
such that V X E Ob g, GX is a subset of FX and the corresponding inclusions con­

stitute a natural transfonnation G + F, so V f:Y + X there is a corrmutative 

diagram 

(;i. --------'> FY 

GX -------'::> FX • 

7.3 LEMMA Fix an object X in g -- then there is a one-to-one correSJ:X>ndence 

between the sieves over X and the subfunctors of ~. 

PRCX)F If ~ is a sieve over X, then the designation 

(;i. = {f:Y + X & f E ~} 

g 
defines a subfunctor of hx (given Z --> Y I Gg:(;i. + GZ is the nap f + fog) • 

COnversely, if G is a subfunctor of hx, then (;i. c M:>r (Y,X) and 
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is a sieve over X. 

7.4 EXAMPLE The maximal sieve over X is .$max = Ob £IX and the associated 

subfunctor of ~ is hx itself. The minimal sieve over X is .$. = JJ and the 
IUlll 

" associated subfunctor of hx is JJ" (the initial object of £>. 
C 

Consider :t1OW' the functor category 

N.B. £ is wellpowered (cf. 2.14). 

A " 

7.5 LEMMA The rronorro:rphisrns in g are levelwise, i.e., an arrow ::!:G -7- F in C 

is a rrona:ro:rphism iff V X E Ob g, 

;:; 'GX -7- FX 
~X' 

is a rronano:rphism in SET. 

Suppose that ~:G -7- F is a rnon.cmJ:rphism in £ -- then (G,E) E M(F), so 

V X E Ob g, 

and 

'Where G'X is a subset of FX and Ex is the inclusion G'X -7- FX. 

7.6 LEMMA G' is a subfunctor of F. 

It follows that there is a one-to-one correspondence between the subobjects 

of F and the subfunctors of F. 
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7. 7 THOOREM let C be a small catego:ry -- then C admits a suOObject classifier. - -
Definition of n There are tw:> ways to proceed • 

• Define 

on an object X by letting nx be the set of all subfunctors of rx and on a norphism 

f: Y + X by letting rtf: nx + stY operate via the pullback square 

nf(G) ------''> G 

• Define 

on an object X by letting r2X be the set of all sieves over X and on a norphism 

f:Y + X by letting rtf:r2X + rN be the rule $ + $ • f, where $ • f = {g:f 0 g E $}. 

Definition of Ta
A 

+ rt In terms of subfunctors, TX(*) = rx and in terms of 
C 

sieves, TX(*) = $max' 

The claim then is that the pair (rt,T) is a subobject classifier for g and 

for this we shall work with sieves, the details in the subfunctor picture being 

analogous. So let E:G + F be a monarrorphism, where w.l.o.g., G is a subfunctor 

of F -- then the classifying arrcm X-;:;:F + rt of (G,E) in F at a given X E Ob g, 

is the map 
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that sends x E FX to the sieve 

f 
(XS)X(x) = {y --:> X: (Ff)x E GY}. 

Since 

the diagram 

GX -----'> * 

FX -----'> 0.X 

is a pullback square in SET, thus the diagram 

G -------''> * A 

F -------':> Q 

is a pul1.l::>.:ick square in §. This canpletes the verification, m:::dulo uniqueness, 

i.e., if 

G ------''> * A 

F·-----> Q 

x 

is a pul1.l::>.:ick square, then X = X;:; 
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7. B EXAMPLE Let G be a group, considered. as a category ~ - then the category 

of right G-sets is the functor category [~OP ,SET], thus is cartesian closed. (cf. 

5.2l) and admits a subobject classifier (cf. 7.7). 

Let ~ be a small category - then 

A 

• C fulfills the standard conditions (cf. 3.4 and 3.6); 

• £ admits a subobject classifier (cf. 7.7). 

A 

7.9 LEMMA Every epirrorphism in ~ is a coequalizer. 

PRCX)F Suppose that E:F -+ G is an epirrorphism. Write E = m 0 k per 3.9, thus 

m is a rron.arorphism and k is a coequalizer. But then m is necessarily an epi-
A 

rrorphism and ~ is balanced (cf. 6.lO). Therefore m is an isorrorphism, hence E is 

a coequalizer. 
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§8. HEYTING ALGEBRAS 

A rounded lattice (X, ~) is called a Heyting algebra if g (X, ~) is cartesian 

closed (as a category with finite prooucts) . 

N.B. If x,y,z E X, then 

X A Y ~ z <=> x ~ zy (cf. 1.4). 

SO, e.g., 

y ~ z <=> zy = 1. 

In particular: x 
'if x E X, x = 1. And 

.;t A Y ~ z. 

In particular: x 
'if x E X, X A 0 = O. 

8.1 EXAMPLE Every boolean algebra is a Heyting algebra (cf. 5.5). 

8.2 J:..EM.1A let (X,~) be a IX>set which is linearly ordered ('if x,y E X, either 

x ~ y or y ~ x) and with least and greatest elerrEl1ts 0 and 1 -- then (X,~) is a 

OOunded lattice and, as such, is a Heyting algebra. 

PRYJF g(X,~) has binary products: 

x if x :s: y 

y if y ~ x 

and binary coproducts: 

Y if x ::;; y 
xvy= 

x if y :s x. 

This said, the prescription 

1 if x ::;; Y 

yify:s:x&y;cx 

----.--~~ ..... 
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defines an exponential object, so S(X,:s:) is cartesian closed. 

8.3 EXAMPLE The closed unit interval [0,1] c g in its usual ordering is a 

Heyting algebra (but not a boolean algebra) • 

8.4 LEMMA A Heyting algebra is necessarily a distributive lattice. 

The difference between a boolean algebra and a Heyting algebra lies in the 

notion of compleroont. 

8.5 DEFINITION Let (X,:s:) be a Heyting algebra. Given x E X, put x = 

x o -- then x is called the pseudocampleroont of x. 

N.B. In a boolean algebra (X,:s:), 

ox=_ xv 0=- x 
I I 

(cf. 5.5). 

8.6 LEMMA Let (X,:::;) be a Heyting algebra -- then V x EX, 

x = v{y:x A y = o}. 

8. 7 EXAMPLE Let S be an infinite set and let X be the subset of the :power 

set FS consisting of all finite subsets of S together with S itself -- then (X,=) 

is a distributive lattice but it is not a Heyting algebra. 

[If x E X and x ~ SJ, then the set of yES such that x n y = SJ has no largest 

member. ] 

To recapitulate: 

boolean algebra => Heyting algebra => distributive lattice 

--------_ ..... - .. 
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and none of the iJ:rplications are reversible. 

8.8 RULES In a Heyting algebra (X,~), 

(1) -I o = 1, 1 = 0; (6) x ~ Y => - x <- - Yi , - , , 

(2) x ~ Y => Y ~-, Xi (7) x ~-, -, Xi 

(3) x=-, - , Xi (8) -I - , -, x=-, Xi 

(4) (x v Y) --, X A-, Yi (9) - , (x A y) =- x A-, - , Yi 

x (yx) 
-I -, x 

(5) xVY~Yi (10) - , -, = -, Y) 

[Note: This list is by no means exhaustive but suffices for our purposes 

(there is another list to the effect that any Heyting algebra satisfies the axians 

of the intuitionistic propositional calculus) .] 

8.9 LEMMA Let (X,~) :be a Heyting algebra - then (X,~) is a l::x:x:>lean algebra 

iff V x E X, x v -, x = 1-

[Note: In any Heyting algebra, x A -, X = 0.] 

8.10 LEMMA Let (X,~) :be a Heyting algebra - then (X,~) is a l::x:x:>lean algebra 

iff V x E X, -, -I x = x. 

8.11 EXAMPLE Given a topological space X, let O(X) :be the set of open subsets 

of X, thus under the operations 

UAV=UnV 

U ~ V <=> U c V, , 0 = fJ, 1 = X, 

UvV=UUV 

O(X) is a bounded lattice. Denote by Q(X) the category underlying O(X) -- then 
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Q (X) is cartesian closed: 

Therefore O(X) is a Heyting algebra. Here 

-I U = j1 = int (X - U) = X - ct U 

=> 

-I -I U = int ct U ~ U. 

[Note: In general, O(X) is not a l::x::lolean algebra (cf. 8.9 and 8.10).] 

8.12 DEFINITION Let (X,::;;) :be a Heyting algebra - then an x E X is l::x::lolean 

-I -I x = x. 

[Note: It is always the case that x ::;; -I x.] 

8.13 EXAMPLE In 8.11, an open set U is l::x::lolean iff it coincides with the 

interior of its closure. 

8.14 NarATION (~,::;;) is the subposet of (X,::;;) whose elements are the l::x::lolean 

elements of X. 

8.15 THEOREM (~,::;;) is a l::x::lolean algebra. 

PROOF First, 

o = 0 -,-, 
-I 1 = 1, 

so 0 and 1 are l::x::lolean. Next, if x,y E X are J.:x)olean, then 

-, -I (;x 1\ y) = -, -I x 1\ -, -I Y = x 1\ y, 



5. 

thus x A Y is l::x::Jolean. On the other hand, x v y is not necessarily l::x::Jolean. 'Ib 

rerredy this, put 

x ~ y =-1 (x v y) • 

Then 

-I -I (x::. y) = -, -I -I -I (x v y) 

= -, (x v y) = x ~ y. 

So, with these definitions, (Xb,::;) is a bounded lattice (which, in general, is not 

a sublattice of (X,::;». There remains the claim that (Xb,::;) is distributive and 

COIlplemented. 

• v x,y,z E Xb: 

X A (y ::. z) = x A -, -I (y v z) 

=-1 -I x A-I -I (y v z) 

=-1 -I (x A (y v z» 

=-1 -I «x A y) v (x A z» 

= (x A y) v (x A z). -
Analogously, 

x v (y A z) = (x::. y) A (x ~ z) • 

• v x E ~: 

X A -I x = 0 

and 

x ::.-, x= -I (x v x) 

- -I (-. 1 (x v -I x» 
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;:::~, (-, x A-, -, X) 

=-, (-, X A X) 

=-, 0 

;::: 1. 

A 

8.16 THEOREM Let £ be a SIIIo:'9.11 category - then V F E Ob £, the :paset Sub" F 
C 

is a Heyting algebra. 

PID:>F Suppose that Gl ,G2 are subfunctors of F - then under the operations 

, OX = ~, lX = FX, 

G G 
Sub" F is a bounded lattice. As for the exponential object G2

1 , take (G1
2)X to 

C 

be the set of X E FX which have the property that if f:Y -+ X and if (Ff)x E GIY , 

then (Ff)x E G
2
Y. 

[Note: So I if G is a subfunctor of F I then (-, G) X is the set of X E FX 

such that for all f:Y -+ X, (Ff)x ¢ GY.] 

8.17 EXAMPLE Consider the functor category [gOP , SE"f] per 7.8 - then for 

every right G-set X, the Heyting algebra Sub,., X is actually a boolean algebra. 
G 
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§9. LOCALES 

A locale is a Heyting algebra (X, $) for which the category £ (X, $) is complete 

and cocarrplete (cf. 1.10). 

[Note: If £(X,$) is complete and cocarrplete, then £(Xb,$) is complete and 

cocarrplete, hence the lJoolean algebra (Xb, $) (cf. B .15) is also a locale.] 

9.1 EXAMPLE The closed unit interval [0,1] c E in its UBUal ordering is a 

locale (cf. B.3). 

9.2 EXAMPLE X is a topological space, then O(X) is a locale (cf. B.ll). 

[Here v U. = U U. while AU. is the largest open set contained in all 
iEI 1 iEI 1 iEI 1 

9.3 EXAMPLE If £ is a small category and if F E Db g, then Sub A F is a locale 
C 

(cf. B.16). 

9.4 I..EM<m. Suppose that (X, $) is a locale - then for any index set I, 

X A ( V y.) = V 
1 

(x A y.) • 
1 

[Recall that left adjoints preserve colirnits.] 

[Note: If (X,$) is a rounded lattice for which the category £(X,$) is 

complete and cocarrplete (cf. 1.10) and with the property that "arbitrary joins 

distribute over finite :rreets", Le., the conclusion of 9.4, then (X,$) is a Heyting 

algebra or still, is a locale. Proof: Put 

zy = v{x:x A y $ Z}.] 

--_ ..... _--_ ..... 



2. 

Generically, lcx:::ales are denoted by L,M, ••• and are to be regarded as 

categories. 

9. 5 LEMMA let L be a lcx:::ale • Given x E L, put 

tx = {y E L:x s y} 

t-x = {y E L:y s x}. 

tx 
Then the subposets are locales. 

t-x 

9.6 DEFINITION let L,M be locales -- then a localic arrow f:L + M is a pair 

of functors 

f*:M + L 

such that f* is a left adjoint for f* and f* preserves finite products. 

9. 7 REMARK There is a one-to-one correspondence between the localic arrows 

f:L + M and the functors f*:M + L such that 

(1) f* (v y.) 
1. 

== v 
iEI 

f* (y.) , 
1. 

(2) f*(y A yl) = f*(y) A f*(y'), 

(3) f*(1) = 1, 

for all indexing sets I and elements y i ' Y , Y I of M. 

[If f* satisfies these conditions, then by quoting the appropriate "adjoint 

functor theorantl one infers the existence of f* (f* is uniquely detennined by f 
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(in a poset, the only isarorphisrns are the identities (cf. 1.2))). Specifically: 

f*(x) = v{y E M:f*(y) ~ x} (cf. 1.4).J 

9.8 EXA.1IIJPLE Let X,Y be topolog-ical spaces and let f:X + Y be a continuous 

function - then f induces a localic arrow f:O(X) + O(Y). 

-1 
[Take f* = f , hence 

f*(U) = U {V E O(Y) :f-l(V) c U} 

or still, 

9.9 NOrATION r..t::c is t..'1.e category whose objects are the locales and whose 

rrorphisrns are the localic arrCMS. 

9.10 THEOREM. r..t::c is canplete and cocanplete. 

N.B. An initial object for r..t::c is {*} and a final object for r..t::c is {O,lL 

[E.g.: Given L, a localic arrow f:L + {O,l} must have the property that 

f* (0) = 0, f* (1) = 1 implying thereby the uniqueness of f as well as its existence 

(cf. 9.7). J 

9.11 DEFINITION A pomt of a locale L is a local:ic arrow p: { 0, l} + L. 

9.12 DEFINITION An element x of a locale L is prime if V a,b E L, 

a A b ~ x => a ~ x or b ~ x. 

9.13 LEMMA Let L be a locale - then there is a bijection between the points 

of L and the prime elements of L. 
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PR(X)F Given a p:>int p of L, put 

x = via E L:p*(a) = O}. 

Then p* (x) = 0, hence x ~ 1 (p* (1) = 1). And x is prin:e: 

a A b s x => p*(a A b) = 0 

=> p*(a) A p*(b) = 0 

=> p*(a) = 0 or p*(b) = 0 

=> a s x or b s x. 

Cbnversely, if x E L is pdme, define p*:L ~ {O,l} by 

p*(a) = 
1 if a t x. 

Then p* satisfies (1), (2), (3) of 9.7, so p* is the left adjoint constituent of 

a localic arrow p:{ O,l} ~ L. 

• Start with a p:>int p, fonn the prime element x as al:x:>ve, and consider 

the p:>int q associated with x. Given a E L, 

q*(a) = 0 <=> a s x <=> p*(a) = O. 

Therefore q* = p* or still, q = p. 

• Start with a prime element x, taSS to the p:>int p corresp:>nding to x, 

thence to the prime element y corresp:>nding to p. Given a E L, 

a s x <=> p*(a) = 0 <=> a s y. 

Therefore x = y. 

9.14 EXAMPLE Let X be a topological Stace -. then each x E X detennines a 



rx>int PX:{O,l} + O(X), thus 

5. 

p*(U) = 0 <=> X ¢ U, x 

the prime element per p being X ~ {x}. x 

9.15 NOTATION Given a locale L, let 

pt(L) = Mor({O,l},L), 

the set of rx>ints L. 

[Note: It can happen that pt(L) =~. E.g., take the real line R in its 

usual torx>logy and let 

Then L has no prime element, thus pt (L) = ~ (cf. 9.13). ] 

9.16 LEMMA Let L be a locale. Given x E L, put 

U = {p E pt(L);p*(x) = l}. x 

Then the collection {U :x E L} is a torx>logy on pt(L) • 
x 

[Note: We have 

- U = ~ o 

Ul = pt(L), 

u U = U , U n U = u .J 
l'EI Xl' v X. X Y X A Y 

iEI 1 

N.B. If f:L + M is a localic arrow, then rx>stcamposition 

pt(f) :pt(L) + pt(M) (p + fop) 

is continuous. 



6. 

[In fact, 

Therefore these definitions give rise to a functor 

pt:lOC -+ TOP. 

In the other direction, let 

toe : TOP -+ lOC 

be the functor that sends X to 0 (X) and f:X -+ Y to its associated loca.lic arrow-

f:O(X) -+ O(Y) (cf. 9.8). 

are 

9.17 THEOREM The functor pt is a right adjoint for the functor loe. 

[Note: The arrows of adjunction 

1-1 E Nat (id.rop' pt 0 loe) 

V E Nat (loe 0 pt I i<\oc) 

• Given a top:>logical space X, 

1-IX:X -> pt(O(X» 

sends x E X to px (cf. 9.14) i 

• Given a loeale L, the left adjoint part of 

is the functor 

vt:L -> O(pt(L» 
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9.18 RAPPEL Let X be a to};Ological space - then a nonempty closed subset 

8 c X is irreducible if for all closed subsets 81 ,82 of X, 

8 c 81 U 82 => 8 c 81 or 8 c 82 , 

i.e., if X - 8 E O(X) is prime. E.g.: V x E X, {x} is an irreducible closed 

subset of X. 

[NOte: The only irreducible closed subsets of a Hausdorff space are single­

tons. ] 

9.19 DEFINITION A tor:ologica1 space X is sober provided that every irreducible 

closed subset 8 of X is the closure of a unique };Oint x E X:8 = {x}. 

[NOte: Consider the map x -+ {x} fran the r:oints of X to the irreducible 

closed subsets of X -- then X is TO iff this map is injective and X is sober iff 

this map is bijective.] 

9.20 EXAMPLE The spectrum of a corrmutative ring with unit in its Zariski 

tor:ology is sober. 

9.21 CRITERION A tor:ological space X is sober iff the arrOW' of adjunction 

llx:X -+ pt (O(X) ) 

is bijective. 

9.22 LEMMA Let L be a locale -- then pt(L) is a sober tD};Ological space. 

PRCX:>F It is a question of applying 9.21 when X = pt(L). So let 

Q:{O,l} -+ O(pt(L» 

be an element of pt{O(pt(L») -- then there is a unique };Oint q E pt(L} such that 
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Pq = Q (here 

p*(U) = 0 <=> q ¢ U (cf. 9.14». 
q x x 

'Ib see this, let 

y = v{x E L:Q*(U ) = a}. 
x 

'!hen Q* (Uy ) = 0, hence y ;to 1 (Q* (U
l

) = Q* (pt (L» = 1) and it is .i.nmadiate that 

y is prime. Let now q E pt(L) be the point corresponding to y, thus 

q*(x) = 

Claim: p = Q. Proof: V x E L, q 

Oifx:::;y 

lifx,iy 

p*(U) 0 <=> q ¢ U 
q x x 

<=> q*(x) = 0 

<=> X :::; Y 

<=> Q*(U ) = O. 
x 

(cf. 9.13). 

'Ihat q is 'lUlique can be established by a similar calculation. 

9.23 DEFINITION A locale L is spatial if U = U => x = y. 
x y 

N.B. In other ~rds, L is spatial if 

vt:L -+ O(pt(L» 

is injective (it is surjective by definition) • 

9 • 24 EXAMPLE Let X be a topological space -- then the locale 0 (X) is spatial. 
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[Given U E o (X) I 

V~{X) (U) = {p E pt{O{X»:p*{U) = l}. 

And 

Px E V~{X) (U) <=> x E U. 

Therefore 

V~(X):O(X} + O(pt{O(X»} 

is injective.] 

The reason for introducing "sober topological spaces" and "spatial locales" 

is the following easy consequence of 9 .17 • 

9.25 THEOREM'Ihe category of sober tofOlogical spaces is equivalent to the 

category of spatial locales. 

Details: 

• A tor:ological space X is sober iff the arrow of adjunction 

11x:X + pt{O(X» 

is a hane::m::>rphism. 

[If X is a tOfOlogical space, then lJX is continuous (being a norphism in 

'roP) and if in addition X is sober, then lJX is bijective (cf. 9.21), hence open: 

lJx{U) = Uu •••• J 

• A locale L is spatial 

is an isarrorphism of locales. 

the arrow of adjunction 

vL:O(pt(L» + L 
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[If L is a spatial locale, then vt is bijective. M:>reover, vt preserves 

the poset structure (clear) and reflects it: 

U c U => U = U n U = U x y X A Y X Y x' 

so by injectivity, x A Y = x or still, x ::; y.] 

Turning to 9.25, the image of the ftu1ctor pt is contained in the full sub­

category of 'lOP whose objects are the sober topological spaces (cf. 9.22) and the 

image of the ftu1ctor .inc is contained in the full subcategory of roc whose objects 

are the spatial locales (cf. 9.24). Therefore the adjunction (.toe, pt) restricts 

to an adjtmction on these smaller subcategories and by the ab:>ve observations, the 

restricted arrows of adjtu1ction are natural iSOlIOrphisrns. 

9.26 SCHOLTIl>1 Let X be a topological space -- then the locale O(X) is iso-

rrorphic to the locale of open subsets of a sober topological space. 

[For 0 (X) is spatial (cf • 9.24), hence 

VO(X):O(pt(O(X») + O(X) 

is an iSOlIOqh.ism of locales. But pt(O(X» is sober (cf. 9.22).] 
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§10. SITES 

Let S be a small category. 

10.1 NOTATION Given a sieve $ over X and a llD:rphism f:Y -+ X, put 

f*$ = {g:cod g = Y & fog E $}. 

Then f*$ is a sieve over Y. 

10.2 DEFINITION A Grothendieck to};:ology on S is a f'lIDCtion L that assigns to 

each X E Ob S a set LX of sieves over X subject to the following assumptions. 

(2) If $ E LX and if f:Y -+ X is a llDrphism, then f*$ ELy' 

(3) If $ E LX and if $' is a sieve over X such that f*$' E Ly for all 

f:Y -+ X in $, then $' E LX' 

10.3 DEFINITION A site is a pair (S,L), where C is a small category and L is 

a Grothendieck to}X)logy on S. 

10.4 EXAMPLE Let L be a locale. Given x E L, a sieve over x is a subset $ of 

+x (cf. 9.5) which is hereditary in the sense that 

v s E $, V a E L, ass => a E $. 

One then says that $ covers x if x = v $. Denoting by LX the set of all such $, 

the assignment x -+ L is a Grothendieck to}X)logy L on L. x 

[It is straightforward to check (1), (2), and (3). 

Ad (1) Here $max = {ox and it is obvious that 

vy = +x. 
ysx 
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Ad (2) If $ E lX and if y :5 x (f:y -+ x) t then 

f*$ = {s :5 y:s E $} = {S A Y:S E S} 

and the claim is that f*$ Ely' In fact, 

y = X A Y = (V$) A y = v{s A y:s E $} = vf*$. 

Ad (3) Given $ I, suppose that 

y = V{S' A y:s' E $'} (y E $) • 

Then 

x = V$ = v s = v v 

Therefore $ I E l .] 
X 

sEfP sEfP s 'EfP' 

= V 
slEfP' 

(s I A ( v 

sEfP 

S' A S = v V S' A S 
s 'EfP' sEfP 

s» = v 
s'EfPI 

sl A X = V 

slEfP' 
S I. 

N.B. Take L = O(X), where X is a topological space -- then a sieve $ over an 

open subset U of X is a set of open subsets V c U such that Vi eVE $ => V' E S. 

And 

$ E lU <=> U V = u. 
VEfP 

10.5 LEMMA Let (g,l) be a site -- then V X E Ob g, 

and 

10.6 REMARK SUppose that we have an assignment X -+ lX satisfying (1), (2) of 
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10.2 and for which 

Then to check (3) of 10.2, it suffices to consider those~' such that~' c ~. 

ret g be a small category -- then by TC we shall understand the set of 

Grothendieck toIX'logies on g. 

10.7 EXAMPLE Take g = ! -- then £ has tv.u Grothendieck toIX'logies: {~:rrax} 

and {~ . I~ }. rom :rrax 

10.8 DEFINITION 

• The minimal Grothendieck toIX'logy on C is the assignment X -+ {~ } • 
- :rrax 

• The:rrax:i.mal Grothendieck toIX'logy on g is the assignment X -+ {~} I where 

~ runs through all the sieves over X. 

10.9 LEMMA The IX'set TC is a bounded lattice. 

PROOF If T,T' E TC' let T 1\ T' be their set theoretical intersection and let 

T v T' be the smallest Grothendieck 'toIXllogy containing their set theoretical union. 

As for 0 and 1, take 0 to be the min.i.mal Grothendieck toIX'logy and 1 to be the 

rnax.i.mal Grothendieck toIX'logy. 

10.10 THEOREM The bounded lattice TC is a locale. 

let g be a small category with pullbacks. 
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10.11 DEFINITION' A covera;re on g is a function K that assigns to each 

X E Ob g a set I<X of subsets of Ob g/X subject to the following assumptions. 

(1) If f:Y -+ X is an isooorphism, then {f:Y -+ X} is in I<X. 

(2) If {f.;Y. -+ X (i E I)} is in K_, then for any TIDrphism g:Z -+ X, J. J. -x 

[lbte: Here 

prZ 
Yi Xx Z ? Z 

1 19 

Y. '> X J. 
f. 

J. 

is a pullback square.] 

(3) If {f.:Y. -+ X (i E I)} is in K_ and if ViE I, {g .. :Z .. -+ Y. (j E IJ.')} J. J. -x J.J J.J J. 

is in Ky. I then 
J. 

{f. 0 g .. :Z .. -+ X (i E I, j E IJ.')} 
J. J.J J.J 

is in I<X. 

10.12 EXAMPIE Let L be a locale. Given x E L, let K be the set of all subsets x 

of +x consisting of those set indexed collections {x.: i E I} such that v x. = x --
J. iEI J. 

then the assigmnent x -+ ~ is a coverage K on L. 
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10.13 DEFINITION let K be a coverage on £ ---- then the Grothendieck top::>logy 

T on ~ generated by K is the prescription 

S E TX <=> 3 R E Kx:R c S. 

10.14 EXAMPLE let L be a locale - then the Grothendieck top::>logy on L per 

10.4 is generated by the coverage on L per 10.12. 

10.15 REMARK SUpp::>se still that c is a small category with pullbacks. let 

T be a Grothendieck top::>logy on ~ -- then there is a coverage K that generates T, 

viz. 

R E Kx <=> <R> E TX' 

where 

<R> = {f 0 g:f E R, dam f = cod g}. 
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§11. SHEAVES 

let g be a small category. 

11.1 RAPPEL For any X E Ob g, the sieves over X are in a one-to-one corre-

spondence with the subfunctors of ~ (cf. 7.3). 

Because of this, the notion of Grothendieck topology can be reformulated. 

11. 2 NOI'ATION Given a subfunctor G of ~ and a m::>rphism f:Y -+ X, define f*G 

by the pullback square 

A 

f*G --------~~ G 

if*G 1 
fly---'> ~ 

h
f 

in c -- then f*G is a subfunctor of fly. 

11.3 DEFINITION A Grothendieck topology on g is a function T that assigns 

to each X E Ob g a set TX of subfunctors of ~ subject to the following assumptions. 

(1) The subfunctor ~ E TX. 

(2) If G E TX and if f:Y -+ X is a m::>rphism, then f*G E Ty • 

(3) G E TX and if G' is a subfunctor of ~ such that f*G' E Ty for all 

f E GY, then G' E TX. 

IN::>te: For use below, observe that 10. 5 and 10.6 can be stated in tenus of 
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subfunctors instead of sieves.] 

" Suppose that §. is a reflective subcategory of £. Denote the reflector by 
A 

~ -- then there is an adjoint pair (~, l), l:S -+ C the inclusion. 

Assrnne: ~ preserves finite limits. 

[Note: It is automatic that ~ preserves colimits.] 

iG 
11.4 THEOREM. Given X E Ob £, let T X be the set of those subfunctors G --> ~ 

such that ~iG is an isorrorphism -- then the assigrnrent X -+ T X is a Grothendieck 

topology T on £. 

PRX)F Since 

it follows that ~ E TX' hence (1) is satisfied. As for (2), by assumption ~ 

preserves finite limits, so in particular ~ preserves pullbacks, thus 

af*G > ~G 

~f'Gl 1 ~iG 
ehy >~ 

is a pullback square in §.. But ~iG is an isorrorphism. Therefore ~if*G is an 

isorrorphism, i.e., f*G E Ty • The verification of (3), however, is :rrore complicated. 

• Suppose that G E TX and G is a subfunctor of Gt: 
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, i:G -+ G'. 

Then 

But eiG is an isorrorphism, hence 

id = eiG' 0 ei 0 (eiG)-l, 

which implies that e,iG, is a split ep:i.norphism. On the other hand, e preserves 

rronorrorphisms, hence eiG' is a rronorrorphism. Therefore eiG' is an isorrorphism, 

i.e., G' E LX. 

• It rema.ins to establish (3) under the restriction that G' is a subfunctor 

of G. Using the Yoneda lemma, identify each f E G'l with f E Nat(hy,G) and display 

the data in the diagram 

'> G' G' 

1 i 1 i G, 

'> G '>~ 
f iG 

There is one such diagram for each Y and each f E G'l, so up::>n consolidation we have 

IlG' 
_II Jl hy xG G' '> G' 
Y f 

if 1 1 
11_11 i 

_II 11 hy '> G 
Y f fG 
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A 

Now i is an equalizer (all rronorrorphisrns in g are equalizers), thus ~i is an 

equalizer (by the assumption on ~). But the assumption on G I is tbat 'V Y and 

'V f E GY, ~if is an isam::>rphism, thus ~i is an epirrorphism (see 11. 8 below) • 

And this means tbat ~i is an isarrorphism (cf. 6.8). Finally, 

iG I = i 0 i => ai = ai 0 ai. 
G - G' - G 

Therefore ~iG' is an isam::>rphism, i.e., G' E TX' 

11.5 RAPPEL Given a category S;, a set U of objects in C is said to be a 

f 
--> 

separating set if for every pair X Y of distinct rrorphisrns, there exists 
--> g 

a U E U and a rrorphism a:U -+ X such tbat f Q a ~ goa. 

11.6 EXAMPLE SUPfOse tbat S; is sma.ll -- then the hy (Y E Ob g) are a separating 

set for C. 

11. 7 LEl>1MA let S; be a catego:ry with coproducts and let U be a separating set -­

then 'V X E Ob S;, the unique rrorphism 

II II damf >X 
UEU f E M:)r(U,X) 

such tbat 'V f, r X 0 inf = f is an epirrorphism. 

"-

II. 8 APPLICATION SuPfOse tbat S; is small. "W:Jrking with g, take X = G in 

11. 7 - then 

is an epirrorphism. 
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[Note: 'lb finish the argument that ~i is an epirrorphism, start with the 

relation 

'Ihen 

Since rG is an epirrorphism, the same is true of ~rG (left adjoints preserve epi­

rrorphisms). And 

is an iSOl1Orphism, call it CP, hence 

-1 
ar = ai 0 (a_TIG' 0 cP ). 
- G -

'Iherefore ~i is an epirrorphism.] 

A 

11.9 NOrATION Denote by ~ the "set" of reflective subcategories §. of g with 

A A 

the property that the inclusion l:§ -+ g has a left adjoint ~:g -+ §. that preserves 

finite limits. 

11.10 DEFINITION Fix a Grothendieck to'fX)logy TETe -- then a presheaf 

F E Ob C is called a T-sheaf if 'if X E Ob g and 'if G E TX' the precart:lfOsition map 

is bijective. 

"-

Write Sh
T 

(g) for the full subcategory of g 'Whose objects are the T-sheaves. 

11.11 EXAMPLE Take for T the min.imal Grothendieck to'fX)logy on g -- then 
A 

Sh (e) = e. 
-T -
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A 

[Note: In particular, Sh'[ (~J = ! :::: SET.] 

11.12 EXAMPLE Take for T the maximal Grothendieck top::>logy on g -- then the 
A 

objects of Sh (e) are the final objects in e. 
-'[ - -

[First, V X E Ob g, ~A + ~. 
e 

But ~ A is initial, thus the condition that F 
e 

be aT-sheaf arrounts to the existence for each X of a unique lIDrphism ~ + F. 

Mean"Whi1e, by Yone::1a, Na.t (~,F) ~ FX.] 

11.13 EXAMPLE Given TETe' define aT by the rule 

a (X) = 
T 

- {a} if ~A E TX 
e 

Then aT is a T-sheaf and, lIDreover, is an initial object in Sh (e). 
-'[ -

11.14 THIDREM The inclusion 1 :Sh (e) + § admits a left adjoint ~T:§ + Sh".. (g) 
T-,[- L 

that preserves finite limits. 

[Note: We can and will assume that a 0 1 is the identity.] 
-T T 

Various categorical generalities can then be s:pecialized to the situation at 

hand. 

11.15 DEFINITION A IIOrphism f:A + B and an object X in a category g are said 

to be orthogonal (f 1. X) if the precarrI(;X)sition nap f*:M::>r(B,X) + M::>r(A,X) is bi-

jective. 



7. 

11.16 RAPPEL Let D be a reflective subcategory of a category C, R a reflector - . -
for D (cf. 5.10). Let W

D 
be the class of norphisms in g rendered invertible by R. 

a . -'I 

• Let X E Ob g -- then X E Ob Q iff 'if f E W
D

, f .L X. 

• Let f E MJr C -- then f E W
D 

iff 'if X E Ob Q, f .L X. 

A 

11.17 NaI'ATION Let W'I be the class of norphisms in g rendered. invertible by 

A 

11.18 EXAMPLE If F E Ob C, then F is a 'I-sheaf iff 'if E E W , E .L F. 'I 

A 

11.19 EXAMPLE If E E M)r g, then E E OJ'I iff for every 'I-sheaf F, E .L F. 

[Note: If X E Ob g and if G E 'IX' then for every 'I-sheaf F, iG .L F, thus 

iG E W'I 0
] 

11.20 RAPPEL Let Q be a reflective subcategory of a category g, R a reflector 

for D (cf. 5.10) -- then the localization w~lg is equivalent to Q. 

11.21 APPLICATION The localization W-IC is equivalent to Sh (C). 
'I - -C( -

11.22 RAPPEL Let Q be a reflective subcategory of a finitely complete category 

~, R a reflector for Q (cf. 5.10) -- then R preserves finite limits iff W
D 

is pull­

back stable. 

[NOte: When this is the case, W
D 

is saturated (Le., f E W
D 

iff Rf is an 

isorrorphism) . ] 
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11.23 APPLICATION Since a :2 -+ Sh (e) preserves finite limits, it follows 
-T - -'[-

that W is pullback stable (and saturated) • 
T 

"-

11.24 EXAMPLE Take ~ = !.' so !. ;::: SEI' -- then hl = 2. en the other hand, 

SEI' has precisely 3 reflective subcategories: SEI' itself, the full subcategory 

of final objects, and the full subcategory of final objects plus the empty set 

(#RX = 1 if X ;t ~, ~ = ~). In tenns of Grothendieck topologies, the first bNo 

are accounted for by 11.11 and 11.12. But the third cannot be a category of 

sheaves per a Grothendieck topology on ~ = ~. 'Ib see this, note that the class of 

norphisms rendered invertible by R consists of all functions f:X -+ Y with X ;t ~ 

as well as the function 11 -+ 11 {thus the arrows 11 -+ X (X ;t ~) are excluded). 

Suppose now that z is a nonempty set and X, Y are nonempty subsets of Z with an 

empty intersection. Consider the pullback square 

~=xnY---->Y 

X------> Z 

~ 

where ~,iy are the inclusions - then Riy is an isomorphism but Riy is not an 

isan:::>rphism. Therefore the class of norphisms rendered invertible by R is not 

pullback stable. 

"-

11.25 IDTATION Let F E Db g be a presheaf. Given X E Ob g, let TX{F) be the 
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set of subfunctors iG:G -+ ~ such that for any norphism f:Y -+ X, the precarrq:::osition 

arrow 

(if*G)*:Nat(lly,F) -+ Nat(f*G,F) 

is bijective. 

11.26 ~fI1A The assignment X -+ lX(F) is a Grothendieck topology l (F) on C. 

N.B. l (F) is the largest Grothendieck topology in which F is a sheaf. 

11. 27 SCHOLIUM Fbr any class F of presheaves, there exists a largest Grothen-

dieck topology l (F) on C in which the F E F are sheaves. 

11.28 DEFINITION The canonical Grothendieck topology l can on g is the largest 

Grothendieck topology on g in which the ~ (X E Ob g) are sheaves. 

[NOte: Let l E l C -- then l is said to be subcanonical if the ~ (X E Ob g> 

are l-sheaves.] 

11. 29 EXA..MPLE ret L be a locale -- then the Grothendieck topology l on L 

defined in 10.4 is the canonical Grothendieck topology. 

[NOte: This applies in particular to the locale 0 (X), where X is a topological 

sp3.ce, Sh'[ (0 (X» being the traditional sheaves of sets on X, i. e., Sh (X) . ] 

11.30 EXAMPLE Take for X the Sierpinski sp3.ce (so X = {O,l} with topology 

{X,¥},{O}}) - then Sh(X) (cf. 11.29)is the arrow category SEI'(-+). 



1. 

§12. LOCAL ISOMORPHISMS 

let ~ be a small category. 

12.1 RAPPEL C fulfills the standard conditions (cf. 3.4 and 3.6) and is 

balance::i (cf. 6.10 and 7.7) • 

let H,K E Ob § be presheaves and let ?: E Nat (H,K). Fonn the pullback square 

q 
> H 

is 
H -------':; > K . 

... 

'lhen p and q are epinorphisms. 

12.2 NarATION 0H:H -+ H xK H is the canonical arrOW' associate::i with ~, thus 

N.B. 0H is a :rronOIIDrphism. 

12.3 LEMMA ?: is a IlDnorrorphism iff 0H is an epinorphism. 

[Note: Consequently, if ?: is a :rronorrorphism, then 0H is an iSOIIDrphism.] 

Fix a Grothendieck to{X)logy T ETC. 

12.4 DEFINITION let H,K E Ob § be presheaves and let ?: E Nat (H ,K). Factor ... 

per 3.9: 

k m 
H --> M--> K. 
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'Ihen ::: is a T-local epirrorphism if for any f:hy -+ K, the subfunctor f*1'·1 of hy 

defined by the pullback square 

f*M ----'> r4 

A 

12.5 LEMMA Every epirrorphism in g is aT-local epirrorphism. 

" 12.6 DEFINITION let H,K E Ob ~ be presheaves and let::: E Nat(H,K) -- then ... 

is a T-local :rtOncm:Jrphism if 0H is a T -local epirrorphism (cf. 12. 3) • 

A 

12.7 LEMtJA Every :rtOncm:Jrphism in g is aT-local rronorrorphism. 

A 

12.8 DEFINITION let H ,K E Ob g be presheaves and let ::: E Nat (H ,K) -- then ... 

is a T-local isom::>rphism ::: is both aT-local epirrorphism and aT-local rrono-

:rtOrphism. 

12.9 EXAMPLE If G E TXT then iG:G -+ ~ is aT-local isorrorphism. 

[For any f:Y -+ X, there is a pullback square 

f*G---~> G 

A 

in g and f*G E Ty (cf. 11. 3), thus iG is aT-local epirrorphism. On the other hand, 
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iG is a IlDnarrorphism, hence iG is aT-local IlDnarrorphism (cf. 12.7).J 

12.10 THEOREM W is the class of T-1oca1 isomorphisms. 
T 

"-

12.11 APPLICATION IBt H E Ob C -- then the canonical arrow 

is a T-1oca1 isomorphism. 

H->laH T-T 

12.12 APPLICATION IBt G E TX -- then ~TiG is an isomorphism (cf. 11.19). 

[Note: SUppose that iG:G -')- ~ is a subfunctor -- then iG is a IlDnarorphism, 

hence iG is aT-local :rronorrorphism (cf. 12.7). Assume in addition that iG is a 

T-1oca1 epinorphism. Claim: G E TX' Proof: Take f = i~ and consider 

G-----G 

We shall now proceed to establish the "fundamental correspondence". 

12.13 THEOREM '!he arrows 

(cf. 11. 4) 

(cf. 11.14) 

are mutually inverse. 
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'lb dispatch the second of these, consider the composite 

'TC --> ~ --:> 'TC' 
- - -

Take a 'T E 'TC and pass to Sh=r (~) -- then the Grothendieck topology on ~ detennined 

by Sh'[ (~) via 11.4 assigns to each X E Ob ~ the set of those subf1IDctors iG:G + ~ 

such that ~'TiG is an isarrorphism or, equivalently, those subfunctors iG:G + ~ 

such that iG is a 'T-local isarrorphism (cf. 12.10). But, as has been seen above, 

the subfunctors of ~ with this property are precisely the elements of 'Tx' There­

fore the composite 

'T C --:> ~ --:> 'T C 
- -

is the identity map. 

It remains to prove that the composite 

~ --::> 'TC --::> ~ 
- -

is the identity map. So take an ~ E ~, produce a Grothendieck topology 'T on ~ 

per 11.4, and pass to Sh (C) -- then S c Sh (C). Thus let F E Ob §, the claim being 
-'[ - - --'T-

that F E Ob Sh (C) or still, that F is a 'T-sheaf, or still, that V X E Ob C and 
-'[ -

V G E 'TX' iG J. F, which is clear since iG E W'T (cf. 11.19). 'lb reverse matters 

and deduce that Sh (C) c S, one has only to show that if 3:H + K is a rrorphism 
-'[ - -

" in C and if a3 

3 per 3.9: 

is an isarorphism, then a 3 is an isorrorphism. -'T 

k m 
H --::> M --> K. 

'lb this end, factor 
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Then ~S = ~ 0 ~k. But ~S is an isarrorphism and ~ is a Il'011OIlOrphism (~ preserves 

finite limits). Therefore ek is a Il'011OIlOrphism. But ek is a coequalizer (~ is a 

left adjoint), thus ek is an isarrorphism (cf. 6.8). And then am is an isorrorphism 

as well. 

• Assume that as is an isonorphism, where M is a rron.orrorphism -- then 

a E is an isarrorphism. 
-T 

[Bearing in mind that here H = M, consider a pul11:ack square 

f*H --------~> H 

if~l 
ry~--~> K 

f 

Then the assumption that ~S is an isonorphism implies that ~if*H is an isorrorphism 

which in turn implies that if*H E Ty ' Therefore S is aT-local ep:i.norphism or still, 

E is aT-local isarrorphism, hence 3 E W (cf. 12.10), so a E is an isonorphism.] 
T -T 

• Assume that as is an isonorphism, where H is a coequalizer -- then a 3 
-T 

is an isonorphism. 

[Because is a coequalizer, to conclude that a 3 is an isonorphism, it 
-T 

suffices to verify that a 3 is a rro11OllOrphism (cf. 6.8). For this purfOse, consider 
-T 

the pullback square 

q 
H x

K 
H > H 

pi 
1" 

H > K 
~ 
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Then 0H is a non.anorphism and there are pullback squares 

~q ~Tq 

~ xaK ~ ~aH a H x aH ~ a H -T a K -T -T 

~r l~ apr -T la s -T 

aH ~~ aH -T ~ a K -T 

But ~OH = 0aH is an isorrorphisrn (cf. 12.3), thus §!;TOH = 0a H is an isorrorphism 
-T 

(cf. supra), so is a nonorrorphism (cf. 12 • 3) .] 

" 12.14 THEOREM let H,K E db g be presheaves and let:;: E Nat(H,K) -- then 

:a H -+ a K is an epinorphism in Sh (e) 
-T -T --~ -

3 is aT-local epinorphism. 

12.15 APPLICATION The epinorphisms in Sh (e) are pullback stable. 
-~ -

[The class of T-local epinorphisms is pullback stable.] 
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§13. SORITES 

The category Sh (C) associate:i with a site (C_,T) has a number of properties 
...........<f -

that will be cataloge:i belO\tl. 

13.1 ~,~ Sh (C) is complete and cocomplete. 
-'[ -

A 

['Ibis is because Sh'[ (g) is a reflective sul:x::ategory of g which is roth com-

plete and cocOI:Iq?lete. Accordingly, limits in Sh (C) are computed as in C while 
-'[ - -

A 

colimits in Sh (C) are compute:i by applying a to the corresp:>nding colimits in C_.] 
--'[ - -T 

13.2 LEMMA Sh (C) is cartesian closed. 
-'[ -

"-

[Since a :C -+ Sh (C) preserves finite limits, it preserves finite products so 
-T - --'[-

one can quote 5.11.] 
A 

[Note: Recall that C is cartesian closed (cf. 5.21).] 

13.3 LEMMA Sh (C) admits a subobject classifier. 
-'[ -

[Note: Therefore Sh'[ (g) is wellpowered (cf. 6.13). ] 

The prcx:>f of this result will be broken up into several steps (tacitly em-

ploying the license provided by 7.6) . 
A 

Step 1 Given F E Ob g and a subfunctor i:G -+ F, define a subfunctor i:G -+ F 

by the pullback square 

-
G > 1 a G 

T-T 

Ii 1, a i T-T 

F > 1 a F 
T-T 

------------
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Step 2 There is a cc:mnutative diagram 

F ------> 1 a F 
T-T 

fran which an arrow y:G -+ G such that the diagrams 

y 
G -------'> G 

F------F 

corrmute. 
-

G -----'» 1 a G 
T-T 

G-----> 1 a G 
'T-T 

Step 3 Definition: G is closed if G = G. We have 

-
(1) G c: G; 

(2) G c: H => G c: H; 

(3) G = G. 

In addition, closed subfunctors are stable under pullbacks. 
"-

[Note: 'lb make the last r:oint precise, sup}?Ose given an arrow f:F' -+ F in C. 

Define G' by the pullback square 

G' -----> G 

1 
F' -------'> F 

f 
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and define G' by the pullback square 

-
G1 

1 
F' -----'> F • 

f 

Then G' G', so 

G = G => G' 

"'-

Step 4 V F E Ob g, 

-
F = F. 

In particular: V X E Ob g, 

A 

Step 5 let (.11, T) be the subobject classifier for g (cf. 7.7). Define 

on an object X by letting n~ be the set of all closed subfunctors of ~ and on 

a rrorphism f:Y -+ X by letting nctf:n~ -+ ncR.y operate via the pullback square 

-----'> G 

1 1 
hy---'> ~ 

and define 
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by factoring 

through g,cl {'which makes sense since ~ = ~). With these agreements, g,cl is a 

subfunctor of g" say i cl : g,cl -+ g,. 

Step 6 Consider the pullback square 

G----:> *A 
C 

IT 
:> g, F -------' 

x· ]. 

'!hen the classifying arrow Xi factors through g,cl iff G is closed. 

Step 7 If F is aT-sheaf, then it and its T-subsheaves G are closed. '!his 

said, consider the carrmutative diagram 

G ----:> * A ---- * A 

C C 

Here X. = i cl 0 X~ and lx>th squares are pullbacks. If X:F -+ g,cl is another 
]. ]. 

rrorphism and if 



5. 

G > * "'-

i1 

e 

lTo£ 

F > rfR.. 
x 

is a pullback square, then iCR.. 0 X is a classifying arrow of (G,i) in F, so 

.ct .cR.. cR.. h cR.. 
1 0 X = Xi = 1 0 Xi' ence X = Xi • 

Step 8 * A is a T-sheaf (obvious) and ncR.. is aT-sheaf ( ••. ). Therefore 
e 

the pair mcR.., TcR..) is a subobject classifier for Sh (e). 
-'[ -

13.4 LEMMA Sh (e) is balanced. 
-'[ -

[Taking into account 13.3, one has only to cite 6.10.] 

13.5 LEMMA Every rronarorphism in Sh (e) is an equalizer. 
-'[ -

[In view of 13.3, this is a special case of 6.9.] 

[Note: It is easy to proceed directly. Thus let E:F + G be a nonarorphism 

in Sh (e) -- then t S: t F + t G is a nonarmrphism in 2, hence is an equalizer. But 
--L - T T T -

~T preserves equalizers (since it preserves finite limits) .] 

N.B. MJnarmrphisms in Sh'[ (g) are pushout stable. 

13.6 LEMMA Every epinorphism in Sh (e) is a coequalizer. 
-'[ -

ProOF Given an epinorphism E:F + G in Sh (e), form the pullback square 
-'[-



:in Sh (C) -- then 
-'[ -

A 

is a pullback square :in C. 

6. 

v 
p-----> F 

F ------> G 

1 F -----------~> 1 G 
'"( 1 '"( 

Factor 1 3 per 3.9: 
'"( 

k m 
l'"(F --> M --> l'"(G. 

Then by construction there is a coequalizer diagram 

A 

:in C. 

1 U 
'"( 

------> 

------> 
1 V 

'"( 

1 3 
'"( 

1 F --------~> 1 G 
'"( '"( 

M========M 

NOw apply a to get a coequalizer diagram 
-'"( 
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u 
> -

P F » G 

» 
v 

ak am -T -T 

aM aM 
-T -T 

in Sh
T 

{£}. Since 

B=amoak 
-T -T 

and since B is an epin:orphism, it follOW'S that a m is an epin:orphism. But a m 
-T -T 

is also a IrDnarnorphism. Therefore a m is an isomorphism (cf. 13.4) and B is a 
-T 

coequalizer, thus being the case of a k. 
-T 

13. 7 ~ Sh {e} fulfills the standard conditions. 
--'[ -

[Epin:orphisms in Sh {e} are pullback stable (cf. 12.15) and every epin:orphism 
--'[ -

in sh (e) is a coequalizer (cf. 13.6).J 
-T -

13.8 ~ In Sh (e), filtered colimits ccmnute with finite limits. 
-'[ -

A 

13.9 RAPPEL Cbproducts in £ are disjoint. 

[In other words, if F = 1L F. is a coproduct of a set of presheaves F., then 
iEI 1 1 

ViE I, in. :F. + F is a nononorphism and V i,j E I (i ;f:. j), the pullback 
1 1 

A 

F. xF F. is the initial object in £.] 
1 J 
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13.10 LEMMA Coprod.ucts in Sh (e) are disjoint. 
-'[ -

A 

13.11 RAPPEL Coproducts in £ are pullback stable. 

[In other v.1Ords I if F = JJ Fl' is a coprod.uct of a set of presheaves Fl' I 
iEI 

then for every arrow F I + F I 

11 F' x
F 

F
l
, :::::: Fl.] 

iEI 

13.12 LEr-1MA Coprod.ucts in Sh'[ (£) are pullback stable. 

13.13 DEFINITION let £ be a category which fulfills the standard conditions. 

SUppose that R 

u 
> 
X is an equivalence relation on an Object X in £. Consider 

--> v 

the coequalizer diagram 

u 
> 

R X _1T_>X/R :: coeq (u, v) • 

v '> 

Then there is a ccmnutative diagram 

v 
R-----> X 

X -----'> X/R 
1T 

and a pullback square 
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q 
X xX/R X ----> X 

x ~----> X/R • 
TT 

One then says that R is effective if the canonical arrow 

R-> X xX/R X 

is an isarrorphism (it is always a IlDnc:m::>rphism) • 

[Note: ~ has effective equivalence relations if every equivalence relation 

is effective.] 

13.14 LEMMA Equivalence relations in Sh (e) are effective. 
-'[ -

[The usual methOOs apply: Equivalence relations in SEl' are effective, hence 
1\ 

equivalence relations in ~ are effective etc.] 

13.15 LEMMA The ~T~ (X E Ob~) are a separating set for Sh'[ (~) • 

PRCX)F Let ::,::':F -+ G be distinct arrows in Sh (e) - then the claim is that 
-'[ -

:3 X E Ob ~ and a:!1r~ -+ F such that :: 0 a ;t ::' 0 a. But::;t::' implies that 

X E Ob ~) which implies that ::r ;t ::;r (3 x E FX). CMing to the Yoneda 

lemna., FX ~ Nat (~,F), so x corresponds to a a' E Nat (~,F), thus :: 0 a' ;t :: loa' • 

Detennine a: a h -+ F by the diagram -T--X 

F========F 
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Then 3 0 0 ~ ~. 0 0. 

N.B. All ep:i.rrorphisms in Sh'[ (g) are coequalizers (cf. 13.6). SO, for every 

T-sheaf F, the ep:i.rrorphism r F of 11.7 is autana.ticall y a coequalizer. Therefore 

the ~Ttx (X E Ob g) are a "strong" separating set for Sh'[ (g) • 

[Note: This baroque teclmicality is used implicitly in 13.16 below.] 

A sUl.1ll\3.ry of the theory of presentable categories can be fotmd in the Appendix 

to CHT and will not be repeated here. 

[Note: As a :p::>int of terminology, let g be a cocanplete category and let K 

be a regular cardinal -- then an object X E Ob ~ is K-definite if MJr(X,-) pre­

serves K-filtered colimits.] 

13 .16 Lil1MA Sh (e) is presentable. 
-'[ -

A 

PR(X)F Fix a regular cardinal K > #MJr g -- then V X E Ob g, tx E Ob g is 

K-definite, the contention being that V X E Ob s, ~Ttx E Ob Sh'[ (S) is K-definite, 

which suffices (cf. 13.15). 'Ib see this, note first that a K-filtered colimit of 
A 

T-sheaves can be computed levelwise, i.e., its K-filtered colimit per g is a 

T-sheaf. Now fix a K-filtered category ± and let 6:f -I- Sh'{ (~) be a diagram - then 

z colirnL Nat(a h ,6.). 
1. -T--X ~ 

13.17 REMARK It is a fact that a presentable category is complete and 00-

complete, well:p::>wered and cowellpowered. 
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§14. TOPOS THEORY:FORMALITIES 

let E be a category. 

14.1 DEFINITION E is a top::>s if 

• E is finitely oomplete; 

• E is cartesian closed; 

• E has a subobject classifier (Q,T). 

[Note: The defining properties of a top::>s are invariant under equivalence.] 

14.2 EXAMPIE SEI' is a top::>s. 

[Note: The full subcategory of SEl' whose objects are finite is a top::>s. On 

the other hand, the full subcategory of SEl' whose objects are at nost countable 

has a subobject classifier but is not cartesian closed, hence is not a top::>s.] 

A 

14.3 EXAMPIE let g be a small category -- then g is a top::>s (cf. 5.21 and 7.7). 

14.4 EXAMPIE Let (g,r) be a site -- then Sh:r (9 is a top::>s (cf. 13.2 and l3.3). 

14.5 THEOREM Every top::>s is finitely cooomplete. 

14.6 THEOREM Every top::>s fulfills the standard conditions. 

14. 7 LEMMA Let E be a top::>s. 

(1) Every nonarrorphism in 5. is an equalizer. 
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(2) Every epinorphism in ~ is a coequalizer. 

(3) Every rrorphism in ~ which is l::oth a rrononnrpbism and an epinorphism 

is an isonorphism. 

(4) Every rrorpbism in E admits a minimal decomposition unique up to iso­

rrorphism. 

14. B EXAMPLE N:>t all rrononnrpbisms in CAT are equalizers and not all epinor­

phisms in CAT are coequalizers. Therefore CAT is not a to:pos. 

14.9 LEMMA Every to:pos has effective equivalence relations. 

14.10 EXAMPLE In PQS (the category whose objects are the :posets and whose 

rrorpbisms are the order preserving maps), not all equivalence relations are effective. 

14.11 CRITERION In a to:pos ~, consider a pushout square 

g 
z-------.;> y 

x -------''> P • 

Assume: f is a rronarorphism -- then n is a rrononnrpbism and the square is a pullback. 

14.12 LEMMA In a to:pos ~, finite coproducts are disjoint. 

PROOF let A,B E Db '£ -- then on general grounds, there is a pushout square 
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b 
~E ---------'> B 

al- l~ 
A -------'> A_" B • 

inA 

On the other hand, a and b are rrono.rrorphisms (cf. 5.16). Therefore inA and ~ 

are rronorrorphisms and the square is a pullback (cf. 14.11). 

14.13 LEMMA In a topos ~, finite coproducts are pullback stable. 

[Note: Finiteness is not needed provided that the coproducts in question exist. 

f. 
~ f 

Thus suppose that {A. ---'> A: i E I} is a coproduct diagram in E. let B --> A 
~ 

and for each i E If define B. by the pullback square 
~ 

B -------'> A 
f 

gi 
Then {Bi --> B:i E I} is a coproduct diagram in~. To see this, use 15.3: 

Cbnsider the cOIIlpOsi tion 

A* f* B! 

E --> VA > VB > E. 

Each of the functors A* f f*, B! has a right adjoint, hence preserve colimits, in 

f>i3Iticular coproducts. On the other hand, given an arrow X -+ A, define an arrow 
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B x
A 

X -+ B by fonning the pullback square 

B >- A. 
f 

Then 

B! 0 f* 0 A* (X -+ A) = B x
A 

X -+ B.] 

Let E: be a tof,Qs. 

14.14 NaI'ATION Given A E Ob E:, let 0A:A -+ A x A be the diagonal -- then SA 

is a ITOn.arIlJrphism, so there is a pullback square 

A >- *£ 

OAl 1T 
AxA :> n. 

Xs 
A 

We have 

'Iherefore 

=A E Mor(A x A,n) 

correSf,Qnds to an element 

the singlEftOn on A. 
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14.15 LEMMA {.} A is a m:morrorphism, hence 

14.16 EXAMPLE Take E SET -- then {.} A:A -+ rf- sends a E A to the character­

istic function of {a} (cf. 6.4). Identifying rf- with PA (the power set of A), it 

follows that {.} A:A -+ ~ sends a to {a}. 

14.17 RAPPEL Given a catl3gOry S, an object Q in S is said to be injective if 

for each m::morrorphism f:X -+ Y and each m::>rphism <p: X -+ Q, there exists a m::>rphism 

g:Y -+ Q such that g 0 f = <p. 

14.18 LEMMA In a toros ~, the object n is injective. 

PRCX)F let f:X -+ Y be a rronorrorphism and let X:X -+ n be a rrorphism. Define 

(X,f) E M(X) by the pullback square 

X------:> *E 

fT 
X-----.....;:> n 

X 

'!hen X~ = X (cf. 6.12). Consider now the ccmnutative diagram 
f 

~ 

X----- X :> *E 

1 fT 
X------' :> Y :> n 

f X ~ 

f 0 f 
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Put g = X _ Smce the squares are pullbacks, the carrmutative diagram 
f «:> f 

-
X » *E 

£1 fT 
x- » Q 

g 0 f 

is a pullback square, so x- = g 0 f. But 
f 

x- = X => g 0 f = x. 
f 

14.19 LE£I.t.1A In a top.Js ~, the object rf (A E Ob~) is injective. 

PROOF let f: X + Y be a noru:::morphism and let cf>: X + rf- be a norphisrn -- then 

there is a ccmnutative diagram 

~r(Y x A,m ------'» M::>r (X x A,m. 

Since Q is injective, the bottom map is surjective, thus the same is true of the 

top map. 

14.20 RAPPEL A cate:JOry g has enough injectives provided that for any X E Ob g, 

there is a no:norrorphisrn X + Q with Q injective. 

14.21 LEMMA A top.Js £ has enough injectives. 
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PRCOF If A E Ob ~, then rJA is injective and {. }A:A -+ rJA is a rronarrorphism 

(cf. 14.15). 

14.22 LEMMA The injective objects in §. are the retracts of the rJA (A E Ob ~) • 
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§15. TOPOS THEORY: SLICES ANV SUBOBJECTS 

Let E be a top:>s. 

15.1 THEOREM For every A E Ob E' the category VA is a top:>s. 

[Since g is finitely complete, the same is true of ljA (cL 4.1). Let TA 

T 

be the COIl'lIX>sition A --> *E --> S1. Bearing in mind that idA:A -+ A is a final 

object in E/A, define 

(idA:A -+ A) -+ (prA:A x S1 -+ A) 

by consideration of 

A ----- A ----- A 

v 
A <--- A x S1 ----:> S1 

'nlen <idA' T A> is a nonorrorphism (its d.cm:tin being a final object in YA) and the 

pair 

is a sut:object classifier for g/A. The crux is therefore to establish that yA 

is cartesian closed.} 

In particular: E is locally cartesian closed (cf. 5.23). 

15.2 EXAMPLE V X, 'IOP~X is a top:>s but 'IOP1H is not a top:>s (recall that 
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'roP
lll 

is not f.initely canplete (cf. 4.2». 

15.3 THEOREM. Supp:>se that f:A + B is a norphism .in E: -- then f*:E:/B + E:/A 

has a left adjo.int f!: g/A + g/B and a right adjo.int f*: E:/A + E:/B. 

[This is a special case of 5.32 and 5.33.] 

[lbte: f* preserves exp:m.ential objects and subobject classifiers.] 

15.4 LEMMA let A E Ob g - then the p:>set SubE A is a rounded. lattice. 

[Simply apply 2.21 and 3.14. However, for the record, sUpp:lse that 

(J 

S--> A 

T 

T--> A 

are rronorrorphisms. Def .inition: 

SAT=snT 

S v T = S U T. 

'Ib canplete the picture, let 

1 = (idA:A + A) 

(cf. 5.14 and 5.16). 

15.5 REMARK The square 

S n T ----'> T 

1 1 
S--->SUT 
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is both a pullback and a pushout. 

15.6 THEDREM I2t A E Ob E -- then the bounded lattice Sub
E 

A is a Heyting 

algebra. 

PRCX)F Given nonarrorphisms 

a 
S--> A 

T 

T --> A, 

define ~ as the equalizer 

~-->A 
---> 

--> 

e. ) P 
of Xa and Xe (where S n T --> A J.S the corner arrOW'. I2t R --> A be a nono-

norphism -- then, fran the properties of an equalizer, 

But 

x 0 P = X 0 P <=> R n S ~A T. a e 

[Note: There is a pullback square 

R n S -----> S 

1 
R------> A, 

P 

the classifying arrOW' of the m::marrorphism R n S -r A being Xa 0 p, and there is a 
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pullback square 

R n (8 n T) -----'> 8 n T 

1 
R -------> A , 

p 

the classifying arrow of the IJDnorrorphism R n (8 n T) -l>- A being Xe 0 p.] 

15.7 REMARK If (~,l) is a site and if £ = ~(~), then 8ub
E 

A is a locale. 

15.8 NOI'ATION 

• Define a IJDnorrorphism 

by consideration of the diagram 

*E -----*E -----*E 

v 
n <--- n x n -----> n 

and denote its classifying arrow by n, thus 

! T 
• Let Tn be the CCIT:lfOsition n --> *E --> n -- then there is a pullback 

square 

n -~-~----:> * E 

idnl r 
n ---~-----~> n , 
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• Define a rrorplllsm 

by consideration of the diagram 

rt -------''> rt rt <----- rt 

<TQ'idQ>l l<idQ'TQ> 

rt x rt ---- rt ~ rt ---- rt x rt, 

factor it per 3.9, hence 

and put u = Xm: 

Given rronorrorphisms 

define a rrorphism 

k m 
rt 11 rt --> M '> rt x rt, 

M ------'> *E 

rt x rt ------'> rt • 
u 

o 
S > A 

T 

T > A, 

<x ,x >:A + rt x rt o T 

by consideration of the diagram 



Then 

Then 
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A---- A ----A 

v 
51 <"---51 x 51 ---;> 51 

15.9 LEMMA Form the pu11ba.ck square 

s n T ---------';> * 
E 

A ---------;> 51 

X = n 0 <X ,X >. cr n T cr T 

15.10 LEMMA Form the pullba.ck square 

s U T > *E 

cr U T 

1 1 T 

A > 51 

Xa U T 

X = U 0 <Xcr'V >. cr U T '''[ 
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n 
----> 

-----'> 

thus 

n 
-----> 

-----> 

and let =>:n x n ~ n be its classifying arrow, thus 

'!ben 

$n > *E 

e~l 1T 
n x n > n . 

=> 

15.12 LEMMA Form the pullback square 

A------'> n 
X (J 

T 

X = => 0 <y , X >. 
(J '''{J T 

T 
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PROOF Consider the diagram 

v 
P > Sn > * E 

ul 1 IT 
A > n x n > n , 

<X ,X > => cr T 

prl Il 

where the squares are pullbacks and 

By construction, the classifying arrow of u is => 0 <Xc;' X
T

> and the claim is that 

P = rf> (cf. 15. 6) or still, that u is the equalizer of Xcr and XcrilT or still, that 

And if 

= n 0 <X X > 0 U. cr T 
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then 

<x ,X > 0 x = e 0 y cr T ~ 
(y:X + ~~) 

x = u 0 z 
from which a unique z: X + P such that 

y = v 0 z. 

15.13 NCYI'ATION 

! 
• Denote the classifying arrow of the m:m.rnorphism ¢E --> *E by J.. 

Schematically: 

~E ------'> * E 

• Denote the classifying arrCJiN' of the m:mrnorpbism * E _1._> n by -I • 

Schematically: 

*E ------> *E 

~ --------'> Q • 

-I 

cr 
15.14 LEMMA Given a rronrnorphism S --> A, form the pullback square 
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S > *g 

-,°1 1T 
A > ~ • 

0 

Then 

x = - 0 X • -0 1 0 
1 

[N:>te: The rronon:orphism -I S -------'> A represents the pseudocomp1ement of 

[0] in the Heyting algebra SubE A. E.g.: Take A ~,S = *E' 0 = T -- then 

= 
T 

Therefore .1. is the pseudocorop1ement of T in SubE ~.] 

15.15 DEFINITION A top:>s ~ is a l:x:lo1ean top:>s if for every A E Ob ~, the 

Heyting algebra SubE A is a l:x:lo1ean algebra. 

15.16 THEOREM A top:>s ~ is a l:x:lo1ean top:>s iff Sub
E 

~ is a l:x:lo1ean algebra. 

15.17 REMARK If ~ is a l::x:x>lean top:>s, then for every A E Ob ~, the top:>s VA 

(cf. 15.1) is a 1:::oo1ean top:>s. 

15.18 LEMMA A top:>s ~ is a 1:::oo1ean top:>s iff "-I 0 -I = id~. 

o 
['Ib see that the condition is sufficient, consider a nonon:orphism S --> A --
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then 

(cf.15.14), 

so 

--0 ~ 0 
I 1 A 

(cf. 6.11). 

Therefore SUb
E 

A is a boolean algebra (cf. 8.12 and 8.15) • 

15.19 LEMMA A to:p::>s g, is a boolean to:p::>s iff the :pair 

is a subobject classifier. 

['Ib see that the condition is sufficient, define an iSOJ:IDrphism 

T _II.L *E _" *E -> st 

by consideration of the diagram 

in1 in2 
------'> *E -II *E <---- * E 

v 

st ========= st ========== st • 

Then the arrow -I :Q -+ Q corresp::>nds to the involution which interchanges the 

factors of *E _II *E'] 

A 

15.20 EXAMPLE Let g be a small category -- then the toIX>s g is a boolean 
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A 

tofOs iff g is a groufOid (in }?CITticu1ar, SET ::;: 1 is a 1:x:x:>lean tofOs) . 

[,Note: Let G be a group -- then the category of right G-sets is a 1:x:x:>lean 

tofOs (cf. 7.8).] 

15.21 EXAMPLE Let X be a tOf01ogica1 space and take Sh (X) per 11.29 - then 

Sh (X) is a 1:x:x:>lean tofOs iff every open subset of X is closed. 

[In fact, Sh(X) is a 1:x:x:>lean tofOs iff VUE O(X), U U -I U = X. But -I U = 

int (X - U) (cf • 8 .11), thus Sh (X) is a 1:x:x:>lean top:Js 

int(X - U) or still, iff VUE O(X), X - U E O(X).] 

VUE O(X), X - U = 

[Note: This condition is met if X is discrete, the converse being true if X 

is in addition TO. For if every open set is c1osed, then every closed set is o:pen, 

so X:TO => X:T2 • But then every subset a union of closed subsets, hence is a 

union of o:pen subsets, hence is o:pen.] 

15.22 DEFINITION A top:Js ~ is said to satisfy the axicrn of choice if every epi-

rrorphism in £ has a section. 

15.23 REMARK If £ satisfies the axiom of choice, then for every A E Ob £, the 

tofOs £/A (cf. 15.1) satifies the axicrn of choice. 

15.24 THEORTh'I Let £ be a tofOS. Assume: E satisfies the axiom of choice -­

then £ is a 1:x:x:>lean tofOs. 

15.25 EXAMPLE Let G be a group - then the category of right G-sets is a 

1:x:x:>lean tofOs (cf. 15.20) but it satisfies the axiom choice iff G is trivial. 

[SuPfOse that G is nontrivial and view G as operating to the right on itself. 
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let {*} be the final right G-set -- then G --::;. {*} is an epim::>rphism but there 

is no Il'Orphism {*} -+ G of right G-sets.] 

15.26 EXAMPLE let L be a locale and take Sh(L} per 11.29 -- then the following 

conditions are equivalent. 

(1) Sh(L} satisfies the axiom of choice. 

(2) Sh ( L) is a boolean topJs. 

(3) L is a boolean algebra. 

[Note: Recall that by definition L is a Heyting algebra whose underlying cat­

egory is complete and cocamplete. 

15.27 DEFINITION let g be a category with a final object *c - then an object 

X is said to be subfinal if the arrow X ---> *c is a rronarorphism. 

15.28 LEMMA SUppJse that the topJs £ satisfies the axiom of choice - then 

there is a set of subfinal objects of *E which constitute a separating set for .s. 
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§16. TOPOLOGIES 

Let £ be a topos, (Q,T) its subobject classifier. 

16.1 DEFINITION A Lawvere-Tierney topology on ~ is a m:::>rphism j:Q + Q in 

£ with the following properties. 

(1) JOT = T. 
(3) jon = n 0 (j x j). 

(2) j 0 j = j. 

16.2 EXAMPLE idQ:Q + Q is a Lawvere-Tierney topology on £. 

16.3 ~~LE TQ:Q + Q is a Lawvere-Tierney topology on £. 

16.4 :r:::xN1lPLE o --I :Q + Q is a Lawvere-Tierney topology on s-

16.5 THEOREM Let S be a srtall category -- then there is a one-to-one corres­

pondence between the set of Grothendieck topologies on S and the set of Lawvere­

Tierney topologies on £: 
T -->j 

T 

j --:>T .• 
J 

PlOOF Recall fran 7.7 that 

is defined. on an object X by letting QX be the set of all subfunctors of ~ and 

on a norphism f: Y + X by letting Qf: QX + rl':l operate via the pullba.ck square 
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Qf (G) ------'> G 

1 1 
hy -----'> ~. 

• If T is a Grothendieck topology on g, then T E r':l(Q) and if jT = X
T

, 

A 

then j is a lawvere-Tier.ney topology on C. 
T -

• If j: Q -)- Q is a lawvere-Tier.ney topology on § and if 

(cf. 6.12), 

------'> Q 
j 

then T. is a Grothendieck topology on g. 
J 

[Note: rrhese constructions are nrutually inverse.] 

16. 6 ~1PLE Let L be a locale -- then Qx is the set of all subfunctors of h x 

or still, Qx is the set of all sieves over x. Let x -)- T be the Grothendieck x 

topology T on L detennined by the sieves that cover x (cf. 10.4) -- then j :Q -)- Q 
T 

is the natural transformation 

where 

(j ) g = {y ~ x:y = v (y AS)}. 
T X" sES 
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16.7 DEFINITION SuppJse that j:Q + Q is a Iawvere-Tierney to:r::ology on E' 

Let (B,f) E M(A) .- then (B,f) is j-dense in A if j 0 Xf = T
A

. 

16.8 EXAMPLE Let (£:,T) be a site and let G be a subfunctor of ~ -- then 

(G,iG) is jT -dense in ~ iff G E TX' 

16.9 DEFINITION Supp::>se that j:Q + Q is a Iawvere-Tierney top::>logy on E -­
then an A E Ob £ is a j-sheaf if for every B E Ob £, for every j-dense (S,s) in 

B, and for every f E lXbr(S,A), there exists a unique g E ~1or(B,A) such that 

g 0 s = f: 
s 

S------->B 

A -------- A • 

I.e.: The precanp::>sition map 

s*:lXbr(B,A) + lXbr(S,A) 

is bijective. 

16.10 EXAMPLE Since j is ideIIlJ?Otent and E is finitely complete, j splits: 

j = i 0 r (r 0 i = id), where 

i:Q. + Q 
J 

r:Q + Q .• 
J 

But Q is injective (cf. 14.18), thus Qj is injective (being a retract of Q), and 

the claim is that Q. is a j -sheaf. In fact, the existence of the relevant liftings 
J 
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is then irrmediate which leaves the uniqueness... . 

Write Shj (~) for the full subcategory of ~ whose objects are the j-sheaves. 

16.11 EXAMPLE Take j ;;; idn -- then Shj (~) ;;; ~. 

16.12 EXAMPLE Take j ;;; Tn -- then Shj (~) is the full subcategory of ~ whose 

objects are the final objects. 

16.13 THEDREM Fix a La:wvere-Tierney toI=Clogy j:n + n on ~ - then the inclusion 

1. :Sh. (E) + E admits a left adjoint a.:E + Sh. (E) that preserves finite l.im.i.ts. 
J -::1 - - -J - -::1-

N. B. Let W. be the class of norphisms in E rendered invertible by a. -- then 
-- J - -J 

the localization W:lE is equivalent to Sh.(E) (cf.ll.20). 
J - -::1 -

16.14 LEMMA Let f:B + A be a m::man:orphism -- then (B,f) is j-dense in A iff 

a . f is an isoroorphism. 
-J 

16.15 SCHOLIUM Let g be a Sffi3.ll category. Supt:Ose that j:n + n is a Lamere-
A 

Tierney toI=Clogy on e and let 'T. be the associated Grothendieck toI=Clogy on e 
- J -

(cf. 16.5) -- then 

Sh. (2) ;;; Sh (e) • 
-::1 - -,[.-

J 
A 

[Viewing Sh. (e) as an ela:nent § of ~ (cf. 11.9), introduce 'T E 'Te per 11.4, 
-::1- -..... 

thus 'Tx is the set of those subfunctors G ---'> ~ such that ~jiG is an isoroorphism 

iG 
or still, those subfunctors G ~--> ~ such that (G,i

G
) is j-dense in ~ (cf. 16.14). 
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On the other hand, a subfunctor G ----,> ~ is j T . -dense in ~ iff G E (T j ) X 
J 

(cf. 16.8). But jT. = j, hence TX = (T
J
.) X' and therefore T = T,. 

J J 

" 
Sh.(e} =Sh (e) 
-]- -'(-

(cf. 12.13), 

Since 

it follows that 

" Sh. (e) = Sh (e). 
-] - -'t.-

J 

[Note: Consequently, V TETe' 

16.16 REMARK Let £. be a topos -- then it can be shown that the Ia.1'tNere-Tierney 

topologies on £. are in a one-to·-one correspondence with the reflective subcategories 

of £ whose reflector preserves finite limits (cf. 12.13). 

16.17 THEDREM Fix a Ia.1'tNere-Tierney topology j: &6 -+ &6 on E - then Sh, (E) is 
- -::1-

a topos. 

[Note: The pair (&6
J
, ,T

J
,) is a subobject classifier for Sh, (E). Here (cf. 16.10) 

-::I -

T. 
J 

i 
&6, ---> &6 

J 

j 
> 

--------'> 

T (j 0 T = T) .J 

16.18 EXAMPLE Take j :::: -I. 0 -I. then Sh _, 0 _, (£) is a boolean toros. 
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§17. GEOMETRTC MORPHISMS 

IEt g, Q be finitely complete categories. 

17.1 DEFINITION A gea:n.etric rrorphism f:g -+- Q is a pair (f* ,f*), where 

f*;Q -+- g 

are functors and 

f* is a left adjoint for f* 

f* preserves finite limits. 

[Note: The second condition on f* is automa.tic if f* is a right adjoint.] 

17.2 EXAMPLE IEt X, Y be topological spaces and let f:X -+- Y be a continuous 

function -- then f induces a geometric rrorphism f: Sh (X) -+- Sh (Y), where f*: Sh (X) -+­

Sh(Y) is "direct irna.ge" and f*:Sh(Y) -+- Sh(X) is "inverse irna.ge". 

[Note: Here Sh (X), Sh (y) are taken per the canonical Grothendieck topology 

on o (X) , O(Y) (cf. 11.29).] 

17.3 EXAMPLE IEt G,H be groups and let cP: G -+- H be a h.arocm::>rphism -- then cP 

induces a geometric lIDrphism cP from right G-sets to right H-sets, i.e., 

(cf. 7.8). 

[There are three functors 

[HOP SET] 
-. ,_ I 

-~------> 
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• Definition of q,*: Given a right H-set y, q,*(Y) = y with the right 

G-action induced by q,. 

• Definition of q,*: Given a right G-set X, q,* (X) = HomG (H,X), the set 

of G-equivariant functions H + X. 

• Definition of q,!: Given a right G-set X, q,! (X) = X ~G H, the cartesian 

product X x H mod.ulo the equivalence relation (x-g,h) - (x,q,(g) ·h) oJ 

1704 EXAMPLE Take g ;;;; ,SISEl', !2 = CllI and consider the adjoint pair (I I, sin) : 

I I :SIE,El' + CGH 

sin:CGH + SISEl'_ 

Then I I preserves finite limits, hence (I I,sin) is a geometric rrorphism SISET + a;H. 

17. 5 EXM1PLE let "f be a topos that has arbitrary cop:JW'ers of * E. Define a 

functor r * :"f + SEl' by stipulating that 

and define a functor r*:SEl' + ~ by stipulating that 

r*s = _II *E" 
sES -

Then (r*, r *) is an adjoint pair and r* preserves finite limits (cf. 1802) 0 There-

fore (r*, r *) is a geometric rrorphism ~ + SET. 
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17.6 EXAMPLE Let (C,T) be a site -- then the adjoint ]?air (a ,1 ) is a geometric 
-T T 

A 

morphism Sh~(g) + C (cf. 11.14). 

17. 7 EXAMPLE Let £: be a tor;os, j::J + :J a Iawvere-Tierney tor;ology on £: -- then 

the adjoint]?air (a.,l.) is a geometric morphism Sh. (E) + E. 
-] ] -] - -

17.8 EXAMPLE Let £: be a tor;os. SUpr;ose that f:A + B is a morphism in £: -- then 

f*: £:/B + £:/A has a left adjoint f!: £/A + £:/B and a right adjoint f*: £/A + £/B 

(cf. 15.3). 'Iherefore the adjoint]?air (f* ,f*) is a geometric morphism £/A + £:/B. 

17.9 EXAMPLE Let !,':I be small categories and let § be a complete and cocomplete 

category. Supr;ose that F:! + ':I is a functor -- then by the theory of Kan extensions, 

has a right adjoint 

and a left adjoint 

Therefore F* preserves limits and the adjoint]?air (F*,F *) is a geometric morphism 

17.10 EXAMPLE Let L,M be locales and let f:L + M be a localic arrow (cf. 9.6) -­

then f induces a geometric morphism SheLl + Sh(M) (taken per the canonical Grothen­

dieck. tor;ology on L,M (cf. 11.29», call it f to forgo any r;ossibility of confusion. 
A " 

[Proceed as follows. The functor f*:M + L gives rise to a functor f**:L + M 

(technically, f** = «f*)OP) *), which then restricts to a functor f*:Sh(L) + Sh(M). 
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A A 

On the other hand, f** has a left adjoint f!:M -T L (take § = SET in 17.9). 

Accordingly, denote the cam.p:>site 

f* 
A ! A 

Sh(M) --> M --> L ------,> Sh (L) 

by f* -- then f* is a left adjoint for f *. Proof: Given F E Ob Sh (L) , 

G E Ob Sh{M), 

Mor{f*G,F) ~ Mor(a f*,l G,F) 
-T • T 

~ Mor (f~l G,l F) 
• T T 

~ Mor{l G,f**l F) 
T T 

The final p::>int is that f* preserves finite limits. Since this is true of IT and 

~T' matters reduce to verifying it for fi (which is not an a priori property of 

Kan extensions .•• ) .] 

17 .11 DEFlNITION let f,g:g -T Q be gecmetric norphisms -- then a geanetric 

transfonnation 1;: f -T g is a natural transfonnation f* -T g*. 

[Note: Since 

g* -I g*, 

natural transfonnations f* -T g* corresp::>nd bijectively to natural transfonnations 
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§18. GROTHENVIECK TOPOSES 

let S be a toIX>s. 

18,1 DEFINITION E is said to be defined. over ~ if S aClrnits a geometric 

rrorphism S -+ SEl'. 

18.2 THEOREM S is defined over SET iff S has arbitrary copowers of *E' 

PROOF If f:S -+ SET is a geometric rrorphism, then f* preserves finite limits, 

thus in particular f** ~ *E' 'lherefore, since f* preserves co1imits, for any set S, 

f*S ~ f* _II * ~ _II f** ;:; J1 *E' 
S S S-

Turning to the converse, define r * : S -+ SET by 

and define r*: SET -+ S by 

r*s = J1 *E (r*~;:; ~E)' 
S - -

Here r*$ ($:S -+ T) is the unique arrow in E such that v s E S, r*$ 0 ins = in$(s): 

r*tP 

*E ------'> Jl *E --------'> 11-1(£ 

S T 

It is clear that (r*, r *) is an adjoint }?air, so the issue is whether r* preserves 
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finite limits and for this one need only show that f* preserves finite products 

and equalizers. 

• By construction, f* sends final objects to final objects. Suppose nO\\T 

that S and T are sets. Distinguish tv.;o cases: (1) 8 is empty or T is empty; 

(2) S is not empty and T is not empty. If S is empty, then S x T = ~ x T = ~ 

and f*(~ x T) = f*~ ~ ~E' while r*~ x f*T ~ ~E x f*T ~ ~E (cf. 5.13 and 5.14). 

If neither S nor T is empty, then 

f* (S x T) = _II *E. 
S x T -

On the other hand, 

f*S x f*T = _II *E x ~II *E 

S T 

~ _II *E' 

S x T 

K 
---'> --> • Let S T be arrO\\TS in 8ET and let K = eq(<j),lP), so K --> S T. 
---> --- ---> 

Put A = r*8, B = f*T, C = r*K, f = f*<j), g = r*lP, k = f*K -- then the claim is that 

is an equalizer in E. 

f k 
C-->A-->B 

--> 
g 

Thus consider a norphism u:E + A and V S E S, define E by 
s 
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the pullback square 

ES ------> *E 

rms 
E------>A 

u 

Then is is a rronar:rorphism (this being the case of ins) and since {*E ---> A:s E S} 

is 
is a coproduct diagram in £1 the same is true of {Es --> E:s E S} (cf. 14.13). 

I.e. : 

E ~ \I E. 
sES s 

u equalizes f and g (=> f 0 u = g 0 u) 1 then this ti.n:le! 

And there are rron011'Orphisrns 

E.g.: Given the situation 

E ~ _II E
t

. 
tET 

ES -> E<I>(s) 
(s E S) • 

ES --------------1 
E<I>(S) > *E 

i$(8) 1 1 m~(s) 
:> E > B 

f 0 U 
1 



4. 

f . f' " ouo]. = om o.=m()OI, s s ¢ s . 

fran which a unique arrow A ;E -). E,j., ( ) such that i = i,j., ( ) ° A. MJreover, A 
s s ~ s s ~ s s s 

is a nonorrorphism (because is is a nonorrorphism). Proceeding, the intersection 

E¢ (s) n EtV (s) is officially definec1 by the pullback square 

(cf. 2.16) 

E¢ (s) -----> E 

but the answer is the same if instead we use the pullback square 

Et(S) I E~(s) > I~(S) 

E¢ (s) '> E¢ (s) Jl EtV (s) • 

The data provides us with a nonorrorphism 

and if ¢ (s) ;t. tV (s), then E¢ (s) n EtV (s) :::: J1E-.' hence Es ~ J1Eo Consequently, 

E ~ _II 
sEK 

and u:E -). A factors through k (uniquely) ° 

[NOte: The grometric norphism (r*, r *) extends to a geometric norpmsm 

denotec1 by the same symbol. 
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• Define 

r*:SISEl' -+ SIE 

by 

(r*K) = 11 *E • n K _ 
n 

• ~fine 

r*:SIE -+ SISEl' 

by 

18.3 LEMMA SUpp::>se that £ has arbitrary copJWers of *E- Let A E Ob E and let 

f. 
{B. __ 1......;,> A:i E I} c M(A) -- then 11 B. exists_ 

1. iEI 1. 

PRCDF First of all, the copJWer _1_1 A exists, In fact, 

I 

Ax_II *E ~ _II Ax *E ~ 11 A. 
I - I - I 

Next, for each i E I, let X1.' be the classifying arrow of (B.,f.) in A: 1. 1. 

! 
Bi ------''> * E 

A 

fT 
------'> n 

X· 1. 

Determine x:Jl A -+ n via the Xi (X 0 ini = Xi) and fo:rm the pullback square 
I 
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B > *E 

f1 fT (cf. 6.12). 

_IIA :> [,J 

I X 

Then for each i E I, there is a unique arrOlf.l g. :B. ~ B such that the diagram 
]. ]. 

g. 
]. 

B. 
]. 

> B > *E 

fi1 1f fT 
A :>l1A > [,J 

in. I X ]. 

corrmutes (so g. is necessarily a rronom:>rphism). Inspection of the rectangle and 
]. 

the right hand square then implies that the left hand square 

g. 
]. 

B. > B 
]. 

fil if 
A >l1A 

in. I ]. 

is a pu1lba.ck. Since {A ---> _1_' A: i E I} is a coproduct diagram, the same is 
I 

gi 
true of {B. ---"). B:i E I} (cf. 14.13), hence II B. exists. 

]. ~I ]. 
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18.4 APPLICATION under the preceding hYPJtheses, the co]?ower 11 A exists (sic), 

I 

as does the ]?OWer TI A: 
I 

_II *E * 
I - E 

A ;::: TI A -:::: TI A. 
I I 

18.5 EXAMPLE Supmse that S has arbitrary copJWers of *E - then it does not 

follow that S has coproducts. 

[Let S be the full subcate;::rory of [ZOP ,SET] whose objects are the right Z-sets 

S with the property that multiplication by n is the identity on S for SOJ:re msitive 

inte;::rer n -- then S is a to);X)s and has arbitrary CO]?OWerS of *E but S does not have 

coproducts (e.g., one cannot construct _1_1 Z/nZ).] 
n~l 

18.6 DEFINITION Let S be a to);X)s -- then S is said to be a Grothendieck toms 

if S is cocamplete and has a separating set. 

[Note: In general, a cocamplete toms need not admit a separating set.] 

18.7 EXAMPLE Let (C,T) be a site - then the toms Sh (C) (cf. 14.4) is a - -'[ -
Grothendieck to);X)s (cf. 13.1 and 13.15). 

18.8 DEFINITION Let S be a toms -- then a subseparator is an object r in E 

with the property that M(r) contains a separating set. 

18. 9 ~ SUp);X)se that S is a Grothendieck toms -- then S has a subseparator. 

PROOF If U is a separating set, let 

r = _II u. 
UEU 
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'!hen r is a subseparator. 

18.10 RAPPEL An object X in a category S is a coseparator if for every pa.ir 

f,g:A -+ B of distinct norphisms in S, there exists a norphism a:B -+ X such that 

a 0 f ~ a 0 g. 

18.11 LEMMA Let £ be a tof'Qs. Assume: r is a subseparator -- then rl is a 

coseparator. 
*E 

[Cbnsider the simplest f'Qssibility, viz. "lhen r = *E (=> n - ;::, m. Let 

f,g:A -+ B be norphisms such that for any a:B -+ n, a 0 f = a 0 g. Claim: f = g. 

'lb see this, let e:E -+ *E be a subfinal object and given a norphism <jl:E -+ A, pa.ss -
to the pullback square 

e 
E :> *E 

f 0 

41 fT (f 0 <jl E M(B». 

B :> n 

Since Xf 0 <jl E M::>r (B, m, from the assumptions 

Xf 0 <jl 0 f = Xf 0 <jl 0 g, 

thus 

TE = Xf 0 <jl 0 f 0 <jl = Xf 0 <jl 0 g 0 <jl, 

so there exists a unique norphism £:E -+ E rendering the diagra'll 
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e 

r e 
E ------------~> E------------~> *E 

f 0 ¢ T 

A -----------> B ---------'> Q 
g 

conmutative. But M:>r (E,E) = {i~}, hence E = i~, 'Which implies that f 0 ¢ = g 0 ¢. 

Therefore f = g (E and ¢ being arbitrary) .] 

[N:>te: In general, Q is not a coseparator but Q is a coseparator, it does 

not follow that *E is a subseparator.] 

18.12 REMARK Let £ be a Grothendieck topJs -- then £ satisfies the axiom of 

choice iff ~ is a molean topJs and *E is a subseparator. 

[E.g.: If ~ satisfies the axiom of choice, then E is a boolean topJs (cf. 15.24) 

and *E is a subseparator (cf. l5.28).J 

18.13 LErvr1A A top::>s E is a Grothendicek top::>s iff it is defined aver SET and 

has a subseparator. 

PROJF That the conditions are necessary is implied by 18.2 and 18.9. As for 

the sufficiency, since a top::>s is finitely cocornplete (cf. 14.5), to finish the 

proof it suffices to show that E has coproducts. For this purp::>se, note first that 

E has arbitrary p::>Wers of objects (cf. 18.4) and has a coseparator, call if X (cf. 

18.11). Supp::>se now that {Ai:i E I} is a set-indexed collection of objects of E. 
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Choose a set S such that ViE I, Ivbr (Ai ,X) c S and put B = 

:rrorphism 

Ai --> IT 
!vtJr(A. ,X) 

1 

x 

X -- then the :rrono-
s 

leads to a rronorrorphism A. -+ B. Therefore II A. can be constructed as an element 
1 iEI 1 

of M(_II B). 
I 

18 .14 ~f.lA Every Grothendieck to};Os E: is complete. 

PRCX)F Given a set-indexed collection of objects {A.:i E I} of E, define Pl' 
1 -

by the pullback square 

P. 
1 

1 
A. 

1 

Then 

>1T 

#rr I 

pro 
1 

in. 
> 11 Ai 

lEI 
1 

n P. = IT A .• 
iEI 1 iEI 1 

18.15 LEMMA If .s is a Grothendieck topos, then V A E Ob .s, the to];X)s ,S/A 

(cf. 15.1) is a Grothendieck to};Os. 

PRCX)F As a category, 'E/A is cocornplete (~being cocanplete). This said, let 

U = {U} be a separating set (:pE!!' 'E) and put 

U/A = {f:U -+ A, U E U}. 

Then U/A is a separating set (:pE!!' E:/A) • 

------""--..... ~ ... 
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18.16 THEOREM If E is a cocomp1ete topes, then for any small category I, - -
the functor category [!, ~] is a cocamp1ete topas. 

[Note: If ~ is a topes (hence finitely cocomp1ete (cf. 14.5), then for any 

finite category !, the functor category [!,s] is a topes.] 

18.17 LEMlYIA If S is a Grothendieck topas, then for any small category !, the 

functor category [!, s] is a Grothendieck topes. 

PRCX>F If U = {U} is a separating set for S, then 

{FU .:U E U, i E db!} 
,1 

is a separating set for [!,£], where 

FU . (j) = 11 
,1 

U (j E db !) . 
M:>r(i,j) 

IJat S be a Grothendieck topas, ! a small category, and /:::': I -+ E a functor. 

Put B = co1~/:::' and let A -+ B be a norpbism -- then ViE Ob !, there is a pullback 

square 

A xB /:::'i ------:> /:::'i 

1 1 
A -------:> B. 

18.18 LEMIlA The canonical arrow 

is an isanorphism. 
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Given a set {x.:i E I} of objects in E, put 
~ -

x = II X .• 
~ ~ 
~EI 

18.19 EXAlv1PLE Let Y -+ X be a rrorphism -- t.1-J.en the canonical a.rr<::>"N 

is an isan:orphism. 

II x. x Y -+ Y 
:iEI ~ x 

18.20 EiW-.1PLE Let Y E Ob E -- then 

II (X. x Y) ~ X x Y 
iE:t~ 

(cf. 5.8). 

[This is a special case of 18.19: Replace Y by X x Y, consider the projection 

X x Y -+ X, and note that 

X. Xx (x X Y) ~ X. x Y.] 
~ ~ 

The following result is Giraud's "recognition principle". 

18.21 TFlEOREr1 SuppJse that E is a Grothendieck topJs -- then there exists a 

site (C,T) such that E is equivalent to Sh (C). - - -'[-

[Here is a sketch of the proof. Take for C the small full subcategory of £: 

whose objects are a separating set. Given X E Ob g, let TX be the set of subftmetors 

G -+ ~ such that the arrow 

_II _II Y-+X 

YEOb C gEGY 

is an ep:im::>rphism -- then the assigrnne:nt X -+ TX defines a Grothendieck topJlogy on £. 
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Next, 'if A E Ob ,S' the presheaf hAlgOP is aT-sheaf (hA = MJr(-,A» and the 

specification A -+ hAl gOP defines a functor ,S -+ Sh'[ (9 which at length can be 

shown to be an equivalence of cateJories.] 

[tibte: Ma.king a simple expansion, one can always arrange that g is finitely 

complete.] 

18.22 REMARK The Grothendieck top::>logy figuring in 18.21 is subcanonical. 

However, it is p::>ssible to enlarge g so as to replace llsubcanonicall! by "canonical". 

Thus let U = {u} be a separating set and for each U E U, let {Ui:i E IU} be a set 

of representatives for SUb
E 

U (£ is wellp::>Wereci (cf. 6" 13». Perfonn the con-

sttuction of 18.21 on the full subcategory of E gene:rated by the U. (i E L_, U E U) 
- 1 IU 

then the resulting liT n is canonical. 

18.23 LEM1A Every Grothendieck top::>s E is presentable (cf. 13.16). 

18.24 LEMMA Every Grothendieck top::>s ! is cowellJ;XlWered (cf. 13.17). 

18.25 CRITERION let ,S, E be Grothendieck top::>ses -- then any functor E -+ ,S 

which preserves co1imits has a right adjoint ,S -+ E. 
[The cateJories involved are cocomp1ete, cowellpowered, and have separating 

sets. Now quote the appropriate "adjoint functor theorem".J 

18.26 NOl'ATION Given Grothendieck top::>ses F, write [E, F] for the meta-- --gro 

cateJory whose objects are the geometric norphisms ,S -+ E. and whose norphisms are 

the geometric transfonnations. 
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18.27 LEM4A let E, F be Grothendieck toposes -- then fE, F] is a category. -- --ga:> 

[In other \VOrds, if f,g:£ -7- E. are geometric morphisms, then there is but a 

set of natural transfonnations f* -7- g*.] 

18.28 LEMMA let ~,E. be Grothendieck toposes and suppose that f:£ -7- E. is a 

geometric morphism -- then the following conditions are equivalent. 

(1) f* is faithful; 

(2) f* reflects isomorphisms; 

(3) f* reflects epirrorphisms: 

(4) f* reflects monarorphisrns. 

18.29 THEOREM let £ be a Grothendieck topos -- then there is a Grothendieck 

topos § satisfying the axian of choice and a geanetric morphism f: § -7- £ such that 

f* is faithful. 



1. 

§19. POINTS 

Let £ be a Grothendieck tofX)s. 

19.1 DE.:FINITION A fX)int of E is a geometric norphism f:SET -+ E. - -- -
N.B. Alternatively, a fX)int of £ is a functor p:£ -+ SET which preserves colimits 

and finite limits (cf. 18.15). 

19.2 EXAl."4PIE Let X be a nonempty tofX)logical space - then each x E X deter­

mines a p:>int p : Sh (x) -+ SET, where Sh (X) is computed per the canonical Grothendieck x-

top:>logy on 0 (X) . 
x 

[Apply 17.2 to the continuous function {*} --> x, thus Px:Sh(X) -+ S1.!.({*}) = 

SET sends F to its stalk F at x.] - x 

[N::>te: If X is sober, then this construction is exhaustive, i. e., up to 

natural isorrorphism, every fX)int Sh (X) -+ SET is a tip t1. In general, the full sub-
- - x 

category of TOP 'Whose objects are the sober tOfX)logical spaces is reflective with 

arrow of reflection X -+ sob X. But 

O(X)<-> O(sob X) (cf.9.26), 

hence 

Sh (X) <-> Sh (sob X) • 

Therefore the fX)ints of sob X "parameterize" the fX)ints of Sh(X): If f:SET -+ Sh(X) 

is a fX)int, let U be the union of all open V c X such that f*V = ~ -- then X - U 

is an irreducible closed subset of X, thus is a p:>int of sob X. o:>nversel y, ••• .] 

19.3 REMARK If X empty, then Sh (X) is the full subcategory of SET 'Whose 
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objects are the final objects so there is no functor p:Sh(X) -+ SEr l;vhich preserves 

colimits and finite limits. Proof: All objects in Sh(X) are roth initial and 

final. 

19.4 EXAMPLE let X be a nonempty Hausdorff to};Ological sp:ice in which no 

singletons are o}?eIl -- then 

Sh 
o 

(Sh(X) ) 

has no };Oints. 

19.5 NYl'ATION Given a Grothendieck to};Os £, let 

= ISEl' ,E] 
-- geo 

N.B. PI' (~) is a category (cf. 18.27). 

(cf. 16.18) 

(cf.18.26). 

IliJOte: It is not necessarily true that PI' (E.) is equivalent to a small catego:ry 

(e.g., there are £ for which PI'(£) is equivalent to SET).J 

A 

19.6 RAPPEL let s;: be a srrall category -- then the functor Yc: [s;:,SET] -+ [S;:,SET] 

A 

has a left adjoint that sends T E ObIS;:,SET] to rT E Ob[S;:,SEl'J. 

[l'bte: r
T 

is the realization functor: it is a left adjoint for the singular 

functor s~:SET -+ g which is definel by the prescription 

(s~ Y)X = J:l!br(TX,Y).] 

A 

19. 7 LEMMA let £ be a srrall category. Sup};Ose that f: SET -+ £ is a };Oint --

then there exists a functor T:C -+ SET such that f* is naturally isarrorphic to rT' 
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19.8 DEFINITION Let C be a snall category - then a functor T:C -+ SET is - - -
said to be flat if r m preserves fillite limits. 

J. 

SO, if T is flat, then the adjoillt pair (rT's~) is a geometric norphism 

A A 

SET -+ g, i. e., is a FOint of g. rvtJreover, up to natural isarrorphism, all FOillts 
"'-

of g are of this form (cf. 19.7). 

Write [g,SET] flat for the full subcategory of [g'5'ET] whose objects are the 

flat functors. 

19.9 THEOREM There is an equivalence 

of categories. 

19.10 REMARK Let T be a Grothendieck topology on C -- then PT (Sh (C» is - --'(-

A 

equivalent to the full subcategory of PT (9 consistillg of those poillts that factor 

through 1 • 
T 

19.11 DEFINITION Let g be a category. SUPFOse that the C. are categories -J. 

and the F.:C -+ C. are functors -- then {FJ.'} is faithful if given distinct norphisms J. - -J. 

f,g:X -+ Y ill C, there exists an F. such that p.f ;c F.g. 
- J. J. J. 

19.12 EX'A-"'1PLE Take C = Sh(X) (X a nonenpty topological space), let C = SET 
- - -x -

(x E X), and let p :Sh(X) -+ SET be as in 19.2 -"'"' then {p } is faithful. x- x 
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19.13 DEFINITION Let C be a category. Supp:>se that the C. are categories 
-J. 

and the F.: C -+ C. are functors. 
J. - -J. 

• {F i} reflects isarorphisms if any f E MJr g with the property that 

F. f is an iSOJ.rorphism for all F. must itself be an isonorphism in C. 
J. J. -

• {F.} reflects rronom::::>rphisms if any f E MJr C with the property that 
J. -

F. f is a rronOIrorphism for all F. must itself be a rronom::::>rphism in C. 
J. J. -

• {F.} reflects epmorphisms if any f E MJr C with the property that 
J. -

F . f is an epmorphism for all F. must itself be an epim:Jrphism in C. 
J. J. -

Let P c Ob PI' <.£) be a class of p:>ints. 

19.14 LEMMA Supp:>se that P is faithful -- then P reflects iSOJ.rorphisms. 

PROOF It is imned.iate that P reflects rronorrorphisms and epim:Jrphisms. But E 

is balanced (cf. 14.7). 

19.15 J...EM:.1A SUPfOse that P reflects isarorphisms -- then P is faithful. 

PR(X)F Let f,g:A -+ B be rrorphisms in E and supp:>se that pf = PJ for all pEP. 

Form the equalizer diagram 

f 
k ------> 

eq(f,g) ---------;> A B. 
-------> 

g 

Since p preserves finite limits, it preserves equalizers: 

p(eq(f,g» ~ eq(pf,PJ). 
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Therefore 

pf 
pk ------> 

p(eq(f,g) ) -----'> pA pB 
------> 

pg 

is an equalizer diagram. But pf == pg, thus 

pf 
------> 

pA ------'> pA pB 
------'> 

pg 

is also an equalizer diagram, which implies that pk is an isorrorphism, hence k is 

an isorrorphism, hence f = g (f 0 k = g 0 k). 

19.16 DEFn\lITION E is said to have enough PJints if the class of all PJints 

of f is faithful. 

19.17 THEOREM If E has enough PJints, then E has a faithful set of PJints. 

19.18 DEFINITION A weak PJint of E is a functor p: E + 8El' which preserves 

epiIrorphisms and finite limits. 

N.B. Every PJint is a weak PJint. 

19.19 LEMMA A class of weak PJints of E is faithful iff it reflects isomorphisms. 

19.20 THEOREM The class of all weak PJints of E is faithful. 

PRCDF Take ~ and f:~ + E as in 18.29 -- then every epiIrorphism of B has a 

section, thus V B E Ob ~, the functor X + M:>r(B,X) from § to SEI' is a weak PJint 

of B, so V B E B, the functor X + M::>r (B,f*X) from E to 8El' is a weak p:>int of E - - - - -
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(f* preserves ep.irrorphisms (being a left adjoint». And: {PB:B E Ob !P is a 

faithful class of weak p:>ints of S. Proof: Bearing in mind 19.19, suppose that 

<p:U -... V is a IIDrphism in ~ such that \if B E Ob ~f 

is bijective -- then f*<p:f*U -... f*V is an isan:orphism. But f* reflects isarorphisms 

(cf. 18.28), hence <p is an isarorphism. 

19.21 LEMMA Let p:£ -... SET be a weak point. Given a IIDrphism f:A -... B in £, 

factor it per 3.9: 
k m 

A --> M --> B (f = m 0 k). 

Then 

r:M ::::: im pf 

or still, 

p(im f) ::::: im pf. 

PRCX)F Since p preserves epiIIorphisms and IIDnarrorphisms, pk is a surjection and 

pn is an injection: 

pk 
pA -------'> r:M -----> pB (pf = pn 0 pk) 

im pf. 

19.22 LEMMA Suppose that {p} is a faithful class of weak fOints of ~ -- then 

{p} reflects epiIIorphisms. 

m 
PR)()F First, f:A -... B is an epiIIorphism iff the canonical arrow M --> B is 
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an epi.nDrphism, then V p, };In is an isarorphism (cf. 19.21), hence m is an iso­

morphism (cf. 19.19). 

19.23 SCHOLItJIvl A morphism finE is an epi.nDrphism iff V weak PJint p, pf is 

an epi.nDrphism. 

19. 24 ~1A SUP};XJse that R is an equivalence relation on X and p: g + SET is 

a weak PJint -- then pR is an equivalence relation on pX and 

pX/pR ~ p (X/R) • 

19.25 APPLICATION let f,g E MJr(X,Y) and let 

(f ,g) :X + Y x Y. 

SupPJse that im (f ,g) is an equivalence relation on Y and p: g + SET is a weak PJint -­

then p(im(f,g}) ("'" im p(f,g) (cf. 19.21» is an equivalence relation on pY and the 

canonical nap 

coker (pf , pg) + p(cOker(f,g» 

is bijective. 

19.26 I.iEl'1I\1A Let R be a relation on X. Assume: V weak PJint p:g + SET, pR is 

an equivalence relation on pX -- then R is an equivalence relation on X, hence 

pX/pR :::; p(Y'/R) • 

19.27 APPLICATION let f,g E ~br(X,Y) and let 

(f ,g) :X + Y x Y. 

Assume: V weak PJint p: g -+ p(im(f,g» (:::; im p(f,g) (cf. 19.21» is an equiv-

a1ence relation on pY -- then im(f,g) is an equivalence relation on Y and the 

canonical map 

cokerCpf,pg) + p(<x>ker(f,g» 

is bijective. 
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§20. CIS IrJSKI t THEORY 

let £ be a Grothendieck top.Js -- then the class M c MJr £. of non.arrorphisms 

is retract stable and the p:tir (M, RLP (M» is a w. f • s. on £.. 

N.B. Elements of RLP(M) are called trivial fibrations. 

20.1 'l'HEDREM There exists a set M c M such that M = LLP (RLP (M) ), hence 

M = cof M (£ being presentable (cf. 18.23». 

20.2 RAPPEL let g be a category, W c MJr g a class of norphisms -- then (g,W) 

is a category p:tir if W is closed under canposition and contains the identities of g. 

20.3 DEFINITION SUpp.Jse that (£,W) is a category p:tir -- then W is an E-localizer 

provided the following conditions are :rYlE!t. 

(1) W satisfies the 2 out of 3 condition. 

(2) W contains RLP (M) • 

(3) W n M is a stable class, i.e., is closed under the formation of pushouts 

and transfinite compositions. 

let C c M:>r £ -- then the £-localizer generated by C, denoted W (C), is the 

intersection of all the E-localizers containing C. The mini.ma.l E-localizer is 

W (~) (~the empty set of norphisms) • 

[N:>te: let C1 ' C2 c rbr E -- then 

W(CI U C2) = W(W(Cl ) U W(C2».] 

20.4 DEFINITION An E-localizer is admissible if it is generated by a set of 

t Mt~qu.e. 308 (2006); see also Fa.L6c.e.a.u.x Loc.a.tement Mph~qu.e6 (2003) (preprint) • 



2. 

rrorphisms of g. 

20.5 EXAMPLE M:>r g is an admissible g .... localizer. In fact, 

A 

20.6 EXAMPLE Take E = SISEI' { = 11} and let W be the class of simplicial vveak _ co 

A 

equivalences -- then W is a l1-localizer. 
00 -

• W is generated by the projections 
00 

A 

(K E Ob ~) • 

• W is generated by the maps Mn] -+ MO] (n;::: O). 
00 

N.B. It follows from the first description that W is closed under the fonna.-__ co 

tion of products of pa.irs of arr<JlrlS and from the second description that Woo is 

admissible. 

[Note: In SISET, a sbuplicial weak equivalence is a simplicial map f:X -+ Y 

such that If I : Ixi -+ lyl is a horrotopy equivalence.] 

20.7 EXAMPLE Take f = SET - then W (fJ) is the class 

{fJ -+ fJ} U {f:X -+ Y (X ~ ~)}. 

20.8 NarATION Given C c M:>r ~, let cart C be the class of arrows of the form 

f x idz:X x z -+ Y x Z (f E C, Z E Ob ~). 

20.9 LEI'vlMA The ~-localizer generated by ca rt C is closed under the formation 

of products of pa.irs of arrows and is admissible if C is a set. 
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20.10 APPLICATION The minimal E-localizer W(~) is closed under the formation 

of products of pa.irs of arrows. 

[Note: This is one way to distinguish a generic ~-localizer ~~ fram W (~) .] 

20.11 DEFINITION A cofibrantly generated nodel structure on £ is said to be 

a Cisinski structure if the cof ibrations are the nonorrorphisms. 

[Note: The acyclic fibrations of a Cisinski structure are the trivial fi-

brations.] 

20.12 THEOREM Supp:>se that (~,W) is a cat~ry pa.ir - then W is an admissible 

£-localizer iff there exists a cofibrantly generated nodel structure on E whose 

class of weak equivalences are the elements of W and whose cofibrations are the 

rronorrorphisrns. 

20.13 SCHOLIUM The map 

W -+ W,M,RLP(W n M) 

induces a bijection between the class of admissible £-localizers and the class of 

Cisinski structures on E. 

20.14 REMARK The stable class W n M is retract stable. In addition, W is 

necessarily saturated, i.e., W = Itl. 

20.15 LEMMA Let l~ be an admissible ,£-localizer -- then the cofibrantly 

generated nodel structure on £ determined by W is left proper. 

20.16 EXAMPLE Take £ = SISET and let W be the class of categorical weak equiv-
A 

alences -- then W is a l:,-localizer. As such, it is generated by the maps I [n] -+ 

t:.[n] (n?: 0), hence l~ is admissible. The resulting cofibrantly generated rr:odel 



4. 

structure on SISET is the Joyal structure. It is left proper but not right proper. 

[Note: In SISET, a categorical weak equivalence is a simplicial map f:X
l 

-+- X
2 

such that for every weak Kan canplex Y, the arrow 

is bijective.] 

N.B. Every categorical weak equivalence is a simplicial weak equivalence. 

20.17 CRITERION Let S c ~br S be a set -- then the cofibrantly generated. m::x'iel 

structure on S corresponding to H (S) is right proper iff 

• V arrow f:X -+- Y in S, 

• V fibration p:E -+- B with B fibrant, 

• V arrow u:Y -+- B, 

the induced arrow 

g:X x E -+- Y x E B B 

per 

g 
X x

B 
E -----:> Y x

B 
E -----> E 

1 1 lp 
x -------> Y ------~> B 

f u 

is in W(S). 

[I:Jote: One can replace the set S by a class C provided. that ~~ (C) is admissible.] 

N . B. Take S = 91 to see that the Cisinski structure on .s corresponding to W (91) 

is right proper. 
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20.18 LEMMA If x. (i E I) is a set of objects of E, then the E-localizer 
1 --

generated by the projections X. x Z ~ Z for all i and Z is admissible (cf. 20.9) 
1 

and the associated Cisinski structure is right proper (hence proper (cf. 20.15». 

['Ib infer right proper, apply 20.17 and consider 

(X. x Z) 
1 

x
B 

E > Z x
B 

E > E 

1 1 lp 

x. x 
1 

Z > Z > B 

or still, 

Xi x (Z x B E) ~--> Z x
B 

E ~-~-> E 

1 1 lp 
X. x Z ~-~---> Z ------> B • 

1 

But the arrow 

is in our generating class.] 

20.19 EXAMPLE Take SISEl' in its Kan structure -- then this model structure is 

proper. 

[Since all objects are cofibrant, left proper is an application of standard 

generalities while classically, right proper lies deeper in that it uses the fact 

that the ga:metric realization of a Kan fibration is a Serre fibration. But, as 

has been noted in 20.6, W is generated by the projections 
00 

A 

(K E Ob ~). 
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Therefore right proper is immediate (cf. 20.18). 

20.20 LEMMA Let 51 ,52 c M::lr S be sets. 5uppJse that t.."'e Cisinski structures 

corresp::mding to W(5l ) ,W(52 ) are right proper -- then the Cisinski structure 

corresp:mding to W (51 U 52) is right proper. 

['lb infer right proper, apply 20.17, noting that every fibration per W(5
l 

U 52) 

is a fibration per W (51) and H (52) .] 

20.21 NOTATION Given an admissible ~-localizer Wanda small category !, 

denote by WI c M::lr[!,S] the class of morphisms =:F ~ G such that ViE Ob !, 

N.B. Recall that [!'S] is a Grothendieck tofOs (cf. 18.17). 

20.22 LEMMA WI is an admissible [!,S]-localizer. 

[Note: Therefore 20.12 is applicable with S replacecl by [!,~] and W replacecl 

APPENDIX 

What follows is a surrnary of some basic facts from model category theory. 

Let g be a m:xlel category. 

DEFINITION C is combinatorial if g is cofibranUy generatecl and presentable. 

EXAMPLE If W is an admissible g -localizer, then E in the Cisinski structure 
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oorresp:mding to W is combinatorial (recall that E is presentable (cf. 18.23)). 

Fix a srra.ll category f. 

DEFrnITION Let C be a m::x1el category and supp:>se that H E ~br [f,g], say 

2::F -+ G. 

• 2: is a levelwise weak equivalence if \f i E Db I, 2:. :Fi -+ Gi is a weak 
- 1 

equivalence in g. 

in c. 

• 2: is a levelwise fibration if \f i E Ob I, 3.:Fi -+ Gi is a fibration 
- 1 

• 2: is a projective cofibration if it has the LLP w.r.t. those norphisms 

which are simultaneously a levelwise weak equivalence and a levelwise fibration. 

DEFrnITION The triple consisting of the classes of level wise weak equivalences, 

level wise fibrations, and projective cofibrations is called the projective structure 

on If,g]. 

THEOREM. SupIX>se that g is a combinatorial m::x1el category - then for every f, 

the projective structure on [f,g] is a m::x1el structure that, noreover, is combina­

torial. 

DEFINITION Let g be a nodel category and supp:>se that .... E IYbr [f,g], say 

2::F -+ G. 

• 2: is a levelwise weak equivalence \f i E Db f, :Fi -+ Gi is a weak 

equivalence in g. 

in c. 

• 2: is a level wise cofibration if \f i E Db I, S. :Fi -+ Gi is a oofibration 
- 1 
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• ~ is an injective fibration if it has the RLP w.r.t. those morphisms 

which are simultaneously a level wise weak equivalence and a levelwise cofibration. 

DEFINITION The triple consisting of the classes of levelwise weak equivalences, 

levelwise cofibrations, and injective fibrations is called the injective structure 

on [!,g]. 

THEOREM Suppose that £ is a canbinatorial model category -- then for every !, 

the injective structure on [!,g] is a model structure that, moreover, is canbina­

torial. 

• Every projective cofibration is necessarily levelwise, hence is a co­

fibration in the injective structure. 

• Every injective fibration is necessarily levelwise, hence is a fibration 

in the projective structure. 

EXAMPLE If W is an admissible S-localizer, then the Cisinski structure on 

n;,S] corresponding to WI (cf. 20.22) is the injective structure (rronarorphisms 

are levehvise) . 

[Note: Of course one can also equip [!,S] with its projective structure.] 

LEMMA SUpp:)se that g is canbinatorial -- then 

[!,gl (Projective Structure) 

g left proper => left proper 

[!,g] (Injective Structure) 
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and [!,g] (Projective Structure) 

g right proper => right proper. 

[!,gl (Injective Structure) 

REMARK If W is an admissible §-localizer, then the Cisinski structure on 

[!,El corresp::mding to WI (cf. 20.22) is left proper (cf. 20.15) and is right 

proper if the Cisinski structure on E corresponding to W is right proper. 

let g and g' be m:x1el categories. 

DEFINITION A left adjoint functor F;~ ~~' is a left m:x1el functor if F 

preserves cofibrations and acyclic cofibrations. 

DEFINITION A right adjoint functor F' :g' ~ g is a right m:x1el functor if F' 

preserves fibrations and acyclic fibrations. 

J:».MA. Suppose that 

F:C ~ C' - -
F' :C' ~ C 

are an adjoint pair - then F is a left m:x1el functor F' is a right m:x1el 

functor. 

DEFINITICN A m:x1el pair is an adjoint situation (F,F'), where F a left 

m:x1el functor and F' is a right m:x1el functor. 

J:».MA. The adjoint situation (F,F I) is a m:x1el pair iff F preserves cofibrations 

and F' preserves fibrations. 
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LEMMA The adjoint situation (F,F') is a nxxlel :pair iff F preserves acyclic 

cofibrations and FI preserves acyclic fibrations. 

REMARI{ If C and C' are combinatorial and if - -
F 

----~---'> 

C C' 

<-----~ 

FI 

is a nodel :pair, then comp:Jsition with F and F' determines a model :pair 

-------> 

<_._-----
FI 
* 

w.r.t. either the projective structure or the injective structure. 

If the adjoint situation (F ,F') is a nodel pair, then the derived functors 

LF:HC -+ HC' 

RF' :HC' -+ HC 

exist and are an adjoint pair. 

DEFINITION A nodel pair (F ,F') is a nodel equivalence if the adjoint pair 

(LF, RF') is an adjoint equivalence of hartotopy categories. 

LEMMA SUp[X)se that £: is combinatorial and consider the setup 
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> 

[!,gJ (Projective Structure) [!,£J (Injective Structure). 

<-------------------

Then (id [I ,C]' id [I C]) is a m:xlel equivalence. 
- - -'-
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§2l. SIMPLICIAL f4ACHINERY 

let g be a category. 

21.1 NOl'ATION SIC is the functor category (~OP ,g] and a simplicial object 

X in g is an object in ~IC. 

21.2 RAPPEL Assume: £ has coproducts. Define x[IK by 

Then 

I] :SIC x SISET ~ SIC 

is a simplicial action, the canonical simplicial action. 

[NOte: Therefore 

x[1 (K x L) ~ (x[IK) I]L 

and 

x[IMO] :::: X, 

subject to the usual assumptions.] 

N.B. Take C = SET -- then 

X[IK ;::: X x K. 

In fact, 

(X x K) ~ X x K ~ K x X :::: K . X . 
n n n n n n n 

21.3 REMARK Thus there is an S-category [lsIC such that SIC is isorrorphic 

to the underlying category U 

[Recall the construction: Put 0 = Ob SIC and assign to each ordered pair 
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X,Y E 0 the simplicial set HOM(X,Y) defined by 

HOM (X,Y) = Mor(XI-16[n],Y) (n ~ 0).] n -

21.4 LEMMA Assume: £ has coproducts -- then V X E Ob SIC, the functor 

xl=I--:SISET + SIC 

has a right adjoint, viz. the functor 

HCM(X,-):SIC + SISET. 

A 

21.5 LEMMA Assume: g has coproducts and is complete -- then V K E Ob ~, 

the functor 

-I]K:SIC + SIC 

has a right adjoint, denoted by 

N.B. In tenus of SIC, 

and in tenus of I ]SIC , 

X + hom(K,X) • 

Mor(X K,Y) ~ Mor(K,HCM(X,Y» 

Mor(XI=IK,Y) ~ Mor(X,hom(K,Y», 

HCM(xl]K,y} ,;:s map (K,HCM(X, Y» 

rIlM(XI=IK,Y) ~ HOM(X,hom(K,Y». 

[Note: Here is another p:::>int. On the one hand, 

Mor(xl=1 (K x L),Y) ~ Mor(X,hom(K x L,Y», 

while on the other hand, 

Mor(X[! (K x L) ,Y) ~ Mor( (X[IK) L,Y) 
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~ MDr(X,ham(K,hom(L,Y»). 

Therefore 

ham(K x L,Y} ~ ham(K,ham(L,Y}).J 

21.6 LEMMA Assume: g has coproducts and is ccmplete. Suppose that 

K ~ colim. K. -- then 'If X,Y E Ob SIC, 
11 -

PROOF 

Mer (X,han(colim. K., Y)} :,,; lim. MDr (X,ham(K. , Y)} • 
111 1 

~ MDr (colim. XI-\K., Y) 
1 - 1 

21. 7 NOI'ATION Let g be a complete category. Given a simplicial object X in 

g and a simplicial set K, put 

an object in g. 

21. 8 EXAMPLE Take K = Mn] -- then it follows from the integral Yoneda lemna 

that 

X ~ Mn] z X • n 

let K be a simplicial set. Assume: g has coproducts - then K determines a 

functor 

K • -;C +SIC 
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4. 

(K • X) [n] = K . X. n 

21.9 LEMMA Assume: g has coproducts and is complete -- then K • - is a 

left adjoint for 

21.10 LEMMA Assume: g has coproducts and is complete. SUpt:Ose that 

K ;::: colim. K. -- then V X E Ob SIC, 
11 -

X ~ K ;::: lim. X til K .• 
1 'I' 1 

PROOF Given A E Ob g, let ~ E Ob SIC be the constant simplicial object 

detennined by A, thus 

Mor(A,X ~ K) z Mor(K • A,X) 

z Mor{~I]K,X) 

z lim. Mor (K. • A,X) 
1 1 

z lim. Mor(A,X ~ K.) 
1 1 

21.11 LEMMA Assume: g has coproducts and is complete -- then V X E Ob SIC, 

PRCXJF Write 

ham (K,X) z X ~ (K x 6[n]). 
n 

K x 6[n] ~ colim. 6[n.]. 
1 1 



Then 

5. 

~ lbn. X (cf. 21.8) 
~ n. 

~ 

~ hom(K,X) • 
n 

[:Note: The not so obvious final p::>int is implicit in the proof of 21.5 (which 

was omitted.) .] 

21.12 EXAMPLE Take n = 0 to get 

and then replace K by !1 [n] to get 

hom{!1[n],x)O z X ~ !1[n] z Xn" 

[Note: Accordingly, 

hom{K,X)n ~ ham{!1[n],hom{K,X»O 

z ham{K x !1[n],x)O'] 

A 

21.13 LEMMA Assume: Q has coproducts and is canplete -- then V K,L E Ob (;;, 

ham (K,X) ~ L z X ~ (K xL). 

21.14 RAPPEL A sbnplicial set K is finite if it has a finite number of non-

degenerate simplexes. 

21.15 FACI' Suppose that K is finite - then there exists a finite category ! 

and a functor <P: I -+ !1 such that 

K ~ colbn Y!1 0 <P 
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or still, 

K ~ oolim. ~[n.] (i E Ob I, ~i = ~[n.]). 
11- 1 

21.16 'lliEOREM Let £, £' be cate::;ories. Assume; £, £' have ooproducts and are 

complete. SUPIX>se that F:£ ..... £' is a functor which preserves finite limits -- then 

A 

and V X E Ob SIC and every finite K E Ob Q, the canonical arrow 

is an isorrorphism. 

PRCX)F Since 

(cf. 21.12) 

and since K x ~ [n] is finite, it will be enough to verify that 

Per 21.15, write 

Then 

K ~ oolim. ~[n.]. 
1 1 

~ F(X ~ oolim. ~[n.]) Ip 1 1 

~ F(lim. X ~ ~[n.]) 
1 1 

~ lim. F(X ~ ~[n.]) 
1 1 

(cf. 21.10) 

~ lim. FX 1 ---no (cf. 21. 8) 
1 

~ limi (F~)n. 
1 
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::::: lim. F ~ th LHn.] 
1 'I' 1 

::::: F~ ~ colim. ~In.] 
1 1 

21.17 APPLICATION Let ~ be a Grothendieck topos. SUpfOse that p:~ + SET 

is a weak point -- then for every simplicial object X in ~ and for every finite 

simplicial set K, the canonical arrow 

is an isonorphism. 
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§22. LIFTING 

Let £ be a Grothendieck topos. 

[Note: £ is coccrnplete (by definition), hence has coproducts, and is complete 

(cf. lS.14). Therefore the technology developed in §2l is applicable.] 

22.1 DEFINITION A geometric family is a class ~ of monamorphisms of finite 

simplicial sets. 

22.2 ~~LE The inclusions 

~[n] + ~[n] (n ~ 0) 

constitute a geometric family. 

22.3 EXAMPLE The inclusions 

It [k,n] + ~ [n] (0 ~ k ~ n, n ~ 1) 

constitute a geometric family. 

Given an element i:K + L of a geometric family ~ and a norphism 3:X + Y of 

simplicial objects in £, there is a carnmutative diagram 

i* 
ha:n(L,X} > h.am(K,X) 

0·1 1°· 
h.am(L,Y) > han(K,Y) 

i* 

which then leads to an arrow 

(3*,i*) :h.am(L,X) + ham(L,Y) Xham(K,Y) ham (K,X) 
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or, uIX>n evaluating at 0, to an arrow 

22.4 DEFINITION ~:X + Y has the local right lifting property w.r.t. ~ 

'if i:K + L in ~, the arrow (~*fi*) 0 is an epinorphism in s. 

22.5 EXAMPLE Take S == SET - then ~;X + Y has the local right lifting property 

w.r.t. q iff ~:X + Y has the right lifting property w.r.t. ~. 

[For simplicial sets A and B, 

hcm(A,B) = ma.p(A,B) => horn (A,B) 0 = M:>r(A,B).] 

22.6 NarATION Given a geometric family q, denote by I.OCq(S) the class of 

m:::>rphisms in SIE that have the local right lifting property w.r.t. q. 

22. 7 LEMMA Let S' ~ be Grothendieck toIX>ses and let f: ~ + E. be a gecmetric 

m:::>rphism--then 

(f*)~(E) c I.OCq(~). 

[Apply 21.16 (f* preserves finite limits).] 

[Note: By definition, f*: E + E. Therefore 

(f*)*:r~OP,E.] + [~OP,£].] 

Let ~:X + Y be a m:::>rphism of simplicial objects in E. Suppose that p:~ + SET 

is a weak IX>int of ~ -- then the compositions 



are simplicial sets and 

is a simplicial map. 

[Note: Here, 'vi n 

and (p3) = p3 , thus 
n n 

x 

Y 

(pX) = pX 
n n 

(pY)n pYn 

3. 

p 

----'> SET 

p 

------'> SET 

p3:pX -r pY 

22.8 CRITERION 3:X -r Y has the local right lifting property w.r.t. q iff for 

every weak p::>int p:£ -r SET, p3:pX -r pY has the right lifting property w.r.t. q. 

It is obvious that ~(£) contains the isarorphisms. 

22.9 LEMMA The class LOCq(S) is composition stable, pullback stable, and closed 

under the fonna.tion of retracts. 

Let ! :be a small category - then [I,s] is a Grothendieck top::>s (cf. 18.17) 

and epirrorphisms are levelwise. 



4. 

N.B. There is an identification 

22.10 LEMMA Denote by ~ (~) I the class of norphisms =::F -+- G such that 

22.11 LEMMA The class ~(S) is closed under the formation of filtered co­

limits. 

[If ! is filtered, then the functor 

preserves finite limits. But col~ has a right adjoint, viz. the constant diagram 

functor. In other 'WOrds, the data provides us with a geometric norphism E -+- [!,E]' 

NOw quote 22.7 (nodulo 22.10) .J 

22.12 LEMMA 3:X -+- Y has the local right lifting property w.r.t. 1I if it has 

the right lifting property w.r.t. the arrows 

where A runs through the objects of E and i:K -+- L runs through the elements of 1I, 

i.e., if every carmru.tative diagram 

~I]K -----:> X 

id!!l]i 1 10 

~I]L----> Y 

admits a filler. 
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N.B. The arrow 

~I]K + ~I]L 

is a m::>n,CBlOrphism. 

[From the definitions, 

and K injects into L .] n n 

(~I]L)n = 11 A, 
L 

n 

22.13 REMARK There is a characterization, namely E:X + Y has the local right 

lifting property w. r . t. q iff for every A E Ob ~, for every i: K + L in q, and for 

every corrmutative diagram 

~[IK-------'>X 

id~I=li 1 1" 
~[IL ----> Y , 

one can find an AI E Ob ~ and an epbrorphism 1T:A' + A with the property that the 

corrmutative diagram 

1T\]i~ 
~ I [I K ------;> ~[IK ------'> X 

id~, I]K 1 1 " 
A_I \-_IK ----> A\-IL -----'> Y 

1T1]~ -_. 

admits a filler. 
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§23. LOCALIZERS OF VESCENT 

let §. be a Grothendieck to:EDs. 

23.1 DEFINITION let E;X -+ Y be a Il'Prphism of simplicial objects in ~ -- then 

E is said to be a hypercovering of SIc if it has the local right lifting property 

w.r.t. the inclusions ~[n] -+ ~[n] (n ~ O). 

[Note: Recall that 

(cf. 21.12). 

On the other hand, 

(cf. 21.ll) 

and 

x ~ ~[n] ~ M X 
n 

Y ~ ~[n] ~ M Y, n 

the symbols on the right standing for the ma.tching object of 

"Reedy theory", thus 

== (cask (n-l)X) 
n 

M'Y( M Y) (Cask(n-l}Y}n' 
-11 = [n] = 

the ma.tching Il'Prphisms being the canonical arrows 

X 

Y 
familiar from 
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'Iherefore the de:n.:md. is that V n ~ 0, the arrow 

x -+ Y x
M

.
Y 

M X 
n n -n n 

is an ep:imJrphism in f.] 

23.2 NOrATION HR (f) is the class of hypercoverings of SIE, so 

HR(E)= DOC (E) • 
- {~[n] -+ 6[n] (n ~ O)} -

[Note: The stability properties fonnulated in 22.9 are in force here.] 

23.3 EXAMPLE Take f = SET -- then in this situation, HR(f) is the class of 

acyclic Kan fibrations (cf. 22.5). 

23.4 LENMA Every hyperoovering =:X -+ Y is an ep:imJrphism. 

PEO)F Since epirrorphisms in SIE are levelwise, it suffices to prove that V n, 

=n::xn -+ Yn is an epinorphism in f. 'Ib this end, let p:f -+ SET be a weak rx>int --

. 
then p=:pX -+ pY has the right lifting property w.r.t. the Mn] -+ 6[n] (n ~ 0) (cf. 

22.8), hence is an acyclic Kan fibration, hence is an ep:imJrphism (see below). But 

p= = (p=) is an epmorphism in SET, thus one can quote 19.23. 
n n --

[Note: In SISET, all objects are cofibrant, so in the commutative diagram 

~----> px 

1 
pY-----pY, 

there is an arrow w:pY -+ pX such that p= 0 w = idpy ' which linplies that p= is an 

ep:imJrphism. ] 
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23.5 LEMMA The hypercoverings are closed under the fonration of products of 

pairs of arro;.vs. 

PRX>F SUpp::>se that 

are hypercoverings - then for any weak p::>int p:.s -).- SEr, 

But are acyclic Kan fibrations and the product of two acyclic Kan fibrations 

is an acyclic Kan fibration. 1:b'W apply 22.8. 

23.6 DEFINITION The ~-localizer of descent is the SIE-localizer generated 

by HR (.s), Le., 

W(HR(~». 

N.B. The elements of W (HR (~» are called the weak equivalences of descent. 

23.7 EXAMPLE Take E = SEI' -- then 

W(HR(~» = W(~), 
A 

the minimal ~-localizer. 

[Since HR(.s) is the class of acyclic Kan fibrations (cf. 23.3), if W is a 
A 

Q-localizer, then 

W:::> RLP (M) = RLP ( {Mn] -).- Mn] (n ~ O)}) 

= HR (~) • 
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Therefore 

W ::l W (HR (g» • ] 

23.8 LEMMA W(HR(E» is admissible. 

Consequently, SIE admits a cofibrantly generated m:Xlel structure whose class 

of weak equivalences are the elements of W (HR (g» and whose cofibrations are the 

m:::manorphisms (cf. 20.12). 

23.9 REMARK The foregoing m:Xlel structure on SIE is left proper (cf. 20.15) 

and right proper (use 20.17 (the elements of HR(g) are pullback stable». 

N.B. W(HR(.s» is closed under the fonnation of products of pairs of arrows 

(use 20.9 (cf. 23.5». 

23.10 RAPPEL The geometric rrorphism (r*,r *) of 18.2 extends to a geometric 

norphism SIE -+ SISET denoted by the same symbol. In particular: 

is defined by the prescription 

r*:SISET -+ SIE 

(X x r*K) = X x (r*K)n n n 

= X x 
n (~II *E) 

K '"'" n 

;::: ~ll Xn x *E (cf. 18.20) 
Kn '"'" 
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= II X = (xl-IK) (cf. 21.2). 
Kn n - n 

'!herefore 

X K ~ X x r*K. 

23.11 NOTATION Given X E Ob Sf ~ is the constant simplicial object in SIE. 

A 

23.12 DEFINITION l£!t W be a ~-localizer -- then the SIE-localizer of W-d.escent, - -

denotai WE' is the SIE-localizer generatai by HR (S) and by the rrorphisms 

where X E Ob E and f:K + L is an arrow in W. 

N.B. '!he elanents of WE are callai the weak equivalences of W-d.escent. 

A 

23.13 LEMMA Suppose that W = W(C} (C c M:>r ~) - then WE is generated by 

HR (s) and by the rrorphisms 

where X E Db E and f:K + L is an arrow in C. 

PIDJF Letting WE,C be the SIE-localizer generatai by the rrorphisms in question, 

it is clear that WE C eWE' 'Ib go the other way, given X E Db S' let 
-' -

-1 A 

be the ftmCtor that sends K to ~I=!K (~~ x r*K) - then FX WE,C is a A-localizer 

(cf. infra) and 
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Since this is true of all X E Ob ~, it follows that W~ C Wg,C' 

[Note: The claim is that F~lWE'C satisfies the three conditions of 20.3. 

E.g., to check condition (2), let f:K -r L be an acyclic Kan fibration -- then 

r*f:r*K -r r*L is a hypercovering (cf. 22.7), thus the same is true of 

i~ x r*f:X x r*K -r X x r*L (cf. 23.5). 

I.e. : 

~ x r*f E HR(~). -
-1 

Therefore FX l~g,C contains the class of acyclic Kan fibrations, as claimed..] 

N.B. The SIE-localizer of WUn-descent is the SIE-localizer of descent. 

23.14 EXM-:lPLE Consider the SIE-localizer generated by" HR (g) and by the norphisrns 

Then this is the SIE-localizer of W -descent (cf. 20.6). 
00 

23.15 LEMMA If W is admissible, then WE is admissible. 

23.16 THEOREM If W is admissible, then SIE admits a cofibrantly generated nodel 

structure whose class of weak equivalences are the elements of WE and whose co­

fibrations are the nonorrorphisrns (cf. 20.12). 

" [Note: If the Cisinski structure on P; per W is proper, then the Cisinski 

structure on SIE per WE is proper.] 

23.17 SCHOLIUM SIE admits a cofibra,ntly generated proper n:odel structure whose 
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class of weak equivalences are the elements of (Woo) E and whose cofilirations are 
-

the nonorrorphisms. 

23.18 LEMMA Every trivial fibration ~:X -+ Y is a hypercovering. 

PR(X)F By definition, ~ E RIP (M) I where M c M:>r SIE is the class of none­

rrorphisms. Accordingly, every ccmnutati ve diagram 

~[I~[n] > X 

1 1= 
(A E Ob E' n :2: 0) 

~1]Mn] > Y 

admits a filler. Therefore ~ has the local right lifting property w.r.t. the 
. 

inclusions t:. [n] -+ t:. [n] (n:2: 0) (cf. 22.12). And this just means that ~ is a 

hypercovering. 

Let £, E be Grothendieck top.Jses and let f: £ -+ ~ be a geometric norphisrn -­

then f induces a geometric rrorphisrn si f: SIE -+ SIf, thus there is an adjoint pair 

(si f*, si f*) and si f* preserves finite limits. 

[Note: si f* = (f*)* (cf. 22.7).] 

23.19 LEMMA Suppose that W is admissible -- then 

PRCOF Applying 22.7 (and bearing in mind 23.18), it follO"/5 that (si f*) -lW
E 

is a SIf-localizer 'Which contains the hypercoverings. On the other hand I if 

y E Ob E and f;K -+ L is an arrow in W, then 
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Therefore 

or still, 

23.20 THEOREM Suppose that W is admissible -- then the adjoint situation 

si f*:SIF -+ SIE 

is a m::xiel pa.ir. 

PROOF In fact, si f* preserves finite limits, hence preserves cofibrations 

(these being the m::>nOIl'Orphisms). Meanwhile, thanks to 23.19, si f* sends weak 

equivalences to weak equivalences. 

Let ! be a small category - then [!,g] is a Groth.endieck topos (cf. 18.17) and 

Let W be an admissible ~-localizer - then WE is an admissible SIE-localizer 

(cf. 23.15), so it makes sense to form (WE)I (cf. 20.2l), vvh.ich is an admissible 

[!,SIE]-localizer (cf. 20.22). 

Therefore the Cisinski structure on [!,SIE] per W [I E] is the injective 
-'-

structure on [!,SIE] w.r.t. the Cisinski structure on SIE per WE" 
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§24. LOCAL FIBRATIONS ANV LOCAL WEAK EQUIVALENCES 

let E: be a Grothendieck topos. 

24.1 DEFINITION let 3:X -+ Y be a rrorphism of simplicial objects in £ - then 

H is said to be a local fibration if it has the local right lifting property w.r.t. 

the inclusions A[k,n] -+ ~[n] (0 ~ k ~ n, n ~ 1). 

24.2 I...'Ell1MA 3:X -+ Y is a local fibration iff for every weak point p:£ -+ SEr, 

p3:pX -+ pY is a Kan fibration (cf. 22.8). 

N.B. Therefore the hypercoverings are local fibrations. 

24.3 I...'Ell1MA Let 3:X -+ Y be a local fibration and let i:K -+ L be a rronarrorphism 

of finite simplicial sets -- then the arrow 

(3*,i*) :ham(L,X) -+ hom(L,Y) Xham(K,Y) ham (K,X) 

is a local fibration 'Which is a hypercovering if 3 is a hypercovering or i is a 

simplicial weak equivalence. 

[~e: These conditions are reminiscent of those figuring in the definition 

of "simplicial rrodel category".] 

24.4 DEFINITION Consider SIE in its Cisinski structure per an admissible 
A 

W c MJr t:. (cf. 23.16) -- then the elanents of 

are called the fibrations of W-descent. 

24.5 EXAMPLE Take W = W -- then every fibration 3:X -+ Y of W -descent is a 
00 00 
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local fibration. 

[In view- of 22.12, it suffices to show that every ccmnutative diagram 

----> X 

1= (A E Db ~, 0 < k < n, n > 1) 

-----'> y 

admits a filler. But this is plain: The arrOltl 

~1]A[k,n] -> !!1]bIn] 

is roth a weak equivalence of W -descent and a nnnarorphism.] 
00 

24.6 REMARK SUppose that ~ satisfies the axiom of choice --. then in this case, 

the fibrations of W -descent are precisely the local fibrations (Rezk t) • 
co 

24.7 DEFINITION A simplicial object X in g is said to be locally fibrant if 

the arrOltl X -+ *SI£ is a local fibration. 

24.8 LEMMA X is locally fibrant iff for every weak point p:.£ -+ SET', pX is a 

Ka.n complex. 

24.9 EXAMPLE If X is locally fibrant and if K is a finite simplicial set, 

then harn(K,X) is locally fibrant. 

[In fact, V weak point p:~ -+ SET', 

t arXiv:math/9811038 

p*harn(K,X) ~ ham(K,p*X) 

== map(K,p*X) 

(cf. 21.17) 
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or still, dropping the sub-*, 

phom(K,X} :;:: Il.E.p(K,pX) • 

But 

pX Kan => map (K, pX) Kan.] 

24.10 EXAMPLE If X is locally fibrant, then hom(llIl] ,X) is locally fibrant 

and there is a local fibration 

ham(~[l],x) + X x X. 

[In 24.3, let K = ~[O] __ I 1 ~[O], L = ~[l].] 

24.11 Nm'ATION Let SIE,e; be the full subcategory of SIE whose objects are 
oc -

locally fibrant. 

24.12 DEFllUTION Let ::::X + Y be a rrorphism of locally fibrant simplicial objects 

in E -- then ::: is said to be a local weak equivalence if for every weak point 

p: E + SET, p:::: pX + pY is a simplicial -weak equivalence, i. e., p::: E W • 
- 00 

[Note: Take E = SEl' -- then it is true but not obvious that "local weak. equiv­

alence" coincides with "simplicial -weak equivalence" (cf. 24.23).] 

24.13 RAPPEL Cbnsider a triple (£,W,fib), 'Where £ is a category with a final 

object * and 

W c MJr C 

fib c M:>r C 

are t:w:::> camp::>si tion closed classes of rrorphisms termed 

weak equivalences 

fibrations, 
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the acyclic fibrations being the elements of 

(l) n fib. 

Then g is said to be a category of fibrant objects provided that the following 

axians are satisfied. 

(FI B-1) For every object X in g, the arrow X -+ * is a fibration. 

(FIB-2) All iscm:::>rphisms are weak equivalences and all ison:orphisms are 

fibrations. 

(F I B-3) Given carrq:x:>sable rrorphisms f, g f if any two of f, g , g 0 f are weak 

equivalences, so is the third. 

(FIB-4) Every 2-sink X _f_> Z <-g- Y, where g is a fibration (acyclic 

fibration), admits a pullba.ck X <_t;_ P _n_> Y, where t; is a fibration (acyclic 

fibration) : 

n 

X ----> z. 
f 

(FIB-5) Every rrorphism in g can be written as the C<:rn};X)site of a weak equiv-

alence and a fibration. 

24.14 THEOREM Take C ~ and let 

W = the local weak equivalences 

fib = the local fibrations. 

Then the triple <g,w, fi b) is a category of fibrant objects and the acyclic fibrations 
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are the hypercoverings. 

[:t'bte: Given an a.rrClW' 3 in SIE,e.oc' one can write 3 =:: q 0 j, where q is a 

local fibration and j is a local weak equivalence with the property that it has 

a left inverse r which is a hypercovering (r 0 j = id).] 

24.15 LEMMA SUpfOse that 3:X -+ Y is a local weak equivalence -- then ~ is 

a weak equivalence of descent. 

PRX)F Write 3 =:: q 0 j per supra -- then q is a local weak equivalence (this 

being the case of 3 and j). But q is also a local fibration, thus q is a hyper-

covering, thus q is a weak equivalence of descent. As for j, it too is a weak 

equivalence of descent. 'Ib see this, recall that W (HR (E» is the class of weak 

equivalences for a nndel structure on SIE, hence is saturated: 

W(HR(E» = W(HR(E». - ...... 

Therefore any arrow whose image in the honotopy category is an iSOflOrphism is 

necessarily in W (HR (E) ). But r 0 j =:: id and r E HR (E), hence is invertible in the 

hcm::>topy category, hence the same holds for j, i.e., j is a weak equivalence of 

descent. 

The functor E -+ SIE that sends X to e (cf. 23.11) has a left adjoint TrO:SIE -+ S 

that sends X to the coequa1izer of the arrows 

so 
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[Note: Take §. = Sm' -~ then in the context of simplicial sets, 1T 0 preserves 

finite products and 1T OX can be identified. with the set of carnp:>nents of X.] 

24.16 LEMMA Suppose that X is locally fibrant -~ then for every weak point 

p: S + 8m', the canonical map 

is bijective. 

PRCX)F ret R be the image of the arrow 

(dO,dl):Xl + Xo x XO· 

Then R is a relation on Xo and V weak point p: §. + Sm', pX is a Karl canplex and pR 

is an equivalence relation on pxO• Therefore R is an equivalence relation on Xo 

and the canonical map 

is bijective (cf. 19.27). 

24.17 RAPPEL The class of all weak points of S is faithful (cf. 19.20), hence 

reflects isomorphisms (cf. 19.19). 

24.18 W1MA The restriction of 1TO to ~ preserves finite products. 

PRCX)F 'Ib check that the canonical arrow 

1TO(X x Y) --> 1TOX x 1TOY 

is an isarnorphism, let p: S + 8m' be a weak point and note that 

PTIO(X x Y) ~ TIOp(X x Y) 

~ TIO (px x pY) 
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[Note: It is clear t..~t 'ITO preserves final objects.] 

24.19 LEMMA let 3:X -+ Y be a local weak equivalence -- then 'IT03:'ITOX -+ 'ITOY 

is an isarorphism. 

PRCX)F Take a weak point p:S -+ SET and consider the cormru.tative diagram 

P'IT03 

p'ITOX > p'ITOY 

zl lz 
'ITOPX > 'IToPY• 

'IToP3 

Since p3 is a simplicial weak equivalence, the arrow 

is bijective. 'Iherefore the arrow 

is bijective. 

The preceding considerations can be extended from 'ITO to 'ITn (n ~ 1) but before 

doing this it will be best to review' how things go for simplicial sets (Le., the 

case E = SEI'). 
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'l1:1us given a Kan CCIllplex X, let 

'l1:1en there is a map cn : 'ITnX -+ Xo and 'ITnX is a group object in SET/XO (abelian if 

n ~ 2). 

[Note: 'l1:1e construction X -+ 'IT X is functorial in X and natural w. r • t. c .] 
n n 

N.B. Denote by rfx the nth loop space of X -- then rfx is a Kan CCIllplex and 

24.20 THEOREM: Let X and Y be Kan CCIllplexes, f: X -+ Y a s:implicial map -- then 

f is a s:implicial weak equivalence iff 'ITOf:'IToX -+ 'ITOY is bijective and V n ~ 1, the 

cc:mnutative diagram 

'IT f n 
'IT X > 'IT Y n n 

enl len 

Xo 
fo 

'> Yo 

is a pullback square. 

While I shall anit the r:articulars, the story for an arbitrary £ is analogous: 

One can assign to each locally fibrant X its nth loop space rPx, a locally fibrant 

s:irnplicial obj ect in £1 and 
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N.B. There is a map c :'IT X -+ Xo and for any B:X -+ Y, there is a COlmUltative --- n n 

diagram 

'IT B n 
'IT X > 'IT Y n n 

enl len 

Xo > Yo' 
M 

~o 

24.21 LEMMA let p: E. -+ SET be a weak p::>int - then 

pd1x ~ Ifpx. 

PRCX)F The fonna1ities give rise to a pu11bad< square 

rPx > ham(~[11,1f-1X) 

1 1 
~o 

> rf-1x x rr,n-1x, 

the vertical arrow on the RHS being an instance of 24.10. N:>wapp1y p -- then the 

COlmUltative diagram 

is a pullback square in SISET. Proceeding inductively, it can be assumed that 

...n-1 ...n-1 
pll x:::: Il pX. 
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Here p~O = (pX) 0 and 

phorn(b. [1] ,~-~) "" ham(b. [1] ,p~-~) (cf. 21.17) 

n-1 
~ ham(b.[l],~ pX). 

But the conmutative diagram 

~npX _____ > ham(b.[l] ,~n-1pX) 

J)o ----> ;f-lpx 1 ;f-lpx 

is also a pullback square in SISET. Therefore 

[Note: If n = 1, then there is a pullback square 

~ -------'> ham(b.[l] ,X) 

1 1 
~o ---------'> X x X 

fran which a pullback square 

pnx ----.....,> pham(b.[l] ,X) 

1 1 
p~o --------'> pX x pX 

in SISET. But 

pham(b.[l] ,X) ::::: ham(b.[l] ,pX) (cf. 21.17) 

and the conmutative diagram 

~X -------'> ham(b.[l] ,pX) 

1 1 
(pX) 0 -------'> px x pX 
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is also a pullback square in SISEl'. Therefore 

p~ ;;:; npX.] 

24.22 LEMMA let p: £. -+ SEl' be a weak point -- then 

PR()()F In fact, 

1T pX ;;:; P1T X. n n 

1TnPX = 1TOs-fPX 

;;:; 1Topdlx (cf. 24.21) 

~ P1fodlx (cf. 24.16) 

::: p1T X. 
n 

24.23 THEOREM Let X and Y be Kan complexes, f: X -+ Y a simplicial map -- then 

f is a local weak equivalence iff f is a simplicial weak equivalence. 

PRCX>F The nontrivial claim is that if f is a simplicial weak equivalence, then 

for any weak point p:SEl' -+ SEl', pf:pX -+ pY is a simplicial weak equivalence, and 

to establish this, we shall apply 24.20. 

• Consider the carmutative diagram 

1T OPX ------:;. 1TOPY 

~1 1-
p1T OX -------:;. P1f oY. 

p1Tof 

Then 1TOf is bijective, hence p1TOf is bijective, hence 1TOPf is bijective. 
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• 'Ihe canmutati ve diagram 

'ITnf 

'ITnX :> 'ITnY 

enl len 

Xo :> Yo 

fO 

is a pullback square, thus the ccmnutati ve diagram 

PITf n 
prrX n :> prrnY 

enl len 

pxo :> pYo 
pfo 

is a pullback square. But 

p'IT f n 
PTInX :> p'IT Y n 

zl 1" 'IT px n :> 'ITnPY• 
'IT pf n 

'Iherefore the conmutative diagram 
'IT pf 
n~ 

'ITnPX :> 'ITnPY 

enl len 
pxo pfo 

:> pYo 
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is a pullback square. 

24.24 THEOREM. Let ~:X -+ Y be a rrorphism of locally fibrant simplicial objects 

:in E - then ~ is a local weak equivalence iff TIO~:rrOX -+ TIOY is an isarorphism 

and V n ~ 1, the ccmnutative diagram 

is a pullback square. 

TI ~ n 
TI X ---------':> 1T Y n n 

Every local weak equivalence is a weak equivalence of descent (cf. 24.15), 

hence is a weak equivalence of W co -descent. When E == SET, this can be turned around: 

Every weak equivalence of W -descent (a.k.a. simplicial weak equivalence) is a local 
00 

weak equivalence (cf. 24.23), a conclusion that :persists to an arbitrary E-

24.25 I..iEM-:lA Let ~:X -+ Y be a rrorphism of locally fibrant simplicial objects :in 

E. Assume: :: is a weak equivalence of W -descent -- then ~ is a local weak equiv-
co 

alence. 

[The full proof is lengthy and. teclmical but here is the strategy. First treat 

the case when Y == * and use it to treat the case when :in addition the arrow Y -+ * 

is a fibration of W -descent. This done, factor Y -+ * as 
co 

Y----~> * 

jl 
Y' 
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where j is an acyclic cofibration (thus a weak equivalence of W -descent) and co 

y' + * is a fibration of W -descent. OJnsider co 

M j 
X --> Y --> Y'. 

Then j is a local weak equivalence and joE is a local weak equivalence. There-

fore M is a local weak equivalence. 

[Note: Another approach is to use 24.6 and prove it initially under the 

assumption that E satisfies the axiom of choice. 'Ib proceed in general, take 

f:S + E as in 18.29 -- then si f*E is a weak equivalence of Wco-descent (cf. 23.19), 

hence is a local weak equivalence. And from there it is not difficult to see that 

E is a local weak equivalence.] 

using standard methocls, one can introduce a functor 

co 
Ex :SIE + SIE 

and a natural transforma.tion 

co. co 
e :idSIE + Ex 

00 

with the property that if X is a locally fibrant simplicial object in S, then Ex X 

is a locally fibrant simplicial object in S and the arrow e;:x + Ex COx is a local 

weak equivalence. 

24.26 LEMMA If X is a locally fibrant simplicial object in Sf then the arrow 

e;: X + Ex COx induces an iso.rrorphism 

(cf. 24.19) 

and V n 2::: 1, 
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PRCX)F 'Ihe carrmutative diagram 

00 

'!TnX ----------:> '!TnEx X 

00 

Xo -------> (Ex X) 0 

00 

is a pullback square (cf. 24.24). But (~) 0 is an isanorphism and the pullback 

of an isarorphism is an isarrorphism. 'ltlerefore '!Tn ~ is an isarorphism. 

24.27 LE't-t1A. If X is a simplicial object in ~, then Ex oox is a locally fibrant 

simplicial object in E and the arrow ~: X -+ Ex oox is a weak equivalence of Woo -descent. 

24.28 DEFINITION Given X E Ob SIE, put 

[Note: Up to isarorphism, natters are consistent when X E Ob ~ (cf. 24.26).] 

24.29 TI:lEX)REM let E:X -+ Y be a lIDrphism of simplicial objects in E -- then the 

following conditions are equivalent. 

(1) E is a weak equivalence of IN -descent. 
00 

0:> 

(2) Ex E is a weak eg:uivalence of IN -descent. 
00 

00 

(3) Ex E is a local weak equivalence. 



16. 

'IT :: n 

'lTnX :> 'IT Y n 

enl len 

Xo :> Yo 

is a pullback square. 

PR(X)F Taking into account 24.27, the equivalence of (1) and (2) results upon 

insflE!.Ction of the co.rrn:nutative diagram 

X------> Y 

ro ro 
Ex X -----> Ex Y. 

ro 
Ex:: 

ro ro 
Next, since Ex X and Ex Y are locally fibrant, the equivalence of (2) and (3) 

follows from 24.25. Finally, in view of 24.24, the equivalence of (3) and (4) 

can be read off from consideration of 

ro 00 

'IT OEx X ------:> 'IT OEx Y 
ro 

'lTOEx :: 

and 
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00 00 

TInX = TInEx X ---------> TInEx Y = TInY 

Cnl 
00 00 

Xo :::: (Ex X) 0 .,-------> (Ex Y) 0 Z YO' 

00 

(Ex :::) 0 

Let 

Woo = the local weak equivalences 

(W ) E = the weak equivalences of W -descent. 
00 00 

24.30 LEMMA The arrow of inclusion 

is a rrorphism of category :pairs (cf. 25.9) and the induced functor 

is an equivalence of categories. 

00 
[Use Ex to construct a functor in the opposite direction.] 

24. 31 NCJI'ATlOO Put 

24.32 LEMMA The arrow 

E .... H SIE 
- _00--

that sends X to the image of e in the hclrcotopy category is fully faithful. 
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§25. COMPARISON PRINCIPLES 

Let 9 be a snaIl category -- then 

SIC = [~OP, [gOP ,SEr]] 

" 25.1 LEM-1A. Let W be an admissible ~-localizer - then the elements of W ..... are 
C 

levelwise the elements of W. 
OP 

PROOF In 23.21, let! = 9 and E = SEr. 

25.2 REMARK Since 

"-

it follows that if W is an admissible lI-localizer and if the Cisinski structure on 
A 

SISEl' detennined. by W is proper, then the Cisinski structure on SIC detennined. by 

W..... is proper. 
C 

Let 9 be a snaIl category, T a Grothendieck topology on g. 

A A 

25.3 RAPPEL '!he inclusion IT: (C) -+ C admits a left adjoint a :C -+ Sh (C) 
- - -T - --~-

that preserves finite limits (cf. 11.14). 

Abusing the notation, we shall use the same symbols 

adjoint pair 
A 

SIC -e> SISh (C) 
--- --'[ -

A 

SISh (C) -e> SIC. 
--'[ -

a 
-T 

1 
T 

for the induced. 
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A 

25.4 DEFINITION Let ~:X -+ Y be a norphism of simplicial objects in C -- then 

_ is said to be a T-hypercovering if its irrage a ~ is a hypercovering of SISh (C). 
-T --'[ -

A A 

25.5 DEFINITION Let W be a fl~localizer - then the SIC-localizer of (W,T)-descent, 

,., 
denoted W" (T), is the SIC-localizer generated by the T-hypercoverings and by the 

C 

norphisms 

~I f:~I]K -+ el]L, 

" "Where X E Ob C and f:K -+ L is an arrOW' in W. 

N • B. 'ltl.e elements of W" (T) are called the weak equivalences of (W , T) -descent 
--- C 

and the elements of 

are called the fibrations of (W, T) -descent. 

25.6 EXAMPLE Take for T the minirral Grothendieck top:>logy on g (cf. 11.11) --

then Sh (C) = g and W" (T) 
-'[ - C 

W • 
A 

C 

A 

25.7 I..EM1A If X is a simplicial object in g, then the canonical arrOW' 

X -+ 1 a X is a weak equivalence of (W,T)-descent. 
T-T 

A 

25.8 THEOREM Let W be a ~-localizer -- then 

-1 
~T WSh (C) = WA(T) 

-'[ - C 
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PRCX:>F The:pair (a ,1 ) defines a geometric norphism Sh (C) + C and a -lW
Sh 

(C) -T T -'( - - -T 
-'( -

'" is a SIC-localizer which contains WI', (cf. 23.19). In particular: The 
-- C 

i~I=lf E ~~lWSh (C)' - -'( -

But the T-hypercoverings are also in ~~lWSh (C)' thus 
-'( -

-1 
~T WSh (C) ~ W",(T). 

-'( - C 

As for I
T
- l W,, (T), it is a SISh (C}-localizer and 

C --'( -

• let B:X + Y be an element of ~~lWSh (C) -- then the claim is that 
-'( -

MEW" (T). 'lb see this, consider the carnrm.ltative diagram 
C 

lT~TX 

I 
X 

Here 

=> 

1 a B T-T 

M 

1 aBE W,,(T). 
T-T C 

> 1 a Y T-T 

r 
> Y 

On the other hand, the vertical arrows are weak equivalences of (W,T) -descent 
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(cf. 25.7). But W" (T) satisfies the 2 out of 3 condition. Therefore 
e 

• Let 8:X -r Y be an element of t -lW", (T) -- then the claim is that 
T e 

25.9 RAPPEL A rrorphism 

=> 8 E WSh (e) 
-'[ -

(a 0 1 == id) . 
-T T 

of categor.Y pairs is a functor F:g1 -r g2 such that FW1 c W2 , thus there is a unique 

- -1 -1 functor F:W1 gl -r W2 g2 for which the diagram 

F 
gl > g2 

~11 1 ~2 
-1 

W2 gl 
-1 

:> W2 g2 

F 

ccmnutes . 

• Take 

W2 = WSh (e) 
-'[ -



and let 

50 

F=ao 
-T 

Then ~T: ~l -+ ~2 is a rrorphism of category pairs, so 

- -1 -1 
~T:Wl ~l -+ W2 ~2° 

• Take 

and let 

Then 1 :Cl -+ C2 is a rrorphism of category pairs, so 
T - -

25.10 THEOREM The functors 

equivalence of metacategories. 

a 
-T 

are an adjoint pair and induce an adjoint 

[The arrows of adjunction are natural isorrorphisms.] 

25.11 CRITERION Let gl' £2 be Grothendieck top::>ses, let CP:£l -+ £2 be a functor, 

and let W2 be an admissible g2-localizer. Assume that cp preserves colimits and 

finite limits and that cp-
l W2 is an £l-localizer -- then ~-lW2 is admissible. 

25.12 LEMMA If W is admissible, then W" (T) is admissible. 
C 
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A 

PR(X)F In 25.11, 1et's1 = SIC, 's2 = SISh,[(g), 1l = ~T' W2 = WSh (C) - then 
-'[ -

WSh (C) is admissible (cf. 23.15) and 
-'[ -

-1 
~T t~Sh (C) = WI'. (T) 

-'[ - C 
(cf. 25.8). 

A 

25.13 REMARK Since WA{T) is admissible if W is admissible, SIC admits a 
C 

cofibrant1y generated. :rrode1 structure 'Whose class of weak equivalences are the 

elements of WA{T) and whose cofibrations are the monamorphisms (cf. 20.12). 
C 

Accordingly, in 25.10, the data gives rise to an adjoint equivalence of hortDtopy 

categories. 

[Note: If g is a :rrode1 category, then HC (= w-1g) is a category (and not 

just a metacategory) .] 

25.14 LEMMA Suppose that W is admissible and that the Cisinski structure on 
A 

~ per W is proper -- then the Cisinski structure on SIC per WA(T) proper. 
C 

PR(X)F 'Ib begin with, this is the case if T is the minimal Grothendieck toF01ogy 

on g (cf. 25.1 and 25.6). In general, there are two FOints. 

(1) Since a preserves finite limits, hence preserves pullba.cks, the 
-T 

T-hypercoverings are pu1lba.ck stable (cf. 22.9). 

WA • 

C 

(2) Every fibration of W-descent per WA (T) is a fibration of W-descent per 
C 

:Now quote 20.17. 

[Note: As always, it is right proper which is at issue (cf. 20.15).] 
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25.15 LEMMA Suppose that W is admissible and that the Cisinski structure on 
A 

!::. per W is proper - then the Cisinski structure on 

"-

(£) per WSh (C) is proper. 
-'[ -

PROOF Fibrations in SISh (C) "are" fibrations in SIC and pullbacks in SISh (C) 
----'[ - ----'[ -

"-

"are" pullbacks in SIC. 

[To provide a modicum of detail, suppose that g:Y + Z is a fibration of 
A 

W-descent per SISh,[ (g) -- then lTg is a fibration of W-descent per SIC. Thus 

consider the lifting problem 

u 

B ---------------> 1 Z 
T v 

where f is an acyclic cofibration -- then 

But preserves IIDnarorphisms I hence 

a f:a A + a B 
-T -T -T 

(cf. 25.8). 

is an acyclic cofibration. Therefore the carrmutative diagram 

au 
aA -T 

:> Y 
-T 

~Tfl 1
9 (a 0 = id) 

T 

aB :> Z 
-T 

~TV 

has a filler w:a B + Y, 
-T 

i.e. , 
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N::M form the COIrm.ltative diagram 

U 

A 

(l 
al 

1 a U 

:> 1 a A 
T-T 

A -------' T-T 
:> 1 Y 

T 

f 1 a f 
T-T \'T9 

:> 1 a B 
(3 

T-T 

8\ 

:> l
T

Z 
1 a v 

T-T 

B-----

B 

'll1en l
T

W 0 S:B -+ l
T
Y is a solution to our lifting problem: 

O(l=laU o (l=U 
T-T 

1 g 0 1 W 0 (3 = 1 a v 0 (3 v.] 
T T T-T 

25.16 SQiOLIUM (cf. 23.17) Fix T E T and take W = W -- then C 00 

"'-

SIC 

SISh eC) 
--'[ -
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admit a cofibrantly generated proper rrodel structure whose class of weak equiv-

alences are the elements of 

and whose cof ibrations are the rronarrorphisrns. 

[Note: Here there is present an additional item of structure, viz. that 

these model categories are simplicial rrodel categories.] 
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INTERNAL AFFAIRS 

IA-l NarATION GRD is the full subcategory of CAT whose objects are the grouJX)ids 

(the rrorphisms are functors) • 

IA-2 LEMMA let ~/!! E Ob GRD and supJX)se that F:~ "* ~ is a functor. 

• F is fully faithful iff the diagram 

F 
furG > fur H 

(s,t) 1 1 (s,t) 

ObGxObG >ObHxObH - - - -
F x F 

is a pullback in SET • 

• F has a representative image iff the composite 

s 
Ob ~ XOb H MJr ~ --> fur ~ --> Ob ~ 

is surjective. 

[Note: Here 
s 

Ob g XOb H MJr !! -> fur ~ --> Ob !! 

1 - it 
Ob G -------''> Ob H 

F 

N.B. These JX)ints characterize an equivalence between grouJX)ids and provide 

the rrotivation for the notion of "internal equivalence" infra. 
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IA-3 THEOREM GRD is a npdel category if weak equivalence = equivalence and 

the cofibrations are those functors F:g -+ !! such that the map 

ObG-+ObH ... -
x -+ FX 

is injective. 

[Note: All objects are fibrant and cofibrant.] 

IA-4 r...n1MA let g I!! E Ob GRD , F: g -+ !! a functor -- then F is an equivalence 

iff the induced. simplicial map ner F:ner g -+ ner !! of nerves is a s.implicial weak 

equivalence. 

IA-5 LEM-lA let g,!! E Ob GRD , F:g -+ !! a functor -- then F is a fibration iff 

the induced. s.implicial map ner Fmer g -+ ner !! of nerves is a Kan fibration. 

IAr6 LEM-lA let X,Y be simplicial sets and let f:X -+ Y be a simplicial map. 

• If f is a simplicial weak equivalence, then the induced. :n:orphism 

IIf : IIX -+ IIY of fundamental grou:r;:oids is an equivalence. 

• If f is a cofibration, then the induced. :n:orphism IIf:IIX -+ IIY of funda-

roontal grou:r;:oids is injective on objects. 

IA-7 REMARK Since 

II:SISEl' -+ GRD 

is a left adjoint for 

ner :GRD -+ SISEl', 

it follows fram the lemmas that II is a left m:Jdel functor, i.e., preserves co-

fibrations and acyclic cofibrations, and ner is a right m:Jdel functor, i.e., 
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preserves fibrations and acyclic fibrations. 

[Note: Here the underlying :rocx1el structure on SISET is, of course, the Kan 

structure. 'Ib get a :rocx1el equivalence, simply replace it by its truncation at 

level I (thus nCM the weak equivalences are the l-equivalences (so the arrCl'NS are 

isomJrphisms at Tf 0 and Tf I) ) .] 

Let ~ be a Grothendieck tofOs - then g is canplete so the fonna.lism of 

internal category theory is applicable. And, as will be seen belCM, the results 

outlined al:xwe for the case ~ :::: SET actually go through in general. 

lA-a Na:rATION GRDq~) is the full subcategory of CAT(g) whose objects are the 

groufOids in ~ (the rrorphisms are internal functors). 

[Note: Recall that an object § of GRDtg) is a pair (GO,GI ) of objects of g 

together with a battery of rrorphisms satisfying the usual axioms.] 

IA-9 EXAMPLE Let g be a srna.ll category -- then 

GRD (g) z [gOP ,GRD] • 

lA-IO DEFINrrION Let §,~ E Ob GRD(g) and supfOse that F:g -+- ~ is an internal 

functor, hence F = (F O,F I)' where 

FO:GO -+- HO 

FI:GI -+- HI 

are rrorphisms in E (subject to ..• ) - then F is said to be an internal equivalence if 
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(1) The diagram 

Fl 
G

l :> Hl 

(dO,d1 ) 1 1 (do,~) 
Go x Go :> HO x HO 

FO x FO 

is a pullback. in £ and 

(2) The COInp)site 

GO xH Hl -:> Hl 
dO 

:> HO 
0 

is an ep:irrorphisrn. 

[Note: Here 

GO 

t~->j:l 
dO 

:> HO 

.] 

!A-ll THEDREM GRD(~) is a nod.el catego:ry if weak equivalence = internal equiva-

lence and the cofibrations are those internal functors F:G ->- H such that the arrow 

is a no:non:nrphisrn. 

N.B. Take E = SEl' to recover !A-3. 
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IA-12 RAPPEL Every category CinE gives rise to a simplicial object ner C - - -
in ~ by letting ner o~ = go' ner l~ = £1' and 

[Note: An internal f1.IDctor £ + £' induces a :rrorphism ner g + ner g I of 

simplicial objects.] 

IA-13 LEMMA Let §,!! E Ob GRD(~), F:§ + !! an interna.l f1.IDctor - then F is an 

internal equivalence iff ner F:ner G + ner H is a weak equivalence of W -descent. - _ co 

IA-14 RE.:MARK The functor 

ner:GRD(~) + SIE 

has a left adjoint 

IT:SIE + GRD(~) • 

W::>rking with the m.:x:1el structure on SIE per 23.17 (the weak equivalences thus being 

the weak equivalences of Woo -descent), what was said in IA-7 can be said again. In 

particular: If § E Ob GRD(~) is fibrant, then ner G is fibrant. 

A 

Let g be a small category I T a Grothendieck to]?Ology on g -- then SIC admits 

a cofibrantly generatErl proper m.:x:1el structure whose class of weak equivalences are 

the elenents of 

and whose cofibrations are the :rrononorphisms (cf. 25.16). 

[Note: If T is the minimal Grothendieck to]?Ology on C, then 
-, 
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and the elements of (W) are 1eve1wise the elements of W (cf. 25.1). Therefore ooA 00 

C 

in this case the IIDde1 structure on 

SIC ~ (SOP,SISET] 

is the injective structure.] 

N.B. 

OP • If G:£ + GRO, then 

ner G:COP 
+ SISET. 

• If G,H:gOP 
+ GRD and if 3:G + H, then 

ner 3 :ner G + ner H. 

IA-15 THOOREM (gOP ,GRD] is a rrode1 category if the weak equivalences are the 

3:G + H such that ner 3 is a weak equivalence of (Woo,T)-descent and the fibrations 

are the 3:G + H such that ner 3 is a fibration of (W ,T)-descent. 
00 

For ease of reference, call the objects of [gOP ,SISET] simplicial presheaves 

and the objects of [gOP ,GRD] simplicial groufOids. 

IA-16 DEFINITION A fibrant IIDde1 for a simplicial presheaf X is a fibrant 

simplicial presheaf Xf and a weak equivalence of (Wro,T)-descent X + Xf . 

IA-17 DEFINITION A simplicial presheaf X is said to satisfy descent if for 

some fibrant IIDde1 Xf , the arrow 

is a simplicial weak equivalence VUE Ob g. 
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IA-18 LEMMA If A and B are fibrant simplicial presheaves and if f:A -+ B is a 

weak equivalence of (Wco,T)-descent, then VUE Ob g, the arrow AU -+ BU is a sim­

plicial weak equivalence. 

IA-19 APPLICATION' If X is a simplicial presheaf, if X
f 

and Xf are fibrant 

rrodels for X, and if VUE Ob g, the arrow 

is a simplicial weak equivalence, then VUE Ob g, the arrow 

is a simplicial weak equivalence. 

[Choose CP:Xf -+ Xf such that the diagram 

X------X 

1 1 
cortm.ltes -- then cp is a weak equivalence of (W , T) -descent {by the 2 out of 3 co 

condition}, hence VUE Ob g, the arrow 

is a simplicial weak equivalence, from which the assertion.] 

Cbnsequently, the notion of "descentll is independent of the choice of a fibrant 

rrodel. 

IA-20 DEFINITION Let G be a simplicial groupoid - then G is said to be a 
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stack if ner G satisfies descent. -
IA-2l DEFINITION A stack completion of a presheaf of groupoids G is a weak 

equivalence G -+ G', iNhere G' is a stack. 

It is a fact that a stack completion for a given G always exists. E.g.: One 

possibility is to take G' = G-torsd (Jardine's "discrete G-torsors"). 

IA-22 REMARK The definition of stack is a rroving target. 


