Spin MTC and Fermionic QH States a joint-work with N. Read

Zhenghan Wang
Microsoft Station Q
UCSB

Fermionic QH States

Laughlin v=1/3, MR State, Read-Rezayi
 States (RR M=1, Milovanovic-R. SCFT)

Bosonic versions (RR M=0) are modeled by unitary modular tensor categories

 Use spin modular tensor categories to model their topological properties

Category

A category is a directed graph such that (Vertices=objects, edges from x to y are called the morphism set Hom(x,y))

- Each vertex x has a loop id_x
- Every two compatible edges
 f:x→ y,g: y→ z completed to a triangle with
 fg:x→ z, called composition
- Id_x is a two-sided unit for composition

(Unitary) Fusion Category

- A finite label set L, i∈ L, dual label (anti-particle type): i→ i*, and i*=i, trivial 0=|gs>, 0*=0
- Objects isomorphic to finite sum of labels
- Hom(x,y) is a f.d. Hilbert space
- x simple if dimHom(x,x)=1, labels are iso classes of simple objects or a set of representatives.
 - Fusion rules: $i \otimes j = \bigoplus N_{ij}^k k$ (tensor product)

Ribbon Fusion Category

- Braiding: $c_{x,y}$: $x \otimes y \rightarrow y \otimes x$
- A twist θ_x : $x \rightarrow x$
- For a label, $\theta_i = e^{2\pi i h_i}$, h_i=conformal weight mod 1

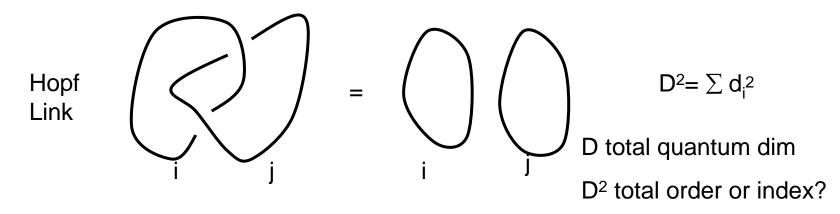
$$\mathbf{x}$$
 \mathbf{y} \mathbf{x} \mathbf{y} \mathbf{y}

Topological invariant Z(L) for labeled oriented links L, e.g.

Modular Tensor Category (MTC)

A ribbon fusion category with no degenerate simple objects:

a nontrivial simple object i (=q.p. or q.h. mod local) is degenerate or transparent if Ds_{ii}=d_id_i for any other simple j



Ribbon Fusion Category

If not modular, braid statistics and invariants of closed 3-manifolds are well-defined,

but the full TQFT structure such as the rep of the modular group "SL(2,Z)" cannot be defined.

If modular, then the modular s-matrix $s=(s_{ij})$ is not singular, and the full (2+1)-TQFT is defined.

E.g. Fusion rules are given by Verlinde formulas.

Spin MTC

- An MTC with a fermion f
- A fermion is a simple object $f^2=1$ and $\theta_f=-1$
- Note if $f^2=1$, then $\theta_f=1$ (boson), $\theta_f=-1$ (fermion), or $\theta_f=\pm$ i (semion)
- In Ising MTC with simples 1,σ,ψ,
 ψ is a fermion.

Examples

- Laughlin states v=1/Q, $Z_{4Q}, L=\{0,1,\dots,4Q-1\}, Q=\text{odd}, f=2Q, \\ \text{charge } q_s=s/2Q, \ \theta_s=e^{2\pi\,i\,s^2/8Q}$
- MR state
 Ising × Z₈, Z₈=Laughlin at Q=2
 L={x⊗ s}, x=1,σ,ψ,s=0,1,...,7
 f= ψ⊗ 4, charge from Z₈
- SU(2)_k, k=2 mod 4, e.g. k=6, L={0,1,...,6}, f=6

c-Spin MC

 A c-spin MC is a spin MTC (F, f) which is unitary and covers a fermionic QH state (tentative).

• c-Spin MC

Local w.r.t fermion---NS vs R

Unitary ribbon fusion category

Identify fermion with |gs>

Tensor category

(without braidings and twists,
but with pure braidings and double twists)

f is a charged fermion

Covering theory (F,f) has two components:

- Statistics/Spin sector: B (UMTC)
 Charge sector: C (cyclic UMTC)
 Topological content is in the quotient Q of B ⊗ C, where every anyon has a well-
- More general, F is not a product.

defined electric charge mod 1.

Z₂ Grading

- Unitary spin MTC, for any $i \in L$, $Ds_{fi}=\epsilon_i \ d_i, \ \epsilon_i=\pm \ 1$ i is even if $\epsilon_i=1$, odd otherwise
- $L=L_0 \cup L_1$, $f \in L_0$
- If $N_{ij}^{k} \neq 0$, then $\varepsilon_i \varepsilon_j \varepsilon_k = 1$

Elementary Properties

- $D_0^2 = D_1^2$, where $D_k^2 = \sum_{i \in L_k} d_i^2$
- $s_{fi,j} = \epsilon_j s_{i,j}$
- θ_{fi} =- $\epsilon_i \; \theta_i$
- f has no fixed points L₀
- Proofs:

1st and fth row are orthogonal, so $\sum s_{f,i}d_i=0$, i.e., $\sum_i \epsilon_i d_i^2=0$

Verlinde s-matrix

Define naive fusion rules

$$N_{[a][b]}^{[c]} = N_{ab}^{c} + N_{ab}^{fc},$$

where [a] are quotient labels,

and naive s-matrix,

$$s^{Q}_{[a],[b]}=2s_{a,b}$$
, then

s^Q is a unitary matrix and Verlinde formulas hold for the naive fusion rules.

MR Fusion Rules

Labels $L_Q = \{1, \psi, \sigma, \sigma', \alpha, \alpha'\}$ charges= $\{0, 0, 1/4, 3/4, 1/2, 1/2\}$

$$\alpha\alpha'=1, \quad \sigma\sigma'=1+\psi$$

$$\psi^2=1, \quad \alpha^2=\alpha'^2=\psi, \quad \sigma^2=\sigma'^2=\alpha+\alpha',$$

$$\psi\sigma=\sigma, \quad \psi\sigma'=\sigma', \quad \psi\alpha=\alpha', \quad \alpha\sigma=\sigma'$$

No braided fusion category realizations! (P. Bonderson's thesis)

MR s^Q-matrix

$$D=2\sqrt{2}$$

$$s^{Q}=1/D$$

A Puzzle

SU(2)₆, labels L={0,1,2,3,4,5,6}, f=6,

$$L_0$$
={0,2,4,6}, L_1 ={1,3,5}

$$s^{Q}=1/D$$
 $\begin{pmatrix} 1 & 1+\sqrt{2} \\ 1+\sqrt{2} & -1 \end{pmatrix}$

$$[0]=1$$
, $[2]=x$, then $x^2=1+2x$

Verlinde formulas hold for the fusion rules, but $\{1,x\}$ with $x^2=1+2x$ does not exist as a fusion category (V. Ostrik)

(2+1)-TQFTs from MTCs

Two compatible functors (rules)

- A modular functor V: surfaces Y to Hilbert spaces V(Y), mapping classes b: Y→ Y to unitary maps V(b): V(Y)→ V(Y)
- A partition functor Z:
 bordisms M³ from Y₁ to Y₂ to
 linear maps Z(M³): V(Y₁)→ V(Y₂)
 Y₁=∅, Z(M³)=partition functions in CSW theories

Spin TQFTs from spin MTCs

- Surfaces and 3-mfds are endowed with compatible spin structures
- Spin structure:
 - given an oriented surface Y, a spin structure σ on Y is a quadratic enhancement q_{σ} : $H_1(Y,Z_2) \rightarrow Z_2$ such that $q(x+y)=q(x)+q(y)+\langle x,y\rangle$ mod 2, where $\langle x,y\rangle$ is the Z_2 -intersection form of Y.

Theorem (C. Blanchet)

Given a TQFT, a spin structure σ on closed oriented surface Y, let $V^s(Y,\sigma)=\{v\in V(Y)|\ O_{\gamma}v=(-1)^{q_{\sigma}(\gamma)}v,\ all\ \gamma\}$, where γ is a simple closed curve γ on Y and O_{γ} is an operator,

Then $V(Y) = \sum_{\text{spin structures } \sigma} V^s(Y, \sigma)$

Quotient Categories

- Quotient F→ Q
 Let Γ=1⊕ f,
 Objects of Q=objects of F,
 Given objects x, y of Q,
 Hom_Q(x,y)=Hom_F(Γ⊗ x,y)
- Note that in Q, f≅ 1
- ⊗ is well-defined
- ? direct sum, semi-simplicity, rigidity

Other Structures

- Braiding, No
- Twist, No
- Pure braidings, Yes
- Double twists, Yes
- Representation of the subgroup of SL(2,Z) generated by s and t²

Possible Applications

Entanglement entropy: -logD_Q

Topological stability