
These notes can serve as  a mathematical supplamnt to the standard graduate 

level texts on general re la t ivi ty  and are suitable for  selfstudy. The exposition 

is detailed and includes accounts of several topics of current interest,  e.g., 

Lovelock theory and Ashtekar's variables. 
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Section 0: Introduction A preliminary version of these notes was 

distributed to the participants in a seminar on quantum gravity which I gave 

a couple of years ago. As they seered to be rather well received, I decided 

that a revised and expanded account might be useful for a wider audience. 

Like the original, the focus is on the formalism underlying general 

relativity, thus there is no physics and virtually no discussion of exact 

solutions. Wre seriously, the Cauchy problem is not considered. My only 

defense for such an cmission is that certain cbices have to be made and to 

do the matter justice muld require another b k .  

The prerequisites are modest: Just sane differential g-try, much of 

which is reviewed in the text anyway. As for what is covered, scsrne of the topics 

are standard, others less so. Included anlong the latter is a proof of the 

mvelock uniqueness theorem, a systematic discussion of the Palatini formlism, 

a cclmplete global treatmnt of the Ashtekar variables, and an introduction to 

the asymptotic theory. 

For the mst part, the exposition is detail oriented and directed toward 

the beginner, not the expert. Frankly, I tire quickly of phrases like: "it 

follows readily" or "one sbws without difficulty" or "a short calculation gives" 

or "it is easy to see that" EXC. To be sure I have left sane things for the 

reader to mrk out but I have tried not to make a habit of it. 

While I have yet to get around to compiling an index, the text is not too 

difficult to navigate given the number of section headings. 

Naturally, I muld like to hear about any typos or outright errors and 

ccarments and suggestions for improvement muld be much appreciated. 



Section 1: Cmetric Quantities Let V be an n-dimmional real  vector 

space and let V* be its dual. 

Notation: B(V) is the set of ordered bases for V. 

The general linear group - GL(n,R) - oprates to the r ight  on B (V) : 

[Note: Therefore raw vector conventions are in force: E-g is cmputed 

by inspection of 

If B (V*) stands for the set of ordered bases i n  V*, Lhen GL - (n,R) - operates 

-1 T to the r ight  on B (V*) via duality, i . e . , via multiplication by (g ) . 
Given a basis E = {E1,...,E } € B(V) ,  its cobasis o = {wl,...,wn} E B(V*) 

n 

is defined by wi (F 1 = 6 
i 

' j j ' 

Observation: Let g E - GL(n,s) -- then the cobasis corresponding to E-g is 

w-g. 

[Since 



it follows that 

[Note: From the definitions, 

which explains the flip in the i1dices.1 

T E V ~  is a multilinear map 
q 

hence admits an expansion 



w h e r e  

then the components of T satisfy the tensor transformation rule: 

[ N o t e :  Any map 

that assigns to  each E E B (V) an n*-tuple 

which obeys the tensor transformation rule determines a unique tensor of type 

(p, q) . So, for instance, the Kronecker delta is a tensor of type (1,l) .I 
j 

Reality Check Let I say 
n c v *  



(A. = A ( E . ) ) .  
3 3 

i N m  change the basis: E -+ E * g  -- then X = X ( E * g ) i l ,  where 

IEMW There is a canonical i m r p h i s n  



and extend by linearity. 1 

[Note: Take pl=O, q' =O to conclude that vq is the dual of vP. 1 
P 4 

Products There is a map 

viz . 

In terms of cmponents, 

il.. .iwpl 
(T €4 T') 

jl- .jq*' 



In t e r m s  of camponents, 

Definition: The Kronecker symbol of order p is the tensor of type (p,p) 

defined by 

Then 

vanishes i f  IfJ but is 

1-+1 i f  I is an even permutation of J 

I -1 i f  I is an cdd permutation of J. 
- 

[Note: The Kronecker symbol of order p is antisymnetric under interchange 



of any .two of the indices il, ..., i or under interchange of any two of the 
P 

indices jl,..., . 
j P 

coincide, then 

which is autcaMtic 

Example: Let 

Put 

So, if any t m  of the indices il,...,i or j ,..., 
P 1 j p 

Then 

belongs to A%. 

Note: If T E A'V to begin with, then Alt T = T, hence Alto ALt = Alt. 

As an element of VO the ccanponents of Alt T are given by 
P ' 

FACT Suppose that q<p -- then 



In particular: 

i l.. .ip 
6 - - n! 

i, ... i (n-p)! ' 
P 

Deterrmnan 
i 

t Fomrula Let A = [a . I  be an n-by-n matrix -- then 
3 

det 

Consider 

P n 
Rn (PO) : View the e ~ ~ t ~  of R as column vectors -- then GL (n, R) - - - - 

operates to the left on - Rn via multiplication by g, hence by tensoring on 

P 

q 
Rn ( ~ 0 )  : View the elements of Rn as column vectors -- then GL(n,E) - - - 

-1 T operates to the left on - Rn via multiplication by (g ) , hence by tensoring on 

q I 

Rn = Rn @ --• @, I("' . - - 
F"¶ 

Ccanbine these to get a left action of GL (n,~) on Rn . We - - - 

the tensors of type (p,q) can be identified with the equivariant 

now claim that 



m 
i.e., with the maps T:B(v)-+R~ - such that  V g, 

T ( E = ~ )  = 9 - l . ~  (E) . 
[Note: Inmrporation of sh i f t s  the l e f t  action to a r ight action 

(bear in mind that  GL - (n, - R) operates to the right on B (V) ) . I  

To see this, it suffices to remark that the tensor transformation rule 

is equivalent to equivariance. Thus take a tensor T of type (p,q) and put 

= T(E-g) I 

which is equivariance (the converse is also clear). 



There 

situation, 

R:gx = x V - 

remains one pint  of detail ,  mmly  when p = q = 0. In this 

rn 
R" - = - R arad we shall agree that - GL(n,R) - operates t r iv ia l ly  on 

x€R. - Consequently, the tensors of type (0,O) are the constant mps 

0 
T: B (V) -t - R, i. e. , Vo = - R (the usual agreement) . 

Definition: Let X:GL(n,R) - - -t - $ be a continuous lmmrmrphism -- then a 

tensor of type (p,q) and weight X is a map 

such that  V g, 

Special Cases: 

1. Tensors of type (p,q) are obtained by taking X (g) = ldet g / O; 

2. Twisted tensors of type (p, q) are obtained by taking X (g) = sgn det g . 

Rappel: The continuous hommrphisms X :GL - (n,R) - + R' - f a l l  into t m  classes: 

A density is a m p  

X:B(V) -t - R 

for which 3 rER: - V g, 

h(E-g) = ldet g l r  X(E)  . 
A twisted density is a map 



for which 3 r€R: 'v' g, - 

[Note: In either case, r is called the vieight of 1.1 

Trivially, tensors of type (0,O) are densities of weight 0. 

Example: Suppose that T is a tensor of type (0,2) and weight XI where 

X(g) = Idet glr. Define 

)tr(E) = det T (E) 

r det [Tjlj21. 

Then 

= ldet glrn  detr j 1 

ji I 

m = ldet gl jl 
det[(g) ji jlj2 j2 

(g) jil 



= ldet glr n  det gT- det T(E) det g 

= ldet glrn  (det g) 2 det T(E) 

r + 2  = ldet gl g(E) 

Therefore is a density of might m+2. 

[Note: If T were instead a X-tensor of type (2,O) or (1,l) (X as above), 

then the corresponding is a density of weight rn-2 or rn.] 

Example (The orientation m) : In B (V) , write E ' -- E iff 3 g€GL - (n,R) - 

(det ~ 0 )  : E' = ~ * g .  This is an equivalence relation in B(V) and it divides 

+ B (V) into tm equivalence classes, say B (V) = B (v)LLB- (v) . Define a map 

Then 'd g ,  

Or (Egg) = sgn det g-Or (E) . 
Therefore Or is a twisted density of weight 0. 

+ + + 
[Note: Recall that t m  elements El ,E2€B (V) or E;,E;€B- (V) are said 

+ + to have the same orientation, whereas tm elements E EB (V) , E-EB-(V) are said to have 
the opposite orientation.] 

Definition: A scalar density is a map 



for which 3 w€Z: - tl g, 

[Note: W e  have 

w being termed the might  of X.1 

n-forms Since A'Gcv~, an elemnt T€A% can bs regarded as an equivariant map 

n 
B(V) -+ - R" (p = 0, q = n). 

W e  have 

Therefore T also determines a map 

viz . 



-1 1 n = (det g )a A --• A w . 
But 

=3 

-1 1 n 
= T1l...n' 

(det g )a A - - *  A o 

* 

T (Egg) = (det g)T(E) . 



Thus i n  this way one can attach to each TEA% a scalar density of weight 1. 

[Note: Define 

1.e.: I T (  is a density of weight 1.1 

Definition: The upper Levi-Civita symbol of order n is 

and the lower Levi-Civita symbol of order n is 

Determinant F o m l a  L e t  A = [ai. I be an n-by-n matrix - then 
3 

- il- -in ii n ii.aai' . . .a i n I E det A = E a i n 



Under a change of basis, 

-1 i; i I i .. .i 
-1 n 

= det g (g ) -..(g 1 E 1 n 

and 

Theref ore the upper (1-1 Levi-Civita symbo3. is a tensor of type (n, 0) (type (0, n) ) 

-1 
and weight X = det (X = det ) . 

Remark: The components of the Levi-Civita symbol (upper or lower) have 

the s m  numrical values w.r.t. all bases. They are +1, -1, or 0. 

Identities We have 

and 

i Dranple: Let A = [a . I  be an n-by-n matrix -- then 
3 



E j i g  . .jA E . , det A ji* - 01, 

1 V * j A  det  A = - 6 j 1 j n 
n! jl* * jn  a ji*w*a j A .I  

Fram its very definition, 

The interpretation of E is, however, less direct.  
jl* -jn 

Rappel: Each XW defines an antiderivation L~:A*V + AW of degree -1, 

the interior product w.r . t .  X. Explicitly: V TEA%, 

properties: (1) = 0: ( 2 )  + L ~ O L ~  = 0; (3) L ~ + ~  = L~ + L ~ ;  



Example: By definition, 

L e t  TCAPV, say 

Then 

i 
L (W AT) = (n-p)T. 

- Ei 

Put 

and then set 

Proceed £ran here by iteration: 

vol = L . . . 
1,- *jn E V " ~  

j n 3 1 



vol - - E 
j, dn jl--*jn ' 

In the definition of density, twisted density, o r  scalar density, one can 

replace the target - R by any f in i t e  dimensional rea l  vector space W. 

Example (The T-Construction) : Let T be a symretric tensor of type (0,2). 

Assume: T is nonsingular, hence det T (E) f 0 for  a l l  EEB (V) . Define 

= ldet T(E) I .  

Given E CB (V) , put 

where, as  before, 

Accordingly, 



-1 1 n 
= ( h l ~ ~  ( E * ~ ) ) " ~  (det g )a n --• n o 

Therefore voh is a A%-valued twisted density of weight 0. 

+ 
[Note: It follows that  the n-form voh(E) is an invariant of EEB (V) or 

EEB- (v) . I  
n 

L e t  6. stand for the upper Levi-Civita symbol -- then E :B (V) -t - Rn is a 

tensor of type (n, 0) and weight X = det . On the other hand, 

is a density of weight -1 (T as  above). Therefore the product 

is a twisted tensor of type (n, 0) . 
[Note: Analogous considerations apply to the lower Levi-Civita symbol 

E. : The product 

is a twisted tensor of type ( 0, n) . I  

Example: Consider 

V O ~ ( E )  = ( A l T l  (E) ~ 0 % .  

Then 





Section 2: Scalar Products Fix a pair (k,n-k), where 0 5 k 5 n. Put 

-'I = 

Then the prescription 

- i j  < xly > k - qij Y 

defines a scalar product on - Rn. 

Definition: The semiorthogonal group - O(k,n- 

such that v X , ~ E R ~ ,  - 

.k) consists of those AEGL (n,R) - - 

[Note: This arr~unts to requiring that 

In other words, i f  - R ~ ~ ~ - ~  stands for  - R~ equipped w i t h  the inner product 

k t  n-k < 1 > k l  then 0 - (k,n-k) is the linear isometry group of R - 

FACT VAEO(k,n-k), det  A = 2 1. - - 
It is not d i f f icu l t  to see that 

O(0,n) 2 g(n,O) - 

is the ortbgonal  group - O h ) .  It has t m  corcqpnents 



~'(n) = {AEO (n) : det A = '11 I - -  - 

/ 2- (n) = {AGO - (n) : det A = -11 . 
I - 

Suppose that 0 < k < n -- then O(k,n-k) - has four components 

indexed by the signs of det qI, and det AS. Here 

with 

Definition: The special smiorthogonal group - SO(k,n-k) consists of those 

AEO - (k,n-k) such that det A = 1. 

Theref ore 

is both open and closed in O(k,n-k) . One has - 

Remark: By construction, - SO(k,n-k) is the group of orientation preserving 

k,n-k + Rk,n-k linear ismetries R 
d - . On the other hand, 

consist of those linear isometrics - R k'n-k -+ - R ~ ~ ~ - ~  that preserve the 



- 
time orientation 

- space orientation, 

respectively. 

[Note: If 0 < k c n, then each of the groups 

is of i d e x  2 in - O(k,n-k) .I 

Let V be an n-dimensional real vector space -- then a scalar product on 

V is a nondegenerate syrm\etric bilinear form 

- N .B . Nordegeneracy m u n t s  to saying that  the rmp gb :V - V* defined by 

b 
g X(Y) = g(X,Y) 

is bijective . 
# [Note: The inverse to g is denoted by g . 1 

Therefore g is a symetric tensor of type (0.2) :g€Vo In tenns of a 2 ' 

1 n basis E = (El,.. . ,E,} €B (V) and its cobasis o = I w , . . . ,o  } f B  (V*) , 

where 

Okservation: The assigrrment 



characterized by the condition 

-1 b t 
g (9 x,g Y) = g(X,Y) 

is a scalar product on V*. 

-1 2 Therefore 9-I is a symetric tensor of type (2,O) :g RTg. And here 

where gij is the i jth entry of the matrix inverse to [g . . I , so 
13 

I;EMMA We have 

i i j i j 
'In = aet g (E) g 1 ... g n n 

E E 
j1-*-jn - 

[Note: In the jargon of the trade, th i s  slavs that  E *  and E are - not 

obtained from one a t h e r  by the operations of lowwing or raising indices.] 

Notation: Given EEB (V) , put 

In the T-construction, take T = g -- then 

(El = ldetg(E)I = I ~ J J ( E )  
14 1 

and, by definition, 

1/2 vol (El = ( / g l ( ~ ) )  ~0%. 
g 



an n-form that depends only on the orientation class of E. mreover, 

i i j 1 1  i j  1 e = ign det g(E)g ... g e 
- j,-jn 

these being twisted tensors of type 

Definition: An elanent E€B(V) is said to be orthonorr~l if 

- 
(n, 0) 

- (0,n) 

It is well-known that g admits such a basis. 

LEMMA We have 

[Note: The pair (k, n-k) , where k is the nLjonbev of (-1)-entries and 

n-k is the number of (+l)-entries, is called the signature of g and 

tE{O,lI: L E k mod 2 ( (-1)' = sgn det g ( E ) )  is called the index of g. 

These entities are well-defined, i.e., independent of E. In fact, the orthonorm1 

elements of B(V) per g are precisely the E-A (A€O(k, - n-k) ) . I  

R-k: If EEB (V) is arbitrary, then 



Let 3, n-k be the set of scalar products on V of signature (k,n-k) -- then 

%,n-k ++ B (V) /O - (k, n-k) 

or still, 

[Note : If E = {El, . . . , E,} CB (V) , then the prescription 

defines a scalar product gE@& - having E as an ortl.aonormal basis. -And 
I 

- 
g~ - 9~-A 

for all AEO - (k,n-k) . I  

Suppse that g€-Y+ and E€B(V) is orthonormal. Put , n-k 

E i = g(Ei,Ei). 

Then 

LEMMA We have 

Remark: If EEB (V) is arbitrary, then 

- b  - j q Ei - g. .a (E o.) 
1 7  1 



Ini t ia l ly ,  we started w i t h  a scalar product g on V and then saw how g 

induces a scalar product on V*. Pilore is true: g induces a scalar product 

g ['I on each of the vP 
GI q 

1 0 -1 [Note: Here, gio1 = g and glll = g - 1  

Notation: Given T*, define 
q 

b b 
= T(g X , .  . g Xp,Xpcll.. .,Xpq) 

and define 

# Components of T : 

b 
Remark: If p = 0, then T = T and i f  q = 0, then T# = T. 



Fxarcqle: Take T = g -- then 

LEM4A The bilinear form 

that sends (T,S) to the complete contraction 

is a scalar product on vP. 

[Note: If g is positive definite, then so is g ['I .I  
q 

From the definitions, 

# - b e  T @ S  
Pt4'  

Theref ore 



# b To c q t e  the complete contraction of T sp S , one then sets il = jl,...,i - - 
Pt4 

j ptq 
and sums the result. 

[Note: Take T = g -- then 

L e t  E€B(V) be orthonormal -- then (2) = 5 i 
j 

Therefore 





Section 3: Interior Multiplication Let V be an n-dinemional real  vector 

space. Fix g s , n - k  -- then g can be exterded to a scalar product on the A% 

( = 0 l . While a direct  approach is possible, it is mre instructive 

to proceed conceptually. 

0 On A V = R, put - 

g(a,p) = a@. 

[Note: Fix EEB (V) -- then 

i = a pi .I 

Remark: W e  have 



i k j  
= g  6 k  

Let q 5 p -- then there is a bilinear map 

which is characterized by the following properties: 

L - - O L  . B1 A Bz '82 @I 

0 
[Note: One calls I. the interior product on A%. If $En V = RI then - 

L~ 
is simply multiplication by p.1 

Remark: 'J x w ,  

- 
tX - Lg b X- 

[Indeed, 

= g(gbx,g'W tgbX(g Y) 



per EEB (v) , write 

Put 

Let afbPV, @€.A%, where q 5 p -- then 

Take q = p -- then c a is a real nmber and we set, by definition, 
B 

g(a,p) = L a = 
P L ~ B  



and g is a scalar product on A%. 

Remrk: Due to the way that the definitions have been arranged, 

0 
g(a,B) ic g[ I (a,@) P 

To see this, consider the RHS: 

0 
9 Ipl (a.P) 

Example: Let 

Then 

1 i j  
g(a A --• A aptp1 A - * -  A gp) = det [g(a , p  11. 



LEMMA Let {Elt...tE 1 be an orthonormal basis for g -- then the collection 
n 

is an orthonorm1 basis for the extension of g to (1 5 p 5 n) . 
[Note: We have 

- 1 1 
- 9  - E (no sum) 

i j I 

Therefore 

where P is the n* of indices amng {il,...ti 1 for which .si= -1.1 
P 



In other mrds, the operations 

are mutually ad joint. 

Consider now 

This n-form depends only on the orientation class of E. Thus there are but t m  

possibilities. Pick one, call it an orientation of V, and freeze it for the 

ensuing discussion. 

N.B. We have 

vol = - e 31 j n 
o A *-• A o . g n! jl-• j n 

Definition: The star opesator is the isom3rphism 

given by 

Theref ore 

LEMMA We have 

**a = (-1) ' (-1)'' n-P)a . 



Observation: L e t  ~CA'V, fl €.An% -- then 

= C C.pl 
P Gl 

= 

= g(*a ,p)  . 
Example: We have 



In what fol lws,  a€A% and 

Rules 

0 L *a = * (aAB) . 
B 

[In fact, 

L *a = L L ~ V O ~  
B P g 

= "ApvO1cJ 

= * (aAP) .I 

fl a% (subject to the obvious restrictions) . 



= (-1)' g(a,p)vol .I 

Example: Specialize the relation 

*L a = (-1) 
B 

q ( n ~ )  * a A p  

b and take $ = g X - then 



[Write 

Then 



But 

Therefore 



FACT We have 

[For 
i 

LE2WA We have 

['llo understand the procedure, start w i t h  the simplest case: 



Now go from here by iteration: 



Renark: Since 

it is tempting to write 

But this is nonsense: Take p = n and recall that 

Application: Let a, f3 €A'V -- then 

[Consider 



Section 4: Tensor Analysis Let M be a connected cm manifold of dimension 

n, 

0 I [ N o t e  : Here, Do (M) = cm (M) , D l  (PI) = D (M) , the derivations of cm (M) 0 

0 1 
(a. k. a. the vector fields on M) , and Dl (MI = Dl (MI the linear f0n-r~ on D (M) 

viewed as a module over cm (M) ) . I  

Remark: By definition, DP(M) is the cm(M) -mdule of a l l  cm(M) -multilinear 
q 

One can also interpret the e l m t s  of vP(M) g m t r i c a l l y .  To this end, consider 
q 

the frame bundle 

W h k h g  of - R" as  merely a vector space (and not a s  a m i f o l d )  , let %(n) be 

the tensors of type (p,q) -- then - GL (n,R) - operates to  the l e f t  on @ (n) (cf . q 

Section 1). Now form the vector bundle 

Then, on general grounds, there is a one-to-one correspondence betmen the 

sections T of T' (M) and the equivariant maps @:LM -+ (n) 
q 



Of course, as  a set 

hence Q = {+x: x€Ml , where 

And we have 

or still, 

[Note: One advantage of the geometric point of view is that it can be 

readily generalized, e. g . , to tensors of type (p, q) a d  weight X .I 

Details Given (x, E) CIM ( 3 E CB (TxM) ) , define %:Rn - + TxM by 

Then V gGL - (n,R) - , the canpsi te  - Rn 2 - Rn ? T N is H.g . 
X 

T + QT: This is the arrow 

Q -+ TQ: This is the arrow 



where 

FACT These arrows are mutually inverse: 

In what follows, all o ~ a t i o n s  will be defined globally. However, for 

computational purposes, it is important to have at hand their local expression 

as well, meaning the form they take on a connected open set UcM equipped with 

1 n coordinates x ,..., x . 
Let TE%(M) -- tlw locally 

where 

are the caqonents of T. 



Under a change of coordinates, the components of T satisfy the tensor 

transformation rule: 

[Note: Thexe are maps 

viz . 

FACT Equip ~ ' (n)  with its standard basis -- then 
9 

we have 

Ranark:  Suppose there is assigned to each U i n  a coordinate at las  for M, 

functions 

subject to the tensor transformation rule -- then there is a unigue T€ fl (M) 
q 



d s e  cmpnents in U are the T 
j1- -jq0 

[It is simply a mtter of manufacturing a global section of T'(M) by 
9 

gluing together local sections.] 

Exarc-p?le: The Kronecker tensor is the tensor K of type (1,l) defined by 

K(A,X) = A (X) , thus 

i a i 
K~ = K(dx , 7) = 6 

j ax3 j ' 

FACT There is a tensor K(p) of type (p,p) with the property that i n  any - 
coordinate system, 

Notation: Given f €cm (u) , write 

[Note: The bracket 

1 1 
[ , 1 :  D1(m x v (MI + D (MI 



is - R-bilinear but not c"l (M) -bilinear. In fact, 

Definition: A type preserving - R-l inear  nap 

which comrmtes w i t h  contractions is said to be a derivation if Y T1,T2€D(M), 

[Note: To say that D is type preserving means that D@ (M) c@ (M) . ] 
q q 

The s e t  of all derivations of D(M) forms a L i e  algebra over R, the bracket - 

operation being defined by 

[D1,D2] = Dl 0 D2 - D2 Dl. 

R-k: For any £ E C ~ ( M )  and any TED(M),  fT = f 63 T, so D(£T) = f (DT) 

+ (Df) T. In particular: D is a derivation of cm (M) , hence is represented on 

ern (M) by a vector field. 

Construction: L e t  

Then Y xCM, 

Ax:TxM + TxM 

is - R - l i n e a r ,  hence can be uniquely extended to a derivation D of the tensor 
Ax 

algebra over TxM. This said, define 

DA:Q(M) + D(M) 



Then DA is a derivation of D (M) which is zem on cm (M) . 

FACT Any derivation of D(M) which is zero on c-(M) is induced by a tensor - 
of type ( 1 , l ) .  

1 
[Note: If D is a derivation of D (M) and if AED1 (MI , then [DIDA] IcW (MI = 0 , 

1 1 
hence [DIDA] = DB for scnne B C D ~  (M) . Therefore Dl (M) is an ideal in  the ~ i e  

algebra of derivations of P (M) . I 
Product Formula Let D:D(M) - D(M) be a derivation -- then V T€<(M),  

1 
[Note: This shows that D is known as  soon as it is known on c-(M) , D (M) , 

and Dl (M) . ~ u t  for o€D1 (MI . 

thus functions and vector fields suffice.] 

FACT Let D1,D2 be derivations of D(M).  Assume: Dl = D~ on c-(M) and 

ol (MI -- then Dl = D2. 



EXTENSION PRINCIPLE Suppose given a vector field X and an - R-linear map 

1 1 
6 :P (M) -t P (M) such that 

6 (£Y) = (X£)Y + £6 (Y) 

1 for all f € c W ( ~ ) ,  YEP (M) -- then there exists a unique derivation 

1 
such that DIC-(M) = X and D I D  (M) = 6. 

[Define D on Pl(M) by 

The notion of a tensor T of type (p,q) and weight X is clear, there being 

ts.m possibilities for the form that the tensor transformation rule takes. 

Notation: Put 

i ax J = det [ -1. 
axi ' 

I: For some rER, - 

11: For sane r € R ,  - 



Accordingly, there are t m  kinds of tensors of type (p,q) and weight X I  

which we shall refer to as class I and class 11. It is also convenient to single 

out a particular carbination of these by an integrality condition. 

Definition: A tensor of type (p,q) and weightw is a tensor T of type 

(p,q) and weight X = (detlW (w€Z-1 , hence 

[Note: Needless to say, the tensors of type (p,q) and weight 0 are 

precisely the elements of 04 . I 
q 

Remark: The product of a tensor T of type (p,q) and weight w with a 

tensor TI of type (pl ,q ' )  and weight w' is a tensor T @ T' of type (p + p', q + q')  

and weightw + w'. 

E q l e :  The upper Levi-Civita symbol is a tensor of type (n,O) and 

weight 1 and the lower Levi-Civita symbol is a tensor of type (0,n) and weight -1. 

[To discuss the upper Levi-Civita symbol, write 



When (p,q) = (0,0), the foregoing considerations specialize to that of 

density, twisted density, and scalar density. 

Density A density of weight r is a section of the line bundle L: (M) 

whose transition functions are the 

[Note: The sections of 

misted D e n s i t y  A twisted density of weight r is a section of the line 

bundle L:=(M) whose transition functions are the 

i ' i ' ax r 
sgn det [--I ~det [%I / . 

ax1 ax 



[Note: The sections of 

are the class I1 tensors of type (p,q) -1  

Scalar Density A scalar density of weightw is a section of the l ine 

bundle L~(M) whose transition functions are the 

[Note: The sections of 

are the tensors of type (p,q) and weight w. 1 

Exanple: The density bundle is the l ine bundle 

whose transition functions are the 

ax" Idet [-I I . 
ax1 

Therefore 

1 
Lden (MI = LI (MI 

m l e :  The orientation bundle is the l ine bundle 

whose transition functions are the 

ax" sgn det [-I . 
1 ax 



Therefore 

0 
Or (M) = LII (M) . 

mample: The canonical bundle is the line bundle 

whose transition functions are the 

ax" det [-I . 

Therefore 

1 Lcm (M) = L (M) . 

Remark: The canonical bundle can be identified with A%*M, where T*M 

is the cotangent bundle. Since 

it follows that the n-forms on M are scalar densities of weight 1. 

[Note: The upper Ievi-Civita symbol is a section of 

and the lower Levi-Civita symbol is a section of 



Section 5: L i e  Derivatives Le t  M be a connected cm manifold of 

dimension n. 

1 
LIDMA One may attach to each XED (M) a derivation 

called the Lie derivative w.r. t .  X. It is characterized by the properties 

1 [In the notation of the Extension Principle, define 6: 4 (M) + d. (M) by 

6 (Y) = [X,Yl . 
Then 

Owing to the product formula, V T E$ (PI) , 
9 

1 P 
X [ T h  A I X I I - - * , X  ) I  

9 



[Note: If otD1 (MI , then 

[Note: From the definitions, 

At a given x€M, the expression 

can be explained in terms of the canonical representation p of - GL (n,R) - on *(n) 
q 

or, m r e  precisely, its differential dp. 



Tb see this, fix for the mment an elanent ~€'l?(n) -- then V g€GL(n,R), 
q - - 

Now pass IXI the derived mp of Lie algebras 

and we have 

a 
Returning to M, use the basis { - 

ax x 

to identify TxM with R", - thence T'T M with $(n) . Put 
q x 

i i 
A . (x) = - X . (x) . 

3 r I 



Remark: The symbol 

is usually abbreviated to 

Example: Let K be the Kronecker tensor -- then 



[Note: In general, V p1, 

q ' p )  = 0.1 

FACT - Let D:D(M) + D(M) be a derivation -- then there is a unique x€D'(M) 

and a unique A C D ~  (M) such that 

D = L + DA. 
X 

Consider now the exterior algebra A*M -- then 5 induces a derivation of 
A*M: 

Notation: tX is the interior product w.r.t. X, so 

is an antiderivation of deqree -1. 

FXplicitly , V a a P M ,  

And one has 

properties: ( 1 )  cX0cX = 0: (2) + L o e  = 0; (3) L ~ + ~  - 
Y X  - Cx + cy; 

(4)  L f X  = ftX. 



Therefore 

[For 

= fCXda + d c f ~ ~ a )  

= f~ da + dfAtxa + fdCXa 
X 

= f ( ~ ~ d  + d ~ ~ )  a + dfnLXa 

= £9 + d f n ~ ~ a . ]  

If  q:N -+ M is a di f£mrphism,  then 

If  @:N -+ M is a map and if X is @-related to Y, then 



[Note: Recall that 

are said to be @-related if 

or, equivalently, if 

Y (fa@) = H o +  

Denote by w-9 (M) the tensors of type (p , q) and weight w -- then 
q 

Put 

1 FACT One may attach to each XED (M) a type preserving R-linear map - 

LX:W-V (M) -+ W--D (M) 

called the Lie derivative w.r.t. X. Locally, LXT has the same formas a tensor 

of type (p,q) except that there is one additional term, namely 

[Note: If 



then 

and 

To understand how t h i s  caws about, it suffices to consider the case when 

w = 1. So suppose that 

Bearing i n  mind that Lf is a scalar density of weight 1, write 

Then 

1 
+ y L d x  A ... A d x "  . . .n X 



Therefore 



Example: L e t  T be the upper Levi-Civita symbol (a tensor of type (n, 0) 

and weight 1) or the lowex Levi-Civita symbol (a tensor of type (0,n) and 

weight -1) -- then LxT = 0. 

[To discuss the upper Levi-Civita symbol, mte that 



[Note:  The t e r m s  involving three identical *ices are not surrpned.1 

Given wEZ, - let pw = (de t IYYp and consider the derived rmp of L i e  algebras 

Then V AEgE - (n, - R) , 

= -w tr (A) + d p  (A) . 

Put 

i i 
A . (x) = -X . (x) 

3 13 

and let  T€W-@ (M) -- then at x, 
q 





Section 6: Flows L e t  M be a connected cm inanifold of dimension n. 

1 Fix an XED (M) -- then the image of a maximal integral curve of X is called 

a trajectory of X. The trajectories of X are connected, imersed sul.mrranifolds 

of M. They form a partition of M and their dimension is either 0 or  1 (the 

trajectories of dimension 0 are the points of M where the vector f ield X vanishes). 

Definition: A f i r s t  integral for X is an f €cW (PI) :Xf=O. 

In  order that  f be a f i r s t  integral for X it is necessary and sufficient 

that  f be constant on the trajectmries of X. 

Recall now that  there exists an open subset D ( X ) ~ R  x M and a differentiable - 
function o ~ : D ( X )  + M such that  for each x€M, the map t -r OX(tIx) is the trajectory 

of X w i t h  6x(0,x)=x 

is an open interval containing the origin and is the domain of the trajectory 

which passes through x. 

is open in  M and the map 

+t,X -+ 4Jxtt,x) 

is a dif f eomrphism Dt (X) -r D-t (X) with inverse 4J -t' 

(3)  I f  (t ,x) and ( ~ , + ~ ( t , x ) )  are elanents of D(X) ,  then (s+t,x) is an 

element of D (XI and 



One ca l l s  bX the flow of X and X its infinitesimal generator. - 

[Note: X is said to be ccarrplete i f  D(X) = - R x M.] 

FACT S u p s e  that Xx#O -- then 3 a chart U containing x such that 

a 1 n 1 2  n X/U= - and 4t(x .....x ) = ( x  +t.x ..., x ) .  
ax 1 

Let Y€+(M) -- then Y is invariant wder 4x i f  ( 4  ) Y = Y 
t * x  +,(XI 

for a l l  ( t , x )  ED (X) . 
Example: X is invariant under 4 x- 
[Fix ( t0 .x0)  €D(X) and s u p s e  that f is a C- function defined i n  sane 

neighbor- of 4 (x0)  -- then 

FACT Y is invariant under OX i f f  [X.Y] = 0. - 

Push and Pull L e t  cp:M -t M be a diffecnmrphism -- then there is a vector 

bundle isom~rphisn T$p :T'(M) -+ $ (M) and a camatative diagram 
q 



the pushforward of T. 

[Note: Thus 

q*T = ~ q - l o ~ o q .  
q 

the pu l lback  of T. 

[Note: Thus 

q* = -1 
(cp ) *  

The standard fact that 



L 
= l im 

t - + O  t 

can be generalized: tl TE$(M), 
q 

CT4,tX) - Tx 
L T  = lim 

lx t + O  t 

[Note: For t # O  and small, the difference quotient on the right makes 

So, in brief, 

hence L  T = 0 i f f  T is constant on the trajectories of X. X 

L e t  cp :M -t M be a diff eormrphism -- then cp l i f t s  to a dif feormrphisn 

- 
cp:M -t IM, where T(x,E) is computed from 

- 
N.B. The pair (7,cp) is an automrphisn of (LM,M;GL(~ ,R)) ,  i.e., cp is - - 

equivariant anli the diagram 



O b s e r v a t i o n :  W e  have 

- + 
cp*T 

[In fact, 

- 1 P QT O lp(x,E) (A ,..., A , X1,...,X 1 
q 

L e t  x€$ (MI -- then gX lifts to a f l o w  T on IM. - 
v 

LJ3Wi We have 

[At t = 0, 





Section 7 : Covariant Differentiation Let M be a connected C- manifold 

of dimension n. Suppse that E -+ PI is a vector bundle -- then a connection V 
on E is a map 

such that 

[Note: By definition, V s is the covariant derivative of s w.r.t. X.] 
X 

Rappel: There is a one-to-one correspondence 

between the mnnections I' on the £ram bundle 

and the connections V on the tangent bundle 

Let con TM stand for the set of connections on TM. 

0 Let V€ con avl -- then the assignment 



is not a tensor. 

Let V1,V"E con TM -- then the assignment 

L e t  V E  con TM 

hence is a tensor. 

I (XIY) -t VXY + +(X,Y) - 

is a connection. 

I Scholim: con 1M is an affine space with translation group P2(M). 

[The action V Y = V + Y is free and transitive. 1 

Remark: Write con LM for the se t  of connections on LM -- then, on general 

grounds, con LM is an affine space (in the 1-form description, the translation 

Let V be a connection on TM. Put V X f  = Xf and i n  the notation of the 

Extension Principle, take 6 = VX (permissible, since Vx(fY) = ( X f ) Y  + fVxY) -- 
then there exists a unique derivation 

1 such that V ~ I C ~ ( M )  = X ard vx1D (M) = 6. 

1 [Note: The difference Vx - L is cm (M) -linear on D (M) : 
X 



= (Xf)Y + fVXY - 

= f(VXY - LXY) , 

hence V as a derivation of P (M) 
X 

(xf)Y - fLXY 

admits the decomposition 

Remark: Write V = vr -- then r induces a connection 

and matters are consistent: 

1 
On general grounds, each XED (M) admits a unique lifting to a horizontal 

vector field Xh on IM such that IT,$ = X. 

FACT We have 

Owing to the product formula, Y T C% (M) , 



1 n Definition: Let V be a connection on 'I?!!. Suppose that (U,{x ,..., x ) )  

is a chart -- then the connection coefficients of V w.r . t .  the coordinates 

xl, . . . ,xn are the C- functions lkij on U defined by the prescription 

Observation: V X C V ~  (M) , 

So locally, 

RaMlrk: The symbol 



is usually abbreviated to 

Exarrq?le: L e t  K be the Kronecker tensor -- then 

Indeed, 

[Note: In general, V pl , 

DMMA Let V be a connection on TM -- then on UCIU', 

[Note: This relation is called the connection transformation rule.] 

Therefore the rkij are not the canpnents of a tensor. 

FACT Assume that there is assigned to each U in a coordinate at las  for MI 

functions 

subject to the connection transformation rule -- then there is a unique 



connection V on TM whose connection coefficients w.r.t. the coordinates 

1 n x ,..., x are the I' 
k 
ij 

j Rsmrk: Consider the contraction I' ij. To determine its transformation 

law, write 

Then 

On the other hand, by determinant theory, 

[Note : Analogously, 

Let V be a connection on 'IIM -- then V induces a m p  '@(MI -+ (M) , viz. 
9 9+1 

1 
VT(A ,..,A~, X1,...,X ,X) 

q 



[Note: One calls VT the covariant derivative of T.] 

Working locally, put 

where  

Then i n  view of what has been said above, 

[Note: The cmnpnents of VT are the 

Thus 



where 

 nark: Wc TC%(M) -- then T is said to be parallel if VT = 0, which is 

the case i f f  VXT = 0 for a l l  X d ( M ) .  

Notation: Define vk: DP (MI -+ DP (MI by v1 = v arii vk = v (vk- l )  ( b 1 )  . 
q s+k 



[Note : V ~ T  c % + ~  (M) and 



is written as 

or still, 
il--=i 

'bVaT 
P .I 
j1*-*jq 

D e f i n i t i o n :  L e t  V be a connection on TM -- then the torsion of V is the mp 

defined by 

T (X,Y) = VXY - V$ - [X,Y] . 

[Note: V is said to be torsion free i f  T t 0.1 

2 0 m l e :  L e t  £ CC- (I) -- then V f €02 (14) and 

2 
= V f ( Y , X )  + T ( X , Y ) f .  

2 Thus V f is syrmnetric whenever V is torsion free. 

O b v i o u s l y ,  

T(X,Y)  = - T (Y,X) . 



It is also easy to check that 

Therefore the assigrnnent 

is a tensor, the torsion tensor attached to V .  

Construction: Given V E  con TM, define V 1 €  con TM by 

V '  = V - T. 

This makes sense (recall that con TM is an affine space w i t h  translation group 

1 
D 2 ( M ) ) .  To compute the torsion of V ' ,  note t h a t  

Therefore the connection 

is torsion free and 



Finally, suppose that 

where 7 is torsion free and 

subject to 

S(X,Y) = - S(Y,X). 

Then the torsion of V is the torsion of ? plus 

- 1 v = -  1 v + 2 v ' .  

Pbrking locally, write 

a a a T(-r -) = - 
ax' ax7 ij axk 

Then 

[Note: Consider the decomposition 

1 1 1 
V =  (?V +-8') +-T. 2 2 

Then, in terms of connection coefficients, 



Example: L e t  fccm (M) -- then 

2 a  a 2 a a a v f(- r-1 = v I--) + T(--T I---)£ 
axi 8x3 axj ax' ax1 3x3 

or still, 

Let TED' (MI -- then 
q 

On the other W, 



Assume: B is torsion free -- then 

Therefore 

[Note: If T is parallel, i.e., if VT = 0, then 

Turning now to the exterior algebra A*M, suppose that a € n P ~  -- then 



P so VXaEA M. 

Observation: The following diagram 

ommutes. Consequently, 

V (a~p) = V aAg + aAVxp. 
X X 

Rappel: The exterior derivative 

~ : A P M  + P+lM 
is given by 



There is a triangle 

but d#Alt o V. 

Ll3M4 Suppose that V is torsion free -- then on A'M, 

[ N o t e :  Under the assumption that V is torsion free, 'd a tb?~ ,  we have 

thus loca l ly  

E.q., take p = 1 -- then 

d a ( X , Y )  = Va(Y,X)  - Va(X,Y)  , 

thus V a  is m t r i c  i f f  a is closed.] 

FACT Let  X , Y C D ~ ( M )  -- then 



L e t  I? be a connection on IM. S u p s e  t h a t  p is a representation of 

GL (n,R) on a f in i te  dimensional vector space W. Form the vector bundle - - 

Then I? induces a connection on E. 

Specialize and take W = @(n). p = % -- then one m y  attach to each 
q 

~ € 0 1  (M) a mvariant derivative 

Lmally, VXT has the same form as a tensor of type (p,q) except that  there is 

one additional t e r m ,  namely 

[Note: If 

then 

and 

Vx(T W T ' )  = VXT W T' + T C3 VXT1.] 

Remark: Given w€.A%, write 

dxl A - - -  A dxn. a = W l . .  .n 



Then 

Example: Let T be the upper Levi-Civita symbol (a tensor of type (n,O) 

and weight 1) or the lower Levi-Civita symbol (a tensor of type (0,n) and 

weight -1) -- then VxT = 0. 

[To discuss the upper Levi-Civita syrtbol, mte that 

i ...i 
= xa" 1 n 

I a 

i 1 b i 2 - - - i  i n i b  
+ xar a n %"' n-1 + - * *  + X r 

ab" 



= 0.1 

[Note: The terms involving three identical indices are not sunsned. I 

1 m l e :  Let Tcl-DO(M) -- then 

Now contract over the indices a and i to get 

hence 

provided V is torsion free. 

There is no difficulty in extending the theory to densities of weight r 

or twisted densities of weight r, hence to tensors T of class I or 11. 

[Note : VX respects the class of T. I 

Locally, VxT has the same form as a tensor of type (p,q) except that 

there is one additional term, namely 

Reality Check If 6, is a density of weight r and $ is a density of weight 

-r, then +$€ern (M) and we have 



Exarrq?le: If + is a scalar density of weight 1 and 9 is a density of 

weight -1, then ++ is a twisted density of weight 0 and 



Section 8: Parallel Transport L e t  M be a connected cm manifold of 

dimension n. Suppose that 

is a principal bundle with structure group G (which we shall take to be a L i e  

group) and let T be a connection on P. 

Convention: Curves are piecewise m t h .  

-1 THmIlPM Let y:[0,11 + M  be a curve. Fix a point po€n ( ~ ( 0 ) )  -- then 

+ + there is a unique curve y': [0,11 + P such that (i) y (0) = po, (ii) n . y = y, 

It follows f m  the theorem that there is a d i f f ~ r p k i s m  

called parallel transport from y (0) to y (1) . 
L e t  p be a representation of G on a f in i t e  dimensional vector space W. 

Put 

Then E is a vector bundle and there is a conmutative diagram 



H e r e  

nE(  [p,wI = n (p) . 
-1 

L e t  eo€E. Take any point (po.wo) €pro (eo) and define 

Set 

Then E is independent of the choice of (pO ,wO) and is called the horizontal 
0 

subspace of T E (per the cbice of I?) . 
eo 

-1 
TJADRl34 L e t  y: [O,ll - M be a curve. Fix a pint eOtnE (y(0))  -- then 

t t there is a unique curve yt: [O,ll -r E such that (i) y (0) = eo, (ii) nE o y = y, 

It follows from the theorem that there is an i m r p h i s n  

called para l le l  transport from y (0) to y (1) . 
r 1 Denote by V the connection on E determined by r. Fix xcM and let XED (M) .  

choose any curve y: [-E,EJ - M such that y(0) = x and +(o) - 
- xx . W i f y  the 



rotation and write 

-1 -1 
-T -n (~(0)) + n E  (y(h)) h' E 

for the parallel transprt from y (0) to y (h) . 

Specialize to P = LM ard W = $(n) -- 
p, these generalities are applicable to the 

replacing p by p to the sections of $(M) w' q 

then, with the obvious choice for 

sections of T~ (M) , i .e. , to % (M) , or, 
q 



Section 9: Curvature Let M be a connected coo manifold of dimension n. 

Definition: kt V be a connection on TM -- then the curvature of V is 

the map 

1 1 
R&M) x -+ H?(D (MI ,D (MI)  

- 

def ind  by 

R(X,Y) = VXVy - VyVX - V 
[XrYI ' 

Obviously, 

R(X,Y) = - R(Y,X) . 
It is also easy to check that 

Therefore the assignment 

is a tensor, the curvature tensor attached to V. 

Ranark: The Lie derivative LXV of the connection V is the cW (M) -multilinear 



[Note: A vector field X is said to be an infinitesimal affine trans- 

formation i f  V = 0.1 

L e t  v be a connection on TM -- then v is f l a t  provided each xfM admits 

a connected neighborM U such that V y€M, the parallel transport cTXM -+ T M 
Y 

is independent of the curve joining x an3 y. 

FAL117 v is f l a t  i f f  its curvature tensor is identically zero. - 
Convention: Given a cm (14) -multi l inear map 

define 

Example: Suppose that V is a torsion free connection on TM. Let X be 

a vector field -- then VX€< (MI or, equivalently, 

where 

VX(Y) = V y X .  

Assume now that X is an infinitesimal a f fke  transformation, thus L V = 0, hence 
X 

R(X,Y) Z = [Vx - Lx, vy] Z 



On the other hand, 

Therefore 

R(X,Y) Z + (VyVX) Z = 0. 

In particular : 

R(YIX)X = - R(XIY)X 

2 
(7x1 being the composite VX o VX. 

FACT Suppose that V is a torsion free connection on TM. L e t  X be an 

infinitesimal aff ine transformation -- then ~ ~ d l (  = 0 (k=l , 2 , . . . ) . 

UMMA (~ianchi ' s F i r s t  I d e n t i t y )  We have 



[Note: Consequently, i f  V is torsion free, then 

- R(VZX,Y) - R(XIVZY) 

the bracket standing for a cannutator of operators on vector fields. 

[Note: To see where this is caning from, think of R as an element of 

LEMMA (Bianchi' s Second Identity) We have 



[Note: Consequently, i f  V is torsion free, then 

Since 

there exists a unique derivation 

D 
R(XrY)  

:D(M) + (M) 

1 which is zero on cm (M) and equals R (X ,Y) on D (M) . 

LFM@i ( T h e  Ricci I d e n t i t y )  L e t  T€$(M) -- then 
9 

2 2 
V TC-tX,Y) - V T(-,Y,X) 

where V 
T ( X t Y )  

is the covariant derivative a t  the torsion T(X,Y) of V. 

[We have 



0 
Remrk: &t T€$ (M) -- then 

So, if V is torsion free, then 

Wrking locally, write 

a a a i 
R+ -+ - = R 

a 

ax ax ax7 jke 

thus 



Curvature Fonnulas Ass- that V is torsion free. 

Bianchi's First Identity: 

~ianchi's Second Identity: 

One can also write down local 

i 
R j*;L = O* 

expressions for the Ricci identity. 

Example: Let XCD'(M), say X = ~j 2- -- then V~XCV;(M) and 
ax j 

i i 
VbVaX - VaVbX 



Consider R as  an element of 4 (M) -- then the Ricci tensor Ric is the 

1 1  0 image of R under the contraction C2 : DJ (M) -r D2 (M) of the second s lo t  in the 

covariant index. 

Agreeing to write R in place of Ric 
j l  

, it follows that 

Exarrp?le: Since covariant differentiation ammutes with contraction, we have 

But 



In general, the Ricci tensor is not symnetric: 

R i c ( X , Y )  # R i c ( Y , X ) .  

Notation: ~ e f  ine [Ricl a% by 

[Riel (X,Y) = Ric (X,Y) - R i c ( Y , X )  . 
1 

=ing in mind that R(X,Y) €Dl (M) , put 

where 

is the contraction. 

LEMMA If v is torsion free, then 

[Ricl (X,Y) = t r ( R ( X , Y )  . 
[In fact, 



On the other hand, 

a i 
tr(R(--  5)) = R 

axj ' ax ijR 

= - i i 
je i  - R R i  j 

- i I 
- R j a - R  R i j '  

Observation: W e  have 

- i i r i  - r i  ra 
- ti, j - j i  + i ja ja R i  

So, i f  3 a cm function £ of the coordinates such that 



Thus, on this chart, Ric is syrtnnetric. 

Maintaining the assmnption that V is torsion free, let  us globalize 

these considerations. 

LEWIA Suppose that 4 is a s t r i c t l y  positive density of weight 1 such that 

V4 = 0 -- then Ric is syrranetric. 

[In fact ,  

0 = va4 =',a - +'*4 

[Note: This can also be read the other way in  that  the relation 

obviously implies tha t  V+ = 0.1 

By way of notation, put 



Then 

If now cp is a density of weight r, then 

Therefore 



Section 10: Semiriemmim -Manifolds Let M be a connected C- manifold 

of dimension n. 

0 Definition: A semirienannian structure on M is a symnetric tensor gfD2(M) 

such tha t  V x, 

gx:TxM x TxM + - R 

is a scalar product. 

[Note: A riemannian structure on M is a positive definite semirimimnian 

structure. I 

Notation: M - is the set of semiriaMnnian structures on M I  thus 

M = - u 
O s k s n  Ek,n-k ' 

where Mk - ,n- is the set of scmiriemannian structures on M of signature (k,n-k) 

(SO is the set of r iammian structures on M) . 
Let gfM - -- then one may attach to g its orthonorm1 frame bundle 

[Note: Therefore LM(g) is a reduction of LM and the set of reductions 

of Dl per the inclusion - 0 (k,n-k) -t - GL (n,R) - is in a one-to-one correspondence 

Rappel: IN is either connected or  has tsm canrponents. 

M is nomrientable i f  LM is connected. 

M is orientable i f  LM has cc~c[ponents. 

[Note: I f  M is orientable, then the components of Wl are called orientations 

and to orient M is to make a clmice of one of them, i n  which case M is said to 



be oriented. Agreeing to write 

it follows that there are reductions 

Remark: Let g%,n-k* 

I f  k = 0 o r  k = n, then IM(g) has a t  mst tm mqmnents. I n  the 

presence of an orientation p, LM(g) admits a reduction 

so(n) -+ W ( g )  - 
S n 

M 

to the oriented o r t b n o r m l  frame bundle. 

I f  0 c k c n, then IM(g) has a t  mst four compnents 

of an orientation w, IN (g) admits a reduction 

In  the presence 

SO (k, n-k) + U (g) - 
S lf 

M 

to the oriented, orthomrmal frame bundle and in the presence of an orientation 

p plus a t ime orientation T I  IM(g) admits a reduction 

SO (k,n-k) -+ v p l ( g )  ---O 

S n 

M 

to the oriented, time oriented, orthonormal frame bundle. 



Given g€M, - a connection V on TM is said to be a g-connection i f  vg = 0, 

1 i.e., if V X,Y,Z€D (M),  

Among a l l  g-connections, there is exactly one w i t h  zero torsion, the metric 

connection, its defining property being the relation 

FACT Every connection on LM(g) extends uniquely to a connection on LM, 

these extensions being precisely the g-connections. 

L e t  con TM stand for the set of g-connections on TM. 
g 

kmte  by I$ (M) the subspace of D; (M) consisting of t b s e  Ll such that 
4 

L e t  V ' , Vll  €con TM -- then the assignment 
9 

- 1 1 
P1 (M) x (M) x D (M) + cm (M) 

(A,X,Y) + A(V$Y - ViY) 
1 defines an element of D2 (M) 

4 ' 

[In fact, 



L e t  VCcon TM -- then Y +~4 (.PI) g, the assignment 
g 

+(M) x +(M) -+ VxY + +(X,Y) 

is a g-connection. 

[In fact, 

= Xg(Y,Z) . I  

Scblium: con ?M is an af fine spce with translation group Z$ (M) g. 

[The action V-Y = V + Y is free and transitive.] 

b 1 Notation: g :V (M) + # (M) is the arrow defined by the rule 

b 
g X(Y) = g(X,Y) . 

b -1 It is an i m r p h i s m  and one writes gX i n  place of (g ) . 
# Ekample: The gradient grad f of a function fCrn (M) is g (df) . So, 



= Xf. 

maple: I,& v be the metric connection -- then V w€V1 (M) , 

[ W r i t e  

Then 

- 
Vo(X,Y) = Yw(X) - w(v$ 

- Vw(Y,X) = Xw(Y) - w(VxY) . 
T h e r e f  ore 

Vo(X,Y) - Vo(Y,X) = - dw(X,Y) . 
W 1 To discuss the sum, let K = g w -- then V Z ED (M) , 

b # 
w(Z)  = 9 g ~ ( 2 )  

b = g K(Z)  = g ( K , Z ) .  

Therefore 

Vo(X,Y) + Vo(Y,X) 

= xw(Y)  + Yw(X) - w (VXY + VyX) 

But 



FACT Fix cp €cm (M) : p O  and put 3 = cpg. Let 

- 
v 

be the m t r i c  connection associated with I 
Then 

1 
LEMMA Let v be a g-connection -- then b' XED (M) , the diagram 

camutes . 
[In fact, 

b g (VXY) (Z) 



-1 2 
Notation: g ED (M) is characterized by the cordition 0 

g-l (gqr .gb = g (XIY) 

Therefore 6' 

Kronecker tensor K. 

Observation: 

[We have 

2 2 1 
@ g€D2 (M) and the contraction Cl @ g) €Dl (M) is the 

Let v be a g-connection -- then vg-' = 0. 



where is the matrix inverse to [g. . I .  
13 

Example : Given f €Cw (M) , 

Ekample: Let  V be the metric connection -- then the hessian Hf of a 

2 0 function ~ C C * ( M )  is v f ,  thus HfhV2(M) is symetric (the metric connection 

being torsion free) . Ir>cally, 

= g ( V X 4 r a d  f ,Y) + g (grad f , vXY) , 

it follows that 

= Xg(grad f , Y )  - g(grad f,VXY) 

= XYF - (VXY)f 

= Hf(X,Y) - 1  

FACT Let  V be the metric connection. Fix x€M, X x C T 2 ,  and let t + y ( t )  



be the geodesic such that y(0) = x and j ( 0 )  = Xx -- then 

Let VCcon TM -- then v camnutes with the operations of lowering or raising 
4 

indices. 

[Note: The point is that 

~~j = g v I- vagik 

~~j i k a  

IDMA The connection mefficients of the metric connection are given by 

Put 

Then 1 g 1 is a density of weight 2, hence 1 g is a density of weight 1. 

Returning to the lama, contract over k and i to get 



But 

Theref ore 

= (det g) -1 adet g 

ax j 

1 
Exarrq?le: L e t  v be the m t r i c  connection. Suppose that XED (M) -- then 

V X C ~  (M) and, by definition, the divergence div X of X is 

1 div X = ClvX ( = tr vX) . 
mcally , 

or  still, 

div x = 

[Note: The laplacian Af of f € c m  (M) is the divergence of its gradient: 



or still, 

0 
= gE21 (Hf,Hf) + g(grad f ,  grad A f )  

Let V be a connection on TM -- then 

+ Ric(grad f ,  grad f) . 

Now take for V the metric connection: 

[Note: Write 



Then 

Remrk: It follows that the Ricci tensor associated with the metric 

connection is necessarily qmnetric (see the discussion a t  the end of the l a s t  

section) , hence \I X,Y& (M) , 

where E' is the upper Levi-Civita symbol. Then e ' is a twisted tensor of type 

(n,O) . 
[Note: Analogous considerations apply to  the lower Levi-Civita symbol 

&. 
: The product 

e*= Ig 

is a twisted tensor of type (0,n) 

LENMA Let V be the metric connection -- then we have 

vem= o 

0 

[To discuss e , simply mte that 



Let V be a connection on TM -- then the assignment 

and 



14. 

Let V be the metric connection: 

RijM + RMj + Riejk = 0 

RijU = Qij . 

[Note: Recall too that 

Rijl&;m + Rijh;k + Rijmk;L = 

Example: The Kretschmam curvature invariant kR is, by definition, 

THM)REN Let V be the mt r i c  connection. Fix a p i n t  xOEM and l e t  

1 n x ,..., x be normal coordinates a t  x -- then 0 

Let V be a torsion free connection on TM -- then 

(Lxg) (YIZ)  = (Vxg) (YIZ)  

+ g(V9,Z) + g(Y,VzX). 

In  particular, when V is the metric connection, 

(Lxg) (YIZ)  = g(VyX,Z) + g(Y,VzX). 



Observation: Let v be the metric connection -- then 

= V$X(Y.Z) + V&(Z,Y). 

[Note: Lacally, 

1 1 b 
(v3lb = L ~ ( ~  ~~g + 7 d~ 1. 

Let XCD' (M) -- then X is said to be an infinitesimal isometry if LXg = 0. 

FACT An infinitesimal isometry is necessarily an infiniteshl affine 

transformation. 

Fram the definitions, 



so X is an inf in i tes iml  ismetry iff 

Therefore an infinitesimal isometry is divergence free: 

* 

div X = 0. 

Example: L e t  X be an infinitesimal iscmetry. Put y( = g h  -- then 



Analogously 

Therefore 

Assume now that 

0ydi.k = 0. 

Let 4 = g(X,X)  ( = %(X))  -- then 



C 

It thus follows £ran the Poincare l m  that locally, 

y, = g(X,X)df  (3 f) . 



Section 11 : The Einstein Equation Let M be a connected cm manifold of 

dimension n. Fix a s e m i r i d a n  structure g on M and let vccon TM be the metric 
5.l 

connection. 

1/2 Since 1 g /Ii2 is a s t r i c t l y  p s i t i v e  density of weight 1 such that V / g ( = 0, 

the Ricci tensor Ric is symnetric. 

[Note: To check th i s  using indices, write 

0 ~o ta t ion :  Given a symnetric tensor T C D ~  (M) , define tr (T) C C ~ ( M )  by 

tr (T) = Ti - i j  
i - T j i *  

Example : tr (g) is the cm function on M of constant value n. 

[In fact,  

i j  
t r ( g )  = g gji = €ii = n.] i 

Definition: The scalar curvature S is tr Ric, thus 

or still, 



s = g  %j 
i j k  

j k = R jk' 

Notation: Write 

ab va = g vb. 

LEMMA (The Elmhwntal Identity) W e  have 

1 
0% = Y k S .  

[To begin w i t h  

O = Rijlce;m + RijhPk + Rij&;L 

= V R  m i j k L  + VkRijh + VLRij*. 

T h e r e f o r e  

jL  mi 
0 = 9 9 (P,Rijlce + VkRijh + VLRij*) . 

Now examine each term i n  succession. 

j R  m i  
(1) g g VmRijke 

j R  im, 
= g g ijw 

j l  5 
= 9 v i j M  

i j% 
= v 4 iju 

= Pi.j".,eij 





0 
Notation: G i v e n  a synmetric tensor TED2 (M) , define div T€Dl (M) by 

Scholium: W e  have 

dS = 2div Ric. 

[In fact, 

dSk = akS = VkS. 

On the other hand, 

Let f C C ~ O  (M) -- then 

div (fg) = df . 



[For 

div Ric = div(+g) 

On the other hand, 



Therefore 

Definition: The Einstein tensor Ein is the combination 

1 Ein = F t k  - q Sg. 

0 So, EinED2 (M) is symmetric and one has 

1 
div Ein = div Ric - .Z. div(Sg) 

1 = div Ric - -2- dS 

= 0. 

In addition, 

* 

tr Ein = 

Therefore 

[Note: When n = 4, 



Thus in  this  case, the Einstein tensor and the Ricci tensor each has the same 

formal expression in terms of the other.] 

Remark: Using the symnetries of R, it is easy to  &ow that Ein auto- 

matically vanishes i f  dim M = 2. 

Assume that dim M > 2 -- then M is said to be a vacuum i f  Ein = 0, the 

equation 

E i n  = 0 

being the vacuum field equation of gensral relativity. 

[Note: By the above, M is a vacvum i f f  M is Ricci f l a t ,  i.e., i f f  Ric = 0. 

If dim M = 3,  then Ric = 0 =, R = 0.1 

Notation: In computations, the   in stein tensor is often demted by G. 

Definition: Suppose that n > 1-- then M is said t o  be an Einstein 

manifold i f  3 a constant X such that Ric = X g .  

[Note: Matters are t r iv ia l  when n = 1: In this situation, a l l  M 

are necessarily Einstein. I 

If Ric = kg, then 

Therefore 



Section 12 :  Deccrmposit ion T h e o r y  Let V be an n-dimensional real vector 

space. Suppose that A:V + V is a linear t r a n s f o r m a t i o n  -- then 

where 

and 

Therefore 

Notation: 

Ham(V,V) = Ker  ( t r )  @ - R I .  

R is the set of mltilinear maps 

R : V x V x V x V + R  - 

such t h a t  

m l e :  Let M be a connected cW manifold of dimension n. Fix g€M - and 

let V be the metric connection -- then a t  each x€M, the tensor 

(W, 2 ,X,Y) -+ g (R(X,Y) Z ,W) 

induces a multilinear roap 

satisfying (a) - (d )  . 



1 2 2  
LEbNA R is a rml vector space of dimension n (n -1). 

[Note : Therefore 

n = l * d i m R = O ;  

n = 2 = + d i m R = l ;  

n = 3 = d i m R = 6 ;  

n = 4 =, dim R = 20.1 

Definition: L e t  P,Q:V x V -t - R be symnetric bilinear forms -- then the 

curvature product of P,Q is the tenmr P xc Q of type (0,4) defined by 

P Xc Q(X1tX2tX3tX4) 

- p(x,,x4)Q(X2.X3) - P(X2fx3)Q(XlfX4). 

Obviously, 

P x c Q = Q x c P  

and it is not diff icul t  to check that 

P Xc QER. 

Now f ix  g€M - -- then the prescription 

r: This is themap - 
0 r : R  -+ Sym V2 



defined by 

m e  EEB (V) is orthonoml. 

[Note: rR is independent of the choice of E. 1 

0 Notation: Given TfSym V2, put 

W e  shall then agree to write sR i n  place of tr (rR) , thus 

= ~ r  (E E )  + - - - + ~ r  (E E ) .  
S~ 1 R  1'1 n R  n ' n  

Remark: Let M be a connected cm manifold of dimension n. Fix g€M - and 

l e t  V be the metric connection -- then a t  each x€M, 

s = S (x) . I- Rx 

[By definition, 

where 

Ricx(X,Y) = t r ( Z  -t R(Z,X)Y) . 
So, if {El, ..., En) is an ortbmrmal basis for TXM per gx, then 



And 

LEWA ~t ~ t s y m  V: - then 

r (X,Y) = (n-2)T + t r ( T ) g .  
9 XC T 

[We have 

= (n-2)T(X,Y) + t r (T Ig .1  

[Note: In p a r t i c u l a r ,  

- 1 - - r  1 
= - [ (n-2)g + ng] 

IG 2 g x c g  2 



Elxample: S u p p s e  that n = 2 -- then dim R = 1, hence V RCR, 3 CR€R: - 

R = CRG 

Therefore 

Assume that n > 2 and let R€R -- then 

where, by definition, 

or still, 

o Write Symo V2 for the kernel of 

0 tr:Sym V2 -+ - R. 

Example: V RER, 

1 S - R - -glE Sym V 
0 

n-2 R n o 2' 



Write C for the kernel of 

r : R  -t Sym V 
0 

0 2' 

Example: V RER, CEC. 

[In fact, 

immB There is a direct sum decomposition 

0 R = R ( g x  - g) CHSym V x g @ C .  
C 0 2 c  

[Note: MDre is true in that  the deccenposition is or'daogona 

Remark: If n = 3, then 

But 
1 2 2  dim R = - 3 (3 -1) = 6. 1 2  

Consequently, C is t r ivial ,  thus i n  this case 

Definition: The elements of C are called the Weyl tensors. 

L e t  M be a connected cW manifold of dimension n. Fix g€M - and l e t  V 

the metric connection -- then the preceding considerations can be globalized in 

the obvious way, the key new ingredient being the Weyl tensor (n > 3) : 



I be the metric connection associated with I . 

Then 

N 

C = (PC. 

1 
[Note: Therefore the Weyl tensorI when viewed as an element of D3(M),  

is a conformal invariant. I 



Section 13: Bundle Valued Forms Let M be a connected cm manifold of 

dimension n. Suppose that E -t M is a vector bundle -- then the sections of 

E ~3 A~T*M are the p-forms on M with values in E. 

Notation: Put 

AP (M; E) = sec (E B APT*M) . 
[Note: When p = 0, 

0 A (M;E) = sec(E) . I  

Structurally, 

0 
A ~ ( M ; E )  = A (M;E) (i3 A ~ M ,  

cm (MI 

thus the elements of ~'(M;E) are the c-(M) -multilinear antisymnetric maps 

Remark: If E is a t r iv ia l  vector bundle with fiber V, then 
- 

AP(M;E) is 

the space of pforms on M with values in  V and is denoted by A'(M;v) . 
Example: Let 

be a principal bundle w i t h  structure group G (which we shall take to be a L i e  

group). Let p be a representation of G on a real  f in i te  dimensional vector 

space V -- then a pform 

is said to be of type p i f  

-1 (Ro)*a= p(o ) a  V aEG. 



Write 

for the space of pforms on P of type p and l e t  E be the vector bundle 

Then thexe is a canonical one-im-one correspondence 

Suppose that E + M is a vector bundle. Let V be a connection on E -- then 
V gives r i se  to  an R - l i n e a r  - map 

0 1 
V:A (M;E) -t A (M;E) 

such that 

viz . 
v s  (X) = v p  

Conversely, every - R - l i n e a r  map 

determines a connection on E. Thus l e t  X C D ~  (M) -- then X induces a c-(M) -linear 

rmp w A -+ C )  , hence there is an arrow X 



call it EVx. This said, the definitions then inply that the mmpsite 

defines an operator 

Vx:sec (E) - sec (E) 

with the properties required of a connection. 

Let f:M1 -t M be a mth map and suppose that E -t M is a vector bundle -- 
then there is a pullback square 

and arrows 

which can be tensored to give an arruw 

Let V be a connection on E -- then there exists a unique connection 

V '  on E' such that the diagram 



The constructions E*, E €9 FI and Hom(E,F) can be exterded to constructions 

on vector bundles equipped w i t h  a connection. 

V*: Let V be a connection on E -- then V induces a connection V* on E* - 

0 0 with the property that V s€.A (M;E) & V s* €A (M;E*) , 

this being an equality of elements of A%. 

[Note: Since 

0 
A (M;E*) = Hom 

0 
(A (M;E) , cm (M) ) , 

cW (MI 

it follows that there is a nonsingular pairing 

viz. evaluation. 

0 0 
( , ) : A (M;E) x A (M;E*) +c- (M) ,  

Analogously, there are nonsingular pairings 

VE PO OF: If V is a connection on E and VF is a connection on F, then E 

vE @ vF is the connection on E @ F defined by 



1 [Note: The tensor products on the r igh t  are elesnents of A (M;E @ F ) .  For 

' H ~ ~ ( E , F )  
: L e t  VE be a connection on E and let VF be a connection on F -- 

Men the @ r ( V E , V F )  induces a connection V Hm(E,F) 
on Hom (E ,F) with the property 

= (d)IvEs) + (vHm(E,F) +Is)  I 

1 
this being an equality of elements of A (M;F) . 

[Note: F i r s t ,  there is a nonsingular pairing 

Second, there is a mnsingular pairing 

Rg0aTk: U n d e r  the identification E t-t E**, we have V * V**, and under 

the identification E* 8 F ++ Hom(E,F), we have BE, 8 F  - 8  Hm(E,F) ' 



FNX A connection v on E induces a connection V on A% such that 
h 

V = V and 
A% 

k 
vx(snt) = vxsnt + (-1) snvl(t, 

where s~sec (A%) , t~sec (A%) . 
[Note: We have 

sec (A%) = Aksec (E) . I  

0 Let V1,V2 be connections on E -- then V f€Cm(~) & \I sfA (M;E), 

(vl - V2) (fs) = f(V1 - V2)s. 
Therefore 

V1 - V2€Hm (A 0 (M; E) , A 1 (M;E) ) . 
Cm (MI 

On the other hand, 

= Ham 0 0 
(A (M;E) , A (M;E) PD Ah) 

cm (M) cm (M) 

So, under this identification, 

Conversely, if !?€AL (M; H m  (E ,E) ) , then for any connection V , V + I' is again a 

connection. 



Let con E stand for the set of connections on E. 

1 
Scblium: con E is an affine space with translation group A (M;Ham(E,E)). 

[The action V-r = V + I' is free and 

Reality Check Take E = TlvI -- then 

A'(M;H~~(TM,TM) 

transitive. 1 

P- Suppose that E = El 63 E2 -- then there are canonical 
arrows 

I- con E + con E2 

viz . 



Let E -t M, F -+ M be vector bundles -- then there is a CW(M) -bilinear product 

which is characterized by the condition 

( s @ a ) A ( t @ $ )  = ( s @ t )  @ (aA$). 

[Note: W e  have 

and 

0 0 A (M; E B F) = A (M; E) C3 
0 

A (M;F) . 
C* (MI 

0 Therefore s 69 t is an elanent of A (M;E @ F) .I 

Example: Take F = E = M x - R, the t r iv ia l  l ine bundle -- then 

Since 

and E 8 E = E, it follows that 

sAa = s 63 a 

in AP(M;E) . 
Suppose that E -+ M is a vector bundle. Given vfcon E, l e t  

be the - R-linear operator defined by the rule 



[Note: Recall that vs€A1 (M;E) . Now view a€AP!!l as  an element of AP(M; E ) -- 

~t is easy to check that dv = v h e n  p = 0. 

= dv(s  9 a)ng + (-llP(s 8 a)~dp.I  

[Mte: This, of course, is an equality of eletwts in A*" (M: E) .I  

P Eample: Take E = 6, so Y p, A (M:e) = APM. Consider the m p  

I - f --+ df. 

v 
Then d is a connection V and d is the usual exterior differentiation. 

FACT Let E -+ M, F + M be vector bundles -- then there is an R-linear map - 



Suppose that E is a vector bundle and let V be a connection on E -- then 

there is a sequence 

which, in general, is not a c a p l e u  since it need not be t rue  that dv o v = 0 

v (likewise for  dV 0 d ) . 
v 0 2 Put F' = dv 0 V -- then F is a map from A (M;E) to A (M;E) ard is 

C" (M) -linear. Indeed, 

V = d V ( s  69 df)  + d ( ~ V S )  

= f (dV 0 V ( S ) ) .  

On the other hand, 



2 
= A ( M ; H ~ ~ ( E , E )  ) . 

D e f i n i t i o n :  The curvature of V is 

V 2 F EA ( M ; H ~ ( E ,  E) . 
L e t  s @ a€AP(M;E) -- then 

v 
= F ( s ) ~ a .  

Therefore 

0 V I dv 2 dV 
0 -t A (M;E) -t A (M;E) -+ A (P4;E) -t 

v is a complex provided F = 0. 

LI3WR W e  have 

V v d F  = 0 ,  

v where d is associated w i t h  Vm (E, . 
2 0 

[ V + € A  (M;Hom(E,E)) & V SEA (M;E), 



3 
this being an equality of elanents of A (M:E). Take 4 = -- then 

v v v v (d F ,s) = d (F ,s) - (FVfVS) 

= dV 0 (dv o Vs) - (dV o dV) 0 Vs 

R(X.Y) = Vx 0 Vy - Vy 0 Vx - * [XIYI 
Then 

0 0 
R(XfY) :A (M;E) -+ A (M;E) 

mme is also an a r m  ev :A% -+ c~(M) which can be tensored over c-(M) 
XIY 

0 
w i t h  A (M; Ham(E,E) ) to give an arrow 

Put 



F' = R ( X r Y ) .  
x r  y 

Define L~ on A ~ ( M ; E )  (p > 0) by 

r X ( s  €3 a )  = s O L a. 
X 

0 [Note: Take L~ = 0 on A (M;E) . I  

1 0 LEMMA Let  X,YEV (M) -- then V SEA (M;E) ,  

Reality Check Take E = 6 -- then d2 = 0 and Y f C C ~ ( P O ,  

= 0. 

Remark: The lerrnrra is merely a r e s t a tma t  of the fact that 

Rappel: In the exterior algebra A*M, 



l\ilotivated by this, given vccon E, put 

thus 

= t x V s  = v s  (X) = Vxs.l 

FACT We have 

Specialize now to the vector bundle 

Then the elgnents of 

are the cW (M) -multilinear antisymnetric maps 

[Note: B e a r  in mind that 

A 1 ;  M ) = z$ (M) . I 
9 

Rmark: Working locally, each aCAk (M:TP(M) ) defines a k-form 
9 



these being the cc~nponents of a. 

Let V be a connection on 'IM -- then V induces a connection on (N) , which 
q 

again will be denoted by V. Accordingly, there is an - R - l i n e a r  operator 

with the property that 

[Note: Here, 

@ p(xO(k+l) r-**fXO(k+l)) 

0 Example: Take p = q = 0 -- then DO (M) = c~(M) ard 

nk (M;c" (MI ) = A%. 

In th is  situation, dv = d, hence is the same for all V. 

Example: -t TcD~; (MI -- then 



[Note: Recall that, in general, i f  E -+ M is a vector burdle, then for any 

0 v QEcon El on A (M;E), V = d .I 



Section 14: The Structural Equations Let M be a connected cW manifold 

of dimension n. 

Assume: M is parallelizable, i.e., that the frame bundle LM is trivial. 

[Note : Accordingly, 

thus L&l has tm components, hence M is orientable.] 

Therefore LM admits 

[Note: A frame E = 

d u l e  over coo (MI ) . The 

global sections, these being the £rams. 

1 E l  . . . , E l  is, by definition, a basis for D (M) (as a 

1 associated coframe is the set w = {a , . . . , $1, where 

the 1-£0- 2 are characterized by mi (E . )  = gi 1 
j 

So, t! XED (M), we have 
7 

Remark: The canpnents of a tensor TE@(M) relative to a frame arise i n  
'I 

exactly the same way as for a coordinate system. 1.e.: 

where 

i Let  V be a connection on TM -- then its connection 1-forms w are defined 
j 

by the r e q u i r m t  

Agreeing to l e t  



it follows that 

1 
Given X€Z> (M) , wri te  

Then 

i - 
Va = w QD (da 

k 
i - % w i ) .  

Definition: L e t  V€con TM. 

(T) The torsion forms oi of V are defined by 

i 
T(X,Y) = 0 (X,Y)Ei. 

(R) The curvature forms 8i of V are defined by 
j 

THM)m4 (The S t r u c t u r a l  Equations) W e  have 



[Consider the f i r s t  relation. Thus 

j i + {a' (Y) oij (X) - o (X) o . (Y) }Ei 
3 

Consider the second relation. Thus 

i i = {& (Y) - yoi. (X) - o ([X,Y]) }Ei 
J j 

Remark: If V is torsion free, then 

i i j  do = - a  
jAW 

[Note: Put 



Then in the presence of zero torsion, 

FACT Suppose that V is torsion free -- then V a € d p ~ ,  

Write 

Then the ci are the objects of anholonomity. 
j k 

[mte: Their transformation behavior is nontensorial.] 

Observation: W e  have 

- i 
- - jkEi. 

There is an expansion 



There is an expansion 

[Note: By definition, 

Then 



The Ric. ( j  = 1,. ..,n) are called the Ricci l-forms, Obviously, 
3 

but, i n  general, Rji # Rij. 



Section 15 : Transition Formalities Let M be a connected cW manifold of 

dimension n. 

Rappel: There is a one-to-one correspondence 

between the connections l? on the frame bundle 

GL(n,E) + ~4 - 
4- l-l 

M 

and the connections v on the tangent bundle 

Assume now that M is parallelizable. Fix a frame E = {E ..., En} and let 1' 

s:M + LM be the section thereby determined, thus V xCM, 

is a basis for TxM. 

FACT. Fix x€M and let cx:~" - + TxM be the norsingular linear transformation 

(al,. . . ,an) + a E + 
1 ilx + "nEn/x* 

1 Suppose that X,YEV (MI -- then 

i + (XY )(x)Eilx. 

1 
The correspondence l? t. + s * ~  identifies con IM with .A (#;gL(n.g) - 1. 



1 
And each V €con TM gives rise to an elenent %€A (M: - gl (n, g) ) , viz . 

i 
0 = [a j l .  v 

0 =s*y. 
vr 

[By definition, 

On the other hand, 

Here 

and 

But 

* 

Therefore 



In fact, 

Definition: A gauge tsansfomtion is a cm map 

Notation: - GAU is the set of gauge transformations. 

With respect ~ pintwise operations, - GAU is a group and there is a right 

action 

where 

Let VEcon TM - then under a change of frame 



the matr ix  

[Note: The products are matrix products aM3 dg is the entrywise exterior 

derivative of g:M + GL(n,R) .I  - - 

Remark: The transformation property of !J is simpler, viz. v 

-1 
R v + g  Rvg ( g F E ) ) .  

[Invoke the lama and observe that 

-1 dl(dg) = - dg .I 

In matrix notation, the relation 

i 
V 3 j  = w (XI Ei 

j 

can be written 



So, V gEGAU, - 

Let v be a connection on TM and consider the - R - l i n e a r  operator 

Then V ~ € A ~ ( M ; @ ( M ) ) ,  one has 
9 

In what follows, use matrix mtation. 

Example: 

(1) Take p = 1, q = 0 -- then 

( 2 )  Take p = 1, q = 1 -- then 



TtE oic*% are the components of an el-t 

1 Explicated: V XED (MI , 

Analogously, the 

are the conpnents of an el-t 

1 1  Example: The mi. ~3% are not the compnents of an elenent o CA (M;T1(M) ) . 
3 V 



Replacing E by E0g changes T~ to 
j 

But this tensor transformation rule is laot satisfied by o since v 

o  V + g-lovg + didg. 1 

v d a: W e  have - 

dvw = do + w Ao v 

v d Ov: W e  have 

= d (dw + a$w) + ovA (do + ovAo) 

= doVAo - w Ado + o Ado + o g A r n V h o  v v 



dVnv: W e  have 

= dw Aw - w Ado + o Ad v V v v v v v 

Remark: The symbol QV has two meanings, namely as an element of 

Of course, if $2 is viewed in the second sense, viz. as a map v 

then, u p n  taking cmpnents,  QV reappears in the first sense as a matrix, 

viz. v X,Y&M) , 



Sumnary: 

U m u n d ,  the relation 

U m u n d ,  the relation 

becomes 

Let aQlk (M; % (M) ) -- then 

So, when R = 0, 

dV 0 dV = 0. 



Section 16: Metric Considerations L e t  M be a connected cm manifold of 

dimension n. Fix a sanirierrardan structure gF% , n-k' 

Assume: The orthonormal frame bundle Ud(g) is t r iv ia l .  

Therefore LM(g) admits global sections, these being the orthonormal frames. 

Example: If M is parallelizable and i f  E = {E,, ..., E_) is a frame, then 

the prescription 

defines a sariximamian structure gEC$,n-k having E as an ortbnormal frame. 

And 

for a l l  

Suppose that E = {El, ..., E } is an orthonormal frame. Put n 

E = g ( E  E ) .  i if i 

Then 

n 
[Note: L e t  o = 12 ,..., a } be the associated mframe -- then 

Example: L e t  XED' (M) -- then Q VFmn IM, 



[To see this, recall that 

or still, 

On the other hand, 

 ema ark: To lower or raise an index i of a component of a tensor TE$(M), 
q 

one has only to multiply by ci. E . g . : If T€$ (M) , then 



Fix VEcon TM. 
g 

UNMA We have 

i j 
= & . L O  (X) + e . o  . ( X )  (no sum).] 

1 j I 1 

[Note: If E = (El, ..., E ) is an arbitrary frame, then n 

In particular: 

LlW4A We have 

[In fact, 



2 i i k  
= ( & . & . )  [dm +okAO .I =s? I 

11  j I j ' 

In particular: 

i B i = o .  

Scholium: L e t  E = (El, ..., En} be an orthonorm1 frame. Suppose that V is 

a g-connection -- then 
1 

ov €A (M; - so (k, n-k) 

and 

2 
Q,€A (M;so(k,n-k)) - . 

[This is jus t  a restatement of the fac t  that 

i - 
0 - -  
j 

j (no s m )  E . E  .o 1 1  i 

and 

Assume now that V is the metric connection -- then, since V has zero torsion, 

l2mn W e  have 

1 i j k f = - . . ( C . ~ ~ ( E ~ , % )  + E . ~ u ( % , E ~ )  - E ~ ~ ~ ( E ~ , E . ) ) .  kj 2 1 1  I 3  



[Obviously, 

s 

i i i cido (Ejt$) = - E o (E.)  + cia ( ) .  i k l  j 5 

Next, cyclically permute i , j , k  and use the relations developed above to get  

Repeating the procedure then gives 

Now subtract the l a s t  equation fm the sum of the f i r s t  t m . 1  
i 

[Note: It follows that the connection 1-forms o are the unique 1-forms 
j 

satisfying 

i i 
do + w .no' = 0 

3 
and 

2 = -  
j 

E . e . o  j (no-).] 
11 i 

Remark: In the RHS of this formula, the indices i , j , k  are not - surrsned! 

L e t  E = {EII..erE } be an arbitrary frame. n 

Notation: W r i t e  



Then 

FACT We have 

1 i ib a i b a  
rikj = T (- k j  + gjag C kb + g k s  C jb) 

Reality Check If the frame is orthonormal, then the second term vanishes 

leavhg 

Therefore 

or still, 



as desired. 

Remark: 

Take i =  k-- then 

- - - Ciij. 

Take i = j -- then 



Section 17: SuhTlanifolds Le t  M be a connected coo manifold of dimension 

n, ZCM an embedded connected s-fold of dimension d, i : ~  + M  the inclusion. 

Fix a sesnirig~nnian structure g on M. 

- 
Assumption: g i*g is a sernFriemannian structure on Z. 

So, Y XCZ, gx I T ~ Z  is nondegenerate and 

In the category of vector bundles, there is a pullback square 

and a s p l i t  short exact sequence 

where TZ' is the normal bundle of Z. 

Definition: A vector f ield along Z is a section of i*TM, i.e., a mth 

map X:Z -t TM such that the triangle 

Notation: D' (Z :M) stands for the set of vector f ields along Z . 
1 

[Note :  Q (Z:M) is a rrcdule over crn(z) . F'urth-re, there is an arm 



of restr ict ion 

arad an arrow of 

L e t  

be the projections, so V x € v ~ ( Z : M ) ,  

X = t a n X + n o r X ,  

[Note: Both tan and nor are  C-(2) -linear. I 

Rappel: Let V be a connection on TM -- then V induces a connection i * ~  

on i*TM, i.e., a map 

I- 1 1 
~ ' ( 2 )  x D (Z:M) + D (Z:M) 

w i t h  the usual properties, 

LFMW The assigrrment 

(V,W) ----+ tan i*V? I - 
defines a connection 7 on n. 



Definition: The function 

1 1 1 nv:D (z) x D (z) - D (z)' 
given by the rule 

IIv(vIw) = nor i*VvW 

is called the shape tensor. 

[mte: Tiv is cm ( 2 )  -bilinear. To see this,  observe f i r s t  

is cW(z)-linear i n  V, hence so is nV. On the other hand, 

i*$(fw) = (Vf)W + f ifV$. 

thus 

nv (v,fW) = nor i*Vv(fW) 

= nor (fi*V$J) 

= f nor (i*V#) = mV (V,W) .I  

1 
LEMMA If V is torsion free, then \y' V,W€D (Z) ,  

i*V# - i*VwV = [V,W]. 

Since 



it follows that i f  V is torsion free, then is also torsion free and nV is 

symuetric . 

1 1 LEMMA Suppose that VEcon TM -- then W VED (z) , tl X,YED (Z:M), 
g 

Application: W e  have 

VEcon TM =, %con TZ. 
9 - 

g 

Therefore, i f  V is the metric connection associated w i t h  g, then 7 is the 

metric connection associated with 7. 

LEMMA The assignment 

I defines a connection V' on TZ . 

1 Given NED (z)', write 

i*v$ = tan i*v$ + mr i*V$ 

or still, 

where 



Therefore, as e l m t s  of Dl (Z) , 



1.e.: SN is selfadjoint. 

1 1 
Let vccon TM be arbitrary -- then V V1,V2€D ( 2 )  & V WCD ( 2 )  



W r i t e  

and 

Therefore 



+ nv (T(V~,V~) rW) . 
Corollaries . Suppse that VCcon TM -- then V W ~ , W ~ € #  (7,) , 

4 

1 1 
Let Vccon TM be arbitrary -- then V V1,V2ED (Z) V NCD (z) ', 



where, by definition, 

Corollaries 

1 I S u p s e  that V€mn TM -- then V N1,N2EZ) (Z) r 
g 



1 
0 Suppose that Vcwn TM -- then V WED ( 2 )  , 

53 



Section 18: Extrinsic Curvature L e t  M be a oonnected cm manifold of 

dimension n. Maintaining the assumptions and mtat ion of the previous section, 

specialize and take for Z a hypersurface (thus d = n-1) -- then the fibers of 

TZ' are 1-dhasional  and there are just tm possibilities: 

I 
Definition: A unit normal to Z is a section - n:Z -t TZ such that 

Assumption: Z admits a un i t  normal. 

3 [Note: - n always exists locally but the Mbius s t r i p  i n  - R shows that - n 

need not exist  globally.] 

Criterion If M is orientable, then Z is orientable i f f  2 admits a unit  

normal. 

Definition: Let Vfcon Tbf -- then the extrinsic curvature of the pair 

0 V is the tensor xgEV2(Z) given by the rule 

[Wte: xv depends on - n (replacing - n by -n - changes the sign of xv) .I 

Resnark: I f  V is torsion free, thenll is symwtric, thus so is x v v ' 

I 
IJiFMA Suppose that -- then Vp - = 0, hence 



[This is because 

Let VEcon TM - then 
53 

V vcvl (2) 1 

Put 

To simplify, a t  this p i n t  we shall  assume that  3 an orthonorm1 frame 

{EO.E1, . . . ,En - such that V xCZ, E . . . , E n  1 J is an orthomrmal basis for 

TxZ and SO l x  = T ~ Z ~ .  

[Wte: In what follows, - n = ~ ~ 1 2 . 1  

Notation: Indices a,b,c run from 1 to n-1. 

Agreeing to use an overbar for pullback to 2, let VEcon -- then 
g 



Then 

- - - -b 
E E W  ( E l  Ob 0 a 

-b -b -a 
w O = W  ( E ) w  0 a 

- - - -a 
& E X  0babw 

* 

-0 - -b - -a 
" b - -  C E O  Ob O - X a b O '  

Remark: Suppose that v is the metric connection associated with g -- then 

-0 &, = -  ;o ,,;a = 0 
a 

=$ 

;O (V) ;a (W) = ;O (W) ;a (V) . a a 

Therefore 

xv (VfW) = E0& V,W 
Eo 

-b 
= - (w)Eb) 

- - - E E ;a (v) Ga(w) 
Oa 0 

= ;O (V) ;a (W) a 



= x, WIV) I 

which confirms what we already knaw to be the case. 

[Note: Similar considerations imply that  the tensor 

(VIW, - z Z o ( V )  gdo (W) 
a 

is s p t r i c . ]  

In anticipation of l a te r  developoents, ass- henceforth that g T I n - l  - 
and g 0 

Let 

0 

w 

(SO E~ = - l I ca  = 

VEcon TM -- then 
4 

[Note: The Zab are the connection 1-forms of 7 but the Eab are not the 

curvature forms of V, these being the (n-1) ,a 
b'l 

Suppose now that V is the metric connection associated with g (thus 7 is 

the metric connection associated w i t h  ;?) . 
LRt G be the Einstein tensor -- then 



[The second relation is trivial.  To check the first, note that 

- 1 
Goo - Roo - - 4 S 

2 00 

- - 2 1 Roo + 2 1 ZRaa. 

a 

On the other hand, 

And 

But 

0 - b 
bob - - 'O'bR OOb 

- b 
- OOb 



Therefore 

0 b 
- ZR bob = ObO b 

- 0 b 
- 000 + ObO 

= Goo.] 

- 0 
Set q = g and given qmmetric tensors T, S€P2 (z)  , put 

0 ab 
[T,Slq = q121 (T,S) = T S*. 

In  particular: 

0 
Observation: If T E D ~ ( z )  is symetric, then 

[Note : S (q) is the scalar curvature of q. ] 



To begin with, 

or still, 

From the definitions, 

Turning to the fonrolla for coa, write 



We have 



We have 

minus 

Since x is syrrunetric, v 

But 



or still, 



Section 19: Hdge Conventions Let M be a connect& cm manifold of 

dimension n. 

Rappel: If cp is a density of weight 1, i.e., i f  cp is a section of the 

density line bundle Lden(M) -+ M, then one can associate w i t h  q a Radon 

measure m : 
cP 

Let g €M - -- then 1 g 1 'I2 is a density of weight 1, from which rn 
lg 11/2' 

Assunvt now thatM is orientable with orientation y -- then there is a unique 

n-form wl €A% such that Y xCM and every oriented orthomrmal basis for TxMI 
g 

vol (E ,...,E 1 = 1. 
glx 1 n 

1 n 
[Note: In a connected open set UCM equipped w i t h  coordinates x ,...,x 

consistent w i t h  p, i.e., such that 

we have 

1/2 1 ,, vol = 1CJ1 dX ... A ax".] 
g 

Remark: Let z be a hypersurface (subject to the standing assumption 

that g is a semiriernannian structure on 2 ) .  Suppose that Z admits a un i t  norm1 

n -- then the pair (p,n) determines an orientation 'I of 2 and 
d - 



Let XE+(M) -- then 

LXvol = (div X)vol 
g g ' 

[Wrking locally,  w e  have 

= (div X) vol .I 
g 

[Note: By contrast, 

VXvol = 0 
g 

i f  V is the metric connection. Proof: 

ox( 191 A . . . A dx") 



Application: Suppose that  X has rompact support -- then 

.f (div X) vol = 0. 
M g 

[In fact,  

J (div X) wl = 1 pl 
M g M g  

But c vol is a compactly supported (n-1)-form, hence x 9 

I d ( L ~ V O ~  ) = 0 
M  g 

by Sbkes4 theorem. I 

0 = .f div ( fX) vol = J (Xf + f (div X) ) vol 
M g M 9' 

or, in index rotation, 

Example ( Y a m ' s  Formula): Working w i t h  the metric connection, l e t  



= R . x k l  = R i c  (X,X) . 
a1 

In the relation 

div(fX) = fdiv X + X£, 

take f = div X to get 

2 
div ( (div X) X) = (div X) + X (div X) 

2 
= (div X) + d(div X) (X) . 

i 
Since div X = Xii, it follavs that 

d (div X) (X) = 
; i ;a-  

Therefore 

R i c  (X,X) = x % ~  ;a; i  - d (div X) (X) 



or still, 

Ric (X ,X) - ( d i v  X) 
2 

= - div ( ( d i v  X) X) . ;a; i 

W r i t e  

and then note that 

Therefore 

Ric (X,X) - ( d i v  X) 
2 

= div ( ~ $ 1  - ( v i e )  (vaxi) - div ( ( d i v  X) X) . 



Ric (X,X) - (div X) + ( v i p )  ( v  a 2) 

= div ( V s )  - div ( (div X) X) . 
To understand the term 

(vie) (0~2) 1 

1 recall that VX€Q1(M) or, equivalently, 

thus 

Claim: 

equals 

Indeed 



So, i f  X has ccgnpact support, then 

Renark: We have 

= c ( v j 2  + 0'24) (V.X. + V.X.)  
i, j 1 1  1 1  

= z ( v j x i )  (VjXi) + z (v+) (V.X. ,  
i, j i , j  1 3 

* F r o m  the definitions, 



1 
g $1 (vx, 0x1 = (vx) i j  (,) ij 

= cvjX=, ( V  .X. ) . 
7 1  

Fram the definitions, 

( v i A  (v I 2) 

= vmgj\v.xi 1 3 

= v i x g j k o  3 .Xi 

Therefore 

FACT We have 

[Observe that 



The material in Section 3 can be applied to the t r iple  (MIgI P) pointwise I 

hence need not be repeated here. 

This said, consider the star operator 

* (div X) = (div X) vol = LXvd 
g g ' 

IXMMA L e t  V be the mtric connection -- then V ~ € 9  (M) , the diagram 

APM 2 An-', 

comrrutes . 
[Fix p€.APM -- then V a€APMr 



Definition: The interior derivative 

[ ~ o t e :  Therefore 6f = o ( f (MI ) . I  

Observation: 6 0 6 = 0. 

[This is because * 0 * = 21 and d o d = 0.1 



Example: Take M = - -- then 

SO in this case, 

6a  = *d*a. 

Remark: The a c t a i o r  derivative d does rot depend on g. By contrast, 

the interior derivative 6 depends on g (and p) . 
Notation: W r i t e  AEM for the spice of ccarrpactly supported pforms on 

M and put 

Definition: A linear operator A : A ~  -+ A 9  is said to admit an adjoint 

i f  3 a linear operator A* : A ~ M  -+ A'M such that V a, a ' €A>, 
C 

c Aa,af 7 = < a,A*af 7 
g ' 

Ekample: Le t  V be the metric connection -- then V a,af€AP, 

Xg(a,af) = g(VXa,af) + g(a,VXat) . 
On the other hand, 



= c a, - VXaV - (div X)a' > 
9 ' 

Accordingly, Ox admits an adjoint, namely 

* - VX - - OX - div X. 

T h e r e f o r e  

g(da,P)volg - g(at6$)volg 

And, by Stokes' theorem, 

£ r a n  which the result. I 



Example: The Lie derivative %:A% + $34 admits an adjoint. Thus put 

b E x = g X A  - . 
Then 

c L a,al 7 = I g(LXa,a')ml X  M g 

* 
L X = 6 0 ~ X + ~  0 6 .  X  

[Note: Up to a sign, the composite 

* p-P+l =z ,n-P *P A p - I  + 



is E 'Ib see this, let B€.Apb -- then 
X ' 

1 
LEMMA L e t  XED (M) -- then 

div X = - &x. 

[In fact, V f C C ~  (MI , 



div x = - 6gbx.] 

Consequently, if a€Vl(M) ,  then locally 

b 6a = Sg X = - div X 

To generalize this, let ~ E A ~ ~ I  (p > 1) -- then locally 



hence 

So, £ran the definitions, V $ €.Ap%, 



But 

is a divergence, hence integrates to 

Restated, these considerations 

N 

zero. Therefore p = 6p. 

lead to the conclusion that locally, 

FACT V f (M) , - 

6(fa) = - tdfa + f6a. 

Recall m w  that 

A = div 0 grad 

= div o g# o d. 

Therefore 

or still, 



Definition: The laplacian 

A :A%I -+ APM 

is 

A = - (d 0 6 + 6 0 dl .  

Properties: (1) A = A*; (2) d 0 A = A 0 d; (3)  6 o A = A o 6; 

(4) * o  A = A o * .  

FACT Let f €cm (M) , ~EA'M -- then 

A(fa) = (Af)a + f(Aa) + 2Qgrad £a. 

[Note: On functions, 

A(flf2) = (Afl)f2 + f l ( A f 2 )  + 2g(grad fl,grad f2)  .I 

Definition: The connection ladacian 

[Note: In other mrds,  

which makes it clear that A,, is a metric contraction of v%. 1 



0 
on A M but, in general, A # Aoon on AP14 (p > 0) . 

To understand th i s ,  let ~CA'M (p > 0) -- then 

( A d  il--ip = - [ (dFa) . + (Fda) 1 
il* -P 1- . ' lp  

R a p 1  : Thanks to the Ricci identity, 



or still, 

Therefore 



[Note: This is the so-called Weitzenboeck formula.] 

Example: Take p = 1 -- then 

Since the Ricci tensor is given by 

we have 

But 

Therefore 

i 
(Aa) = V ~ V  a - R. a,. 

j a j I 1 

FACT On forms of degree n, A = Aeon. 



Section 20 : Star Fomlae  Let M be a connected coo manifold of dimension 

n, which we shall take to be orientable with orientation l ~ .  Fix a senniriemannian 

structure g on Mc. 

Assume: The orthonormal frame bundle Ill (g) is trivial .  

Suppse that E = &,...,En1 is an oriented frame (not necessarily ortho- 

norrml) . Let o = {a1,. . . ,on} be its associated coframe -- then 

or still, 

where 

Rappel: The star operator is the i m r p h i m  

given by 

*a = t,ml 
g ' 

Theref ore 

Another point to bear in mind is that 

i i 
*(a  A ... n o P) 

[Note: If E is orthonormal, then Ig 



- - 1 
& . . .Ei  Ci . .i o n ... A w .] (n-p) ! il p 1 p p + l 0 * * j n  

m@n Assume: p 7  1 -- then 
i i 

P ( p - l ) S ( a l ~  ... n o  

[We have 



B u t  

a 
Write wi = giaw -- then 

Therefore 



Since in general 

it thus follows that 

Remark: In principle, the levrma allows one to ccanpute 

by iteration provided that p > 1. A s  for p = 1, 

i j 
= - div g E 

j 



So, i f  E is orthonormal, then 

- - - - eiCi (no sum) 

m l e :  Take p = 2 and suppose that E is orthomrmal -- then 

or still, 
i i 1 2  

i i il i2 
6(o A ) = C 2 0 1 - C  o 

i i 
1 2  + (-1) (doi" (a Aco ) ) . 

W r i t e  

do. = €.do i 
1 1 

Then 



x det I 

Therefore 

[ ~ t e :  =fine C- functions da by 



Then the preceding considerations enable one to express 

LEMMA Let V be a connection on TM -- then 

[Note: The connection 1-forms of V per E are given by 

and one writes 

Recall too that 

ij jki 
o = g  wk. 

To establish this result, it will be convenient to divide the analysis 



into t w o  parts. 

S u p p o s e  first that E is orthonormal -- then 
i i 

P d * ( w  A ... A o ) 

- - 1 
E " * E  E . d ( w  

j n 
i i ...i j ... A w ) 

(n-p) ! il 1 pptl"'3n 

i i 
P = d w a k  ( o  A . . . A o "aa) 

a b  i 
= ( 0 " - o b  

i i 
= (o A . . . A o 'noa) 

a b  i - o bAco A* (w 
i 

A . . . A w 'noa) . 
B u t  

Agreeing to write 

b a 
W = & E m  a a b  b (n0 sum), 

it then follows that 



Since dg* = 0 and 

i 
o = & a  a a (no m) 

this formula is equivalent to that of the l e ~ r m a  (when specialized to an oriented 

orthonormal frame). 

[Note: If VCcon TM, then 
9 

b 
(f, = -  a 

E E O  a b  b (no sum). a 

Therefore 

In addition, 



SO, in this case, 

i i i i i i 
2 p-1 a -olA*(oaAo A ... A m P )  - a - * - o P A * ( o 1 h  ... Ao A w ) .  

a a 

fbreover, the torsion term drops out if V is actually the metric connection.] 

To handle an arbitrary oriented frame, it suffices to consider 

where, as above, E = (E,, ..., Em) is o ~ n o r m a l  a d  

i s  mth, thus 

Now write 

- 



where 

Rappel: Under a change of basis E -t 6, the connection 1-forms compute as 

Consider the torsion term: 

From the definitions, 



And 

Therefore 

A i a 
j b i a '  gjb = A  A ' 

SUBLEMMA We have 

[In fact, 



Therefore 

Next, consider 

Since the treatment of each term is the saxre (up to notation), it suffices to 

deal w i t h  



or still, 

or still, 

We have 

And 



Finally 

3, 
Retaining the differential dg , the claim then is that 

But this is clear: 



It remains to consider 

or still, 

To proceed fran here, simply observe that 

1 4 3  - 
=;j - 3 g  dg*. 

j 



 ema ark: Let VCcon PI -- then in an arbitrary oriented f ram, 
g  

i i 
d*(a A ... A a ') 

[To see this, recall that 

There are then Ism pints: 

ai 1 ai 
Proof: a g * = g d  

1 

ai 1 i a 1 
d9 9, = dg gab 



1 ab 
Proof: - 2 g  dg* 

- - - -  1 b  a a 2 [ ~ ~ + a ~ l  = -  f-0 a -1 

Suppose that E is an oriented orthomrmal f r m  and take for  V the metric 

connection. 

i j i LEMMA Put o = e . w  (m sum) -- then 
3 j 

i j j i 
oij = (-1) % [*do A o  - *do A o  

k k  i j  
( - 1  Zek* (do A o  ) A o  A o  I .  + Z  k 

Since 

we have 



Therefore, i n  t e r m s  of the interior product, 

B u t  

k k  
( d o  A o  ) (E E X) 

i' jf 

k k 
ckdo (EifE.)w (X) 

3 

k k 
Zekdo (Ei,E .)a (X) 
k 3 

i j k k  
= - cido (E X) + &.do (Ei,X) + Zck(dw A o  ) (EirE X). 

j ' I k j ' 

From this, it follows that 

1 k k  
do' - - % L ~ ,  L~ ( d o  A o  ) ) . 

3 i 

Rappel : v x ~ p l  (MI , Y a C A ~ M ,  



Then 

[Note:  Because it is a question of an ortbmrmal basis, 

Let 

Then 



k k  k k  i 
(do A a  ) = (-1) ' (-1) "-I* (* (do Am ) Asia ) . 

Now put 

Since fl is a 2-form, 

However 

Thus 

k k  i j 
= (-1) ' (-1) n-l(-l) (-1) L* (* (do AW ) Asia As .o ) I 

Putting everything together then gives 



as asserted. 



Section 21: Metric Cancornitants L e t  M be a connected cm manifold of 

dimension n. 

Notation: 

are charts with tTf~#fl such tha t  

[Note: In th i s  section (as w e l l  as  sane others to follow), it w i l l  be 

m r e  convenient to use bars rather than primes to designate a generic coordinate 

change. 1 

Put 

Then 

Assume now thatM is orientable -- then the set C of coordinate systems 
+ 

on subsets of M sp l i t s  as a disjoint union C+UC- such that within C or  C- one 

always ' has 

i J = det[J kl > 0. 



Definition: A semitensor of type (p,q) and weight w is an entity 

satisfying this condition within either C+ or  C- , i. e. , for coordinate changes 

subject to J > 0. 

If w-s@(M) is the set of such, then 
4 

[Note: The tensor transformation rule  for the sections of T'(Y) 63 L ~ ( M )  
9 

W 
involves I J I , while the tensor transformation rule  for the sections 

T' (MI @ L:= (M) involves sgn J- I J I W. Thus, i n  ei ther case, a generic 
9 

J. 

of 

section 

is a semitensor of type (p,q) and weight w. For example, i f  g€M, - then 

- 
e *  

are semitensors of type 
e g  - 

Definition: A metric c o n d t a n t  of type (p,q), weight w, and order m 

- 
(n, 0) 

and weight 0 but, being Wisted, are 
- (0,n) 

not tensors of type 

is a map 

- 
(n, 0) 

- 1  
(0,n) 

i ... i 
for which 3 real  valued coo functions F 1 P of rea l  variables 

jl= * jq  



I . . . ,  X 
1 n 

xab~ ab,cle -c such that  i f  (U , (x  ,..., x ) I  is a chart, then ab,cl m 

the ccPnponents of F (g) are given by 

where the ccmm stands for part ial  differentiation, i.e., 

i ... i 
[Note: The functions F 1 P are mt unique, thus equality of 

jl- *jq 

tm metric concartitants mans their equality as  mps f ran Pa - to w-s$ (M) . I 
q 

Rgnark: The index scheme is mt  set i n  concrete and depends on the 

situation, e.g., to free up a,b,c one can use r,s,t: 

Notation: MCn(pIqIw,m) is the set of mtric concanitants of type 

(p,q)[ weight w, and order m. With respect to the obvious operations, M2(pIq,wIm) 

is a real  vecwr space. 

[Note: In general, .%n(p,q.wIm) is inf ini te  dimensional but, undw certain 

interesting circumstances, is f in i t e  dimensional (or even t r iv ia l )  . I  

Example: The assigmnent g -r l g  1 'I2 defines an elanent of Kn (O.O.1,O) . 



defines an elanent of MCn (p,q,w + W,m) .I  

-1e: Given g€M, view the curvature tensor R(gl attached to its 

0 metric connection as  an elment of D4(M) -- then the assignment g -+ R(g) is 

a metric concomitant of type (0 ,4 ) ,  weight 0, and order 2. Indeed, 

Therefore Ri jlce is linear i n  the second derivatives of g (but nonlinear in the 

f i r s t  derivatives of g) . I  

[Note: Recall that 

Accordingly, 

 ema ark: Entities such as  / R ~ ~ R .  . j are not metric concanitants. 
11 

To reflect  the underlying symnetries of the situation (s-ng f r m  

the equality gab = gk), one can a s s m  without loss of generality that a l l  



internal indices have been symwtrized. 

Example: Suppose that n = 2 and let F(g) = d e t  g, a scalar density of 

weight 2, thus local ly 

H e r e  we can take 

or ,  i n  accordance with the foregoing convention, 

In  the  f i r s t  s i tuat ion 

but i n  the second si tuat ion,  

L e t  F W n  (p,q,w,m) 

are related by 

-- then the barred and unbarred components of F(g) 



[Note: Differentiation of the tensor transformation rule 

leads to the transformation l a w  for the derivatives of gab. To start the 

process, let 

Then we have 

N e x t ,  let 

Then we have 



And so forth... .I 

Remark: Fix indices 

and suppress them fram the notation. Let 

and 

Then, in general, the derivatives 

are not tensorial. However, it is possible to construct tensorial entities 

from certain canbinations of the A ab,... which turn out to be the ccpnponents 

of metric concomitants 

these being the so-called tensorial derivatives of F(g) . 
[Note: A particular case of the construction is detailed later on when 

we take up the theory of lagrangians but, in brief, the procedure is this. 



With the derstanding that covariant differentiation is per the metric 

connection of g, the difference 

involves the connection coefficients r' , their derivatives, and the h*, . . 
hab,cl- -ce (e c k) . Successive substitution of these f o d a s  (beginning 
with k = m and ending with k = 1) then enables one to write 

n*: This coefficient represents an element 

where ... involves the connection coefficients I" their derivatives, and . . 
ab,cl-=-ck 

the A (k = l,... ,m). 

ab,cl= 0% . n : This coefficient represents an elanent 

and 



where ... involves the connection coefficients I" , their derivatives, and . . 
ab,cl--*cL 

then ( L  7 k) . 
[Note: If k = m, then 

It is not difficult to wmpute the tensorial derivatives when m = 1 or 2 

but matters are mre complicated when m = 3.  I 

To avoid trivialities, in what follows we shall assume that n > 1. 

Ll3lMA Let FCM3n(0,0,0,0) -- then 3 a constant X such that F = A. 

[To begin wi th ,  

~ ( 9 ~ )  = F'gab) 

or still, 

F d-a~sbg*) = F (g*) 

Now differentiate this relation w. r . t . Jik : 



- r k s  s k  aF 
(6 i6 aJ bgrs + ~~~6 i6 bgrsl = 0 - 

i Specialize and take xi = x -- then Jrh = 6rb, hence 

Therefore F is a constant, as  clainaed. I 

Application: If F ~ n ( O , O , l , O ) ,  then 3 a constant X such that  



[Consider the quotient F (g) / 1 g 1 li2. I 

LEWA If n is even and p + q is odd, then 

-i - i 
Since n is even, we can take x - - x . Tkis gives 

But 

- - gab. 

Therefore F = 0.1 



FACT If p + q is odd and less than n, then 

-Kn(p,q,w,0) = to) 

Structural Considerations 

*Let FEMCn(OfqfO,O). Assume: q is odd and q c n -- then F = 0. 

*Let FWn(O,n,O,O). Assure: n is odd -- then 

here L is a constant. 

*Let FWn(O,q,O,O). .4ssune: q is even an3 q < n -- then 

where the K are constants. 
o 

.let FWn(Ofn,O,O). Assume: n is even -- then 

where the KO and L are constants. 

R m k :  Due to the symmetry of g and the cammtativity of multiplication, 

the decomposition 



contains redundancies, there being 

distinct  terms (after canbination of the constants). 

Example: Le t  F@C4(0,4,0,0) -- then 

where K1,K2,K3,L are constants. 

Emnple: L e t  FEPIIC4(0,4,0,0). S u p s e  that  

Then 

where K and L are constants .  

Remark: The situation when q > n is m r e  involved. To i l lus t ra te ,  

PC2 (0,4,0,0) contains elements of the form 

[Note: Using classical invariant theory, one can express an arbitrary 

element of MCn ( O , q ,  0.0) (q > n) i n  terms of products of the gij and lower 

Levi-Civita symbols. ] 

While formulated covariantly, a l l  of the preceding results admit contra- 

variant counterparts. 



Exanple: L e t  F ~ n ( 2 , 0 1 0 , 0 )  (n > 2) -- then 

where K is a aonstant, 

[Differentiate the identity 

a i w. r . t .  J and then set G~ = x . This gives b 

k L r c b  +6 .6 i (6ra6bs6cd+6 6 6 ) g  - 
3 s a d rc agsd 

or still, 

ad 
from which (upon multiplying by g ) 

aF 
Rk 

% b + g 9 k = - 2 - .  9 
agbd 

But the RHS is syrranetric i n  b & dl hence 

Now railtiply through by gM -- then 

where 



or still, 

Rb ( n - 1 ) ~ ~  + = xg . 
w solve for Pr mte that 

To see that x is a constant, substitute back into the differential equation, thus 

1.e.: x is a constant.] 



[Note: If FWn(2,0,1,0) (n > 21, then 3 a constant K such that 

F (g) i j  = K 1 g 1 1/2gij (apply the above analysis to the quotient F (g) / (g  1 'I2) .I 

Exmple: L e t  FW2(2,0,0,01 -- then 

where K and L are constants. 

[From the preceding example, w e  have 

a + = xgb, 

thus 

Therefore 

Since the LHS of this relation is skew symnetric in k & 1, it follows that 



hence x is a constant. Now take k = 1, L = 2 -- then 

Suppose that b = 1: 

But 

Theref ore 



The same argument shows that 

Conclusion: X is a constant. I 

[Note: If F€lC2(2,0,1,0), then 3 constants K and L such that 

i j 11/2gij + LE (apply the abxre a n a l y s i s  to the q u o t i e n t  

m l e :  L e t  FcX4(6,0,1,0). Suppose that 

acbr st a s c b r t  
+K3(g g g + g  g g 1 



ab crst  rs tabc) + L1(g + g  E 

as crbt + g r b , h y  
+ L3 (g E 

+ L4 (g at E crsb + g  rc E 

bc arst  st rabc 
+ L5(4 E + g  & 1 

whre I$ k = l f f l 1 )  and Le ( = l f f 6  are constants. 

[Note: The quantity g  ra E *st has the required symnetry but there is no 

contradiction since 

as crbt rb tasc - (g E + g  E 1 

ac brst rt sabc) - (g E + g  E 



Then 

Therefore the camponents 

do m t  depend on the g 
ab,c 

explicitly, thus are irdependent of the first partial 

derivatives. 

1 n 
Rappel: Let g€M. - Fix a pint xo€M and let x ,..., x be mnml ccordinates 

at x -- then there is a Taylor expansion 
0 

where the coefficients 

possess the following synmetries: 

[Note: By construction, Gabc is a function of the curvature tensor 
1. OCk 

0 of g (viewed as an element of D4(M))  and its repeated covariant derivatives. 



and 

THEDREBI L e t  FblCn(pIq,w,m) -- then 

Example: If n is even and q is odd, then 

[Let F ~ n ( 0 , q , w , 2 )  -- then 

i s i n c e  n is even, we can take zi = - x . This gives 



But 

and 

Therefore F = 0. ] 



Section 22 : ~agrangians Let M be a connected C- manifold of dimension 

n, which we shall assume is orientable. 

Definition: A lagrangian of order m is an elanent 

In what follows, our primary concern w i l l  be with the case m = 2, thus 

the basic identity. 

[Note: Recall that the elmmts  of X n ( O , O , l , O )  are simply the constant 

multiples of l g ~ ~ ' ~ .  As £or the elements of ~ ( O , O , 1 , 1 ) ,  say 

the Independence Theoran implies that 

hence L(g) depends solely on the g* and not their f i r s t  derivatives.] 

Given an 

L~Wn(OIO,1'2) I 



Transformtion Laws 

[Note: Therefore A is tensorial but A and A* are not tensorial. ] 

0 Demte by S2 (M) the set of symrtetric elements in D2 (M) . 

Definition: L e t  LWn(OI0,1,2) -- then its principal form 

0 PL:M - x S2(M) + 1-sDo(M) 

defined by the prescription 

PL(g,h) = !!- L (g+&h) d& 

is the IMP 



0 [Note: To check t h a t  PL(g,h) is an elenent of 1-sVO (MI ,  use the foregoing 

transformation laws: 

H e r e  it is necessary to keep i n  mind that  the terms figuring in the transformation 

laws for g and its derivatives are precisely the terms figuring in the trans- ab 

formation laws for h and its derivatives. For instance, ab 

= 9 i k j  P + J ~ ~ P ~ ~ . ~  

Remark: In reali ty,  

is meaningful only i f  h is compactly supported, the difficulty being that, in 

general, g + ~ w  - rm m a t t e r  the choice of E # 0. E.g.: Take M = R, - let g be 

the usual metric, and consider g+sh, where hx = xgx -- then a t  x = - I/&, 



%/& + 6 ( - V E ) ~ - ~ , ~  = 0. 

Thus, s t r i c t ly  speaking, the introduction of 

d &- L (g+&h) (&=O 

serves merely to mt iva te  the definition of PL(g,h) . 

L e t  conOTM stand for the set of torsion free connections on TM. 

Rappel : If V EconOTM and hES2 (M) , then 

= h  
hij:k i j , k  - I ' a ~ j  - rajkhia 

and 

- - 
hi j ;M hij ,M - raikhaj,l - ra jk h ia,L - h a j  - r a  jk,L h ia 

Given V€conoTMr define II i j  ,k 
v by 

. . 
and define by 



the picture and set  

, i j M  = , i j M  
v 

LF&MA V hcS2 (MI , we have 

[That these expressions are equal is simply a computational consequence 

of the definitions.] 

DOL: This is the map 
- 

ab with canpnents TIv . 



DIL: Tkis is the map 
- 

D2L: This is the map - 

Rappel: Let g W  - -- then the connection coefficients of the metric 
g connection V are 

The tensorial derivative of L w.r.t. g is the el-t 
ab 

The tensorial derivative of L w.r.t. g a, c is the element 



defined by 

When wrking locally, the tensorial derivatives of L w.r . t .  g 
ab' gab,cr 

ab *ab.d 
gab, cii w i l l  be denoted by rI , 

On the basis of the definitions, 

In addition to these e l m t a r y  symetsies, there are two others which l ie 

deeper, viz. 

LEMMA W e  have 

rpb,cd + p , d b  + nad,bc = 0. 

[Consider the basic identity 

- - - 
L(gij.gij ,kIgij,ke) = JL(gij.9ij $ 1 9 ~ ~  ,u 1. 

- - - 
Using the transformation laws, express gij, gijIk, gijIke in terms of gab, 

gab,c' gab,cd' the result being an expression on the IdlS involving fs, 6,. 
J~~~~ (the IWS is, of murse, independent of these variables) . Now differentiate 



or still, 

where 

But 

iiij  ,ke a 
a 3  

(fiPjlce9*) 
stu 

- j i ,k l  a 
= A 

a f  stu 

- i j ,k l  a 
= A 

a? stu (Ja jPMg,) 

- - i i i j ,kl  a 
a? stu 

- - i i i j Ik l  a 
a? 

stu 

- - x i  a (PikZj9*). 
a? stu 

Therefore 

x i j  ,kl a 
d (~~,Jb~g*) = 0. stu 



Since 

2 stu =s sut =f tus =&=f ust =futs, 

it follows that 

-i - i b Specialize and take x - x , thus p; = 6 , and matters reduce to 

£ran which 

or still, 

Put 

to get 

or still, 

as desired. 1 



But 

As a preliminary to the proof of the re la t ion  

differentiate the basic identity 

w . r . t .  f thus - - - 
-ij agij A --- + ,-ij,k agijfk -ij,kL a g i j f ~  - + A - 0 

"'st afst a*st 



or still, 

H e r e  

and 

NOW do the math a then take zi = xi to get 

sb, t *rS = 0. 
+ A grb + A grb 

Fix a point x EM and introduce normal coordinates a t  x -- then 
0 0 

gij,k = 0, hence at xo, 

so from the above, 



or still, 

nsbrt  + , = 0. 

Replace b by r -- then 

$Gt = - ,-,s 

- - - ,rt, s 

- - ,+r 

- - p , r  

- - - ,rs& 

= - n  sr, t 

nsr,t = 

* 

,rs, t = 0. 

Since ll rs, t is tensorial and xo is a r b i t r a r y ,  it follavs that 

nrs, t = 0 

throughout al l  of M. 

Remark: Suppose that 

L(g)  = L(~*,S*,~' 

 then^ *I* = 0, ttm n *tc = A*,c. ~~t 



Therefore 

which, as has ken mted earlier, is a particular case of the Idependence Theorem. 

LEMMA We have 

i [Differentiate the basic identity w.r . t. f and then take zi = x .I 

Claim: 

Tb see this, fix a pint x in M ard introduce r a m 1  coordinates at x0. 
0 

s- 
If Hij 

is any quantity which is symnetric in i & j, then 

[In fact, 

A 
ai,bj + Aab,ji + Aajfib = o 



Theref ore 

A t  Xo1 

And a t  xo, 

or still, 

Step 1: 



Step 2: A t  xo, 

B u t  

Therefore 

as,kt 
- rrak,l! 

- 1 rb as,kL - - 2 4 gab,& 

1 rb as,M 1 rb as,U 
- T g  ghk,a$ 'Tg gaklhtA 

Write 

1 rb as,kL 
- z  9bk,dA 

- 1 rb sa,kL 
- - zg 4bk,aeA 

- 1 rb sk,d 
- zg gbk,d 

- 1 rb sa,U 
- as %,k@ 

- 1 rb as, ke 
- r g  %,ken 

Write 

1 rb =#kt 
2 4  gak,htA 



Therefore 

Interchanging r and s ,  w e  thus conclude that a t  xo, 

Step 3: At xo, 

and 

Therefore 



Step 4: Atxo ,  

In the f i r s t  relation, replace c by 1, d by k, and k by d to get  

The net contribution is thus 

On the other hand, 

Therefore 

With this preparation, we are finally i n  a position to shar that 

Continuing to mrk  a t  x 0' 





And then, by addition, 

or still, 

Since the issue is that  of an equality of tensors, this relation is valid 

througbut a l l  of M. 

Sum~lry (The Invariance Identities) : 

FACT L e t  LEM3n(OtO,1,2) -- then - 



Section 23: The Euler-Lagrange Qyations Let M be a connected C- 

manifold of dimension n, which we shall assume is orientable. 

Definition: The Ner-Lagrange derivative is the map 

E:MCn(O,O,ltm) + MCn(2,0,1,h) 

given locally by the expression 

[Note: It is cl- that Eij(L) is symnetric. However, since the definition 

involves n o n t ~ s o r i a l  quantities, it is not ccanpletely obvious that Eij (L) is 

actually tensorial. In the case of interest, viz. when m = 2, th i s  w i l l  be 

verified below.] 

One then says that L satisfies the Euler-Lagrange equations provided 

E(L) = 0. 

Example: Let I, = I ~ ~ ~ / ~ s  (S the scalar curvature of g) -- then (cf. infra) 

But 

* (G = Ein) 

Therefore E(L) = 0 i f f  the Einstein tensor of g vanishes identically. 

[Mte: H e r e ,  (L) is of the second order in  the gij and m t  of the 

fourth order (as might be expected) . I 



Take m = 2 -- then 

LEBWi L e t  L ~ n ( 0 , 0 , 1 , 2 )  -- then 

[Note: This establishes that the E ~ ~ ( L )  are the ~ o ~ c ~ p o n e n t s  of a symnetr ic  

el-t E(L) Wn(2 ,0 ,1 ,4 )  .I 

To prove the l-, it s u f f i c e s  to  show that V hCS2(M), 

Rappel: 

To recast this, observe  that 

and 



- - (hij ,p ijlke) - (h. .A ijtkL) +h. .A i j  , k ~  
1 k 1 3  1.e tk 1 3  I&' 

Therefore 

i j 
PL(g,h) = - h. .E (L) 1 3  

i j  ,k + [h. .A 
i j  ,ke - h. .A 

i j  ,ke 
11 + h i j  ,P I 1 3  1.e ,k 

Rappel : 

Straightforward manipulations now lead to 

+ [h. .nijtk i j W  - h. .n i j  ,kL 
1 3  + hij .F I 11 ;R ;k 

or still, 

+ [h. .rI i j  ,k i j  ,ke 
+ hij ;p  - h a  II 

i j  MI 
1 3  1 3  ;a. ,k ' 

[Note: The terms inside the brackets are the ccanponents of an e l m t  

1 
1 - s D O ( M ) .  Since the indices are contracted over kt the covariant derivative 

the partial derivative.] 

E'rcxn the definitions, 

i aj,kL = h . .  (bijtk + 2r &A j a i , k e + $  ,ij.h.t) 
1 3  

+ 2r &A be 



But 



Therefore 

i j 
= h . . ~  (L) - [ h . 2 j t k  Ai j  Iu - .A i j  ,kt 

11 11 + hij ,e I 13 I.e Ik 



Since ijfk = 0, it follows that 

or still, 

[Note: Recall that 

where X is a constant. Lacally, 

and 

In accordance with our syrranetrization convention, write 
I- 



Then 

w i t h  

1 i j k t + , , , ,  i j k L  I = g  (6 a6 d6 b6 j + 6 i 6 j g k 6 L  + 6  6  6  6  
d a b c  a d c b  d a c b  

i j k R  j + 6i ,j 6 k &  + tji 6' tik $ + 6 C 6 b 6 d 6  a ) ,  111 = 8 (6 b6 c6 a6 c b a d  b c d a  

-~-y=- (si 6' gk k + tii 6' gk 6' + tii 6' k + 6  i j k R  d6 b6 c6 a ) .  
8 b d a c  d b a c  b d c a  

Therefore 



Combining terms thus gives 

But then 

Consequently, 





So, in  this case, the Ner-Lagrange e q u a t i o n s  reduce ~ 
1 i j  i j 

[Rij - 2 s g  ] + hg = 0, 



the vacuum f ie ld  equations of general relat ivity (with cosmlogical constant 1). 

[Note: In this situation, the Ner-Lagrange equations E(L) = 0 are 

secorad order .I 

FACI! - L e t  FWn(4,0,0,0) (n 1). Suppose that 

and 

i jke  + F ie jk  = 0. F 

Then 

i j k e  1 i k j R  ie . jk  
F ~ ~ ~ = K [ ~  g -I(g g + g  1 ) I .  

where K is a constant. 

Ekample: Let 

Then 



Therefore 

i j E (L) = - 1 i j  2 z g  L + -  3 

[Note: In this situation, the Euler-Lagrange equations E(L) = 0 are 

fourth order. 1 

There are t m  other "quadratic" lagrangians that are sametimes considered 

but their introduction increases the level of cmplexity. 

-lly, 

and 

Let 



and 
. . 

~~j (L) = I g 1 'I2 [4vatlaR1' - 2Pivjs1 

Observation: W e  have 

FACT Take n = 4 -- then 

Remrk: Take n > 3 and let 



Lrx=ally, 

and 

THEORJ3M L e t  L@Cn(O, 0, 1,m) -- then the divergence of E (L) is zero , 

While the result is valid for any m, we shall set t le  for a proof when 

m =  2. 

Fix a p i n t  x0€M and introduce normal coordinates a t  xo - then 

"covariant derivative " = "partial derivative 

Therefore 

A i j  W Differentiation of the relation .kLi ' 

gives 



But th is  implies that 

[Note: N o m l  coordinates play no role in this argument.] 

We shall now discuss the t m  t e r m s  on the RHS, beginning with 

By definition, 

B U ~  nijtk = 0, hence 



Therefore 

Since 

or still, 

- 
rid 

is symetric in a & 1, it follows that 

r3d. - 



Rappel : 

Thus at x 
0' 

and 

Claim: We have 



Therefore 

Accordingly, 

Next 

Thus 

Taking into account that ghrLk is spnetric i n  L & k, 



or still, since we are working at x 
0' 

It remins to explicate 

Tb begin with, 

So, in view of the fact that 



at x we have, 0 

But at xo, 

Thus at xo, 



Claim: We have 

[Multiply the identity 

Therefore 

Recall now that 



Obviously, 

This leaves 

But 



It therefore 

which completes the 

follaws that 

proof of the theorem. 

Example: Take L = lgl -- then E(L) = lgl "2~', hence 

# div G = 0 *d iv  G = 0. 

Thus the vanishing of the divergence of the Einstein tensor is just a particular 

case of the theoran. 

0 [Note: Officially, div GEVl(M), and 

# div G# = g div G. 

In fact, 

# i ik (g div G) = g (div G) 





Section 24: The Helmholtz Codition L e t  M be a connect& cm manifold 

of dimension n, which we shall assum is orientable. 

1 n Fix a chart (U,{x ,..., x } )  -- then a field function on U is a cm 

function of the form 

Notation: F(U) is the set of field functions on U. 

[Note: Every field function on U is of f in i te  order i n  the derivatives 

of the g* (but the order i tself  is not fixed).] 

Example: L e t  F€Kn(p,q,w,m) -- then its cc~nponents 

i . ..i 
F I  j, . . . j q ' ~ ~ ~ ~ ~ , c l ~ * * * ~ ~ ~ , c ~ . . . c m  1 

are field functions on U. 

[Note: In general, however, f ield functions are definitely not tensorial.] 

Given F E F (U) , abbreviate 

with the understamling that 

ab,il-0-io 
F - aF -- 

agab I 

and for each i = 1, ..., n, define a differential operator Di on F(U) by 

ab, il- 0 %  

DiF = F g a b , i l - . . v  1 

k-0 



thus D.F = F 
1 , i' 

[Note: N e e d l e s s  

Definition: The 

defined by the rule 

to say, the sum terminates a t  the  order of F.] 

Ner-Lagrange derivative E~ is the  map F (U) -+ F(U) 

where D . F = F and Di - 
il*-*1 - D i  o . . . ~  Di ( k z l ) .  

0 1*-% 1 k 

Sup~ose that F1, ...,I? are elements of F(u) -- then 

[In fac t ,  

= 0.1 

Any f i e l d  function of the  form 



is said to be an ordinary divergence. Therefore the lama states that the 

Euler-Lagrange derivative annihilates a l l  ordinary divergences. 

[Note: In practice, when working locally, this means that one can add 

a possibly nontensorial ordinary divergence to a lagrangian w i t b u t  affecting 

the Ner-Lagrange derivative.] 

Locally, there is a decamposition 

where the f ie ld  functions A , B ~  are given by 

I - 
Theref ore 

i j  Eij (L) = E (A) . 
i 

[Note: N e i t h e r  A nor B is tensorial. On the other hand, 

Since A is independent of g 
ab,cd' 

it follows that  Eij (L) contains no third or 

fourth derivatives of gab. I 





Combining terms thus gives 

= B~ . 
fa 

Next 

1/2 ab 
vi(lgl g = 0 





Therefore 

Example: Take n = 4 -- then 

E ij- b i j  & ake 

[Mte: It is clear that there is a lagrangian L ~ 4 ( 0 , 0 , 1 , 2 )  w h i c h  

is given locally by 

so, being an ordinary divergence, 8' (L) = 0. But E (L) is tensorial, hence 

E(L) = 0.1 

FACT Suppose that LcMCn(O,O,l,m). Put - 

ab 
Then L c ~ ( O . 0 , l . h )  and the order of E ( L )  is a t  mst 2m (not 4m). 

[On general grounds, 

is an el-t of En (0, 0, 1 .m) , ca l l  it Lo -- then L + L is an ordinary divergence, 
0 

hence 
ab ab ab 

E (L+LO) = E  ( L )  + E (Lo) = 0. 



ab ab 
But the order of E (Lo)  is 5 a", thus the same holds for the order of E ( L )  .I 

Ramrk: The notion of ordinary divergmce is local and involves partial 

derivatives rather than covariant derivatives. In this connection, recall that 

there is one important circumstance when the tsm notions coincide, viz. l e t  

1 
X € ~ - S D ~ ( M )  -- then 

provided V is torsion free. 

[Note: Put 

xi 
E 

j 1 . dx A ... A dx Jn-I 
"x = (n-l)! i j l -o -~n- l  

or still, 

n i+l i 1 *i n % =  Z (-1) Xdx A ... Adx A ...dx. 
i=l 

Then 

mtation: Given FWU) and k L 1, put 

where D. F = F. 
%+lo 

. . -1 
ab 

[Note: Extend this  to k = 0 by the agreement E 

LIWJIA W e  have 

ab, il- a 'b ' , i l0**\  
E (F)) + E ~ ~ ( F )  = 0. 



[Note: When k = 0, the equation reads 

While we shall make no attempt a t  precise characterizations, it is of 

interest to a t  least  say sawthing about the kernel and the range of the 

So, e.g., a s  has been sbwn above, a l l  ordinary divergences are i n  their  kernel. 

ab Definition: L e t  @€F(u) (a,bl. .  . . ,n) -- then the collection {T 1 is 

said to satisfy the Hehdmltz aondition i f  V k 5 0, 

ab, il* arb ' ,  il 
E 

"'=k 
= 0. 

ab 
Accordingly, in view of the lama, any collection {T ) in the range of 

the Euler-Lagrange derivative must satisfy the Helmholtz condition. 

Example: W e  have 

thus the ent i t ies  on the RHS satisfy the Helmholtz andit ion.  

Fxample: Take n = 3 and put 

Then the cij are the compnents of a symnetric elenent of M33(2,0,1,3), the 



Cotton tensor. W e  have 

In addition, it can be checked by ac~nputation that  the Cotton tensor sat isf ies  

the Helmholtz condition, although it w i l l  be seen in the next section that there 

does not exist  a lagrangian 

such t h a t  

Nevertheless, there are f ie ld  functions F  such that  Eij (F) = ciJ , one such being 

F = -  a k & 1  j i j b i  
E IT r iar jk,L + r iar jkr 

Product Fule Let F,GEF(U) -- then 

In  particular: 



ab Suppse that  {T ) is a collection which sa t i s f ies  the H e l m h o l t z  condition - 
then 

Notation: Given a f ie ld  function F, let 

W e  have 

Therefore 

ab a'b' 
E (galblT = - - - 

[Note :  In general, 



Tb see this, let E: be the Ner-Lagrange derivative per t2g -- then 

ab 2 'b' 
Et (t galblTa2 

t 

On the other hand, 

ab 'b' 
(@atbl@2 C 

1 ab 2 a'b' ) 
= - t E (t gasb1T 2 

t 



Section 25: Applications of H a m g e n e i t y  Let M be a connected cm 

manifold of dimension n, which we shall assume is orientable. 

Definition: L e t  FEF(U) -- then F is said to be ~ e n e o u s  of degree x 

i f  V t > 0 ,  

For the record, 

1- R i j ~  is ~ e n e o u s  of degree 1 

R is homDgeneous of degree 0 jc 

ik j'% is hamogeneous of degree -1. 
- g i j u  

[Mte: 1 g 1 is hamgenems of degree M2.1 

ab LEMMA L e t  T WU) be hrsmogeneous of degree x # -1 (arb  = 1 ,..., n).  

ab Assume: The collection {T ) sat isf ies  the Helmholtz condition -- then 

T* = E~~ (L) , 

where 
1 L = - -  a'b'  

x+l ga'b'T 



[ I n  f a c t ,  

= 2 (x+l) t 2x+lTab 

But 

ab a'b' 
E ( tgalb,T 2 = - 

t 

t2n+l$b 'b' 1 
cgaIbJa ) = - 2 2(x+l)  t 2x+lyab 

ab a'b' 
E (galblT ) = - ab 

(x+l)T .I 

1/2Gi j E'xanq?le: Take n = 4 -- then Igl is horcogeneous o f  degree 0 and, 

as can be checked by computation, the c o l l e c t i o n  { I g 1 'I2Gij 1 satisfies the 

Helmbltz condit ion.  Therefore 



in agreement with the general theory. 

m l e :  Take n = 3 and let 

Then the collection {c~'} satisfies the Helmholtz condition. Still, cij is 

hmgeneous of degree -1, thus the foregoing construction is not applicable. 

Ranark: Let AEM=n(2,0,1,m) (n > 1) be hormgeneous of degree -1 -- then 
it can be shown thatm a 3 if n is odd and m 5 n if n is even. 

Symbol Pushing In the literature, one will find the following assertion. 

ab Suppose that {T ) is a collection which  satisfies the Helmbolt2 condition -- then 

where 

1 'bl L = - lo 2tga1b1~a2 dt. 
t 

[Formally, 

ab 
= T  . 

However there is a tacit assumption, namely that 

And this is not true in general. I 



-i 1 
Let F€:n(p.qlw,m). Take x = - x (t > 0) -- then t 

Specialize to the 

hrxrogeneous of degree x, 

il- -i 
casewhenq = 0, w =  0 -- then if F is 

we have 

or still, in view of the Replacement Theoran, 

Classification 
i .. .i 

0 If 2x+p = 0, then F is a function of gab alone. 

i ...i 
8 I£ 2x+p is positive, then F I p=o. 

i ...i 
If 2x+p is negative and m t  an integer, then F = 0. 

If 2x+p = -2,-3,..., then F is a plymmial in the G~~~ 
l"*% 



RePnark: If FEMCn(pIO,w,m) is hmgeneous of degree x ,  then 

1g l Y I / % ~ ~ n ( p , ~ , l , m )  

n is hmgeneous of degree x - (T)w. Therefore the structure of F can be ascertained 

from the structure of 1 g 1 -1%. 

Ll3Wl If n > 1 is odd and if L€M2n(0,0,1,m) is ~ e n e o u s  of degree 0, 

t h e n L =  0. 

Example: The preceding 1- breaks down i f  n is even. For instance, 

is a second order lagrangian which is harrogeneous of degree 0, as  is 

FACT Suppse that  L€MZn(0,O,1,2) is homqeneous of degree 0 -- then - 

i j  g.  .E (L) = 0. 
11 

[Recall that  

i j 
E (L) = - , i j  - , i j M  

;kt 

But here 

Notation: Given a f ie ld  function F I  let  



Example: L e t  LWn(O,O,l,m) -- then 

Application: Supp3se that L ~ n ( O , O , l , m )  is hmru>geneous of degree 0 -- 

then E (L) Wn (2,0 , l ,  2m) is hamgeneous of degree -1. 

[In fact, Lt = L, hence 

L =tZ. r t l  

The re fo re  

E(L Ltl = ~ ( t % )  = t n ~  (L) . 
On the other hand, 



2 
t E (L) = E (L) 

1/t2 

Example: Take n = 4 -- then L = 19 1 li2.S2 is homgeneous of degree 0, hence 

is hamgeneous of degree -1. 

UWMA Let L€M2n(0,0,1,m), where n > 1 is odd. Ass=: E(L) # 0 -- then 

E(L) can m t  be h g e n e o u s  of degree -1. 

[If E (L) w e r e  hom3geneous of degree -1, then the relation 

E (L) = tn-% 
1/t2 

reduces to 

hence 

But 



where 

is homgeneous of degree 0: 

2 1 dn 
L ' ( s  g) = l i m -  ( - - L  (s2g)) 

t+ 0 n! dtn [ t l  

= L' (g) . 
Therefore,  since n > 1 is odd, 

L' = 0 = E ( L ' )  = 0 j E ( L )  = 0,  

a con t r ad ic t ion .  1 

By way of a corollary, there does not exist a l a g r a n g i a n  

such  that 

Ei j  (L) = cij 

RBwk: L e t  A€P.Cn(2,O,1,m) -- then in order that A = E(L) for SOE 

l ag rang ian  L, it is necessary t h a t  Aij = Aji & 17 . A ~ '  = 0.  I n  addition, the 
3 

oollection {A~') rhst s a t i s f y  the Helrhholtz condition. But ,  as the Cotimn 



tensor shaws, these requirements are not suff icient .  

FACT - L e t  A m n  (2, O , l t r n )  . Supwse that the collection {Ai'] s a t i s f i e s  

the  Helmholtz condition -- then 

. . 
[Note: It is not assumed that Aij = A", thus the condition appears to 

be asymnetric. S t i l l ,  



Section 26 : Questions of Unigtleness L e t  M be a connected cW manifold 

of dimmion n, which we shall assunre is orientable. 

Suppose that LWn(0,0,1,2) -- then 

- 
ji ~~j (L) = E (L) 

i j  
V.E (L) = 0 

and, in general, 

However, for certain L (e.g., L = lg11/2 or  L = l g ~ ~ ' ~ ~ ) ,  E ~ ' ( L )  is of the 

i j  
second order, i.e., E (L) depends only on gab, gab,cf an.' gab,cd* 

Problem: Find a l l  elements 

sub  j ect to 

Remarkably, t h i s  problem turns out to be tractable and a conp?lete solution 

was obtained i n  the early 1970s by ~ v l o c k .  

Put 

THEOREM Suppse that AWn(2,0,1,2) sat isf ies  the conditions 

N = 

- 
n/2 i f  n is even 

(n+1) /2 i f  n is odd. 
- 



[Note: W e  shall also see that 

for which 

Example: If n = 1 or  n = 2, then 

The Fundamental Conseguence If dim M = 4, then a symnetric AW4(2,0,1,2) 

of zero divergence has ccxnpnents 

where C and h are constants. 

[It is a question of reducing 

to the stated form. By definition, 





And 



Therefore 

But 

The desired reduction is thus achieved by taking C = - 4Cl.] 

Sd-nlium: If L€MC4(0,0,1,rn) and if E(L)€MC4(2,0,1,2), then E ~ ~ ( L )  

necessarily has the form 

where C and X are constants. 

Ramrk: L e t  L~4(0,0,1,2). Assume: E(L) ~4(2,0,1,2) -- then it 

can be sbwn that 

+ C'E i j v  Rb bij ake 

where C, C', C", and Xare constants. However, as we have seen earlier, the 



terms multiplying C' and C" are annihilated by the Euler-Lagrange derivative, 

hence per prediction, make rn contribution to the Euler-Lagrange expression 

[Wte: The analysis that gives the structure of Aij when dim M = 4 

applies verbatim when dim M = 3. On the other hand, there is a simplification 

since the only L ~ j ( 0 , 0 , 1 , 2 )  for which E(L) ~ j ( 2 , 0 , 1 , 2 )  are the 

Example: If n = 5 or n = 6, then 

where C, Dl and X are constants. 

W e  shall now turn to the proof of the theoran. So let  

subject to 

Put 



Identities 

N.B. We have 

a(vjAij) 1 i t ; a b , r ~ + ~ i s ; a b , t r + ~ i r ; a b ~ ~ t ~ .  
= 7 (A 

rst 

Identities 

- A  it:ab,rs + Ais;ab,tr + Air:ab,st = 

'A it;ab,rs = Ars;abtit 

Therefore 

A it:ab,rs - Ait;rs,ab - 

ab;rs, it 
= A 

ab; it,rs 
= A 



= 0. 

Notation: For p = 1,2, ..., write 

ab; ili2 i3i4; . . - ; i 
A 4 ~ - 3 ~ 4 ~ 2 1  i4p1i4p 

[Note: This 

Special Case 

prescription defines an element of M2n(2+4p,0,1,2).] 

Take p = 2 -- then 

ab; il - i 
Properties of A 4~ 

(2) It is synrraetric wder the interchange of ab and i2k-li2k (k = 1,...,2p). 

(3) It Satisfies the cyclic identity involving any three of the four 

indices (ab) (i2k-li2k) (k = 1,. . . ,2p) . 



[Note :  To i l lus t ra te  (3) ,  take p = 2 -- then, e.g., 

= 0.1 

Definition: Anlindexed entity 

is said to have property S i f :  

(S ) rt is symetric i n  jXm1jX (e = l,.. ..q) ; 1 

(S2) It is symnetric under the interchange of jl j dnd j - j Ze 

ce = 2, ..., q);  

(S3) It sat isf ies  the cyclic identity involving any three of the four 

indices (jlj2) (j2e-ljX) (l = 2, -. . .q) - 
In particular: 

has property S. 

LEMW If an indexed entity has property S, then it vanishes whaever 

three (or mre) indices coincide. 



R e c a l l  that  

- n/2 if n is even 

- (n+1) /2 if n is odd. 

is an indexed entity with property S, then 

[In fact,  

4M + 2 r 4N + 2 > 2n, 

thus a t  least three of the indices 

coincide. 1 

SO, a s  a corollary, 

ab; il - i 
A 

4N = 0. 

ab; il - i 
A 

4 (N-1) 

H e r e  



has property S. But, thanks to the Independence Theorem, 

Therefore 

ab; il - i 
A 4 (N-2) 

Rappel: We have 

where 

Put 

Then 



2 ab; il - i - - - - + 4 (N-1) 
3 j kit ++* I 

where the metric concomitant 

2 ab; il - i 
p'=q,*+-* 3 4 (N-1) rjkie 

is a t  mst a function of gr, and grSttr hence is a function of grs alone. Nau 

i t e ra te  the procedure ... . 
Sumnary: W e  have 

H e r e ,  the C are constants, 
P 

is syrrmetric, thus has the form 

114 lU2gab 

for some constant 1. 



It ra ins  to explicate the 

ab; il - i 
4P 

ab LEMMA Fix p:l I p 5 N-1. Dmote by S (n,4p) the subspace of 

PCn(2+4p,0,1,0) consisting of tbose entities with property S -- then 
ab dim S (n,4p) = 1. 

Notation: Put 

Maintaining the assumption that 1 5 p r N-1, define 

ab; il - i 
D 4P 

i i i i  1 2 3 4  i 
x D . . .D 4p3i4p2i4pli4p 

j lj 2s1s2 jzP1 j 2p s 2p-ls2l3 ' 

Then 

ab; il - i 
D 4 p ~ ~ a b  (n, 4p) . 



as can be seen by noting that 

ab; il -i ab;il -i 
Accordingly, % 4P is a constant multiple of D 4~ 

Therefore 

after pssible redefinition of the C 
P - 

Observation: 

ab; il - i 
D 4~ 

i i i i  i i i i  
x - D 1 2 3 4  

jlj 2s1s2 j 21 p1s2 
) 



To exploit this, mte that 

Now bring in 

and write 



Thus, after adjusting the constants, we conclude tha t  

But 

So, m u l o  obvious notational changes, the proof of the theoran is coimplete. 

Remrk: The expression 

. . 
is a polynomial of degree N-1 i n  the R ab cd. Therefore, i f  A~' is linear in  the 

second derivatives of the gab, then Cp = 0 for p > 1, hence the 21ij must have 

the form 

clg 

Rappel: Let 



Then 

Then 

To begin with 

f ram which 

Starda~~d manipulations involving the Bianchi identities then imply that 



Matters thus reduce to consideration of 

or still, to consideration of 

the claim being that this expression is equal to 
j 

But 

Therefore 



Ranark: L e t  A F M C ~  ( 2,0,1,3) be sym~letric and divergence free -- then 

where C, c, and X are constants. But, as w e  kmw, there does not exist a lagrangian 

L W 3 ( 0 , 0 ,  l ,m)  

i j 
such that ~~j (L) = C . 

Given p 2 1, put 

Then 

R e a l i t y  Check Take p = 1 - then 

and 



Example: Take p = 2 -- then 

and 

Therefore in th i s  case 

FACT Suppose that  n = 2p -- then locally, L is an ordinary divergence. 
P 

Foreshadowing mnsidaations to follow, it w i l l  be convenient to redefine 

L as 
P 

so that  

Let 



Then 

where 

In addition, 

But 

Therefore 

vis(p) = 2 p ~ ~ ~ ~ j  (p) 

or still, 

[Note: We have 

= 2pV . R. j (p) 
3 1  



jb = 2pV jg Rib@) 

b j = 2pg V.R. (p) 
lb 

= 2phib(p)  

j = 2pV Ri (p) = 1 

Remark: The higher order version of Ric is Ric(p) : 

R i ~ ( p ) ~ ~  = R. . (p). 
13  

Ric (p) is symetric and 

t.r Ric (p) = S (p) , 
9 

the higher order version of the scalar curvature. 

Therefore 

i 
E .(L) = -  lg 

3 1 



[Note: The relation 

reduces to 

in agreemnt with the earlier theory.] 



Section 27: Globalization L e t  M be a connected cm manifold of dimmsion 

n, which we shall take to be orientable with orientation EL. Fix a s e m i r i d a n  

structure g on M. 

Rappel: Given x0€M, there exists a conneded open set UcM containing xo 

and vector f ie lds  E,, ..., En on U such that V x<U, 

Because of this, there is no real  loss of generality i n  assuming outright 

that  the orthonormal frame bundle IM(g) is t r iv ia l .  

[Note :  -9s a matter of convenience, in what follows we shall work with 

oriented orthonormal frames but a l l  the results  in this section can be formulated 

in terms of an arbitrary oriented frame. I 

So f i x  an oriented or thonoml frame E = {E1,...,E }. Denoting by n 

= { o f  . . . , an} its associated mframe, put 

- - 1 
E .  

3n 
eil. . i (n-p)! ~ - - - i p j p l - - - j n  (I) Ip1n ... n o  . 

P 

Then 

il* .i 
8 P = ,  ... E i B i  . (no sum) 

j-1 p  l---lp 

Observation: View the 8 . as  the oomp~nents of an element 8 of 
p P 

A"-P(M;T;(M) ) . L e t  P be the metric connection -- then 



Example: Suppse that p = 2 -- then 

or, multiplying through by E 
j 

But 

- E ok At3 j j i k  

- - - E ok A& E e 
j j k k i k  

= - c E ok A& e 
j k  j k i k  

Therefore 

LEMMA We have 

[In fact, 



1 = - R  k l i j  
2 i jke  (a AO ) A *  (a ~o 

1 
= - R  g(o k l i j  ha ,o AO )vol 2 i jke  4 

On the other hand, 



Splitting Principle S t a r t  by writing 

i j  
*' = ' 

Fram the above 

Therefore 

[Note: This is the analog of the decmposition 

where the field functions A, B~ are given by 



LEMNA We have 

i j 1 i j - (do no ) A * ( d o . A o . )  + 2 (do no.)~*(do no.). 
3 1 1 3 

[First 

i j = (do.. + w nok ) h ( o  A o  1 
13 ik j 

But 

i j 
d(w.  . A * ( o  A w  ) )  

1 3  

i j i j 
= d w . . A * ( o  AW ) - a. ~ d * ( o  AO ) 

11 1j 

i j 
= do. .A* (w  Am ) 

1 3  

i a j i a - o. A  [- o A* (o no ) - oj A* (o no ) 1 
1j a a 

i j i a j 
= &. 1 3  . A * k o  no ) + 2wijnw a ~ * ( o  A w  ) 



i j i a j 
= dw.  ./\*(a A w  ) + 2w A w .  . A * ( @  A w  ) 

1 3  a 11 

i j  i j = do. . A t ( o  A o  ) + 2 w . k A % j A * ( o  A o  ) . 
13 1 

1. Consider 

Thus, as the metric connection is torsion free, 

Next 



Since L~ = O f  it follows that 
ii 

Therefore 

But 



2. Consider 

or still, 

Rappel: L e t  a,b = 1, ..., n -- then 



Analogously 



Write 

Then 



i i i j j  i 
= gig(& #do ) - E . E . g ( W  Ada ,W A d o  ) .  

1 1  

k i j  j z &,g(do c c k i j  n o  ,o Aw Ano ) ) .  
= E . E  ( g ( d ~  ,o AW ) - g(dw I W  Aw ) - - 1 k  c 

The term involving Z can be simplified: 
C 

c c k i j  
Z c c g ( d w  A w  ,o A m  A o  ) - "i 
C 

- - - -  1 c k i j  
Z ccg(do , L (o 
c W 

- - - - c k i j  k i j  k i  j 
Z E g(do ,L  w  Am A w  - w Ac o A o  + o A w  Ac o ) 
c C C C C o W 0 



1 k i j  j k i  
#2: - - g ( d w  ,w A o  ) g ( &  ,a no ) .  4 

1 k i j  i k j  
#3: - g(da ,w no ) g ( d w  ,a Aw ) .  

1 j k i  k j i  
#7: - - g ( d w  ,w Aw ) g ( d o  ,w Aw ) .  

4 

1 j k i  j k i  
118: ? i g ( h  ,w AO ) g ( d w  ,o AO ) .  

Six of the terms cancel out: 

- 
E E E x ( # l  + #8)  = 0 k i  j 

'kEiEj 
x ( # 2  + #7) = 0 



E.g.: Take #8 and w r i t e  

1 k  j i k j i  
= E E E g(do ,a Ao )g(dw ,a Aw ) j i k a  

- - - 1 k i j  k j i  
E E E - g(do ,o )g(dw ,a Aw 1, j i k 4  

which is - E E E x (#I). Observe too that k i  j 

E E E X (#4) = E E E X (#5). k i j  k i  j 

It remains to  discuss 

E E E x (#4 + #5 + #6). k i j  

To this end, note that 



- 1 k j i k j  - - -  E E . E . ~ ( w  ,L  id^ )g(dw ,w Aw ) 2 k 1 3  
w 

- 1 i k  j i k j  - - -  E E . E  .g(o Aw ,dm )g(dw ,a Aw ) 
2 k l ]  

1 k i  j i k j  = - E E.E.g(o h.l ,do )g(dw ,w Aw ) 2 k 1 3  

= E E E x (#4 + 15) + ckcicj x (#6) k i j  

+ ckeic x ((86). 

 he l a s t  step is to study #6. In terms of the objects of anholonamity, there 

is an expansion 



i 
= E E.C k j  kj* 

On the other hand, 

1 g(aoitaoi) = - & E.(C i 2 
2 k j  kj). 

Combining these facts then gives 

1 
.skcicj x (#6) = - 4 E k 1 1  E.E.(c~ kj l 2  

1 - - ( T  6.1 1. (- 2 E k j  E.(ci kj 12) 

1 i i 
= - E  g ( b  ,do 1, 2 i 

fran which we conclude that 

j i Ekg(%,a )g(%jr~ 

- - - - i i  j j  i i 
E . E . ~ ( ~ o  Aa ,do ) + cig(da ,da 1. 

2 1 7  



i j 1 i 
= - (do Am )~*(do.Aw.) + 2 (do ~o~)~*(dojno.). 

1 1  7 

A l l  the terms appearing in the statement of the lerrana are ~ G W  accounted for.] 

Put 

L = vol 0 g ' 

Given p 2 1, put 

Then 

L €A%. 
P 

[Note: These definitions are i n d e m e n t  of the choice of E.] 

Exarrqples : 

* L1 = Svol 
g - 

LEMMA We have 



[In fact, 



which, upon relabling, is equivalent to the assertion.] 

Remark: If M is compact and riemmnian and i f  n = 2p, then by the 

Gauss-Bonnet theoren, 

-, 

the LHS being the N e r  characteristic of M. 

[Note: Take n = 2 -- then p = 1 and Ll = SVol .hbrewer, the scalar 
' 

curvature S is twice the sectional curvature K and the Gauss-Bonnet theorm in 

this case says that 

I 
X (M) = JM Kv01 .I 

4 

FACT Suppose that n = 2p. Fix i E { l ,  ..., n) and l e t  - 

where 

and 

Then 

[Note: Therefore L (n = 2p) is exact i f  the orthomrmal frame bundle 
P 

M(g) is trivial,  hence is locally exact in general.] 



Reality Check Take n = 2 and i = 1 -- then p = 1 and 

On the other hand, 

And 



G i v e n  p r 1, put 

men 

and 

SUBLEMW The wedge product 



can be written as 

[Recall that 

where 

Therefore 

P r i 
= (-11' C (-1) 6 . . .ci ci ..- Ei ei i ir 1 

. . .1 
r==l r-1 r+l p 1 r - 1  'p 



But  6\aivci = 0 i f  ir # i while G ~ ~ ~ E ~ _ ~ ~  = E . E = 1 i f  i = i. Therefore 
1 i r 

Example: Suppose that p = 1 -- then 



Now define the Imelock (n-1)-forms by 

m l e :  Take p = 0 -- then 

Emmple: Take p = 1 -- then 



Collect the coefficients of Ba: 

Collect the coefficients of Bi: 



Collect the coefficients of 8 - 
j ' 

Therefore 



UWMA W e  have 

SupFose that  n = 4p (p = 1,2,. . . ) . Given (alI.. , aW) . put 

and set 

where 

Then 

[Note: The n_K are  called Pontryagin forms. In view of the definition, 
- 

their  n e  is precisely P(n/4)  (P the partition function) .I  

Emmples: 

a n =  4: 

a b  
i!(2) = Q bAQ a' 

n = 8 :  

Observation: is closed, i.e., 



[This follows f m  the fact that 

i k  j. k = 0.1 
deij + w kAQ - 8 kAw 

j j 

Thus Example: Consider aab~9 a ' 

a b  a a c  b a ,AQ a = (dm + co c~~ b) AP a 

c b  = dwa nab + wa Aw A8 
b a c b a  

a b  a b  a c b  = d(o AQ ) + CO bAdS1 a + bA8 a 
b a c 

a c b  + w CAw bAS2 a 

b 
a A a b  ) - ma A w  AaC = d h b  a b c a  

b + ma A$ A Q ~ ~  + 2 haC A9 a. 
b a c b  

But 

a c b  
w c A ~  bAS2 a 



Therefore 

a b  b c aa A Q ~  = A& ) - ma AU nn a 
b a b a b c 

b c a b c  
= d (aa A (daba + w nw a) ) - w bh cAQ b c a 

b b c 
= d[wabAdw a + wa Aw Aw a] b c 

b c - wa A o  
A 8  a b c 

a b  a b c  
= d[o b~do a + o Aw c A ~  b 

a b  c - w bAw 
c d 

A (dm a + dAw a 

a b  = d [w b ~ d w  a + a bAw b ~ o F ]  c a 

c a b  a b c d  - do Aw bh - bAw cA" a 
a 

a b c  = d[aa Adab + Aw 
b a b c 

b a b c d  - ha A> - CO bAW CAO d A a  a 
c b a  

a b c  = d lwabAdwba + w AU ~w b c 

a b c  b c d  a Aw A* A o  - do b Aw c a - b c d a '  

1 b c - d(wa Aw ch a) 
3 b 



1 b c 
3 b c 

b a a b  a - do no AZ + docah c] = 7j [do b~~ cAo a c b a  

- - b a b c  a c b  - [ha no AoCa - do Aw Ao f do Ao bAo 
3 b c c a c 

1 b c 
= - [& nob A$ - doa nob + doabAw Ao 

3 b c a  b a c c 

b c a b c  = 1 [ h a  nub noC 4- ba AO A03 a + dw cAo 3 b c a b c b 

a b c  
= do Ao Aw a. b c 

Theref ore 

a b  a b  a bAa a = d(w bAdo a) 

a b c  1 a b c  + d(w bAw a) - 3 d(w bAw a) 

a b c d  - w bAO CAw dAw a 

a b 2 a b c  
= d[w b A d O  + - (w Ao ch a 3  b 

a b c d  - b ~ o  cAo d A ~  a. 

However the last  t e r m  vanishes, so 

a b  a b 2 a b c  a b ~ a  a = d[m b ~ d m  a + 5 (a bAw cAo a) 1. 



[Note:  To check that 

a b c d  
Aw Aw dAw a = 0' Oh c 

write 

a b c d  
o bAw cAw d k o  a 

- - - a b c  I w b A ~  d A ~  a' 

FACT W e  have 

51 = dC*I -2k 

where 

[Note: To explain the notation, recall that 

1 
is an element of A (M;gt(n,R)) - - (here, of course, v is the metric connection). 

Accordingly I 



Similar cmnents apply to 

Realitv Check 

And 

Take k = 1 -- then 

which agrees w i t h  what was said above. 

R8nark: The C2 are called olern-Simons forms. 

[ N o t e :  One can represent C2 as an integral: 

1 2 2 
'2k = 2 - l o  tr(gA(t (g) + tduv) at. 

To see this, use the birmmial theorem and expand the FWS to get 



E.g.: Take k = 1 and put  

2 a (t) = t d w p + t  (OAO). v V v 
Then 

n = jJ tr (av (t) A Q ~  (t) ) dt -2 Odt 

= dtr(ovAdov + (o V V V  Am Ao 1 )  -1 

Since = 0, it follows that 

[Note: Suppose t h a t  i c j - then the difference 



thus is exact. I 



Section 28: Functional Derivatives Let U and V be linear spaces equipped 

with a bilinear functional < , >:U x V -t - R. 

Definition: < , > is nondegenerate if 

Suppose that< , > is nondegenerate -- then the arrows 

1- V+U* (v+ < rv> 

are one-to-one (but, in general, are not onto) . 

- 64 (4) Let 4:U + R -- then the functional derivative -of 4 w.r.t. u€U 6u 

is the unique element of V (if it exists) such that \d uv€U, 

- 
w (9) Let $:V -r R -- then the functional derivative =of C w.r.t. VW 

is the unique elemnt of U (if it exists) such that V v'W, 

FWnark: Functional derivatives give rise to maps 



Example: Take U = V = - Rn and let c , >:I?" - x - Rn + - R be the usual inner 

product: < x,y = x-y. Suppose that f:Rn - + - R is a cm function -- then V X , ~ E R ~ ,  - 

by the rule 



Let M be a connected cm manifold of dimension n, which we shall assume is 

orientable. 

Eample: Take 

and l e t  

is characterized by the relation 

is characterized by the relation 

In practice, the following situation can arise: 

1. There are linear spaces U and V k t  no assumption is made regarding 

a bilinear functional c , >:U x V -+ R. - 



2. There is a linear subspace UccU and a nondegenerate bilinear 

functional c , >:U x V -t R. 
C - 

3.  There is a subset UOcU such that V uO€UO & H uc€UC, u0 + EU €U c 0 

provided E is sufficiently small. 

Under these conditions, i f  4:U0 + R, - then it makes sense to consider 

W e  shall  rmw consider a realization of this setup. 

W r i t e  C: (M) for sec (Lden) , a d u l e  over cm (M) -- then for any vector 

bundle E -t M, there is an arrm of evaluation 

ev: sec (E) x sec (E* 8 Lden) + C: (M) . 

Let 

Put 

2 1 SP T*M - 

Denote by S (M) the set of ccanpactly supported elements of S2(M) -- then there 
2,c 

- 
be the second symnetric power of 

TM 
-- then 

- T*M 



is a nodegenerate bilinear functional 

viz . 
< s , X @ r p  > = JM X(s)dmq . 

Scholium: The preceding considerations are realized by taking 

Example: Let 

be a lagrangian of the form 

where ~ ~ ~ ( 0 , 0 , 0 , 2 )  (e.g. 1g1~'~~). Then, by definition, 

and we have 

PL(g,h) = - ev(h,E(L)) + div X(g,h) . 
H e r e  

X (g,h) Esec (TM @J Lden) 

is ccanpactly supported. If M is compact, then 

exists and 



On the other hand, i f  M is not compact, then the integral IM L(g) need not exist 

but for any open, relatively ccanpact subset KcM, 

does exist and 

Notation: Put 

1 
Ad (MI = sec (T*M @ Ldm) . 

1 1 Let VC(M) stand for the set of compactly supported elments of V (MI -- 
then there is a nondegenerate bilinear functional 



0 where v is the metric connection attached to g (bear i n  mird that ~gbXC0~ (M) . 
[Note: Ixx:ally, 

- 
Lxgij - xi; + X j i i  = V.X. + ViXj.l 

1 1  

By definition, div s is a 1-form: 
g 

k j - jk (div ~ ) ~ = g  ~ ~ j ~ k i - 4  v j s i k = v . s  j 
l i '  g 

Therefore 



= c X, div s 63 lg11'2 >.I 
9 

[Note: There is an integration by parts implicit in the passage from 

i j 1, (Xi;j + X. . I S  vo1 1; 1 9 

to 

ij - 2 1 X.V.s vo 
M 1 3  g ' 

In fact, 



1 
Claim: 3 YCDc (M) such that 

To see this, observe that 

has conrponents 

Naw apply the contraction 

Then 

has compnents 

and is ccsrrpactly supported. Consequently, 

Each g€M - determines a IMP 



# Thus write A = s 0 lg11/2 ( s € S 2 ( M ) )  and set 

1/2 div A = d i v  s @  1st . 
9 9 

= s, A ( L ~ ~ )  

1 Example: Suppse that XCD, (M) . Fix g € M  - and def h e  



by 

Then 

1 2 
mample: Suppose that X E V ~  (MI . Fix A €Sd (M) a d  define 

# 
= JM s (L&-l)mlg 

or still (cf . in£ ra) , 

Here 



[Note: To justify the mt so obvious step in the manipulation, recall  

that  LX camutes w i t h  contractions, hence 

# 1 2  # L X ( s  (h)) = LX(C1C2(s 8 h)) 

# # = - JM ( LXs  ) (h) wlg - IM s (h) (div X) vol 
g 4 

# = - I(*#) (h) + s (h)divg Xlvol .I  
4 

0 1 Ramrk: L& TCD2 (M) . Suppose that T is symEtric -- then 'd XCD (M) , 

L? is symnetric. 

[Recall that \I Y . Z € D ~ ( M ) .  



Notation: Le t  g€M. - 

G i v e n  sB2 (MI , put 

G i v e n  s €S2 (M) , put 

[Note: 

(1) s * s € S 2 ( M ) .  Proof: 

= s  S 
e 

jl i* 

( 2 )  tr (s*s) = [s,slg. Proof: 
9 

i j  k 
= g  s s i k j  



Suppose given a function 

defines a function 

[Note: If M is ccgcrpact and if 

w 2 then in the applications, - €Sd (M) exists, so 
@3 

Examples : 

(1) Put *(g) = lgy2 -- then 

Therefore 

provided M is capact. 

[We have 



Therefore 

provided M is compact. 

[In fact, 



Then 

provided M is compact. 

[To begin with ,  

But 

Accordingly, 



(4) Fix s ES2 (M) and put 

Then 

Therefore 

provided M is compact. 

[Simply mte that 





Section 29: Variational Principles L e t  M be a connected cm manifold 

of dimension n, which w e  shall  assume is orientable. 

L e t  

V:M - + con TM 

be the m p  that assigns to each g€M - its metric connection vg -- then 

Locally, 

k 1 ke 
(DgV (h) ) ij = g (VihLj + V , .h it - Vehij) r 

which shows that  D V(h) is synanetric in its covariant indices. 
4 

[Note: L e t  $ (g + ~ h )  be the connection coefficients of V g + dl -- then i j 

1 
FACT Take h = LXg (XEDc (M) ) -- then 

D V(Lxg) = 5 v g .  
4 

Example: Consider the interior derivative 

6 :A% + crn(&l) , 
9 

so locally 



Then 

- -  
da ai' &=o 

i j i j  d 
= h  v.a 3 i - g  - ( ~ ? + ' ~ ~ ) l  d.5 I i E=O 

i j 
= h (Valij - g i j  d 

h 'ai, j - Th i j (9 + Eh) ak) la.O 
. . i j 

= h (Valij + gl' & ?. 13 . (g  + ah) /a=O\. 

But 

i j  1 kt 
= 9 2 g  (vihRj + vjhie - v R h i j  ) %' 



In addition, 

Therefore 

Let IXijke(g + ah) be the curvature components of V g + &h 

UMMA We have 



Then 

On the other 

But 

I - $st = ts' 

so the equality of the tsm expressions is obvious. I 



Therefore 

d i - R (g + eh) 1 ds jke &=O 

- 1 i a  - - - h  
2 j;k + hja;l;k jl;a;k 1 

- 1 i a  
3 g (hak ; j;l  + hja;k;l - hjk;a;l 1 

or still, 

ds 



- h  - 
+ &; j;i  j t ; a ; i  + hj i ;a ; t  a i ;  j ; ~ ) *  

Hidden within this formula ( i tse l f  perfectly respectable) are certain 

conceptual features that are not imnediately apparent. 

Notation: 

* Given s ES2 (M) , define 

R ( s )  ES2(M) 

@ Given u,v€S2 (M) , define 

by 

Then 

u*v + v*u€S2 (M) . 

Definition: The Lichnerowicz laplacian is the map 

k:S2(M) -+ S2(M) 

defined by the prescription 



[Note: Ix>cally, 

FACT Suppose that g€M is an Einstein metric: - - 

Then 

divg 0 L+, = - hcon 0 div + a div 
g n g ' 

Given ~cA!M, put 

thus locally, 

LENVIA View Ric as  a map 

e c : M  - -t S2 (M) . 
Then 

1 = [kh + rdiv h - Htrg(h)l. 
g 

[It is a question of conparing cc~nponents. For this purpose, start with 

d 
(D Ric) (h) = - Ric (g + ~ h )  

9 de 

1 i a  - - h  - h  
2 (haL: j ; i  jL;a;i + h j i : a ; ~  a i ;  j ; ~ )  

Fi rs t  

E=O 



But 

And 

So rdiv h is accounted for. N e x t  
g 

- ( A  h) = -  apl con j R  jL;a;b 

= - 
g141jL;a; if 

which takes care of one of the t e r m s  in (kh) jL. Finally 



1 = ( -Htr (h) j tr  
g 

thereby dispatching the hessian. What remains fmn ( ~ ~ h ) ~ ~  is 

the claim being that this must equal 

ia b g ( -R jiehab - R h )  
a i l  jb 

= - gaq= 
jiehab 

- - - ~~~h 
j t ab 

- - - a b h  
R j t a b .  

- g i q  
~i j hjhaa 

= - h 
t i j  ab 

- - - b a h  
R t j a b  

= - a b h  
j L ab. 



The bookkeeping is therefore ccarq?lete.l 

Identities We have 



Consider now 



Special Case 



SO, as a corollary, 

where 

[Note: Each of the terms involving V V h  is a divergence. For exan~ple, 

Example: Given an open, relatively compact subset KcM, put 

Then an element g€M - is said to be critical if V K & V h€S (M) (spt hcK) , 
2,c 

d d 1 = 0. lK ~ ( g  + ch) wlg + IK S(g) n l g  + ,h 

But 

d ( = - I  1 S(g)trg(h)volg 
'-K S(g) zW\ + ch &=O 2 K 



where each of the Oncitted t e r m s  is the divergence of a vectDr field whose support 

is compact and contained in K. But 

Therefore 

0 
= IK gL21 ( -hc (g) ,h)vol 

g ' 

Since K is arbitrary, it follows that g is cri t ical  i f f  

0 1 
gL21 ( -Ric ( g )  + 2 S (g)g,h) = 0 

for a l l  h€S (M) , i .e. , g is crit ical i f f  
2,c 

1 
Ric(g) - S(g)g = 0, 

the vacuum field equation of general relativity. 



LENMA View S as a m p  

Then 

0 
= - A tr (h) - 6 div h - g[*I (Ric (g) ,h) . 

g g 53 4 

[The third term has been identified a v e ,  so it is a question of explicating 

the other tm. 

Ad - A tr (h): W e  have 
53 g 

Capare this with 

Thus 



and 

Ad - 6 div h: W e  have 
g 9 

i - 6 div h = v (div h)i 
g 53 9 

- i jk - g Vkhji 

i j  
= v v hji 

i j 
= v v hij. 

Compare this with 

1 z ((vvh)ijji + (vvh)jiij I 



Thus 

and 

Example: Take M caopact and let h = Ric (g) -- then trg (fit (g) ) = S (g) 

and 

1 
div Ric ( g )  = -Z dS (g) 

g 

1 - 6 div Ric(g) = ( -6 dS(g)) 
g g g 



Remark: 

Define 

by 

and define 

by 

Then 

(DgS) (Lxgl = Lx(S(g)). 

For later use, note that the preceding considerations imply that 

S, (A tr (h) + 6 div h)vol = 0. 
9 9 9 9 9 

0 
yg(h) = - A tr (h) - 6 div h - g[*1 (Ric(g) ,h) 

9 9 9 9 

~otation: Given f€cW (M) , p t  

j (df*Ri~(g))~ = (df) jR i. 



S- Let f ccrn(~)  -- then 

div H - dngf - df-Ric(g) = 0. 
4 f 

[By definition, 

But, in view of the Weitzenboeck formula, 

And 

Suppose that y* (f) = 0, thus 
9 

- (A f ) g  + Hf - fRic(g) = 0 
4 

and so, upon application of div 
4 ' 

- d~ f + div H - df-fic(g) - fdiv Ric(g) = 0. 
4 4 f 4 



Therefore 

fdiv Ric (g) = 0 

or  still, 

Consequently, i f  f is never zero, then dS (g) = 0, which  implies that S (g) is 

a constant, say S (g) = X. 

Example: Take M c a p c t  and n > 1. Fix cp€ci (M)  :cp > 0. Given g% 
rn 

(the se t  of rimannian structures on M) , put 

Then g is stationary for L , i.e., 
cP 

g $, (g + Eh) 

for a l l  hcS2 (M) i f f  Ric (g) = 0 and cp = C lg 

= 0 

1 'I2 (C a positive constant) . 

[fix f > 0 in ~ ~ ( 1 4 )  :o = f 1 ~ 1 ~ ' ~  -- then 

d d - ' (g + Eh) I E = O  = fM '(9 + 'h) lgl 
1/2 

d& cp 

= I Y (h) fvolg 
M 

- - I, g121 0 (h,y;(f) )vol 
' 

Accordingly, g is stationary for L i f f  y* (f) = 0. Since 
cP g 

yG(f) = - ( A  f ) g  + Hf - fRic(g), 
g 



the conditions 

are obviously sufficient. To see that they are also necessary, mte that 

But 



If X 7 0, then .fM fwl = 0, contradicting f 7 0. Therefore X = 0, hence f is 
g 

harmnic : 

And 

Then 

0 = y* (C) = - m c  (g) 
g 

=. Iiic(g) = 0.1 

[Note: There may be m g a t  which L is stationary.  1 
cP 

IXWN View Ein as a mp 

1 = -  [ A $ + T  2 
+ (6  div E)gl 

d i v  g 
g 

[Note: Here 

thus locally, 
- - 1 a 
hij - hij - 2 h agij. I 

1 
FACT Take h = Lxg (X€Dc(M)) -- then 



It is sametimes necessary to consider second order issues, the dawnside 

being that the computations can be involved. 

Example: Put 

Differentiate the identity 

once w.r.t. e and then set E = 0 to get 

div' Ein (g) + div (D Ein) (h) = 0. 
9 h 9 9 

Therefore 

div (D  in) (h) = 0 
9 9  

Differentiate the identity 

twice w.r.t. E and then set E = 0 to get 

div" Ein (g) + 2diviIh (DgEin) (h) + div  in) (h,h) = 0. 
9th 9 9 

Therefore 

div  in) (h, h) = 0 
9 

if 



[Note: Strictly speaking, div" should be denoted by div" 
gr h 9, (hrh) - I 

Observation: L e t  X be an infinitesimal iscawtry per g and suppose that 

s tS2 (M) is divergence free (i . e. , div s = 0) . Define X. s by 
9 

j ( X * S ) ~  = x Sij. 

Then 

6 X - s  = 0. 
g 

[In fact, 

i 
6 X - s  = - V (X-S) 
4 

i j 
= - v (X s .  . )  

17 

But 

V.X. + V.X. = 0 
1 3  3 1  

mlication: Suppose that 

Then for any infinitesimal ismetry X per g, 

2 
6 X- (D Ein) (h,h) = 0. 
g g 



0 + .fM g[l] (div h,div h ) w l  
9 9 9' 

[We have 

But 



1 
+ - J  ( A  tr (h) + 6 div h ) t r  (h)vol 
2 M  4 4  4 4 4 4 ' 

The term 

1 0 - - 2 I M g[,l (h,ApLh)VOlg 

requires m further attention, hence can be set aside. Next 



And 

= JM (div h) (div h) ivol 
g g g 

0 = & g[l] (div h,div h)vol 
9 g 9 ' 



1 0 = - J gll] (div h.dtrg(h))wlg. 2 M 4 

Thus these terms cancel out, leaving 

or still, 

Then 

2 + I, S(g) ( D g w l )  (h,h). 

Suppose now that g is a c r i t i ca l  point: Ein(g) = 0 =, Ric(g) = 0 & S (g) = 0, thus 

1 0 0 - - 2 M g (dtr (h) ,dtr  (h) )vol + JM g[ll (div h,div h ) w l  
4 4 4 4 4 4 



+ $ g [ ; ]  (h,h) + 26 div (h*h). 
4 4 

[Note: Here Vh*Vh stands for the cambination 

Reality Check This amounts to calculating the integral 

2 r, (DgS) (h,h)volg 

2 
directly £ran the expression for (D S) (h,h) provided by the lama and camparing 

g 

the result w i t h  the formila obtained earlier (which was derived urader the assunption 

that Ric(g) = 0). 



[Note: If Ric (g) = 0, then 

By definition, 

= v v j v  h 
k i j '  

Therefore 

Write 



ij k 
= - J,h ViVkhj vo1 

g 

i j k ij kt - J, h ~~~~~h~ vo1 - I, h h j L ~  pig. 
g  

Both of these integrals will contribute. 

i j k - - JM h V.V h. vol 
1 k 1  g 

i j 
= - J, h vi(div h) .vol 

9 1 4  

ij i j 
= - JM [vi(h (div h) .) - Vih (div h) . lvol 

9  3 9 1  g  

= J v.hij(div h) .vol M 1 9 1 g  

j = 1, (div h) (div h) .vol 
4  9 1 4  

0 
= S, g[ll (div h,div h)vol 

9  g 4  



As has been already established, 

0 JM g [2] (h,Ht, (h) )wlg 
9 

0 
= - 2 JM gill (div h,dtr (h))wl 

'3 g g 

thereby cancelling the mntribution coming f m  



Both 

and 

integrate to zero. 

Sum~lry: We have 

0 + JM gill (div h,div h)wl 
9 4 g ' 

which reduces to the f o d a  established previously when Ric (g) = 0. 



Section 30: Splittings Let !I be a oonnected cm manifold of dimmion n. 

Assume: M is compact and orientable and n > 1. 

Ekpip %(MI with the cm toplogy -- then &MI is a ~ r & h e t  space. In  
9 

0 particular : V 2  (M) is a E'rkhet space, as is S (M) (being a closed subspace of 

0 P2 (MI I . 
nbbreviate M to % -- then M is open in S2 (M) , hence is a ~ r & h e t  

-O,n -0 

manifold mdeled on S2 (M) . 
Given gE4. define 

by 

and define 

by 

# a* ( s )  = - 29 div s . 
9 4 

Then 



2 
o ( a  ;x) :T M -+ Sym T*M 
5 9 X X 

of a  is injective. 
g 

[Given V€TxM, we have 



1.e.: V = 0, hence a ( a  ;x) is injective.] 
5 9 

By el l ip t ic  theory, it then follows that there is an ortbgonal deacarrposition 

S2(M) = Ran a @ K e r  a*, 
FI Q 

where both Ran a and K e r  a* are closed subspaces of S2 (MI . 
9 9 

Consequently, every sES2(M) can be s p l i t  into tm pieces: 

s = s + h g .  0 

H e r e  div s = 0 and &g is unique in  X up to infinitesimal imtr ies .  
9 0 

Mtation: Given x€$ ( M )  , put 

[By definition, 

j j = v V.X. + v Pixj 
3 1  

m i n g  to vjvixj, write 



£ram which the result. 1 

[Note: This computation does mt  use the assumption thatM is campact 

and is valid for any g€M. - I 

Application: Suppose that Ric (g) = 0 -- then 

A tr k g  + 6 div &g = 0. 
g g g g 

[Consider A h k g :  
(3 g 



Consider 6 div kg: 
9 9 

But 

~a-1: Suplpse that Ric (g) = 0 -- then tl h€S2 (MI , 



Example: Suppose that Ric(g) = 0.  Let h€S2(M):h = ho + k g  (div h = 0) -- 
9 0 

then 

(D Ric) (h) = (D Ric) (ho + kg) 
g 4 

Therefore 



1 0 - - 2 I M g[,l (dtrg(h) ,dtr  (h )volg. 
g 0 

There are som additional simplifications that can be made. First ,  since Ric(g) = 0, 

divg 0 - = - Aeon o div 
4 

Next 

div h = div shg 

= dggbx - dSggbx 

= - (d 0 6g + Sg 0 -  d) &X 

= - (2d6 $X + 6gdg%) 
9 



= - 4 d 6 & ~ -  6 d g h + d t r  (h). 
9 9 9 0 

Theref ore  

= 0. 

So, in mclus'Lon, 



+ 2 JM g$l (d6 4 gb~,dtrg(ho) )volg. 

Example: If  EM is a critical point for -0 

1 0 + 2 IM gill (dtr (h ) Idtr (h h l g .  
g 0 4 0 

[Note that 

(ogS) (h) = - A tr (h) - 6 div h 
4 4 53 4 

= - A tr (h ) - A tr &g - 6gdivg* 
g 4 0  4 4 

= -  Atr (h1.1 
4 4 0  

FACT We have - 
2 2 

(D~L) (h.h) = (D~L) (hoIho) . 



and 

LmMA V xEM & V t;ETgM - (01, the symbol 

o (y* ;x) :R + sym2 TCM 5 s  - 

of y* is injective. 
9 

[Given r ER, we have - 

o (y*;x) (r) = E 9 

But the trace of the RHS is 

0 
(l-n)gx[,1 (E,E)r. 

Therefore 

o (~*;x) (r) = 0 = r = 0 (n > 1) .I  
5 s 

By elliptic theory, it then follows that there is an orthogonal decomposition 

S2(M1 = K e r  y 8 Ran y*, 
9 g 



where both K e r  y and Ran y* are closed subspaces of S204). 
9 4 

Consequentlyl wery h€S2(M) can be written in the form 

h = ff + ( - ( ~ ~ £ ) g  + Hf - fRic(g)), 

where 

0 
tr (K) + 6 div h + g[,1 (Ric(g),h) = 0. 

4 g g g 

S 2 ( ~ )  = (Ker y nKer a*) @  an a e  an y*g. 
9 9 9 

So, if h€S2 (M) , then 



where 

0 div Ii = 0 6 A tr (S ) + g[21 (Ric(g).Xo) = 0. 
g 0 g g o  

UW4A We have 

[Consider the relation 

If X = 0, then tr (% ) is harmnic, hence equals a constant Co. If h c 0, then 
g 0 

tr (E ) = 0 (since the eigenvalues of A are s 0). If X > 0 and if \ c 0 is 
g 0 g 

the first strictly negative eigenvalue of A then the Lichnerowicz inequality 
g ' 

says that 

n 
? L 5  iFi ( -1) (see below) . 

But 

thus tr (Fi ) = 0.1 
g 0 



[Note: explicate Co when tr (fi ) is harmnic, observe that  
g 0 

Therefore the difference 

is ortLhogona1 to the constants, in particular is orthogonal to i t se l f .  I .e. : 

Scholium: Suppose that  M is Einstein (n 7 1) -- then V heS2 (M) , 

[Note: H e r e  

has zero divwgence and zero trace, a circumstance wh ich  i n  the l i tera ture  is 

referred to as  being transverse traceless (cf. infra).] 

Let  \ c 0 be the f i r s t  s t r i c t l y  negative eigenvalue of A - then 
g 



[Fix f # 0:A f = \f and integrate the e q u a l i t y  
9 

or still, 

or still, 

But 

Therefore 



~bservation: Let XCD' (M) , s €S2 (M) -- then 

2 0 (div X ) g , s ) v o I  
< - - (div X ) g , s  > = .fM g12]( -, n g g 9 

- 2 - - - .f (div X) tr (s)vol n M g g 4 

Given ga4, define 

by 

and define 



by 

Then 

# 2 T*(s) = - 2g div s + 
9 g 

- gradg trg ( s )  . 

< 7; (X) ,S 7 = < x,z*(s) >. 
g s 

LEMMA V x s l  & V M - 0 ,  the s W ~  

o (7 ; x )  :TxM + Syrn2 TEM 
k s 

of T is injective provided n 7 1. 
9 

[Given VcTxM, we have 



By el l ipt ic  theory, it then follows that there is an orthogonal deccglrposition 

S2(M) = Ran T @ K e r  T*, 
9 g 

where both Ran z and Ker z* are closed subspaces of S2(M). 
9 9 

Consequently , every s €S2 (4) can he sp l i t  into three parts : 

Here 

# 2 0 - 29 div so + ;; grad tr (s ) = 0 
9 (3 g 

or still, 

or still, 

or still, 

or still, 

# 1 # 0 - g d i v  ~ O + ~ g d t r  ( s )  = O  
g 9 

0 1 0 - div s + - div (trg(s )g )  = 0 
9 n 9 

1 0 div (so - T; trg(s )g) = 0. 
9 

RaMlrk: A vector field X is said to be conformal i f  



Every infinitesimal ismetry is c o n f o d ,  the converse being false in  general. 

[Note: According to  Y a m ' s  

1, [Ric (X,X) - (div 

So, i f  X is conformal, then 

formula, 

2 1 0  1 x) + 2 d 2 1  (&g,$p) - gI1I (vX,VX) lwl 9 = 0. 

a relation which places an a priori restriction on the existence of X. E.g.: 

There are rn nonzero conformal vector fields i f  the Ricci curvature is negative 

definite. 1 

Put 

Then 

[NO*: We have used the fact that 

0 
tr (s) = tr (s 1. 

9 9 

Proof: 



Notation: S2 (a) TT stands for the subspace of S2 (M) consisting of tbse 

s such that  

div s = 0 & tr (s) = 0. 
9 9 

[Note: In other words, S2 (MI TT is the kernel of the map 

that  sends s to (div sf* ( ~ 1 ) .  
g g 

The preceding considerations then imply that  

m k :  ~t can be shown t h a t  S2 (M) TT is infinite dimensional provided 

n >  2. 

H e r e  is sarne termbmlogy tha t  can serve as a recapitulation. 

U l a t u r e  : 

(1) The spli t t ing 

is called the camnical decomposition of s€S2 (M) . 
(2) The spli t t ing 

h = + ( - ( A  f ) g  + Hf - fRic(g)) 
g 

is called the BDBE deccgnposition of h€S2 (M) . 

(3) The spli t t ing 

TT 2 1 s = s + Lxg +, ( -div X ) g  + K t r  (s)g  
g 4 

is called the York deampsi t ion of s €S2 (M) . 



Section 31: Metrics on Metrics Let M be a connected cW fianifold of 

dimension n. Assume: M is a m p c t  and orientable and n > 1. 

Rappel: M (the set of r i d a n  structures on M) is open in S2 (M) , 
-0 

hence is a F'rkhet manifold d e l e 3  on S2 (M) . 
Put 

the pairing 

< , > :TM x T*M + R  
g o  g-0 - 

being 

g 

0 
= iM g121 ( u . v ) ~ l g .  

2 2 
[Note: T*g0 is the "L cotangent bundle" of Ifo (the fiber T*M = s ( M )  

g-0 

is a proper subspace of the toplogical  dual of T M = S2(M)).] 
9-0 

Given PER, - define 



and set 

G ( u , v ) = & [ u , v ~  ~ 0 1  P 19 Pts s' 

Then 

is a srm0t.h symnetric bilinear form. 

[Note : Obviously, 

I 
[u,vI = [u,vI + (P- K) tr (u) tr (v) . P IS 9 s 9 

Therefore 

I Example: Take = - - 1 -- then G1 n ( 2  G ) is called the I k W i t t  metric, 
- - 1  , s s 
n 

LElWA V PfO, G is nondegenerate. 
P I S  

[Fix u€S2(M) and suppose that G (u,v) = 0 V v€S2(14) -- then in particular B I S  



We have 

Therefore 



Rappel: Derote by  iff+^ the normal subgroup of Dif f El consisting of 

the orientation preserving diffecarorphisms -- then there are tm possibilities. 

[Dif f M:D~£ £+MI = 1, in which case M is irreversible. 

+ 
0 [Dif f ~ : D i f  f $11 = 2, in  which case M is reversible. 

[Note: There is then an orientation reversing diffecmrphism of M and 

a short exact sequence 

where sM(cp) = +1 i f  cp is orientation preserving and cEI(q) = -1 i f  cp is orientation 

reversing. ] 

Remark: When equipped w i t h  the cm toplogy, Diff M is a topological group. 

The normal subgroup  iff'^ is bth open and closed and contains DiffoM, the 

identity component of Diff M. 

The group  iff'^ operates to the right on Go via pullback: \I cp€Diff+~, 

g-cp = q*g (gCFI0). 

E '  View G a s  a sanirieMNlian structure on z0 ( p  # 0) -- then 
B 

[Note: In other m d s ,    iff+^ can be identified w i t h  a subgroup of the 

isometry group of (M ,G ) . I  
-0 B 

In wha t  follows, it w i l l  always be assumed that p f 0. 

b 2 
G :S2(y) -+ Sd(EI) H e r e  B ts 



But 

Therefore 

b 
[Note: By construction, G is injective. ?@re is true: G~ is P fs P f s 

bi  j ective with inverse 

given by 



Observation: There is a comnutative diagram 



where 

Definition: A vector f ie ld  X on TMo is said to be second order i f  

[Note: Of course, IT T 0 X = ibo - is autamatic. 1 

Let 

be a vector f ie ld  on - -- then X has two cmponents: X = (XI. X2) , where 

I X,:go x S2(M) +S2(14). 
- 

This said, it is then clear that X is second order i f f  

X(g,s) = (s,X2(g,s)) (xl(g,s) = s) 

~~snark :  I£ x is second order and i f  y (t) = Cg (t) , s (t) EMo X S2 (M) is an 



integral curve for X, then 

or, in brief, 

[Note: The geodesics of X are, by definition, the projection to Blo of 

its integral curves.] 

Definition: A spray is a seaond order vector field X on To which satisfies 

the follwing condition: V XER, - 

[Note: In other words, X2 is honmgeneous of degree 2 in the variable s f  



THM)REM Fix B + 0 -- then there exists a unique spray X on To 1Ose 
P 

second component r has the property that 
P 

[Note: The significance of this result w i l l  beccane apparent i n  the next 

section. 1 

The uniqueness of X is obvious. As for its existence, let 
B 

where 

or  still, 

Then 

[Note: Put 

Then B is bilinear and 
P 



1 
Example: Take p = - - 1 - then T1 

n (G r) is called the DeWitt spray, - - 
n 1 

thus 



Consider now the RHS. 



ij ij k = 2 s  s hk - h  s s i k j  ik j' 

And 



Therefore 

1- n + fM tr 9 (sI2trg(h)volg, 

which is precisely the expression derived above for 

G (rg(g,s),h). B 19 



1 
+ (8 - K) fM tr (s) [s,hl wlg.1 

g g 

The governing equation for the geodesics of X is 
8 

Ej = r8 (g,& 

or, written out, 

RePMlrk: This equation is an ODE and the evolution of a solution g ( t )  

depends only on 

- 
g (0) 

- &o) . 
To be precise: Given (g ,s 1, there exists a unique integral curve 0 0 

y:]- c .  E [  -+ zo x S 2 ( ~ )  for X such that  y(O) = (gO,sO), i.e., P 

[Note: The geodesics can be found explicitly but the formulas are not 

particularly enlightening (they do show, however, that the geodesics exist  for 

a short time only in that they eventually run out of E0 into S2(M) ) . 



Section 32: The Symphctic Structure Let Y be a connected cm r'oanifold 

of dimension n. Assume: M is campact and orientable and n > 1. 

Rappel: There is an arrow of evaluation 

and a nondegenerate bilinear functional 

viz . 

Consider T*r+, - = Eo x S: (M) -- then 

The Canonical 1-Form O This is the map 

defined by the prescription 

The Canonical 2-Form P T h i s  is the m p  



defined by the prescription 

LEWA We have 

52 = - do. 
[In fact, 

Therefore Q is exact and the pair (T*ZO ,Q) is a symp1ectic manifold. 

Fix p # 0 and define 

O p q ,  ' T*P20 



Then 4 is an i m r p h i s n  of vector bundles, hence a 

is mndegenerate. On the other hand, 

which implies that Q is exact. 
P 

Conclusion: The pair (TM ,Q ) is a symplectic manifold. 
-0 P 

[Given Pi # 0 (i = 2 , the bijection 

is a car#,nical transformation: 

For the LHS equals 

SUBLEMMA The tangent map 



is given by 

[Note: Since 

it follows that 

where 

Explicated : 



Maintaining the assumption that p # 0 ,  define K :TM0 + B - 
1 K ( g , ~ )  = - G  ( s , s ) .  

B 2 PI57 

N.B. Consider dK thus 
B ' 

with 



THEOREM For all vector fields X on TMO, - 



Interpretation: Per 8 X is a hmniltonian vector field on Two with 
P' P 

energy K P ' 
FACT (Conservation of Energy) Let y(tl  be an integral curve for X -- 

B 
then the function t -+ K (y (t) ) is constant in  t . 

B 
wmply note that 

1 Construction Let XfV (PO -- then X induces a vector field 2 : ~ ~  -+ S2 (M) - 
on so via the prescription 

Put at = 42, where +t. is the flow of X -- then there is a ccmutative diagram 



Here 

and 

SUBLEMMA W e  have 

KB = KP =t- 

Application: A t  any p i n t  (g, s) €9, - 

Rappel: A f i r s t  integral for  a vector f ie ld  on To is a function 

£:Dlo - + R - which is constant on integral 

So, e.g., K is a f i r s t  integral 
P 

curves. 

XP 

1 LEMMA V XED (M) , the function 

(9,s) + G P r g ( ~ J X 9 )  

is a f i r s t  integral for X 
P ' 

[Let y ( t )  = (g( t )  ,s(t) ) be an integral curve for X - then 6 = s and 
P 



or, restoring the dependence on t, 

d - G  
1 d 

d t  B,g(t> 
( ~ ( t )  ,h) = - - G 

2 de p,g(t) + eh E=O 

Now replace h by k g  (t) -- then 

But 
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W r i t e  



1 = - 2 IEl div (S + ( -. ) (slg) (X)volg. 
4 9 

Let 

1 
n ( s ) = s + ( $ - - ) t r ( s ) g .  P ,g n g  

Then it fol lms that the function 

(g  , s) -+ JM div (n (s) 1 (XI volg 
9 PIS 

is a f i r s t  integral for X 
P ' 

Conservation Principle Suppse that y (t) = (g (t) , s (t) ) is an integral 

curve for X Abbreviating n 
P ' P,s(t) (S (t) ) to n P  (t) , v X&M) , 

JM div n (t) (XI volg (tl 
g ( t )  P 

is a constant function of t, which implies that 

div n (t) e lg(t)11/2~A(M) s(t) P 

is a constant function of t. Consequently, i f  

divg(0)ng (0) = 0, 

div n (t) = 0. 
g ( t )  p 



Section 33: mtion in a Potential Let M be a connected coo manifold of 

dimension n. Assume: M is canpact and orientable and n > 1. 

Given NEC- (Y> , put 





2. We have 

Combining 1 and 2 then gives 

Example: Take 

I - 

thus i n  th i s  case the 

1 - n -  (: - l ) n  = o 

2 - n - 2(;- l ) n =  n 

gradient of VN a t  g (denoted by grad V ) equals 
g N 



[Note: When N = 1, the hessian drops out and there ramins 

S(g1g.I - a c ( 9 )  + T(~~;IT 

Define a vector field 

v 1. = (sJg(9 .s )  - gradgrg N 

Then Y is second order and the equation determining its geodesics reads 
BIN 

l a n d N = l - - t h e n  Example: Take 8 = - - n 

THEDRIDI For a l l  vector fields Y on TMot 

Qg (Yp INIY)  = dE B , N ( ~ )  

where 

E = K  +VN. 
P I N  P 

[Suppose that Y (g , s )  = (u,v) -- then 



Bearing in mirad that  the pair (TM B ) is a symplectic manifold, it follows 
-0' p 

that Y is a hamiltonian vector field on TJo with energy E 
P I N  $ IN* 



[Note: A s  before, energy is conserved, i.e., on an integral curve 

y ( t )  for Y 
$ INf  

the function t -t E ( y (t) ) is constant in t .I 
BIN 

Take N = 1 a d  write V in place of V1, hence 

and 

1 
LSEMA W XCD (M) , the function 

(grs)  - G (s,Lxg) P r s  

is a f i r s t  integral for Y (E Y ) . 
B B f 1 

[The only new point is that  



1 is a f i r s t  integral for Y But XED (M) is arbitrary. So, along an integral 
8 ' 

curve y( t )  for Y 
B ' 

is necessarily a constant. 

Notation: Let 

n (s) = s - trg(s)g.  
'3 

Then 

1. for the choice p = ;;; - 

Ll3W.i W e  have 

- A tr (s) - 6 div s = - 6 div rr (s). 
g g g 9 g ' 3 9  

[In fact, 

- A tr (s) = - div grad tr (s) 
9 g 9 4 4 

# = - div g (dtr (s)) 
g '3 

Therefore 

- A tr (s) - 6 div s 
g g g g 

= 6 div (trg(s)g) - 6 div s 
g '3 9 g 



= 6 div (tr (s)g-s) 
g g  g 

= - 6 div n (s) . ] 
g 5753 

Define a function .P :TMo + c ~ ( M )  by 
B 

Then cP is the energy density: B 

THEOREM On the integral curves for Y 
B ' 

[First 

Now insert the explicit expression for g derived above. 



1 ( p  - -)tr (4) t r  (g) is the  sum of f i ve  t e r m s :  
n 9  g 

1 2-n-2811 
1 0  p - 1  zpn 

. . .  
There are t w o  imnediate cancellations, viz. term 1 cancels with - [g,g*g] 

1 
and term 6 cancels w i t h  - ( p  - ---) trg (6) [4,41 Consider next term 3 and term 8 

g ' 



or still, 

which cancels with term 2 + t e r m  7. There remains 

But 

Thus matters reduce to 



However  

Theref ore 

which mnpletes the proof. 1 

While this resu l t  is valid V p # 0, it is hybrid in character and points 

to the significance of the Mitt metric: The choice p = - - 1 is the parameter n - 
value per n hence along an integral curve y ( t )  for  Y1 I ' - - 

n 1 

is a constant. Accordingly, i f  a t  t = 0, 



thus 

and so el is pointwise constant in time. 
- - 
n 1 

RBwk: Let C be a nonzero constant. Replace V by CV (a.k.a. VC) and 

Then, on the integral curves of Y 
BtC ' 

Let 

Then 

LDlM& We have 



[Since 

it follows that 

Theref ore 

-1 " ((9,") = (g,8 $ t S  ( A ) ) .  



2 
Thus the coefficient of tr (s) i s  

9 

or still, 

1 
Example: Take p = - - 1 -- then n 

# i f  n = s w 1 1 'I2, which inplies that 



Then 

where 

Define a function ff :T*M -+ R by p -0 - 

Definition: The hamiltonian vector f ie ld  

on T*g0 mrrespording to H is given by the prescription P 

To justify the tamhology, let  Z be any vector f ie ld  on T*zo. Suppose 

that Z (grA) = (s,dl) -- then 



Observation: The diagram 

carmutes. 

Therefore 

(4 *y = z B B B '  

bbreover, i f  y ( t )  is an integral curve for Y and c ( t )  is an integral cwve 
B 

for Z and i f  4 y(0) = c ( O ) ,  then + y(t) = c ( t ) ,  hence the projections of y ( t )  
S B B 

and c ( t) onto Eo coincide. 

Remrk: Hamilton's equations are, by definition, the system of differential 

equations defined by Z 
B ' 



Section 34 : Constant Lapse, Zero Shift Let M be a connected C- manifold 

of dimension n > 2. Fix E (0 < E 5 00) and assume that 

where Z is ccgnpact and orientable (hence dim 2, * n - 1) . 
[Note: Z is going to play the role of the M £ram the previous section, 

so when quoting results £ram there, one must replace n by n - 1 . 1  

Notation: Q is the se t  of riesnvlnian structures on Z, thus now 

Fix a nonzero constant N (the lapse). Suppose that t -+ q ( t )  ( = qt) 

( t E  I - E , E [ I  is a path in  Q -- then the prescription 

2 defines an elanent of %,n-l (goo = g(aot aO) = - N ) . 

Notation: Indices a,b,c run £ram 1 to n - 1. 

SUBLEPPIA In adapted coordinates, the connection coefficients of g are 

given by 



and 

T H M ) m  Ric(g) = 0 i f f  satisfies the differential equation 

and the constraints 

We shall start w i t h  the assumption that Ric(g) = 0. 



Rappel : 

and 

[Note: Recall that grad V stands for the gradient of V in the Mitt 
% 

L 

metric (which here armunts to choosing = = - I).] 



L L 

Therefore 

But then 

as claimed. 

[Note: Since 

CI 

it follows 

L 2N grad V = - 
g, 

L 

that the curve t -t q ( t )  

( - 2 ~ '  grad 9c V )  

grad V 
qt -2N2' 

(tE I- E , E [ )  is a geodesic per 



Finally 

(div a = dtr a 
st st 

(div $)a = (div 
st 

(tr ($st''a 
st s, 

Thus, in surmmry, the stated conditions on qt are necessary. That they 

are also sufficient can be established by running the argument in reverse. 

Remark: By definition, 

Therefore 

div ($ - tr (<)%) = div n (t) . 
s, s, st 

On the other hand, 



where 

FACT If Ric (g) = 0 and i f  

;t = rg (qt, + 2NL grad 
B I q t V  

subject to 

W e  shall  now 

w i l l  be simplest to 

1, then qt = qo for a l l  t and Ric(qo) = 0. 

transfer the theory from TQ to T*Q. For th i s  purpose, it 

first change the i n i t i a l  data, which is the path 

in TQ. 

Given t€ 1- E ,E[ ,  put Zt = {t) x Z and let it:z Zt -+ M be the M i - .  



Working w i t h  the metric connection of g, let  ut€S2 (2) be the extrinsic curvature, 

thus 

xt (VIWl = % ( -i;V&,w) g (q,ql 

[In fact,  



So, instead of the path 

we can just as w e l l  work w i t h  the path 

Definition: The nnnentum 

defined by the prescription 

2 of the theory is the path t + pt in  %(Z) 

where 

[Simply observe that 
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$=at 

Consider the relations figuring in  the theorem, beginning with the constraints. 

In terms of ut, this reads 

div (2Nxt - 2NKtgt) = 0 
st 

or still, 

div (xt - Ktqt) = 0. 
st 

But div pt is, by definition, 
st 

1/2 div (xt-Ktqt) !;9 , 
q t  

thus our constraint becares 



div pt = 0. 
s, 

In t e r m s  of ut, this reads 

or still, 

or still, 

or still, 

or still, 

or still, 

whexe we have set 



It remains to reformulate the differential equation 

2KIL grad V 
% 

in terms of pt. 

We have 

where 

Formulas 

- # x# = ((i # - 4N(xt*xt) . 
d t  t 



TO isolate it, one need only divide % by 2 N .  
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Andthen 

Fram the above, 

'~b assanble the tm involving Ric (st) and S (s,) , note. that 

# Huwever, there is also a contribution from - tre (Gt) qt, viz. 



But 

- - N 2-n + 1) = 2. 
N(2 (n-2) 

Thus we are l e f t  with 

Next 

which leaves 

# -NKx + N 
t t 2(n-2) 

N (n-1) 2 - - -  - 
2 (n-2) (Kt [xtfxt 

Now collate the data and colleat  t e ~ ~ n s .  

# The coefficient of Ktxt is 

- N + 2 N + N = 2 N e  



2 # The coeff icent of Kt% is 

# The coefficent of [ntfxtlstst is 

To recapitulate: 

But we are not done yet: It is best to replace xt by fit. 

Observation : Since 



where, by definition, 

Theref ore 



The last iten of detail is 

N K 2 # + N  W 
- 2 tst T [Xt'xtlst%* 

Write 

Then 



N = - ( [n  ,rr 1 - - 
2 t t qt n-2 st 

Sumnary: We have 

- 2N(ut* ' r t - -  bt - - n-2 tr (n ) n  8 ~ q t j " ~  s t t t  

N 1 / 2  

# 1/2 
- N E i n ( q t )  @lqtl . 



Section 35: Variable Lapse, Zero Shift L e t  M be a connected C- manifold 

of dimension n 7 2. Fix E (0 < E 5 "1 and assume that 

where 2 is compact and orientable (hence dim 2 r n - 1). 

Let N€cm (M) be s t r i c t l y  positive (or s t r i c t l y  negative) (the lapse) , Put 

Suppose that  t + q ( t )  ( = qt) ( t 6  I -  E ~ F I )  is a path in Q -- then the prescription 

2 defines an element of Ml,n-l - (goo = g(aoIao) = - N ) .  

1 L e t  nt = - at -- then 
- Nt 

Working with the metric connection of g, let xt€S2(z) be the extrinsic 

curvature, thus 

xt(VIW) = gt( - i;V&,W)g(gIgtt) 



And, as in the case of constant N, 

Remark: The focus below w i l l  be on the canputation of ; rather than q. t 

A t  each t, sulsananifold theory is applicable to the pair (M,Z) (per 
- 
g = iXg = %). To help keep things straight, overbars are sanetimes used to  t 

distinguish objects on Z £ran the corresponding objects on Y. 

LET4MA In ada~ted coordinates (and abbreviated notation), the connection 
L 

coefficients of g are given by 

and 

[The ccsrrputation is carried out using 





- 1 cd 
- 3 (gdOtO + gdO,O - gOOtd) 

- 1 cd - 29  ( - 

1 ad 2 = p  ( - a d (  - N  1 )  

= " P N d  

= Nq 5 
t d' 

m p l e :  W e  have 

- nab - V g a  = n i - I' *ni -a,b 



Recall now our indexing conventions for the curvature tensor: 

[Note: Here it i s  understood that V is the metric connection of g. 

mreover, the dependence on t is implicit: 

Specialize and take 

Then 



Rappe l :  W e  have 

or still, 

= (B n) (v1,w) - (5  x) (v~ ,w) .  
v2 

- 
[Note: V is the mtric connection of g , hence is torsion free. Therefore 

Details It is a question of supplying the omitted steps i n  the preceding 

manipulation. To begin wi th ,  

On the other hand, 



0 

Therefore 

Then 

Specialize and take 

It will also be necessary to canplte ROaOb which, by definition, is 



Then the calculation divides into three parts, viz. 

Ad 1: Fi r s t ,  

Second, 
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Ad 2: Analogously, - 

Ad 3 : On the one hand, 

[n,aalC - = 0, 

while on the other, 





Now combine terms: 

THEDm Ric(g) = 0 iff nt satisfies the differential equation 

; = 2N (X *X ) - N K x - NtRiC(%) + % t t t t  t t t  
t 

and the constraints 



It will be enough to establish the necessity of the stated conditions 

(sufficiency follaws by retracement) . So suppose that Ric(g) = 0. 

00 O = g  R OaOb + .".dad3 



; = ZN (x *x ) - N  K x - N t F l i c ( q t )  + % . t t t t  t t t  t 

i - i j  O = R  Oia - R j ~ i a  

But 

- 
b 

(div x) a = Tbn a 
9 



Therefore 

div (x - Kq) = 0. 
9 

div (x, - KA) = 0. 
st 



The necessity of the stated conditions is thereby established. 

Observation: 

2 
Ix,, xtI - Kt = S (qt) 

st 

K = 2N (X *X ) - N K x - NtRiC(s) + % t t t t  t t t  
t 

=2N ( M * u )  - N K x  + Nt 2 
t t t  t t t 2 (n-2) (Kt - [xt~xtlqt)st 

2 Definition: The manentun of the theory is the path t + pt in Sd(z) 

defined by the prescription 



where 

The discussion in  the previous section can now be repeated virtually 

verbatim. 

Constraint Equations These are the relations 

div pt = 0. 
st 

Evolution Fquations These are the relations 

and 

[Note: The explanation for the appearance of the laplacian A Nt is 
st 

the fact  that tr (Gt) figures in the formula for &.I 
st 



Section 36:  Incorporation of the Shift Let M be a connected cm manifold 

of dimension n > 2. F ix  E ( O  < E 5 m, and assume that 

where Z is campact and orientable (hence dim 2 = n - 1) 
-+ 

Definition: A shi f t  is a time dependent vector vield N on ,Z (thus 

-+ + 3 

N:]- E , E [  -+ TC has the property that Nt(x) = N(t,x)ETxZ V xEZ). 

3 

Fix a lapse N 3nd a sh i f t  N. Sup~ose that t -+ q ( t )  ( = %) ( t€] -  E , E [ )  

is a path i n  Q. Then the prescription 

defines an element of %In-l. 
-+ 

[Note: In adapted coordinates ( w i t h  N = ~ ~ a , )  , 

and 



Rgoark: We can w r i t e  

+ + +b 
g = - (N2 - q(~,N))dt 63dt + N W d t  + dt @zb+ q, 

modulo, of course, the obvious agreements. 

l a +  Let nt = - (x - Nt) -- then 
- Nt 



1 
= -T (goo - 2Nagoa + Mq*) 

Nt 

m k :  Obviously, 

In addition, 

nb - = - ~ d t .  

FACT We have 

LEWA L e t  nt€S2 (2)  be the extrinsic curvature (per the m t r i c  connection 



of g)  -- then 

[For 

= a  t (X t a b  +qt(~aaGtlab) +q,pa1o 
ab 

Application : 

The presence of the shift is not a problem: It adds one more term to the 

equation of rmtion. 

THEOREM Ric(g) = 0 iff xt satisfies the differential equation 

i = 2N (x *x ) - NtKtxt - NtRic(qt) + % + L, xt t t t t  
Nt 

and the constraints 

div (xt - Kt%) = 0 



A p a r t  f r m  a few additional wrinkles, the argument runs along the by now 

familiar lines. 

0 ' aOb 

- 1 C - 
- g - Nua nd - %TaNC - vb(TaN + naCNc) I .  

[In fact, 

0 ' aOb = dt(vovbaa - VbV~aa)  



Therefore 

- 0 C 

Rab - aOb + acb 

- 1 .  
= Rab + Kxab - 2 (x*x) ab + N [X * - (HNIab - I!. 1 -  

G a b  
But then Rab = 0 i f f  

Gab = 2N(x*x)* - NKxab - 

N.B. Since there is no torsion, 



FACT We have 

RBnark: The evolution of Kt follows £ran the evolution of x Indeed, t' 

Notation: Let 

Then 

and 



To discuss the f i r s t  constraint, write 



- - b  - b  - Vbx a - van 

Accordingly, if Ric (g) = 0, then 

- b  - b  
Vbx a - Van = 0. 

Therefore 

1.e. : 

div (x - Kq) = 0. 
9 

div (xt - Kt%) = 0. 
st 



Conversely, under the stated conditions, 

And 



- 0 0 00 O0 n n  + g  
0 d - 

R ~ ~ ~ a -  - 2 

00 c 0 00 c d 
n n  + g Rod: n 

+ g  R ~ c ~ a -  - 

Ob 0 0 Ob 0 d 
+ g %OoaG rt + g  RbOdar! I1 

Ob c 0 Ob c d 
+ g  s o a n  + g  %&? E 

R ~ ~ ~ a  = 0 & Ram = 0. 

c 0 O0 n n  R ~ c ~ a -  - 

- 00 c 0 - g  rt I1 ROcOa 

- 1 - - - .  
N2 

N~ = - R  
N4 OcOa 

- Nb 
- - 4 % O O ~ *  N 

But 



But 

This leaves 



And 

But 

- - Oc b 0 - g n n R  - - abco 

On the other hand, 

Obc 0 - NbNc 
g n n  - - - .  

N* 

Consequently, 

And 

' a h  + R~ + R~~ = 0. 

But 



- - - N'NbNd 
N4 

On the other hand, 

Ob c d - N ~ N C N ~  s 2 :  - 
N4 

Consequently, 

Ob c 

Turning now to the second constraint, write 

i j  ke 
S(g) = R f i j p  g 

- k & 
- Rikj.t (hi' - ninj) - - (h" - n - g 1 

- - Rikjeh i j  h ki? - 2R k fijn i j  " (see below) 



So, if Ric ( g )  = 0, then Ein (g)  = 0, hence 

or still, 

Conversely, under the stated conditions, 

1 Ric (g,g) + 3 S (g)  = 0 



Details The claim is that 

k e i j  = - %Ljh n - n - 

= - RRRikjh k e i j  g g . 

- RikjeG i j k R  " 5 

- i j k k  - -  siRj2 Z Q E 

- i j k R  - - RRikjn - n - g g . 

i j - 2 ~ ~ , ~ g  g 

i j  
= - zgI%tRRikjn - n - 

k R i j = - 2(hM - g g )RRRikjz g 



mtters thus reduce to showing that 
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i j k L  
RL*j" " ""= O* 

LEMW We have 



[As was noted above, 

But 

Therefore 

Formulas 

i j  
vi(n v.n - 3- 

i 
= dx (vi 

= dt(vo(IQ,) + dxa(va(%) 





i acN cd 
= dx milT q ad]) 

acN cd a acN cd 
= dt(- N q vOad) + " (ParT q ad]) 

acN cii 1 acN c a = -5 q (adN + + v ~ ( ~  PN) - x a~ 
N N 

1 -a- - - - V VaN 

- - I A N .  - 
N q 

Substituting these relations into the lemoa then gives 

S(g) = S(q) - 3[x,xl + K 
2 

q 



Therefore 

i f f  

b 
G = ~ ( n , n ) n ~  - - -  03 nb - + G(n,aa)  (nb €3 dxa + dxa 8 nb) - + ~ ( a ~ , a ~ ) a x "  03 dx . 

The preceding result admits an interpretation in  the language of lagrangian 

mechanics. For this purpose, we shall use the following notation. 

q w i l l  stand for an arbitrary element of Q and v w i l l  stand for an 

arbitrary element of S2 (2) . 

N w i l l  stand for an arbitrary element of cZO (2) wZO (2) . 

[Note: Earlier N was a t h e  dependent element of cZO (c) UCZO (2) .I 

m 8 w i l l  stand for an arbitrary elanent of D' (Z )  . 
1 [Note: Earlier 8 was a t i m e  depmdent element of V ( 2 )  . I 

Given (cJ,v;N,~) , put 



[Note: It is clear t h a t  x€S2(2), thus it rrakes sense to form [x,x] 

and K = tr (x) .I  
9 

Definition: The lagrangian of the theory is the function 

L:TQ -+ c ~ ( z )  

defined by the rule 

L(~,v ;N,%)  = N ( s ( ~ )  + [x,xlq - K ~ )  ~1 1 ~ 1 ~ ' ~ .  

[Note : Accordingly, N and 8 are merely external variables. I 

Heuristics H e r e  is the mtivation for th is  seemingly off the w a l l  definition. 

Returning to  the original setup, l e t  

Then f is a divergence (on M ) .  So, ignoring boundary terms and a l l  issues of 

convergence, 



+ 
= r-: at r, L(~~,&:N~,N~). 

[Note: Working in adapted coordinates, 

vol = ~~ll/~dtndx' A ... A cb?-l, 
9 

thus 

dtk a/at~olg 

1 
= lg 1 'l2dtz~ dtn (dx A . . . a / a t  A dx"-l) 

= vol .I 
9 

Let 

Ekample: Consider the simplest case: N = 1, 8 = d -- then 



Notation: Write 

SL - -- SL ab 
(q) and - 6L - - SL 

(=) 
6%b 6vab 

[Note: On general grounds, 

6L 2 6L 2 - 6sd(z) and csd(z) - 1 
&I 

S- We have 

SUEU3.IMA We have 

Consider now the original situation, viz. the t r iple  (q,, ~ ~ ~ 3 ~ )  

( t E ] -  . s f & [ )  -- then insertion of this data into the f o m l a s  for the functional 



derivatives leads to t m  functions of t: 

6 L 6L (t) . (t) & - 
6qab % b  

THEOREM cab = 0 i f f  the equations of Lagrange are satisfied, i .e. , i f f  

d 6L -- (t) = - d t  Q 
6L (t). 
6qab 

It is a question of f i r s t  calculating 

-- 6L (t) d t  h T &  

and then comparing t e r m s .  

Step 1 : F'rm the definitions, 



a b d  cd - .,4 (= 4  1 

ab cu* vd =-'bd4 ( - 4  qnrg ) 

a b e d  
= U c d g  4  

ab d 
( X * -  ~ q  @ =  ~ q l  1/2 

2 



Sumnary: We have 

Then 





ab ab a b -  
= ~ ( n & - K q  ) K +  (n -Kq )vcNC. 

Swmary : We have 

ab ab - 1/2 + (X - ~ q  ) V ~ N ~ O  / q /  . 
The final point is to note that 

L (nab - Kqab) 
3 



acbd a b c d  
= L,(xcd(q q - q  q ) )  

N 

Since v$ = div $, it follows that 
q 

acbd abcd  
xcdL,(q q - q  q ) Q? lql 

1/2 

N 

Observation: 

the preceding considerations into account, we then find that 

d 6L -- (t) = - 
dt 6v,b 6L (t) 

6qab 

iff 



which is equivalent to  the assertion of the theorem. 

One can also arrive a t  the constraint equations by d d i n g  that V t, 

relationships which should be expected to hold on purely formal grounds (due to  

the absence of the corresponding velocities in  the definition of L ) .  

[Note: H e r e  

6 L  Ad - W e  have 
6N ' 

d - L (q,v;N + EN' ,8) de 

- d L ( ~ . v : N  + EN' ,8) - J, d& 





2 = N'K . 
Thus 

and so 

6L Ad - : We have 
68 





Thus 

--  6 L  - 2(div x - divq Kg) o lq/ 1/2 
63 9 

and so 

6 L - (t) = 0 - div (nt - KA) = 0. 
68 % 



Section 37: Dynamics Let M be a connected cm manifold of dimension n > 2. 

Fix E (0 < E 5 00)  and assume that 

where C is ccanpact and orientable (hence dim C = n - 1). 

S u p p e  given a t r ip le  (c+N 8 ) ( t F 1 -  &,&I) (subject to  the custdary t' t 

stipulations) . 
2 Definition: The ny-snentum of the theory is the path t - pt in  Sd(E) 

defined by the prescription 

1/2 
Pt = /%I 1 

where 

[Note: The mtivation lying behind the definition of n is the fact  that t 

Here p stands for n f  & /q11'2 with n = n - Kq.] 

One can then reformulate the results f r m  the l a s t  section along the 

following lines. 

Constraint Equations These are the relations 

div pt = 0. 
9t 

molution Eauations These are the relations 



and 

T'HEOmiI Ein (g)  = 0 iff the constraint equations and the evolution equations 

are satisfied by the pair (qt,pt) . 

~erivatives Given a function F:T*Q + C: (z) , define 

2 03 

D 
(q,N 

F:S~(E) x Sd(Z) -+ Cd(U 

Write 



Then 

provided, of course, that the relevant functional derivatives exist. 

[Note: Analogous conventions are used in other situations as well, e.g., 

1 i f  instead F:T*Q + Ad (Z ) . I 
Define a function H:T*Q -r C: (z) by 

2 , ( s )  - S(q)) @ 141 H(4.A) = ( [stsIq - 3 1/2 
4 

i f  A = s' ~9 lq11/2 and for any £ € C ~ ( Z ) ,  put 

and 



So, as  a corollary, 

and 

1 
Define a function I:T*Q +. nd(z) by 

I ( ~ , A )  = - 2div A. 
9 

1 
Each XCV ( 2 )  thus gives rise to  a map IX:T*Q +. C: (z) , viz.  

Let 



[Note: Recall that 

# L# = LXs D lq11/2 + sU @ (div X) ~cJ/~/~.] 
q 

Heuristics To see the origin of the preceding definitions, consider the 

fiber derivative of L : 

Then 





[Note: Keep in mind that 

Let 

on T*Q correspnding to ff is characterized by the condition 
f IX 

and can be represented in t m  of functional derivatives: 

Now specialize and take f = NtI X = 8tt. Replacing ( q , ~ )  by (%,pt) I 

the evolution equations state that 



Otherwise said: The curve 

is an integral curve for Z 

%f8t 

Definition: Le t  t -+ f ( t )  be a path in c ~ ~ ( z )  (or c ~ ~ ( z ) )  and let t -r ~ ( t )  

1 
be a path in D (2) -- then 

the evolution equations i f  

[Note: Here t lies 

Example: If Ein (g) 

a curve t -+ (q (t) ,A (t) ) in T*Q is said to satisfy 

in m e  open intewal centered a t  the origin.] 

= 0, then the curve t -+ (qt,pt) satisfies the evolution 

equations, where 

JxMm under 

we have 

the conditions of the preceding definition, along (q (t) A (t) ) , 

or, in brief, 



dH 
We shall first consider x: 

But 

Therefore 



It resnains to deal with  

or still, 

or still, 

or still, 

+ 6 div ( 2 f ( s  - - 1/2 
q q n-2 



Since 

and 

tr (HI = A £ ,  
q f 9 

matters reduce to 

+ 6 div (2fs) PP l q 1 1 / 2  + 2[s,H 1 8 1q11/2 q q f q  

or still, 

6 div (2fs) O lq/1/2 + 2[s,Hflq d /q/1/2. 
q q 



[Start by writing 

- 6 div (fs) = $ (div (fs) ), 
q q q 

-a-b 
= v v (£slab 

ab 
= (" );a;b 

ab 
= (f sab + f s  ) 

;a ;a ;b 

= f  s a b + f  sab+ (£SF) ;a;b ;a ;b ,a  ;b 

= [ s ,Hf Iq  + f 

But 

On the other hand, 

-a 2 
s) = V (f div s), q 

2 = %(f div s ) ~  
q 



2 
= (f div s ) ~  

q ;a 

2 2 
= (f ) (div s) a + f (div s) a 

;a q q ;a 

Theref ore 

1 2 
6 div (fs) = - [stHfIq + - 6  (f div s) . ]  
q q f q q 

Accordingly, 

1 2 
= - 6  (2f div s) @ lql 1/2 

f q q 

- 1 2 - - - 6 (f ( - 2div A ) )  
f q q 

dH 
This establishes the formula for 

dI 1 Turning to f ix  ~ € 0  ( 2 )  -- then 



dI The formula for =thus follows, Y being arbitrary. 

[Note: Integration by parts has been used several times and can be justified 

in the usual way. ] 

Poisson Brackets Given functions FIIF2 :T*Q + C; ( 2 )  , put 

and let 



be the corresponding hamiltonian vector fields: 

Then the Poisson bracket of FlIF2 is the function 

defined by the rule 

Therefore 

[Note: Tacitly, it is a s s d  that the functional derivatives exist.] 

LEMM24 Let F :T*Q + C: ( 2 )  -- then, in the presence of the evolution equations, 

along (q(t)  t A ( t )  1 ,  we have 



+ 1, W (  [X1rX21 r 1 )  

[Fix a p i n t  (qo,li0) and take f 2  in cZO(X). Choose paths t - f 2 ( t )  in 

C- (x)  and t -+ X 2 ( t )  in ~ ' ( 2 )  such that f2(0) = f2 ,  ~ ~ ( 0 )  = X2. L e t  t -+ (q( t ) ,A( t ) )  7 0  

be the curve in T*Q satisfying the evolution equations subject to (q (0) ,A (0) ) = 

(qo,no) -- then along (q( t )  ,A(t) ) , we h v e  



And (cf. infra) 

Setting t = 0 completes the proof when f2 is strictly positive. Assume now that 

f2 is arbitrary. Fix C > O:f2 + c€C~~(Z) -- then 



or still, 

[Note: There are results in PDE theory that guarantee existence ( a r d  

uniqueness) of solutions to the evolution equations, a fact which was taken for 

granted in the above. This accounts for the initial restriction on f2.] 

Details At a pint (q,~) , 



2 f2div s)vol 
q 

div s)vol 
4 

= S, ev(fl(grad f - f2(grad f ) ,  
9 2 9 1 

Scholium: The following formulas are special cases 



These relations can also be derived directly, i.e., without an appeal to 

the evolution equations. 

The first formula is easy to establish: 

To discuss the second, let 

and write 



Then 

a b  abc 
+ 2 J, f l ( v  v f 2  - q v Vcf2) (s& - 

a b  a b  
= 2 lz l f lV  v f 2  - f2v v "Is&vo~ 

q 



= q vol 
(fl(gradqf2) - f2(grad q f 1 ) )  ab q 



1/2 = - 2 < fl(grad f ) - f2(grad f ) ,  div S P P  lq/ > 
9 2  q 1 9: 

As for the third formla, we have 



Remark: The se t  whose el-ts are the ff is a vector space over R 
f , X  - 

but it is not closed under the Poisson bracket operation since 

and the vector field 

depends on q. On the other hand, the se t  whose elemnts are the 1, is a vector 

space over R - which is closed under the 

A 

Poisson bracket operation: 

So, in  view of the Jacobi identity 

it is a Lie algebra over R. - The arrow X  + ix is thus a hom4norphism of L i e  

algebras. 

L e t  

I- Co% = { ( q , A )  €T*Q:H ( q , A )  = 0) 

I (3% = { ( q , A )  CT*Q:I ( q , A )  = 0 ) .  
- 

Then 

Con = ConH17Con,,cT*Q Q 

is called the physical phase space of the theory, 



[Note: The constraint equations imply that V t, (%,pt) Con . 1 
Q 

Rgnark: Con is not a suhnanifold of T*Q. 
Q 

A function 

F = Jz F (F:T*Q + c ~ ( c ) )  

is said to be a constraint i f  

In particular: The 

are constraints, these being termed primary. 

Observation: The Poisson bracket of tsm primary constraints is a constraint. 

[Note: In traditional terminology, this says that GR is a f i r s t  class 

system. 1 



Section 38: Causality In this section we s h a l l  provide a proofless 

sumnary of the relevant facts. 

Let M be a connected cm manifold of dimension n > 2. 

Rappel: If M is noncmpact or i f  M is campact and has zero Euler  

characteristic, then %,n-l is not empty. 

Asswe henceforth that M is nonccanpact. Fix g€MII n-l -- then the pair 

(M,g) is said ~ be a spacetime i f  M is orientable and t ime orientable (i.e. , 

admits a timelike vector f ie ld) .  

Remark: The tangent space TJ4 a t  a given x€M is R"~-'. - Therefore a 

vector X€TxM is timelike i f  gx(X,X) s 0, lightlike i f  gx(X,X) = 0, and spacelike 

i f  gx (X,X) > 0. The carrplement in TxM of the closure of the spacelike points 

has camponents ("timecones") and there is no intrinsic way to distinguish 

them. If one of these cones is singled out and called the future cone V+ (x) , 

then TxM is said to he time oriented. A timelike or lightlike vector in  or on 

V+(x) is said to be future directed. The other cone is denoted by V - (x) . A 

timelike or lightlike vector in  or on V - (x) is said to be past directed. 

[Note: If T is a &like vector field, then T$1 can be time oriented 

by specifying the time cone containing Tx. 1 

Assume henceforth that (M,g) is a spacetime. 

(gl)x(X,X) = 0 i f f  ( g 2 ) x ( ~ , ~ )  = 0. 

Then 



A curve i n  M is timelike, lightlike, or spacelike i f  its tangent vectors 

are timelike, lightlike, or spacelike. 

A curve in  M is causal i f  its tangent vectors are timelike or lightlike. 

A causal curve is future directed (past directed) i f  its tangent vectors have 

this property. 

A future directed causal curve y:I -+M is said to have a future endpoint 

(past endpoint) i f  y( t )  converges to some point i n  M as  t .f sup I (t C inf I) . 
A past directed causal curve y:I -+ M is said to have a past endpoint 

(future endpoint) i f  y ( t )  converges to scane point i n  M as t .f sup I (t J- in£ I) . 
A future (past) directed causal curve y is said to start a t  a point pEM 

provided that  p is the past (future) endpoint of y. 

A future (past) directed causal curve y is said to be future (past) 

inextendible i f  it possesses no future (past) endpoint. 

Notation: V p,q in M, 

I- p << q: 3 a future directed timelike curve f r m  p to q. 

/ - p < q: 3 a future directed causal curve £ran p to q. 

[Note: It may or may not be the case that  p << p but i t 's always true 

that p c p (conventionally, a constant curve is lightlike and both future and 

past directed) . I  

Definition: The chronological future of p is 

1+(p) = {q:p << ql 

and the causal future of r, is 



The chronological past of p is 

and the causal past of p is 

J-(P) = {q:q < PI. 

[Note: For a nonanpty subset ScM, the sets I' (S) , J' (S) are defined 

analogously. E.g. : I+@) = {q:p << q (3 pCS) I and J+(s) = {q:p c q (3 pCS) 1 .  
+ Obviously, I (S) = u and J+(s) = u J + ( ~ ) .  Furthennore, J+(S)SUI+(S) .I 

PES PES 

LEWlA If x << y and y c  z or  i f  x c y and y < c  z, then x < <  z. 

Application: W e  have 

+ + + + 
I+(s) = I  ( I S )  = I  ( J S )  

+ +  + +  + 
= J (I S)CJ (J S) = J (S). 

LENMA If  p << q, then 3 neighborhoods N of p and N of q such t h a t  
P q 

I p1 << q'. 

+ 
Application: V p a ,  I (p) is open. 

Topological Properties V p€M, 

+ + 
1. int I (p) = I (p); 



+ + 
3.  fr I (p) = {x:xfr: (p) & I+(~)CI+(~)}; 

+ + 
4. int J (p) = I (p) ; 

5. J+ CI+ (p) . 
+ 

Remark: In general, J (p) is not closed, hence may very well be a proper 

subset of I+ (p) . 

I - 
+ + 

future distinguishing if x # y * I (x) f I (Y) 

I past distinguishing if x # y ;. I- (x) it I- (y) . 
- 

[Note: Call (M,g) distinguishing if it is both future and past distinguishing.] 

Let (M, g) , (MI , g ' ) be spacetimes. Suppose that f :M + Y' is a diff eamrphism -- 
then f is said to be a chronal isomrphisn provided 

x << y - f(x) << f (y). 

THEOREM If (~,g) and (M',gV) are distinguishing and if f:M -+ MI is a 

chronal i~am~rphism, then f is a conformal iscanetry. 

[Note: Spelled out, 3 CC;~ (M) : V x€M, 

thus 



Given p,q€M, put 

Let S be a nonempty subset of M -- then S is causally convex if V p,qcS, 

[PI ql cs 

Definition: A spacetime (M,g) is said to be strongly causal if each x€M 

has a basis of open neighborhoods consisting of causally convex sets. 

[Note: A strongly causal spacetime is necessarily distinguishing.] 

FPCr Suplase that (M,g) is strongly causal -- then the I+(~) n1- (q) 

(p,q€M) are a basis for the topology on M. 

A time function is a surjective cW function z:M -+ R - whose gradient grad z 
is timelike. 

Definition: A spacetime (M,g) is said to be stably causal if it admits 

a time function z:M -+ R. - 
FACT Every stably causal spacetime is strongly causal. 

Definition: A spacetime (M,g) is said to be globally hyperbolic if it is 

strongly causal and V p,qEM, [p,ql is compact. 

+ 
LENMA If (M,g) is globally hyperbolic, then V p, J (p) is closed. 

[Note: Mre generally, K cc~npact E. J (K) closed. 1 

Example: Rl, n-1 is globally hyperbolic but R 1 ,n-1 - - - (0) is not. 

FACX Let (M,g) , (&I ,g' ) be distinguishing chronally i~~~ll~rphic spacetimes -- 



then ( ~ , g )  is globally hyperbolic i f f  (MI ,g ' is globally hyperbolic. 

R-k: If (M, g) is globally hyperbolic, then so is (MIcpg) (cp €cCO (11) . 

On the other hand, i f  &g) & ( ~ , g  ) are globally hyperbolic and i f  the identity 

map is a chronal is~~~~]rphi.sm, then g = cpg' for SCEE cp€cW (M) . 70 

L e t  (M,g) be a spacetime. Suppose that  S is a nonempty subset of M -- 
+ 

then the future domain of dependence D (S) of S is the set of a l l  points pfM 

such that every past inextendible causal curve starting a t  p meets S. 

[Note: The definition of D- (s) is dual. The union D (S) = D+ ( s )  UD- (s) 

is the damain of dependence of S.1 

U3MA If  S is a closed achronal subset of M, then int D ( S )  , i f  nongnpty, 

is globally hyperbolic. 

[Note: S is achronal provided S ~ I '  (S) = @.'I 

Definition: L e t  (M,g) be a spacetime -- then a Cauchy hypersurface is 

a closed achronal hypersurface ZcM with the property that D ( Z )  = M, hence is met 

exactly once by every inextendible timelike curve in  M. 

[Note: A hypersurface per se is an embedded connected suhnanifold of 

dimension n - 1. I 
1 , n-1 Example: In R , the hyperplanes xo = constant are Cauchy hypersurfaces. 

FACT - If Z1 and Z2 are Cauchy hypersurfaces in !A, then Z1 and C2 are 

dif fecxmrphic. 

In view of the preceding letma, i f  (Mlg) admits a Cauchy hypersurface, 

then (M,g) is globally hyperbolic. The converse is also true: Every globally 



hyperbolic spacetime admits a Cauchy hypersurface but one can say considerably 

mre than this. 

+ 
FACT A spacelike Cauchy hypersurface Z is acausal, i.e., ZnJ-( ,z)  = a. 

SmCrClRE THM)REEt Suppose that  (M,g) is globally hyperbolic -- then 

there exists a connected (n-1)-dimensional manifold Z and a diffecmorphisn 

Y : R x I: -t M such that  V t, I: = Y ( {  t) x 2) is a spacelike Cauchy hypersurf ace - t 

in M, hence 

Addenda 

1. The spacelike leaves Xt of the foliation figuring in the theorem 

-1 are the level hypersurfaces of a time function z ,  i.e., V t, Zt = T (t). 

2. The vector f ie ld  grad z is past directed but possibly inccmplete. 

To remedy th is  technicality, l e t  

- grad T 
xT - l brad T I  l 

H e r e  the norm is taken relative to sane ccanplete r i g ~ n n i a n  metric, thus X is 
T 

a canplete vector field. Put I: = (0) and define a diff-rphim 0:Y -t R - x Z 



where p(p) is the unique point of 2 crossed by the maximal integral cuwe of 

xz through p. Let P= 6' -- then v t, 

3.  Put 

Given XCZ, let 

yx(t) = y (t,x) 

!I'hen yx:R + M is an integral curve for - a It is timelike and 
az' 

t c t' J yx(t) c< y x ( t l ) .  

Furthermore, ?- is parallel to grad T: V t, 
az 

So V t, yx (t) lies on the trajectory of XT containing x. 

4. If L CM is a Cauchy hypersurface, then y (t) intersects ZO exactly 
0 X 

once a t  the parameter value tz (x) . The function tz :Z + R is cm and - 
0 0 



ZO = { Y (tZ (x) ,x) : X€Z ) . In addition, i f  Z , Z are Cauchy hypersurfaces , then 
0 

1 2  

the map zl + Z2 which sends Y (5 (XI ,x) to Y (5 (x) ,XI is a diffecmorphisn. 
1 2 

5. Since T = t 0 @, it follows that 

Therefore 

6 .  Let q ( t )  be the r i m i a n  structure on Z determined by pulling 

back g via the arrow 

yt i 
2 % {t) x Z 

t -* Zt - M. 

Put 



Define gTglf n-l (per R x 2) by the prescription 

Then 

gT = I*g. 

But this implies that 

Ein (g,) = Y*Ein(g) , 

thus the vanishing of Ein (gT) is equivalent to the vanishing of Ein (g) . 
Terminology Let (F4,g) be a globally hyperbolic spacetime. 

* M  is spatially canpact if its Cauchy hypersurfaces are ccanpact. 

M is spatially noncolrrq?act if its Cauchy hypersurfaces are noncanpact. 

FACT Suppse that (M,g) is globally hyperbolic. Let Z c M  be a closed 

achronal hypersurface. Assume: r, is carpact -- then Z is a Cauchy hypersurface. 

LETN9 The Cauchy hypersurfaces in a globally hyperbolic spacetime are 

orientable. 

Let 

~ ~ = I - E , E [ X Z  (OCES-), 

where Z is orientable (hence dim Z = n - 1). Suppose given a triple (qt,~t,$) 

satisfying the usual conditions and let g be the element of ?41,n-l determined 



thereby (for this, it is not necessary to assume that 2: is canpact) -- then, in 
general, the pair (Pl,g) is not globally hyperbolic. 

[Note: The spacetime (M,g) is, however, stably causal. Thus take for 

z the projection (t,x) -+ t -- then 

grad t = (dt) # 

g(qrad t, grad t) = - 1 - <  0. 
N 

2 

Therefore grad t is timelike. 1 

OAssume that 3 a complete qEQ and positive constants A > 0, B > 0: 

.Assume that 3 positive constants C > 0, D > 0: V t & \J' xCZ: 

Assume that 3 a positive constant K > 0: V t, 

-+ -+ 
QJtfNt) 5 K. 

FACT Under these conditions, (M,g) is globally hyperbolic and the slices - 



It) x 2 are spacelike Cauchy hypersurfaces. 

[Note: There is also a converse: Make the same assumptions on the data 

except for the ccsnpleteness of q, form (M,g), and suppse that it is globally 

hyperbolic -- then q is necessarily cqlete.] 

Example: When fi = 0 and q and N are independent of t, g is said to be 

static. So, in this situation, (M,g) is globally hyperbolic if (Z,q) is q l e t e  

and N is bounded above and below on C (matters being autmatic if Z is ccarrpact). 



Section 39: The Standard Setup The pint here is to initiate the 

transition £ran a theory based on metrics to a theory based on forms. 

LEMMA Every connected orientable 3-manifold Z is parallelizable. 

[For the proof, it will be convenient to admit manifolds with boundary. 

Thus let 
- 

I wl (z) = lSt ~tiefel-~hitney class 

w2 (Z) = 2nd Stiefel--Whitey class. I - 
Then z is parallelizable provided wl(Z) = 0 = w2(z). But wl(.Z) = 0 is aukmatic 

(Z being orientable) . 
2 

Case 1: Z conpact and aZ = 8. Proof: wl(Z) = 0 - w2(Z) = wl(" = 0 

(Wu relations) . 
Case 2: Z ccanpact and ax # 8. Proof: Consider the double of Z and 

apply Case 1. 

Case 3: Z nonccmpact and aZ = j3. Pmof: Let a€H2(Z:Z/2Z) - - be 

arbitrary -- then a is represented by a compact surface S + C (Thm), hence 

Case 4: z noncampct and ax f j3. Proof: consider Z - a2 and apply 
Case 3.1 

Take n 7 3 and let Z be a connected ccanpact (n-1)-dimensional orientable 

cm manifold. 

Assumption Z is parallelizable. 



Put 

M = R x Z .  - 
Then M is also parallelizable. 

Notation: Indices a,b,c run £ran 1 to n - 1. 

Let E1,-.-,En-l be time dependent vector fields on r, such that tl t, 

is a basis for ~'(2). Canplete this to a basis 

for D' (MI . 
Construction Let q(t) be the element of Q determined by stipulating 

that the Ea(t) are to be an orthonormal frame -- then the prescription 

defines an elanent of Mlfn - - 

Rgnark: This procedure gives rise to a certain class of spacetimes 

(M, g) (Eo is a timelike vector field) . In general, however, if g $ I  , n-l is 

arbitrary, then one has no guarantee that g Z is randegenerate, let alone 

spacelike. On the other hand, there is a gauge-theoretic ambiguity: Distinct E 

m y  lead to the sam g. 

[Note: While not necessarily globally hyperbolic, the spacetime (M,g) 

is at least stably causal (the projection (t,x) -+ t is a time function) .I 



In view of the definitions, 3 cm functions N and E? on !?I such that 

a= NEo + %. a t  

[Note: N has constant sign, i.e., N is s t r i c t ly  positive (or s t r ic t ly  

negative) . I  

~erminology: N is called the lapse and 8 = N ~ E ~  is called the shift .  

Reality Check Suppose given a t r ip le  ( q , , ~ ~ , 8 ~ )  satisfying the usual 

conditions. Fix t i m e  dependent vector f ields El, ..., EnV1 on Z which a t  each 

t constitute an orthonormal frame for q (t) . Take 

Then 



which is in agreement with the earlier considerations. 

Let it:z% - t M k  thembedding (zt= {t) x 2). Zt 

0 Notation: Given T€D (M) , put 
q 

We have 
- 
T = i *  L 

t a/atT- 

[In fact, 

where 4 is the flow attached to s. Therefore 

4;T - T 
- - i* lim 

t s - t O  S 

Example: By construction, 



L e t  V be the metric connection associated w i t h  g ( t h u s  7 is the metric 

connection associated w i t h  g) -- then the ijab are the connection 1-£0- of i. 

0 1 
C o n s i d e r  now the coframe { o , o , . . . , on-'] per the £ram {EO ,El, . . . , En-'} -- 

then 

0 a a 
g = - 0  O o O + o  @ o  

and 

I - o a = N a d t + $ .  

[Note: On 2 ,  

. dao = d  (Ndt) 

= (a + dtnatN) ndt 

= & ~ d t  

= (EaN)$ndt 

= (EaN) (oa - 8 d t )  n d t  



= (3 + dtAatN) A d t  

L e t  xt be the extrinsic curvature: 

Rappe l :  We have 

or s t i l l ,  



- a - - ooa (E,) 0 . 

But 

o *aN a o do = - 
N o Am 

* 

EaN a o 
L duo= (-ano) 
*o N 

EaN a = - -  
N 0 .  

Therefore 

Corollary: 

[Note : 



8. 

Rappel: We have 

a 
w (Eo) : 

or still, 

* 

But 





and 

[Note : 

Remaxk: 

- (3) -Nu& 

'ab is symnetric while oh is antisynmetric.] 

since g = za N 5, it follows that 

- 
gab = ij, 'Eb' + 5 (Ea) . 

Theref ore 

Definition: The rotational parameter of the theory is the function 

LEMMA W e  have 

[It is a question of explicating the relation 

Write 



Then 

But 

Theref ore 

[Note: In terms of the extrinsic curvature, 



Notation: Put 

Then 

Notation: Put 

Then 

LlW@ We have 



[Consider the first relation. Thus 

[Note: 



and 

Let  p,v be indices that run bebeen 1 and n-1. Wrking locally, write 

Then 



To simplify this, w r i t e  

Reality Check The claim is that 

equals 

or still, 



a b  =2Ne e x t y v a b '  

On the other hand, 

a b  
2 i  e e 

P v 

a b  =2Ne e  x t p V a b '  



But 

Now use the foil-g relations 

to  get  



Therefore 

a b  a b  
1 + 2 = (VbNa)e e + (Ta%)e ,e w v 

a b  
= (TbNa) ea eb + (VaNb) e e 

II. v P v *  

1 
N.B. -- V XED (Z) ,  

-b 

[Note: The verification is an exercise in the definitions and will be 

detailed later on.] 



Section 40: Isolating the - Lagrangian The assumptions and notation 

are those of the standard setup. 

Rappel : 

i j  eij = * (0 no ) (i, j = O , l , .  . . rn-l) . 

[Note: oil is an (n-2)-fonn and the Hodge star is taken per 

Consider 

Write 

. . 
[Note: Obviously, eiJ = - el1. In addition, 



Since 
b 

'0a = d%a + O b A W  a' 

it follows that 

O b a  a O b  n-2 Oa 
= ( - w b ~ e  - a b ~ e  ) nooa + (-1) e AdaOa 



Therefore 

i j e naij = Oa 
ab 0 

2d(6+,a~0 + 20 AW 

But 

and 

Remark: The explanation for singling out the term 

is the fact that 



the overbar standing for pullback 

Notation: Put 

[Note: The Hodge star is taken per 

but there is a caveat: G& is not equal to i;€Iab (which, in  fact, is identically 

zero (cf . infra) ) .I 

Proceeding formally, set aside the differential 

and ignore all issues of convergence -- then 

Details To see the passage f r m  

ab 0 i$,a/at[e - w AW b) - w ACO ) I  a0 Oa Ob 



recall f i r s t  that coo = ~t ( L 
0 

= N), hence iza = N i X d t  = 0. t t  

Tkis sa id ,  write 

Put 



Then 

And 

[Note: To discuss the effect of canitting 



£ram these considerations, observe that 

It rmains to examine the integrand:: 

= - det 1 I *  



But 

Therefore 

- - - det 

Accordingly, at each instant of time, 

2 
= I Z N t (S(qt) + [ z , x ~ I %  - Kt)v01 1 

q t  

which is in complete agreement with what has been established earlier. 



Section 41: The Pbnentum Fonn The assumptions and notation are those 

of the standard setup. 

R e c a l l  that the mmentum of the theory is the path t -+ pt 2 i n  Sd (2) defined 

by the prescription 

where 

In this section, we shall  show that  pt is closely related to a certain element 

Notation: L e t  

Definition: The m~~nentum form of the theory is the path t -+ Gt i n  

dn-2 0 
12 ; T1 (Z ) ) defined by the prescription 

LEMMA W e  have 

[To begin w i t h ,  

But 



Therefore 

Consider naw 

Write 

Then 

and 



afb: In this case, - 



By definition, 

where 

But 

Irdeed, 



Let 

Then 

LEMMA We have 

[Write 



Application: 

[In fact, 



Section 42: Elimination of the -Metric The assuqtions and notation 

are those of the standard setup. 

Then the dynamics can be formulated in terms of (Zt,6t) a s  opposed to (%,pt) , 

i.e., there are again constraint equations and evolution equations. While this 

approach does not lead to new results, the methods are instructive, thus are 

mrth examining. 

L e t  Q be the set of ordered coframes on Z -- then each ~ F Q  gives rise to - - 
a riemannian structure qCQ, viz. 

a a 
q = o  @ o .  

Conversely, each qEQ gives rise to a coframe &Q - which, however, is only determined 

up to a local rotation. 

[Note: A t  this pint, M does not play a role, hence the absence of overbars 

in the notation.] 

Put 

Observation: There is a canonical pairing < , > 



[Note: EZplicated, on general grounds, 

n-2 0 Consider T*Q = Q x A (Z iT1 (Z) ) -- then - - 

The Canonical 1-Form 0 This is the map 



defined by the prescription 

The Canonical 2-Form Q This is the map 

defined by the prescription 

LEWA W e  have 

a = -  do. 

[In fact ,  

Therefore 51 is exact and the pair (T*Q,Q) is a symplectic manifold. - 



Suppose given a function f:T*Q -+ R. 
I - 

*n-2 - : Write 

n-2 0 
for that element of A (Z ; T1 (2) ) characterized by the relation 

1 n_ : Write 

1 1  
for that elanent of A (b;TO(z)) characterized by the relation 

Sf 6f + -+ [Note: Bath - and d e p d  on (a, p) , thus 
6; SP 

Definition: The hamiltonian vector field 

Xf:T*Q - + TT*O - 

attached to f is defined by 



To justify the terminology, let X be any vector f ie ld  on T*Q. Suppose that  - 
-+ +- 

X(w,p) = (2 ,St) -- ,then 

6f -+ -+ 6f = i2 (, Ap' - o'n - -) 
6~ 6': 

Example: Each coframe determines by duality a f r m  3, thus 

This said, let 



Then it is clear that 

Definition: The configuration space of the theory is Q, - the velocity phase 

space of the theory is TQ, - and the r r ~ ~ n e n t u m  phase space of the theory is T*Q. - 
+ + 

Elements of Q are denoted by z, elments of TQ are denoted by (o,v) , and - - 
+ + 

elements of T*Q are denoted by (wfp) . - 
The theory carries three external variables, namely 

where Ypb€cm(Z) and Ypb = - Wba. 

+ -+ 
Given ( ~ , v ; N , ~ , w ) ,  put 

Definition: The lagrangian of the theory is the function 

defined by the rule 

+ + 
L ( ~ , v ; N , ~ , w )  



[Note: A s  usual, the (n-l)~ab are the curvature £0- of the m t r i c  

connection vq associated with q and, of course, the Hodge star is taken per q. I 

L e t  

Then, in order to transfer the theory from TQ to  T*Q, it w i l l  be necessary to - - 
calculate the functional derivative 

n-2 0 which, a p r i o r i ,  is anelement of A (Z;T1(Z)): 

Notation: L e t  

[Note : Therefore 

LEMMA We have 

[TO faci l i ta te  the computation, "variational notation" w i l l  be employed, 



i. e. , we shall replace the symbol vat by 6va and abbreviate D a to -- then 
v 

a = 6v ma.] 

[~ote: This result is the reason for the "1/2" prefacing the integral Iz L.1 

6L is widely Ranark: The method employed abave for the calculation of - 
sva 

applicable and will be used without mment whenwer it is convenient to do so. 



[Note: The interior derivative is not a participant, hence the possibility 

of misinterpretation is minimal. I 

Consider now the fiber derivative of L: 

Then 

To simpli£y th is ,  write 

L e t  

Then 



Theref ore 

On the other hand, 



Motivated by these considerations, let 

be the function defined by the prescription 

[Note: Here the external variable N is unrestricted, i.e., N can be any 

element of cm (2 ) . I 
Definition: The physical phase space of the theory (a.k.a. the constraint 

surface of the theory) is the subset Con of T*Q whose elements are the points 
Q - - 



+ + 
(o,p) such that simultaneously 

6 ff The calculation of - is trivial. Thus define m 

E:T*Q + A"-$ - 

Then 

6H , observe that Turning to - 
&b 

Therefore 

There remains the determination of - 6H To this end, fix a -- then 
b ' 



Write 

But 

And 

c ~ c ~ % ~ ~  = d - 6 ~ ~ ~ d ~ ~ .  

Since 

f, d ( 6 ~ ~ ~ p ~ )  = 0, 

it follows that 

[Note: The intqal 



can be rewritten as 

Here 

is defined by 

-+ + Scholim: Con is the subset of T*Q consisting of those pairs (o,p) such 
Q - 

that 

subject to 

Definition: 
-f + 

The ADI sector of T*Q consists of the pairs (o,p) for which - 

6 ff In the ADM sector of T*Q, the functional derivative - - can be expressed in 
6Na 

terms of the R-linear - operator 

To see this, recall that 



And 

Therefore 

But 



Since n = d h M  > 2, the vanishing of Ein(g) is equivalent t o  the vanishing 

of Ric(g) and for the lat ter ,  conditions have been given in terms of the path 

t + (%,xt) in  'IQ or the path t + (q,,pt) in  T*Q. H a u w e r ,  one can also work 

instead w i t h  the path t + (Zt,$ in  T*Q, there being, as always, t w o  aspects t o  - 
the analysis: Constraints (i.e., the Goi = 0 equations) and evolution (i.e., the 

Gab = 0 equations). In the next section, we shall t rea t  the constraints and, in 

the section aftex that, evolution. 

Rappel: The qnmetry of the extrinsic curvature implies that the cmponents 

pa of the mxentum form 6 satisfy the constraint t 

i.e., the path t + (<,4) l ies  in  the ADM sector of T*Q. - 



Section 43: Constraints in the Cofrane Picture The assumptions and notation 

are those of the standard setup. 

Rappel: 'd t, 

[Since 

-b * P 6  Y- = %(Pat*'") - n-2 t *I 

we  have 

- P 6  
-b -a - -  n-2 t *%(pa,*zb) - g t ( p a I * ~  )qt(pbt*w - P26 6  

(n-2) 
2 t a b a b  





gt 
[Note: T stands for \J .] 

It suffices to deal w i t h  

- v - d Pa 

as opposed to 

[Note: B e a r  inmind that 

This said, 

Pa = (Xt - Kt%)**% 



U s i n g  the definitions, one finds that 

- 
V 
d (ut - Kt%) &A*% 

- 
vol (see below) 

- 
- "av0'%- 

On the other hand, 

= 0. 

Therefore 

- - - Eoavol 
st' 

Details The claim is that 



a relation which I s  a special case of the following generalities. Thus let 

a b O  
T = T d  CD o EV2(Z) .  

1 
Fix a VEcon TX - then b' XED (Z) , 

But 



- - < Ec.d V Trs >. 

Theref ore 



[Note: These considerations apply in particular to the choices 



Section 44: Evolution in the Cofram Picture  The assumptions and notation 

are those of the standard setup. 

Rappel : 

a b 
= I o Apa + e b o  Apa + f2 NE, = 3 

where 

There are rn t m  central objectives: 

W e  shall start with a, which turns out to be the easier of the tm. 
'Pa 

Obviously 

6U - -- a b 6 
L+o + Wabw + - iz NE]. 
N 6pa 

Granted I and 11, it follows that  



Ad I: Consider 

But 



a b  
= 2q(pb,xw 

thereby establishing I. 

Ad 11: 

- P a - - - q(6pa,*o ) V O ~  n-2 q 

- P a - - -  w Asp,. 
n-2 

Smmary: We have 

6H is m e  difficult. However, it is at least clear that The calculation of 7 
60 



[Note: Pinned down, 

We have 

[There are two points: 

1. vol = 
1 

E 
bl bn-l 

W A ... A a 
q (n-1) ! bl.. . bn-l 

Accordingly, 



Then 



b b 
= fja* ( w  Apc) A m 1  + * (o A p  ) A 6  vol 

9 c a q' 

Therefore 

c b 
(a A%) A6a* (0 Apt) 

b - *(a A P ~ )  ~ 6 ~ ~ 0 1  ) . 
9 

But 

b 
6,(*(~ ApC)  AVO^ 

'4 



b 
= 6a(a Apt) 

b 
= €iaa Ap,. 

So, in view of the lemna, it fo l laws  that 

c b 
(w Apb) "6,* ( 0  Apt) 

b b = q (pb, *aC) (6 a w A p  c - * (w Apt) 6wa~*wa) 



Now add I and I1 to get: 

or still, 



or still, 

LZNMA We have 

b c a a b c  
(a A o  ) = 6o A* ( w  A o  A w  ) . 

[In fact, 

b c 
&ja* (0 A w  ) 

a a b c  
= 6 w  ~ * ( w  A o  A o  1.1 



Application: 

b c a a b c  
Q A 6  1; (0 A o  ) = So AQA* (o A o  A o  ) . 
bc a 

Rappel: E%y definition, 

is the Ricci 1-form hence 

= S(q) .  

[Note: There is an expansion 

2 
LEMMA Let aEA Z -- then 

a b c  
a A *  (o A o  A m  ) 



[For any index d between 1 and n-1, 

a b c  d q(aA*(w ~o ACO ) ,*w ) V D ~  
(2 

a b c  d = aA* (a ~w Aw ) A**w 

n a b c  d = (-1) a h  (w Aw Aw ) Aw 

d a b c  = w AaA*(o Aw Aw ) 

d a b c  = q(w Aa,w Aw Aw )vol 
q 

- a b c  - t (a AW Am )m1 
w Aa q 

- a b c  
- LaL d (w Ao Aw )vol 

w q ' 

an expression which surely vanishes i f  d # a,b,c. Therefore 

a b c  a b c 
an* (w AO Aw = Ca*w + 90 + Cc*w . 

H e r e  
- 

a b c  a 
Ca = q ( a ~ * ( o  ~w ho ),*a ) 



But 

a b c  a 
. C a ~ l  = q (an* (a  nw A o  ) , *o ) vol 

q q 

- a b c  
- Lat a 

(w A 0  A 0  )vol 
o g. 



Application: 

a b c  
%A* (a A 0  A 0  ) 



Therefore 

The final point is the analysis of 

or, as is preferable, of 

Put 



Then the ebc are the ccmponents of an elanent 

thus 

and 

Rappel: We have 

But then 

b c 
6,QhcA*(w Aw ) 

= 6,SAB bc 

) n P  = 6 a ( s  + w" 

bc d bc 
A O ~  ~9~ + ~ A 6 ~ a  = d t j a y x : A e  + S a w  

bc 
= d(6aWoc~9 

d bc 
+ 6a% 

ndebc + 6awod"~d nobc + 
C a c 

bc 
= d ( % s ~ e  1 

bc dc + 6 a y x : ~ d ~  + B a s A u  d 



The differential 

integrates to zero, hence can be set aside. Write 

Then 



But 

C dab = - aib Aw 
C 





Qnit the differential 

b 
d ( 6a0 A* (dNA%) 1 

which, of course, will not contribute - then 

LEMMA We have 

vq a d *(dNnwa) = *(vadN - (d$I)w ) .  

[Write 

C 
dN = Ncw (Nc = q(dN,wC)). 

Then 



But 

a c b  - w A* (NCo AW ) . b 

Make the obvious cancellation -- then 

vq d *(&A%) 

c a b a = mcA* (o Ao ) + NcA ( - ocbA* (o Ao ) ) 

c a 
%A* (W AW. ) 

c a 
= q (dNc I ob) obA* (o Ao ) 

= q(mcIob) (-I)"-~* (oCAma) Amb 



b a 
= ( - l ) "Ncn  ( -1)  n-2* ( L  ( a  A 0  ) ) 

b 

c b a  c a b  
= Nc*(q(o  - q ( a  b ~ W  ) W  ) 

c b a  c a b  
= *(Ncq(o  ,.a ) a  - N c q ( ~  10  1. 

Hcwever, by definition, 

b c 
% = V r n = o  @ ( % - a  N )  

b c 

=a 

c b 
vadN = < Eat% - W bNc > W 

b c b 
= <  Ea,dNb> o - N C <  E a , W b >  W 

a c c a b  
= q ( m c t ~  ) a  - N c q ( w  ) W  



In addition, 

Putting everything together then leads to the conclusion that, mdulo an 

exact f o m ,  

b c a a - 6 %A* (o AW ) = - 6 0  A*(', dN - (dqN)o ) .  2 a a 

S u m w r y :  We have 



Constraint Epations These are the relations 

Evolution Euuations These are the relations 

and 



In the last section, we saw that 

and 

Therefore the constraint equations are equivalent to 

Turning to the evolution equations, note that 

which is precisely the functional derivative %- evaluate3 at ( , ; ,8 ,oab) . 
6Pa t t t t  

In view of this, the evolution equations thus say that 



In other mrds: The curve 

is an integral curve for the hamiltonian vector field 

attached to ff (all data taken at t) . 

MAIN THEOREM Suppose that the constraint equations and the evolution 

equations are satisfied by the pair 

[Note:  It is this result which justifies the passage to the coframe picture.] 

To prwe the theorem, it suffices to shw that if V b, 

then 



# 1/2 + ( - ( A  Nt)%) 0 lqtl +L+pt*  
t g t  NL 

And for this, one can work locally. 

Let p,v be indices that run between 1 and n-1. 

[Note: Bear in mind that g and gt are one and the same. ] 

UW7A We have 



Str ic t ly  speaking, n vol and n @ 1 qt 1 'I2 are different entities but 
t C L c  

for the purposes a t  hand, it is more convenient to  use n+volrc . Agreeing to 

denote it also by pt, the evolution equation 

replaced throughout by 

for fir is as  abuve, the only change 

LEMMA We have 

[In fact,  



The point now is to apply the lemm and replace & by its evolution equation, 
the claim being that the result is the evolution equation for bW. 

t 

The first item on the agenda is to check that there is no net contribution 

£ran the rotational terms. 

: The rotational contribution fran % is 

or still, 

But 



So the t w o  rotational terms do indeed cancel out. 

Consider f i r s t  

Since 

we have 

But there is mre, viz. 



1 'V 
= N  (-)tr (n )n  vol t n-2 qt t t qt' 

Thus 

is accounted for. There remains 



or still, 

or still, 

-a P -C V - 2Nt (o e a ~ ~ c )  *a ) e 

or still, 

To begin with, 



- - - Nt - -  1 (nt) 2~ e e v vol 
2 n-2 qt b b  qt 

This leaves 

or still, 

or still, 

or still, 



Here 

And 



-c v 
= - N ~ ~ ~ x I J . A * ~  e 

- - - P v e e vol Nt%c c b qt 

= - N ~ R ~ C  ( E ~ , E J  epCevbvol 
9t 

= - N t R k  (e V '  a a 
C axp st 

- - - ' 
R epcevbvol Nte be c v l p l  % 

= - N eP epl  ev ev'  
t c  c b  bR vol 

p ' v l  % 

PP' " I R  W1 
= - Nt% 9t 

p ' v '  qt 

PV = - NtR vol 
%- 

Item: 

(c - ( A  N ~ ) ~ ) v o I .  
t %  st' 

For it is clear that 



On the other hand, 

which, in ccanplete analogy w i t h  the discussion of Ric, reduces to 

Item: 

equals 

i.e., equals 



Therefore the issue is the equality of 

and 

Write 

to get 

Then 

so what's left is the equality of 

( L+ dxP~%) evb 
Nt 

and 



or, equivalently, that 

To see this, take p = v (the general case is similar (because p pv = pvp)) -- 

Indeed, each term is an n-form while dim Z = n-1. Apply t : 
53 

The sum 1 + - - -  + 6 is zero. 

n-3 times 
2 + 5 equals (-1) 



n-3 i. e. , equals (-1) times 

( f. dxpAdXp  + d x p A ~  dxp) A t  
-b 

Nt 3 t a".' 

which is zero. 



Therefore 



Section 45: Camputation of the Poisson Brackets The assuntptions and 

notation are those of the standard setup. 

Given functions flIf2:TXQ - -, RI - let X1,X2 be the corresponding hamiltonian 

vector fields -- then the Poisson bracket of flIf2 is the function 

Ifl,f21:T*g -+ 5 

defined by the rule 

Therefore 

[Note: Tacitly, it is assumed that the functional derivatives exist.] 

Rappel : 

where 

Definition: 

is the integrated diffeamrphism constraint; 

is the integrated rotational constraint; 



is the integrated hamiltonian constraint. 

Therefore 

and we have: 

= ff (N grad N2 - N2 grad N1) D 1 

Ranark: A constraint is a function f :T*Q -t R such that f 1 con = 0. - - a 

primary. The foregoing relations then imply that the Poisson bracket of two 

primary constraints i s  a constraint. 



Ad 1: We have 



Therefore 

Ranark: The canonical l e f t  action of Diff Z on T*Q - is syrtplectic (i.e., 

'v' cp CDiff Z ,  cp-S2 = $2) and admits a rm~mentum map 

1 J:T*Q - + H ~ ( D  ( 2 )  ,R ) ,  - 

which provides an interpretation of HD. 



Ad 2: We have - 

6HR (W) 6ffD ($ 6ffD ($1 tiffR (W) 
= fz 1 A A I - 

66 6; sEf sf; 

But 



Therefore 

L e t  - 
-++ 1 c b P 

2 

%h(~t~) = [q(pbt*w )q(pct*~ ) - z]mlq 

-+ + 1 
E (alp) = - 2 S (q)vOlq. 

- 
pot 

Then 



thus 

kin: - We have 

But 



Therefore 

- pot: W e  have 

it being clear that 

6ffH (N) 
pot = 0. 

Write 

and hold the second term i n  abeyance for the mment -- then 

But 



It remains to consider the contribution 

Bearing in mind that this is a sum over the index a, replace 6a i n  the earlier 

analysis by Lj - then 
N 



Therefore 

Remark: The elments figuring i n  the in-at& rotational constraint are 

mth functions W: r, + - so (n-1) . Agreeing to view cW ( 2 ;  - so (n-1) ) as a Lie algebra, 

it follows that the a r m  W + ffR(W) is a hcmmmrphism. 

[Note: On the basis of Etepns 2,  4, and 5 ,  the integrated rotational constraints 

are an ideal in the fu l l  constraint algebra.] 





= 0. 

Proceeding, note that 

b a 

=Wavol = 0. 
a q  

So now, a l l  tbat's left  is 

- yP,."...i., 

b + VPbO **vadN. 

W r i t e  

Then 

b c = NWa Ric 0 A*w b ac 



But Ric is syrmretric and W is antiqmnetric, hence 

Finally 

Ad 6: W e  have 



Insert the explicit formulas for 

Then, after cancellation, matters reduce to 

which we claim is the same as 

To see this, recall that 

a b  P 
q(Pb,*o )a - - aa = - 0 n-2 Oa' 

But 

Therefore 



Reversing the roles of Nl and N2 then ccmpletes the verification. Pbving on, 

write 

Ic (NlvavbN2 - N2vavbNl) Wa"pb 



Nm use the identity 

1 valid for any XED (C) (cf infra) . Thus let 

X = N1 grad N2 - N2 grad N1. 

Then 

a + <(N1 grad N2 - N2 grad Nl) w A% 

=> 

= H (N grad N2 - N2 grad N1) D 1 

A s  for w h a t  remains, viz. 



= det I I 

[Note: In the AIM sector of T*Q, - the Poisson bracket 

= det 

- - 

vbNl 'aN1 

- 'bN2 'aN2 - 



Details Here is the proof that V XEV'(L). 

b a b 
( v b P ) w  = L,pa + w b ( X ) w  . 

1.e. : 

Star t  w i t h  the RHS - then 

a a 
(vxwa) (Y) = xu (Y) - w (VxY) 



c a 
= ~~9 + X w 

c a = & ( % I  +Xwc'pb'. 

Turning to the LHS, 

Ox = Ea 8 (dXa + waCxc) 

=> 

a 
= ax"(%) + w c(%)~c= 

Remrk: The relation 

a b  p w a  w = - q(pb,*w )w + - 
Oa n-2 

is really a definition, though, for consistency, one should check that 

a b  = w A* (w Aw ) 
Pa ob 

or still, 





Section 46: Field l?qyations Let M be a connected cm mifold of dimxsion n. 

Assume: M is parallelizable. 

Notation: co$ is the set of ordered cofrms on M. 

n 
[Note: Each w = {wl,.. . ,a 1 in cofM gives rise to an el-t viz . 

1 n 
Definition: Let o = {w ,..., w 1 be an elenent of oofM -- then a variation 

of w is a curve - 
1 n 

E + U(E) = (w (E) ,..., w (E)) , 
where 

i i i w (E) = w + ESW 

and the 6wi~nk have mnpact support. 

[Note: This usage of the symbol 6 conflicts with that used for the interior 

derivative which, to eliminate any possibility of confusion, will be denoted in 

this section by d*.] 

Let F:cofM -+ V, where V is a vector space over R - - then by definition, 

[Note: It is custorary to write SF instead of DwF(6w) and F instead of 

F(w). This shorthand is canputationally convenient and normally should not lead 

to misunderstandings. 1 

In what follows, we shall use the abbreviation w + E ~ U  to designate a 

variation of w. 

Rules 

Suppose that a:cofM + A ~ M  - then 



6da = d6a. 

[Note: Spelled out, 

N.B. - 
1. In general, 6 does not conmute w i t h  the Hodge star: 

2. In  general, 6 does not cmnute w i t h  the interior derivative: 

6 o d * # d *  0 6. 

Rappel : 



On the other hand, 

Rappel : 



il.. .i i 
j 

.ip 
60 = 6. A t w  0 

j 

[In fact, 

j 
= --?3L E ... E E ( 6w A (:p2 A j n ... A w ) 

(n-p) ! il ip il.. .ipjpljw2. . . jn 

Example : 



For another example, define 

Then 

TI-E computation of R . . miJ is irmediate: 
1 3  

k i j  
= 8w AR. . ~ 0  k. 

13 



Turning to the ccmputation of 6R. .Aeij, note first that 
1 3  

On the other hand, 

And 

i j 
d * ( w  Aw ) 

But 



Therefore 



ij 
Since the exact term 652..A8 is dynamically irrelevant, the formalism dictates 

1 3  

that 

To see the significance of this, write 

Rick the Ricci 1-form. Accordingly, if we define the Einstein 1-form by 

6 L then the vanishing of the --r; (k = l,...,n) is equivalent to the vanishing of 
8w 

where 



One can also incorporate a comlogical constant A: Take 

1 i j LA(w) = - R .  .A0 - 
2 17 g 

and let 

LA (u) = Jy LA (4 - 
k 

Since 6~01 = 6w A*%, the foregoing analysis implies that 

Exercise: Ccanpute % if L = 
6w 

Given a:cof + A ~ M ,  write M 





Therefore 

Remark : 

= (-1) "-lt (W . ACX) A ~ w  j 
7 



Thus 

or still, 

[We have 



The $ are (n-1) -forms and the collection dl  . . . ,J"> is called the current 
attached to the pair ( a ,  B) . 





Consider the trace of the current attached to the pair (a, P) : 

= * (pBA*a - (n-p) aA* 6) 

Therefore 9, = 0 i f f  n = 2p. 

Observation: 



Rappel: V ~EA'M, 

1.e. : 

Thus 

= 0. 

But then 

J'I&] = 0, 

SO in th is  case, 



let L:cofM + A%, where L depends on and dw: 

1 n 1 n L = L(w ,... ,W ,dw I . . .  ,dw ) .  

Then 

Here 

Now rewrite 6~ as 

Definition: w satisfies the field equations per L provided v i, 

[Note: Formally, if L = L, Men 



6 t .  - aL 
7-- 

aL 
-4- d - .I 

6w1 a$ a i d -  

Example: Take n = 4 and put 

Then 

Definition: The lagrangian of teleparallel gravity is the canbination 

where the pi are real and 



Rappel: We have 

- - 1 Because of this, the choice po = 0, pl - 0, p2 - Z, p3 - - - 1 is called the 

teleparallel equivalent of GR (sametims denoted GR 1. I I 
[Note: If desired, a cosnological constant X can be introduced by setting 

Rappel : 

[ N o t e :  In terms of the interior product, 

Thus 



= ci ] 
jk' 

ample (Anti Yang-Mills) : Con 



Therefore 



Write 



Therefore 

1 2  3 
Using the theorem, one can calculate 6Z , 6L , and 6L . The field equations 

2 
obtained thereby are, hawever, rather unwieldly. To illustrate, consider 6L . 

2 
6L : We have - 



= 2d6wiAwiA* ( d o .  3 AW' ) 

+ 26wiAd (wi A* (do . A@' ) ) 
3 



where 

J2 " = I (dw . Aw j ) h (dwi hi) 
w e I 

But 

3 i j - (-1) (dwiAw ) AI e* ( dw  . Aw ) 
w I 

- - - ( (dw  . Awi) A* (dw . A w j )  ) l e  1 w I 

+ 2 I (dwihi) A* (dw . Aw j ) . 
w I 



2 
Consequently, the field equations for w per L are 

- 2wiAd* (dw . hwJ ) + 2dwiA* (dw . AwJ ) 
3 7 

Take po = 0 - then there is another approach to the field equations for w 

which is more econcanical in its execution. 



We have 

Put 

yi jkrst ir js k t  
= (P, + P2 + P3)" 77 

1 ijkrst*, 
L = - C  4 ijkcrstY 

or still, 

1 Fijk*l L = - C  4 i j k  

where 

i j k  - ijkrst 
F - Y  Crst* 



FACT 

LEMMA We have 

[For 

= - c  J A ~ ~ A  F ~ ~ *  (U AW ) 2 i j k  2 u v 

1 = - c  4 ijkF iuv g ( ~  j k I~uAuv)* l  

- - 1 - 1 Fijk*l - - ikj.xl 
4 i j k  4 i jkF 

1 = - c  i jk 1 &k*, 
4 i jkF *1 - - C  4 ikj 



= - : cijk~ijk*l + - 1 4 c i j k  Fijk,l 

1 &k*, = - c  
2 i j k  

W e  shal l  now turn to the calculation of 6L. 

F i r s t  

But 

6Fijk = 6 (y i jkrs t  
'rst) 

i jkrst 
= Y 

rsti jk 
= Y Erst 

- rsti jk - "ijky %St 

i jkrs t  
= Y 'rstKi jk 



1 i jk 1 . . 
= - 2 (6C i j k  ) F  *1 + , ~ ~ ~ ~ ~ ~ ~ ~ 6 * l  

1 = - '8Cijk 2 ) $jk,l + 4 c i j k  ~ ~ j ~ 6 u ~ ~ * w ~ .  

Observation: 

1 i j k  
I L = 1  ( - C . . F  vol) 
we w, 4 13k g 

1 Fijkl = - c  
4 i j k  "1 g 

. . 
= - c  F " ~ * W ~ .  

4 i j k  

[Frm the definitions, 





L - 6w A ( C ~ ~ * ~ ~  - CieV*q 

- L - 6Ciwfl - 6w A (Cieu*uV - Ciev*wu) 

The replawmnts u -t j, v -t k then serve to cmplete the proof.] 



Thus 

1 + T d ( ~ w . . ~ i j k ~ * ( W  1 A 1) 
j 

= G W ~ A  (d*Fe 

1 S j k  e 
'Ci j*4 - e 

+ 2 Ci k*Wj) + 1 lLI 
W 

+ d ( ~ w ~ A * F ~ )  . 

l F i j k  R - 
2 (Ci j*r, *W ) 

- ' i k  j 

- 1 ($jk ik j  l - 2- - F  )Ci j*%- 



1 i j k  - Fikj 
= - (F 2 1 *\. 

Thus 



Thus 

Notation : 

Scholium: W e  have 

Definition: w satisfies the field equations per L provided v L ,  

[Note:  Matters are consistent in that 



Reality Check Take pl = 0, p3 = 0 -- then the claim is that the field 

equations per L2 derived earlier agree with those obtained above. For, in 

th is  situation, 



Therefore 

j j p2 [  - 2w.Ad*(dw.Aw ) + 2 d w i ~ * ( d w . ~ w  ) 
1 I 3 





Inserting this then leads to 

or still, 

£ram which the claim. 

Rrtmark: In GRI 1, the field equations 

are equivalent to  the vanishing of E i n  (g)  . 
1 The 9 are (n-1) -£oms and the collection {J , . . . ,?I is called the energy- 

mmentum current attached to  w. 



Ll3lMA We have 

[In fact, 

e Application: If n = 4, then J = 0. 

Let 

EL = d*Fe - J,. 
Then 

FACT We have 

I a l  - - 2 b 1  - 2p2 - P ~ ) A ~ ~ ~  + (2p2 + p3)BLfil 

for certain entities A and B. 



So, if pl = 0 and 2p2 + p3 = 0, then E [&I = 0. 

[Note :  This applies to GR I I * I  



Section 47: Lavelock Wavity Let M be a connected cm manifold of dimension n. 

Assume: M is parallelizable. 

Definition: The pth Lovelock lagrangian is the function 

given by 

1 
[NO*: Comentionally, L (w) = v d  where, as before, 

0 (3' 

1 1  k k  n n g = - w 8 w - 0 . .  - w 8 w + w k + b  w k + l +  - * *  + w 8 w .] 

Rappel: The 

are the Lavelock (n-1) -forms. 

[Note: Recall that 

IEbNA Fix p 2 1 (n 2 2p) -- then 

1 k  6Lp = 2 6~ AE (p) 

The case p = 1 was treated in the l a s t  section, There w e  saw that 



And 

Proceeding by iteration, take p = 2  -- then 

1 i j i j  
- 6  (Qi AQi 2i A% 2, 

11 2 2  

1 i j i j  - 6  (ai 1 1 2 2  
2  11ARi2j2)Ae 

1 i j i j  + - R  2  ilj:Qi2j2 A6(% *). 

But 

i j i j  
A Q ~  1 1 2 2 )  

a i l j l  2  2 

i j i j  
- - k 1 1 2 2  

Ani A6w A e  k 



As for what  remins, observe first that 

i j i j  
- - (&Ai j AQi j + Ai Ami )A0 1 1 2 2  

1 1  2 2  1 1  2 2  

i j i j  
= mi A Q ~ ~ ~ ~ A ~  1 1 2 2  

1 1  

i j i j  
+ Qi2j2A6Ri A0 2 2 1 1  

1 1  

i j i j  
- - ,,I122 
"il j  lAQi2 j  

And 

i j i j  
+ 6Qi "Ai2 j2A0 2 2 1 1  

1 1  

i j i j  
= 6Qi AAi A8 1 1 2 2  

1 1  2 2  

i j i j  1 1 2 2  

i j i j  
= 2(6Qi jhi A$ 

1 1 2 2 )  

1 1  2 2  

i j i j  

mi 1 1  mi 2 2  "0 
1 1  2  2  



k 
i j i j  

= 6 (dwi + wi kAw AQi j A€J 
1 1 2 2  

11 1 j l  2 2  

i j i j  
Aili A0 1 1 2 2  

2 2 

i j i j  
= d6wi 1 1 2 2  

:'i2jzhe 

k i j i j  k i j i j  + 6wi kAw A.Qi2j2A0 1 1 2 2 + w  A6w 
1 1 2 2  jFi2jce 1 j l  i lk  

Naw write 

i j i j  
d (6wi j Aili A8 1 1 2 2 )  

11 2 2  

i j i j  
= aswi Aai A0 1 1 2 2  

11 2 2  

i j i j  
- hi Ad(% A0 

1 1 2 2 )  

11 2 2 

i j i j  
= aswi AQi At3 1 1 2 2  

11 2 2  

i j i j  1 1 2 2  
i j i j  

- hi ~dl-2~ he - 6wi A Q ~  ~ d 0  
1 1 2 2  

11 2 2  11 2 2  

Then this a l r e a d y  accounts for 

i j i j  
d b i  Mi A0 

1 1 2 2  

11 2 2  



To see haw the other terms are taken care of, express 

i j i j  
d B 1 1 2 2  

k  i j i j  
= 6wi k ~ w  A C ~ ~  "0 

1 1 2 2  

1 j l  2 2  



k i j i j  
- - wi k ~ 6 ~  

"6 1 1 2 2  

1 jl 2 2 

So, to finish the verification, we must shcw that 

i j i j  
- 6wi rdni A8 

1 1 2 2  

1 1  2 2  



the key being that 

i j i j  1 1 2 2  i j i j  = nk Aw A 0  - k  ~ ~ 1 1 2 2  
1, i2k %2kAw j 

i j i j  
X pi2k~e 1 1 2 2  

i j i j  - k  A 0 1 1 2 2  
'i2kiw j , 



Thus the terms in question do in fact cancel one another. 

ReMlk: The condition on p 2 1 is that 2p 6 n. If n = 2p, then E(;) = 0, 

hence 6Ln is exact. 
- 
2 

[Note: This also follows fran an earlier observation, viz. that Ln itself 

is exact: 

6~ = (4~r)~~!d&II .I 
P P 

Notation: Let 

and 

[Note: Therefore 



IEbMA W e  have 

Definition: o satisfies the field equations per L provided V k, 
P 

- -(plk = 0. 

[Note: In view of the laam, this anaounts to  requiring that 

da(p) = -r (p) k (k = 1, ..., n). 

Reality Check Take p = 1 -- then 



Therefore w satisfies the field equations per L1 iff Ein(g) = 0. 

Ranark: Suppose that the standard setup is in force -- then it would be 
of interest to transcribe the problem of the vanisking of Z(p) (1 5 p) (n > 2p) 

to a time dependent issue on C. Thus, if p = 1, the vanishing of E(1) is equivalent 

to the vanishing of Ein(g)  and for this, one has the constraint equations and the 

evolution equations in T*Q or T*Q. - Nothing this precise is known for p r 1. 

If p = 2, one can isolate the lagrangian as was done when p = 1, but even in 

this situation, the passage to T*Q or T*Q - along the lines that I muld like to 

see has never been carried out. 



Section 48: The Palatini F o n ~ l i s m  Let  M be a connected cOa manifold of 

dimension n > 2. 

Assume: M is parallellzable. 

1 
Rappel: con 'IM is an affine space w i t h  translation p u p  D2(M). 

L e t  stand for the set of torsion free connections on TM. 

1 1 Denote by S2 (M) the subspace of D2 (M) consisting of those 'l such that 

.Let V',V"Econ0TM -- then the a s s igm~t  

1 
defines an element of S2 (M) . 

[In fact ,  

1 r,et v~ccmg~M - then 'd q€S2 (MI,  the assi-t 

is a torsion free connection. 



[In fact,  

VXY + rI(X,Y) - V? - !~(Y,x) 

= TX,YI .I 

1 Scholim: con ?M is an affine space w i t h  translation group S2 (M) . 
0 

Definition: Ut V€conOm - then a variation of V is a curve 

E -t V + €!I, 

1 
where YES2 (M) has ccarcpact support. 

Fix w€cofM and define 

by 

Here 

n. . (v) = 3 

is ccglrputed per V while 

i j  eij = *(',, 1 

is cOrnPuted Per ~ ~ , n - k  (conventions as in  the prwious section) . 

Remark: Actually, in the considerations that follow, it w i l l  be simplest 

to use the local representation of Lu, i.e., 



1 
LU(V) = - 2 

Of course, in this context, 

[Note: As a map, 

1 n the indices refer to a chart (U,{x ,..., x I ) .  

0 Ric : conolM -+ V2 (M) 

but Ric (V) need not be symztric. I 

Iet R~ (V + Eq) he the curvature CCBnponents of B + &!I. 
ju 

LEMMA W e  have 

[In fact, 

R ~ ~ ~ ( v  + E'I) 



But, £ran the definitions, 

Therefore 

i i + c j r i ,  + raljq ka - ?kjri& - rakjq 

as contended. I 

Application: We have 



[NO*: Since V is torsion free, r is symnetric in its covariant indices 

(by construction, the same holds for Y) . I 

Theref ore 

L e t  vg be the metric connection - then ~ ~ ~ c o n ~ T T 4 ,  hence the difference D 

defined by 

V = V g + D  



Observation : 

Consequently, 

- jt $ k - g (Vk jjt - v p  jk) 

[Note: The term 

is the divergence of a cmpactly s u w r t e d  vector field Xq, hence integrates to 

zero. I 





Therefore 

1 
L e t  T(V) be the element of D2 (M) given locally by 

Then the conclusion is that 

= div X + tr (T(V),y).  
9 Y 4 

[Note: Here tr stands for the pairing 
9 



Definition: An elenent VEcOnOTM is said to  be crit ical i f  

T(V) = 0. 

[Note: To mtivate this, adopt the usual shorthand and let 

Lw(V) = rM Lw(V). 

Then 

1 1 
= - 2 I M divg %mlg + - I tr (T (v) ,q)volg 

2 M  g 

d 
d€ w - L (v + E ~ I )  

or still, V is crit ical i ff  



THEOREM Suppose that n > 2 - then VEconOTM is critical iff V = vg. 

It is clear that vg is critical V n (since in this case D = 0 ) .  

To go the other way, the assumption that T(V) = 0 implies that 

Thus 

But 



Therefore 

and, by the syxnwtry i n  i & j, 

Similarly 

But then 

=> 

=> 

=> 

=> 

Add to this the relation 

+ Qj - (Dikj + D . .  
I* 

+ Dkji) = 0 
Dijk + Djfi 



to get 

or still, 

or still, 

1.e. : 

Fix wEmfM - then instead of workhg with con TM, one can work with 0 

con TM which, as w i l l  be recalled, is an affine space w i t h  translation group 
g 

1 1 1 
D2 (M) (the subspace of D2(M) consisting of those 4 such that V X,Y,ZED (M) , 

g 

Definition: Let VEcon TM - then a variation of V is a curve 
g 

€ -t v + &q, 

1 
where Y E D ~  (MI has ccrrp?act support. 

4 

[Note: W r i t e  

i 
!l(EyEj) = 4 kjEi. 



Then 

j 
1 3 ki (na sum) . I 

A s  before, define 

H e r e  

R .  . (V) 
1 3  

is computed per V while 

is computed per g. 

Given VEcon TM, consider 
g 

or, i n  brief, 

[Note :  Since 



it follows that the connection 1-forms of V + EY are the 

Then 

k a i j  + zlikjw " ("Mu Aw hwa). 

N.B. - 
i j  

d * ( w  Aw 

i j  a j i a 
= Ela(,) A* (w Aw Awa) - wiah* (w h w  ) - wJ A* (w Aw ) . a 



Definition: An element VEcon TW is said to be c r i t i ca l  i f  V i , j :  
(3 

i j 
Ela (v) A* (w Aw AU,) = 0. 

[Note: Set 

LwCV, = rM LJV) . 

Then V is c r i t i ca l  i f f  V Y, 

d 

or still, V is c r i t i ca l  i f f  

FGmark: Our assumption is t h a t n  > 2. I f  n were 2, then 

so every VEcon TM would be critical and the mthods used below are not applicable. 
g 

THEOREN Suppose that n > 2 -- then VEcon 'IT4 is c r i t i c a l  i f f  V = vg. 
4 

It is clear that vg is c r i t i c a l  V n (the mtric connection is torsion free).  

As for  the converse, it suffices to prwe that 

V critical => V torsion free. 

a 
V critical => 0 (V) = 0 (a = 1, ..., n).  

To see how the argument runs, take a = 1 -- then the claim is that 



for a l l  k ;r 1, there being tw possibilities: 

Then 

In addition, 



to get 

ni-1 det A = (-1) (n-1) . 
Theref ore 

a j xa = g(O (V) ,w ma) = 0. 

In particular: 

1 k 
g(0  (V) ,w ALO~) = 0 (k > 1) . 

Remark: It is not difficult to &end the Lavelock theory so as to 

incorporate con TM: Simply define 
g 



1 i j  i j  
L ( V ) = - R  ( V I A .  . . A R .  ( V I A 8  '"' p p  (2p 5 n). 
wrp 2 iljl 'P~P 

The condition for criticality at lwel p then becaws the requirement that 

V il, jl: 

[Note:  If p > 1, then these equations do not necessarily imply that V is 

torsion free.] 



Section 49 : TQrsion Let M be a connected cW manifold of dimension n > 2. 

Assume: M is parallelizable. 

Fix u€m& and let V be a g-connection - then, per the previous section, 

and, as was shown there, V is critical, Le., 

i j oaVA* (u A A = 0 

tl i,j iff V = vg. 

Rappel: Suppose that V = vg (in wh ich  case we write ni in place of 

LEMMA We have 

1 1 - R. . (V) Aeij = - R. . liei' + d (v) ) 
2 1 3  2 1 3  

Assume naw that the standard setup is in force -- then 

Vccon TM => %con TZ. 
4 - 

4 



[Note: By definition, ? is the connection on TC which is obtained fnm the 

induced connection i;V on STM via the prescription 

This said, let us consider the significance of the following conditions. 

0 Equation 1: i;O (8) = 0. 

[We have 

Therefore 

0 
i*O (V)  = 0 t 

C=> 



But 

0 Accordingly, it@ V = 0 i f f  the extinsic m a t u r e  rt is symnetric.1 

[We have 

a - 
So, i f  it@ ( V )  = 0 V a, then V is torsion free (and conversely) .] 

0 
-tion 3: i * ~  0 (V) = 0. 

Eo 
[We have 

= i * ( ~  Wdt - dNA1 d t )  
Eo Eo 



Thus 

or still, 



a 
-tion 4: i * ~  0 (V) = 0  (a = 1, ..., n-1). 

Eo 

[We have 

a i * ~  0 (V) = O  
Eo 



or still, 

But  

On the other hand, 

Therefore 

Notation: Put 

- - 
= N i * w  (E ) 

'a t t O a  o (cf . Equation 3) 

I Gab = - N i*wa (E ) (cf . Equation 4) . 
- t t  b 0 



LEbMA Suppose that Ryations 1 - 4 are satisfied for a l l  t - then V is 
torsion free, i. e. , O (V) = 0. 

0 
[ ~ t  is a question of shaYlng that O V = 0 and Oa(v)  = 0 (a = 1,. . . ,n-1) . 

Write 

Then 

and 





Section 50: Ektadkg the Theory The assumpti:ons and notation are those 

of the standard setup. 

Throughout this section, V stands for an arbitrary element of con TM. g 

[Note: Here, of course, 

0 0 a a  g = - u  @ u  +uAu.] 

Rappel: I£ v a vg, then 

This relation was the initial step in isolating the lagrangian and our first 

objective is to generalize it in  order to cover the case when V # vg. 

Since V is a g-connection, it is still true that R. . (V) = - $ 2 . .  (V) , hence 
1 7  3 1 

thus as before 

i j Oa Oa b 0 AO. . (V) = 28 WOa + 28 AuObAw 
1 3  a 

Write 



to get 

2 0  

Oa Oa 
= 2d(wOaA0 ) + 2wOaAd8 . 

Then 

Oa b 
eijA52. . (0)  = 2 d  (wOaAOOa) + 2wOaAd00a + 2 8  AwObAw 

1 3  a 

ab 0 ab 0 + e A (a* ( v )  - ua0h b) + e A W ~ ~ " W  b. 

But on general grounds, 

0 a 
dooa = d * ( w  Aw ) 

O a b  
= %A*(w Aw Aw 1, 

Oa 
so modulo the differential 2 d  (ooa~O 1 , 

i j O a b  Oa b 
0 AR. . (V )  = 2 o O a A d u p ! w  Aw Aw ) + 2 0  Aw Aw 

17 Ob a 

ab 0 ab 0 
+ 0 A ( s l , ( v )  - w,,Aw + 0 AwaOAw b. 



We have 

0 = 1  E~ ' W ~ a  A~%Ao*) 

And 

O a b  
= - *(w  Aw Aw I .  



We have 

a b 
0 = 1 (*w AwOhAw a) 

Eo 

And 



Oa Therefore, up to the differential 2d (woaAO 1 , 

ab 0 ab 0 + 0 A (Q* (V) - waOAw b) + 9 AuaOAw b. 

N.B. 

b b - 2wOb(EO) w + 2w a (Eo) uobA*> 

a b  b = - 2wOa (EO) W b A W  + 2ua (E ) w A*u . 
b 0 Oa 

Rappel : 

- P = N i * w  (E ) a t t O a  0 

a Gab = - N i * w  (E 1. 
- t t  b 0 

Using now the sane methods that were enployed in the study of eiJAQij, 

we then find that 



-a 4 3  - 
= Nt* (w Aw ) w Oa Ob' 

Details Items 1, 2, 5, and 6 are handled as before but one has t o  be 

careful w i t h  i tam 3 and 4 and make sure that the signs are correct. Thus write 

E 
j 2 ~ n - 1 ~ ~ 0  + --• + ow A ... A w 

(n-l)! bj  2... jn-1 



Then 



The fact  that 

is prwed in exactly the same way. 

s w :  

1 + 2 + 3 + 4 + 5 + 6  

Claim: 

[The issue is the equality of 

and 

But 



and 

But 

Claim: 

[The issue is the equality of 



Frm these considerations, it follaws that 

1 + 2 + 3 + 4 + 5 + 6  

Consequently, if we set aside the differential 

then formally 

ij IM 0 AR. . (V) 
1 3  



-a -b - cc E AW + E O a ~ t i ; ~ E  %]A+ (w AU 1. 
b c  Oa 0 

Remark: A s  far as I can tell, an analysis of the 

along the foregoing lines has never been carried out. 

LENMA We have 

[In fact, 



Because of this, one can replace 



Reality Check Specialize and take V = vg - then 

1 + 2 + 3 + 4 + 5 + 6  

reduces to 

as  it should. First ,  since vg is torsion free, 

hence 

%(a;-, + q&F) = 0. 

It remains to consider 

-C - la- 
Nt (zoa~Gob) + 2 [Q awc~$ob + w Aw - L+ w ~ A G ~ ~ ]  

Ob 
Nt 

or still, 

or still, 

or still, 

or still, 



or still, 

or still, 

wh ich  equals 

Before extrapolating the foregoing, let us recall  the notation: Elements 

+- +- 
of Q - are denoted by ;, elements of 732 - are denoted by (o,v) , and elarrmts of 

-k +- 
T*Q - are denoted by (w,pj. 

External Variables These are N, G ,  and W plus three others, viz . : 
a 1 1. w - = [o b l ~ A  (Z;so(n-1)). - 

Definition: The lagrangian of the theory is the function 

n-1 
L:TQ - -+ h c 



[Note: The precise lrsanlng of the symbol (w) - is this. Let be the 

fr- associated w2th by duality - then the prescription 

defines a q-comection V (w) - (since % + % = 0) and the 

are the associated curvature forms. I 

Reality Check Let w - = [dab] be the connection 1-fonm per the metric 

connection vq associated with q and, as in the earlier theo'y, put 

Since vq is torsion free, w i t h  these specializations, 



I B W A  We have 

Let 

FL:TQ - -+ T*Q 

be the fiber derivative of L: 



Then 



Therefore 

We now shi f t  the theory from TQ - to T*Q and let - 

be the function defined by the prescription 

[Note: Here the external variable N is unrestricted, i.e., N can be any 

el-t of c ~ ( c )  . I 
Remark: 

vq associated 

L e t  w = [wabl be the connection 1-forms per the metric connection - 
w i t h  q -- then it is clear that 



+ +  + 
= ff (wIp;NINIW). 

The theory has fiye constraints, character2zed by the conditions 

Of these, the first three are familiar while the last ism are new. 

We have 

Let oa(w) be the torsion forms associated with V (w) -- then - - 

Define 

n-1 
Ia:T*Q+A - E 



[Note: Accordingly, in contrast to the earlier theory, one of the constraints 

is not part of 14.1 

LEMMA W e  have 

[There are t m  contributions to the variation w.r.t. w*. The first is 

or still, 



or still, 

or still, 

or still, 

or still, 

But 

is thus accounted for. What's left cames f r m  consideration of 



Hawever, on the basis of what was said during our discussion of the Palatini 

This explains the occurrence of 

c a b  - NO (w) - A* (w Aw Awe) . 

a h  a b  = d ( N G ~  A* (w AM ) ) + G w ~ ~ A ~ N A *  (w AU ) . 
ab 

Since 

a b  Iz d (N6wabA* (w Aw ) ) = 0, 

incorporation of the minus sign leads to 



If V(w) is torsion free, then - - - - 0 and if further dN + ~~w~ = 0, then, 
bBa 

-0. in view of the lesrrna, - - 

There is also a partial converse. Thus assume that V a, 

oc (w) - A* ( w a h c )  = 0 

and V a & V b, 

a b  a h  - (dN + B~U') A* (w Aw ) - NQ' (w) - A* (w Aw Awe) = 0. 

a b b  
= ( - ~ ) ~ * ( q ( w  ,a ) w  

n a 
= (-1) *w . 

a b c  b .*(w Aw Aw )Aw 

a b c  = (-1) - )  I (w Aw Aw ) b w 



Then 

So, under the supposition that 

it follaws that 

B u t  this means that 

is cr i t ical ,  hence V(w) is torsion free. - 
[Note: Bear inmind that dim C > 2.1 

Definition: The relations 



are called auxiliary constraints. 

[Note: They are simpler to use and nothing of substance is lost in so 

doing. ] 

The central theorem in the coframe picture is that Ein(g) = 0 provided 

the constraint equations and the evolution equations are satisfied by the 

+- -+ 
pair (utIpt). Is there a similar detection principle at work which will imply 

that V = vg? It turns out that the answer is "yes" but no time develo-t of 

the induced connection is involved: The situation is basically controlled by 

the imposition of certain constraints. 

Let V be a g-connection - then, as w e  know O(V) = 0 if Equations 1 - 4 
are satisfied v t: 

Consider the one paranaete~ family 

-a 
t -+ (; t t t t  ,6 :N , ,[ailb]; [U b ~ r  [%I) 



associated w i t h  the pair (g, V) 
+ + 

ASS-: V t, the pair (ut, pt) lies in the ADM sector of T*Q, i . e. , - 

for all a,b. The claim is that Equation 1 is satisfied. This is obvious if 

a = b, so suppose that a * b - then 

Stipulate next that 

I - 

the auxiliary constraints are in force V t: 

thus taking care of Ekpitions 2 - 3. As for Equation 4, we shall simply assume 

that it holds at each t (but see the next section on evolution). 

g Conclusion: Under the stated conditions, O(V) = 0 => V = V . 



Section 51: Evolution in the Pa la tM,Pic ture  The assurrq?iti~ns and 

notation are those of the standard setup. 

Rappel: 

H(Z,$;N,~,W; w f  B) 

where 

There are then tsm points: 

The discussion of - " is verbatim the sane as  in the cofrane picture, the 
'pa 

result  being that 



But 



b c [Note : There is no need to  deal w i t h  (g) A* (w Aw ) , o_ being independent 
+- 

of 0.1 

There remains the calculation of 

To this end, w r i t e  

d a a b c  + %(d% + w& ) A 6 w  h * ( w  Aw Aw ) 



Thus 

d a b c  + %(dwc + udAw ) "(W AW AW ) . 

Impose now the auxiliary constraints: 

a b c  Then the term prefacing * (w Aw Aw ) disappears and the claim is that 



a = - *(VadN - (AqN)w ) . 

Consider the one parameter family 

associated with the pair (g,V) (V~con TM) . 
g 

Assume: The evolution equations 

are satisfied by the pair (Zt,$t) . 



If  further the data i s  subject to the auxiliary constraints 

then the evolution equations reduce to those of the coframe picture. This said, 

suppose finally that V t, the pair (Zt , $tt) lies in the ADM sector of T*Q. - 
?%pations 1 - 4 are therefore satisfied, hence B = vY. Consequently, i f  the 

constraint equations of the cofrm picture also hold, then Ein(g) = 0. 



Section 52: Expansion of the Phase Space The assumptions and notation 

are those of the s t a d a d  setup. 

Rappel : 

where 

Definition: 

is the integrated diffecrm~rphism constraint; 

b %(w) = rI Wabu A P ~  

is the integrated rotational constraint; 

ffH(N) = NE 

is the integrated hamiltonian constraint. 

Theref ore 

u = ffD + KR + ffH 

a b  + / B - (w)A*(u Aw 1. c a % -  

In the coframe picture, six relations were obtained for  the Poisson 



brackets of the ff,,, Q, and yI. Sow of these canputations carry over to the 

present setting and we have 

6HH (N) 
But there are differences: This t h  is linear in N (as is, of 

6ua 
6HH (N) 

course, 1 , hence 
"a 

There are also problems with 

and 



But, in general, Ric (wl # Ricba (9 , so there is no guarantee that the 
ab - 

integral vanishes. 

To resolve these issues (and others), it dl1 be convenient to enlarge 

our horizons and pronlote tm of the external variables to configuration status. 

is an (n-1) -by- (n-1) matrix of 1-forms with + q ~ a  = 0. Generically, pu - - - 
n-2 

[p a ] €A (L; so (n-1) ) is an (n-1) -by- (n-1) matrix of (n-2) -forms w i t h  pW + 
&I b 

ab 

p = 0. The prescription 
% 

defines a symplectic structure on 

n-1 n-1 is a 1-by- (n-1) matrix of ern functions on 2. Generically, p+ = [pB I €A (Z; 5 ) 
B a 

is a 1-by- (n-1) matrix of (n-1) -forms on 1. The prescription 



defines a symplectic structure on 

c m ( z ; p )  x ( r; 5n-1) . 

Definition: The expanded configuration space is 

1 n-1 
C = Q - x A (E;so(n-1) 1 x c~('(E:R 1. 

W e  shall then operate in 

equipped with the obvious symplectic structure. 

[Note: A typical point in T*C is the pair of t r ip les  

-+ -++ 
(w, ~ ,B;P ,P~,P-+~ I - B 

N.B. Functions on T*Q l i f t  to functions on T*C. - - 

In particular : % (8) and HR (W) are functions on T* C which are independent 

of (orpw;6,p-+). - By contrast, ffH(N) is a function on T*C which definitely depends 
- B 

on w (but not on p ) . - w 



Given k m ( h  ; , define 

HZ(&) :T*C + R - 



There are four constraint surfaces associated w i t h  these functions. 

ConT: This is the subset of T*C whose el-ts are the points 

such that 

a b  
dua + w b ~ u  = o (a = 1.. .. .n-1). 

9: This is the subset a£ T*C whose elepnents are the points 

such that 

Conl: This is the subset of T*C whose elePnents are the points 

such that 

Con2: This is the subset of T*C whose elements are the points 

such that 

pB = 0 (a = 1,. . . .n-1). 
a 



= 0. 

meed, V C ~ )  = vq, hence ~ i c * ( w )  - = ~ i ~ ~ w l .  - 
Rappel: L e t  fl,f2:T*C + R - -- then their Poisson bracket IflI f2} is the 

function 

If,,f,l:~*C + R - 

defined by the rule 

Example: We have 



Therefore 





Therefore 

a a a c 
= d ( 6 w  ~a,) + 6w A d a ,  - 6w Aw $ac 



Application: 

Application : 



Inspecting the definitions, we see at once that 

and 

U3Wi We have 

[It is a question of explicating 

or still, 

c d - g 6  (R ( w ) A * ( w A w  ) )  
2 ab o d -  

or still, 

or st i l l ,  

But 



a b  a b  = - d ( h  AN*(w Aw 1 )  - 6wabAd(N*(w Aw 1 ) .  ab 

And 

N c b  c a = - 6w A ( w  A* (OI AU ) - w c b k  (W AU ) ) . 
2 ab ca 

To combine these t e r m s ,  write 

b d 
w A* (w Aw ad 

b c 
= fJ&A*(W Aw I 

c b  
= wcaA*(w Aw ) 



and 

Then 

- - c d 
w  Aw f w  A6  w  ) A * ( w A w )  

2 (6abcr rd cr a b r d  

Application : 



Therefore 

a b  a b  a b  = - &A* (w Aw ) - Nd* (w Aw ) i- Nd* (w Aw ) 

a b  = - pabAdNA* (w Aw ) .] 

Given NI let 

HT (* (dNAWa) 

stand for the function T*C -+ R that sends - 

to 

Iz * (dNAwaa) A ( h a  i- wab~wb) . 

[Note: Strictly speakingt Ws is not consistent w i t h  the earlier agr-ts 

in that here % = * (~NAwJ depends on :. However, no difficulties w i l l  arise 



therefran. So, e.g,, 

a b  ip Ba(d% + O h c ~ c ~  A* (o AW ) 

Observation: To begin with, 

(-1) " [ * (dNAoa) A (doa + oabAob) 1 

In addition, 

a 
= - [d* (dNAoa) Ao + (-1) n-3* (dNAwa] Aha] 



Therefore 

b 
- 1  1, * (dNAwal A (dwa + wabAw ) 



- - (2-n) Iz ( A ~ ~ ( ~ ) N ) V D ~  
q ' 

which brings us to the pint of the amputation: In general, the integral 

does not vanish, hence H is nontrivial. 
T 

[Note: If V(g) = vq, then 

and, of course, 



LEMMA We have - 
a b  b a 

p*AdNA* (w Aw + 2pabAw A* (mu 

= 0. 

[Write 

C 
dN = Ncw . 

Then 

a b  
P ~ A ~ A *  (W AW 

c a b  
= pa$Ncw A* (w ~w 1 



Notation: Put 

& (N) = ffH (N) - ffT (* (dNMa) 

Accordingly, 

G#) tH1(p) .3 1 

= {HH(N) ,H1(p) c\ I - { I ~ ~ ( * ( ~ A W ~ ) )  ,ffl(p) - I t  

which, upon restriction to Car+ equals 

a h  h - JZ pabAdNA*(w h - 2 2 p A* A*(dNAWa). C ab 



Remark: Since 

it is still the case that 

N.B. The correction term - 

is identically zero on (3%. 

.., 
In terms of HH, we have: 



ad I: Proceeding as fn the cofram picture, let 

where 

and 

Note that does not depend on w, - while E does not depend on $. This said, 
pot 

in obvious notation, 

ffH(N) = ff&(N) + HH (Nl , 
pot 

and, as before, 

H o w e v e r ,  ffH (N) has to be treated a little b i t  differently. Thus, in the present 
pot 

setting, 



where % is per vq. This integral was encountered earlier: It computes to 

But 





= 0, 

being symru3tric. 

M 111: It has been pointed out a t  the beginning of this section that here 

{ffH(Nl) ,ffH ( 9  = 0. 

Therefore 



Using the explicit formulas for these Poisson brackets and then restricting to 

(3% leads bed3ately to the claimed result. 

Surmsu7y: On ConTI the fundamental Poisson bracket relations are the sam as - 
those in the coframe picture prwided one works w i t h  HH(N) rather than HH (N) . 

The next step is to find modifications 

such that 



#1: W e  have 



Thus 

b + 1 L w Aw Aaa. 
C 8a.b 

But 

a a b  
= - Iz d(L w )/laa - /I w Aw ,AL ab. 

3 3 

Now restrict to ConT -- then 
dub = - wb /wa 

a 



#2 : We have 

On the other hand, 



Notation: Put 

Then on Co%, 

+ 
{ff ( 6 )  , ffT(b) 1 = 0, {HD(N) (6) 1 = 0- 

D 



b b - d b ~ w  haa - Y P b a  A x  a* 

b b c = - 1pbA (0 (w) - - w Aw ) Aaa 
C 

b b c = - JP~AO ( w ) ~ a  + w AU AU "aa 
a a b c  

b b c = - GPbAO ( w ) A a  - a + w AW Aw Aaa 
c ab 

b = - (a )  - .aa - w C b ~ w a b ~ w c ~ a a  

b b 
= - upb/\@ (w) - naa - wb c AW ac ~w ma 

b b 
= - UPb~o (w) - haa + w c b ~ w a c ~ w  

a* 

b c 
Wabhw AU ,AaC 

- - c b  - W Aw aAw Aac ab 

a b = W Aw AU Aac 
c ab 

c b 
= w Aw Aw Aaa. a cb 



Thus 



b a 
= PZ WahB w A@. 

On the other hand, 



Let 

Thus 

The canbination 

is antisymnetric and 



But 

b 1, Z,(o) hw A a g  = Iz dug )l; Aa 
a a' 

To see this, mite 

and recall that 



Theref ore 



= dv 
'a* 

Consequently, 

on the nose. 

#2: We have 

a b  = - I~ B~N(~(P~,*u )U A@ - - U~AB). 
n-2 

On the other hand, 

b P b a  
= fz Ej,N(q(pat*w 1 - q a)w AB 



Then on ConT, 

it follows that 



= H (N grad N2 - N2 grad N1) D 1 

Notation: Con, is the subset of T*C whose elements are the points 

such that simultaneously 

Definition: The physical phase space of the theory (a.k.a. 

surface of the theory] is the subset Con,,, of T*C defined by 

the constraint 

Con nco nCon i7Con2. - P a l =  Q 1 
? 



A constxaint is a function $:T*C + R - such that $ 1 ~ 0 % ~ ~  = 0. 

Definition: A function @:T*C + R - is said to be f i rs t  class if 

where 

[Note: Here the paramters 

are arbitrary.] 

A function that is not f i r s t  class is called second class. E.g.: ifD, 

f f ~ f  
and ff are second class, as is ff. H 

The fact t h a t  ff is second class can be partially remedied. To this end, let 

Then 



- 
l%arh to this last representation of H, on C O % ~ ~ ,  we have: 

- - 
S t i l l ,  this does not say that H is f i r s t  class since {H,Hl(p) } has yet to be - 
considered and therein lies the rub. 

Notation: Let 

[Note: ConTnCos is the subset of T*C consisting of those p in t s  

such that  the auxiliary constraints 

are in force. 1 



We then claim that on Conpal (N) , 

In fact, 

So, while is not, s t r ic t ly  speaking, f i r s t  class, it is a t  least f i r s t  

class in a restricted sense. 

[Note: For the record, observe too that 

- 
hence they vanish on an1fCon2. Nevertheless, working with ff is not the same as 

mrking w i t h  ff. 



Section 53: Wensign of the Scalars Let M be a connected cm manifold 

of dimasion n, 

its tensor algebra,. 

Notation: Put 
CO 

D(M;G) = @ %(M;:), 
P ~ F O  

the cmplexified tensor algebra. 

0 1 1 [Note : Here ,  DO (M; C) - = c ~ ( M ;  C) - , DO (M; $1 = D (M; C) - , the derivations of 

1 
the linear forms on V (M;C) (viewed as a module over c*(M;c) .I  

.cI 

03 

The operation of conjugation in C (H;C) - induces a similar operation in 

Given define %P1 (M;C) - by 
- - 
Xf = (Xf) . 

- 
In general, the conjugation T -t T is defined 



m k :  There is an arrow 00 i.r_clus?an 

1 For example, each XfQ (M) can be rqarded as a complex vector field via the 

prescription 

0 
A ccmplex metric is an element of D2 (M;C) - which is symnetric and 

randegenerate. 

Notation: is the set of complex metrics on M. - 
[Note: There is an a rm of inclusion M - -t % - I  - 
-1e: Suppose that M is parallelizable. Let I E ~ ,  . . . , E,} be a mnplex 

1 frame. Given X,YED (M;C) , put 

g(X,Y) = I,. .&' 
1 3  

Then g is a camplex metric on M. 

1 n 
[Note: In terms of the associated cofrarre {w  ,... w 1, 

Let g% -- then a connection V on 'IT1 O C - is said t o  be a g-connection i f  - 
Vg = 0. As i n  the real case, among a l l  g-connections there is exactly one with 

zero torsion, the metric connection. 

mote: Likewise, other enti t ies associated with g still make sense (e.g. 

Ein(g) ) , a point that w i l l  be taken for granted in the sequel.] 



Section 54: Selfdual Algebra In this section we shall develop the machinery 

that will be needed for conrplex general relativity in dimension 4. 

Rappel: L e t  V be a vector space over R - -- then a amp1.x structure on V is 

an Rlinear - map J:V -+ V such that J~ = - I, where I = i% is the identity map. 

LEMMA The arrow 

J:~(l,3) -+ ~(1,3) 

defined by 

is a ccarq?lex structure on ~ ( 1 ~ 3 ) .  

Before we give the proof, it is necessary to explain the index convention on 

the Levi-Civita symbol. Thus, as usual, E ijke is the upper Levi-Civita symbol 

(€0123 
= 1). Indices are then lowered by means of 

is - not the lower Levl-Clvita symbol (g0123 = -  1). 



FACT - 
i l f i  
1 2 3 4 &  

i i i i 
E - -  6 1 2 3 4  

-jlj2j3j4 j1j2j3j4* 

A matrix A = [ A ~ .  1 €so (l,3) is characterized by the condition 
3 - 

Thus to check that JAeso (l,3) , one must ccanpare - 

w i t h  

But 

while 

And 



- I - - -  E . O . E  E ( 6 1 ~ 6 ' ~  - 6i 6' ) A  
2 1 J U V  v u uv 

- - - -  i j  
E.E.E  E 6 6 VAW 2 1 J U V  u 

1 i j  
+ - E E E E ~  dUAW 2 i j u v  v 

- 1 - - -  1 
€ . € . € . & . A  + - € . € . & . € . A  

2 1 ~ 1 3 i - j  2 ~ 3 3 1 j i  



= -a,.. 
11 

Therefore 

as contended. 

N.B. One can, of course, view J as an ~~~~rphism of &(4,R) - but tkven J 

is no longer a catplex structure. 

Pass now to the ccnnplexif ication - so (1,3) 8 C - ( E - so (1,3) ) and extend J 
C - 

by linearity -- then there is a direct sum decamposition 

where 

+ 
[Note: The elanents of - ~ ( 1 . 3 ) ~  (so(1,3);) - are said to be selfdual - - 

(antiselfdual) .I 

[JA, JB] = - [APE] . 



[In fact, 

Let 

be the projections, so that 

Then 

+ 
Therefore - so (1,3) are ideals in so (1,3) 

-C - C - 

  em ark: - S0(1,3)C ( 2 SO(4,C)) is connected and there is a covering map - - - 

SL(2,C) - - x SL(2,C) - - + S0(113)c - 
- 

which is universal, the product 

SL(2,C) - x SWIG) - 
being simply connected. 

[Note: It is not difficult to see that 

Let M be a connected coo manifold of dimension 4, Fix a serniriemannian 

structure 4% 
,3' 



Assume: The orthonoml frane bundle LM (g) is t r ivia l .  

Suppse that E = {E l,...,E 1 is an orthonoml f r m .  Let n 

Then 

LENMA We have 

[ W r i t e  



B u t  

- - 
juv 

- - - (4-3) ! &irs : €uEv (4-4) ! j uv"~s Awuv 

- 1 & - - w Aw 
4 u v juv rs uv' 

i r i r s  
= 6 . 6  6' - 8.8 6' - 6 6 . 6  

I U V  I V U  U J V  

i r i r i r + 6  6 t i S + &  6 . 6 ' - 6  6 6' u v j  V I U  v u j* 

And 

1 i r 
1. - E E ~  6 6'w hw 4 u v  j u v r s  

1 - - i - E E ~  .w 4 u v , U P ' U V  

= 0. 

i r s  2. - - ' € & 6  6 6 u /ww 
4 u v  j v u r s  

- 1 - - -  i 
E E ~  4 u v j%d"'uv 

1 - - i - & E 6  .w Aw 4 u v  J uv uv 



i r s  
3. - -  : E U E V ~  u 6  js vWrsnWw 

- 1 - - -  E E W  4 i v jvAWiv 

1 i r s  4. - E E ~  6 6 . w  A% 4 u v  u v j r s  

1 - - - E.E  W .Aw 4 I v VJ iv' 

1 i r s  5 .  a E ~ E ~ ~  V6 j 6  U ~ r s ~ ~ u v  

I - - - E E W .  AW 
4 u i ju ui '  

1 i r 6. - - E  E 6 6 6'.u A W ~ ~  4 u v  v u j r s  



while 

Therefore 

Variant 

UW4A W e  have 

[ W r i t e  



- - - - 1 2 E i j  k e 1  (pkr st w S t ) N p  1 r u v  1 e uv 

- - - -  l E E E E E E  i jklE 
8 i j r u v  Aw -rtwEkr st uv 

- - - E . E . E  E E 6 ijke 
8 1 j r u v  Stw Aw 

rluvEkr st w 

- - E . E . E  E E 6 i jka. 
8 1 7 r u v  

Stw Aw ruveEkr st uv 

- - - ~ E E E E E  
(4-3)  ! &i jk  

8 i j r u v (4-4)  ! 
stw AW rwEkr st uv 

1 - - i j k  - 8 E l j r u v  . E . E E E 6 ruV~kStwSt~wuv. 

B u t  

ruv r 6 j  u 6' v 

i j k  i j k  i j k  
= 6 r6 u6 - 6 r 6 v 6 u - 6 U 6 r 6 v  



i j j k 4 - 6  6 gk + t i i 6 j g k  6 u v r  v r u  v u r* 

And 

1 i j k  1. 
E ~ E  E , E ~ E ~ ~  r6 U6 V ~ k S t ~ s t ~ ~ W  

- 1 - - E . E . E . E . E  E St" A" 
8 11  l - ~ v v i  st jv 

2. - - i j k  
' E . E . E E E ~  6 6 E AW 
8 i j r u v  r v u k r  st uv 

- 1 - - -  E . E . E . E  E . E  
8 l j l u j u i  stust~uu 

- - - -  St" /\W i EuEui st u j  

i j k  
E ~ E ~ E ~ E ~ E ~ ~  r6 v~kStust~uuv 3. - -  

- - - -  E E . E  E . E  E Aw 
8 i J j l v v j  st iv 

- - - -  I E E St" /\W 
8 v j st iv' 

1 i j k  4. g E ~ E  j ~ r ~ U ~ V 6  U~ 4 rSCTStuSt~uW 



1 5. - E . E . E  E E 6i 61 6k E Stu ~u 
8 l j r u v  v  r u k r  s t  uv 

- 1 - - E E  Au 
8 u u j  s t  ui '  

6. - -1 E E E E E 6i 6 j  6k E  st^ AW 
8 i j r u v  v  u  r k r  s t  uv 

1 1 + 2 = - E E  
1 St, Au - - E  E  Au 

8 v v i  s t  jv 8 u u i  st u j  

- - - - E E  1 st, Au - - 1 E E "u Au 
8 k k i  s t  k j  8 k k i  s t  k j  

- - - E E  1 Stu /\W 
4 kik s t  k j  

= - ( - E  st, A ) 
2 2 ik s t  k k j  

while 



Variant 



Returning to our g-connection V, write 

where 

Deccorrpose Qv analogously, thus 



Similarly 

Remark: To interpret these relations, define cmplex g-connections V' by 

Then 

LEMMA We have 

[In fact, 



- - - 1 "ki2.j u v 
4 "uvi j %L ( V ) A u  Aw 

[Note :  It is to be emphasized that here, E~~~~ is the genuine 1- 

Levi-Civita symbol and not its hybrid cousin used earlier.] 

Rappel: 



Therefore 

1 
(8) = - a. . (V) A0 i j 

ij 2 11 

6i j i + - (do. (V) + w. .A@ (V))Aw . 
2 1 1 3  

Now specialize and take V = vg -- then the conclusion is that 

Remark: The preceding considerations also imply that 



Section 55: The Selfdual Lagrangian The assumptions and notation are 

those of the standard setup, subject now to the stipulation that n = 4, hence 

dim c = 3. 

Consider 

ij + 1 ij e mij ( = ?  e AQ. . I .  
13  

Write 

+ 
Since R is selfdual, we have 

where 

Theref ore 

Observation : 



Consequently, 

thus, on formal grounds, 

To explicate the integral over C, note f i r s t  that 



On the other hand, the calculation of 

is t r i ck ie r  and hinges on a preliminary remark. 

Define an ele~nent 

Therefore 



But 

Let u,v = 1,2,3 and write 

1 *wa = - O u v  
w Aw Aw 2 

or still 



- 1 O u v  
- - iS'a/at [a 2 E ~ E ~ ~ ~ ~ w  AU AU A' R + ~ I  Eo 

But 

So f inally 



or still, 

Remark: We could just as well have worked with 

the upshot being that there would be a sign change, viz. 

This seemingly technical point has its uses and will cane up again later on. 

+ To mke further progress, it will be necessary to take a closer look at R *: 

LEMMA We have 

[Let u,v = 1,2,3 -- then, since w+ is selfdual, 



B u t  

= E OacuE Ocbv 

- - - E OaucE 
Obvc 

= - 6au 
bv 

Application: 



LEMMA We have 

[By definition, 

2w+ = w - Jw. 

Thus 

On the other hand, w+ is selfdual, hence 

or still, 

But 



And, in addition, 

[Note: By the same token, 

Put 



Then 

) 

and the prescription 

defines a ccarq?lex &onnection A. Denoting by F the associated curvature, we have 

[Note: The proof of the preceding 1- is applicable to Q+ab, so 

Now write 

where 



Details The equality 

is not obvious. By definition, 

thus 

+ + 
= di*@ + i*w Ai*oi + i*w hi*@ t a b  t a i t b  t b i t a  

whereas 



Then 

- + 1 +c 
i * w  Ai*whb ( E ~ )  = (Eo) t ac t 

+ 1 + C 
i * w  Ai*; ( E ~ )  = l&Ai;u a (Eo) . 

- t b c t a  

Le t  U,V = 1,2,3 and r,s = 1,2,3: 

=> 

But  

a u v  a u v  = 6  6 6  b r s  
a - 6 r 6 b 6 s  - b6 s6 r 

a u v  a + 6as6ub6vr - 6  s6 rS b. 
+ r6 s6 b 



And 





There rmains the contribution £ram 

or still, 

or still, 

Reverse the roles of a and b in the above to get: 

The first line cancels with 

while the second, upn application of ig, leads to 

Sumnary : We have 



[Note: For the record, 

H e r e  

and 

The preceding expression for 

is not convenient for manipulation (no boundary terms have arisen thus far). 

We have 



[Note: 



With the understanding that the expression 

is to be ignored, it follaws that 

Claim: There is a simplification, viz. 

To see this, write 

-a a I= -b 
= Z* (du + A cAw ) Aw 



[Note : 

- -d -b 
OE w A w A w  cad Oc 

= ; /\E ;dAwb Oc cad 



Therefore 

-a - -c 
= ~ ~ ( q t ( i ~ ~ ~ w  ) - %(wocI~ ) 6 a b ) ~ l  

st- 

Bearing in mind that Z* = - Zbaf take a # b and consider 

Write 



Then 

To recapitulate: Pkdulo the boundary term, 

1 a -b 
+ - N F  A * ( w A w ) I .  2 t a b  

[Note : Analogously, 

-a -b + N F A*(W AU 11 .I Z t a b  



The theory (be it selfdual or antiselfdual) carries three external variables, 

and 

where wab€Cm(~) and yPb = - Wb a' 

+ +  + 
Given (u,v;N,N,W), put 

Definition : 

SD: Let - 

Then the selfdual lagrangian is the function 

3 
L+:TQ - + A c ~c - 

defined by the rule 

+ + +  
L (~,v;N,$,w) 



ASD: Let - 

C 
Fab = dA.& + AacAA b' 

Then the antiselfdual lagrangian is the function 

defined by the rule 

a [Note: The w are the connection 1-forms of the mtric connection 'Vq 

associated with q and, of course, the Hodge star is taken per q.] 

To initiate the transition from TQ - to T*Q, the usual procedure at this - 
point would be to calculate the functional derivative 

&L* 
7 

6; 

While possible, this is not totally straightforward and introduces certain technical 

cmplications wbich ultimately are irrelevant. Therefore it will be best to simply 

sidestep the issue and proceed directly to T*Q, - where one can take advantage of 
its underlying symplectic structure. 



Section 56: Two Canonical Transformations The a s s ~ t i o n s  and notation 

are those of the standard setup but w i t h  the restriction that n = 4. 

Rappel: 
-f -t 

+i (W~P;N,$,W) 

where 

-+ 
Let & be the set  of ordered ccsnplex coframs on C -- then each w q  gives - - 

r ise to a complex metric q, viz. 

and we write 

1 2 3  vol = w Aw Aw . 
(2 

-t -f 
[Note: Elements of T*Q are again denoted by (w , p) .I  

-C - 
Then the hamiltonian of cmplex general relativity is the function 14 above 

-t + 
formally extended to T*Q by allawing (w,p) to be ccmplex. - 

ReM1k: The external variables N , s , c  are, a t  the beginning, real. However, 

i n  the formalities to follow, one can allow them to  be camplex. T h i s  does not 

change the earlier theory, which goes through unaltered. S t i l l ,  a t  the end of 

the day, we shall return to the path t -t (z  t ' Pi=1 in the ADM sector of T*Q - and, 



of course, in this situation, the external variables ~ ~ ~ $ ~ , 6 ~ ~  are real. 

Define 

Then T is bijective. 

[Note: Explicitly, 

is given by 

-1 + -+ + + 
T (w,p) = (w,p + a d;) . I  

LB4MA T is a canonical transformation. 

[It is a question of verifying that 



And 

L e t  

3 -t 
P = p -  JTdL 

So, schemtically, 

I - 



With this in  mind, put 

Then 

and w e  shall now examine each of the terms figuring in the RHS. 

The f i r s t  of these is 

Claim: 

[In fact, 

a a a a L+dw A a  = Iz L+w A d a  . 
PJ N 

But 

a a 
0 = 1, LJw A d a  ) 

N 



Therefore 

The second term is 

which will be left as is. 

It remains to consider 

+ 3 
E(w,P + &I dZ). 

To begin with 



Next 

1 b b  + q ( d ~ ~ , * w ~ ) ~ ( d u  ,*w ) ,  

where 

a 
P = q(Pa,*w ) .  

Rappel: We have 



Claim: 

1. The sum of 

b b a - q(dwaI*w ) q ( d w  ,*w )vo l  
q 

and 

a b  b a ( dw  Aw ) A* (dw  Aw 

is zero. 

2 .  The sum of 

and 

1 a a  b b  - - (dw Aw ) A *  (dw Aw ) 2 

is zero. 

[Consider 

Then 



On the other laand, 

S w :  We have 



N.B. Write the constraint equations and the evolution equations in terms 
+ 

of ffT. Sumse that they are satisfied by the pair (; P ) - then Ein (g) = 0. tr t 

At first glance, it appears that little has been gained by the foregoing 

procedure. Hcrwever, the next step is to follow the canonical transformation 
-+ -t -+ + 
(w,p) +- (w ,P) by yet another and then the situation will simplify considerably. 

+- + 
Given (w,P), let 

where 

C P = q(Pc,*w 1. 

+- +- 
Reality Check On (wt,Pt), this definition of Aab agrees with the one used 

in the last section, viz. (choosing the plus sign) 

Thus start by writing 



- a + %  fl -c -a -b - &i$pctwAu ) w  + T q t ( p c , * w  ) * ( w h  1. 

1. me lab are the connection 1-forms per the metric connection 7 

9t 
( = V ) , hence 

- -a -b -c -c -b -a -c -c 
( q t ( d w  ,w i\w ) w  - q t ( d w  ,w Aw ) w  

wab = 2 

-a -b -c - q,(d;c,w Aw ) w  ) 

On the other hand, 



Therefore 

2. We have 



And 

Put 

Then 



Indeed 

1 
= 2 'Aab - 

= A*. 

LEMMA We have 

[Re Aa: Write 

- 1 b c d  P 1  b c 
-q(Pdr ~ c - W  AU ) W  - (-1 - E  * ( w  A M )  2 2 a b c  



Then 

- - ma. 

Re Pa: First 

But 



-t -f 
~otat ion:  Given (0,~) , let 

and put 

Set 



and equip it w i t h  the evident symplectic structure. 

Define 

SUBLEMMA S is bijective. 

[It is obvious that S is injective. To establish that S is surjective, fix 

Then we claim that 

To see this, consider 



Theref ore 

LEMMA S is a canonical transformtion. 

It suffices to shm that 



for all 

Here the Poisson bracket on the left equals 

or still, 

But £ram the definitions, it is clear that 

which leaves 





Matters therefore reduce to consideration of 

or still, 

where 

To finish, one then has to prove that 

On purely algebraic grounds (cf. infra) , there are unique complex 1-forms 

Xc that sat isfy the equation 

To compute them, begin by wedging both sides w i t h  2: 

We have 



Accordingly, 

or still, 



Put 

Then 

Therefore 

- - Ycl 

which implies that 



Details The first thing to note is that by linear algebra, one can assume 

without loss of generality that 

Ba = 0 (a = 1,2,3), 

the point being to shaw that the only solution to 

c a 
*(U Aw ) A X  = 0 

C 

is the zero solution. This said, consider the systepn 

Write 

Then 



Thus 

I - 



Interpretation of A Each triple 

determines an - sL(2,C)-valued - l-form on C, To explain this precisely, we need 

some preparation. 

Rappel: Let 

Then 



Thus the set {T~,T~,T~} is a basis for - su(2) (with structure constants E&) 

which is orthonormal per the scalar product 

< A,B > = - 2 t r (Al3) .  - 

Pass now to sl (2,C) , the complexification of su(2) . Let ra = % -- then - - - 

the r, are a basis for - sl(2,C) - (viewed as a complex Lie algebra) , the structure 

constants being &i &*: 

Given x, the combination 

is an sl(2,C)-valued 1-form on C, call it again. The force term 8, i.e., the - - 



curvature of f f ,  is an sit (2 ,C) -valued 2-form on E , viz . - - 

Therefore 

which is in agree~nent w i t h  the earlier definition of $ as 



Section 57: Ashtekar's Hamiltonian The assumptions and notation are those 

of the standard setup but w i t h  the restriction that n = 4, 

A s  was established in the l a s t  section, there are canonical transformations 

T and S :  

H e r e  

where 

b 
'a = %A* (W Ada) . 

However, before we trace the effect of 

to review and reinforce our notation, 

Recall that 

and 

this change of variable, it w i l l  be best 



Theref ore 

N e x t  put 

where 

Then 

Finally let 

z = [zabl (zab€Cm(~;g) 

a subject to Z = - zb and write a 

Thus 

Remark: There 

a priori, 

is an issue of consistency in the definition of 3. 



or still, 

the implied assumption being that this reduces to 

- - -  a b u - 6  6 )AAA 
2 &abJb c8 v V C U V  

- - -  b 
(6 A A A  -Ac#+,) 2 'abc c u u 



- - -  J-T 
2 Eabc%hAC' 

FACT W e  have 

d [ z i a )  = & i t j + z i $ d .  

[For 

& i 6 = h a ~ a a  

b 
= (az, - A , A Z ~ )  A Q ~  

= ~ Z ~ A Q "  + A ~ , A Z ~ A Q ~  

and 



b 
W e  shall now make the change of variable Pa + %A*(w Awa) in HT and consider 

the various terms obtained thereby. 

First 



which we claim is equal to 

To see this, write 

Then 

=> 

On the other hand, 

Next 



Put 

where 

wc = - s(dN,wc). 

The discussion then breaks into two parts: 

a b  2. jg  - a Z& Aw . 

[Note: We shall hold 

in abeyance for the t ime being.] 

[Note: Here, of course, 

i h & =  z a hdha.] 

Write 

c a  b - Z A A*(w Aw )Au a b c  



- u b  Z A A& w Aw - - ( - 

- u b  Z A Aw Aw - a 'cauEabv v c 

- u b  Z A Aw Aw - a EcuaEvba v c 

u b  
= &i 6CUvbzv~c~~ AU 

c u c u u b  
= fl (6 v6 - 6 b6 V) ZVACAw Aw 

u b  
= JT zCncmb~wb - z u AU 

u b  
= - a z %Aw Aw 

U 

u C 
= - ZuAcAw Aw 

C U 
= ZuAcAw Aw 

c a 
= ZaAcAw Aw . 

Write 

b - &i Za~abcAcAQ 

u v wAw) = - &i Z ~ E ~ A ~ A  ( - %w 

- a - -  u v 
E Z A Aw Aw 2 abcEbuv a c 

m 
7 -  

u v 
E Z A Aw Aw 2 acbEvub a c 



Therefore 

c a  b 1, - Z,bAcA* (W Aw ) AU 

b 
= 1, - Za€&AcAQ . 

As for the other term, 

a b  - Z*du Aw 

a 13 = - Gi (- a)€&&& AU 

= - a b  
€,zc& Aw 

- - - c b  
ccbazadw Aw 

- - - b c 
cbcaZadw Aw 

= - b c 
E Z d w  Aw , abc a 



which we claim is the same as 

Thus write 

Then 

But 

Therefore 

and the claim follows, 

So, in recapitulation: 

1 + 

Remark: The expression 

appeared earlier during the course of the lagrangian analysis. 



We have 

And 

- - - N Z ~ ~ ~ ~ [ q ( ~ ~ ~ * w  b lq(Pv,*w c u v  )W Aw 



P b u c  P c b v  - - q ( P U I * w  ) W  W - q ( P v I * a  ) U  A u  
2 

p 2 b c  a 
+ - w W ] A w .  4 

b c u v a  
a - E q ( P  * )q (Pv ,*w ) U  AU AU abc u r w  

b c u v  a = - q(Pu.*w ) q(Pv ,*w ) w Aw A E & )  

b c u v  b c  = - q(PU,*w ) g ( P v , * w  ) w  AUI A*(u AU 



b u c a  q(Pu,*w )w Aw Aw 'abc Z 

P c b v a  
+ Eabc q (PV' *w ) w Aw Aw 

b u l  a c 
= Pq(PU, xu ) w A 2 LW AW 

c v l  a b  + Pq(Pv,*w )w A - E w Aw 2 cab 

- p2 - - -  a b c  
4 

cabcw Aw Aw 

- - - 3 2 - P vol 2 q ' 

Therefore 

N AA ha 'C - T 'a& c 



Next 

=> 



a c u c u  u v  
= q(dN,w )Ach(6 a6 - 6 v6 ,) w AU 

a c u u v  = - q ( d ~ , w  )ACA6 V6 AU 



a a b  = - q(d.N,w )PbA*(w Aw ) .  

Therefore 

r, a w a A w a  

E a r l i e r  we had set aside 

b  
W (P + &i dwa) Aw , 'Z 'abc c a 

where 

Since 



c b = &i Eabcq (dN. w ) PaAu 

it follaws that 

b W P Aw a 1 &abc c a 

cancels with 

a b  a 11: q(dN,wa)PbA*(w Aw 1. 

What ranains, viz. 

a b  - re Eabcwcdw IW , 

cancels with 

c a Ig - q(~,wc)q(w Au ,dwa)vol 

Indeed 

c a 
= - I, Wcq(w IW ,dwa)vol 

q ' 

Definition: The Ashtekar hamiltonian is the function 

ff:T**Q -+ C -C - - 



defined by the prescription 

ff ( 6 r X ; ~ r 8 1 3 )  

The constraints of the theory are encoded in the demand t h a t  

W e  shall  deal w i t h  the f i r s t  and second of these later on. As for the third, 

it is clear that 

-+ + 
Rappel: The ADM sector of T*Q consists of the pairs (w,p) for which 

-C - 

The image of the AOM sector of T*& under T is the set of pairs (;,if) such - 
that  



+ -t 
The image of the ADM sector of T*& under S 0 T is the set of pairs (Q,A) - 

such that 

& =  0. 



- - - b c c 
'abc a0 Aw + &i E*U 5 

- - - b c  J-?: c ~ ~ d w  Aw + - APb + - 
2 €*bJCAPb 

- - - b c  fl c cabcdw AW + - E*W APb + - R E  b 
2 acbW '% 

- - - b c  fl c 
E & A @  + -  E d  APb - - b 
abc 2 

a E d  APc 
2 

- - - E * ~ W  h + - b c J -? :~  (-&id(wAu)) 
2 abc 

- - - b c  1 
E d w  Aw + - E (dwb~wC - ubAdwC) 
abc 2 abc 

= - 

- - - ~ ~ d w  b c  Aw + - 1 E d w  b c  Aw + 1 cabcdw b Aw c 
2 abc 

= 0. 

We have 

The path t -r (Zt,&) l ies  i n  the ADM sector of T*Q - and Ein(g) = 0 prwided 

the constraint equations and the evolution equations are satisfied by the pair 

-+ -+ -+ -+ 
(wt,pt). The path t -+ T(wt,pt) ( = ( 1  ) lies in the image under T of the 



ADM sector of T*& and, since T is canonical, Ein(g) = 0 provided the mtraint  - 
equations are satisfied by the 

( = i6,,q)) lies in the image 

S 0 T is canonical, E i n  (g )  = 0 

equations are satisfied by the 

-+ -% , .  ina ally, the path t + S 0 T (wt,pt) 

under S 0 T of the ADM sector of T*qC and, since - 
provided the constraint equations and the evolution 

-t + 
N.B. - The constraint equations and the evolution equations per (%,At) are 

explicated in the ensuing sections. 



Section 58: Evolution i n  the Ashtekar Picture The assumptions and notation 

are those of the standard setup but w i t h  the restriction that n = 4. 

Let 
+ -+  + +  

ff = ff(Q,A;N,N,Z) 

Objective: Ccrmpute the functional derivatives 

and hence determine the equations of notion 

6 ff Calculation of , : 
SA 

1. Consider 

Thus 



Therefore 

2. Consider 

6 a (2 /, d%) . 
Thus 

Theref ore 

3. Consider 

Sa(- m- -i 3 **a). 



Thus 



Therefore 

= - a % (N*Q~) . 

Ccanbining 1, 2,  and 3 then gives 

6U Calculation of - 
63 ' 



Thus 

= - 6QaAL A + L+ ( 6QaAAa) . 
N' a N 

Therefore 

2 .  Consider 

6 (2 A $6) . a 



Therefore 

3.  Consider 

Thus 

b b 
6, (- a &,A*Q ) = 6, (- a NFbA - w ) 

L,mPlA We have 



1 c a a b 
= q(NFc,*w )w - q(w ,*NFb)W . 

[let 6, = and 

1 c a b 
Ya = q(Bc,*w )w - q(wa,*6b)w . 

Then (see the end of Section 56) 

b a 6 = * (W Aw ) AYb 
a 

=> 

a b a w A 6, = waA* (w Aw ) Ay 
b 



But 





Notation: Put 

__f 

( R i c  F )  a = I bFba. 
W 

Then 

* 
( R l c  F) a = - fi 

= G i  E*' bFc 
W 

=> 

+ 
( F b c  F )  a = - E ~ I ~ ~ F ~  





Definition: The relations 

are the Ashtekar equations of mtion. 

Reality Check Along the path t -; (Ztt6t) we have 

Write 

Then 



d -a And this expression for *W had better agree with the one given above (in 

particular, the imaginary t e r m s  must vanish, our data being real). 

- 1 J3-c 1 -c -b -2EabcL,W Am f - E  W AL,w 2 acb 
Nt Nt 



The L i e  derivative terms thus match up. To ccanpare the rotational terms, recall 

that 

- - ( - & + R E  F )  - 2 auv uvc c 

J--i - - - - - - - - E P 
2 &auvQuv 2 auv uvc c 

J-i- - - - - -  I &  E P 
2 &auv%v - T auv cw c 





The rotational terms are thereby accounted for. Next 

- - - -  - a *  - r n z b + E  N i  A W ~  
2 uvUuv t acb t Ob 

In view of this, all that remains is to s?mw that the imaginary terms add up to 

zero : 



Therefore 

The evolution equation for 



is, of course, cc~nplex (wen though (zt is real) , hence breaks up into real 

and imaginary parts. As will be sham below, its real part admits a simple 

interpretation (but its imaginary part appears to be less amenable to explicit 

recognition) . 
Let v be indices that run between 1 and 3 and work locally. 

Rappel: We have 

[Note: Asusual, K = 
I-lv 

Write 

= - ep e~ eb dxvt 
a b v'yv 



Then 

where 

The pint m is that the equation for ZOa is the negative of the real part 

of the equation for ia. 

To verify this, start frm the fact that 

Taking the real part of L, Aa thus gives - L, zoa. Ib see e e  

Nt Nt 



cmmes from, write 

The real part of this is 

or still, 

or still, 

or still, 

The remaining terms can be identified in the same straightforward fashion, so 

the details will be Qnitted. 



Section 59: The Constraint Analysis The assumptions and notation are 

those of the standard setup but w i t h  the restriction that n = 4. 

Rappel: 

-t -f 
ff ( ~ , & N , N , z )  

Definition: The physical phase space of the theory (a.k.a. the constraint 

surface of the theory) is the subset Con of T**% Whose elsents are the points 
*$ - 

-+ -f 
(Q,A) such that simultaneously 

6 ff - : We have m 



- .  '* . We have 
6Na 
- 

b 
6,[L Q %I 

fi 

Write 

But 



b + d((6NaIE Q )A2$,). 
a 

Since 

I, d((6JP1, ~ ~ 1 ~ )  = 0, 
a 

it follows that 

Some additional manipulation of this formula will prwe to be convenient. 

Fi rs t  

But 





On the other hand, 

Therefore 

-- b b '* - xE dQ Mj, + xE Q A% 
r;Na a a 

= (I, %)dQb + F AI  8 + ($ ( 8 ~ ~  - dQb) 
a a 

A b  b 
= IE % A ~ Q  + F A X  Q .  

a ,a 

One can go further. In fact, 

1 Qb = 1, 
b 

E - *W 

a a 

- - - b 
I *W 
,a 



LEMMA We have 

+ - X  +- - X + -  - (F A *a), = - fi (Ric F A Q), 

[ S t a r t  fram the LHS -- then 

- E ~ F ~ A * Q '  



But 

u  v  b u v  = $ 3 6  6  -6b6u6v - 6  6  6  
c r s  c s r  r c s  

b u v  + 8 6 U 6 v  - 6  6  6  
+ r6 s6 c  s c r  s r  C* 

Arid 

b u v  r s 
1- 6  c6 sq(FUvIw AUJ 



- - - v u 
E q(F ,w Aw ) = 0. abb uv 

b u v  r s 3.  - 6  6 6 q(FWrwAu)  r c s  

b u v  5. 6 s6 C6 r q ( ~ u v , ~ r ~ u s )  



Consequently, 



[Note: There is another way to write ($ X *&la which we shall use belcw. 

Thus, since Fa and aa are 2-forms, 

b b 
= I  FAQ + F A 1  Q 

Ea Ea 

b b 
= I  FAQ + F A 1  (-*LO) 

Ea Ea 



Therefore 

Definition: 

is the integrated diffeamrphism constraint; 

ffRcZ) = rL 9fZ 

is the integrated rotational constraint; 

%(N) = r - a d i  "6 

is the integrated hamiltonian constraint. 

Remark: The preceding considerations imply that 

__f 

H@ = rZ rrtc$f,8d - ~ 8 .  c ~ i ,  F X 611 

and 

[Note: H e r e  

Zc$& 



-+ 
Incidentally, in the subset of T**qC where $6 = 0. HD(N) reduces to - 

Theref ore 

and we have 

= ff (N grad N2 - N2 grad N1) D 1 

Remark: A constraint is a funstion f :T * $  * -+ C - such that f Icon* = 0. - 92 



'I'~us, by constructionr ffD($) ffR(3) and ffH(N) are constraints, these being 

termed primary. The foregoing relations then inply that the Poisson bracket 

of two primary constraints is a constraint. 

Items 1 and 3 are established i n  the usual way, so we s h a l l  concentrate 

on Items 2, 4, 5, and 6. 

Ad 2: W e  have 

+ X +  
= iz [ L A  A- (Z A Q), + 

N' a 

Consider f i r s t  

Thus 



But 

And 



Iet us nc%' turn to 

I, L Q ~ A ( X  i: W a 
3 

or still, 

rz - Q ~ A L  (X 
3 

Q = A ( ~  i: 8) a being a 3-form. Write 

- Q ~ A L  (3 j: 21,  
8 

- &i Q~AE~Z+,AL+Z,. 
N 

Rewrite the second term as 

or still, 

L z A(-  E ~ A A Q ~ )  
3 

or still, 



Therefore 

+ J - a Q ~ A E *  L , ; ~ A Z ~ .  

It  remains to compare 

In the last line, change 

to get 



The terms in question thus cancel, leaving 

Ad 4: We have 

But 



Therefore 

Ad 5: We have - 

Write 



=> 

r, dzam~wa = - j, zamma. 

Matters thus reduce to consideration of 

dzaANAAachc 

and 

- 
1. 

2. 

3.  ~ ~ ~ ~ z ~ / ~ m ~ ~ l \ w ~ .  
- 

d (Z , /WNL~~AJJ~)  

a c a c 
= dZaAN/\A c ~ u  + zamM c ~ w  



= A ~ ~ A Z ~ A ~ N A ~  c 

= A~,AZ,A~NA~ a 

= A~~Az~A.."" 

= - A ~ ~ A Z ~ A ~ N A W ~ .  

2. Z ~ A N ~ , A & ~  

= A ~ ~ A Z ~ A N A ~ ~ C  

= A ~ ~ A Z ~ A N A ~ ~  

= 

= - A ~ ~ A Z ~ A N A ~ W ~ .  

There remains - FI times 

A ~ ~ A ~ ~ ~ A A ~ ~ A ~ ~  - z a ~ m a c h c  

= A~,AZ,ANAA~~/WC - zammabngb 

b = A ~ ~ A Z ~ A N N L ~ ~ ~ ~  - z a A N 4 h  

b = Z a ~ A  (- + A~,AA~,) h 



b 
= ZamA - FabAw 

or still, 

JT N (zam-pb) 

= N((P X *61 i 2). 

This has ncrw to be CQnbined w i t h  

(B X 6) a~ (N F) a + a NF*Q~) . 



Then 



Therefore 

Write 

- N1 (+ F*Qa) /9 (N,*Q") 

= - Nl (a I?*& A dA (N2*6) 

-t X 
= - & N1 (: F*& A ( d  (N2*6) + & A A NZ*6) 

1 
= - Gi (7i ~*6) ( N ~ ~ N ~ A * ~ )  



By the same token, 

Combining terms thus gives 

((: F*6) 

which, of course, is equal 

A (N2dNl - NldN2) A*& 

to zero. N e x t  

Now change the sign, switch the roles of N1 and N2, and add -- then we get 

or still, 

Put, for the mment, 



Then we claim that 

-t X 
t; n *anB = (a A a r\ q(B,xa. 

To establish this, note that the LHS equals 

a - aaAw AP- 

On the other hand, the RHS equals 

tf X d)aAqtBI*~a) 

It will be simplest to mrk £ram left to right. So let 

B = 4(B,wb)wb. 

Then 

a - aaAw AB 



But 

And 



Section 60: Densitized Variables The assuq?tions and notation are those 

of the standard setup but with the restriction that n = 4. 

The Ashtekar hmiltonian 

is globally defined but this is not the case of its traditional counterpart 

which is only defined locally. 

Let x1,x2,x3 be mordinates on Z consistent with the underlying orientation 

[Note: If the d-in of x1,x2,x3 is U, then, for econony of notation, we 

shall pretend in what follows that U = 1.1 

Convention: V,V and a,B,y,6 are coordinate indices that run between 1 and 3. 

Local Formulas 

LEMMA We have 

det = det [ea 1 det [eav] . 
1-I 



[In fact, 

Abusing the notation, l e t  

and then put 

[Note : Accordingly, 

1-I v " = (det q) e ae a aE a 

= (det q)qlJ-v.l 

[Write 

Then 

But 



Therefore 

- e b e c ) .  - ~ & y ( ~ b c a  a B 

a 
L e t  A = [e I -- then 

a 

b c a  e e e 
%cadet A = 'a& a B y 

=> 

a' 
e 1 b c 

y 2 det A Eaf3u(Ebca"e we 6) 

- 1 e e e  b c a'  ) 
- 2 det A %can' (Eaf3y cr B y 

- - 1 
2 det A %cat' ( 'ha ,det A) 

- 1 a' 
- 2 &at%a" = 6 at' 



We are naw in a position to discuss the local version of ff. 

Analysis of ffD (g) : In the literature, it is custamary to restrict attention 

to flID (g) which, by definition, is 

Here 

Write 

and 

Then 



And 

Write 

Then 

And 

Therefore 



Analysis of % (2) : By definition, 

where 

Write 

Then 

Write 

AC = AC dxy . 
Y 



Therefore 

L 

Analysis of ffH(N) : 

note that 

and then write 

To discuss 

thus reducing matters to consideration of 



ec = 1 E e ll e V 

2 det [eyc] cabEwv a b 

- 1 - -  Ell EV 
2& cabEyl-lv a b' 

And 

=> 

1 E eC = -  Ecr EB - E@ Ea ) 

aBY Y 2&- ('cab a b 'cab a b 

- 1 - -  8 a E ~ E ~  - E  E E ) 
2&- 

(€cab a b cba b a 



Therefore 

Sumnary: We have 

Remark: Frm the definitions, 



Section 61: &scaling the Theory The assumptions and notation are those 

of the standard setup but with the restriction that n = 4. 

Fix a nonzero cumplex number I (the Imnirizi parameter) . Define 

Then T is bijective. 
'I 

[Note: Explicitly, 

is given by 

N.B. The Ashtekar theory is the case I = a. - 

LEMMA T is a canonical transformation. 
'I 

Remark: If 'I is real, then TI restricts to a canonical transformation 

T*Q - + T*Q. - 
Proceeding as before, put 

Then 



And 

where 



Therefore 

E(&$ + I d 3  

NUN set 

so that 

where 



To continue, it w i l l  be necessary to introduce same notation that reflects  the 

presence of I. 

1 a b c  P a b  
Aab = - [q(Pc,w Aw )w - - *(w Aw ) ] .  

I 2 

Put 

- I Ac - 2 &-Aw. 

Then 

cabcAc = & ( € A ) abc 2 cuv uv 

= 1Aab. 

Arad again 



b a Computation of H I  This is simply a mtter of replacing Pa by A$* (w nw ) 

i n  the foregoing expression for ffT and keeping track of the t e r m s  obtained 
1 

Fortunately mst of the work has already been carried out during the course 

deriving the Ashtekar hamiltonian, hence there is no point in repeating the 

First  

does not involve 1 and is equal to 

To discuss 

thereby. 

of 

details. 



where 

Setting aside 

we have : 

Therefore 

Finally 

- IN$ A *d 

But 



reintroduce 



wkich leaves 

or still, 

or  still, 

Definition: The I-mdification of the Ashtekar hamiltonian is the function 

defined by the prescription 

[Note: fl is the Ashtekar hamiltonian. 1 
Fr 

Remark: If I is real, then the theory restricts t o  a theory on T**Q. 

LEMMA We have 



[Recall that 

Using the lama and the fact that 

one can write down the I-modified equations of mtion and the I-modified Poisson 

bracket structure, a task that will be left to the reader as an exercise ad libitum. 

N.B. 



The local expressions for 

can be repackaged so as to give local expressions for 

This is completely obvious but, due to the presence of the potential 

an additional term is present in f f  (N) which has to be isolated. 
1 I H  

a 
Notation: Given q, let w be the connection 1-forms per the metric 

connection vq. Write, as usual, 



Working locally, write 



1 = - E E R  U V *  
4 EabcEuvcEa~-yE~vy u v a~ 

- 1 - - 
4 EabcEuvc yv u v 

- 1 - - ( s ~  gB - ga 6 B ) E  v v a b  U~ g aB 
4 EabcEuvc v v 1-1 

- 1 a - E~ E~ ) R * ~ ~  - - 
4 EabcEwc (E uE v u v 

u v 

a b  a - 6  6 ) ( E ? E @  - E ~ E ~ ) R *  
= T  (6 V U  U V  u v a$ 

1 a f 3  a B  ab = - (2E aE - 2E bE a )Q aB 4 

1 a B a b  = - E  E n 1 a B a b  
2 a b  aB - 3 E  E R b a aB 

1 a B a b  = 2 E aE bR 1 a B b a  
aB - T E  aE bR aB 

1 a B a b  = z E  E 52 
1 a B a b  

+ aE bR a b  aB 2 

B = E ~ E  n aB a b  

B a a 
= E ~ ~ E  b ~ a b  (axa , 2) 

Therefore 

3 
S ( q ) v d q  = s(q)* d x 



Reconciliation In the literature, one will find a different formula for 

H I  I H  
(N) . ID explain this, consider the path t + (zt,&) and suppose that the 

constraint 

1 2 
- 2 (s(%) + Kt - [KtrKt1 ) = 0 

s, 

is in force. Bearing in mind that (lc,Jab = K*, write 



where we have put 

Therefore 

- - v a 1~1-I IP E  K - E ~ - I ~ K ~  EV IP ] 
d e t g t  a b v  1 - I b v  

- - ~ 1 - 1 ~ ~ ' ~  ( K ~  P - K~ 8 ) det gt V 1-1 1-I V 

or still, 

" ( K a 8  - K a 8 )  ( d e t  q& S ( g t )  = E  aE v 1-I 1-I v 

from which 



So, under the abwe assunrq?tions, 



Section 62: Asymptotic Flatness In the metric theory, take M = R x C - 
(dim M = n > 2) and recall: 

Constraint Equations These are the relations 

div pt = 0. 
st 

Evolution Ecruations These are the relations 

and 

THEOREM Ein(g) = 0 iff the constraint equations and the evolution equations 

are satisfied by the pair (qt,pt) 

For this, we assured that C was campact. But actually compactness played 

no role at all in the proof which was purely algebraic. 



Q: - So where does ccanpactness play a role? 

A: - In the hamiltonian formulation of the dynamics. 

N.B. The pint is that this interpretation hinges on the calculation of 

certain functional derivatives and the formulas derived thereby d e m  on ignoring 

all boundary terms. While permissible if C is ccxnpact, in the nonccBTIpact case 

the boundary terms have to be taken into account. 

4 3 To minimize technicalities, we shall ass= that M = R - = R - x R - , thus now 
3 

C = R - . The strategy then is to consider a certain class of riemannian structures 
3 on R - which is sufficiently broad to cover the standard examples but sufficiently 

restrictive to give a sensible theory. 

[Note: For the sake of simplicity, I shall pass in silence on the role of 

covariance in the theory.] 

Notation: Put 

2 Parity Let p d ( g  ) -- then p determines a radially constant function 6 on 
3 

R - (0): - 
.." X 
P(X) = P($ .  

If the parity of p is even (odd), then 6 is even (odd). 

[Note:  The antipodal rmp on S2 sends p to -p. In terms of the azimuthal 

angle 8 and the polar angle 4, it is the arrow 

-t (as (8+n) sin (n-+) , sin (8+n) sin (n-4) , cos (n-4) ) . ] 

SUB- If the parity of p is even (odd) , then aka is odd (even) (k = 1,2,3) . 



[Note: 6 is hmmgeneous of degree 0, hence aka is hamgeneous of degree -1. 

2 But then r (aka) is hcmgeneous of degree 0, thus 3 p k d  (S ) : - 

or still, 

Notation: 

- + 1  1 0 (--) stands for  an even function which is 0 (F) ((E a 0) . 
r r 

1 o-(%) stands for an odd function which is O(+ ( E  0). 
- r r 

+ [Note: In either case, E = 0 is admitted, so 0 (1) (0-(1)) represents a 

bounded wen (cdd) function. In particular: If p d  (S2) and is of even (odd) 

parity, then 5 = O+(IJ ( 0 - t ~ )  .I 

~xample: %t p d ( s 2 ) .  - 
I f  the parity of p is even, then 

If the parity of p is odd, then 

m l e :  ~t P E C * ( ~ ~ )  . 
If the parity of p is wen, then 



If the parity of p is odd, then 

1 Integrals If f = 0(=) (6  > O ) ,  then 
r 

hence f is Iebesgue integrable, so 

In general, hckJever, our integrals w i l l  be improper, i-e., by 

we shall simply understand 

Accordingly, i f  f is odd, then 

Notation: Let f E C ~ @ ~ )  - then we w r i t e  



1 1 provide3 f is 0(-) and its partial derivatives of order m are O(-& 
r E r 

(m = 1,2, ... 1. 
2 m 

[NO*: Here E is nonnegative. E.g.: L e t  p€Cm(2 ) - then ii = 0 (I), 

1 1 
d g  that 5 = 0(1), ai6 = o ( ) ,  3 . a . a  = o(-$ etc.] 

1 I r 

Example: If  for large r, 

but its partial derivatives of every order blow up a t  infinity. 

1 1 m 1 Observation: If f = om(-) and f = om(-) , then f f = 0 ( 
+& 1 1 2  1 

r El r &2 r 1 2  

let S2,,, stand for the se t  of 2-covariant symnetric tensors in R~ - w i t h  

the following property: Given s, 3 

such that for r > > 0, 

where 



and 

Definition: L e t  tl be the usual f l a t  metric on R~ - and l e t  q be a ri&an 

structure on E3 -- then q is said to he asymtotically f l a t  provided q - qs2,,. 

3 
Notation: Q a, is the set of asymtotically f l a t  riertlannian structures on R - . 
Example: If for r > > 0, 

. . 
-2 7 

U W A  Let qEQ, and se2,, -- then q + cs&jW for E sufficiently small. 

3 [This is certainly true on campact sets, in particular on the Q (R) . As 
for the situation a t  infinity, one has only to shaw that q + ES is nonsingular 

provided 1 E I < < 1. Indeed, q + ES + 17 as 1 x 1 + - and the property of being 

wsi t ive definite is closed in  the set of norsingular symetric 3-by-3 matrices. 

Fix positive constants C and D such that 



Then 

Choose R > 1: 

I /q(x) + ES(X) - X )  1 lop < 1. 

Therefore q(x) + ES(X) is nonsingular. Now restrict E so that it also mrks on 

D~ (R) .I 

[Note: Thus, on formal grounds, the tangent space to Qw at q is S2 , i. e. , 
1 

- 
TqQm - S2,wJ 

LEMMA Let qEQco - then 

[In fact, the map 

I is C , thus is Lipschitz in a neighborhood of the identity.] 



[Note: One can be more precise, viz . for r > > 0, 

Connection Coefficients Let qEQoo -- then, per the metric connection, 

1 Id - 
= z q  , + ,  qij,e)* ij 

Therefore 

Miscellaneous Estimates Let q R .  

I det q =  1 +O($. 

.veq=l+o(;L 

[Explicitly, 

LEMMA Let q€Qm -- then 



[For 

[Note: Iteration of this procedure shows that the partial derivatives of 

ij 1 q of order m > 1 are 0 . I 
r 

let $lrn stand for the set of 2-ntravariant spmetric tensor densities 

3 3 
on R - with the following property: Given A = Ad x, 3 

i j (x) = 1 T ij ($ x + V i j (XI, 
- 

where 



and 

Define 

[Note: This integral is finite. Thus fix Ro > > 0 -- then for R > Rot 

and 



Put 

Then 

defined by the prescription 

serves to equip r with a globally constant symplectic structure. 

The hamiltonian ff:r +- R - of the metric theory depends on external variables 
-f 

NIN: 

# if A = s e l q  lV2. Huwever, there is a difficulty in that neither integral 

will be convergent unless conditions are imposed on N and $. 

Assumption: 

I - 

where 8 and +i are cm functions on s2 - of cdd parity. 



[Note : These are, by definition, the standard conditions on N and 8. ] 

LEMMA If N and 8 satisfy the standard conditions, then the integrals 

defining 

tf (q, A ; N , ~ )  

are convergent. 

While elementary, it w i l l  be safest to run through the particulars. 

Convention: In the sequel, we shall sanetimes write ho when it is a question 

To deal with 

amunts to dealing with 

3 1 , (div S ) ~ N ' ~  d x, 
R 9 

where, as w i l l  be recalled, 

(div q s) = qjkvjs*. 



j k = s  (Vj4 q  
Xi'kl,Ni 

ii' kkl 



The issue of integrability thus becoms that of 

+ 1 
= 0 (?;I + ho. 

r 

This reduces matters ~ consideration of 

or still, to 

- 1 which is 0 (-$. 
r 

Therefore the integral 

1 , - 2 div A($) 
R - 9 

is convergent. 

To discuss the integral 



start  by writing 

Then 

Next 



Finally 

And 

-I- 1 = 0 + ho. 
r 



But thm 

Therefore the integral 

is convergent. 

Maintaining the assmption that N and are subject to  the standard conditions, 

i f  we ignore the boundary tenns, then 

and 

- -  1 6ff - 2 N ( s  - - tr (s)q) + L+q. 6 A  2 q N 

[Note: These formulas imply that 



To justify the foregoing, one has to identify the boundary terms and show 

Surface Integrals Working i n  Rn, - let 

n sn-l - (R) = {x: E (xi) = R}. 
i=l 

n-1 
Equip Rn - with its usual riemannian structure and view S - (R) as a r i d a n  

s-fold -- then the vol- form on sn-l(R) - is the pullback of the (n-1)-form 

n-1 me exterior unit m-1 to 2 (R) , considered as  the boundary of $(R), is 

and the divergence theorem says that 

[Note: Take n = 3 and define 

2 
1~:10,21~[ x IO,?rl + (R) 

by 

1,(9,$) = (R ccs 0 s in  $, R sin 0 s in  @, R cos $1. 



Then 

Therefore 

R2 2.n lT 

= ii- I ~ ( R  cos e sin $ $ lR + R sin e sin 6 x 2 

2 2lT .rr = R I I ( c o s  e sin $ x1 0 xR + sin 0 sin $ x2 o I + cos $ x3 o xR)sin $ d$ do- 
0 0 R 

So, i f  

is defined to be 

3 
lim 1 3  (div X) d x 

R -t a, D (R) - 
and if 

then 

Hmever the weaker assmnption that 

does not guarantee that 



exists: Without additional data, the conclusion is merely that 

To appreciate the pint, consider 

Later on, it w i l l  be necessary to differentiate under the integral sign, a 

process that requires saw backup. Here is one such result, tailored for improper 

integrals. 

3 Criterion Suppose given f (x,t) (x€R - ,tE[-a,al) . Make the following assumptions. 

1. f is a continuous function of (x, t ) .  

a f 2. - is a continuous function of (x, t) . a t  
3 3. 1 f (x, t) d x exists and is a continuous function of t. 

R - 
a f 3 4.  1 (x,t)d x exists and is a continuous function of t. 

R - 
5. 3 M > 0: V R, 

a f - (x,t)d x (-a I t 2 a ) .  M Z l ~ 3  g (R) a t  I 
Then 

d 3 a f 3 - [/ f (x , t )d  XI = S - (x,t)d x. d t  R3 a t  
E - 

[Choose Rn:Rn < Rn+l & l i m  = w: 

t a£ 3 -(x,tf)d x d t '  '* lR3 a t t  



= Jt lim 1 - 3 
-a (x , t t )d  x  d t '  n  -; D - (R,) a t 1  

= l im J 3  3 
jt af (x , t l )d t '  d  x  (Fubini) 

n -; a D - (R,) -a a t 1  

= l i m  j 3  
3 

(f (x,t) - f  (x,-a) )d x  
n  + D - (Rn) 

Rappel: 

The ccanputation of 



and 

depends on rewriting 

and this is where an integration by parts creeps in. 

LEMMA The integral 

is convergent. 

[We have 

i j  j i  Since s = s , it suffices to consider 

Write 



Then 

The boundary te.rm that figures in the passage £ran 



arises from the identity 

Here 

where 

We then want to argue that 

J , (div X)vol = 0. 
R q q 

For this  purpose, write 

= l im J ,  (div fi X) d3x 
R -t w D (R) - 



then 

and we are done. But we don't quite have this. To see w h a t  we do have, note 

that for R > > 0, 

Accordingly, it resnains to  examine 

where 



But since the parity of 1,2,3 is odd, the integral vanishes, thus 

/ , (div X) vol = 0. 
R - q 4 

The functional derivative of 

1 N ( [ s I s l q  - t rq (~)2  - s ( q ) ) G  d3x 
R - 

w.r . t .  A does not involve a boundary term. A s  for the functional derivative of 

w.r . t .  q, a boundary term is encountered only in the congutation of 

We have 

where 6qES2 . But 
t 

Since both integrals are convergent (cf. infra), this makes sense. 



That the second integral is convergent is easy to see: In fact ,  

[Note: No a d d i t i o n a l d p u l a t i o n  is needed for the second integral (it 

6ff contributes directly to -1 . I Q 

Notation: Put 

Identity W e  have 

= - 1% - (AqN)q16qlq 

- Sq (N (dtrq (6q) - div q 6q) ) 

The integral 



6tl 
is convergent and leads to the remining term i n  the expression for - 

6q'  

Details Write 

+ 1 1 1 
x ( 0  (i + O ( r n ) )  (1 + O(;)) 

r 

1 = om(+ + ho. 
r 

a ik jl a ~q q (6q)  keJZ O r i j a  

- 1 1 + 1 1 
= (O + 0(2+6)) ( 0  + +(=I) (Qik + O ( ) )  1 (nje  + O ( 2 )  1 

r r r 

+ 1 1 1 
(0 ( 1  + 0(--i76)) (1 + O($ 

r 

[Note: The discussion of 

[ (AqN) q, 6qlq& 

is analogous.] 



Therefore, to finish up, it has to be sham that  

3 - div 6q) ) 6 d x = 0 
q 

Because of this, each integral is an ordinary divergence, hence it suffices 

to consider 

where 

N.B. 

- a f = N --;- tr (bq), f .  = N(div 6q). 
j ax3 3 s j 

aN 5. = (acl-6q) , f j  = trq(6q) - 
j 3x1 



And 

And 



+ 1 Conclusion: The potentially troublesone part of xi is 0 (--Z) which, when 
r 

2 ml t ip l i ed  by 2, integrates t o  zero over S - (R) . 



Poisson Brackets Put 

and 

Theref ore 

and we have: 

= ff (N grad N2 - N2 grad N1). D 1 

3 3 3 
N.B. Tacitly, N, N, N1, N2, N1, N2 are subject to the standard conditions. - 

To ensure consistency, one then has to check that 

[811821 , L,., and N1 grad N2 - N2 grad N1 
N 

also satisfy the standard conditions, w h i c h  is straightforward (they all have the 

rnl 
form 0 (?) (E > 0)). 

r 

[Note: In this context, the gradient depends on q, i.e., grad = gradq.] 

Each of the three computations leads to a boundary term, ignorable in the 



case of a compact C but, of course, not in general. 

To illustrate, consider the derivation of the relation 

Here the boundary term is 

where 

This said, write 

= 1 d(1 ,yOlq) 

R - NEN 

3 
= 1 (div X)d x, 

R 

the vector field 



being given by 

But, on the basis of earlier work, 

Therefore 

Denote by C% the subset 

0.  

of r consisting of those pairs (qIR) such that 

div s = 0. 
q 

* Denote by Co% the subset of I' consisting of those pairs (q,A) such that 

[Note: H e r e ,  as always, A = s' 8 l q ~ ~ ' ~ . ]  

Put 

Con% = Con rlCon,p. 
D 

Definition: A constraint is a function f:  r -+ R - such that f ]Con = 0. 
QW 



Therefore 

are constraints, these being t d  primary. Since the Poisson bracket of ~ K I  

primary constraints is a constraint, our system is f i r s t  class. 



Section 63: The Integrals of Wtion-Energy and Center of Mass 

The assmptions and notation are those of Section 62. 

Rappel: 

ff = ff, + ff,, 

where 

ffD(8) = 1 - 2div A$) 
R - q 

and 

ffH(~) = I ~([s,sl~ - ~(9) fi d3x. 2 

R - 

Needless to say, 8 and N are subject to the standard conditons. However, in 

order to formulate the definition of energy, linear mmmtum, angular ~lyxnentum, and 

center of mass, the standard conditions are restrictive, thus mst be relaxed. 

In this section, we shall deal with HH(N) an3 suppose that 

where A and BI, B2, B3 are constants and sc stands for a function which satisfies 

the standard conditions. 

Problem: Determine whether the integral defining ffH(N) is convergent or not. 

Since this is the case of HH(sc), it suffices to consider the matter when 

b N = A + Bx (b = 1,2,3). 

First, 

is convergent, as is 



There remins 

Write 



Accordingly, the mnvergence of the integral defining HH(N) hinges on the 

behavior of 

The integral of a term involving aiqik or a qik is convergent. E . g . : e 





Thus things simplify to 

But 

So we are left  with 

Write 



Therefore 







then the integrals 

are convergent. 

Details To discuss the second integral, write 

ij k t  a& q 6 )  

ij k t -  ij k t  
= ( a f i  )q /q + qij(aFk5fi+ q q aL& 



1 + hi + 0 (;I I (nkl + 0 $1 I ,,Go 

i j  , * aedet q = (det q) q tqij 

1. Suppose that N = sc -- then 

-, 



and 

So in this case parity plays no role. 

and 

So in this case parity is crucial. 

Notation: Let 

where 



Then 

L 
div x = a ~ x  

and we have 

3 1 (div X)d x = l h  1 (div X) d3x 
5 R += oJ D - (R) 

Observation: If N = sc, then 

3 IR3 (div X) d x = 0. 
- 

+ 1 [The terms that might cause trouble are 0 (--$ but, before carrying out the 
r 

integration, they must be multiplied by a function of odd parity.] 

Assume next that N = 1, hence 

Write 



- - - qii, pG + 0 
r 

1 2 The integral of 0(-$ over S - (R) vanishes i n  the limit, thus we need only consider 
r 

is hcarogeneous of degree -2, so 



is hamgeneous of degree 0 and is therefore the radial extension of a function 

2 
Fed(? ) . Consequently, the dependence on R in the integral 

2rt n 
J J (co~ sin @ F (e,@) + sin 6 sin @ F2(eI@) + cos @ F3(e.@))6ol, sin @ a@ 
0 0 1 

I 
resides solely in 401~. Since 6 = 1 + O() , it follows that 

exists, the traditional notation for this being the symbol 

N.B. What the analysis really shows is: - 

where 

Definition: The energy is the function 

given by the prescription 



Example: If for r > > 0, 

0 P (q) = 8m. 

1 2  3 [Setm = 1 and, to facilitate the computation, use x,y,z instead of x ,x ,x . 



Take R > > 0 -- then 

R~ I? ( m s  0 s i n  4 ( 2R cos 0 sin 4 1 
R~ 

+ s i n e s i n g  ( 
2R sin 8 sin g + cos g ( 2R 4) sin g ag ae 

R~ R3 

LEMNA W e  have 



Unfortunately, for arbitrary q, the integral 

3 

'R3 - (div 'Id 

is divergent. Hmever, i f  q is suitably restricted, then, as we  shall see, 

convergence is guaranteed. 

Definition: Let qEQmU then q is said to  satisfy condition * i f  for r > > 0, 

[Note: Here it is understood that 

Observe too that 

is odd and homgeneous of degree 

is homogeneous of degree -3 (G? 
lj 

Notation: Q* is the subset 
00 

condition +. 

-2 while 

is not subject to a parity assumption).] 

of Q, consisting of those q which satisfy 

~e~nark: ~ e t  q e ~ z  - then for r > > 0, 



i j 1 1 x 
4 (XI = nij - F o i j ( z )  - -  1 6 (-) + o(=). 

r 2 i j r  r 

is convergent. 

It will be enough to consider 

and 

3 2 
As usual, pass from g (R) t o  S - (R) . 
Ad I: Write - 

When expanded, there is a total of 48 terms but not all of them need be omsidered 



individually provided we first do scane judicious regrouping. To this end, start 

by writing 

and 

Then 

there rernains 



Since fi = O(1) and 

1 
ajP* = O(-)r 

r 3+6 

Items 3, 6, and 9 are, respectively, 

1 1 1 
O (  0-1, O(x). 
r 2+6 r 3+6 r 

Rappel : 

+ 1 1 & = 1 + 0  (2 +O(-1. 
r 1+6 

Item 1: 

b a ( L a  16 
X q i j k j r  i k  



Item 4: 

Item 5: 

Item 7: 



Item 8: 

On the basis of the foregoing, it is clear that only Item 2 has the potential 

to mke a finite nonzero contribution to 

1 (div X) d5x. 
R - 

Ad 11: Write - 



The relevant terms are then: 

3. - 1 - 5 5.  .G "ij r2 M 11 

And of these, only Itan 2 is germane in that  it might rnake a f in i te  nonzero 

contribution t o  

3 J (div X)d x. 
R - 

0 
Definition: The center of mass J is the t r ip l e  

where for b = 1,2,3, 

sends q to 



Ob Exercise: Ccanpute J (q), where for r > > 0, 

b N.B. W t N  = A +  Bx 

investigation isolates the 

+ sc - then for arbitrary qEQ,, the preceding 
potentially divergent part of 

- 

as a limit of surface integrals, m l y  

Scholium: On ConH (hence too on Can 
%) 

And, as we have seen earlier, the integrals 



are convergent, thus the same is true of 

Recall now that 

But 

And (see belw) 



[Note : 

0 Formally, the variation of 

is equal to  

Formally, the variation of 

is equal to 

Details While the integrals my  very well be infinite, l e t  us manipulate 

them as i f  they were finite. So, for example, 



b 
LEmA Suppose that N = A + Bx + sc -- then V qEQo3, the integral 

is convergent. 

[The case when N = A + sc  was dispatched in the last section, thus it suffices 

b to take N = x . W r i t e  



1 = 0 - ( 3  + ho.] - 



Section 64: The Integrals of Pbtion-Linear and Angular Mmentum 

The assumptions and notation are those of Section 62. 

Rappel: Tf fi satisfies the standard conditions, then the integral 

defining ffD($) is convergent and equals 

[Note: -11 that the boundary t e r m  implicit i n  this relation necessarily 

vanishes. 1 

Suppose now that 

8=X+EG+$ .  

Here 

and stands for a vector field satisfying the standard conditions, so 

j i 2 where A ~ ,  B~ ( = - B i) are mnstants, $ is a ern function on S of odd parity, 
j - 

a n d E > O .  

+- 
Problem: Determine whether the integral defining ffD(N) is convergent or not. 

To isolate the issues, drop the standard conditions and assume only that 

On formal grounds, 



LEMMA The integral 

is convergent. 

[We have 



And 

- 1 j + v i j  Bk 1 -ij- k 1 ij- k - (T ik +y GikB + - V  GikB 
r r r 

But 



Therefore 

And 

Application: Let 8 = ft + I33 -- then the sum 

is convergent. 



[Note:  It is not claimed that the individual constituents are convergent.] 

N.B. We have - 

# i div (S (6q)$)vo1 
R q  9 

To see this, write 



LEENA Suppose that 8 = - then the integral 

is convergent. 

[In fact, 

= 3 .  @,.xi', 
3 1 

ij k 
= 3 . 0  q*A ).  

3 

2 
But on S (R) (R > > 01, - 

ij k 
q j p  

- - 1 ,ij 1 1 + O(-)) (nik + O(ij;))qc R2+" 



Ana 

Consequently, the integral 

is convergent. 

Heuristics To mtivate the next definition, take 

To be specific, work with (1,0,0) -- then 

And 



Therefore 

exists and equals 

Definition: The linear m m a t u m  is the triple 

where  for b = 1,2,3, 

b 
[Note: In v i m  of w h a t  has been said above, the integral defining P is 

convergent. 1 

If  8 = &, then, in general, the integral 

divergent (hawever, it w i l l  be convergent i f  (q, A) EC0r-Q . 
3 ~ota t ion:  L e t  3:'m stand for the subset of S i rw mnsisting of those A = Ad x 

such that for r =. > 0, 



021 vij = 0 (-1 (0 < 6 5 1). 
r 3+6 

[Note : T a c i t l y ,  

i j  j i  -ij  - j i  i j  j i  
'I ='I ' I  ='I , V  = v  .] 

is convergent. 

[We have 

2 
But  on (R) (R > > 0) , 

Obviously, 



I 
= a(-] (c > 0) , 

R~~ 

which leaves 

' '  -ij 
Bearing i n  mind that , T  are functions of the angular variables alone, it 

1 remins only to note that Items 1 and 3 are even while I t em 4 is O(3).1 
R 

Consequently, the integral 

-2 ,a is convergent provided AES d 

Rappel: The canonical basis for - so (3) is 

Thus 



In addition, 

Heuristics To motivate the next definition, take 



And 

Therefore 

exists and equals 

[ N o t e :  The proof of the preceding 1- shows that 

j lim 1 ...% = 0.1 
R + (R) 

Definition: The angular lrmmentum is the t r ip le  

1 2  3 
( J r J r J ) ,  

where for b = 1,2,3, 



sends A to 

[Note: In view of what has been said above, the integral defining P is 

convergent. ] 

Example: Suppose that 

(here, -rij = 0) and we claim t 

Consider first ?(A) which, by definition, is 



= 2  1 h  r 2  3 21 Xt 2 (x2It3' - x h )r i-w 
R -+ 'n (R) R ' 

'n 1 mopping the 2 and setting aside the 0 (-) (as they w i l l  not contribute), we 
r 

h a v e  

2 2rt n 1 1. R io lo (cos 0 sin $) [ ( R  sin 0 sin $) ( - -)sin 0 sin $ cos $ 
R~ 

2 - (R ms $1 ( T ) m s  0 sin $ sin 0 sin $]sin $ d$ d 8  
R 

2 2 n  n 3. R lo Jo (COS $) [ (R s in  0 sin $) 0 

1 - (R cos $1 (?)cos 0 sin $ cos $ ] s i n  $ d$ dB 
R 

or still, 

2 2 2 - cos $ sin $ ( a s  8 - sin €))]sin $ d$ de 

2i-t rt 2 2. J J ( s i n  8 sin$)[sin 8 cos 0 sin $cos $ 
0 0 

2 - 2 sin 8 cos 0 sin $ ms $ ] s i n  $ d$ d 8  

2rt n 2 2 3. JO J0 - cos f3 sin $ ms $ d$ dB 



2n n 4 2 
2. lo .ro [sin @ cos 4 sin e cos e 

4 2 - 2 sin @ cos @ sin 9 cos Old@ d9  

2 3 
3. j?~: - cos 9 sin @ cos (I d@ dB 

- - 2i-t n 4 3 - j j [sin @ m s  4 cos 9 
0 0 

4 2 2 3 + sin 4 cos @ sin 9 cos 0 + sin 4 cos @ cos @Id+ d 9  

- - 2i-t n 4 3 - jo j0 [sin @ cos @ cos e 

4 2 + sin @ cos 4 (1 - cos 9) cos 0 

2 3 + sin @ m s  @ cos 91d@ d 9  

2n n 4 2 3 
= - / J [sin @ cos @ cos 8 + sin @ cos @ cos Old@ de 

0 0 

2l-t n 2 2 
= - JO JO [sin @(1 - m s  $)as @ cos 0 

2 3 + sin 4 cas @ cos Old@ d0 



Analogously, 

2 
3 (A) = 0. 

3 
Turning to J ( A ) ,  insertion of the data leads to 

3 2i-t J (A) = 24, d0 I: sin3$ db 



Section 65: Wif-yIng the Hamiltr,nian The asst.mptiow and notation are 

those of Section 62. 

3 Definition: A lapse N&(R ) is said to  be a- - t i c  i f  

where A and B1, B2, B3 are constants. 

1 3  Definition: A shif t  $ED (R ) is said to be asymptotic i f  - 

f i = A + & + Z ,  

where &R3 - and B g O ( 3 ) .  - 
N.B. Recall that sc and are short for the standard conditions. - 

-f 3 
Suppose that N = sc and N = sc - then 

# 6H 6H i f  A = s €3 ]ql1l2. Furth-re, the functional derivatives - and - &st 
&I 6A 

and satisfy what we shall term the ADM relations, i-e. ,  



and 

However, for an arbitrary asymptotic lapse or shift, the boundary terms 

corn into play and the ADM relations break down. To restore them, it is necessary 

to mdify the definition of H. 

[NO*: Implicit in this is the functional differentiability of the mdifi- 

cation. I 
-+ 3 

Esrample: Consider the situation when N = 1 and N = sc. Define 

or still, 

Then HRT is functionally differentiable and satisfies the ACM relations. 

b b b  
Fxample: Consider the situation hen N = sc and $ = (6 I, 6 2, 6 3) 

(b = l,2,3). Define 

ff,:r ' 

by 

or still, 



Then ffR!r is functionally differentiable and satisfies the AllM relations. 

Definition: The Regge-Teitelboim mdification of the hamiltonian is the 

function 

f-f&:r + 5 

defined by the prescription 

[Note: Here, of course, N and G are asymptotic. 1 

THEOREM ff, is functionally differentiable and satisfies the AIM relations. 

[This follaws £ran what has been said in Sections 63 and 64.1 

-f ---.t 
%nark: If N =  sc a n d N =  sc, then f f m =  Hand ffl~on = 0. But for 

Qw 

arbitrary asymptotic N and GI ffmlcon * 0. E.g. : Take N = 1 and suppose that 
Q, 

-t 4 
N = sc -- 0 

then H,'mnQ_ = P . 

-+ -t 
Suppose that NII N2, N1, N2 are asymptotic -- then 



and 

are asymptotic. 

N grad N1 
- 2 

-+ 3 
[Note: If N1 = sc, N1 = sc, then the resulting entities also satisfy the 

-+ 3 
standard conditions (and ditto if instead N2 = sc, N2 = sc). Let us also remind 

ourselves that grad refers to grad ( q q )  . I  
q 

= H ( L  N2 - L Nl,[81,$~ + N1 grad N2 - N2 grad N1). 
b fi., 

Remark: In general, ~e Poisson bracket 

does not vanish on Con , hence is not a constraint (but this will be true if 
Qm 

-+ 4 4 either N~ = sc, N = sc or N~ = sc, s2 = SC). 
1 



Section 66: The ~oincarg Structure The assurrptions and m t a t i o n  are those 

of Section 62. 

Definition : 

ffm (1, b) - generator of t b  translations. 

Definition: 

- 
b g  b 

f f  0 ( 6 , , 6 3) 1 - generators of space translat ions 

b + 
(X ,O)  - generators of b s t s  

j j j ffm(O, ( \ j l ~  I \ j 2 ~  r \ j j ~  ) )  - generators of rotations. 

[Note: In  each case, b = 1,2,3.1 

The objective row w i l l  be to rompute a l l  of the Poisson brackets amongst 

these 10 ent i t ies .  

For use below, recall the  following points. 

thus 

a f  i j  a 
grad f ( = grad f )  = (li7q ) --7, 

51 ax ay3 

thus 



Time ~ranslation/Space Translation: We have 

T i m  Translation/host: W e  have 

TiTlbe Translationhtation: W e  have 

Boost/Boost: We have 

b b" b ' 
= H m ( O , x  grad x - xb" grad x I .  



Take, for example, b' = 1, b" = 2 -- then 

1 2 2 
x grad x - x grad x 

1 

Theref ore 

In general: 



Boost@tati~n: We have 

= H,( - L b' + 

j j j x t o ) .  
(%Wjlx IEbvjZx ~ % l l ~ ~ ~  

Take, for exanplel b' = 1, b" = 2 -- then 

Therefore 

3 
= - H,(X .b). 

In general: 

Space TranslationJSpace Translation: We have 



Space Translation/Rotation: We have 

Take, for example, b' = 2, b" = 3 -- then 

Theref ore 



Rotation/Rotation: We have 

Therefore 

In general: 

Rappel: Let g be the Lie algebra of the Poincar6 group - then dim g = 10 - - 

and admits a basis 

I- Po -- generator of time translations 

P' , p2 I p3 -- generators of space translations 

N1 -- generators of boosts 

1 - J1 , J2 , J3 - generators of rotations 



subject t o  the following canmitation relatians: 

O b  [P .P I = 0, [PO,J!PI = pb, [P0,P1 = 0, 

1 bll 
[Nb' ,$"I = \ l b ~ ~ c  

0 
J ~ I  I$ IP 1 = - 6btbtlP , 

[ N ~ ' , P " I  = - E ~ ~ ~ ~ ~ ~ N ~ ,  

[P ,Pb" ]  = 0, [ P b l , P ' ]  = - E t bllcpc 

[?',P"] = - c b l b l t c ~ C *  

The f o m l a s  for 

- 
Time Translation/Boost 

- Boost/Boost 

each contain a term of the form ff (0 ,s) , which sawwhat spoils what otherwise 

muld be a very pretty picture. S t i l l ,  

Therefore, upon restriction to  Cory,, the Poisson brackets derived above have 

exactly the same structure as the -tation relations of g. - 



Section 67: Function Spaces In R", - Soblev space theory is standard fare 

but weighted Soblev space theory is less so. Since it is the latter which will 

be needed for the applications, a brief account seems appropriate. 

[Note: In what f o l l ~ ,  it will be a s s W  that n 2 3 (n = 3 being the case 

of ultimate interest) .I 

Notation: Let 

i.e., let 

Given a rmltiindex a = (alr . . . ,a ) , write n 

and put 

consisting of those functions f :lf + R - of 

y 6 we understand the Banach space 
class ck such that 

[Note: The indexing 

Example: Take n = 3 and suppose that q is an asymptotically flat riemannian 



structure on R3 -- then - 

LEMMA pointwise multiplication induces a continuous bilinear map 

Definition: ?&t kEz ,6e -- then by $ we understand the H i l b e r t  space 
LO 

consisting of those l o d l y  integrable functions f :Rn - -+ R - possessing locally 

integrable distributional derivatives up t o  order k such that  

[Note: The inner product i n  6 is 

N.B. C: (Rn) - is dense in 6. 
Example: Suppose that  £ d l  - then the partial  derivatives aif are square 

integrable. 

n 
~~amp1e: L& CER - - then oc& <=> c < - (6 + -) . In  particular: The 2 

constants belong to $ iff 6 < - 1 2 ' 

[Since 



it suffices to take k = 0. But 

2c 26' n-1 - a cr r  -O(r 2c + 26 + n-1) 

= O(r -(-(2c + 26 + n-1)) 
1. 

C FACT mltiplication f + frr defines a continuous imp 6 - Wk 
6-c ' 

LEMMA The operator 

is a bounded linear transformation. 

Heuristics One reason for introducing the $ is that they are better suited 
for the study of certain elliptic differential operators. Take, e.g., the 

laplacian A corresponding to rl (the usual flat metric on R~). As a densely - 
2 n 2 n defined operator on L (R - 1, its maximal damin is the set of fa (R ) such that - 

2 n Afa (R - ) in the sense of distributions, i.e., is the ordinary Sobolev space 

2 n 2 n  2 n  H (R - ) (and there, A is selfadjoint). Viewed as a map A:H (R )+  L (R ) ,  khe - - 
kernel of A is trivial: 



On the other hand, the range of h is not closed. For if it were, then 

2 n 
3 C > O :  Vf€H (R), - 

But such a relation cannot be true. To see this, let 

(SRf) (x) = f (Bc)  . 
Then 

2 
asR£ = R SRAf . 

Therefore 

Put 

2 2 2 n 
Then the L ae, by definition, the weighted L -spaces (L: = L (I! 1) .  

6 



2 FACT Suppose that fas has the property that in the sense of 

distributions -- then £4. 
2 Observation: The dual of L6 is L-r Ideed, 

2 
Remark: The dual of 6 contains L-6 However, to canpletely explicate it, 

one has to introduce a weigh- Soblev space WI~, which is a certain subset of 

the space of twpered distributions on gn and, by construction, is the dual of $. 
If k 2 k', 6 2 ti', then 

REL;LICK LEMMA Suppose that k > kt, 6 > 6' -- then the injection 

is compact. 

[Note: In other mrds , if ifn} c $ is a bunded sequence, then there is a 

subsequence i f 1 which converges in $ : .I  
% 



Remark: The injection 

is continuous but not compact. 

EMBEDDING IXWA 1 We have 

Application: Fix k > " - then V f*, 2 

n 
provided c < 6 + 2. 

[Take k1 = 0, choose 6' :c < 6 < 6 + 5, and write 

oClf 1 = o C-61061 I f l  

= 0(1)0(1) = oC1) . I  

[Note: If 0 < 6 + then 

If1 = o(l) . I  



2 
Example: If f is C and if 

then 

n POIN& ~ A L I T Y  Suppse that 6 > - r -  then 3 C > 0 such that v £4, 

[Note: Take 6 = -1 to get 

PW3WCT LJWlA Pointwise multiplication induces a continuous bilinear map 



n Application: S u p e  that k p b z - 2 -- then $ is closed under the 2 

formation of products. 

The theory outlined above admits an obvious extension to the case of functions 

f :Rn - + d - but it is custamry to abbreviate and use the q m b l  $ i n  this situation 

as  w e l l .  

[Note: To say that  a tensor T&R") is i n  6 simply means that  its components 
q - 

Notation: L e t  l:Rn - -+ R" - he the identity map and write ~c(1) for the set of 

functions f : - R" + I? - such that  f - 1%. 

[Note: The arrow 4 (1) -+ 4 that sends f to  f - I is bijective, thus 6 (I) 
can be topologized by demanding that  it be a hameomorphism.1 

Denote now by 

the set of diffec~~y3rphisms 

such that  

and equip it with the topology inherited £ran e: (I) . 

k+l write 4 = I + F, where F$:. ~ i x  E > 0: [Note: Given +EDgel, 



Therefore the derivative D$ of $ (viewed as  an n x n matrix of partial  derivatives) 
1 

is identity matrix plus a matrix whose entries are i n  c:, hence are 0 -1 
r 

THEOREM Llk+l is closed under c a p s i t i o n  and inversion, thus is a group 
6-1 

k-l-1 
(in fact, a topological group). PBreaver, Dgel operates continmmly to the right 

on $: (kt s k + 1, 6tEF3 by pulIback: 

Terminology: A cliff-rphisn $:Rn - + Rn - is called an asympt o t ic  symnetry 

k+l 
of class (k, 6) i f  $€D6-1. 

k+l 0 n 
LENMA L e t  @@6-l. Suppse t h a t  TEDq(E ) (q > 0) is in 6: (kt i k, 6 ' e )  -- 

then the same is true of $*T. 

[Take q = 2 and write 



Here 

Q - 

n n But k > 2, S > - -I and k' s k, which implies that the product of an element in 2 

Wk with an element of $: is again in $:.I 
6 

The definition of $ can be extended in the obvious way to "sufficiently 
regular' open subsets of gn, e . g . , to 

exterior domains: 

E& = {x:/xI > R} 

annular domains: 

Suppose that f$(Q (R 2 1) -- then for elementary reasons. 

the implicit positive constants being independent of RIfI and where, as before 

(SRf) (x) = f (Rx) 



[Applying the usual Soblev inequality to SRf 

[Note:  K > 0 is independent of R,f .] 

Let f$ and take k > -- then the estimate 

can be sharpened to 

2 1). 

on el, for x% we have - 



To see this, just note that 

and then quote the 1en-m. 



Section 68: Asymptotically Euclidean Riemannian Structures As in the 

previous section, it will be ass& that n r 3. 

Definition: Let q be a riemannian structure on R~ - - then q is said to be 
n n asymptotically euclidean of class (k, 6) (k > 2, 6 > - 2) if 

[Note: Here Q is the usual flat mtric on R~.] - 

hence $,q is asymptotically euclidean of class (k, 6) . 
[We have 

n 
= C 

a(xaocp-l) a(xbocp-'1 

a,bl axi ax' 'ab 

But 



where F~~$. Therefore 

And the FHS of this equation is in %. I 

[Note: Recall that is closed under the fo-tiin of products 

LEMMA Suppose that q is asymptotically euclidean of class (k,6) -- then 
k+l V $,q is asymptotically euclidean of class (k, 6) . 

0 n 
[Bearing in mind that q - n€V2 (R - 1 ( => 0, (q-11) dl , one has only to write 

6 



From th is  point on, it w i l l  be assumed that n = 3. Therefore the threshold 

values for (k, 6) are 

Obviously, 

In particular : 

On the other hand, 

N.B. 

IXM~ZI Suppose that q is asymptotically euclidean of class (k,6) -- then 



The proof of this hinges on saw preliminary considerations. 

To begin with, we claim that 

det q - 1%. 
Thus write 

det q = 



= 931 (q12q23 - q13 (q22 - 1) - q13) 

Now m e  the +l to the other side and use the fact that 6 is an algebra. 
1 Since det q > 0 and since det q - l#, hence is 0 (:) for sare E > 0, it 
r 

follaws that 3 C1 > 0, C2 > 0: 

Cl detq 5 C2. 

Observation : 

ij 
(det q) q = cof qij 

(det q)qij - ?ij €8 6' 

With this preparation, the verification that 



is straightforward. 

i z j : We have 

i = j : We have 

= / ,  02& 1 (det q) (qii - 1) / d3x 
R (det q) 2 - 

But 

(det q) (qii - 1) 
ii = (det q)q - 1 + (1 - det q). 

And both 

1 - det q 
2 are in L6, hence so is their sun. 



Notation: QaE(k,6) is the set of asymtotically euclidean r i m i a n  

3 structures on R - of class (k, 6) (k r 2,6 2 - 1) . 
[Note: Accordingly, V (k, 6) , $dl and 

w k :  If q is asynptotically flat, then q is asymptotically euclidean of 

class (2,-I), i.e., 

QwcQm(2,-1) 

Let q€QAE(2,-1) - then q is said to satisfy the integrability condition if 

[Note: In v h  of the relation 

it is clear that q satisfies the integrability condition iff 

To recast the integrability condition, write 

is integrable. Therefore 



N e x t  

1 jl ik - - - 2 4 [(a@ ) h i  j + q k j  qijtk) 1 

ij ke - ' i k  qij,krL) 

The first and second term are integrable. Indeed 

- 
ik - iu vk 

aiq - - 4 svri4 

ik 
aLq = - 

- qiUgw I LSVk I 

so the preceding reasoning is applicable. The integrability of S(q) is thus 

equivalent ta the integrability of 

ij ke 
4 4 (4* . e - qij ,kre) I 1 r 

Now write 

ij ke 
q (qik,j,~ - qij,kI~) 

W e  have 



On the other hand, thanks to the lemna above, 

2 
W r t  the product of an element in Ll w i t h  an elenent i n  is integrable. And 

multiplying such a product by a term which is O(1 )  does not affect  integrability. 

Therefore 

is integrable. 

L e t  

where 

1 3  1 3  s ( q )  a (R ) <=> div X a  (5 . - 

Consequently, i f  q sat isf ies  the integrability condition, then 

3 (div X) d x = lim / 3 (div X) d x 
- R + a D (R) - 



exists. 

Remark: In the literature, it is m t h s  asserted that S(q) is integrable 

i f f  

exists, a statemsntwkich is patently false. The p i n t ,  of course, is that  an 

improper integral is not necessarily a Lebesgue integral, hence the mere existence 

= l i m  r 3  3 (div X) d x 
R -t D - (R) 

1 3  
does not imply that  div x a  (5 ) .  

Let  Q&(k, 6) stand for the subset of QAE (k, 6 )  mnsisting of those q which 

satisfy the integrability condition. 



3 3 Fix C > O:det(D$) r C > 0. Put y = $(x) -- then d y = det(D$)d x and 

Definition: The energy is the function 

0 P :Q&(k, 6)  + R - 

given by the prescription 

1 0 
N.B. If the partial derivatives of qi are 0 (-& , then P (q) = 0. - 

r 

E;xample: Let 

Then q is asymptotically flat (hence 9EQAE(2, -1) ) and 

0 
P (q) = 32n.A. 



To begin with: 

But 

A 2 2  A 3  4 + 6(1 +E) + 4(l +;r)u  + 11 . 
Therefore the only term that is relevant is 



However, of the tenns on the RHS, only 

can contribute and we have 

Taking R > > 0, matters thus reduce to 

~ A R ~  I? I: (cos 8 sin C$ ( R cos 0 sin C$ 1 
R~ 

+ sin 8 sin 4 ( R sin 8 sin 4 1 +COS@( ') ) sin 4 dC$ dB 
R~ R3 

= 8A04rr = 32rrA. 

[Note: This is a legal computation. It does not depend on whether 

1 3  1 3  S(q)€L (R - ) or, equivalently, whether div XEL (R 1 . In the case at hand, - 
- 

qieli,e q i i l ~ , ~  

aria since u = om($), it can be set equal to z e m .  ?he potential trouble then 
r 

lies with the divergence of 

1 2 3  
X X X  

(T 7p 3) I 

r r r  



there being no actual diff iculty in that  

r div 7 = 0. 
r 

1 3  So, i n  this situation, S (q) a (5 ) . 

Ekercise: Suppose that for  r > > 0, 

Then 

k+l Given m&(k,G),  let 0 be its orb i t  under the left action of D6 by q - 

0 0 
The lemna implies that P is finite on 0 Hat\rever, much mre is true: P is 

9. 

constant on 0 
q ' 

The most d i f f icu l t  case is when k = 2, 6 = -1, so w e ' l l  concentrate on it. 

Estimation Principle Fix Ro a 1. S u p s e  that f 4  (so) -- then 



[Start w i t h  the fact that 

Next, in view of the trace theorem from ordinary Sobolev theory (viz. that 

restriction to a compact hypersurface entails the loss of one half of a derivative), 

with 

In particular: 

Therefore 



[Note: As usual in estimates of this type, C is a positive constant that 

can vary from line to line. I 

Application: If f 4  and F& , then -1 

[Recall that 1 



But then 

Passing to the proof of the theoran, we shall begin w i t h  the special situation 

0 when q = q, the objective being to shaw that P ($*q) = 0. 

let p = xa 0 $-l - then 



3  . ya - xa€w2 

a  a 2  
=' Y f b - 6 b e W _ l  

=> a EW1 
Y,bfc 0' 

Because of this, each of the terms 

- 
2 a  a a 
aiiy caly - s l) 

2 has the form f*Ff  where f 4  and FEW2 , so their integrals over S (R) will not -1 - 
contribute when R -+ a=. W e  are thus left w i t h  

1 3  Rappel: For any XED (g 1, 



Therefore 

2 2 3 1,s (R) = dx Adx 

But 

1 2  1 *dx3 = dx Adx . 

Accordingly, in a mild abuse of notation, 

div X = J' 3 3 
J 3  (xl*dxl + x2*dx2 + X *dx ) .  
g (R) s (R) 

0 
The relation P (4 ,~ )  = 0 then follows upon observing that 



Details To i l lus t ra te  the 1 2  procedure, note tha t  the coefficient of dx Mx 

on the LHS is 

3 
ai(aiy - 

or still, 

J 1 2 3 3 
a1aly - ala3y + a2a2y3 - a2a3y + a3a3y - a,a3y 

1 3 2 
= a 11 a y3 - ala3y + a 2 a 2 ~  - a2a3y . 

As for the RHS, write 

t k  R j a.a.y ax ek d ( ~ ~ a ~ y  dx ) = cike 

l j  k = E a . 3 . ~  dx ~ d x  i k l  ] 1 

2 j  k 3 j + E ik2 a . a . Y d x ~ x  7 1 + Eik3ajaiy&mk 

l j  2 1 j 
= E  i21 a . a . Y d x ~ &  7 1 + E ~ ~ ~ ~ ~ ~ ~ Y ~ x M X ~  

2 j  1 2 j a.a.y dx  Adx + ~ ~ ~ ~ a ~ a ~ ~  dx 
+ 'i12 3 1 

3 j  1 3 j  2 3.a.y c i ~  A& + ~ ~ ~ ~ a ~ a ~ ~  d~ ~ d x  . 
+ 'i13 7 1 

1 2  Then the coefficient of dx Adx is 

1 2 3 3 a a . y  - E  ~ ~ ~ ~ a ~ a ~ ~  - 'i12 2 1 i13 a 2 a i Y + E ~ ~ ~ ~ ~ ~ ~ Y  



or still, 

or still, 

as desired. 

To discuss 

write 



Then 

since q s  (2, -1) , we have 

- q* - Q* + Fab' 

where ~ ~ 4 ~ .  hence 

qab 
0 $ = 'iab + Fah O *. 

And still, F* 0 $ g l .  Therefore 

w a l l i n g  that gl 
the integral of 

is closed under the formation of products, the upshot is that 

over - S" (R) is o (1) . There remains 



or, equivalently, 

But 

is ignorable, leaving 

[Note : Analogously, 

provides the contribution 

To discuss 

write 

Then 



The t e r m s  on the f i r s t  and second line can, for the usual reasons, be set aside. 

In this connection, bear i n  m i n d  that 

It remains M deal with 

o r  still, 



So, by the chain rule, 

ai 'qie O (VJ - 1)) 

is a  sum of terms of the form f-F (£4, F&~), thus is ignorable. A l l  that is 

left, then, is 

[Note: Analogously, 

a b  - aiy aiY y q *  O $1 

provides the contribution 

can be written in the form 

where 



It was shawn h e  that 

Therefore 

the contention of the theorem. 

Remrk: The invariance of the energy definitely depends on the assumption 

k+l that the diffemorphism + is an element of D6.1. TO see this, f ix  constants 

C 2 0, a > 0 and let 

Wrking i n  a neighborhood of infinity, put p = £-I(,) ( => r = f (p) ) and take 

a ya = pxa ( => x a C 
r = y  (1 +-))  P.n 

-- then it can be shuwn that 



Section 69: Laplacians Continuing to work in  IX3, in th is  section we shall - 
formulate a few background results from e l l ip t i c  theory and i l lus t ra te  their  use 

by deriving sa-e consequences which w i l l  play a role la ter  on. 

Criterion A s m :  

m€cw(r), where IcR is an open interval (pss ib ly  infinite) .  - 

L e t  0 I k' s k, 6'ER-- - then 

Rappel: Suppose that q is asyrrq?totically euclidean of class (kt&) -- then 

Pbre is true: 

i j 
q - " i j  4- 

[Note: It was shown i n  the l a s t  section that  

(det q) qij - nij $. I 
1 

TO see this, take @ (x) = - (x > -1) . Since det q -1% and since x+l 

[in£ (det q -1) , sup (det q -1) I cl -1 ,a[, 

it makes sense to form 

Accordingly, v fg, 
1 - f€$. det q 



$i -1 = - . (det q) (qii -1) $. 
det q 

Consider the laplacian A aorresponding to q -- then it is clear that 

Then it is still the case that 

Details First 

And 



Next take @ (x) = fi (x > -1) , hence 

I Finally clmose @ (x) = - (x > -1) to get 
Jl?x 

N.B. By the same argument, A induces a mp 
q 



is an isamrphism. 

[Note: Take 6' = -1 to  get that 

is an isamrphism, in particular that 

is an i s m r p h i m  provided q€QAE (2 , -1) . I 

Let E and F be Hilbert spaces - then a bounded linear transformation 

T:E -t F is said to be Fredholm i f  K e r  T is f ini te  dimensional, Ran T is closed, 

and Co Ker T = F/Ran T is f ini te  dimensional. 

[Note: T is semi-Fredholm i f  Ker T is f ini te  dimensional and Ran T is closed.] 

If T:E + F is Fredholm, then its index is 

ind T = dim K e r  T - dim Co K e r  T. 

Example: The operator 

has a t r ivial  kernel (a 

2 do not belong t o  W-j,2) 

bounded harmnic function is a constant and the constants 

. S t i l l ,  its range is not closed, so A is not Fredholm. 

L e t  %yz -- then V determines an arrm 

viz. f + Vf. 



Convention: Henceforth, it w i l l  be a s s d  that V is, in addition, cM). 

is Fredholm with index 0 and is an ismmrphism i f  V 2 0. 

There are various results that  go under the mm "maximum principle". Here 

are two, tailored to our specific situation. 

Strong Maximum Principle If f is a nonnegative cm function such that  

5 and i f  f  (xo) = 0 a t  saw xOER - , then f vanishes identically. 

[Note: There is no sign restr ict ion on V.] 

Weak Maxirrnrm Principle I f  f = o (1) is a cm function such that 

Af -Vf 2 0 
9 

and i f  V 2 0 ,  then f  5 0. 

[For, as  was shown above, 

~ n d  the product of t m  elonenis in 6;; 



Definition: let qQAE (k, 6) - then the operator 

is called the confarmal laplacian attached to q. 

Conformal Replacement Principle L e t  q€QAE(k,G) (-1 5 6 < - . Ass-: 

3 
S (q) 2 0 - then 3 X ~ T o  (g 1 subject to x - 1% such that 

4 
S(x q) = 0. 

4 [Viewing x as the unknown, put q' = x q. The rule for the change of scalar 

curvature under a conformal transformation then gives: 

Since S (q) s 0 and helongs to the conformal laplacian 

is an iso~llorphism, thus there exists a unique :$ such that 



= 0. 

Elliptic regularity implies that x is cCo, so it remains to show that x > 0. 

TO this end, let 0 s a s 1 and determine ;a$ via 

1 a 
(Aq - s(q))jia = S ( q ) -  

Put xa = 1 + Xa and let I = {a:xa 01 - then I is not anpty (xo = 1). On the 

other hand, 

0 1 3 is open in CO and the map a -; x tC is continuous (E > 0 & E < 2 s 6 + 2). 
E a E 

Therefore I is open. But I is also closed. For aO€i => x 2 0. However, 
a. 

Xa +- 1 at infinity, so, thanks to the strong maximcan principle, x > 0. 
0 a. 

1.e.: a €1. Consequently, I = [0,11, hence xl= x > 0.1 0 

Remaxk: 3 3 > 0 suchthat 

C s x s l .  



1 3 3 
C s x :  C h o o s e R > > O : ~ z ~ i n g  - g  (R). A s  for the restriction 

3 x I D - (R) , it is positive, thus by ~ c t n e s s ,  3 c > 0 : 

3 
(R) => x(x) 2 c. 

x 5 1: Since = o(1) and since 

the weak maximum principle implies that 5 0 or, equivalently, that x 5 1. 

4 
In particular: Replacing q by q' = x q in the conformal replacement principle 

1 
does not take one outside of Qm (k, 6) (X-lCl$, -1 5 6 < - . 



Suppose that q€Q&(k,6) with S(q) s 0 - then qtEQ&(k,S) and 

Trivially, qt€Q&(k,6) (S(q') = 0). This said, to fix the ideas let k = 2, 

6 = -1. 

Rappel: If £4 and  FRY^^, then 

We have 

4 since x - 1&, 

=> 



it follaws that 

can be ignored. 

The products 

are in 3 GTI -1' 

Therefore 

le other hand, 



Then 

will not contribute, leaving 

4 ( ( six) qiR - ( aLx) qii) 

or still, 

[ L e t  I = {X:X > -1) and write 

2 
Bearing in mind that det q -lEW_l, the criterion formulated at the beginning 

then implies that 



fi -1 = Jl + (det q -1) - 1 

= Y (det q -1) (det q -1) 

i s i n 2  I -1' 

But 

And 

Therefore 



Now l e t  R -t t o  get: 

0 0 P (4') = P (q) - 8 l i m  / A x vol 
R ' m  D (R) 4 q ' 

[Note: It is not claimed that A x is integrable.] 
q 

W g y  Reduction Principle This is the assertion that 

0 0 
p (q') 5 P (q) - 

In fact, 

A x vol r 0. 
ID3 - (R) q 

One can then quote the lenrma. 



Section 70: Positive Energy F?etain the assumptions and notation of the 

preceding section. 

1 
THEX)m Let q~Q&(4,6) (- 1 5 6 < - -i). Assm: S(q) z 0 -- then 

0 P (q) 2 0. 

While we are not yet in a position to establish this result, in view of the 
0 

energy reduction principle, to prove that P (q) 2 0, it suffices to prove that 

0 P (q') 2 0. 

This said, replace q' by q (so now S (q) = 0). Fix a one parameter family 

of cm cutoff functions (9 > 0) satisfying the follaving conditions. 

2 .  I) (x) depends only on I x 1 and is a decreasing function of Ix 1 . 
0 

Put 



[Note: F m  the definitions, 

for 8 r 1x1 r 28 uniformly in 8 > > 0.1 

LEMMA We have 
1 

[Note: The implied constant on the right is independent of 8.1 

There is no guarantee that S(qg) is nonnegative, hence the conformal 

replacement principle is not applicable a priori. S t i l l ,  as w i l l  be shown 

3 4 
below, for a l l  8 > > 0, 3 X e ~ ~ O ( ~  ) subject to xe - 1EW6 (- 1 r 6 < - 1 9 
such that 

4 
S(xeqg) = 0. 

Rappel: The conformal laplacian 

is E'redholm w i t h  index 0. 

So, to conclude that 

1 

is an iscp~l~rphisn, one has only to shew that 

is injective (8 > > 0 ) .  



N .B. Granted this, the existence of xe is then inmediate (argue as in the - 
conformal replacerent principle) . 

There are a couple of technicalities that have to be taken care of first. 

Integration by Parts Let q€Qm(k,S) 6 -1). Su-a that u , g  -- thm 

Notation: Put 

2 
"f = grad q f  and I Q  q f /  = q(Vqf,Vq£). 

[Mte: The positive constant C is independent of f and the C are uniform 
q q0 

Turning now to the injectivity of 

I A f - g S ( q , ) f = O  ( 0 .  O O )  
qe 

and, to derive a contradiction, assume that f  # 0 -- then 



But for 0 > e0, 

Therefore 1 < 1 ... . 



where q; = 
4 

Xeqe 

LEWlA We have 

Take 0 > e0 - then i n  a certain exterior danain 4 
(ue = xe I 

4 and there, S(ugq) = 0, thus 

i.e., 

Aug = 0. 

This mans & t u g  is harmonic. But u -+ 1 a t  infinity, so there is an expansion 8 

And 

0 
P (q;)) = 32rAe. 

N.B. Since P(q;)) -+ P(q) (0 -t m ) ,  mtters have been reduced to proving that 

A > 0. 
8 -  

3 
LEPMA If A < 0, then there exists a riemmnian structure q" on R with 

8 6 - 
the follawing properties: 



But this is impossible. Thus let M be a canpact connected coo manifold of 

dimension 2 3 - then there are three possibilities. 

(A) 3 a r i d a n  structure g on M: S (g) 2 0 and S (g) f 0. 

(B) 3 a riemannian structure g on M:S (g) 3 0 and M $ A. 

(C) jl a riemannian structure g on M: S (g) z 0. 

Example: V n 2 3, 

3 In particular: T - does not admit a r i m i a n  structure g:S (g) 2 0 and 

S(g) I x  > 0 a t  sone x. 

3 Now take a cube centered a t  the origin which s t r ic t ly  contains Q (R) and 

identify opposite sides to get a torus -- then q i  induces a riemannian structure 

g on this torus: S (g) z 0 and S (g) I x  > 0 a t  sone x, a contradiction. 

The proof of the lama depends on an elementary preliminary fact. 



I s m  Suppose that u = + v is m n i c  i n  

Then 3 6 > 0: lv 1 < 6 implies 3 (A) with the following properties: - 
1. AHrOandMj!O. 

2. H = u near 1x1 = 1. 

3. H = constant near 1x1 = 6. 

[ASS- f i r s t  tha t  v = 0 and construct a function f q 0 ( ] l , 6 [ )  subject to: 

2. f (x)  = constant (5 I x < 6).  

For the particulars, see below. Since A = 7 a2 + -- a on radial  functions, one 
ar r a r  

can let H (x) = f ( lx 1 ) . To t r ea t  the general case, f i x  a rotationally invariant 

C" cutoff function $ : E3 +- 10, l ]  such that 

El l ip t ic  theory can then be used to secure 6 (for, by hypothesis, v is hanmnic). 

[NO*: Denote by K the constant figuring i n  the definition of f - then 
it is clear that H = K near 1x1 = 6, so the constant of property 3 is independent 



of v.] 

Details Observe first that 

2 f"(x) + - f' (x) = - - 
X X 2dx (x2f'(x)). 

kbtivated by this, for E small and positive, let 

Here eE(x) = -1 (1 < x 1; 2), then climbs £ran -1 to -& between 2 and 2 + E, then 

slmly strictly increases hitting 0 at 5 (usual e -'Ix stuff), and finally OE(x) = 0 

1 
(5 5 x < 6). Take f(x) = - (1 < x I 2) and if x > 2, 

X 

Obviously, f(5) is positive provided E is close enough to zero. And 

The function ug is harmonic in a certain exterior domain . oloose a 
k positive integer k such that Re < 6 and consider 

Then for k > > 0, Ivl < 6 and the function 

is positive. 

[Note : Therefore 
A- 



is positive. I 

Put 



Mter rescaling, we might just as well take L = 1. So, to ccarq?lete the 

proof, one merely has to explicate S(q") and this is only an issue if 
0 

8 < Ix 1 < gk+l. B U ~  when x is thus restricted, 

And 

Here, of course, A < 0 => - 8Ae > 0. Wreover, 
8 

Consequently, S (q:) has properties 1 and 2. 

0 3 
Remark: It can be shown that if S(q) r 0 and P (q) = 0, then (R ,q) 

3 is ismetric to (R - , n) . 
Example: There is one special set of circumstances where one can &'mediately 

0 3 4 3 assert that P (q) r 0. To this end, work in all of R and take q = u q (u€Cyo @ ) ) . - 

~ssume: Au 2 0 and in a certain exterior domain ER, u is harmonic w i t h  - 

Then 



In fact, 1 - u = o (1) and A (l-u) 2 0, thus the weak maxinnnn principle implies 

that 1 - u r 0 or still, 1 r; u. Therefore 
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