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The purpose of this book is to give a systematic treatment of fibration
theory and sheaf theory, the ewphasis being on the foundational essentials.
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§0. CATEGORICAL COMVENTTONS

In this book, the foundation for category theory is the "one universe" approach
taken by Herrlich—Strecker+ . The key words are "set", "class", and "conglomerate®.
Thus the issue is not only one of size but also of membership (every set is a class

and every class is a oonglomerate).
0.1 DEFINITION A category C is a class of objects Ob C, a class of morphisms
Mor C, a function dom:Mor C =+ Ob C, a function cod:Mor C+0C, and a function
o:{{f,g):f,g € Mor C & cod £ = dom g} » Mor C (e(f,g) =g ¢ £)

such that...

0.2 TERMINOLOGY
e Small Category: A category whose morphism class is a set.

e large Category: A category whose morphism class is a proper class.

[Note: If C is a category and if Ob C is a proper ¢lass, then C is large.]

Given a category C and objects X,Y € Ob C, it is not assumed that the class

Mor(X,Y) = {f:f € Mor ¢, dom £ = X, cod £ = Y}

is a set.

0.3 DEFINITION A category C is said to be locally small if ¥V X,Y € 0b C,

Mor (X,Y) is a set.

0.4 EXAMPLE SET is a locally small large category.

T Categonry Theony, Heldermamn Verlag, 1979; see also Osborne, Basic Homofogical

Algebra, Springer Verlag, 2000.



0.5 EXAMPLE TOP is a locally small large category.
0.6 EXAMPLE SCH is a locally small large category (cf. 23.20).

0.7 REMARK There are abelian categories A whose positive derived category

D_!é is not locally small.

0.8 NOTATION CAT is the locally small category whose objects are the small
categories and whose morphisms are the functors.

[Note: CAT is a locally small large category.]

0.9 DEFINITION A metacategory C is a conglomerate of objects Cb C, a con-

glomerate of morphisms Mor C, a function dam:Mor € » Ob C, a function cod:Mor C -
b C, and a function
o:{(f,9):£,g € Mor C & cod £ = dom g} > Mor C (e(f,g9) =g o £)

such that... .

N.B. Every category is a metacategory.

10y

0.10 NOTATION Given categories , the functor category [C,D] is the meta-
D

category whose objects are the functors F:C -+ D and whose morphisms are the natural

transformations Nat(F,G) fram F to G.

0.11 REMARK Suppose that C and D are nonempty.

e If F:C > D is a functor, then F:Mor C ~ Mor D is a function, i.e., F
is a subclass

F < Mor C x Mor D.



And F is a proper class iff Mor C is a proper class.

e If F,G:C > D are functors and if Z:F » G is a natural transformation,

then 5:0b C + Mor D is a function, i.e., E is a subclass
EcOb Cx Mr D.
And £ is a proper class iff Ob C is a proper class.
Accordingly, if Ob C is a proper class, then [C,D] is a metacategory, not a

category.
[Note: If, however, C is small, then [C,D] is a category and if D is locally
small, then [C,D] is locally small.]

0.12 EXAMPIE Let ON be the ordeved class of ordinals — then [ON,SET] is

a metacategory, not a category.

0.13 NOTATION f€AT is the metacategory whose objects are the categories and

whose morphisms are the fimctors.



§1. Z-CATEGORIES

It is a question here of establishing notation and reviewing the basics.

1.1 DEFINITION A 2-category ¢ consists of a class 0 and a function that assigns

to each ordered pair X,¥Y € 0 a category €(X,Y) plus functors

C}(,Y,Z:C(X'Y) X t(YfZ) g C(sz)
and
%{:; — €(X,X)
satisfying the following conditions.
(2-catl) The diagram
id x C
C(XpY) X (C(Y.rz) X C(ZIW)) _—— C(X,Y) X C(Y!W)
A
(€(X,¥) x €{¥,2)) x €(2,W) C
C x id
A 4
C{X,2) x €(2,W) > C{X,W)
C
commates.,
(2—cat2) The diagram
L R
1 x €(X,Y) > C(X,Y) < CX,¥) x1
Ix idJ ' jid x I
€(X,X) x €(X,Y) > C{X,Y) < C{X,Y) x €(¥,Y)
C C

commmites.



1.2 REMARK It is not assumed that the €(X,Y) are small or even locally small.

1.3 TERMINOLOGY Let € be a 2-category.
® The elements of the class O are called O-cells (denoted X,Y,%,...).

e The objects of the category €(X,Y) are called l-cells {(denoted f,q,h,...)

(and we write £:X ———a Y or X f>Y).

® The morphisms of the category C(X,Y) are called 2-cells (denoted o,RB,

a
Yreoo) {and we write a:f —>gor £ —>q).

N.B. It is common practice to define a 2-category by simply delineating the
O0—-cells, the l-cells, and the 2-cells, leaving implicit the precise definition of

the €(X,Y) (aswellasthecxyzandtheIX).
=

1.4 EXAMPLE There is a 2-category 2-REL whose (-cells are the sets, whose
1-cells £:X > Y are the subsets f of X x ¥, and whose 2~cells o:f —>g (f,9 ¢
X x Y) are defined by stipulating that there is a unique 2-cell from £ to g if

f < g but no 2-cell from f to g otherwise.

1.5 EXAMPLE There is a 2-category 2-TOP whose (O-cells are the topological
spaces, whose l-cells are the continuous functions, and whose 2-cells are the

homotopy classes of homotopies.

1.6 EXAMPLE Let C be a locally amall finitely complete category —— then there
is a 2-category CAT(C) whose O-cells are the internal categories in C, whose l-cells
are the internal functors, and whose 2-cells are the internal natural transformations.
{Note:

e Take C = SET -~ then the 0-cells in CAT(SET) are the small categories.



® Take C = CAT — then the 0-cells in ¢AT(CAT) are the small double

categories.|]

1.7 NOTATION
e The composition of

o B
f —>9g—>h

in €(X,Y) is denoted by B & a.

[Note: Given a l-cell £, there is a 2-cell idf:f —>f such that 0 @ idf =
for all o:f —>g and idf e B = B for all B:h —=>£.]
e The image of l-cells f:X + ¥, k:Y-»-ZunderCXYZisdenotedbykof.
rLr

[Note: Iet lX be the image of the unique object of 1 under (hence 1X:X + X) —

IX
then for any l-cell £:X -+ Y,
C(lX,f) =f o ]_x =f= lY e f = C(f,lY).]

a u
e The image of 2-cells £ ——>g, k —> £ under CX v.2 is denoted by 4 * d.
r=r

[Note: If o:f —=>g, then

O the other hand, if £:X > ¥, k:¥ > Z, then

idk * :I.élf = J.dk o f.]
To illustrate, suppose given
- a B
£ >9g >h
2] Y

k >£ > M.




Then
T urake f——=3Llog
v % B 6 g ==—-m ¢ h,

Therefore
vxB e (l—l * g) = CX,Y,Z(B'\)) L4 CX,Y,Z(&'U)

= CX,Y,Z((B’\}) ® (a,4))

= CX,Y,Z(B o, ve

(venu » (Bea.

1.8 REMARK The equation

vxp)e{(pxa)=(vey = (B e a)

is called the exchange principle.

1.9 EXAMPLE Suppose that
aif —=>g
ik —=> £.

T idg) ° (J'.C"lk % o)

(J'.dllfi *a) @ (U % idf).

1.10 EXAMPLE Suppose that cc,B:lX — ].X — then

acepB=Ffedc.



In fact,
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1.11 DEFINITION The underlying category UC of a 2-category € has for its

class of objects the 0-cells and for its class of morphisms the 1-—cells.

[Note: In this context, lx serves as the identity in Mor(X,X).]

1.12 NOTATION Let

2-CAT = CAT(SET)  (cf. 1.6).

1.13 EXAMPLE We have

U2-CAT = CAT.

1.14 EXAMPLE Every category C determines a 2-category € for which U€ = C

[Tet O = Ob C and let €(X,Y) = Mor(X,Y) (viewed as a discrete category).]

1.15 DEFINITION let € be a 2-category — then a l-cell f:X »+ Y is said to be

a 2-isomorphism if there exists a l-cell g:Y + X and invertible 2-cells




(1'):1X —s>g o f

np:lY —>f e gqg.

1.16 DEFINITION Let € be a 2-category —- then O—-cells X and Y are said to

be 2-isomorphic if there exists a 2~isomorphism £:X -+ Y,

1.17 EXAMPLE In 2-TOP, topological spaces X and Y are 2-isomorphic iff they

have the same hamotopy type.

1.18 EXAMPLE In 2-CAT, small categories I and J are 2-isomorphic iff they are

equivalent.

It is clear that 1.1 admits a "2-meta" formulation {cf. 0.1 and 0.9), thus

O may be a conglamerate and €(X,Y) may be a metacategory.

1.19 EXAMPLE There is a 2-metacategory TPP whose 0-cells are the Grothendieck
toposes, whose l-cells are the geometric morphisms, and whose 2-cells are the
geometric transformations.

[Note: The 0O-cells in TOP constitute a conglomerate. However, if E, F
are Grothendieck toposes and if f,g:E —— [ are geametric morphisms, then there
is just a set of nmatural transformations f* —— g* or still, just a set of geo-

metric transformations (£*,f.) —— (g%,g,).]

1.20 NOTATION 2-CAT is the 2-metacategory whose O-cells are the categories,
whose l-cells are the functors, and whose 2-cells are the natural transformations.
[Note: On the other hand, as agreed to above (cf. 1.12), 2-CAT is the 2-cat~

egory whose O-cells are the small categories, whose l-cells are the functors, and



whose 2-cells are the natural transformations.]

1.21 DEFINITION ILet € be a 2-category -— then a diagram

v
W ~ Y
UJ g
X > 2
£

of 0—cells 2—commites (or is 2-commtative) if the l-cells

fouW-— %
_ g o v —rp Z

are isomporphic, i.e., if there exists an invertible 2-cell ¢ in C(W,2) such that

p:f ou—vg e v,

1.22 EXAMPIE Given categories A,B,C and functors F:A + C, G:B + C, let A X B
ACObA
be the category whose objects are the triples (A,B,f), where and
BEOB

f:FA -+ GB is an isomorphism in €, and whose morphisms

(ArBrf) —— (A' :B'rf|)

are the pairs (a,b), where a:A + A' is a morphism in A and b:B »~ B' is a morphism

in B, such that the diagram

f
FA — . GB
Fa Gb
FA' — - @B

fl'



commites. Define fumctors

p{a,B,f) =

1
I
[l
2
g

I

= a)

— Q(ArBrf) = b)

1

w

el

2

RN
i

and define a natural isamorphism

EtF e P —» G e Q

by
f
:(A,B,f) :FP(A,B,f) = FA > GB = GQ(A,B,f).
Then the diagram
Q
Ax B > B
a > C
F
of 0-cells in 2-CA¥ is 2-commutative.
F G
[Note: A x. B is called the psewdo pullback of the 2-sink A > C < B.

<

In this connection, recall that the pullback A x, B of (F,G) is the category whose

C

objects are the pairs (A,B) (A € Ob A, B € Ob B) such that FA = GB and whose mor-
phisms

(,B} —— (a',B")



are the pairs (a,b), where a:A + A' is a morphism in A and b:B ~ B' is a morphism

in B, such that Fa = Gb, there being, then, a commtative diagram

q
A% B——> B
A > C L)
P =

1.23 REMARK The comparison functor

[sd x, B —> A

c *¢ 8
is the rule that sends (A,B) to (A,B,id} (id the identity per FA = GB) and (a,b)
to (a,b). While clearly fully faithful, T need not have a representative image,

hence is not an equivalence in general.

Definition: G has the isomorphism lifting property if v isomorphism ¢:GB > C

in ¢, 3 an isomorphism ¢:B + B' in B such that Gp = ¢ (so GB' = Q).
Exercise: Given G:B + C, the ocomparison functor T is an equivalence for all
F:A > C if G has the isomorphism lifting property.

B, let y:GB + FA be f'l, and get

Solution: Take an object (A,B,f) in A KC
an isomorphism ¢:B + B’ suchthatG¢=f-landGB' = FA -— then
(idAr ¢) H (A,B,f) > F(A,B')
is an isomorphism
£
FA > GB
FA > GB' ,
id

thus I' has a representative image.



§2. 2~FUNCTORS

Suppose that ¢ and €' are 2-categories with O-cells O and O' — then a
2-functor F:€ + ¢' is the specification of a rule that assigns to each 0-cell

X € 0a 0-cell FX € O' and the specification of a rule that assigns to each

ordered pair X,Y € 0 a functor

FX'Y:Q:(X,Y) — C' (FX,FY)
such that the diagram
C
(X, Y) x €(Y,2) > €(X,2)
Fe,v ™ Fy,z Fy,z
¢' (FX,FY) x C'(FY,FZ) > €' (FX,FZ)
C

commutes and the equality
Ty = Frx ° Ix
obtains.
[Note: The underlying functor

UF:U0( — Ug!

sends X to FX and f:X + Y to Uf:FX = FY.]

N.B.
1) Fy «lx = lex’
(2) F id,. = i H
x,Y9¢ o

(3) Py gk o £=Fy ko Fy o



(4) FX,YS ® 0= FX,YB ® FX,YOL:

Bxo=F, B *%F, 0.

(3) Fy v,z° * Fx,v

'Z

2.1 EXAMPLE There is a 2~functor

N1:2-T0P —> 2-CAT

that sends a topological space X to its fundamental groupoid IX.

2.2 EXAMPIE Iet C and C' be locally small finitely complete categories and
let ¢:C » C' be a functor that preserves finite limits — then there is an induced
2-functor

CAT (¢) :€AT(C) —— CAT(C") (cf. 1.6).

2.3 NOTATION Let € be a 2-category.

° Cl_OP is the 2-category obtained by reversing the l-cells but not the

2-cells, thus

P x,y) = ev,x).

. CZ-—-OP

is the 2-category obtained by reversing the 2-cells but not the
l-cells, thus

P,y = cxn%.

° tl,Z-OP

is the 2-category obtained by reversing both the l-cells and the
2-cells, thus

2P xy = er, 0.

N.B. Taking opposites defines an isomorphism
OP:CAT + CAC



of metacategories. On the other hand, this operation does not define a 2-functor
2-CAT —— 2-CAT

but it does define a 2-functor
2-ea0) 2 F _, 2-car
which in fact is a "2-iscmorphism”.
2.4 DEFINITION A derivator in the sense of Heller is a 2-functor
D: (2-cam) " F 5 2-ea.

2.5 EXAMPLE Fix a category C —- then there is a derivator Dc in the sense of

Heller that sends I € Ob CAT to [I,C].

2.6 RAPPEL Iet C be a locally small category and let (! « Mor C be a class of

morphisms — then (C,W) is a category pair if (® is closed under composition and

contains the identities of C.

2.7 EXAMPIE Iet (C,W) be a category pair. Given I € Ob CAT, let wI < Mor(I,C]
be the class of morphisms that are levelwise in (f —— then

(1T,¢1 )

is a category pair, so it makes sense to form the localization of [I,C] at wI=

Define now a derivator D(C ) in the sense of Heller by first specifying that
=7

_ gl
0 e ik = WT 12,21



Next, given a functor F:I - J, the precomposition functor
F*:[J,C] ~ [X.,C]

is a morphism of category pairs (i.e., F*wJ c wI) , thus there is a functor

-1 -1
PRy 12,8 —> W ILg),

call it D F, hence

(C. )

Dic,inFPic,md — Digmi-

Finally, a natural transformation 5:F + G induces a natural transformation

-

P c,in® P c,my¥ = Pic,m®

2.8 REMARK A derivator in the sense of Grothendieck is a 2-functor

1,2-0p

D: (2-CAT) ——> 2-€AT.

[Note: Using opposites, one can pass back and forth between the two notions.]
N.B. What I call a derivator (be it in the sense of Heller or Grothendieck)

others call a prederivator and what I call a homotopy theory (definition omitted)

others call a derivator.

2.9 CONSTRUCTION Suppose that € is a 2-category, fix a O-cell X € 0, and
define a 2-functor

@X: € — 2-CAT

as follows.



e Given a 0-cell Y € 0, let
@XY = t(X;Y) f
a 0-cell in 2-£AT.

® Given an ordered pair ¥,Z € 0, let

(q)X)Y,Z

:C(er) e z—tAE(QXYrQ’XZ)
be the functor that sends a 1l-cell g:Y » 2 in ¢(Y,Z) to the l-cell

((DX)Y,Zg: ¢{X,Y) — €{X,2)

in 2-€AT specified by the rule

((CIJX)Y’ZQ)OL = idg * o

and sends a 2-cell R:g —g' in €(Y,Z) to the 2-cell
. - . |
@)y, 582 (0g)y 29 ——> (8g)y 79
specified by the rule

(8)y B¢ = B  id,.

2.10 EXAMPLE

-0p

e Take € = (‘2—CAT)1 -—- then the construction assigns to each small

category I a derivator

op: 2-cam) ™ F s 2-eat

in the sense of Heller.

1,2-0p

¢ Take € = (2-CAT) —- then the construction assigns to each small

category I a derivator

1,2-0p

2.+ (2-CAT) —> 2-€AT



in the sense of Grothendieck.

let €, €' be 2-categories and let F,G:€ + €' be 2-functors —-- then a 2-natural
transformation Z:F » G is a rule that assigns to each 0O-cell X € 0 a 1l-cell EX:FX >
GX subject to the following assumptions.

(1) For any l-cell f:X -+ ¥, the diagram

X
X > GX
P ¥t Gy, vt
FY > GY
Zy

commutes.

(2) For any pair of l-cells f,g:X » ¥ and for any 2-cell o:f ~—~q,

:|.dEY * FX,YO‘ = GX,YOL * 1dEX.

[liote: E is a 2-natural isomorphism if v X € O, EX is a 2-isomorphism (cf.

1.15}).]
Points (1) and (2) can be rephrased.

2.11 NOTATION
¢ Define a functor

Ae giC' (FX,FY) — €' (FX,GY)
on objects by
A.E.Gf‘=EY°f' (£':FX + FY)
r

and a morphism by
!\.F’GOL' =id_. * a' (a":€' —sg").

.Aﬂ



e Define a functor

AG,F:C (&X,6Y) —— €' (FX,GY)
on objects by
' = Vo = L
PLG’Fg g Ey (g":GX »~ GY)
and on morphisms by
1 ] : 1 opmpl — 1

Then it is clear that points (1) and (2) amount to the demand that the diagram

F.

X,Y
¢(X,Y) > €' (FX,FY)
Sk, v e
€' (GX,GY) > €' (FX,GY)

LR

commutes.,

2.12 EXBMPLE Iet C and C' be locally small finitely complete categories, let
$,0:C > C' be functors that preserve finite limits, and let £:¢ > ¢ be a natural

transformation —-- then there is an induced 2Z-natural transformation

CAT(E) :CAT () ——> CAT(YP) {cf. 2.2).

2,13 EXAMPLE Suppose that ¢ is a 2-category and let f£:X + Y be a l-cell --

then there are 2-functors
- 0y:€ —> 2-CAT
(cf., 2.9).
<I>Y:Q? — 2-CAT



And there is a 2-natural transformation
¢ f:q)Y —_— @X,
namely the rule that assigns to each 0—cell Z the l-cell

(6.),:€(Y,2) — €(X,2)

£y
defined by

(tbf)zg =geo f

(0p) 8 = B * id..

2.14 DEFINITION Iet €, ¢' be 2-categories and let F:¢ + ¢' be a 2-functor --

then F is a 2-equivalence if there is a 2-functor F':£' » ¢ and 2-natural isomorphisms

F' o F — idC

FoP' —s idC"
2.15 LEMA A 2-functor F:€ - €' is a 2-equivalence iff
(1) v X,Y¥ € 0, the functor

FX,Y:C(X'Y) —> €' (FX,FY)
is an isomorphism of categories;

(2) v X* € 0', 3 X € 0 such that FX is isomorphic to X' in UC'.

let €, €' be 2-categories and let F,G:€ » €' be 2-functors. Suppose that

5Z,:F > G are 2-natural transformations -- then a 2-modification

s

]

+ 8

is a rule that assigns to each 0-cell X € 0 a 2-cell



=EX:>QX

such that for any pair of l-cells f,g:X > ¥ and for any 2-cell a:f —>gq,
LIY * F‘XI'YCt = GX’Ya * [Ix.

Let €, €' be 2-categories —- then there is a 2-metacategory 2-{€¢,C'] whose
O=cells are the 2-functors from € to €', whose l-cells are the 2-natural trans-
formations, and whose 2-cells are the 2-modifications.

[To explicate matters:

e If F,G:€£ + €' are 2-functors, if 5,Q,T:F » ¢ are 2-natural transformations,

and if U:E5 > Q, H:Q > T are 2-modifications, then U o U:Z > T is defined levelwise:
(e 1I)X = I/lX . qX
e If F,G H:C ~ €' are 2-functors, if
E,0F > G

rT:G+H

are 2-natural transformations, and if U:Z -+ Q, H:T - T are 2-modifications, then

U UsT @ Z >~ T @ 0 is defined levelwise:
0 5 )y = Ty Y]
2.16 EXAMPIE Iet € be a 2-category — then there is a 2-functor

clﬂﬂ?

P

» 2=[¢,2-€AT).
To wit:

® Send X to @X (cf. 2.9),

o Ytoosa, » 0, (cf. 2.13).

® Send X eidy * O




10.

® Send a:f —>g to @a:CIJf > @g, where v 2 € O,
(@a)zz (¢f)z - (tbg)z
is the 2-natural transformation defined by stipulating that at a l-cell h:Y » 2,

((@a)z)h = J.dh * Oha
[Note:

oif—>qg
"—'>idh*ot:h0f—)-h°g.

idh:h:>h

(((pf)z)h =h o £

(¢ ), =h © g.]

2.17 EXAMPLE let 2 be the category with two objects and one arrow not the
identity -- then if C is a category, its arrow category C(+) can be identified
with the functor category [2,C]. Now let 2 be the 2-category determined by 2

(cf. 1.14) -- then if € is a 2-category, we put
e:("') = 2_[21610

Therefore the 0-cells of €(») Yare" the l-cells of €, the l-cells of €(+) "are"

the commtative squares of l-cells of €, and the 2-cells of €(») "are" the pairs

) [
> ¥ X > Y
Xt > Y ' Xt » ¥



11.

of commitative squares of l-cells of ¢ plus 2-cells

Az —> W

_ootipt —> !
subject to
idg o= q' % idf.
[Note: The categories (UC) (»), UC(») have the same objects but the first is

a nonfull subcategory of the second.]

2.18 NOTATION CMZ is the 2-metacategory whose O-cells are the 2-categories,

whose 1-cells are the 2-functors, and whose 2-cells are the 2-natural transformations.

[If 5:F > F' and Q:G + G' are 2-natural transformations, then

D * 5:GoF—— G o P'
or still,

(Y E)X:GFX — G'F'X,

which in turn is defined as the corner arrow in the commutative diagram

aFX > G'FX
- 1 -
GFX,F'X“XJ G ey, P
G'X > G'F'X )
ey

[Note: 2-functors are composed in the obwvious way.]



§3. PSEUDO FUNCTORS

Suppose that € and €' are 2-categories with O-cells O and O' — then a

pseudo functor F:¢€ -+ €' is the specification of a rule that assigns to each O-cell

X € Q0 a O0—cell FX € 0' and the specification of a rule that assigns to each ordered
pair X, ¥ € 0 a functor

FX,Y:t(X'Y) — €' (FX,FY)

plus natural iscmorphisms

(F xF, .} —F o C

Yx,v,2°5rx,Fy,72 ° Fx,v * Fy,z X,%2  “X,Y,3

& E ¢ I

> Fx,x ° Ix
satisfying the following conditions.

(oohl) Given camposable 1-cells f,g,h in €, the diagram

Mgy * Vg g
Fh o Fg o Ff ~Fh o F{g ° £}
Yg,h * lde ' Yg o £,h
v v
F(h o g) o Ff >Fh o g o £)
Yf,,h °og

of 2-cells commutes:
Tg o £,n® (idpy, * Yf,g) “Yeheg® (Yg,h * dpe) .

(coh.z) Given a l-cell £:X > Y in €, the diagram



i'de * 6}{*
Ff o :LFX >Ff o FlX
Y £
\'
Ff F(f o lx)
of 2-cells commtes:
le,f ® (idpe * 8y,) = idgg,
and the diagram
6Y* * ide
]‘.E'Y o Ff > FlY o Ff
Yf'l‘[
’ 1
Ff F(:IY o f)

of 2-cells commtes:
Ye,1, ® (8, * idpe) = idpe.

[Note: To ease the notational load, indices on F and y have been suppressed,

e.g., if £:X » ¥ and g:Y » Z, then Yf,g = (YX,Y,Z)f,g' Also,
GX*
GY*
— ‘Sx
stands for evaluated at the unigue object of 1. Finally, when it is
S

Y



necessary to exhibit the implicit dependence on F, append a superscript, e.q.,

F F
Yf,g' SX* .1

N.B. In ¢, if f,£':X —— Y, if q:f —>f', if g,9":¥ —— Z, and if

B:g =——>g', then by naturality, the diagram

Yf,g
Fg o Ff >F(g o f)
R % Fo F{E = a)
v v
Fg' o Ff' >Flg' o £Y)
Yflrgl

of 2-cells ocammites:

F(B x ) @ Yf,g = Yee gt e (FB % Fo).

3.1 REMARK A pseudo functor is a 2-functor iff all the Y. v.2 and ‘SX are
rFr=r

identities.

3.2 NOTATION Iet MOD stand for the 2-metacategory whose (-cells are the
combinatorial model categories, whose l-cells are the model pairs (F,F') (F a left
model functor, F' a right model functor), and whose 2-cells are the natural trans-—

formations of left model functors.

3.3 EXAMPLE Define a psewdo functor
H:l0D —— 2-CAT
as follows.
® Given a combinatorial model category C, let

HC = Wg,



the localization of C at the weak equivalences .
® Given an ordered pair C, C' of cambinatorial model categories and a

model pair (F,F'), thus

Fl
send (F,F') to

LF:EIE e E' I3

where LF is the absolute total left derived functor of F.
® Given a natural transformation Z:F + G of left model functors, let
LE:lF —— LG

be the induced natural transformation of absolute total left derived functors.

3.4 NOTATION Iet 2-GR stand for the 2-category whose 0-cells are the groups,
whose l-cells are the group homomorphisms, and whose 2-cells are the inner auto-
morphisms.

[Spelled cut, if G and H are groups and if f,g:G + H are group homomorphisms,

then a 2-cell o:f —=>g is an element o € H such that ¥V 0 € G,

f(o)a = ag(o).]

3.5 EXAMPLE Fix a nonempty topological space B. Define a pseudo functor
PRIN;:2-GR —> 2-€AT

as follows.
e Given a group G, let PRIN; be the category of principal G-spaces

Xowr B (cf. 9.3).



e Given a group homamorphtism £:G + H, let

PRIN, ¢:PRING o ——> PRIN, 4

be the functor that sends X to X x_ H, where

f
X Xz H=Xx Bl - a,0)~x,£(0)T) }.
e Given q:f —=—-g, let
PRINB,a:PRmB,f —_— PRI[\ZIB'g
be the natural transformation which at X is the arrow
X ><f H—— X ><g H
that sends (x,T) to (x,a_lr).

[Note: If £:G ~ H, g:H + K, then Ye is the cancnical isomorphism

g
(X x H) ><gK~——>X><gOfK.
And & G is the canonical isomorphism
X _"‘-'> X x- Go]
1dG
F o
3.6 DEFINITION Let ¢ > €' > €'’ be pseudo functors —-- then their
composition F' o F is the pseudo functor defined by
X —— F'FX
and
L} —_ L}
(F' e Fly v = Flex,ry ° Fx,v
plus
£ g F' o F
® Given l-cells X >Yand Y > 2 in €, the 2-cell ¥y is the

f,qg



composition
YFfng F Yffg
F'Fg o F'Ff >P'(Fg o Ff) >E'F(g o )
and
F' ¢ F
® Given a 0-cell X in ¢, the 2-cell § is the composition
X*x '
& ol
FxX* Kk
L} 1

Iet €, €' be 2-categories and let F,G:C + €' be pseudo functors —- then a

pseudo natural transformation Z:F » G is a rule that assigns to each 0-cell X € O

a l-cell EX:FX -+ GX plus a natural isomorphism

v e r © G,y T M6 ° Fxy

satisfying the following conditions.

£ g
(oohl) Given l-cells X > Y and Y > Z in €, the diagram
_ Wy * 't _ Tg * k¢ _
Ggon°:x >Gg°:'.Y°Ff >:Z°Fg°Ff
]
G Ly 1 F
id. id. =
Yf,g* B¢ 2, YF,g
v v
G(g°f)°EX >EZ°F(g°f)

Tgof

of 2-cells camutes:

G .
id. ).
£® (Yf,g* =)

. F . . _
(:LdEZ * Yf,g) ® (Tg * 1de) o (1ng * Tf) =T £,

go



(cohz) Given a O-cell X in €, the diagram

Sge * 1
2¢
lGXOS'X >G]7(°:X
Iy
-V _ V']
B¢ ° Ipx >Ey © Fly
. F
ldEx*GX*

of 2-cells commtes:

F

T Kk "

G . . .
o (6, *id ) =1id; * ¢
1y Xx “x %

(coh3) Given l-cells f,g:X + Y in € and a 2-cell o:f — g in €, the

diagram

'f

Gf o E >EY°Ff

Go % id_ id. * Fo
X Y
v o_ = YR

Ggo._.x >—Yoq
T
g

of 2-cells camutes:

(ia. *Fa)o‘rf='r e (Gou * id_ ).
“y g =X

[Note: BAgain, scme of the indices have been omitted.]

3.7 REMARK If F,G:€ » ¢' are 2-functors, then a pseudo natural transformation



¥ is a 2-natural transformation iff all the Ty y are identities.
r

3.8 DEFINITION lLet F,G,H:C -~ €' be pseudo functors and let

1}

:FP>+>G, sG>+ H

[1}

be pseudo natural transformations -- then their composition Q e £ is the pseudo

natural transformation defined by letting

(Q.E)X=QXOEX

1

I
£

T = Gay + ) @ (tf % dd_ ).

X
[Note: Here T~ and T'Q refer to the natural transformations belonging to the

pseudo natural transformations £ and 2.]

3.9 REMARK There is a metacategory whose objects are the pseudo functors from

¢ to ¢' and whose morphisms are the pseudo natural transformations.

let €, €' be 2-categories and let F,G:€ > €' be pseudo functors. Suppose that

£,8i:F » G are pseudo natural transformations — then a pseudo modification

U2 —

is a rule that assigns to each 0-cell X € 0 a 2-cell
LIX:EX pam— Y ﬂx
such that for any pair of 1-cells f£,9:X =+ Y and for any 2-cell q:f —- g,
g _ .8
(Hy * Fx,YO‘) e (TX,Y)f = (TX,Y)g o (GX’Ya * L!X) .

3.10 REMARK If F,G:C -+ €' are 2-functors and if Z:F -~ G, Q:F -~ G are 2-natural



transformations, then the TE, TQ are identities and a pseudo modification U:5 » § is

a 2-modification.

Pseudo modifications are composed by exactly the same procedure as 2-mod-

ifications (recall the definition of 2-[¢,C']).

3.11 NOTATION PS-[C,C'] is the 2-metacategory whose 0-cells are the pseudo

functors from € to €', vwhose l-cells are the pseudo natural transformations, and

whose 2-cells are the pseudo modifications.
N.B. 2-[€,€'] is a sub-2-metacategory of P5-[(,('].

3.12 RAMARK The triple consisting of 2-categories, pseudo functors, and pseundo
natural transformations is not a 2-metacategory.

[Note: There is a metacategory whose objects are the 2-categories and whose

morphisms are the psewdo functors.)



§4. FIBRATIONS

Fix a category B -- then the objects of CAT/B are the pairs (E,P), where
P:E +~ B is a functor, and the morphisms (E,P) +~ (E',P') of €AT/B are the functors
F:E > E' such that P' « F =P,

[Note: €AT/B can be regarded as a 2-metacategory, call it 2-€CAZ/B: Given
l-cells F,G:(E,P) ~ (E',P'), a 2-cell F —=>G is a natural transformation 3:F + G
such that v X € Ob E, P'EX= idPX’ Enother way to put it is this. There are

comutative diagrams

v
Ita

P! P P’

1= 4——hu 1t

IR ~——- 1=

I ~——-Itd
——— s

1

r

2nd a natural transformation =:F -+ G is a 2-cell iff

idP, x &= id}?‘
iere
id,:P > P ({id,), = id, ).
Mearwhile,
id,, *# E:P' o F > P' 0 G
and

(idP, * E)X = P'Ex.]

4.1 DEFINITION ILet P:E ~ B be a functor and let B € Ob B — then the fiber

gBofPoverBistl1esubcategoryof§whoseobjectsarethe)<€0b§Suchthat



PX=Band\mosemrphismsarethearrowsfemrgsuchthatpf=id3.

[Note: In general, Ey is not full and it may very well be the case that B

and B' are isoworphic, yet§B=gand§B, # 0.]

N.B. There is a pullback sguare

in €AT.
4.2 NOTATION Given X,X' € Ob Ep» let MorB(X,X') stand for the morphisms X + X’
in EB'

4.3 DEFINITION Let X,X' € Ob E and let u € Mor(X,X') —— then u is prehorizontal

if v morphism wiX, * X' of E such that Pw = Pu, there exists a unique morphism

v E bbrPx(XO,X) such that u » v = w:

X - s X'
% o

fNote: Let

mru(xo,x') = {w € mr-(xo,x') :Pw = Pul.

Then there is an arrow

MorPX(XO,X) - Ivbru(XO,X')p



viz. v > u ¢ v {in fact, P(uov)=Pu°Pv=Pu°idPx=Pu)andthecondition

that u be prehorizontal is that v XO € EPX' this arrow is bijective.]

4.4 DEFINITION Let X,X' € Ob E and let u € Mor(¥X,X') — then u is preop-

horizontal if v morphism w:X - XO of E such that Pw = Pu, there exists a unique

rmorphism v € Mor (X',XO) such that v o u = w:
L}

PR
1

s X'

w v

X Xy-

[Note: Let

Bbru(x,xo) ={we Mor(X,XO) :Pw = Pul.

Then there is an arrow

DbrPX' (X' ’Xo) + Mor, (X'Xo) ’

viz. v > v o u (in fact, P{v o u) = Pv ¢ Pu = id o Pu = Pu) and the condition
PX!

that u be preophorizontal is that v XO € EPX' this arrow is bijective.]

4.5 LEMMA The isomorphisms in E are prehorizontal (preophorizontal).

4.6 REMARK The composite of two prehorizontal (preophorizontal) morphisms

need not be prehorizontal (preophorizontal).

4.7 DEFINITION The functor P:E > B is a prefibration if for any object

X' € Ob E and any morphism g:B » PX', there exists a prehorizontal morphism u:X > X'



such that Pu = g.

4.8 DEFINITION The functor P:E -~ B is a preopfibration if for any object

X € Ob E and any morphism g:PX + B, there exists a preophorizontal morphism

u:X + X' such that Pu = g,

4.9 1EMRA The functor P:E ~ B is a prefibration iff v B € Cb B, the canonical
functor
Ey —> B\E (X » (id,,X)

has a right adjoint.

4.10 IBMA The functor P:E > B is a preopfibration iff v B € Ob B, the canonical
functor
E,— BB (X~ (Xidy))

has a left adjoint.

4.11 DEFINITION Let X,X' € Cb E and let u € Mor(X,X') -— then u is horizontal

if v morphism W:XO + X' of E and V factorization

Pw=Puex (x EI\br(PXO,PX)),

there existsauniquemrphismvzxo + X such that Pv =xandu o v=w.
Schematically:
W Dw

I |
Xg « -« +>X >X' 1, PX, > PX

v i | X Pu

!

[ o PX‘ .

N.B. If u is horizontal, then u is prehorizontal. Proof: For Pw = Pu =>

PX. = PX, s0 we can take x = idPX' hence Pv = J.dPX => v EDbrPX(XO,X).

0



4,12 DEFINITION Iet X,X' € Ob E and let u € Mor(¥,X') —- then u is ophor-

izontal if v morphism w:X - Xy of E and v factorization

Pw=x o Pu (XEI\br(PX';PXO))r

there exists a unique norphism v:X* +XO such that Pv=xand v e u =w,
Schematically:
w Pw

|X—>X' ---->XO|;IPX-—--—>PX'
u At Pu X

N.B. If u is ophorizontal, then u is preophorizontal. Proof: For Pw = Pu =>

PX. = PX', so we can take x = id , hence Pv = id = v € Mor (X',XO).

0 PX' pX' PX'

4.13 DEFINITION The functor P:E + B is a fibration if for any object X' € Ob E
and any morphism g:B + PX', there exists a horizontal morphism w:X +~ X' such that

Pu = g.

N.B. If fi:X + X' is another horizontal morphism such that P = g, then 3 a

wnique iscmorphism £ € Mor 12 such that 1 = u o £,

[We have
i Pu
I X+ oo+ X >x",|PiTc > PX >PX'|
v u idB Pu
u Pu
ook >x",]1>x > PX . PX' .
v u idB Pu
Here
_Pv=idB&uov=ii

&
I
o
&
o
=]
<
1
&



Therefore

<@
L]
<
1l
&

Vov=idx.]

4.14 DFFINITION The functor P:E + B is an opfibration if for any object
X € Gb E and any morphism g:PX > B, there exists an ophorizontal morphism u:X + X'

such that Pu = g.

N.B. If u:X - X' is another ophorizontal morphism such that PU = g, then 3

a unique ismnrphismfél\brnguchthatﬁ= f o u (cf. supra).

4.15 LEMWA The functor P:E ~ B is a fibration iff the functor PO :E - B

is an opfibration.

Because of 4.15, in so far as the theory is concerned, it suffices to deal

with fibrations. &8till, opfibrations are pervasive.

4.16 EXAMPIE The functor E + 1 is a fibration.
[Note: The functor 0 + B is a fibration (all requirements are satisfied

vacuously) . ]

- 4.17 EXAMPIE The functor id :E » E is a fibration.



G G
4,18 EXAMPLE Given groups , dencte by ~  the groupoids having a
H H
single object * with - -- then a group homomorphism ¢:G -+ H can
MorH(*,*) =H

be regarded as a functor ¢:G + H and, as such, ¢ is a fibration iff ¢ is surjective.

[Note: The fiber G, of § over # "is" the kernel of ¢.]

4.1%9 EXAMPLE Let U:TOP ~ SET be the forgetful functor — then U is a fibration.
To see this, consider a morphism g:Y -~ UX', where Y is a set and X' is a topological
space, Denote by X the topological space that arises by equipping ¥ with the
initial topology per g (i.e., with the smallest topology such that g is continuous

when viewed as a function from Y to X') -- then for any topological space XO' a
function XO > X is contimwous iff the composition XO -+ X » X' is continuous, from

which it follows that the arrow X - X' is horizontal.
[Note: The fiber ToP, of U over Y is the partially ordered set of topologies

on Y thought of as a c¢ategory.]
4.20 LEMMA The isomorphisms in E are horizontal.

4,21 ILEMMA Iet u € Mor(X,X'), u' € Mor(X',X'"). Assune: u' is horizontal —
then u' o u is horizontal iff u is horizontal.
[Note: Therefore the class of horizontal morphisms is closed under composition

(cf. 4.6).]

4,22 THEOREM Suppose that P:E > B is a fibration. Let u € Mor(X,X') be



horizontal. Assume: Pu is an isomorphism -- then u is an isomorphism.

PROCF In the definition of horizontal, take X

O=X',w=id , and consider

X ]
the factorization

Pw=id =Pue (PW Y (x= (pw D).
pX*

Choose v:X' + X accordingly, thus u ¢ v = id , so v is a right inverse for u.
Xl

But thanks to 4.20 and 4.21, v is horizontal. 8Since Pv = (Pu)_l, the argqument can

be repeated to get a right inverse for v. Therefore u is an isomorphism.

4.23 APPLICATION A fibration P:E + B has the iscmorphism lifting property
(cf. 1.23}.
[let Y:PX' +~ B be an iscmorphism in B. Choose a horizontal morphism u:X + X'

such that Pu = § * — then u is an isomorphism in E (cf. 4.22) and Pu L = y.]

4.24 IEMMA Suppose that P:E + B is a fibration. Consider any object X' € Ob E
and any morphism g:B > PX'. Assume: u:X - X' is prehorizontal and Pii = g — then
1 is horizontal.

PROOF Choose a horizontal u:X -+ X' such that Pu = g —— then u is prehorizontal
so 3 a unique iscmorphism £ € Mor By such that i = u o £. Therefore U is horizontal
(cf. 4.20 and 4.21).

[Note: Here are the details. Consider the cammtative diagrams

V1

b4
W
ol
wd
W

g
—_

=

<
_—

el
ot

b
>
o




GdoVoeov=uev=14

wevey=

=]
=]
<
1
&

On the other hand, there are commutative diagrams

N u u

X— X X > X"
id_ u i u

X X , X X .

Therefore by the uniqueness inherent in the definition of prehorizontal,

4
e
<
I

:i.«.:'i.x .]

4.25 THEOREM Let P:E -+ B be a functor — then P is a fibration iff

l. VX' EOEand ¥ g € Mr(B,PX"), 3 a prehorizontal G € Mor(X,X'):Pi = g
{cf. 4.7); |

2. The composition of two prehorizontal morphisms is prehorizontal.

PROOF The conditions are clearly necessary (for point 2, c¢f. 4.24 and recall
4.21). Turning to the sufficiency, one has only to prove that the i of point 1 is

actually horizontal. Consider a morphism W:XU + X' of E and a factorization

Pw=Piox (x¢€ Dbr(PxO,Pi)).

Then there is a prehorizontal Uy € -mr(xo,x) :Puo =x (= PX, = PXO). Here



10.

P(GOﬁO)=P60Pﬁ = Pl o X = Pw,

But 1 ¢ fio is prehorizontal, thus there exists a unique morphism \“}O € Mor _ (Xo,io)
PXo

suchthatu°u0°v0=w:

52
W
s}

D<:e
—_——
=,

]
Db-d

Put v=1{, ¢ ¥, —then Pv =P, o PV, =P, °oid =Ply=xandu°vs=
o

a o ﬁo 0\70=w. To establish that v is unique, letv':X0 + X be another morphism

with Pv' = xand u ¢ v' = w. Since ﬁ{) is prehorizontal and since Pv' = x = Pfio,

the diagram
XO > X
A
vl 1= vl
XO XO

admits a unique filler v'' € Mor _ (Xo,io) Wy, © v'' = v'., Finally



11.

4.26 DEFINITION Let P:E + B be a functor — then a morphism £:X +~ Y in E

is vertical if Pf is the identity on PX = PY,

4.27 EXAMPLE v B € Ob B, the elements of Mor E, are vertical.

4.28 LEMMA Suppose that P:E + B is a fibration — then every morphism in E
can be factored as a vertical morphism followed by a horizontal morphism.

PROOF Let f£:Y > X' be a morphism in E, thus Pf:PY » PX'. Choose a horizontal
u:X - X' such that Pu = Pf ( => PX = PY). C(onsider

£ Pf
!
Y oo s o o> x__>x‘|, PY = P¥ > PX >PX"|,

v u ld'PX Pu

wl-nezrer=:i.c'iPX (so v is vertical) and u o v = £.

4.29 DEFINITION A morphism F:(E,P) -~ (E',P') in €AC/B is said to be horizontal

if the functor F:E + E' sends horizontal arrows to horizontal arrows.

4.30 NOTATION CﬁEh/E is the wide submetacategory of CAZ/B whose morphisms are

the horizontal morphisus.

4.31 NOTATION FIB(B) is the full submetacategory of CAEh/];% whose objects are

the pairs (E,P), where P:E -~ B is a fibration.
4.32 EXAMPLE Take B = 1 —- then FIB(1) is ¢AT.

By definition, the 2-cells of 2-CAT/B are the vertical natural transformations,

i.e., if F,G:(E,P) -~ (E',P') are morphisms, then a 2-cell F => G is a natural
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transformation Z:F -~ G such that v X € Gb E, P"‘ ldPX or still, such that

VXEOE, 2

2 3 3 E 1 —_ — L - . :
mxlsamrphlsmm]gpx (P'FX = PX = P'GX), hence is vertical

“x
(per P').

4,33 NOTATION 2—Cﬂﬂ.'h/§ is the sub-2-metacategory of 2-€AT/B whose 0-cells

are the objects of ¢AT/B, whose l-cells are the horizontal morphisms, and whose

2-cells are the vertical natural transformations.

4.34 NOTATION FIB(B) is the 2-cell full sub-2-metacategory of 2-€£\Eh/]§

whose underlying category is FIB(B).

4.35 LEMMA Iet (E (§2,P2) be objects of €AT/B. Assunme: and E

l) r El

equivalent as categories over B, thus there are functors F,:E; > E, and F,:E, +

over B and vertical natural isomorphisms

_.12 lOF --—>J.dE

52]_:F2 ) Fl _— :|.d§,l.

T F
1
Then send horizontal arrows to horizontal arrows.

Fy

PROOF It suffices to discuss Fl‘

l’ the contention being that Flu1 is a horizontal arrow in E2 Suppose that

. A . . . .
w2.x2 - lel is a morphism of Ez and consider a factorization

P2w2 = P2Flul ° X, (x2 S l\'t:’r(Pz}tI2 P2 lxl))

_zare

E

So let ul:Xl > X]‘_ be a horizontal arrow in

=1
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Put

thus i:F2F1X]'_ _— X]'_ and Pli = :i_d.P Working with
1

X]'_.
ioe F2W2 :F2X2 —— X1,
write

=P.io P F.w

P {1 o Fjw,)) = Py 1F2%

i , © P.w
dplxl 2

il

Py,

= PyFju) o X,

Since 4y is horizontal, there exists a unicue morphism K 2X2 - Xl such that

Plvl=x2andulovl=1°F2w2. Put

5= ((slz)xz)'l,
thus j:X, —> FF.X, and P2j = 1dP2X2 Let

vy =Fv; ° 3.

e
4
I

Vo = Py(Fyvy © 3)

P,F vy o P

o i
1'1 5%

]

1
o
<
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It remains to check that

To begin with,

Fiuy o vy = Fjuy © Fyvy @ 3

= Fl(ul e vl) ° j

Fl(i ° F2w2) o j

Fll o FlFZWZ ° 7.

On the other hand, by naturality, there is a camutative diagram

J
FiFp%y < %
FiFo¥) v
¥ L}
F1F2F1X1 < n F1X1 .
Therefore
Fll o F1F2w2 o j = Fll ek e W,
= wz.
Here
k Fl.'.l.
E T 1
Fle > FleFle —_—————— Fle

is the canonical arrow, hence is the identity.

{Note: The proof of uniqueness is left to the reader.]

4.36 APPLICATION P,:E, > B is a fibration iff P,:E, + B is a fibration.
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[Suppose that Pl is a fibration. Let g:B — szé be a morphism in B — then

the claim is that 3 a horizontal morphism UgyiXy > Xé such that P2u2 = g.

i 1 = ' L] L I— L)
e Assune first that X2 lel' hence P2X2 P2F1X1 P]_Xl, hence

g:B ~» PlXi. Choose a horizontal ulle + Xi such that Plul =g (=> Plxl = B) —

H L | i = = 1
then Flul. lxl - F]_Xl is horizontal and PZFlul Plul g, S0 we can take u, Flul.
e In general, given an arbitrary Xé, there exists an X]'_ and an isomorphism

w:lei > Xé, from which an iscmorphism lep:PZlei -+ szé or still, an isomorphism

-1 . .
- . ) - ] 1
lep.PlX]'_ > ZXé. If now g:B » PyX2s then (Pzw) P X5 > Plxl and, in view of what
has been said above, 3 a horizontal morphism u, such that Pyu, = (lep)“l ° gor

still, lep s P = g or still, Pz(w o u2) =g. And ¢} o u, is horizontal (cf. 4.20

2%
and 4.21).]

4.37 DEFINITION Let P:E » B, P':E' + B be fibrations —- then P, P' are

equivalent if E, E' are equivalent as categories over B.

N,B. If (E,P), (E',P') are objects of CAY/B and if F:(E,P) > (E',P') is a

morphism, then v B € Ob B, F restricts to a functor FB:EB + gé

4.38 CRITERION Let P:E > B, P":E' -+ B be fibrations, F:(E,P) + (E',P') a
horizontal functor — then F is an equivalence of categories over B iff V B € (b B,

the functor L g:é is an equivalence of categories.

4.39 NOTATION Given objects (E,P), (E',P') in FIB(B), let [E,E'l; be the
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metacategory whose objects are the horizontal functors F:(E,P) -~ (E',P') and

whose morphisms are the vertical natural transformations.
4,40 EXAMPLE Take B = 1 — then

EE], = [EE].



§5. FIBRATIONS: EXAMPLES
The ensuing compilation will amply illustrate the ubiquity of the theory.

5.1 EXAMPLE The functor
Ob:CAT > SET
that sends a small category C to its set of objects is a fibration.
[Suppose that g:B +~ Cb C', where B is a set. To construct a horizontal

u:C + C' such that Gb u = g, let C have objects B and given x,y € B, let

Mor (x,y) = {x} x Mor{g(x),q{y)) x {y},
composition and identities being those of C'. Define the functor u:C > C' by
taking u = g on objects and by taking

u:Mor (x,y} + Mor (g(x) ,g{y))

to be the projection.]

5.2 EXAMPIE Let C be a category with pullbacks. Consider the arrow category
C(») -- then the objects of C(») are the triples (X,f,Y), where f:X -~ Y is an
arrow in C, and a morphism
(X,£,Y) - X";£,¥")
is a pair
)_ $:X ~ X'

Py ~ Y!

of arrows in C such that the diagram



conmmites. Define

cod:C(+} ~ C

£
cod (X

> Y) =Y, codlp,P) = ¢.

Then cod is a fibration and the fiber Q(+)Y of cod over Y can be identified with
/.
[A morphism {¢,}) is horizontal iff the commitative diagram

¢
{—m = X'

f f!

Y —mMm 5 ¥'
¥

is a pullback square. This said, given a morphism g:Z - Y' in C, to construct a
horizontal
u: (er’Y) -+ (X'!f'l’Y|)

such that cod u = g, form the pullback square

Then
(pX. fg)=(z XY' X rpzrz) + (X', £',Y")
is horizontal and cod(py,,9) = g, so we can take X = Z x,, X', £ = p,, ¥ =3,

u= (px. ') -]



5.3 EXAMPLE Let C be a locally small finitely complete category. Fix an
internal group G in C — then the restriction of cod to G-BUN(C} is a fibration.

[Recall the definitions:

® An object of G-BUN(C) is an object E P > B of C/B together with an

arrow E x G lJ>Esu.cht.hr:ﬂ:-t.hecElJ'.agﬂ:am

u
ExG > B
Pg lp
E > B
P
commtes.
® A morphism
p ]
(E > B) > (B! ~ B')
of G-BN(C) is a pair
T iR = E
_ P:B —— B’
of arrows in C such that the diagram
¢

=
w1
=

commites and ¢ is G-equivariant, i.e., the diagram



W
ExG— —  E
¢ x id, jcp
E'x——>» E!

u!

commutes. ]

[Note: Given a morphism g:B + B in C, to construct a horizontal

. b p
u: (B > B) >{E ~ B)

such that cod u = g, form the pullback square

ez}
li
we

"ae %
w
W ———-m
o]

[we X
W

-~

> B

Then the universal property of pullback determines a unique arrow EXG

such that the diagram

. L )

ExG > B

E B
P

comutes subject to

Therefore u = (§,g) is a horizontal morphism p + p such that cod u = g.]



5.4 EXAMPLE Given a category C, define a category fam C as follows.

® The objects of fam C are the families {X;:i € I}, where I is a set

andXiEObg.

® A morphism

{x;:i €1}~ {Yj:j € J}

of fam C is a pair (¢,{f;:i € I}), where ¢:I > J is a function and £,:X, » Y¢(i)
is a morphism in C.
[Note: The composite

(lpr{gjzj e J}) o (¢r{fi2i c I]’)
is the pair
NJ e ¢'{g¢(i) °© fl:i = I}).]
Let U:fam C > SET be the functor that sends {X;:i € I} to I and (¢,{£;:1 € I})

to ¢ =— then U is a fibration,

flet ¢:I -~ J be a function, {Yj:j € J} a family of objects of C. Put X, = Y¢(i)

and let fi:Xi -+ Y¢(i)

horizontal and its image under U is ¢.]

be the identity — then the morphism (¢,{fi:i € I}) is

[Note: The horizontal morphisms are the pairs (cb,{fi:i €I}), vhere v i €1,

fi is an isomorphism.]

@]

N.B. Let ~ be categories, let
D

U:fam C > SET

Vifam D > SET



be the associated fibrations, and let F:C -+ D be a functor —- then F induces a
horizontal functor
fam F:fam C + fam D

by setting

fam F{Xizl € I} {FXi:l ¢ I}

fam F(¢,{fi:i €1h (¢:{Ffi:i € 1.

5.5 REMARK Take C = SET -- then the fibrations

U:fam SET + SET, cod:SET(+) + SET
are ecuivalent.
[Define a horizontal functor
fam SET ~ SET(>)

on objects by sending the family {Xi:i € I} to the triple

(1l %,£D),

where f(Xi) = i, and define a horizontal functor

SET(+) + fam SET

on objects by sending the triple (X,f,Y) to the family {f-l (y):y € Y}.]

5.6 EXAMPLE Let C be a locally small finitely complete category. Suppose
that M = (M,0,s,t,e,c) is an internal category in C, thus M is an object of C,

0 is an object of C, and there are morphisms s:M -~ O, t:M > 0, e:0 + M, ¢:M X

satisfying the usual category theoretic relations.

M-+M



Here

=
v
o

Define a category C{M} as follows.

e The objects of C(M) are the pairs (I,u), where I is an object of C
and u:I +~ O is a morphism of C.

¢ A morphism

(I,u} » (J,v)
of C{M) is a pair (¢,f), where ¢:I +~ J and £:I > M are morphisms of € such that
sof=u,toeof=vo .
[lote: To formulate the composition law, let
{$,.£): (T,u}) »~ (T, v), (¥, 9):(T,v}) > (K,w)

be morphisms. Consider the arrows

£ t ¢ g S
I > M >0, I > J > M > Q.

Sogo¢=vod=tof,

from which an arrow h:1 +M><OMsuchthat

T[Oh:goq).

Now put

(¢ o ¢, c o h)

(beg) o (9,£)



and observe that

SOC°h=SOTTS°h=S°f=L1

t°C°h=t°Ttt0h=t0go¢=walpo¢,}

Let UM:Q(M) + C be the functor that sends (I,u) to I and (¢,f) to ¢ — then
UM is a fibration.
[let ¢:I + J be a morphiam of C, where (J,v) is an object of C(M) -- then
the morphism |
(b, o v o d):(I,ve ) ~ (J,v)

is horizontal and its image under UM is ¢.]
N.B. Let C be a locally small finitely complete category, let be
internal categories in C, let

UM:Q(M) > C
UyCN) > €

be the associated fibrations, and let F:M > N be an internal functor {(so F = (FO’FJ_)
is a pair of morphisms FO:O + P, Fl:M + H subject to ...} — then F induces a
horizontal functor

C(F) i) > C(N)

by setting

Q(F) {I,u) = (I'FO o u)

C(F) (¢,) = (¢,F) ° £).



[Note: If F,G:M - N are internal functors and if Z:F - G is an intermal
natural transformation (thought of as a morphism Z:0 + N subject to ...}, then
the prescription

g (%) (I,1) =

determines a vertical natural transformation

C(E):C(F) - C(G).
Denote by [M,N] int the category whose objects are the internal functors from M to N

and whose morphisms are the internal natural transformations —— then the association
F > C(F), & » C(5) defines a functor

[M'N]int + [C(M) ,Q(N)]C (cf, 4.39)

which is full and faithful. Therefore, from the 2-category perspective, CAT(C)

(cf. 1.6) is 2-equivalent to a full sub-2-category of FIB(C).]

5.7 REMARK Let X be an object of C. Put 0 =X, M =X, takes=t=idx,
e = idX, c = idx, and let X be the internmal category of C thereby determined —-
then C(X) can be identified with C/X and U, becomes the forgetful functor U,:C/X -+

C. Moreover, the functor

¢ > FIB(Q)

that sends X to (C(X) ,UX) is full and faithful.

[Note: The assumption that C is finitely complete is not needed for these

considerations.]

Iet I be a small category, F:I -+ CAT a functor.
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5.8 DEFINITION The integral of F over I, denoted INT F, is the category

whose objects are the pairs (i,X), where i € Ob I and X € Ob Fi, and whose mor-
phisms are the arrows (8,f):(i,X) -+ (3,¥Y), where § € Moxr{i,j) and f € Mor{{F§)X,Y)
(composition is given by

(§',£') o (8,£) = (8" o 6§, £' o (FS'}E)).

5.9 NOTATION Let

Op INTF T

be the functor that sends {(i,X) to i and (6,f) to S§.

[Note: The fiber of OF over i is isomorphic to the category Fi.]

The relevant points then are these.
® The preophorizontal morphisms are the (3,f), where £ is an isamorphism.
[Mote: The camposition of two preophorizontal morphisms is therefore preop-
horizontal.]

® GF is a preopfibration.
5.10 FACT @F is an opfibration (quote 4.25 in its "op™ rendition),.

Let F,G:I - CAT be functors, Z:F » G a natural transformation.

5.11 DEFINITION The integral of = over I, denoted InT 8, is the functor

INI‘IF+INI‘G

defined by the prescription

(__IN;I'_IE) (i,X) = (1’81}{)

(TL2) (6,6) = (6,246 -
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Obviously,
OG 4] INT;EE = @F;

and INTIE sends ophorizontal arrows to ophorizontal arvows. Therefore INTIE is

an ophorizontal functor from ;l_\TI'_IF to ]:NTIG.

N.B. The association

F > (INT,F,0p)

§3]
+
1

defines a functor

INT.: [I,CAT] - CAT/I.

5.12 EXAMPIE Let I be a smll category —— then the twisted arrow category

I(~>) of I is the category whose objects are the triples (i,d,3), where &:1 » 3

is an arrow in I, and a morphism

(i,6,3) = (i',6%,3")
is a pair
$p:it' > 1
$:3 > 3!

of arrows in I such that the diagram

- ¢

i< i!
6l 16'

3 > 3!
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s
I
commites. Denote by ~  the canonical projections
o
1) > 1%
;(""’>) » 1,
hence
- sltS = dom & Sl(d),lp) = ¢
td=cod 6, t () =,
°1
and are opfibrations.
t
_ 1
[1et
HpsI x I > CAT

be the functor (j,i) - ¥or(j,i}, where the set Mor(j,i) is regarded as a discrete

category —— then

INT
P 1 HI

can be identified with I{(~>)}, ©

1

becoming the functor

(sp,tp):I(~>) ~ 1 x 1.

Therefore are opfibrations (the ambient projections are opfibrations and
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opfibrations are composition closed).]

The notion of pseudo pullback, as formulated in 1.22, can be extended from

CAT to CAT/B.
5.13 OONSTRUCTION Fix a category B. lLet ; (E,P} be objects of
CAT/B and let
(El' 1) + (E,P}

(E,.P,) + (E,P)

be morphisms of €AT/B -- then the pseudo pullback E ]:: E2 of the 2-sink

F F

1 2

(E; /P))

> (E,P) <

(E,/P,)

is the following category.

® An object of E Ez is a quadruple (B,Xl,xz,cp), where B € Cb B,

17p
X € Ob(Ey)lp, X, € Ob(E))y, and ¢:F X ~ F X, 1sanlscmorphlsm1nEB
e A morphism
(B,X) 1 Xys9) —> (B',X],X5,¢")
is a pair (fl’f2)' where f]_:Xl > X}'_ is a morphism in E-l’ f2:X2 > Xé is a morphism

in E,, subjecttof]_arn:'if2 induce the same morphism B + B! (i.e.,Plf "Pf)



and the diagram

14.

$
FiX > FyXy
P F by
lei > FZXé
¢l
commites,
Define functors
P,y 5@ B, >
R xETE
by
pl(Berr 2r¢) = xl (Pl(fl;fz) =
_ Pz(BrX]_rXZr‘b) = x2 (pz(fl'fz) =
and define a natural transformation
2:F) 0Py ° P
by
2 P X .
(B/X;,%,,4) 711 > FXo

Then the diagram

B, x_ E

1>
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of O0-cells in 2-CAT/B is 2-cammutative.

[Note: Iet

be the canonical projection —— then

F, ° py:(Ey *E E, I} - (E,P)

are morphisms in CAZ/B. E.g.:

il

P o Fl ° P (B,Xl,){2,¢) PF1X1 = Plxl =B

1
w

I (fol:X2!¢) =

Moreover, = is vertical. In fact,

N.B. As regards the fibers, Vv B € Ob B,

By xg Bylp ¥ Bplp B, (Ey)g-

5.14 BXAMPIE If + (E,P) are objects of FIB(B) and if

F2=(§2;P2) - (E:P)
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are morphisms of FIB(B), then the canonical projection
H:}_El 5@ EZ - E
is a fibration.
5.15 DEFINITION The functor P:E - B is a bifibration if it is both a fibration

and an opfibration.

5.16 EXAMPLE The functor
Ob:CAT + SET

figuring in 5.1 is a bifibration.

5.17 EXaMPLE The functor
cod:C{*} »~ C

figuring in 5.2 is a bifibration.



§6. FIBRATIONS: SORITES

6.1 LEMMA If F:C + D and G:D » E are fibrations, then so is their composition

G o F:C > E.

6.2 REMARK Display the data:

17y
A%

G2

Q

!
—es

I 4 |10
. )

1t

Then F defines a morphism

(C/G © F) ~ (D,G)

in €AT/E but more is true: F sends horizontal arrows to horizontal arrows. There-
fore F defines a morphism

(C,G o F} ~ (D,6G)
in €AT /E or still, F defines a morphism
(C,G ¢ F) »~ (D,G)

in FIB(E).

6.3 LEMMA The projection functor
CxD>D

is a fibration.

6.4 TEMMA If F:C ~» D and F':C' » D' are fibrations, then the product functor

F x F':C x C' > D x D'

is a fibration.



6.5 LEMMA Let F:C + D be a fibration and let I be a small category —- then
F*t[l;(_:] -+ [LQ]
is a fibration.

g P
6.6 RAPPEL Given a 2-sink B' > B < E in €AT, its pullback E' = B' x,

1t

is the category whose objects are the pairs (B',X) (B' € Ob B', X € Ob E} such that
fB' = PX and whose morphisms

(Bi,Xl) -+ (Béfxz)
are the pairs (¢,f), where cp:B]'_ -+ Bé is a morphism in B' and f:xl > X, is a morphism

in E such that 8¢ = Pf, there being, then, a commtative diagram

Pl

Iy «— 1"

6.7 LEMMA Suppose that the functor P:E + B is a fibration -- then for any

functor B:B' » B, the functor P':E' + B' is a fibration.

PROOF Let g':B'' + P'(B',X) ( = B'}) be a morphism in B'. Choose a horizontal

u:Y¥ -+ X such that Pu = Bg', tlus PY = BB'', PX = £fB', and
(gt,u}: (B'',Y)> (B',X)

is a horizontal morphism in E' such that P'(g',u) = g'.



[Note: The opposite of a pullback square is a pullback square. So, if the
functor P:E > B is an opfibration, then for any functor 8:B' + B, the functor

P':E' > B' is an opfibration.]

N.B. The pair

E'.?") ~ FIB(B")
is an object of

(E,P) FIB(B).

And the projection prE:g' + E sends horizontal arrows to horizontal arrows.

6.8 APPLICATION Suppose that

P :E; > B

1°=1

PyiEy + B

are fibrations. Form the pullback scquare

Then the corner arrow

is a fibration (recall 6.1}.



6.9 REMARK The category FIB(B) has finite products.

[The projections
B g B

ExE->§

=1 "2 T =2

are morphisms in FIB(B) (cf. 6.2). Therefore FIB(B) has binary products. And

idB serves as a final object (of. 4.17}.]

B P

Given a 2-sink _}é' > B <

E in €AT, one can form its psewdo pullback

B' x. E (cf. 1.22). Introduce the comparison functor

I':B' x, E~>B' x, E {cf. 1.23)

and consider the diagram

r
B' xgE————>B' x; E— > E
B' B' > B,

the square on the right being 2-commutative.

6.10 LEMMA Suppose that the functor P:E » B is a fibration —- then the pro-
Jection B' x, E + B' is a fibration.

PROOF If (B',X) is an object of B' B E, then

re',xy = (',X,id) - B' = p'(B',X).



But P has the isomorphism lifting property (cf. 4.23), hence T is an equivalence

over B' (cf. 1.23), from which the assertion (cf. 4.36).

6.11 DEFINITION Let P;:E; > B, P,:E, > B be fibrations —— then a morphism

F: (gl,Pl) > (§2,P2) in FIB(B} is said to be intermal if given any vertical arrow

£, € Mor E

5 (thus P2f2 id (cf. 4.26)), there exists a horizontal arrow fl € Mor E

=1

per F such that Ffl = f2 (=> Plfl = PZFfl = P2f2 = id).
[Note: 1In this context, there are three possibilities for the term "horizontal®,

iz. per Pl' per P,, or per F.]

N.B. If F is a fibration, then F is internal (recall that F is necessarily a

morphism in FIB(B)}.

6.12 LEMMA Suppose that F is internal — then ¥ B € Gb B,

(E > (E

g > By

is a fibration.
6.13 LEMWMA Suppose that F is intermal -- then F is a fibration.

PROOF Given a morphism g:x2 - FXi, the claim is that there exists a horizontal

morphism usx; > X]'_ per F such that Fu = g. To establish this, start by applying
, hence Pzg:PZX2 2FX1 =P X' Next, choose a horizontal morphism u:Xl - Xi
per Py such that Plﬁ = Pyg (=> Plfil = P,X,} —— then Fi is, by assumption, horizontal

per P2. Consider now the factorization



or, equivalently, the factorization

|
P —_—.> P —_— P X' .
22 » 151 = 1%1

Fraom the definitions, there is a unique morphism V:X2 - F;{]_ such that P2v = id
and Fu °c v = g. Schematically:
g

|
+ o ox e Fﬁ —_— ! .
Koo ——

l

But v is vertical, so, F being internal, one can find a horizontal arrow v per F

suchthatF??=v,meretheoodomaJ‘noff?isf§l. Put u =1 ¢ ¥ —— then Fu =

Fil o F¥ = Fi o v = g and u is horizontal per F (verification left to the reader).]



§7. THE FUNDAMENTAL 2-EQUIVALENCE

Iet B be a category —— then B can be regarded as a 2-category B8 for which
UB = B (cf. 1.14), but we shall abuse notation and write B in place of B (no
confusion will result in so doing).

oP

N.B. Traditionally, B is replaced by B™ , the relevant 2-metacategories being

2-18%, 2-¢at)

ps-[8%, 2-¢at].

[Note: The first is a sub-2-metacategory of the second.)

The 0—cells of
PS- [1§°P, 2-€AT]

op

are the pseudo functors from B oP

to 2-CAT. If F:B™ - 2-€AT is a pseudo functor,
then v B € Ob B, FB is a category and Vv B, B' € Ob B and vV 8 € Mor(B,B'), FB:FB' >

FB is a functor.

7.1 EXAMPLE Take B = TOP and let (X,TX) be a topological space —— then Tx

can be viewed as a category and a continuous function f: (X,TX) -+ (Y,rY) induces

a functor f_l:TY > Tye Therefore this data determines a 2-functor

100 — > 2-eat.

7.2 EXAMPLE Take B = CAT and fix a category D — then for any small category
C, [C,D} is a category and a functor F:C + C' induces a functor F*:(C',D] + [C,D].
Therefore this data determines a 2-functor

at™® . 2-caz.



7.3 EXAMPLE Take B = SCH and given a scheme X, let Q00(X) be the category
of quasi-coherent sheaves on X -- then a morphism £:X + ¥ induces a functor
£#:000(Y) > QC0(X). Therefore this data determines a pseudo functor

SCHT — > 2-CAT.

£ g
[Note: Bear in mind that if X > Y > 2, then (g o £)*:000(2) ~ QOO(X)

is not literally f* o g*:Q00(Z) - QCO(X)... .]

7.4 NOTATION Given psendo functors F,G:EB° + 2-€AT, let PS(F,G) stand for

the metacategory whose objects are the pseudo natural transformations 5:F - G

and whose morphisms are the pseudo wodifications U:E -+ Q.
Here is the main result.

7.5 THEOREM There is a 2-functor

grog:ps-[8”, 2-€AT) > FIB(B)

with the following properties.

(1) v ordered pair F,G of pseudo functors E_;OP + 2-CAT,

(%)F,G‘PS(F'G) > [grOEF, <_:;:|.'0§G]]é

is an isomorphism of metacategories.

(2) v fibration P:E » B, 3 a pseudo functor F:I§0P

isomorphic tOgroBFin_Ij‘Qi(lé).

+ 2-CAT such that E is

7.6 REMARK Therefore PS-[B>,2-CAT] and FIB(B) are 2-equivalent (cf. 2.15).



The proof of 7.5, when taken in all detail, is lengthy.

OP

7.7 GROTHEMDIECK CONSTRUCTION Let F:B™ - 2-€AT be a pseudo functor —- then

groBF is the category whose objects are the pairs (B,X), where B € Ob B and

X € Ob FB, and whose morphisms are the arrows (R,f):(B,X) > (B',X'), where

B € Mor(B,B') and f ¢ Mor (X, (FB}X').

[Note: Suppose that

(8,£):(B,X) +~ (B',X")
®',£):(B'X") » B',X"").
Then by definition

(8',£') o (B/£) = (B" o B, £' op £).
Here
£ °p f e MorX,F(B' o B)X'")
is the composition

f (FB)£*
X

> (FR)X' —————— (FR) (FBN)X'' = F(B' o B)X'!

the isomorphism on the right being implicit in the definition of pseudo functor.

Using the first axiom for a pseuwdo functor (cf. §3), one can check that this com-

position law is associative and using the second axiom for a pseudo functor (cf. §3),

one can check that the identity in Mor ({B,X),(B,X)) is the pair (idB,X = F(idB)X) .]

7.8 NOTATTION Iet
@F:grogF > B

be the functor that sends (B,X) to B and (8,f) to B.



7.9 LE!VMAOF is a fibration and the fiber of Op over B is isomorphic to the

category FB.

To camplete the definition of gro, so as to make it a 2-functor, one has to

oconsider its action on the pseudo natural transformations and the pseudo mod-
ifications.
e ILet F,G:l__’_soP + 2~CAT be pseudo functors, 5:F -+ G a pseudo natural trans-

formation, the associated data thus being v B € Ob B, a functor

EB:FB -+ GB,

and ¥ 8 € Mor(B,B'), a 2-caamitative diagram

B
FB > GB
B! > GB'
EB'

in 2-€AT, where

o Ff o> GB o E

TB:EB S

is a natural isomorphism subject to the coherency conditions. We then define a

horizontal functor
groBE:groBF o groBG
by the prescription

(grOBE) (B,X) = (B, EBX)

(gIUBE) (8,f} = (B:Q)r



where g € Nbr(EBX, (GE) (EB.X')) is the composition

:Bf TB,X'

> E5(FB) (X') ———> (GB) (5,,X").

i1]
b

e Iet F,G:QOP ~» 2=CAT be pseudo functors, =,(i:F + G pseudo natural trans-

formations, and U:E -~ @ a pseudo modification, the associated data thus being

¥ B € Ob B, a natural transformation T-IB:EB + QB subject to the commitativity of

the diagram
g, X"
25 (FB) (X") >(GB) (55,X")
LIB’ (FB)X' (GB) (LIBI ;X')
S (FB) (X*) - > (GB) (QB.X') .
T8, x"

We then define a vertical natural transformation
grogq:grogE > grogﬁ
by the prescription

[Note: To see that this makes sense, observe first that groB‘I has to be

indexed by the pairs (B,X) (B € Ob B, X € FB), so

(gI‘OBq) B8, " (gI'OBE) {(B,X) ~ (91‘059) (B,X)
or still,

(_gro]éll} B,%) (B,EBX) + (B,RBX) .



But
X €FB => £.X €GB
X € FB => QX € GB.
2nd v X € FB,
'-IBrXE.lVbr(E X QBX).

Therefore the pair (idB, ‘IB X) belongs to
!

Mor ( (groBE‘) (B,X), (grogf) (B,X))

Per grogG. That groBll is vertical is obvious:

Og (gro]éll) ®,%)

0g(idgs g )

idy = 18 (5 3]

In summary: The Grothendieck construction provides us with a 2-functor

gro,:PS-[B, 2-€AT] > FIB(B)

ard it remains to address points (1) and (2) of 7.5. Since the verification of the

first point is straightforward (albeit tedious), we shall focus on the second which

requires some additional input.
Iet P:E + B be a fibration and suppose that g:B -~ B' is an arrow in B.

Assuming that EB' # 0, for each X' € Ob EB” choose a horizontal u:X + X' such

that Pu = g and define g*:gB. - EB as follows.

e On an object X', let g*X' = X,

. mamrmismqazx'+}E',mtingthatP(¢°u)=P¢°Pu=ist ° Pu =

g = Pu, let g*¢ be the wnique filler in the fiber over B for the diagram



farts

v e
v
o]

g*¢ b °u

7.10 IEMA g*:E!B, ~ By is a functor.

[Note: Take g* to be the canonical inclusion if EB‘ = 0.]

Needless to say, the definition of g* hinges on the choice of the horizontal
u:x » X',

7.11 DEFINITION A cleavage for P is a functor ¢ which assigns to each pair
{(g,X'), where g:B » PX', a horizontal morphism u = ¢(g,X") (u:X - X'} such that

Pu = g.
[Note: The axiom of choice for classes implies that every fibration has a

cleavage. ]

7.12 EXAMPLE Consider GrogF —= then the canonical cleavage for OF is the rule

that sends R:B » B' ( = GF(B',X')) to the horizontal morphism

(B,1d pmayxr) ¢+ (B, (FB)XT) + (BT, X7).

(FB)

Consider now a pair (P,0), where ¢ is a cleavage for P -- then the association

g*

g
B—— EB' (B > B') —— (E‘B‘ > EB)

defines a pseudo functor ZP 5 from EOP to 2-¢AT.

r



7.13 IEMMA If P:E + B is a fibration, then E is isomorphic to grogly in
L Iy
FIB(B).

PROOF Define a horizontal functor ¢:E -+ groBEP s by the following procedure.
=t ]
® Given X € Ob E, let
PX = (PX,X) (X € Ob EPX = Ob ZP,UPX) .
® Given a morphism £:¥ -~ X in E, ¢f must send Y = (PY,Y) to oX = (PX,X).
So let of = (Pf,d;f), where
¢f € Mor (Y, (ZP,on)X)'
or still,

¢f € Mor (Y, (PF}*X) ((P)*X € EPY)

is defined to be the unique filler in the fiber over PY for the diagram

g (PE,X)
(Pf) *X > X
A

be - £

-

Y Y.

Here, by definition, Po(Pf,X) = Pf.
The claim then is that ¢ is an isomorphism of categories. But it is clear
that ¢ is bijective on objects. As for the morphisms, the arrow
Mor(Y,X) - Mor ((PY,Y), (PX,X))

taking f to (Pf,c[)f) is manifestly injective:

(B, 0¢) = (Pg,4,)

£ =0(Pf,X) o ¢f

o(Pg,X) o cbg = g.



To establish that it is surjective, consider a pair (g,¥), where g:PY -+ PX and

Y:¥ > (Ip (9IX (so Py = idy). let £ = o(g,PX) ° § — then

Pf = Po{g,BX) o PV
= g o id = g,
Schematically:
f Pf
Y . sgx— x|, lpy > PY > PX .
P o{g,PX) idPY g

Because 0(g,PX) is horizontal, ¢ is characterized by the relations Py = J.dPY

ard 0(g,PX) o ¢ = f. Meanwhile

¢ o (Pf,X)
Y (PR —— %

or still,

e 3(g,PX)
Y —— g*X > X.

However P¢f a2 idPY (¢f is, by definition, a morphism in the fiber over PY) and
o(g,PX) ° ¢>f = f. Accordingly, by unicueness, ¢f = 1, Therefore

of = (Pf,c[)f) = (g,y}.

The proof of 7.5 is therefore complete.



§8. SPLITTINGS

Iet P:E +~ B be a fibration.

8.1 DEFINITION A cleavage ¢ for P is said to be split if the following

conditions are satisfied.
(1) O‘(idPXuX') = idxn-
(2) o(g* °» g,X'") = olg',X'") ° oclg,g'*xX"'"),

[Note: A fibration is split if it has a cleavage that splits or, in brief,

has a splitting.]

8.2 EXAMPLE In the notation of 4.18, assume that ¢:G - H is surjective, hence
that $:G + H is a fibration —— then a cleavage ¢ for ¢ is a subset K of G which
maps bijectively onto H and ¢ is split iff K is a subgroup of G. Therefore ¢ is

split iff ¢ is a retract, i.e., iff 3 a hanomorphism Y:H + G such that ¢ ¢ ¢ = idH.

8.3 REMARK The associlation

op
Ip 5B > 2-€AT

is a 2-functor iff P is split.

8.4 THEOREM Every fibration is equivalent to a split fibration.

[Note: The meaning of the term "equivalent" is that of 4.37.]

There are some preliminaries that have to be dealt with first. So suppose

that P:E ~ B is a fibration —- then v B € Ob B, there is a fibration Ug:B/B + B



(cf. 5.7} and a functor
FP'B: [E/Bf§]§ - EBJ'
namely:
(1} Given a horizontal functor

F: (E/B,UB) +~ (E,P},
assign to F the object F(idy) in Ob Ej.

(2} Given horizontal functors

F,G: (1§/B,UB) =+ (E,P)
and a vertical natural transformation Z:F -+ G, assign to ® the arrow EidB:F(idB) >

G(idB) in Mor Eg.

8.5 LFMA The functor

FP;B=[§/B'E]§ > Ey

is an equivalence.

[It is not difficult to prove that FP B is fully faithful. To see that Fp g5
r r

has a representative image, fix an X € Ob EB and define a horizontal functor
FX:E/B + E by the following procedure.
® Given an object a:A »~ B of B/B, put

Fea = a*X (a*:E, ~ E, (cf. 7.10)).

A

¢ Given a morphism




of B/B, there are horizontal arrows
w:a*X —> X (Pu = a)

unt:a'* — X (Pu'

f
m-

with
Pu=a=a' o f=pu"eof,
so there exists a unigque morphism
a*f:FXa = a*¥ ——> a'*xX = an'
such that Pa*f = f and u' ¢ a*f = u. Schamatically:

u Pu

la*x o . . o> at* —— o x ', ' > A' > B!

a*f u' f a'

The definitions then imply that

]

FP,BFX FX (ldB)

= idgxzx.]

Now introduce a 2-functor

sp(P) :BF + 2-¢AT
by stipulating that

sp(P) (B) = [B/B,E] B
and letting

sp(P)B:sp(P) (B') » sp(P)(B) (B:B ~ B')

operate by precomposition via the horizontal arrow B,:B/B + B/B' induced by 8.



[Note: Strictly speaking, [§/B,§:]B is a metacategory rather than a category

but this point can be safely ignored.]
Pass next to groBsp(P) —~ then the cancnical cleavage for @Sp(P) is split
{cf. 7.12).

The final step in the proof of 8.4 is to define a horizontal functor
FP:grogsp (P) ~E

with the property that v B € Ob B, (FP)B = FP This done, it then follows from

/B’
4.38 that E‘P is an equivalence of categories over B {cf. 8.5}).

Consider an object (B,X) of groBsp(P) -— then
X € Ob sp(P)(B) = Cb [Q/B:E]B:

so X:B/B + E is a horizontal functor and we put
FP(B,X) = X(idB) € Ob EB
Turning to a morphism (8,f):(B,X) -~ (B',X'} of gxoBsp(P) , as usual, B:B -+ B',
while
f£:X + (sp(P})B)X'
is a vertical natural transformation indexed by the objects A -~ B of B/B. To define
FP(B,f) :X(idB) - X' (idB')’
note first that

iq X0 + (@)X (idy) .

Proceeding,

sp (P) B [E/B' 'E]B -+ [Q/BIE]BI



where
(sp(B)RIX' = X' o B,,
hence
((sp®B)X') (idy) = (X' o B,) (idy)

B

=X'(B > B').

In the category B/B', idB,:B' + B' is a final object, thus there is an arrow

B

X'(B > B') — X'(id.B.).

Definition: FP(B,f) is the result of composing

fidB:x(idB) + X'(B

R
> B')

with the preceding arrow, thus

Fp(B,£) :X(idg) ~ X' (idy).



§9. CATEGORIES FIBERED IN GROUPOTIDS
Let P:E +~ B be a fibration.

9.1 DEFINITION E is fibered in groupoids by P if v B € Ob B, EB is a groupoid.

9.2 RAPPEL let G be a topological group, X a topological space. Suppose that

XXxG~+X
X is a free right G-space: -= then X is said to be principal
(%,9) »x + g

provided that the continuous bijection 8:X x G » X x X/G X defined by (x,9) -
(x,x » g) is a homeamorphism.

Let G be a topological group -~ then an X in TOP/B is said to be a principal

G-space over B if X is a principal G-space, B is a trivial G-space, the projection

X - B is open, surjective, and equivariant, and G operates transitively on the

fibers, There is a cammtative diagram

X X
X/G > B

and the arrow X/G -+ B is a homeomorphism.

9.3 NOTATION Let
PRIN,
be the category whose objects are the principal G-spaces over B and whose morphisms

are the equivariant contimous functions over B, thus

|



with ¢ egquivariant.

9.4 FACT Bvery morphism in P G is an isomorphism.
¥

[Note: The objects in @—B G which are isomorphic to B x G (product
L4
topology) are said to be trivial, thus the trivial objects are precisely those

that admit a section.]

9.5 EXAMPLE Let G be a topological group — then the classifying stack of

G is the category PRIN(G) whose objects are the principal G-spaces X -+ B and

whose morphisms (¢,£): (X + B) - (X' - B') are the commtative diagrams

¢
f— X
B > B',
£

where ¢ is equivariant. Define now a functor P:PRIN(G) >~ TOP by P(X + B) = B
and P(¢,f) = £ —— then P is a fibration. Moreover, PRIN(G) is fibered in groupoids
by P:

PRIN(G)p = PRIN; ./

which is a groupoid by 9.4.
9.6 REMARK Suppose that P:E - B is a functor with the property that v B € Ob B,
Ey is a groupnid -- then it is not true in general that P is a fibration.

[E.g.: In the notation of 4.18, consider a homomorphism ¢:G + H which is not

surjective.]



5.7 IEMMA If E is fibered in groupoids by P, then every morphism in E is
horizontal.
PROOF Let f € Mor(X,X'") (X,X' € Ob E}, thus Pf:PX » PX', so one can find a

horizontal Uy :XO + X' such that Puo = Pf. But u, is necessarily prehorizontal,

hence there exists a unique morphism v € M::rPX (X,XO) such that u o v = f:
0

u
]
XO > X
v £
X X.

Since u is horizontal and v is an iscmorphism, it follows that £ is horizontal

{cf. 4.20 and 4.11).

N.B. Suppose that

E is fibered in groupoids by P

E' is fibered in groupoids by P'.

Then every functor F:E + E' such that P' ¢ F = P is automatically a horizontal

functor fram E to E' and [E,E'], is a groupoid.

9.8 LEMMA Let P:E + B be a functor. Assume: Every arrow in E is horizontal
and for any morphism g:B + PX', there exists a morphism u:X + X' such that Pu = g —
then P is a fibration and E is fibered in groupoids by P.

PROOF The conditions obviously imply that P is a fibration. Oonsider now an

arrow £:X > X' of E; for some B € Cb B —- then f is horizontal, so there exists



a unique morphism v € MorB(X',X) (PX =B =PX'") such that f ¢ v = idX,:

£
X > X!
v idxl
xt X! .

Therefore every arrow in Ey has a right inverse. But this means in particular
that v mast have a right inverse, thus f is invertible.

9.9 LEMMA Suppose that
E, is fibered in groupoids by P

-1 1

E, is fibered in groupoids by P,

E is fibered in groupoids by P.

Iet

F]_:(Eerl) - (E:P)

Fy: (EyrPy) + (E,P)

be morphisms in FIB(B) — then the canonical projection
:Ey fp;; E, »B

is a fibration (cf. 5.14) and E, X E, is fibered in groupoids by I.
E

[Recall that

(E) g Epg = (Elp *E, Ey)g



and the pseudo pullback on the right is a groupoid (cf. 1.22).]

Iet P:E » B be a fibration. Denote by Ehor the wide subcategory of E whose

morphisms are the horizontal arrows of E. Put

Phor = Plghor’

9.10 LEMMA PorBrhor B is a fibration and E . 1S fibered in groupcids by



§10. DISCRETE FIBRATIONS

10.1 RAPPEL A category is said to be discrete if all its morphisms are
identities.
[Note: Functors between discrete categories correspond to functions on their

underlying classes.]
N.B. A discrete category is necessarily locally small.

10.2 EXAMPIE Every class is a discrete category and every set is a small

discrete category.

10.3 LEMA A category C is equivalent to a discrete category iff C is a
groupoid with the property that v X,X' € Ob C, there is at most one morphism from

X to X'.

Every discrete category is a groupoid. So, if P:E » B is a fibration, then
the statement that E is "fibered in discrete categories by P" (or, in brief, that

E is discretely fibered by P) is a special case of 9.1.

10.4 EXAMPLE Let C be a locally small category — then v X € Ob ¢, the

forgetful functor UX:Q/X + C is a fibration (cf. 5.7). Moreover, C/X is discretely

fibered by Uy (Vv Y € Ob C, the fiber (C/X), is the set Mor(Y,X)).

10.5 LEMMA Let P:E > B be a functor — then E is discretely fibered by P iff
for any morphism g:B -+ PX', there exists a wunique morphism u:X + X' such that

Pu=g.



PROOF Assume first that E is discretely fibered by P, choose u:X + X' per g
and consider a second arrow U:X + X' per g -— then Pi = Pu. Since u is horizontal
(cf. 9.7), thus is prehorizontal, there exists a unique morphism v € l\brPX(i,X)

such that u o v = 1u:

=
v

<
—_—
Ml ——— 4
o

po

Butthefibergpxisdiscrete,hmcex=iandvistheidentity, soiu=u. In

the other direction, consider a setup

w Pw

- 8 a4 a >X >X" ’ PX >PX >PX'¢I
u X Pu

"%

0

With "x" playing the role of "g", let v:X_ -+ X be the unique morphism such that

0
Py = x — then

u e v:XO + X' = Pu o v) :PX0 - PX'

W:XO - X' => P{w) :PX0 > PX'.

Accordingly, by uniqueness, u ¢ v = w. Therefore every arrow in E is horizontal
which implies that E is fibered in groupoids by P (cf. 9.8). That the fibers

are discrete is clear.

Suppose that P:E + B is a fibration such that E is fibered in sets by P (so,

VBGCbIé,];Z:Bisaset). Ietg:B+B'beanarr0win]§—thenthedatadefining

the functor g*:g:B. - EB of 7.10 is wniquely determined, as is the cleavage



g:P > ZP o' where in this context, EP s is to be viewed as a functor from EOP
, &

!

tD SEI‘.

10.6 NOTATION FEESEI'(E) is the full subcategory of FIB(B) whose objects are

the fibrations P:E » B which are fibered in sets by P.

If F:(E,P) > (E',P') is a morphism in _E_‘_I_BGEI,U}), then there is an induced
natural transformation
:ZP,G > ZP',cr"

szl

10.7 IEMA The functor
FIBop(®) > (£ /SET)

that sends (E,P) to ZP 5 is an equivalence of metacategories.
r

[To reverse matters, take an F:EOP + SET and consider grogF -- then here a

morphism (B,X) -~ (B',X"') is an arrow B:B - B' such that X = (FR)X' and it is obvious

that groBF is fibered in sets by @F {ct. 7.9).1]

10.8 EXAMPLE Let C be a locally small category — then an object of

= 1¢*,sem)

1y

Given X € Ob C, put

is called a presheaf of sets on C.
hX = bbr (_"'"X) -

Mor (X,Y) = Nat(hy,hy)



and in this notation the Yoneda embedding

Y. :C ~»

Iy

sends X to hx. Moreover, wunder the correspondence of 10.7,

¢/X <—> hg.

Thus, symbolically,

¢ —> € —> FlB(C) —> FIB(C).

——



§11. COVERING FUNCTIONS

Let C be a category.

11.1 DEFINITION Given an object X € Ob C, a covering of X is a subclass C

of Ob C/X.

11.2 DEFINITION If C, C' are ooverings of X, then C is a refinement of ('
{or C refines C' or (' is refined by C) if each arrow g € ( factors through an

arrow g' € C':

Y ooooo > Yt
g g'
X X .

[Note: If C < C', then C is a refinement of C', the converse being false

in general.]

11.3 EXAMPIE Take C = {idX:X +~ X} and suppose that C is a refinement of C' —

then there is an element of C' which is a split epimorphism (a.k.a. retraction):

X ooooo I Yl
idx g'
X X

11.4 DEFINITION A covering function k is a rule that assigns to each X € b C a

conglamerate - Ky of coverings of X.



11.5 REMARK If the cardinality of Ob C/X is n, then there are 2" subsets of

I

Ob ¢/X, thus there are 22 possible choices for Kyge

11.6 NOTATTON Given covering fumctions k and k', write k' < k (and term «'
subordinate to k) 1f for each X € Ob C, every covering (' EK}'{isrefinedbysome

covering ( & Kye

11.7 EXAMPLE
e Define a covering function k by setting Ky = # — then k is subordinate
to all covering functions.
e Define a covering function k by setting Ky = all coverings of X — then

every covering function is subordinate to K.

11.8 NOTATION Given covering functions x and k', write k = k' if k' < k and

k < k', and when this is so, call k and k' eguivalent.

11.9 DEFINITION let Kk be a covering function —— then its saturation is the
covering function sat x whose coverings are the coverings that have a refinement
in «.

11.10 EXAMPIE Assume that Ky ? g and let ¢:X' -+ X be an isamorphism —- then

{$} € (sat K)X. Indeed, every C € «, refines {¢}s




11.11 IEM® Suppose that K is a covering function — then k is equivalent to

sat k and sat k is saturated. Moreover, K 1s saturated iff k = sat k.

11.12 IEMMA Suppose that k and k' are covering funmctions — then k and k'

are equivalent iff sat « = sat «°'.

11.13 DEFINITION Let k be a covering function — then k is a coverage if

VXEWMC vVCE Kx,arxdvf":x‘+x,thereisacf.EKX,suchthat

g' fl
f' o Cf, = {f' o g':g' € Cf.} {y® > X! > X)

is a refinement of C.

11.14 EXAMPLE Define a covering function x by letting Ky be comprised of all

singletons {f} (f € Ob C/X} — then « is a coverage iff for each X € (b C, every

diagram of the form

)
£,
X > X
1
£
can be completed to a commutative square
92
Y > X2
91 £
Xl— > X .
£



[Note: This condition is realized by the opposite of the category of finite

sets and injective functions.]

11.15 LEMMA Suppose that k and k' are equivalent covering functions — then

Kk is a coverage iff «' is a coverage.
N.B. Therefore k is a coverage iff sat k is a coverage (cf. 11.11).

11.16 DEFINITION Iet k be a covering function — then k is a Grothendieck

coverage if vX e b G, v CE KX,Vg:Y+XinC,ande':X'+X,thereisa

pullback square

LQM
b
-—
[Ye]

fl

such that the covering

> X':g € C}

!
(.QNE N ¢
belongs to Ko s

[Note: It is a Question here of a specific choice for the pullback.]

11.17 REMARK By construction, f' o g' factors through g, hence a Grothendieck

coverage is a coverage.

11.18 EXAMPLE Given a topological space X, let O(X) be the set of open subsets
of X, thus under the operations
UaV=0UnV
UsV<=>UcV, T 0=4,1=23%,

UvV=Uwv



0(X) is a bounded lattice. Let Q(X) be the category underlying O(X) and define
a covering function k by stipulating that « is comprised of the collections {Ui}

of open subsets U, of U whose union U Y is U —— then «k is a Grothendieck coverage.

i
[Given a 2-sink U' —> U <o U; in O(X), the commutative diagram
¥
o' n Ui _— Ui

L

v —m— U
is a pullback square and

UU'ﬂUi=U'ﬂUUi=U'ﬂU=U'.]
i i

11.19 EXAMPIE Take C = TOP and fix X € Ob C. Let K, be comprised of the

oollections {gi:Yi -+ X} such that v i, 95 is an open map and the induced arrow

_|_|_ Yi + X is surjective —- then Kk is a Grothendieck coverage, the open map coverage.
i
[Note: The pullback of an open map along a continuous function is an open

map (in this context, "open" incorporates "continuous").]
ll.20EXAMPLETake(_3='IOPandfixX€GJ(_3.
® Let Kk, be comprised of the collections {gi:Yi + X} such that v i, 9;
is an open inclusion and the induced arrow || Y, » X is surjective —- then « is
i

a Grothendieck coverage, the open subset coverage.

[Note: The pullback of an open inclusion along a continuous function is an

open inclusion.]



® Iet «, be comprised of the collections {gi:Yi + X} such that v i, g5

is an open embedding and the ind1.1cedarrwj_|¥i->Xis surjective -- then « is
i
a Grothendieck coverage, the open embedding coverage.

® Iet x, be comprised of the collections {gi:Yi + X} such that v i, 9

is a local homecmorphism and the induced arrow_uYi + X is surjective —— then k
i
is a Grothendieck coverage, the local hameanorphism coverage.

[Note: A local homeomorphism is necessarily an open map and the pullback of
a local homeomorphism along a continuous function is a local homeomorphism. ]

FACT 'The open subset coverage, the open embedding coverage, and the local
homeomorphism coverage are equivalent. Moreover, each of these is subordinate to

the open map coverage.

11.21 EXAMPLE Let C -MAN be the category whose objects are the C -manifolds
and whose morphisms are the C -functions —— then C -MAN does not have all pullbacks
but it does have certain pullbacks, e.g., the pullback of a surjective submersion
along a " -function is again a surjective submersion. Since an open subset of a
¢ -manifold can be viewed as a C -manifold, one can form the open submanifold

coverage. On the other hand, there is a Grothendieck coverage k in which Ky is
camprised of all singletons {f}, f:N - M a surjective submersion. E.g.: If {Ui}

is an open submanifold coverage of M, then the induced arrow | | U, +M is a
I _
surjective submersion.

[Note: If f£:N > M is a surjective submersion, then ¥ y € N, there is an open

subset U, < M with £(y) EUyandaCm-function s:U, M such that £ o s = id



and s(f(y)) = y:

N
Uy >

[f
M M.

Therefore the surjective sukbmersion coverage is subordinate to the open subman-—

ifold coverage.])

11.22 EXAMPLE Suppose that C has pullbacks -~ then there is a Grothendieck
coverage k in which Ky is comprised of all singletons {f} (f € Gb C/X), where f
is a split epimorphism.

[Split epimorphisms are stable under pullback.]

11.23 RAPPEL A locally small, finitely complete category € fulfills the

standard conditions if C has coequalizers and the epimorphisms that are coequalizers

are pullback stable.
[Note: SET fulfills the standard conditions (as does every topos) but TOP

does not fulfill the standard conditions (quotient maps are not pullback stable).]
11.24 EXAMPLE Suppose that C fulfills the standard conditions -- then there

is a Grothendieck ocoverage Kk in which Ky is comprised of all singletons {f}

(f € Ob C/X), where f is an epimorphism that is a coequalizer.

11.25 DEFINITION Given an cbject X € Ob C, an opcovering of X is a covering

of X in QOP.



11.26 EXAMPIE Let RNG be the category of commutative rings with unit. Define

an opcovering function k by letting Ka be comprised of the collections {wi A >
A[alll }, where v i, A[azl] is the localization of A at a; and the ideal generated
by the set {ai:i € I} is all of A -- then k is a Grothendieck opcoverage, the

Zariski opcoverage.

[If £:A » B is a homomorphism, then v i, there is a pushout square

-1
—_— A {ai ]

j |

> BU(E@N T ]

11.27 DEFINITION Suppose that K is a coverage —- then K is a pretopology if

€ K, such that

VXEOb(_‘.‘,VCEKX,Vg:Y+XmC,a11dVCgEKy,t11ereisaC0 %

CO ig a refinement of

h g
U goC =1{gehigelCsaheC)} (2 > Y > X).

11.28 IEMMA If k and k' are equivalent coverages, then K is a pretopology

iff ' is a pretopolegy.

11.29 LEMMA Suppose that Kk is a pretopology. Fix X € Ob C and let CerZ € Ky ==

C

then 3 C € KX:C is a refinement of

¢

PROCF For each f2:X2 +X1nC2, thereisaCf EKXZ such that f2° Cf

2 2



refines Cl {cf. 11.13). On the other hand, there is a C € Ky such that

is refined by C (cf. 11.27). But

refines both Cl and CZ'

11.30 LEMVA Let k be a covering function — then k is a pretopology iff

Keap 1S 2 pretopology.

11.31 DEFINITION Suppose that k is a coverage —— then k is a Grothendieck

pretOpOlogyifVXEObQ,VCEKX,Vg:Y-*X-:i.nC,andVCgEKY,

h g
U geC ={gohigeCs&sheC)} (2 > Y > X)

belongs to Ky

N.B. It is obvious that a Grothendieck pretopology is a pretopology.

11.32 REMARK The various examples of Grothendieck coverages set forth above
are Grothendieck pretopologies.

[The morphisms appearing in 11.22 and 11.24 are composition stable, while the
verification of the requisite property in 11.26 is mildly tedious pure algebra
(the terminology in this situation would be Grothendieck preoptopology...).]

[Note: Take k per 11.14 and impose on C the conditions therein (so that x is

a coverage) — then k is a pretopology but it need not be a Grothendieck pretopology.]



10.

11.33 DEFINITION A pretopology (or a Grothendieck pretopology) « is said

to have identities if v X € Ob C, {id:X » X} refines some covering in ky (or

X
belongs to |<X) .

[Note: This will be the case in all examples of interest.]

11.34 REMARK If ¢:X' + X is an isomorphism in C, then {¢} might or might not

belong to Ky

[Consider the open subset coverage of 11.20 — then an arbitrary homeomorphism

$:X' -+ X is certainly not admissible.]

11.35 LEMMA Let k be a Grothendieck pretopology with the property that for

any isomorphism ¢:X' » X, the covering {¢} belongs to ~— then the coverings

“x

C € Ky are closed under precamposition with isomorphisms, i.e., if g:¥ » X is in

€ and if ‘Pg=Y' + Y is an isomorphism, then {g o tpg:g € Ct e Ky

PROOF By hypothesis, {wg} € K

dom g’ sowecantakecg={lpg}, hence

U geC ={geot :geC}eEKk,.
11.36 REMARK Suppose that C has pullbacks and the scenario in 11.35 is in

force -- then the particular choice for the pullbacks figuring in 11,16 is immaterial.

Iet k be a covering function. Fix X € Ob C -- then k induces a covering
function K on C/X via the following procedure. Fix an object £':X' » X in ¢/X —-
then a covering

gl
{(g:Y > X) > (F"':X' — X)}




11.

of f' belongs to Ef, iff the covering {g':Y¥ - X'} belongs to Ky

[Note: There is a commutative diagram

g
Y > X!
g £!
X X .}

N.B. If k is a pretopoloqy, then so is k.



§l2. SIEVES
let C be a category.

12.1 DEFINITION Let X € Ob C — then a sieve over X is a subclass § of b ¢/X

g £ f
such that the ocomposition Z > Y > X belongs to $ if Y > X belongs to 3.
E.g.: The minimal sieve over X is smin =g

12.2 IEMMA If § and $' are sieves over X, then § refines %' iff § < $°'.

12.3 ILEMMA Every covering C of X is contained in a sieve $(C) minimal w.r.t.
inclusion (the sieve generated by ().
[$(C) is comprised of all morphisms with codamain X which factor through some

element of C.]

12.4 EXAMPLE The sieve generated by {idx:X + X} is

Brax - OP C/X,
the maximal sieve over X.
[Given f:Y ~ X, consider
f
Y > X
d
X X.]

It follows from 12.3 that every covering function K gives rise to a covering

function %{k) whose coverings at X are the ${C) (C & KX) .



[Note: &{k) is equivalent to «.]

12.5 DEFINITION A sifted covering function is a covering function all of

whose coverings are sieves.

[Note: The term sifted coverage is to be assigned the cbwvious meaning.]

12,6 NOTATION Given a sieve $ over X and a morphism f:¥Y - X, put
f*¢ = {g:cod g =Y & £ o g € §}.

Then £*$ is a sieve over Y.

12.7 1EMMA Suppose that « is a sifted covering function —- then k is a sifted
coverage iff v X € b C, vV 3 € Kep and V £':X' > X, £'*3 has a refinement $' in

KX' -

PROOF Using the notation of 11,13, let us first prove the sufficiency of the
condition. Thus put C., = $', the claim being that f' ¢ §' is a refinement of 3§.
But

gt €8 => g' € f'%§ (cf. 12.2) => £' o g' € §.
I.e.:
£!' o g' ¢ 8,

so f' o §' is a refinement of $. As for the necessity, write $' in place of Cf,,

hence by assumption f' o §' is a refinement of §, hence f' ¢ ' < § (cf. 12.2)

(€' o §' is a sieve over X). To see that $' < £'*§, let g*' € §' — then

f' og' e f' o ' c§=>g' e f'*g,

12.8 DEFINITION A sifted covering function k is sieve saturated if § € Ky

and $ c 8' => §' ¢ Ky



12.9 LEMMA Suppose that kK is a sieve saturated sifted covering function -——

then k is a sifted coverage iff v X e b C, Vv § € k,,, and vV £':X' + X, f'*ﬁEKX..

12.10 ILEMMA Suppose that k is a sieve saturated sifted covering function --

then « is a pretopology iff kK is a Grothendieck pretopology.

12.11 DEFINITION A sifted covering function k is locally closed provided the

following condition is satisfied: If & € Ky and if §' is a sieve over X such that

f*ﬁ'EKonrallf:Y+X:i_n$,t]mS'EKX.'

12.12 1rMMA Suppose that K is a sieve saturated sifted coverage — then K is
a Grothendieck pretopology iff x is leocally closed.
PROOF Using the notation of 11.31 (with "g" replaced by "f"), to check that
"Grothendieck pretopology" => "locally closed",
take Sf = f*§' € Ky — then

U fosf={foh:fes&hef*ﬁ'}
fes

belongs to Ky But

h € £f#§' => £ o h € &'

=> | fOSfC.S'.
fes

Therefore ' € Ky (K being sieve saturated), so k is locally closed. Turning +o
the converse, the data is the sieve
$'={f eh:f €5 ahes)

and the claim is that it belongs to Ky But Vv £ € 3,



%' o $fE|< = FRGY ¢ ¢

Y

= &' R
3 € Ky

12.13 1FMMA Iet K be a sifted covering function. Assume: «k is locally closed

and vV X€EOC 8 € Ky, = then « is sieve saturated.

X

PROOF FixX $ € K., suppose that 8 c $*, and let £:Y > X be an element of $ —

Xr
then
f*$ L= f*s' -

But

£x5 = Ob O/Y € Ky, => £%8' € Ky

= 1
> 8 Elcx.

12.14 DEFINITION Suppose that k is a sifted coverage -- then K is a Grothendieck

topology if it is locally closed and ¥ X € Ob C, Sm € Ky
[Mote: It follows from 12.13 that k is sieve saturated. Therefore k is a

Grothendieck pretopology (cf. 12.12) and it is automatic that 12.9 is in force.]

12.15 12 If k is a Grothendieck topology and if $,8' € Ky then $ n §' € Ky
PROOF For any f:¥ - X in §,
£*g' = £%(8 n §').

However, thanks to 12.9 (applied to $'), £*3' € Kyr SO
£%{s ng') € Ky => § N A S Ko

12.16 EXAMPLE Take C = Q(X), X a topological space (cf. 11.18). Given an open



set U c X, a sieve $ over U is a set of open subsets V of U which is hereditary
in the sense that
VeEFg eV cvV=>V € 8.

One then says that § covers U if U V= TU. Denotj.ngbyKUthesetofallsuchs,
ves

the assignment U - Ky is a Grothendieck topology x on O(X).

12.17 DEFINITION Iet k be a sifted covering function —— then its sifted

saturation is the sifted covering function sif x whose coverings are the sieves

that contain a sieve in k.

12.18 LEMMA For any covering function k,

gif $({k) = $(sat k).
Denote this covering function by J(k) —- then J(k) is sifted and sieve saturated.

12.19 IEMMA Suppose that § is a sieve over X — then $ € J(|<)X iff ¥ contains

an element of KX.

12.20 THEOREM If K is a pretopology with identities (cf. 11.33}, then J(k)
is a Grothendieck topology.

PROOF The assumption that k is a pretopology implies that sat « is a pre-
topology (cf. 11.28) (k and sat K are equivalent), hence that $(sat «) is a pre-
topology (¢f. 11.28) (sat k and $(sat k) are equivalent}, in particular J(k) =
${sat «} is a coverage. Therefore J(k) is a Grothendieck pretopology {cf. 12.10)
(T{k) is sieve saturated), thus J{k)} is locally closed (cf. 12.12). Finally, if

{:i.d.X:X + X} refines C € k,, then

Xl’

S({idxzx +~ X} < §(0) € $()y € T(K)ge



But
S({idx:x -~ X}) = Sy (cf. 12.4)

8(C) =3

max = 5l'nax < J(K)X'

[Note: The two descriptions of J{k} supplied by 12.18 are used in the proof.]

12.21 REMARK In the literature, terminology varies. For example, some author-
ities would say that a "Grothendieck topology" is a covering function k which is
a Grothendieck pretopology with identities whose underlying coverage is a Grothen-
dieck coverage. Such a k generates a "Grothendieck topology” in our sense via

passage to J(k) (cf. 12.20}.

12,22 EXpMPLE Take for k the coverage defined in 11.14 (assuming the relevant
corditions on C) -- then k is a pretopology (cf. 11.32) with identities (...) and

here § € -.'l'(lc)X iff § is nonempty (cf. 12.19).



§13. SITES

Let C be a small category.

13.1 DEFINITION A Grothendieck topology on C is a function 1 that assigns to

each X € Ob C a set T, of sieves over X subject to the following assumptions.

X

(1) The maximal sieve Smax € Ty

(2) IfSETXarﬂiff:Y*Xisannrphim, thenf*SG‘rY.
(3) IfSeTXa.tﬁifS' is a sieve over X such that f*g' ETonrall

f:Y + X in &, then $' € Tyee
[Note: Within the setting of a small category, this is just a rephrasing
of the definition of "Grothendieck topology” as formulated in 12.14 (however, "k"

has been replaced by "t" and Ty is a set rather than a mere conglomerate).l

13.2 DEFINITION A site is a pair (C,t), where C is a small category and T is

a Grothendieck topology on C.

13.3 REMARK Suppose that we have an assigrment X - Ty satisfying (1), (2) of
13.1 ard for which

SETX&SCS'=>S'ETX.

Then to check (3} of 13.1, it suffices to consider those $' such that $' c 3.

13.4 DEFINITION

¢ The minimal Grothendieck topology on C is the assigrment X » {Smax}‘

e The maximal Grothendieck topology on C is the assignment X -+ {§}, where

$ runs through all the sieves over X.



13.5 NOTATION Let Ta stand for the set of Grothendieck topologies on C.

13.6 EXAMPLE Take C = 1 — then C has two Grothendieck topologies: {§  }

and {smin’ s1rnax}'
Given T, t' GTC, writet <1’ if VX EOC, ‘{XCT;{.

13.7 LEMVA The poset To is a bounded lattice.

PROF If 1, 1' € Tor let T A T' be their set theoretical intersection and let

T v 1' be the smallest Grothendieck topology containing their set theoretical union.
As for 0 and 1, take 0 to be the minimal Grothendieck topology and 1 to be the

maximal Grothendieck topology.

13.8 THEOREM The bounded lattice T is a complete Heyting algebra or, equiva-

lently, the bounded lattice To is a locale.



§14. SUBFUNCTORS

ILet C be a locally small category.

14.1 DEFINITION A subfunctor of a functor F:QOP + SET is a functor G:QOP + SET

such that v X € Ob C, GX is a subset of FX and the corresponding inclusions con-

stitute a natural transformation G + F, so v £:¥ » X there is a comwutative diagram

i,
GY > FY
Gf : Pf
GX > FX .
x

[Note: There is a one-to-one corvespondence between the subobjects of F and

the subfunctors of F.]

14.2 TEMMA Fix an object X in C — then there is a one-to-one correspondence
between the sieves over X and the subfunctors of hX (cf. 10.8}.
PROOF If § is a sieve over X, then the designation

GY = {f:Y >+ X & f € §}

g
> Y, Gg:GY ~ GZ is themap £ - £ o g).

defines a subfunctor of hX {given 2z
Conversely, if G is a subfunctor of hx, then GY < Mor(Y,X) and

$=UGY
Y

is a sieve over X.

14.3 EXAMPLE The subfimctor ¢orresponding to ‘smax is hX and the subfunctor



corresponding to Smin is @  (the initial object of (:3) .
C

Suppose now that C is a small category -- then in view of 14.2, the notion

of Grothendieck topology can be reformilated.

14.4 NOTATION Given a subfinmctor G of hX and a morphism £:¥ » X, define f*G

by the pullback square

f*G —— G
e lic
T ———
hy ————> by
£
in ¢ — then £4G is a subfunctor of hy.

14.5 DEFINITION A Grothendieck topology on C is a function T that assigns

to each X € Ob C a set Tx of subfunctors of hX subject to the following assumptions.
(1} The subfunctor hX = Ty
(2) If G ¢ Tg and if f£:Y » X is a morphism, then £*G ¢ Ty-

(3) If G € Ty and if G' is a subfunctor of hX such that £*G' € Ty for all

fGGY,thenG'ETX.

14.6 LEMMA Let 1 be a Grothendieck topology on C - then

" - '
GETX&GCG = G E‘I.‘x.

14.7 LEMMA Iet 1 be a Grothendieck topology on C — then

G,G' € Tg = GNaG'e Tge



14.8 REMARK Suppose that we have an assigmment X - 1, satisfying (1), (2) of

X
14.5 and for which

I=> t
GETX&GCG GETX.

Then to check (3) of 14.5, it suffices to consider those G' such that G' ¢ G.



§15. SHEAVES

In what follows, all categories are assumed to be locally small for the

generalities and small for the sheaf specifics.

15.1 RAPPEL A full, isomorphism closed subcategory D of a category C is said
to be a reflective subcategory of ¢ if the inclusion 1:D -+ C has a left adjoint
R, a reflector for D.

[Note: A reflective subcategory D of a category C is closed under the forma-

tion of limits in C.]

Let D be a reflective subcategory of a category €, R a reflector for D ——

thalonemayattachtoeachXEOb(_‘:arrorphismrX:X-rRXingwith the following

property: Given any Y € Ob D and any morphism £:X -~ ¥ in ¢, there exists a unique

mrphislng:R}{+Yianuchthatf=gorX.

N.B. Matters can always be arranged in such a way as to ensure that Reo 1 =
id,.

Iet C be a small category. Suppose that S is a reflective subcategory of CE.
Denote the reflector by a -~ then there is an adjoint pair (@, 1), 1:8 »C the
inclusion.

Assume: a preserves finite limits.

[Note: It is automatic that a preserves colimits.]

i
15.2 THEOREM Given X € Ob C, let 1, be the set of those subfunctors G —— hy

suchthatgiGisanismmphism-themtheassigmnentx»rxisaemthendieck



topology 1 on C (in the sense of 14.5).

PROOF Since
it follows that hX € G hence (1) is satisfied. As for (2), by assumption a

preserves finite limits, so in particular a preserves pullbacks, thus

af*G —— aG
Elf*(; 1216:
dhy —————>
ahe
is a pullback square in S. But giG is an isoworphism. Therefore Qif*G is an
isomorphism, i.e., £*G € Ty The verification of (3}, however, is more complicated.
) SupposethatGETxandGisasubftmtorof G':
J.G:G - hX
, 1:G + G’

iG' :G' > hX

Then
iG = iGI o i => giG = giG. o ai,

But ai, is an isomorphism, hence

: . . . -1
id=ai,, oale {ai) 7,

which implies that &_lig. is a split epimorphism. On the other hand, a preserves

monomorphisns, hence giG, is a monomorphism. ‘Therefore giG. is an iscmorphism,



ioec' G' E TX.

e Tt remains to establish (3) under the restriction that G' is a subfunctor
of G (cf. 14.8). Using the Yoneda lemma, identify cach f € GY with f ¢ Nat(hY,G)
and display the data in the diagram

] T ]
hYxGG > G G

There is one such diagram for each Y and sach £ € GY, so upon consolidation we have

]'iG,

l_| J_l_ hYXGG' > G
f

e

Now i is an equalizer {(all moncmorphisms in C are equalizers), thus ai is an
equalizer (by the assumption on a). But the assumption on G' is that V Y and

v £ € GY, ai, is an isamorphism, thus ai is an epimorphism (see 15.6 below).

And this means that ai is an isomorphism (in any category, a morphism which is an
equalizer and an epimorphism is an isomorphism). Finally,

i,=41i,9e1i=>ai, =ai, o ai.
G~ G e T S =

G



Therefore giG, is an isomorphism, i.e., G' € Tye

15.3 RAPPEL Given a category C, a set U of objects in C is said to be a

£
s
separating set if for every pair X Y of distinct morphisms, there exists
>
g

aUc U and a morphism ¢g:U » X such that £ o g 2 g ¢ ¢.

15.4 EXAMPLE Suppose that C is small — then the h, (Y € Ob €) are a separating

set for §

15.5 TEMVMA Let C be a category with coproducts and let U be a separating set ——
then v X € Ob C, the unigque morphism

Iy

| | dom f —= X
ueld f € Mor(U,X)

such that v £, T

Xoinf=fisanepi1mrphism.

15.6 APPLICATION Suppose that C is small. Working with C, take X = G in
15.5 —— then
> G

L1l n,

Yy £ s
is an epimorphism.
[Note: To finish the argument that ai is an epimorphism, start with the

relation

Tgo ll [l ig=1eIg-



alg o al [] [| ip) = ai o all,,.

Since I'G is an epimorphism, the same is true of gI‘G (left adjoints preserve epi-
morphisms). Aand

at [} 1l ip = |1 |} aig

is an isomorphism, call it ¢, hence

-1

al.=aio (al, o & 7).

G

Therefore ai is an epimorphism. ]

15.7 DEFINITION Fix a Grothendieck topology T € 7, == then a presheaf F € Ob ¢
is called a 1-sheaf if v X € Ob Cand VG € Tyr the precomposition map
i&:Nat(hX,F) -+ Nat (G,F)
is bijective.
Write Sh (C) for the full subcategory of C whose objects are the T-sheaves.

15.8 EXAMPIE Take for 1 the minimal Grothendieck topology on C —— then

[Note: In particular, Sh (1) = i ~ SET.]

15.9 EXAMPLE Take for T the maximal Grothendieck topology on € -- then the

objects of sh_(C) are the final cbjects in €.

[First, vy X € 0b C, 4. ~ hX’ But f,. is initial, thus the condition that F
C C



be a 1-sheaf amounts to the existence for each X of a unique morphism hX + F.

Meanwhile, by Yoneda, Nat(hX,F) s FX.]

15.10 THEOREM The inclusion 1 :Sh (C) + C admits a left adjoint a_:C - sh_(C)

that preserves finite limits.

[Note: We can and will assume that 2. ° L is the identity.]

Various categorical generalities can then be specialized to the situation at

hand.

15.11 DEFINITION A morphism f£:A + B and an object X in a category C are said
to be orthogonal (f 1 X) if the precamposition map f*:Mor (B,X) > Mor(A,X) is bi-

jective.

15.12 RAPPEL Let D be a reflective subcategory of a category C, R a reflector

for D. let W, be the class of morphisms in C rendered invertible by R.
® let XcC—thenXe®Diffvfel, £f.iX.

¢ Ietfe€MrC—thenfeljiff vXeobD £f1 X

15.13 NOTATION Iet /_be the class of morphisms in C rendered invertible by

{1j

15.14 EXAMPLE If F € Ob C, then F is a t-sheaf iff vE€ U, Z L F.

[ #3]

15.15 EXAMPLE If E € Mor é, then E € {:."T iff for every t-sheaf F, Z L F.



[Note: IfXEObgandifGe'rX, then for every t-sheaf F, iGJ.F, thus

i; € WT.]
15.16 RAPPEL Let D be a reflective subcategory of a category C, R a reflector
for D -- then the localization w];lg is equivalent to D.

1

15.17 APPLICATION The localization U 'C is equivalent to Sh_(Q).

15.18 RAPPEL Iet D be a reflective subcategory of a finitely complete category

C: R a reflector for D —— then R preserves finite limits iff wD is pullback stable.

15.19 APPLICATION Since a _:C ~ Sh_(C) preserves finite limits, it follows

that wT is pullback stable.

15.20EXAMPIE'Iakeg=l,soi:SEI'—-then#Tl=2. On the other hand, SET

has precisely 3 reflective subcategories: SET itself, the full subcategory of

final objects, and the full subcategory of final objects plus the empty set (#RX =1
if X =8, RO =#). In terms of Grothendieck topologies, the first two are accounted
for by 15.8 and 15.9. But the third camnot be a category of sheaves per a Grothen-
dieck topology on C = 1. To see this, note that the class of morphisms rendered
invertible by R consists of all functions f:X + Y with X = @ as well as the function
@ > @ (thus the arrows # » X (X = #) are excluded). Suppose now that Z is a nonempty

set and X,Y are nonempty subsets of Z with an empty intersection. Consider the

pullback square

iy
g=XnY 5 Y
iy iy
X )Z r




where j_X,iYarethe inclusions —-thmRiYisanismorﬁlisubutRzYismtan
isamorphism. Therefore the class of morphisms rendered invertible by R is not
pullback stable.

15.21 NOTATION et F € Ob C be a presheaf. Given X € Ob C, let 1, (F) be the

set of subfunctors iG:G > hX such that for any morphism f:¥ » X, the precomposition

arrow

1 *.
(igy,)*:Nat (hy,F) > Nat(f*G,F)
is bijective.
15.22 LEMMA The assignment X -+ rX(F) is a Grothendieck topology T(F} on C.
N.B. 1(F) is the largest Grothendieck topology in which F is a sheaf.

15.23 SCHOLIUM For any class F of presheaves, there exists a largest Grothen-
dieck topology 1(F) on C in which the F € F are sheaves.

15.24 DEFINITION The canonical Grothendieck topology Tean 0 € is the largest
Grothendieck topology on C in which the hX(X € Ob C) are sheaves.

[Note: Let T € 1, — then 1 is said to be subcanonical if the hy (X € Ob Q)

are tT-sheaves.]

15.25 EXAMPLE Take C = 0(X), X a topological space (cf. 11.18) — then the
Grothendieck topology T on O(X) per 12.16 is the canonical Grothendieck topology,

&1‘ (0(X)) being the traditional sheaves of sets on X, i.e., Sh(X).



§16. SHEAVES: SORITES

The category jﬂlr (C) associated with a site (C,T) has a number of properties

that will be cataloged below.

16.1 LEMMA §_h_T(§) is camplete and cocamplete.

[This is because Sh (C) is a reflective subcategory of C which is both com-
plete and cocamplete. 2Accordingly, limits in &T (C) are computed as in § while

colimits in gh, (C) are computed by applying a_ to the corresponding colimts in C.]

16.2 EXAMPIE Given T € Tar define 0T by the rule

{0} if g, €
C

X

0 () =

gif g ¢& 7.
¢ X

Then O‘r is a t-sheaf and, moreover, is an initial object in gl'll_ (C).
16.3 LEMA Sh _(C) is cartesian closed.
16.4 18R Sh (C) admits a subcbject classifier,
16.5 REMARK Therefore gh (C) is a topos.
16.6 LEMYA sh_(C) is balanced.

16.7 LEMMA Every monomorphiam in @T (C) is an equalizer.

[Iet Z:F + G he a monamorphism in _E‘_;_]:l_T (C) — then 1TE:1TF > ‘LTG is a monomorphism



in é, hence is an equalizer. But a preserves equalizers (since it preserves

finite limits).}
N.B. Moncmorphisms in j!l_l{(g) are pushout stable.
16.8 LEMMA Every epimorphism in ih—*r(g) is a coequalizer.

16.9 LevMA gh_,r(g) fulfills the standard conditions (cf, 11.23).

[Epimorphisms in §§T (C) are pullback stable (cf. 17.16) and every epimorphism

in &T (C) is a coequalizer (cf. 16.8).]

16.10 LEMVA In &T (C), filtered colimits commute with finite limits.

16.11 RAPPEL Coproducts in C are disjoint.

{In other words, if F = 'J_]_ F; is a coproduct of a set of presheaves F;, then
1€l

v i€ I, in;:F; > F is a monomorphism and v 1,3 € I (:i.:«s:i)fthse};:w.llll:oackFi><FFj

is the initial object in C.]
16.12 LEMMA Coproducts in Sh (C) are disjoint.

16.13 RAPPEL Coproducts in C are pullback stable.
[In other words, if F = || F, is a coproduct of a set of presheaves F,,
i€x
then for every arrow F' + F,

¥ — T
J':IéliF xFFi..F.]

16.14 ILEMMA Coproducts in j&_lT (C) are pullback stable.



16.15 DEFINITION Iet C be a category which fulfills the standard conditions.

u

"
Suppose that R X is an equivalence relation on an object X in C. Consider
>

v

the coequalizer diagram

> X/R = coeq(u,v).

Then there is a commtative diagram

v

> X

u Ll

X > X/R
il

and a pullback square

|
XXX/RX—-—-——-—-—«-—>X
P it
X > X/R .

m

One then says that R is effective if the canonical arrow
R—— X XX/R X

is an isomorphism (it is always a monomorphism).

[Note: C has effective equivalence relations if every equivalence relation

is effective.)

16.16 IFMMA Equivalence relations in j&l,t (C) are effective.



[The usual methods apply: Equivalence relations in SET are effective, hence
equivalence relations in C are effective etc.]
16.17 LEMMA The a hy (X € Ob C) are a separating set forsh (C).

PROOF Iet Z,5':F + G be distinct arrows in %T(g) — then the claim is that

EIXEOb(_ZandU:gThX+FsuchthatE°U¢E' o g, But £ z Z' implies that

= g! i i i = St i
_Xz_X(EIXEObg) whlchlmpllesthatuxx#_xx (3 x € FX). Owing to the Yoneda
lemma, FX:Nat(hX,F), S0 X corresponds to a ¢ ENat(hx,F), thus 2 o g' = B' o o',

Determine o:a hy > F by the diagram

hy —— 2,

! G

Then = o ¢ 2 Z' o q,
N.B. All epimorphisms in gT (C) are coequalizers (cf. 16.8). So, for every
T-sheaf F, the epimorphism I‘F of 15.5 is autcmatically a coequalizer. Therefore

the g_thx (X € Ob C) are a "strong" separating set for @T <.

16.18 DEFINITION Let C be a cocomplete category and let k be a regular cardinal —-
then an cbject X € Ob C is k—definite if Mor(X,—) preserves «-filtered colimits.

16.19 LEMMA Sh_(C) is presentable.

PROCF Fix a reqular cardinal k > f#Mor C —— then ¥V X € 0b C, hXGOb(:'Jis

k-definite, the contention being that v X € Ob G, a h, € Ob sh, {C) is x—definite,



which suffices. To see this, note first that a k-filtered colimit of t-sheaves
can be computed levelwise, i.e., its x=filtered colimit per é is a 1-sheaf. Now

fix a k-filtered category I and let A:I gr[(g) be a diagram —- then

Nat(g_rhx,colim; A) = Nat(i;tl_hxfcca.'l.:i.rnI 1.84)

n

Nat (hx,colimI 1Tﬁi)
oolimI Nat (hx, 1TAi)

colim, Nat(a h,,A;).

i

]

16.20 REMARK A presentable category is necessarily wellpowered and cowell-
powered.

16.2] DEFINITION Let E be a topos —— then E is said to be a Grothendieck topos

if E is cocomplete and has a separating set.
[Note: In general, a cocomplete topos need not admit a separating set.]

It therefore follows from 16.17 that the cocomplete topos j.!!_'l_T (C) is a Grothen-

dieck topos.



§17. LOCAL TSOMORPHISMS

Iet C be a locally small category.

17.1 DEFINITION ILet f:X + Y be a morphism in C — then a decomposition of

k m
f is a pair of arrows X > M > Y such that £ = m ° k, where k is an epi-

morphism and m is a monamorphism. 'The decamposition (k,m) of £ is said to be
minimal (and M is said to be the image of £, denoted im f) if for any other factor-

£ n
ization X > N > Y of £ with n a monomorphism, there is an h:M > N such that

hek=4£andnoh=m.

17.2 LEMMA Suppose that C fulfills the standard conditions (cf. 11.23) —- then
every morphism £:X + Y in C admits a minimal decomposition £ = m ¢ k, where k is

a coequalizer and m is a monomorphism, the data being unique up to isomorphism.
Iet C be a small category.
17.3 RAPPEL C fulfills the standard condtions (and is balanced).

let H,K € Ob Q be presheaves and let = € Nat(H,K). Form the pullback square

d
HXKH > H
P B
H » K

Then p and g are epimorphisms.



17.4 NOTATION SH:H - H XK H is the canonical arrow associated with idH, thus

p06H=idH=qol5H.

N.B. GH is a moncmorphism.

17.5 LEMMA E is a monomorphism iff GH is an epimorphism.

[Note: Oonsequently, if = is a monomorphism, then GH is an isocmorphism.]

Fix a Grothendieck topology T & To

17.6 DEFINITION Let H,K € Ob C be presheaves and let = € Nat(H,K). Factor S

per 17.2:

H > M > K.

Then £ is a T-local epimorphism if for any f:hY + K, the subfunctor f£*M of hY

defined by the pullback square

M ——— > M
if*M m
hY e > K
is in Ty

17.7 ILEMA EBvery epimorphism in é is a 1-local epimorphism.

17.8 DEFINITION ILet H,K € Cb § be presheaves and let £ € Nat(H,K) — then =

is a 1-local monomorphism if GH is a t-local epimorphism (cf. 17.5).

17.9 IEMVA Every monomorphism in (E is a t-local monomorphism.



17.10 DEFINITION Let H,K € Cb € be presheaves and let E ¢ Nat(H,K) -- then =

is a t-local isamorphism if = is both a 1-local epimorphism and a 1-local mono—

morphism.

17.11 EXAMPIE If G € 3% then iG:G - hX is a t-local isomorphism.
[For any £:¥ » X, there is a pullback square
f*G — > G

i

1 G

£4G

T, X

f

in C and £*G € 1, thus i, is a t-local epimorphism. On the other hand, i is a
monomorphism, hence iG is a t-local monomorphism (cf. 17.9).]
[Note: If G is a subfunctor of h, and if iG:G > hX is a 1-local epimorphism,

then G € 1.,. Proof: Takef=idxandconsida:

X
G G
iG J.'G
g ety )

17.12 THEOREM wT is the class of t-local isomorphisms.

17.13 NOTATION Denote by §C the "set" of reflective subcategories S of é

with the property that the inclusion 1:§ + § has a left adjoint g:é + 8 that

preserves finite limits.



We shall now proceed to establish the "fundamental correspondence™.

17.14 THEOREM The arrows

§9 —_ 1‘9 (cf., 15.2)

TQ —_— §9 (cf. 15.10}

are mutually inverse.

To dispatch the second of these, consider the composite

Ty —>

c %"

9.
Take a T € 1, and pass to Sh_(C) —— then the Grothendieck topology on C determined

by @T (C) via 15.2 assigns to each X € Ob C the set of those subfunctors iG:G -+ hx

such that gTiG iz an isamorphism or, equivalently, those subfunctors iG:G - hX

such that iG is a 1-local iscmorphism (cf. 17.12). But, as has been seen above,

the subfinctors of hX with this property are precisely the elements of Ty (cf. 17.11).

Therefore the camposite

is the identity map.
It remains to prove that the composite

§g——>‘rg—>§c

is the identity map. So take an S € S,, produce a Grothendieck topology v on C

Sc

per 15.2, and pass to Sh _(C) -- then § < Sh _(C). Thus let F € Ob S, the claim being

thatFE@_@_T(g) or still, that F is a t-sheaf, or still, that v X € Ob € and



v GE Tyr iG 1 F, which is clear since iG € wT {(cf. 15.15). To reverse matters

and deduce that Sh (C) < S, one has only to show that if Z:H +~ K is a morphism

in § and if a% is an isomorphism, then QTE is an isomorphism (cf. 17.17 infra).
To this end, factor = per 17.2:

k m
H > M > K.

Then aZ = am ¢ ak. But aZ is an iscmorphism and am is a monomorphism (2 preserves
finite limits). Therefore ak is a monomorphism. But ak is a coequalizer (a is a
left adjoint), thus ak is an isomorphism (in any category, a morphism which is a
monomorphism and a coequalizer is an isomorphism). And then am is an isomorphism -
as well.

e Assume that af is an isomorphigm, where Z is a monomorphism -- then
a £ is an isomorphism.

[Bearing in mind that here H = M, consider a pullback scuare

f*H— > H
£*H

hY-»-——>K .

£

Then the assumption that af is an isomorphism implies that ai,. is an isomorphism

which in turn implies that if*H € Ty Therefore = is a 1-local epimorphism or still,

% is a 1-local isomorphism, hence £ € wT (cf. 17.12), so a z is an isomorphism,

e Assume that af is an isomorphism, where £ is a coequalizer -- then QTE

is an isomorphism,



[Because QTE is a coequalizer, to oconclude that QTE is an isomorphism, it
suffices to verify that QTE is a monomorphism. For this parpose, consider the

pullback square

o]
In

H > K .

-

Then SH is a monomorphism and there are pullback squares

aq a.q
*®
aH a_lKgH > al EHXETK aTH >§TH
ap az QTP J_T:
a > ak ’ a >a K .
a= T a = T

= =1

But ad, = 6_.. is an isomorphism, thus a 6 = Ga is an iscmorphism {cf. supra},

111

17.15 THEOREM Let H,K € Ob C be presheaves and let & € Nat(H,K) —- then

a TE:ETH ~ak is an epimorphism in :S_h_T (C) iff Z is a 1-local epimorphiam,

17.16 APPLICATION The epimorphisms in Sh - (C) are pullback stable.

[The class of T-local epimorphisms is pullback stable.]

17.17 ILEMVA Iet [_)l, I_)2 be reflective subcategories of a category C. Suppose

that W[_)z c wp_l_—- then 91 c 92.



PROCF Take X; € (b D;. To conclude that X; € Ob D,, it need only be shown

thatVwaD

, £1% (cf. 15.12). But
, !

X

lEOb91=>wD J.Xl

=1



§18. k-SHEAVES

et C be a category.

18.1 DEFINITION Iet C be a covering of X € Ob C —— then a functor F:QOP + SET

has the sheaf property w.r.t. C if the following condition is satisfied: Given

elanents

quFY {g:¥Y - X in ()

which are campatible in the sense that if
h1:Z + dom g1 (gl:Yl + X in ()

(i}
_ h2:Z + dam g, (gz:Y2 + X in ()

) gpeh =gy°h
imply
(iii)  (Fhy (xgl) = (Fh, (xgz) ’
then there exists a unique x € FX such that v g:¥ + X in (,

(Fg)x = xg.

18.2 REMARK Suppose that § is a sieve —- then elements Xe € FY (£:Y > X in §)

g £
are ocompatible iff whenever 2 > Y > X, there follows

X o g™ (Fg) (xg) .

[Note: If C is locally small, then

sieves «——> subfunctors (cf. 14.2),



say

$<—>Gchx.

Accordingly, a compatible family corresponds to a natural transformation G + F
and F has the sheaf property w.r.t. $ iff every natural tranformation G - F extends

uniquely to a natural transformation hX > F.]

18.3 EXAMPLE Take C = {id,:X > X} — then every functor F:C”" ~ SET has the

sheaf property w.r.t. C.

18.4 LEMMA A functor F:(_ZOP + SET has the sheaf property w.r.t. C iff it has

the sheaf property w.r.t. $(C) (cf. 12.3).

lB.SEXAMPLEFixXEObg—thelmeveryflmctorF:QOP—*_Sghasthesheaf

property w.r.t. 5max (cf. 12.4).

18.6 DEFINITION Suppose that k is a covering function -- then a functor

F:QOP + SET is a k-sheaf if it has the sheaf property w.r.t. all the coverings in K.

N.B. The x-sheaves and the %({k)-sheaves are one and the same.

18.7 REMARK Iet C be a small category and suppose that T is a Grothendieck
topology on € —— then T can be defined as in 13.1 or as in 14.5, thus there are
two possible interpretations of the phrase "t-sheaf", viz. the one above or that
of 15.7. Fortunately, however, there is no ambiguity: Both are descriptions of

the same entity.

18.8 LEMMA If « is a coverage and if x' < k, then every k-sheaf is a «'-sheaf.



[This is because if F is a k-sheaf, then F has the sheaf property w.r.t.

every covering that has a refinement in «.]
18.9 APPLICATION Equivalent coverages have the same sheaves.

Write @K(g) for the full submetacategory of [gOP,g_EI'__] whose objects are the
K-sheaves.

18.10 ILEMMA Suppose that K is a coverage — then

sh () =sh_,,  (©
=§hf.‘3(sat K} ©-

18.11 THEOREM Suppose that Kk is a pretopology with identities —-- then J(k)
is a Grothendieck topology (cf. 12.20) and

Shyy(©) = sh (©).

In the presence of a size restriction and pullbacks, there is another way to

formulate the sheaf property. Thus let C be a covering of X € Ob ¢, say C =

g,
i
{Yi > X:1i € T}, where I is set. BAssume that the pullbacks
1
i3
Yi *x Y:J > Yl
2
Trijl 93
Yj > X
93

exist for all i,j € I.



18.12 LRMA Under the preceding conditions, a functor F:C¥ - SET has the

sheaf property w.r.t. C iff in the diagram

1
. Fg; Friy
> FYi > F(Yi Xy Yj)
~ 1
Pry Priq
P
e 1 >
FX > 1T FYp T F(y Xy ¥p)
k > k,£
Py
T . s
Pry Prij
\ 4
FX - > FY > > F(Y; %g ¥),
3 ij

e is an equalizer of Py and P, in SET.

18.13 DEFINITION let C be a locally small category, Kk a covering function —

thent«cissubcanonicalifVXEObg,hxisaK—sheaf.

18.14 EXAMPLE Assuming that C has pullbacks, define k by ky = {£}, where

f € Ob /X —— then « is subcanonical iff the f are coequalizers.

18.15 EXAMPLE Take C = TOP —— then the open map coverage is subcanonical. But
the open subset coverage, the open embedding coverage, and the local hameomorphism
coverage are all subordinate to the open map coverage, hence they too are sub-

canonical (cf. 18.8).



18.16 EXAMPLE Take C = SCH (cf. 0.6) and fix X € Ob C (OX being understood) .
® et Ky be comprised of the collections {gi:Yi ~ X} such that v i, 9;

is an open immersion and U 95 (Yi) = X =~ then k is a Grothendieck coverage, the

Zariski coverage.

e Ilet Ky be comprised of the collections {gi:Yi + X} such that v i, 9

is étale and U 95 (Yi) = X —=- then « is a Grothendieck coverage, the étale coverage.

o Iet kg be comprised of the collections {gi:Yi + X} such that v i, 95

is smooth and U 9; (Yi) = X == then x is a Grothendieck coverage, the smooth coverage.
® Let K, be comprised of the collections {gi:Yi + X} such that v i, 95

is flat + locally of finite presentation and U 9; (Yi) = X — then k is a Grothen-

dieck coverage, the fppf coverage.

18.17 REMARK Each of these Grothendieck coverages is a Grothendieck pretopology

with identities.

An open immersion is necessarily étale, an étale morphism is necessarily smooth,
and a smooth morphism is necessarily flat + locally of finite presentation. There—
fore the Zariski coverage is subordinate to the étale coverage which in turn is sub-
ordinate to the smooth coverage which in turn is subordinate to the fppf coverage.

[Note: If K is the fppf coverage ard if k' is the Zariski coverage, then

every «-sheaf is a k'-sheaf (cf. 18.8) but there are k'-sheaves that are not x-sheaves.]
18.18 THEOREM The fppf coverage is subcanonical.

Consequently, the Zariski coverage, the étale coverage, and the smooth coverage



are all subcanonical (cf. 18.8}.
It turns out that the fppf coverage is subordinate to the so—called "fpge

coverage" (see below).

18.19 DEFINITION lLet f:X - Y be a surjective morphism of schames —— then f

is locally quasi-compact provided that every quasi-compact open subset of Y is

the image of a quasi-compact open subset of X.

18.20 EXAMPIE Tet f:X » ¥ be a surjective morphism of schemes.
(1) If f is quasi-compact, then £ is locally quasi-compact.

(2) If f is open, then f is locally quasi-compact.

Given a scheme X, let k, be comprised of the collections {gi:Yi + X} such that

v i, 9y is flat, U g (¥;) = X, and _|_| Y, > X is locally quasi~compact —-- then k
i

is a Grothendieck coverage, the fpgc coverage.

[Note: Like its predecessors, the fpgc coverage is a Grothendieck pretopology

with identities.]

18.21 LEMMA The fppf coverage is subordinate to the fpac coverage.

[A flat morphism locally of finite presentation is open.]

18.22 THEOREM The fpqgce coverage is subcanonical.

Therefore

18.22 => 18,18,

18.23 REMARK The coverage k that assigns to each scheme X the collections



{gi:Yi + X} such that v i, 9; is flat and U gi(Yi) = X is not subcanonical.

Returning to the generalities, let again C be a locally small category.

18.24 1LEMMA Suppose that k is a subcanonical covering function —— then

v X € 0b ¢, the induced covering function k on C/X is subcanonical.

18.25 EXAMPLE Take C = TOP, let k be the open subset coverage, and fix
X € 0b C — then
Sh_(0(x}) = Sh(x)

ard the inclusion (_)(X) + TOP/X induces an arrow

RiSh (TOB/X) > Sh(X)
K2

of restriction. On the other hand, there is alsoc an arrow

P:sh(x) + sh_(TOB/X)
K

of prolongment and (P,R) is an adjoint pair.



§19. PRESITES

19.1 DEFINITION A presite is a pair (C,x), where C is a small category and
K is a covering function which is a Grothendieck pretopology with identities whose

underlying coverage is a Grothendieck coverage (cf. 12.21).
Explicated:

19.1 DEFINITION (bis) A presite is a pair (C,k), where C is a small category
and ¢ is a covering function subject to the following assumptions.

(1) v X € Ob C, {id,:X > X} € ;.

(2) VXEOb(_:,VCEKX,Vg:Y+XmC, and v £':X' » X, there is a pullback

square

X! xx Yy — > Y%

g' g

re— =X
fl
such that the covering
gl

{x' Xg ¥ ———> X':g € C}

belongs to SR

(3)VXEOb(_:,VCEKX,Vg:Y+XinC,a11dVCgE|<Y,

h g
U goeC =f{gehigeCs&sheC} (2 > Y > X)

belongs to Ko



[Note: Here, of course, it is understood that v X € Ob C, Ky is a set of

subsets of Ob C/X.]

19.2 THEOREM Suppose that (C,x) is a presite — then

Shy( (@ =8h (©  (cf. 18.11)

and the elements of _S_l'_;K (C) are characterized by the equalizer diagram figuring

in 18.12.

19.3 EXAMPLE Take C = Q{X), X a topological space (cf. 11.18) and define the
covering function k as there -- then the pair (C,«) is a presite and J(k) is the

Grothendieck topology T on Q(X) per 12.16. And a functor F:(_:OP + SET is a k-sheaf

iff for any subset U < X, any open covering U= U U:i.' and any collection S; € FUi
ier
(i €I) such that v i, € I,

s;[u; n Uy = s.j}Ui n Uy,

there exists a unique s € FU such that $; = slUi ¥ 1¢€1I, or, equivalently, the

diagram

>-]TFU.

>
T FU. n U.)
it J i3 ]

is an equalizer diagram.

[Note: The empty covering of the ampty set is admissible. Suppose that it is
excluded (retaining, however, idﬁ:ﬁ +~ @) — then the result is another presite
(C,<') but now shy . . (C) is sh(X || {#}), the open subsets of X || {*} being the

anpty set and any set of the form U U {#} with U < X open. For instance, consider



the case when X is a singleton — then X J_L {#} has two points, the underlying

topological space is Sierpinski space, and ' (C} is equivalent to the arrow

§-h-J(K
category SET(=}.]
19.4 DEFINITION let (C,x), (C',k') be presites —- then a functor $:C + C'
is geometric provided the following conditions are satisfied.
(1) vXeOC(C vCie Ky

® o C € (sat K')(I)X.

(2 vXeOC vieE K, Yg:Yy>Xin C, and v £':X' » X, the canonical
- X

' 1
¢ (X XX Y) » X ><cIJX ¢y¥
is an isamorphism.

N.B. The first condition is equivalent to requiring that ¢ o C has a refine-

ment in k' (cf. 11.9).

19.5 EXAMPLE Take C = C' — then idc is geometric iff k < k' {cf. 11.6 (with

the roles of k and k' reversed)).

19.6 NOTATION PRESITE is the locally small category whose objects are the pre-
sites and whose morphisms are the geametric functors.

[Note: PRESITE is a locally small large category.]

19.7 LEWMA Let (C,x), (C',k') be presites and suppose that &:C + C' is a
geometric functor. Iet F' be a k'-sheaf ~- then F' ¢ ¢ is a k-sheaf.
PROOF Let C be a covering in k —— then ¢ ¢ C has a refinement in k', hence

9;

F' has the sheaf property w.r.t. & o C (cf. 18.8). Assuming that C = {Y, > X

1



i € I}, where I is a set, this means that the diagram

E—
' L]
> Il F EIJYi I | F (<I>Yi X o @Yj)
i . i3

F'éx

is an equalizer diagram in SET'. But

1

(Y, =, Y.) Py, x &y,
i 3 i 3

X {224

F' o (Y, %, Y.) = F‘(@Yi X

i"X7j QYj)’

X

thus it remains only to quote 18.12,

F.0% 5 )P, from which an induced

A functor ¢:C » C' detexrmines a functor 9
functor

@™ *: 1, sem ~ (¢, 5T,

i.e.,

F N A
@) "¢t > C.

Assume now that (C,k), (C',«') are presites and that ®:C -~ C' is a geometric
functor -- then in 19.7, it is officially a question of

OP

*
F' o ¢9F = (¢9F) g

*
rather than F' o . Agreeing to abbreviate (¢0P) to &%, there is an induced

functor

Sh *:8h , (C') > Sh (C)

and a commtative diagram



————— {2
-

sh_, (C") > sh (©).
sh o*

19.8 EXAMPLE Let X,Y be topological spaces and let f:X - Y be a continuous

function. Define x as in 11.18 (per X or Y) — then there are presites

(0(X) ,k) with @K(Q(X)) = Sh(X)
{cf. 15.25)

(Q() k) with Sh (Q(¥)) = sh(¥).

In addition, the functor £ 1:0(Y) -~ O(X) is geometric and ¥ F € Sh(X),

F o (f'l)OP = £,F,

(£,F)V = F(£ V).

19.9 NOTATION Given a presite (C,k), J(k) is a Grothendieck topology and

Shyy (© =sh (©  (cf. 18.11).

Write 1 (S ) for the inclusion Sh (C) - § and denote its left adjoint by

J{K)

a_ (= (cf. 15.10).

=K a—‘J(K))

Let {(C,x), (C',k') he presites and suppose that ¢:C » C' is a geometric

functor —— then by the theory of Kan extensions, %* has a left adjoint &, :§ -+ C'.



19.10 LEMVA The composite

1 CI’! a

sh (©) > C > & > Sh_, (C")

is a left adjoint for

sh @*:@K.(g') > Sh (©).
PROCF If F is a k-sheaf and F' is a k'-sheaf, then
M:}r(gK. ° ¢>! o 1KF,F')
:M:u:(lK, °a.y (P! o 1KF,1K,F')

zIVbr(E_lK. o1, °a, e <I>! o 1KF,F')

K

= Ivbr(gK. o <I)! o 1KF,F')

:M:)r(@! o 1KF,1K.F')

[

N.br(lKF,CIJ* o 1K.F')

b’br(lKFglK o Sh o*F')

113

Mor (F,Sh *F').

i

19.11 REMARK The pair
(QK. ° ‘I’! ° 1. Sh &%)
defines a gecmetric morphism

sh ,(C") > sh _(Q)

if in addition a e ¢, ° |, preserves finite limits.



19.12 EXAMPLE Consider the setup of 19.8. Dictionary:

f_1< > @
£, < > Sh ¢*
f* < >a ., ¢ ® o .

In traditional teminology:

f, = direct image

f* = inverse image.

[Note: The pair (f*,f,) defines a geametric morphism Sh(X) -+ sh(Y}.]

19.13 LEMMA There is a 2-functor

Sh:PRESITE™. -+ 2-CAT

which on objects sends (C,k} to _S_h_K((_z).

MN.B. It then makes sense to form
OB R TTE Sh (cf. 7.7}.
19.14 EXAMPIE Take the data as in 19.8 — then there is a functor

706> + PRESITE

which on objects sends X to (0(X),«}. From here, pass to opposites and postcompose
with Sh to get a 2-functor

Sh
> PRESITEOP _— > 2-CAT

TP

which on objects sends X to Sh(X). One may then consider its Grothendieck opcon-

struction ... .



§20. INVERSE IMAGES

Let P:E +~ B be a fibration. Suppose that k is a covering function on B —

then its inverse image P-lnc is the covering function on E specified by the following

procedure. Let X' € Ob E and let {g:B + PX'} € Kpyt» For each g, choose a hor-

izontal morphism u:X + X' such that Pu = g —— then the ¢lass {u:X +~ X'} is a
covering of X'. One then takes for (P-lnc) % the conglamerate of all such coverings

of X'.
20.1 LEMMA If « is a coverage, then D 1k is a coverage.

20.2 LEMMA If « is a Grothendieck coverage, then P-lK is a Grothendieck coverage.
PROOF Referring to 11.16, take X' € Ob E, let C € (P )y, take u:X » X' in

C, and let £:Y » X' — then the problem is to construct a pullback

Y Xy X > X

v u

Y > X!
f

of u along £ such that the covering

v

{¥y x_,, X > Y:u € C}

xl

belongs to (P—lK)Y. To this end, pass to B and form FY XPX' B per the assumption

on K:
Pry
PY xp ¢ B > B = PX
PY . PX




Choose a horizontal viZ - Y such that Pv = h, hence PZ = PY x

pY? B, the claim

being that Z is a pullback of u along £. The first step in the verification is

to find a morphism k:2 + X rendering the diagram

k

Z > X

v u

Y > X!
f

commitative. So consider
fovw P(f o v)
b oo ey x— ot Ypp ey opxe !,
u Pry Pu=g

Then
P(f o v) = Pf o Pv.
On the other hand,

Pu o pry =g © pry=Pf o h=Pf o Py,

Accordingly, since u is horizontal, there exists a unique morphism k:2 > X such

thath=prBanduok=f°v. There remains the universality of 2: If

subjecttouo]z=fo;r, then there is a unique ¢:Z + Z such that

Existence of ¢ Since PZ = PY Xpx? B is a pullback, there is a unique {:PZ + PZ




‘such that

prBo[p(=Pkow):Pk

hoty (=Pv o ¢) = Py,
Bearing in mind that v is horizontal, consider
v PV
e osz— oy' b pp— .pg > Py !,
v W Pv

Pv = PV o |,

which implies that there exists a unique morphism 6:2Z - 2 such that Pé = ¢ and

vo¢w\7. 'Ibcheckthatkoq;=}z,consider

uok P(u ° k)
b s X s x !, bz —> PX . PX' .
u Pk Pu

Because u is horizontal, there is a unique morphism £:2 » X such that P£ = Pk and

—~ £ ~

uof =ue k, OChviously, t.hen,£=};. But mearwhile,

Vo¢=€r=>fovo¢=fo{vy=uok.
I.e.:

~

P(k o ¢) = Pk © Pp = pry o § = Bk.

Therefore K o ¢ = k.

Uniqueness of ¢ If ¢1,¢2:5 -+ 2 both satisfy the requisite conditions, then




<

P¢1“—‘IP _V°¢1=
and , thus ¢l= ¢2 {cf. supra).

L

P¢2=¢ vo¢2=

20.3 REMARK It is not assumed that B or E has pullbacks but merely certain

pullbacks as per the definition of Grothendieck coverage.
20.4 IEMMA If « is a pretopology, then Pk is a pretopology.

20.5 LEMA If k is a Grothendieck pretopology, then P-lK is a Grothendieck
pretopology.

20.6 LEMMA If «k is a pretopology {or a Grothendieck pretopology) with identities,
then P-lK is a pretowology {or a Grothendieck pretopology) with identities.

20.7 REMARK Ignoring issues of size, it follows that if (B,x) is a “presite",

then (I_B,P—lK) is a "presite" (cf. 19.1 and 19.1 (bis)).



§21. ALGEBRAIC STRUCTURES

Let (C,k) be a presite.

21.1L‘EIvm-LetF:gop+@beafunctor-—thenFisaK—sheaf iff v S € b SET,

the presheaf X » Mor({S,FX) is a k-sheaf.

21.2 DEFINITION Let A be a locally small category with products —— then a

functor F:(_:OP + A is a k-sheaf with values in A if v A € Ob A, the presheaf

X > Mor(A,FX) is a k-sheaf.

Write §]:_1K((_2,§) for the full subcategory of [(_‘.‘OP,Q] whose objects are the

k-sheaves with values in A (thus

g
21.3REMARKIetC={Yi >X:iEI}€KX,whereIisaset-—thenforany
op ,
functor F:C~ - A, the diagram

g

> T FY; 1,
i , 4.3

F(Yi Xy Yj)
is an equalizer diagram in A iff v A € Ob A, the diagram

> '|;|' Mor (A,FY;) l‘]:[; Mor (,F (Y, x, Yj))
—_—

Mor (A,FX)

is an equalizer diagram in SET.

The central problem at this juncture is to £ind conditions on A which suffice



to ensure that the inclusion

op
18h (€,8) > €7 ,A]

admits a left adjoint

op
a.:Ic™ ,al ~ sh (C,A)

that preserves finite limits {(cf. 15.10 for the case A = SET).

e Assume: A is a construct, i.e., there is a faithful functor U:A + SET

which, in addition, reflects iscmorphisms.

21.4 EXAMPLE HTOP is not a construct. TOP is a construct but the forgetful

functor U:TOP + SET dees not reflect isomorphisms.

One then imposes the following conditions on the pair (A,U).
(1) A is complete and U is limit preserving.

(2) A has filtered colimits and U is filtered colimit preserving.

21.5 EXaMPLE Taking for U the forgetful functor, these conditions are met by
the category of abelian groups, groups, cawmmtative rings, rings, modules over a
fixed ring, vector spaces over a fixed field, ... . '
[Note: Neither coproducts nor coequalizers are preserved by U.]

21.6 LEMVA let F:QOP + A be a functor —- then F is a k-sheaf with values in

A iff U o F is a k-sheaf.

21.7 REMARK The forgetful functor U:TOP - SET preserves limits and colimits.

On the other hand, it is not difficult to exhibit a presite (0(X),k) (cf. 19.8)



and a functor F:(_)(X)OP + TOP such that U o F is a k-sheaf but F is not a k-sheaf
with values in TOP.
[Note: This does not contradict 21.6 (cf. 21.4).]
21.8 THROREM 'The inclusion
OP
1.38h (C,2) ~ [C™,3]
admits a left adjoint

OopP
a.:[C Al + gh (C,R)

that preserves finite limits.

Implicit in the proof is the fact that for any functor F:cOC - a,

a (UeF) =Uo°alP
=T =T

thus there is a commtative diagram

K
Pl
op
Sheem ™ .2l
=K
U* U*
'k
+ > ¥
OP
5351{(9 . [C™ ,SET].
&
Here U, is given on objects by
UF=UoF

and on morphisms by

(U,8)y = UEy.



APPENDIX
Iet C be a category.

NOTATION SIC is the functor category [_QOP,Q] and a simplicial cbject in C

is an object in SIC.

In particular:

SISET =

Al
-

&

is the category of simplicial sets.

Iet € be a small category —— then

st = 1%, (¢ ,sET)]

(¢ « »%F, s

it

i

(™, 1a% 5T}

[(_:OP,SISEII ’

the objects of the latter being termed simplicial presheaves.

Suppose that (C,x) is a presite.

DEFINITION The objects of SISh (C) are called simplicial k-sheaves.

The product C x A is a presite, viz.
KX x [n] = In¥yr

where



is the inclusion

X x [n]

'_I-
=
»4
Il

f x id

-
o
h
I

[n}”

It thus makes sense to fonn_sl_'zK(gx A).

LEMMA We have

SIsh {C) z&K(gx A).

A1l the basic results on presheaves and K-sheaves of sets extend without

essential change to simplicial presheaves and simplicial k-sheaves.

a
K
N.B. It is custamary to use the same symbols for the induced adjoint
%
pair -

SIC ———> SISh (C)

it S LY

SIsh (C) > SIC .

L2 sh (C,SISET) can be identified with

SISh (C) = Sh (C x 8).

PROOF A simplicial presheaf F:QOP > SISET determines a sequence {Fn} of

functors Fn:gop + SET via the prescription FnX = (FX)}){[n]} and F is a simplicial

k-sheaf iff Vn, F_ is a «-sheaf. Assume now that F:QOP + SISET is a k-sheaf with

values in SISET — then for every simplicial set S, the presheaf X - Mor (S,FX)



is a k-sheaf. In particular: v n, the presheaf

X = Mor{A[n],FX)
is a k-sheaf. But

Mor(A[n},FX) = (FX) ([n]) = F X,
80 ¥ n, Fn is a k-sheaf, i.e., F is a simplicial k-sheaf. Conversely, if F is a

simplicial k-sheaf, then F is a k-sheaf with values in SISET. To see this, given

a simplicial set 5, write

W
i

c:olJ.mi A [ni] .

Mor(S,FX) = Mor (colimi A [ni] +FX)

u

limi Mor (A [ni] +FX)

[

lim, F_ X.
i'ng

and lim, Fni € b gh (Q) is computed levelwise.



§22. A SPACES
Iet A be a locally small category with products.

22.1 NOTATION Given a topological space X, write Sh(X,A) for the category
whose objects are the k-sheaves with values in A.

[Note: Here k is taken per 11.18, so

Sh(x,3)

sh_(0(x),3).]

N.B. Therefore

"

Sh(X) = Sh(X,SET).

22.2 EXAMPLE For any k-sheaf F on X with values in A, F# is a final object in A.

22.3 LEMVA Suppose that X is a one point space — then the functor

v
Sh%,8) —> A

that sends F to FX is an equivalence of categories.

22.4 REMARK If X is a one point space, [0(X)7F,a] can be identified with the
arrow category A{»). Fix a final object *p in A —- then the functor A + A(»)

1
.

which sends an cbject A to the arrow A > *a has a left adjoint, viz. dom,

22.5 LEMMA Let X,Y be topological spaces and let £:X *~ Y be a continuous
function —- then there is an induced functor

£,:5h(X,A) + Sh(Y,A) (cf. 19.8).

22.6 EXAMPLE Assuming that X is not empty, fix a point x € X and let iX:{x} > X



be the inclusion —- then there is an induced functor

(i),:Sh({x},8) > Sh(X,A).

Now choose a final object %, in A, from which an induced functor

sky, :A + Sh(X,3),

T A {xew
SkyX(A) (U) =

* X210,

22.7 IEMMA If A is cocomplete, then SkyX admits a left adjoint
sh(x,a) > A,

the stalk functor.

PROOF Let Q(X)X be the subcategory of O(X) whose objects are the open subsets

of X containing x —- then the inclusion 1 :0(X}) ~ O(X) is geometric, hence there
is an induced functor

15:5h (0(X),A) > sh (Q(X)_,3).

This said, consider the composite
* .
1x colim
> 5h . (0(X) ,A) ——> A.

sh(x,) = sh_(0(x),B)

22.8 DEFINITION An A space is a pair (X,OX) , where X is a topological space
and 0, is a k-sheaf with values in A,

[Note: If A is cocomplete, the stalk of OX at x € X is denoted by the symbol
o o]

er



'IOPF is the category whose objects are the A spaces and whose morphisms are

the pairs

£,£h
(X,04) ————> (¥,0,),

where £:X + Y is a continuous function, £':0, + £,0, is a morphism in Sh(¥,3),

and £,0, = 0, o (£ %,
[Mote: The composition
@,9M o (£,£h
of
¢, £ (@,g")
(X;OX) > {¥,0y) ~—————— (2,0,)

has first component g o £ and second component g*(f#) o g# (go £),=g,° £f,).

And ld(X:OX) 1s the arrow

(idy,id, )
X
(X, OX) > (X,OX) .]

N.B. Define a 2-functor F:TOP -+ 2-CAT by sending X to Sh(X,A) and £:X + Y

to f,. One can then introduce ILOmp F, the Grothendieck opconstruction on F.

Thus its objects are the pairs (X,0,), where 0, is a k-sheaf with values in A, and
its morphisms are the pairs

£, *s)
(x,0,) > (1,0,),

where f:X »~ Y is a contimuous function, #f:f*ox + OY is a morphism in Sh(Y,a),



_ o (sl0P
andf*Ox—OX {f 7} . Here

b o g (te))

(g, 1008, = (g o £,

id = (idx,id ).
Conclusion: ...?

22.9 EXAMPIE Take A = RNG (cf. 11.26) —- then TOPEN} is the category of

ringed spaces.

If U is an open subset of X and if :LU:U + X is the inclusion, then
(iU)*:_S_h__(U,&) + Sh(X,A)

admits a left adjoint
(iU)*:%(Xré) > %(Ufé) .
This is true without any additional assumptions on A. To proceed in general,
however, we shall suppose that A is complete and cocamplete and impose on A the
conditions set forth in 521, thereby ensuring that 21.8 is in force, hence that

f*:__S_ll(Xré) - &(Yré)

has a left adjoint
£%:5h(Y,A) ~ Sh(X,A) (cf. 19.12),

MDr(f*OY,OX) = I\br(OY,f*Ox) '

with arrows of adjunction



22.10 NOTATION Let P, > TOP be the functor that sends (X,0,) to X and

H 'IDP_F

£, £h to £.

22.11 LEMRA PA is a fibration.
PROOF Given (Y,OY) and £:X + ¥, the morphiam
(frUOY) : (xrf*oY) > (YrOY)

is horizontal.
22.12 EXAMPLE Take X = U, Y = ¥, f=iU-—tImiT’jOX=OX|Ua:ﬂ
(iUrUO )=(UrOX|U) -+ (X;ox)
X

is horizontal. Here

uoxz OX +1i, (OXfU)

at an open subset V < X is computed by
0y (V) ~ OX(U n v)

per U N V + V.

(£, £

(X,0,) > (Y, 0,)

be a morphism of A spaces —— then f#:OY -+ f,,l,OX is a morphism in Sh(Y,3), thus
corresponds to a morphism £ #:f*OY > OX in Sh(X,A) under the identification

Mox (£*0 ,Ox) = M:-r(Oy,f*OX) .



[Note: The camposite

£x(£%) Yo,
FrO, —— > 4,0, — X5 0,

is £ 2 Observe too that
(idxrf#) : (X, Ox) —_ (x,f*OY)

f

#
is a morphism of A spaces: f*OY > (J.dx) *OX = OX
and the diagram
(£,£%
(X’OX) > (Y,OY)
(idxff-#)
(X,£%0,,) > (¥,0,)
¥ (fr]JO ) ¥
Y

in 'I’OPF commates. ]

Consequently, at the level of stalks, v x € X, there is a morphism
- *
(f#)x’ {f OY)x >0

X;X

22.13 LFMMA Fix x € X —— then the stalk functor at £({x) is the composition

(ix)* o %,
[The functor (ix)* o £* is a left adjoint for f, (ix)* = (f o ix)* =

(L ey ) o]



[(Note: Technically,
(lx) *

Sh(X,A) —— sh({x},a)
so "taking the stalk at x" is really (ix)* modulo the equivalence

sh{{x},a) —> & (cf. 22.3).]

22.14 APPLICATION v x € X,

Oy £rx) = (L)% (E*0y) = (£%0y) .

In particular:

(£.03) £ oy = (E¥EL0p) e

Fix a one point space * and consider X > % — then

!,:Sh(X,a) + sh(x,d).

=it

Now postcompose !, with the equivalence Sh(x,A) > A of 22.3 to get a finctor
I‘3_S_h_(xr§) - é:

the global section functor:

TF = FX
[Note: If
(£, £
(X,OX) > (¥,0,)
is a morphism of A spaces, then
f

[0y = 0, (¥) ———s (£,0,) (¥)



is a morphism in A.]

0, £y

Il

OX X) = I‘OX

22.15 LEMMA The global section functor T' is the restriction to sh(X,3a) of

22,16 RAPPEL, The functor

Lim: [0(x) % a1,

lim: [0 %,a1 » 2

is a right adjoint for the constant diagram functor

Display the data:

Then a left adjoint for

is

k:a > [00F,al.

22.17 EXAMPLE ILet A be a camutative ring with unit. Consider the ringed

space (Spec A,OA) — then

I‘OA = OA(SpeC A) = A,



[Note: Here OA = is the structure sheaf of Spec A.}

OSpecA

22.18 REMARK Spec A =@ iff A = {0} (& zero ring). Of course, {0} is a

final object in RNG and

in agreement with 22.2,

22,19 I1IEMA The diagram

_SI..}.(* ré-) g -S_‘[’}'_(Xlé)

aev

A > _S_ll(xré)

commates up to isomorphism:

I* = A o ev.

PROOF For any 0, and for any 0,

Mor (1%0,,0,) =~ Mo (04 ! 4 0y)
= Mor (0**r (!*OX) (*))
= Mor (ev 0*'OX(X))

~ Mor (ev 0,,T0y)

= MDI‘(& o eV O*pox) -



823. LOCALLY RINGED SPACES
Let C be a category.

23.1 DEFINITION A subcategory D of C is said to be replete if for any object
X in D and for any iscmorphism £:X > Y in C, both Y and f are in D.

[Note: If D is a full subcategory of C, then the term is isomorphism closed.

E.g.: Reflective subcategories are iscmorphism closed.]

23.2 EXAMPLE let LOC-RNG be the subcategory of RNG whose objects are the local
rings and whose morphisms are the local homomorphisms —- then LOC-RNG is a replete

{nonfull)} subcategory of RNG.

23.3 DEFINITION Let C,C' be categories — then a functor F:C + C' is said to
be replete if it has the isomorphism lifting property {(cf. 1.23), i.e., if ¥ iso-
morphism ¢:FX > X' in C', 3 an isomorphism ¢:X - Y in C such that F§ = ¢ (so FY=X'}.

[Note: One can thus say that a subcategory D of C is replete provided the

inclusion functor D -~ C is replete.]
23.4 EXaMPLE A fibration P:E + B is replete (cf. 4.23).

23.5 LEMA Iet F: (E,P) + (B',P') be a morphism in CA¥/B, where P:E -+ B,
P':E' + B are fibrations —— then F is replete iff v B € Ob B, the functor F :E, »

EI’3 is replete.

23.6 REMARK The fiberwise condition on F amounts to the assertion that if
:FX - X' is a vertical isomorphism in E', then there exists a vertical isomorphism

$:X > Y in E such that F$ = ¢ (so FY = X"}.



23.7 DEFINITICN A ringed space (X,OX) is a locally ringed space if each stalk

OXer is a local ring.

[Note: mx'x is the maximal ideal of OX,x and k(x) = Ox,x/mx,x is the residve

field of OX x']

r

23.8 REMARK Consider the pair (@, Og)' where Oﬁﬂ = {0} (a zero ring) (cf. 22.18) —-

then there is no stalk and the local ring condition is vacuous, so (#, Oﬂ) is a
locally ringed space.

[Note: Zero rings are not local rings.}

Iet (X,OX) . (Y, OY) be locally ringed spaces. Suppose that

£, £h
(%,0,) > (¥,0)

is a morphism of ringed spaces —— then (f,f#) is a morphism of locally ringed spaces

if v x € X, the ring homomorphism

(f#)x:OY,f(x) > Ox,x

is local.

23.9 NOTATION Let

IOCTOP s

be the subcategory of TOP G {cf. 22.9) whose objects are the locally ringed spaces

and whose morphisms are the morphisms of locally ringed spaces.
[Note: To verify closure under camposition, recall that

£,£h (g.g™)
(X,OX) — s (Y'OY) S (Z,OZ)



has first component g ¢ £ and second component g, (f#) o g#. And here
(gof}* = f* o g* (...)
while
# o # = o f#*
(9, (£7) © g"), = £, o £*(g,),
i.e.,
*
f (9#) f#
Kk %,
f*g Oz > £ OY > OX'
50, ¥ X € X, the stalk homomorphism
# #
(€M) ° gy
is the arrow
*
(£y © £%(gy)),
which when explicated is the composition
02,9 o £(x) >y e > % x
of two local homomorphisms, thus is a local hamomorphism. ]
The functor
P@_gsz_FNG —> TOP {(cf. 22.10)
restricts to
LOC—'IOPRHS,

23.10 IM'-?I‘QC—-PMIG is a fibration.



PROCOF In the notation of the proof of 22.11, if (Y, OY) is a locally ringed

space, then so is (X,f*OY) (v x € X, (f*OY)X = OY f(x)) . Moreover,
(f'“OY) : (X,f*OY) > (Y,OY)

is a morphism of locally ringed spaces:

vg, € Mor (O £,£#0,)

(].IOY)# € Mor (f*OY,f*OY)

or still,

(by )
Oy 4 Y

In addition, it is horizontal when viewed from the perspective of TOPFNG’ Consider

now a setup

(h,nf)

'(z,oz) Ce e (XER0) ——— (Y,oY)‘ Lz > X > h=foq),
(frUO ) g £
Y

where (h,h#) is a morphism of locally ringed spaces —- then there is a unigue filler
(@,9M :(2,0,) + (x,£%0,)
in TOP such that
(Frzp ) o (ggh = (nh),
Y

the claim being that (g,g#) is a morphism of locally ringed spaces. To begin with

#*, N
g .f*OY g*OZ.



On the other hand,

h¥:0, > 1,0, = (£ o 9,0,

= £,940,.

Mor (£%04,9,0,) = Mor (0,1 £,9,0,) ,

hence under this identification,

#

h" € Mor (0,,£,9,0,)

corresponds to an element

h

" € Mor (f*OY,g*Oz)

which, in fact, is precisely g# (since £, (h#f) ° Uy = h#) . Accordingly, to
Y

ascertain that v 2 € Z, (9#)z is local, it suffices to consider (h#f #g)z:

h e € Mor (£%04,940,)

¢<— > h € Mor (g*f*Oy, OZ)

#f, #g

u

Mor ((f o q) *OY,OZ)

1

Mor (h*OY,Oz) .

But

Mor (h*0y,0,) = Mor (OY’h*OZ) .

Therefore

h#f'#g "o n h#’

And, ¥ z € Z, (h#)z is, by hypothesis, local.



N.B. The pair

(LOC—‘IOPF”G ’ LOC—PRNG
and the pair
(TP )
are objects of
F1B(TOP)

and the inclusion functor

is horizontal.

[Suppose that

£,£%)
(%,0) —————> (¥,0,)

is horizontal in IOC-TOP.... To see that it is horizontal in TOP ey introduce

(frUO ):(er*OY) > (Y'OY)
Y

which is horizontal in 'IOPm 5~ then there is a vertical isomorphism

v (X,OX) > (X,f*OY)

and a commtative diagram

(£,£h
(X,OX) > (Y,OY)
v
(%, £40,) > (1,0,

(Eruy )
OY



(£,89 = (Euy) o v
Y

is horizontal {(cf. 4.20 and 4.21).]

23.11 TFMMA IOC—’IOP__FH G s a replete (nonfull) subcategory of TOP___HJG'
[This is an application of 23.5 {(and 23.6). Thus let
. oo i
be a vertical isomorphism in TOP_ ., where (X’OX) is in LOC_TOPFNS —— then (X,O)'{)

is necessarily a locally ringed space and (idxr (id‘() #) is a morphism of locally
ringed spaces.]
[Mote: It follows that the inclusion functor

IDC—'I'OPFNG - 'IOPR”;

reflects isomorphisms.]

23.12 REMARK Suppose that (Y,OY) is a locally ringed space. Iet f:X + Y be
a contimuous function and let
&, x,0) > ¥,0,)
¥ - r X F Y

be a horizontal morphism in TOPENG — then (X,Ox) is a locally ringed space and

(£,£%) is a morphism of locally ringed spaces.

[First choose a horizontal morphism

: . x5 - F -
EE):(x,0) > (,0) (£ =£)

in IDC—'IOPHJG_ -- then (f ,§#) is a horizontal morphism in TOP_,., SO there is a



vertical isomorphism
vi(X,0) + (X,0,)

and a commtative diagram

i ,&h
(X,OX) > (Y,OY)
(X'OX) ; > (Y,OY) .
(£,£7)
Since LC)C—--'I\CITP“__;mg is a replete subcategory of 'IOP-__—, both (X,OX) and v are in
LOC~TOP i Finally,

(£,£9) o v = (§,Fh

=> (frf#) = (%r%#) @ v-l.r

hence (f,f#) is a morphism of locally ringed spaces (and, as such, is horizontal).]

23.13 DEFINITION An affine schame is a locally ringed space which is isomorphic

as a locally ringed space to (Spec A,OA) (0A =0 ) for some A € Ob RNG (cf. 22.17).

Spec A
[Note: A ringed space which is isamorphic as a ringed space to a (Spec A,OA)
is automatically a locally ringed space and the isomorphism is one of locally ringed

spaces. ]

23.14 NOTATION AFF-SCH is the full subcategory of II.)C«-'I'OPI:“3 whose obhjects

are the affine schemes.

23.15 REMARK The category AFF-SCH has finite products and pullbacks, hence is



finitely coamplete.

23.16 THECREM The functor

(Spec, 0) 1 RNGTY + AFF-SCH

that sends A to (Spec A,OA) is an equivalence of categories.

N.B. We shall also view (Spec,() as a fully faithful functor

OP
NG -~ IOC—’IDPJRNG.

Let
F:10C-TOP, . ricF
be the functor defined on objects (X,Ox) by
F(X,OX) = OX(X)
and on morphisms
£,£)

#, -
fY'oY (1) » 0, (X},

23.17 THROREM The functor I is a left adjoint for the functor (Spec,0):

Mor (P(X:OX) (A) = Mor( (X'OX) I (Spec AIOA)) .

23.18 APPLICATION (Spec Z,OZ) is a final object in I.DC—'IOPF”;.



10.

[Indeed,

Mor (1'(X,0,) ,7) in RNG™
is

Mor (Z,T(%,0,)) in RNG.]

23.19 DEFINITION A scheme is a locally ringed space with the property that

every point has an open neighborhood which is an affine scheme.

23,20 NOTATION SCH is the full subcategory of I»OC—'I‘O]?F”3 whose objects are

the schemes {(cf. 0.6}.
[Note: AFF-SCH is a full subcategory of SCH.]

23.21 REMARK The category SCH has finite products and pullbacks, hence is
finitely complete.

[Note: B8CH does not have arbitrary products, hence is not complete. Consider,

for example | P%.]
1

N.B. If A is a zero ring, then Spec A is an initial object in SCH whereas

Spec Z is a final object in SCH.

When dealing with schemes, one sametimes says "let X be a scheme" rather than

"let (X,OX) be a scheme."

23.22 DEFINITION ILet X be a scheme —— then an open subset U ¢ X is an affine

open subset of X if U is an affine scheme.

23.23 LEMMA The affine open subsets of a schame X constitute a basis for the



11.

topelogy on X.
[Note: Therefore every open subset of X is a scheme.]

23.24 REMARK The intersection of two affine open subsets of X is open but it
need not be affine open.
[Note: Iet X be a scheme.

® X is semi-separated if for each pair U,V < X of affine opens the inter-

section U n V is affine open.

® X is quasi-separated if for each pair U,V c X of affine opens the inter-

section U N V ig a finite union of affine opens.
One has
separated => semi-separated => quasi-separated.

Every affine scheme is separated.]

23.25 IEMMA The underlying topology on a scheme X is locally quasi-compact.
[Recall that v A € Ob RIG, Spec A is quasi-compact (but rarely Hausdorff or

even T On the other hand, an open subset of Spec A is not necessarily quasi-

l) )
compact (although this will be the case if, e.g., A is noetherian)}.]

23.26 DEFINITION Iet I be a set.
e Given i € I, let Xi be a schanme.

® Given i,j € I, let Uj_j c Xi be an open subset and let

®33:Vi5 ~ Uy

be an isomorphism of schemes (take Uii = Xi and ¢ii = ldxi).



12.

® Given i,j,k € I, assume that

and that the diagram
ik
Uij n Uik > Uki n Ukj
34 Pk
> Uji N Ujk

commtes.
Then the collection

(T, (Xi:i e I} , (Uij:i'j € I) , (¢’ :irj € 1))

ij
is called glueing data.

23,27 THEOREM Given glueing data, there exists a scheme X, open subschemes

U, ¢« X, with X= U U,, and isamorphisms ¢,:X. + U, of schemes such that
i jer & i*7i i

(1) o (Uij) =0, n Uj

=41 o
(2) ;5 = 95 fu; n Uy ¢i|Uij.

23.28 EXAPLE Take U;; = # for all i,j - then X = 4 x;.
i
Note: If Al,...,zlh are nonzero cammitative rings with unit, then

It n
Il Speca; mspec (T[T &)

i=1 i=1



13.

but for an infinite index set I, M_ Spec Ai is not an affine scheme (it is not

. i
quasi-compact).]

23.291mmtsbeaschemeandletxi (iEI),Yj (3 € J) be objects of
SCH/S —- then
(_Lin) Xg (U_Yj) = |l (xi Xg Yj).
i 3 A

i,]



§24. MODULES
Iet (X'OX) be a ringed space.
24,1 DEFINITION An Ox{—rmdule is a sheaf F of abelian groups on X such that

Vv open subset U c X, the abelian group F(U) is a left OX(U)-Irmdule and for each

inclusion V < U of open sets there is a commuitative diagram

OX(U) X F(U) —mom——> F(U)
OX(V) X F(V) —— = F(V).

24.2 NOTATION OX-@ is the category whose objects are the Ox-modules.
[Note: A morphism F + G of OX-modules is a morphism E of sheaves of abelian
groups such that v open subset U ¢ X, the arrow E‘U:F(U) + G{U} is a homomorphism of

left OX (U)-modules. Denote the set of such by

He (F,G).
cmOX
Then this set is an abelian group which, moreover, is a left I'Ox—mjdule: Given
s € I"OX and E:F » G, define s% by the prescription
(SE)U = (slv) EU’

So, e.g., as left I‘Ox—!rodules,

TF.]

i

Hom., (0,,F)
Ox X

24,3 REMARK There is a standard list of operations that I shall not stop to



rehearse (kernel, cokernel, image, coimage,...).

24.4 BEXPMPLE Iet I be the sheaf associated with the constant presheaf U > 7 —-

then a Z-module is simply a sheaf of abelian groups on X.

24.5 THEOREM OX-MDD is an abelian category.
24.6 THEOREM OX-MOD has enough injectives.

24.7 THEOREM OX-MOD is complete and cocomplete.

[Any abelian category has equalizers and coequalizers.

® Given a set I and for each 1 € I, an Ox-module Fi’ the product

T

ieT
is the sheaf that assigns to each open subset U ¢ X, the product

T F; (U

i€T
of left OX (U)-modules. It is also the categorical product.

e Given a set I and for each 1 € I, an Ox-module Fi, the direct sum

& F.
ier

is the sheaf associated with the presheaf that assigns to each open subset U < X,
the direct sum

@ F.()
ier

of left OX (N modules. It is dlso the categorieal coproduct.)

24,8 DEFINITION Given Ox-nodules F and G, their tensor product




Fa, G
OX
is the OX-Imdule which is the sheaf associated with the presheaf that assigns to

each open subset U c X, the tensor product

F{u) QOX ) G (0}

of left OX {U}—<aodules.

24,9 DEFINITION Given OX-erdules F and G, their internal hom

Hom. (F,G)
OX

is the OX-mdule which is the sheaf that assigns to each open subset U c X, the

left OX (U) =module

24.10 LEMMA Let F,G,H be Ox—modules -- then

Hom, (F & G,H) =Hom, (F,Hom. (G,H}).
OX OX OX OX

[Note: BAs left POX—mdules,

Hom, (F & , G,H) = Hom, (F,Hom, (G,H)).1]
0y 0y Oy Oy

24.11 DEFINITION Suppose that

(£,£7)
(X; OX) > (Yr OY)

is a morphism of ringed spaces.
® ILet F be an OX-module. Form £,F (an object of Sh(¥,AB}) — then £,.F



#

is an f*OXﬂrndule, hence is an OY-module via the arrow £ :OY - f*OX, call it

res,. F.

f

e Iet G be an OY—rrodule. Form £*G {an object of Sh(X,AB}) —— then £*C

is an f*OY-module. On the other hand, f#:f*OY -+ OX is a morphism in Sh(X,RNG},

thus
OX [+ f*OY £*G
is an OX-module, call it extf G.
24,12 EXAMPLE Take G = OY -- then
ext. OY = OX'

24,13 ILFMMA The functor

ext f:OY~—MOD —_— OX-MOD
is a left adjoint for the functor

res:0,-MOD —> 0 -MOD.

24.14 REMARK Let

€, %) (g,9™
(X'Ox) >(Y:0Y) ’ (Y,OY) >(Z’Oz)

be morphisms of ringed spaces -- then the functors resg ° res. and resg o f ATC

equal while the functors ext. © extg and extg o £ are naturally isomorphic.

24.15 NOTATION (0-MOD is the category whose objects are the triples (X,OX,F) '



where (X,OX) is a ringed space and F is an Oxﬁnodule, and whose morphisns are

the triples

# oy
(f£,£f rw)-(XrOXrF) > (Y:OY,G),
where f:¥ -+ Y is a continuous function, f#:OY - f*OX is a morphism in Sh(Y,RNG},

E:G » £,F is a morphism in sh(Y,AB) such that v open subset U < X, the diagram

OY(U) x G{U) > G(U)

0 (E710) x FIET0) ——— F(EMw)

commites.

24,16 LEMMA The projection

(%,0,,F) > (X,0,)

is a fibration

Pm:o-mD - IIDPFIIS'

PROOF Given (Y,OY,G) and

(£,£h
(Xf Ox) > (Yf OY) r

the composition

(%,0,,0, @ £40, £%G)

> (X,f*Oy,f*G)

>(Y,Oy,G)

is horizontal.



[Mote: Recall that
(idxrf#) : (X'OX) -+ (er*oY)

is a morphism of ringed spaces and there are arrows

- OY —_— f*f*OY
G —— £, £%
of adjunction.]

24.17 REMARK The commutative diagram

Frop
0-MOD > 'IOPFH;

TOP TOP

is thus an instance of 6.2.



§25. QUAST-COHERENT MODULES
let (X,OX) be a ringed space.

25.1 NOTATION Given a set I and an OX-xmdule F, write F(I) for the direct sum

& F. (vi, F, = F).
jer 1 S

25.2 DEFINITION An O -module F is said to be quasi-coherent if ¥ x € X, there

exists an open neighborhood U of x, sets I and J (depending on x), and an exact

sequence

Oglm P — 0 Jn ' —Fly — 0

of 0y | U-modules.

25.3 NOTATION QQ0(X) is the full subcategory of OX-QQ_Q whose objects are the

quasi-coherent OX-rrodules.

25.4 REMARK In general, QCO(X) is not an abelian category.

25,5 IEMMA Let F,G be quasi-coherent OX-m::dules — then F @ G is quasi- coherent.

[Note: An infinite direct sum of quasi-coherent Ox-madules need not be quasi-

coherent. ]

25.6 ILEPMA et F,G be quasi-coherent Ox—undules —— then F &0 G is quasi-
X
coherent.

iote: On the other hand, H’om(J (F,G) need not be cuasi-coherent.]
X



N.B. QOC0(X) is a symmetric monoidal category under the tensor product (the

it is OX) .

25.7 DEFINITION An Ox-rmdule F is said to be locally free if v x € X, there
exists an open neighborhood U of x and a set I (depending on x) such that F|U is

isomorphic to (OXIU) (1) as an OXIU-nDdule.
25.8 ILEFMVA A locally free Ox—module F is necessarily quasi-coherent.

25.9 LEMMA Suppose that

£,£h
(Xr OX) > (Yr OY)

is a morphism of ringed spaces.
® let F be a quasi-coherent Ox-madule —— then resg F is not necessarily

a quasi-coherent OY-deule .

® Iet G be a quasi~coherent OY-nDdule -- then ext. G is necessarily a

quasi-coherent Ox-nodule.

25.10 CONSTRUCTION let (x,OX) be a ringed space. Suppose that A € Ob RNG
and ¢:A - I‘OX ( = OX(X)) is a ring homomorphism. ILet M be a left A-module. Consider
the canonical arrow

(1) (7,00 —> (+,0,),

where O, * = A ('n# = ¢} - then extﬂ M is quasi-coherent. In addition, the assignment

M+extﬁM



defines a functor
A-0D -+ QU0 (X)

and given any Ox—mc)dule F,
I%lt:u'nox(»e-.x-l:1T M,F) = Hom, (M,TF),
where the left A-module structure on I'f comes from the left I’OX—module structure
via ¢.
25.11 REMARK One can take A = I‘OX, ¢ = id, in which case it is customary to

write FM in place of ez:»ctTr M.

Given A € Ob RNG, we shall now recall the connhection between A-MOD and

QCO(Spec A). So in 25.10, take (X,0,) = (Spec A,0,) (hence I0, = A) —- then for
every left A-module M, the sheaf M is canonically isomorphic to FM (and this iso-

morphism is functorial in M). Therefore the M are guasi~cocherent and given any

Ox-module F,

HGEIIOA(M,F) = chnA(M,I‘F) .

25.12 LEMMA For all left A-modules M and N,
HcmoA(M,N) = HornA(M,N) .

[Bear in mind that



25.13 IAMA For every quasi-coherent OA-imdule F,
(TF) = F.
25.14 THEOREM The functor
~:A-MOD » QCO(Spec A)

that sends M to M is an equivalence of categories.
[In fact, ~ is fully faithful (cf. 25.12) and has a representative image

{cf. 25.13).]
25.15 EXAMPLE The category of abelian groups is equivalent to QCO(Spec Z).

25.16 LEMA Let A,B € Ob RG, suppose that
(£,£%) : (Spec B,0,) > (Spec A,0,)
is a morphism of affine schemes, and let p:A -~ B be the associated ring homomor-
phism.

® For every left B-module N,

o

res, N = (resp N)
functorially in N.
® For every left A-module M,
extf M=z (extp M)

functorially in M.

25.17 REMARK There is a functor

(Spec,0,~) :@(@)OP —> 0-M0D



which sends an object (A,M) to
(Spec 3,0, ,M)
and which sends a morphism (£,¢):{(A,M) - (B,N) to
(Spec £,0,6) < (Spec B,0y,N) — (Spec A,0,.M).
[Note: On a principal open set D(a) (a € A), M(D(a)) = M_ and
((spec £),8 (D@) = NOE@)) = N

Furthermore, there are arrows of localization

A —= Aa Mo—— Ma
B ——> Bf(a) . N—> Nf (a)
and a commmtative diagram
AM) ———> (A M)
(B,N) > (Bf () Ne (a)) .1

Tt remains to consider the pairs (X,OX) . Where X is a scheme.

..[..

iNote: It has been shown by Rosenberg that (X,OX) can be reconstructed up

to isomorphism from QCO(X).]

25,18 LEMMA Iet F be an OX—nDdule —— then F is quasi-coherent iff for everv
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affine open U « X (U = Spec A}, the restriction F|U is of the form lﬁ for some M

in A-MOD.

N.B. If F is a quasi-coherent Ox-nndule, then for all affine open U, V with

V < U, the canonical arrow

Oy (V) @OX ) Fu) - F(v)
is an iscmorphism of 0X (V)-modules,
25.19 ILEMMA Suppose that
(£,£%)
(X'Ox) > (Y,OY)

is a morphism of schemes. Let G be a quasi-coherent OY-nDdul —-- then e:»e:l:f G is

a quasi-coherent Ox—rrodule (cf. 25.9).

25,20 REMARK The notation used in 7.3 is suggestive but misleading: Replace

*
f bymf L ] -

25.21 LEMMA Suppose that

,£1)
X, OX) > (Y, OY)

is a morphism of schemes, where f is quasi-compact and quasi-separated. Let F be

a quasi-coherent Ox—rmdule -- then res, F is a quasi-coherent OY-erdule (cf. 25.9).

25.22 REMARK If U is an open subset of a scheme X, then in general, J:'esiU OXIU

is not quasi~coherxent.

25.23 THEOREM QCO(X) is an abelian category.



25.24 RAPPEL A Grothendieck category is a cocamplete abelian category in

which filtered colimits comute with finite limits or, equivalently, in which

filtered colimits of exact sequences are exact.

N.B. In a Grothendieck category, every filtered colimit of monomorphisnms is

a monamorphism, coproducts of monomorphisms are monomorphisms, and
t:]| X, T|' X;
i i
is a monomorphism.

25.25 EXAMPLE let A be a camwtative ring with unit -~ then A-MOD is Grothen-
dieck.
[Note: In particular, AB is Grothendieck but its full subcategory whose objects

are the finitely generated abelian groups is not Grothendieck.]
25.26 THEOREM QCO(X} is a Grothendieck category.

25.27 DEFINITION Given a locally small category C, an object U in C is said to
be a separator for C if the functor Mor(U,—):C - SET is faithful, i.e., if for
every pair f£,g9:X ~ Y of distinct morphisms, there exists a morphism o:U + X such

that £ c 0 = g ¢ a.

25.28 EXAMPLE Let A be a commutative ring with unit —— then A, viewed as a

left A-module, is a separator for A-MOD.
25.29 THECREM QC0O(X) admits a separator.

N.B. Every Grothendieck category with a separator is complete and has enough

injectives.



25.30 REMARK Tt can be shown that QQ0(X) is a coreflective subcategory of

OX-@, i.e., the inclusion functor
QO (x) ~ 00D

has a right adjoint.
Fix a regular cardinal «.

25.31 DEFINITION Iet C be a locally small cocamplete category —- then an

object X € Ob C is k-definite if Mor(X,—) preserves k-filtered colimits.
25.32 EXAMPIE In TOP, no nondiscrete X is k-definite.

25.33 DEFINITION ILet C be a locally small cocomplete category —— then C is

k-presentable if up to isomorphism, there exists a set of k~definite objects and

every object in C is a k-filtered colimit of k-definite objects.

25.34 EXAMPLE SET and CAT are ¥ -presentable but TOP is not x-presentable

for any k.

25.35 DEFINITION Let C be a locally small cocomplete category -- then C is
presentable if C is k-presentable for some «.
[Note: Every presentable category is cocomplete (by definition) and complete,

wellpowered and cowellpowered. ]

25,36 THEOREM (Be]<e+) Suppose that C is a Grothendieck category with a
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separator —- then C is presentable.

25.37 APPLICATION QQO(X) is presentable.



§26. LOCAL TRIVIALITY

Iet C be a category.

26.1 DEFINITION A subcategory of trivial objects is a replete subcategory

of C.

26.2 EXAMPLE If C has initial objects, then the associated full subcategory is

isomorphism closed, hence is a subcategory of trivial objects.

26.3 EXAMPLE If C has final objeéts, then the asociated full subcategory is

iscmorphism closed, hence is a subcategory of trivial objects.
Iet A be a category, F:A » C a functor.

26.4 DEFINITION The replete full image of F is the isomorphiasm closed full

subcategory of C whose objects are those objects which are isomorphic to some FA

(A € Ob 3).

26.5 EXAMPLE Take A = SET, C = GR, F:A - C the left adjoint to the forgetful

functor — then the replete full image of F is the category of free groups.

26.6 EXAMPLE Take A = RNG, C = L0C-TOP ., F:A  C the functor that sends

A to (Spec A, OA) -- then the replete full image of F is the category of affine schemes.

Let T < C be a subcategory of trivial objects.

26.7 DEFINITION Iet C be a covering of an object X in C —- then X is locally

trivial (w.r.t. T} if the domain of each g &€ C is in T.



26.8 DEFINITION Let k be a covering function on C -- then an object X in C
is locally trivial (w.r.t. T) if it is locally trivial (w.r.t. T) for some

CEK:X.

N.B. To ensure that
"trivial" => "locally trivial",

it suffices to assume that v T € Ob T, {id:T > T} € K.

26.9 REMARK Suppose that ¥V X € Ob C, K, = {idX:X+X} -- then for any T,

the locally trivial objects are the trivial obijects.

26.10 EXAMPIE Take C = SET.

o Iet T be the subcategory whose only object is the empty set # and whose
only morphism is idﬁ:ﬁ + @, Define a covering function k by setting Ky = {g+Xx} -
then all objects are locally trivial.

¢ Iet T be the subcategory whose objects are the singletons. Define a

covering function k by setting Kg = idﬂ and

Ky = {{x} + Xx € X} (X = @).

Then all objects are locally trivial.

26.11 EXAMPLE Take C = TOP, let « be the open subset coverage {cf. 11.20),
and take for T the euclidean spaces, i.e., the topological spaces which are homeo-
morphic to some open subset of some R® — then the locally trivial objects are the
topological manifolds.

[Note: To say that X is a topological manifold means that X admits a covexing



n,
byopmsetsuicx,whetevi, Uiishmmrorphictoanopmsubsetole(ni

depends on i).]

26.12 EXAMPIE Take C = IDC—-'IOP_FNG, let k be the open subset coverage, and

take for T the affine schemes — then the locally trivial objects are the schemes

(cf. 23.19).

[Note:; An open subset U of a locally ringed space (X,OX) can be viewed as

a locally ringed space (let OU = X|U) , thus it makes sense to consider the open

subset coverage. ]

26.13 EXAMPLE Take C = TOP,.., let k be the open subset coverage, and take

T= LOC—TOPFW; (which is replete (cf. 23.11)) —- then here, all locally trivial

cbhijects are trivial.

[Note: IfUcXisopen,thenthestalkof{)uataanUisOXx.]

L4

Consider a one point ringed space ({x},O{x}) -- then O{X}ﬁ = {0} {a zero ring),
O{x}{x} = A (a ring). Abbreviate this setup to {({x},A) -- then a morphism

£, £h
({x},A) — s ({y},B)

#

of ringed spaces is simply a homomorphism £ :B + A,

26.14 EXAMPIE Iet T be the replete subcategory of 'IOPRns whose cobhjects are

the pairs ({x},A), where A is a local ring, and whose morphisms are the morphisms

(£, £%)
({X} .rA) _ ({y} :B)

#

of ringed spaces such that the momomorphism £':B ~ A is a local homomorphism.



Define a covering function k on P by setting K(ﬁ;oﬁ) = id(ﬁ Oﬁ) and
K(X,OX) = {(xh0g J > X0 € X} (X = 0).

Then the locally trivial objects are the locally ringed spaces.

Let P:E + B be a fibration. Suppose that T < E is a subcategory of trivial

objects and let k be a covering function on B.

26.15 DEFINITION An object X € Ob E is locally trivial (w.r.t. T) if it is

locally trivial (w.r.t. T) for some C € (P_lK)X.

[Note: This reduces to 26.8 if E= B, P = id.]
let P:E + B be a fibration. Suppose that B has a final object ko and that

E.

# 0. Let C be a subcategory of E, . Denote by ';_‘Cthe full subcategory of E
B -

whose objects are the X for which there exists an object C € Ob C and a horizontal

arrow X > C.

26,16 LEMMA EC is a replete subcategory of E.

26.17 REMARK There is an analogous statement involving opfibrations with trivial

objects determined by a subcategory of the fiber over an initial object.

26.18 FXAMPLE Consider the fibration PA:TUPF + TOP of 22.11. Place on TOP

the open subset coverage k and take for C the fiber over a singleton %, thus the

objects of are the A-spaces (X,0y;) which are the domain of a horizontal arrow

T.

(X,05) + (%,0,) over 1:X + * for same 0O,.



® The trivial objects are the (X,0;) such that 0, = 1*0, (= A o ev 0,
(cf. 22.19)).

[The point is that for any X, the arrow
(Lo )2 (%, 1%0,) > (%,0,)
is horizontal (cf. 22.11).]
Cbserve next that if U is an open subset of X, then
iE"]:_SE(X,{X) + Sh(U,3)
and v ¢, the arrow

(iUrBOX) : (U'OXIU) > (X'OX)

is horizontal (¢f. 22.12). So, if X = v Ui' then
i€eT

. -1
{(J_Ui,pox) : (Ui'oxlUi) > (X,OX)} € (PI} K) (%,0,)°
e The locally trivial objects are the (X, OX) such that X admits an open
covering {Ui:i € I} with the following property: V i,
[Note: !; is calculated per Ui’ hence
!;{3%(*1'-&) + %(Uiré)

and (O*):i. is an object in Sh(*,A) that depends on i.]

26.19 EXAMPLE Consider the fibration Ob:CAT + SET of 5.1. Place on SET the
"inclusion of elements" coverage k (cf. 26.10) and take for C the singleton {1} in

the fiber over *, thus the objects of g'c are the small categories C such that



C > 1 is horizontal.

e The trivial objects = 0 are the small categories C such that v X,Y € Ob C,
#or (X,Y) = 1.
[Assume first that C is trivial and pass to the arrow Ob C + *. Proceading

as in 5.1, construct a category é and a horizontal (E + 1 such that Ob ! is

! - . - K
> % -— then v X,Y € Gb C, #Mor(X,Y) = 1. But since C > 1 is horizontal,

b ¢

there is a vertical isomorphism v:C + C and a coammtative diagram

|
H

c > 1
v)/
g >lr

1
so v X,Y € Ob C, #Mor(X,Y) = 1, which settles the necessity. Turning to the

sufficiency, consider a setup

W Chw

| I !
Chw*+++>C——1 bC— > 0bC— 5 %
=0 - T =0 X - ! '

the claim being that there exists a unique functor v:C, + C such that Ob v = x

0

and ! ¢ Vv = w. This, however, is obvious: Define v on an object Xy by VX, = xX,
and on a morphism fO:xO > Y, by vf0 = f, the unique element of Ivbr(xxo,xYo) .]

N.B. The arrow 0 > 1 is horizontal. Therefore 0 is trivial.

[In the foregoing, let C = 0 —=- then Ob C = #, herxce0b90=ﬂandx=idﬁ.

And this means that G, = 0, so v = id,.]



By definition, if C # 0, then

1y
= {{x} > Ob C:X € Ob Cl.

daooseahorizontaluxz(_lx+gsuchthat0bl5{=ix, thusOb(_:X={X}. And

X -1
> C:X € Ob C} € (Ob K)C.

%
e The locally trivial objects # 0 are the small categories C such that

¥ X € Ob C, Mor(X,X) = {id.}.
[Construct C, as in 5.1, thus v X € Ob G,

Mor, (X,X) = {X} x Mor{X,X) x {X},

Sk
implying thereby that
Mor, (X,X) =1 <= #orX,X) = 1.]

o

E.g.: Every set viewed as a discrete category is locally trivial.

26,20 EXAMPLE Viewing R as a topological ring, given a topological space B, let

6B= (B x R > B),

Then 65 is an internal ring in TOP/B. This said, denote by M, the category whose
obiects are the intermal SB—nndules.
(¥)  Take B = *+ — then My is the category of real topological vector spaces.
Define a pseudo functor F:@OP + 2=-€AT by sending B to My and B:B + B' to

FR:M., > My ("pullback"}. Use now the notation of 7.7 and form IOyt 7 the objects

of which are the pairs (B,M), where B € Cb TOP and M € Cb FB, and whose morphisms



are the arrows (8,f):(B,M) » (B',M'), where 8 € Mor(B,B*) and f € Mor{M, (FR}M').

Consider the fibration @F:gromPF -+ TOP of 7.9. Place on TOP the open subset
coverage K and take for C the subcategory of the fiber over * whose objects are

the Rn, thus the objects of IC are the pairs (B,M) which are the domain of a

horizontal arrow (B,M} - (*,Rn) over !:B - *x for some Rn.
e The trivial objects are the (B,M) such that M = B x R".

[The point is that for any B, the morphism

(t,id ) (B, (FOR™ + (%,RY)

(F1R"
is horizontal (cf. 7.12) and (FI)R® = B x R°.]
Observe next that if U is an open subset of B, then FJ.Ul\_le > Mo Agreeing

to write M|U in place of (Fi )M, the arrow
(iyridy ) WMD) > (B,M)

is horizontal (¢f. 7.12}). So if B= U Ui' then
ieT

X . . N -1
® The locally trivial objects are the (B,M} such that B admits an open
covering {Ui:i € I} with the following property: V i,
n,
i
MlUi U, xR 7.

[Note: Here ny depends on i and the iscmorphism is computed in MU .]
i

26.21 RAPPEL The triple <AB,®,1> is a symmetric monoidal category and the



camutative monoids therein are the commutative rings with unit.
26.22 NOTATION Given A € Ob RNG, let A-MOD be the category of left A-modules.

Iet A,B be camutative rings with unit and suppose that f:A > B is a ring
homomorphism -— then there is a functor

resf

B-MOD - > A=MOD (restriction of scalars)
and a functor

extf

AMOD —— B-MOD (extension of scalars).

26.23 IEMA The functor ext. is a left adjoint for the functor re

£ Sg-

26.24 NOTATION MOD(AB) is the category whose objects are the pairs (A,M),
where A is a commtative ring with unit and M is a left A-module, and whose
morphisms are the arrows (f,¢):(A,M) -+ (B,N), where £:A ~ B is a ring homomor-

phism and ¢:M + N is a morphism in AB such that the diagram

fad4¢
ASGM >~ B8N
M s> N
¢

commtes, the vertical arrows being the actions of Aand B on M and N.

26.25 REMARK There is a 2-functor

F:RG - 2-CAT

that sends A to A-MOD and f:R ~ S toO resf:B-l\_i_Z_)Q -+ A-MOD., Its Grothendieck



10.

construction groRNGF can be identified with MOD(AB).

[Note: There is a pseudo functor
F:RNG > 2-€AT

that sends A to A-MOD arnd f:A - B to extf:A-MDD -+ B-MOD.]

26.26 LEMMA The projection (A,M) - A defines a fibration

P,p:MOD(2B) - RG.

PROOF Given (B,N) and f:A - B, the morphism

(A, rest) -+ (B,N)

is horizontal.

26.27 LEMMA The projection (R,M) + R defines an opfibration

P, :MOD(AB) > RNG.

PROOF Given (A,M) and f:A =+ B, the morphism
{a,M) ~» (B,B ﬁA M)

is ophorizontal.

26.28 REMARK Therefore PAB is a bifibration {cf. 5.15).

26.29 EXAMPLE Considexr the opfibration PAB:@(E) -+ RNG of 26.27. Place on

ENG the Zariski coverage k (cf. 11.16) and bearing in mind 26.17, take for C the

subcategory of the fiber over Z whose objects are the Zn,. thus the objects of To

are the pairs (A,M) which are the codomain of an ophorizontal arrow (Z,Z0) -~ (A,M)

over 1:7 -~ A for some .



11.

® The trivial objects are the (A,M) such that M is a free left A-module
of finite rank.
e The locally trivial objects are the (A,M) such that M is a finitely

generated projective left A-module.

APPENDTX

Fix a topological group G and consider the fibration G~-BUN(TOP) + TOP of

5.3 == then its fiber G-BUN(TOP), over * is (iscmorphic to) MOD,, the category

of right G-modules over the monoid G in TOP. Take for C the singleton subcategory
{G + =}, tlmstheobjectsofg‘carethex+3michare isomorphic to a product
X x G-+ B. )

® Place on TOP the open subset coverage —— then the locally trivial objects

over B are thoseobjects X -+ B in PRIN, - for which there exists an open covering
r

{U;:i € T} of B such that v i, X|U; = U, x G in @Ui,c;‘

® Place on TOP the open map coverage (cf. 11.19) -- then the locally

trivial objects over B are the objects X +~ B of @B a
¥



STACKS

Iet B be a category equipped with a Grothendieck coverage k such that

¥ B € 0b B, {id.B:B+B}€1<B.

:

NOTATION Given {gi:Bi - B} € k., put

and define 7., Trij per the pullback square

Bij i

T,
ij

ST-2: NOTATION Given {gi:Bi + B} € Kk, put

Bisk = Bi 8By "5 B

and define Trligk' Trligk' nﬁk by the pullback squares
e 23
Biik —- Bk B; ik 2 Bix
“ﬁk Tr;hk "ﬁ’k “J%k
Bjs ———> By By, ——> B, -

-
J
;_;I\J



Iet F:EOP + 2-€AT he a psewdo functor (cf. §3).

ST-3: DEFINITION A set of descent data on {gi:Bi + B} € kg is a collection

of objects X, € FB; and a collection of iscmorphisms

¢

2 1
J.F(Trij)Xj - F(TTij)Xi

in FBij which satisfy the cocycle condition

13 12 23
Bl 04k = FMigid 945 © Flmis)og

in FBijk. modulo the "coherency" implicit in F.

[Spelled ocut, the demand is that the composition

23 ., 2
F(T 3 F () X
Y23 2 %
ik’ ™k .
> Fligy © T %
2, 13
Py ° Misid ¥
-1
Y13 2 N
ik’ Mik ,
> F(n}.jk) ° F(ﬂzik)}ﬁc
13
Pim.” \
( ljk)¢ﬂ{ 13 1

is the same as the composition

23 . 2
F M5 F (M) X



23
F(m.> )¢.k ’s )
X.

Y23 1%

TS Mg . ’s |
D3 > F(Tl'jk ° TTijk)X]

2 12,
Fimyy © Tigid %

_l .

Y12 2 4 2
i 12 2 )X,
. > F(Trijk) o F(Tle 5
12

F(r, 'k) ¢ij 12 F(TT-_!.')X'
- - F(Trijk.) ° i3’ i

X,

Y12 1 %4
"3k’ i) 1 12,
ijk' 1) X F(Trij . ﬂijk)Xl

1 13
Flmiy © T30 %y
_l .
Yiz3 o1 %
Ti9k Tik

1
3 L)X, .1
» B (Tl'ijk) °F (Trlk) i



ST-4: DEFINITION If

({x; 3 (o33 )

CHROR)

are sets of descent data on {gi:Bi + B} € x,, then a morphism

(1,3, (g5 1)+ (81, (o4, D)

is a collection of arrows Ei:Xi - Xi in FBi such that the diagram

2 ¢ij 1
F(Trij)Xj > F(Trij)Xi
2 1
2 el Vot
F(Trij)XJ! > F(nij)xi
¢ij

commuites In FBlj.

ST-5: NOTATION Given {gi:Bi + B} € Kpyr there is a category

F({gi:Bi + B})

whose objects are the sets of descent data and whose morphisms are as above.

ST-6: LEMMA The assigmment
FB + F({gi:Bi - B}
that sends X € FB to



-1 F

b= BT e, ),

2|
is a functor.

ST-7: DEFINITION Suppose given B and k -- then a pseudo functor F:]g.OP + 2~-CAY
is said to be a stack if for all B € Ob B and all {g;:B; ~ B} € k;, the functor
is an equivalence of categories.

op

ST-8: REMARK Consider the setup of 18.12 —- then F:C~ - SET is a sheaf iff

it is a stack.
[Note: As usual, SET is viewed as a sub-2-category of 2-€AT whose only 2-cells

are identities.]

ST-9: EXAMPLE The pseudo functor
TP + 2-€AT

that sends X to TOP/X is a stack in the open subset coverage.

51-10: EXAMPLE The pseudo functor

s > 2-¢ag

that sends X to QQO(X) is a stack in the fpge coverage (hence in the Zariski

coverage, the étale coverage, the smooth coverage, and the fppf coverage).

ST:11: EXAMPLE Given a topological group G, the pseude functor

'I_QE:GP -+ 2-CAT

that sends B to @B G is a stack in the open subset coverage.
¥
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