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LOCAL QFT

AV W T S VY

Causality Let Mﬁﬁ}’d(d_zl) be the Minkowski space-time of
dimension d+1.

4
Definition: Let SC M -~ then the causal complement S of S

is the set of points in M which lie spacelike to all peints of S.

[Note: Subsets S§,TC M are said to be causally disjoint,

. R L
written S L T, if s T .]

Properties:
H)SCSLL;
(2) sns* =g;
3y st =gt

1
(4) st =T cs"‘;

L
5) (Usp) =N sy .
i i
- 3 13 lL L] - ...
Definition: The set 8§ ig called the causal closure of S.

11 .
If 8=§ , then S is said to be causally closed.

_‘—-‘-’—t_-—
LEMMA The set £ ., of causally closed subsets of M is a lattice,
VAN M

iThe operationg are

SAT

il

sSNT

(sum*t .

SvT

Let £, :MxM —%\Bvbe the function defined by the formula

£q(%:¥) =Xy, %~y .
Put
Cx ={y€M:fM(x,y)< 0 } .
Then

$xt =c, .



LEMMA Let S5 be a nonempty subset of M -- then
AN

st = ﬂcx
X €S

Let x,y€M —-- then the double cone Dx y generated by x,v is

’

_ 1L _ 1
Dy,y = (¢xy v iyl ( = (c,NCc, i ).

[Note: Therefore double cones are the causal closures of
two-point sets.]

Notation: Given X€ M, let
v, (x) ={y EM:f, (x,7) >0, yo-%x,>0 ¢

v_(x) ={y€ M:fM(x,y)> 0, yo-x0<0§ .

LEMMA Suppose that y(EV+(x) -~ then the interior of Dx,y is

v, x)Nv_(y).

It is also necessary to relate causality to the topology on M.

1
LEMMA Let KCM be compact -- then K #f§ is open.

{The point is that the function v —» gup fM(x,y) 1s continuous
X €K

and takes on negative values.]

Application: Let O be a bounded open subset of M -~ then

int 0 # #.
— —-.L -L -—J- .
[For 0C 0 =0 < 0 and by the lemma, 0 is open and

nonempty. ]



: 1. ) N
[Note: It is also true that 0 is closed, hence O"L'iD int 0 .]

. . . 1 .
A bounded open 0 is said to be connected with O if

B oot # 9.

[Note: Since

@* = fr @1y int @
- =1
and 0 N(0) = @, we have
SN B # 8,

— - 1
thus 3 x,€0 and {x § C (0)7 such that x -> x,. But

g_g-é =0 -int 0 = O -int O.
Therefore Xg #_J.._I_l_‘_t o (otherwise xne-c.l. (n >> 0) = o) ﬂ(a)'l' # @), which
means that

fr 6‘m_e_g(6)j‘ # g.]
In practice, it is often convenient to replace the collection
6 = {OS of all bounded open subsets of M by a smaller subcollection
0, = {00} )
Definition: A final subcollection OOC@ which is a basis for

the topology on M is said to be causal if

. oL
(l) Voor 00 - 00 r
(ii) Yo,, 0, = int 60;

S Lo,
(iii) VOO, 00 = int 04

. - — L
(iv) \7’00, 0y N (0g) £ 8.

LEMMA The collection
e d

Vi) N VoY) (x,y €EM;Y €V, (x))



is a causal subcollection of C) .

Denote by ) the collection figuring in the lemma —- then the

elements of Ja are called double cones and are denoted generically

by D(x,y) (so D(x,y) = int D_ ).

X,y
[Note: ) is invariant under the operations of (& 1\.}
Now put
W ={x EM: Ixol<xl }
and let

2—&5 ={(Ara)'WR= (Ara)e@rfr
the wedges in M,

— 4
Fact: ¥ w € LS, (W) '=_i__:}1:w'L.

LEMMA 1J generates 9 by intersection, i.e., ¥V D(x,v),
D(x,y} = int (W,

where () is taken over all W containing D(x,y).

LEMMA WS separates ), i.e., if D(xy,¥;) s D(%,,¥,) € o) and

D(x;,¥y) i D(x,,y,). then 9 W, ,W, € LJ: & Wy _sz.



The Axioms of Local Quantum Physics Results from the theory

of C*-algebras will be recalled as needed.

Definition: Let 0l be a Banach algebra, *: 0{— Ul an involution --

then the pair (Ol ,s«) is said to be a C*-algebra if v ae 0,

(i) Ha*ll = WAl & (ii) Jya*all = {iaidl 2.

[Note: A morphism of C*-algebras is a linear map $:0t— ®
such that -
$(a1a,) = $@a)) $ay) & Y = @),
Every morphism is automatically continuous: || dall ¢ Nall vaeot .
Furthermore, the kernel of 4’13 a closed ideal in Ol and the image
of cI:v is a C*=-subalgebra of ® . Finally, ¢ injective =) ‘+ isometric:
il = Hall W aedt .]

Example: Let X be a LCH space, C w(X) the Ialgebra of continuous
functions on X that wvanish at infinity. Equip C oo (X) with the sup
norm and let the involution » be complex conjugation -- then the pair
(Cpp (X),#) is a commutative C*-algebra.

[Note: If (O is an arbitrary commutative C*-algebra, then 3
a LCH space X and an isomorphism (U —7 C_(X), Such an X is unique
up to homeomorphism and is compact when O is unital.]

Example: Let 3¢ be a Hilbert space, @ (3¢ ) the algebra of
bounded linear operators on o0 . Equip @& (8¢ ) with the operator
norm and let the involution % be the adjunction -~ then the pair
(6 3¢),*) is a C*-algebra.

[Note: A norm closed x-algebra O € B(y¢ ) is a C*-algebra.

Conversely, every C*-algebra is isomorphic to a norm closed *-algebra

in & (¥¢) for some 3¢ .1



Philosophy: The idea is to produce a mathematical construct
which reflects the claim that everything that can be known about a
physical system is contained in the assignment between regions of
space-time and their observables,

Let M=Rl'd

R {(d >1) be the Minkowski space~time of dimension d+l.

Axiom I: To every bounded open subset OCM there is associated

a unital C*-algebra 01(0) such that

Rappel: Let {D‘Ii:iél} be a collection of unital C*-algebras
indexed by a directed set I. Assume: dinjective morphisms

- — y £ 3 1 = =. —— S

fji‘ 011 > an {i 43) with fki fkj ofji and fii id then 4 a unital

C*-algebra 01 = C*( U fi( O'Li)) and injective worphisms fi: 01.1->01
I

such that U fi( O'Li) is norm dense in Ol and Vi <3, the triangle
I

i > 0

ot
\ >1
£..
11, ///////;j
Ot

]

commutes.

In the context of Axiom I, the Ol(0) are called the local algebras

of the theory, L) 0L(0) is called the local algebra of the theory,
O

and Ol= c*( U 0OUL0)) is called the quasilocal algebra of the theory.
0

[Note: The selfadjoint elements of O1(0) are the observables

which can be measured in 0.}

Remark: If G is an unbounded open subset Of\§, , then by definition




oLe) = cx¢ U oton,
QCG

thus
M(&l’d) =0t .
Axiom IT: If Ol and 02 are spacelike separated (i.e., if 01J.02) '

then the elements of 01.(01) commute with the elements of 01,(02) .

Rappel: Let 0l be a C*-algebra, G a topological group -- then

a representation of G on 0L is a homomorphism o :G —> Aut OC .

Axiom III: There is a representation ¢ of {?: on 01U such that
Yoe@,
Tt o
K(A,a)- 0L (0) = DL((A,a)-0).
[Note: Sometimes thig assumption is made only for the translation

("]

subgroup of (¢ T

+ {("Axiom IIIT ").]

Rappel: Let Ol be a C*-algebra, G a topological group. Let

K :G —r Aut 0{ be a representation of G on 0! -~ then a triple

R AL :US , where € is a Hilbert space and

Tl is a nondegenerate representation of 0l on 3¢
U is a unitary representation of G on ¢f ,
is said to implement o if

U(e) TAU(s) T = T(x(g)A) (A €D, c€G).

[Note: Recall that a representation Tl of Ol on ¥ is a morphism
m: 0~ (¢ ) (thus 1 is automatically continuous: || n{a)}| < llal}
WV A € OU (which sharpens to @l = 11all ¥V ae 0l if 17 is



faithful)). There is an orthogonal decomposition

H=w, ®N,
into invariant subspaces Bfrl and hﬁ’d, where }?ﬁ is the closure of

the linear span of the Ti(a)x (A€ Ol , x €3¢) and ¥ g is the set
of x€ ¥ : TA)x=0 YA€ D(. One calls T nondegenerate if Hd = { 0} .

Every nondegenerate representation is a direct sum of cyclic repre-
sentations.]

1,4

Let U be a unitary representation of\ﬁ\ on }f -- then

V:I'(a,p>
fk e dE

Rl,d

W,

Ula) = b’

the support of E being the spectrum of U.

Axiom IV: There is a faithful representation Ti of O on ¥
e ~ 4 .
and a unitary representation U of G’+ on b? such that the triple

Sﬁbﬂ ,T[,U& implements X , where the spectrum of UIRl}d
W

is contained
in V+.
[Note: Sometimes this assumption is made only for the translation

subgroup {"Axiom IVT.“L]

Definition: A theory satisfying Axioms I-IV is called a theory of

local observables: 3_ Dt , X, }_—Q, Nyl } .




CCR Let E#0 be a real linear space equipped with a nondegenerate

alternating bilinear form ¢ (so either dim E=+ 2% or dim E=2n (n=1,2,...)).

Example: Take for E a complex pre-Hilbert space, view E as a

real linear space via restriction of scalars, and let
0(x,y) = Im<x,y>.

Definition: A CCR realization of (E, G} is a C*~algebra CCR(E,¢ )

which is generated by nonzero elements W(f)} (f€& E) subject to

W(f)* = W(~£f) (f €E)

and
W{f)W(g) = exp <—' y-i o‘(f;g)> W(f+g)} (£,9€E}.
2
cHﬂznrarnple: Let 3¢ be a Hilbert space. Consider ?53( o¥) -- then one

can attach to each £ €d{ the Segal field operator

B (£) = F= @(f) +c(f).

v 2!
As we know, §S(f) is essentially selfadjoint. This said, put
w(f) = exp (V-1 (),
a unitary operator on ?S(H ). One can show that

W(f)* = W(-f)

and
W(E)W(g) = exp (- y-i Inm (f,g)) W(f+g).
2

Therefore the C*-subalgebra of @ « EFS(&(’ )} generated by the W(f) is

a CCR realization of (H yIm <, D> ).



-

EEEQ&E&\QE,EXISTENCE The pair (E, &) always admits a CCR

realization.

[Fizx an infinite dimensional Hilbert spaceaf . Put ‘{E = @ 0( £
fEE

(L ¢ =d YV £EE) and define W(f) € B (L ;) by the rule

(W(E)A) (x) = exp( Y2 o(x,£)) A (x+£) (x, £ € E; A€ ).

Remark: Let Ull(E,a'). Uiz(E,G') be two C*-algebras per the

theorem of existence -- then there is one and only one isomorphism

¢ : 0 (8,s) = OL,(E,0°) such that

$(w, (£)) = W, () V £€E.

[Note: Unigqueness isg, of course, trivial.]
Properties of CCR(E, & ):

(1) W(0) = I, W(E)* = W(E) L

(2) CCR(E,6 ) is not separable;

(3) CCR(E,s ) is simple.

(Note: Another point is this. Let M be a subspace of E -- then
the C*-subalgebra of CCR(E,g ) generated by {;W(f):febd} is egual to

CCR(E,¢ ) iff M=E.]

linear :
Aﬁ?ijection T:E —» E is said to be symplectic if

G(Tf,Tg) = 4 (f,9) VE,9€E.

LEMMA Given a symplectic map T:E —7 E, 4 an automorphism &
e i T

of CCR(E, ¢ ) such that



o{T(W(f)) = W(Tf)} (f€E).
[The W(Tf) satisfy the same general conditions as the W(f) and
both generate CCR(E,¢" ). Now apply the preceding remark.] |
{[Note: Needless to say, the condition
OCT(W(E)) = W(TE) (f£€E)
determines O(T uniquely.}

The CXT are called the Bogolubov automorphisms. They form a

subgroup of Aut CCR(E, ¢} and the arrow

T —2 O(T

is a representation of the symplectic group of (E, 6 ) on CCR(E, ¢ ).

Rappel: Let E#0 be a real linear space =-- then a complex

structure on E is a linear map J:E-— E such that J2= -1,

[Note: E becomes a complex linear space if we write V-1 £ = Jf.]
Example: Let ¥ be a real Hilbert space, 6 a nondegenerate
alternating continuous bilinear form on ¥ -- then 7 a complex structure

J on BQ such that J*= ~J = —J-l with J symplectic:
g{Ix,Jy) = o(x,v).

Now viewbe as a complex linear space via -J and put

(x,y)q =-0(x,Jy) + V-1 ag(x,y).

Then the pair ( 3, <. )G_) is a pre-Hilbert space.

[Note: Implicitly, matters have been arranged so as to ensure
that - 6 (x,Jy) is an inner product on §{ . In addition, it is

necessary to work with -J to get the correct signs. E.g.:



i

(x,V——_l'y}o_

- 6(x,J(-Jy)) + VYV-1 o(x,-Jdy)

- 6(x,y) - V-1' ¢ (x,Jy)

=VY-1 (V=T o (x,y) - 6(x,Jy))

= ﬁ?(x,y >o‘ .1



Example The free relativistic particle of spin zero and mass

m>0 admits a theory of local observables. Thug take for E the real

0
linear space Cc &E}'3;R) and let

ol{f,g) = E_n_<frg> r

where

(f,g) = f@§man, (p).

X
m

But there is a technical problem: Our standing hypothesis of non-

degeneracy is not met by ¢ . To remedy this, put

M
N={fer:f|x_=o0}.

Then the arrow

Kl
[£] —> flxm
E/N—> L2 (X )

is one~to-one and has a dense image. Therefore the prescription

Fal
{IlEl, [g)) = S f(P)g(p)dmm(p)

X

equips E/N with the structure of a pre-Hilbert space, so

is nondegenerate.

Remark: The elements of N are those elements in E of the form

(D2 +m2)f.



Definition: The guasilocal algebra of the theory is

m = CCR(E/N,O' ) C"‘) CCR(L2 (er/'-‘\ m) r 0-) .
Notation: Write
—_ oy
W(E) T W(E[X ),
a unitary operator on %Fs(Lz(th/«m)) which depends only on the
equivalence class of £, hence
W(l[E]) = W{f).
We have now to deal with Axioms I-IV.
Ad I: Let
Py
0lo) = c+{w(flx) : spt £Co}.
Obviously,
0, < 0, = D0;) < Ol(0,).
And:

Ol=c*x( () bo)).
0
Ad II: Suppose that Olj, 0, -~ then

flEE : spt £, €0 ,
f26E : Spt f2C 02

To see this, recall first that

— - 2 — - 2
Ao (x) = &6 (™) - A (xin%).
On the other hand,

X spacelike => £Lm(x) =0

=> EE.£3+(X?m2) =0,



Therefore
- o2
o-(fl,fz) = S 5 fl(xl) Im A_'_(_xl—xz,m )fz(xz)d’u{ldx2
01 02
= 0.

From this, it follows that

W(fl)W(fz)

|
0
"
o
l
Qq
H
[
'—h

2)) W(f;+£,)

= W(f2+fl)
vV -1
= exp -~ = & (f,,£)) W(f. +£.)
s (- 2 ety e
= W(fz)W(fl):

which proves that the elements of 0‘[,(01) commute with the elements

of 01(02).

7
Ad IIT: The Poincare group G’: operates on E:

(A,a)-f£f = ff\,a '
where
£ a0 = £(A T xma)).
Since
A V-1'{a,p) ~ 1
fA'a(P)=e £F(AN "p),

this action passes to the quotient:

(A ,a)-[f] = [f/\,a .



Bearing in mind that 4, o is invariant, we have
G({ANa) - [£1, (N,a)-[gl)= o ([£f], [gl).

So, by Bogolubov, 4 a unique automorphism o of 01 such that

Nea)

d(A,a)(W(f” = W(f/\,a)'

But this implies that

% nLay Otoy = 0U( A,a)-0).

Finally, the arrows

¢t — symE/, &)

Sym(E/N,s ) —> Aut CCR(E/N, ¢)
are homomorphisms, thus the composite

& : 6T —>hut CCR(E/N, &)
is a representation of @ I on OU .
Ad IV: By construction,

Ol = CCR(E/N, & ) < CCR(Lz(Xm,/Mm). o )

and

2
CCR(L (Xm,/btm)p ¢ )
is realized as a C*-subalgebra of @) ( .8:'S(L2 (Xm,/u m)))’ Take any
2
¢ €L (X rAs ) == then

1

™ Aaw( ) v™ AL = ww™ (ALa) 4 ).



So here 11 is simply the inclusion
— 2 o
O =B (F (@ (X ean )

and the implementation of o is immediate. Indeed, V f€ E,

ww™ on,ae) T we™ (Al
and
{m) . A _ A
™ (A ElX = £, at ¥
=

(m) =

(WU (A ,a)f) =WIE )

= A ( Ara) (W(f)).

ig contained in V+ has been seen before.

3
That the spectrum of U(mjlﬁ}"

Remark: The foregoing analysis can be extended to cover the case

of the free relativistic particle of spin s >0 and mass m > 0.

[Note: The massless case can also be incorporated.]




CAR Let E be an infinite dimensional complex pre-Hilbert space

equipped with an antiunitary involution [ :E— E, so

r2=1 <rxy> = {v.x>» Y x,yeE.

Definition: A CAR realization of (E,[’) is a C#*-algebra CAR(E,[”)

which is generated by nonzero elements A(f) (£€ E) subject to

A(f)* = A(['f) (f€E)

and

A({f)A(g) + A(PA(f) =<T'f,g > I (f,geE).

[Note: Here it is assumed that the map A:E —7 CAR(E, [') is
linear.]

Parallel to the CCR situation, there is a theorem of existence
and essential unigueness. Moreover, if M is a " -stable subspace of

E, then
CAR(M, ') < CAR(E, ).

Remark: It is easy to see that

“\f_;j £ flagj ¢ ey .

One can in fact be precise:
Hashh = 2 el 2+ chen ? - J<ree> | )32,
Y7

Therefore the map

A:E - CAR(E,[")

can be extended by continuity to a map



A:E — car(g, ™).

On the other hand, it can be shown that the arrow

CAR(E,[" ) —> CAR(E, ")

is an isomorphism.
Denote now by “LI(E, ') the subgroup of the unitary group of

E congisting of those U which commute with .

LEMMA To each U € 1A(E,[’) there corresponds an automorphism

Xy Of CAR(E,J' ) such that

(o4 U(A(f)) = A(Uf) (f€E).

The of y are called the Bogolubov automorphisms. They form a

subgroup of Aut CAR(E,[I’ )} and the arrow
U-—-—?O(U

is a representation of U(E, ') on CAR(E,[ ).

—~ 0
'E:a@a,r'=< P) )
i 0

Then [ :E — E is an antiunitary involution, thus it makes sense to

Put

oy T
form CAR(E,[').

[Note: View the elements of 'ﬁ" as column vectors, so
0 f*
o

me=

(x,YEE).]




—

This said, define a unitary operator U, :E —7 E (0 £ ©<2n)

by

e Y710,

Ug £ = .
...V...]_'e
e Y
Claim: V © ,

uer =M Ugy

In fact,
ue £ =
e~ Vo108 g

while

rle—vii’ey e\/“-Tery
’FUe‘fv= = .
r'eV—_l'ex e-V:_l'er.x.

Accordingly, ¥V 6 , there corresponds an automorphism o, of

T 9
CAR(E, ") such that
o - I A
o(e(A(f)) = A(Ue £) (f €E).
Moreover, the assignment
8 —r Xy
— Fal

defines a representation of\g;on CAR(E, ). Since‘£_=~£, there is a

decomposition



~ + 0 —
carR(E, ") = @ car_ (8, 1)
n
- ©0
into norm closed linear subspaces
—~ T V-1 n6
CAR (B, ") = { a: K B = e Al

Obviousgly,
—— g -~ ——
car (g, ") car  (E, < ear . (B, 0)

and

s S ol

CAR_ (E, ")* = CAR (E,[").

Therefore CAR(E,f') is a Z-graded C*-algebra.
b



Example The Dirac field admits a theory of local ohservables.

Thus take for E the complex linear space Czo(Rl'3;04) with inner product
Wy

W

<f,g> = j j- {Ex), ¥ 0Dm (x-y)gly) > dxdy

O
- 0
= S fﬂv(x) (% D, (x-y) )M Ry g, (v)dxdy,
Ay
R4 4
"y -
where
_ 1 1 j
D (x) = —{(m + I (x).
mn 2m Vcﬁ? 3 m

Take for [ :E —> E the complex conjugation and pass from (E,[")

to {E,[1). Here,
E = COO(RI'B'; 4@ 4).

C v Ay Yw

Definition: The field algebra of the theory is

g = CAR(E, T7) .

[Note: It is clear thatvE"3 operates on i?
"V_%N R Lo
f £, (£ ,(x}) = f{x-a})
from which an automorphism o(a: ?}‘—Vigzcharacterized by the relation

X a(A(£)) = A(£).]



2.

Notation: Given f =~ (g), write a(f) in place of A(f), and given
wg

g = (g) , write c¢(g) in place of A_(E;)-

{Note: 8ince A is linear, we have

A(f) =A($) =a( (cg) ¥ (\?'))
) (3)

al$) + ety

In addition,

(»(5))"
2 (%))

aEF

- = c(£).]
It is easy to check that
a(falg) +ﬁ(g)3(f) =0
.,E(f)ﬁ(g) +“g(g)g(f-) =0
and
alflelg) + clglalf) = {(Tt,g) I.

Notation: Given a monomial M in the &(f) and vc“(g) s let n(M}
be the number of a{f) and n* (M) the number of “g'(g) , 80 n({M) + n*(M)
is the degree of M.

[Note: Monomials are total in 7}' o]

Let

A (0) = C*{A(?): E&tfgc 0}(.



Then

¥ =c*([6| 97(0))

LEMMA ?F(O) is a\E:graded C*-algebra:
+ 00
Fo =D F .
-eQ

And a monomial M € 9 (0) belongs to %, (0) iff

n{M) - n*{M) = k.

oL V=16
[From the definitions, o(B(&Jf)) = g Ji(f) and cxe(gjg)) =
-V-To
e VE(g). Since c(e is an automorphism, it follows that

kg M = expl Y-1 (n(M) - n*{M))eM,

from which the assertion.]

LEMMA Suppose that 01]_02 -—= then

A € F,(0))

_> AR, = (-l)k'EA A

271

a, € Fyi0,)
[1f
spt £, C O
spt £, C 0
then

alf))glf,) + clfy)alfy)

= <f‘f1,f2>I = <§l,f2 >I



and
CE e = S g T £, ¥ O Gy
~a LS
01 O2
= 0.
So, for monomials
M, € Fp (0)
we have
(n(My) + n*(M;)) (n(My) + n*(M,))
M1M2 = (-1} M2Ml
{(n(M;) -n*(M,}) (n(M,) -n*{M,))
= (-1) 1 1 2 2 MM,
k2
= {~1) M. M

and the result follows by density.]

Now put
+ oD
Flo = @ F 0 o
Fo0) =F ;0
and let
37 =cx (U F o
0

70 = ¢ ( U Folon.

A

1 v fzu

{y)dxdy



Notation: 2/nZ is the subgroup of T generated by o« 2% {(n#0} .

n

LEMMA An element A € 53: belongs to 5_}:“ (n£0) iff A is Z/nZ~-invariant
R v, W

and an element A€ 7F belongs to %ro iff A is T-invariant.

[It suffices to consider the case when n#0. Trivially, V A € H:n,

o€ &/n&i => X _A=A. On the other hand, if A € p’fF and

o 2rm AR
+o n
then with A = 7 A., one has
-oo 3
_ Vot s 2Tm
n J
n-1 + ¢0
21T km
= exp V-1 ) > A
kz=-0 — n H = -0 A

=2
=

+ o0

J?=Z-OQA’(n+k_O (k = 1,...,n-1)
=
+60
— n
A= gmAkn € F P

From this data, for each n=0,1,... one can generate a theory

of local chservables. Here the local algebras are

o — F2M(0),



6-

the associated guasilocal algebra being Ean.- Axioms I, II, and II11.

are then immediate. In this connection, observe that if 01 1_02, then

A € Forn  O7) ,
— _ (_1,4k&n _
— AlAz = (-1) AzAl = AZA]_ .

ry€ F, o (0y)

Remark: It is possible to incorporate a representation o of

- 1
6)+ on %fzn o as to strengthen III_ to III. To get a true theory

of local observables, it is also necessary to verify IV but I shall

omit the details.



states Let Ol be a unital C*-algebra.

Notation:
(1) ULR is the collection of all selfadjoint elements in
Wty
Ol i.e.,

OIR={A&01 :A*-—:A}.
(2) UL+'is the collection of all positive elements in 0O ,

i.e.,

01.-'-

{a%:ae Ot §

{A*A:A&O‘L} .

I

Definition: A state on Ol is a linear functional ¢J: Ui'-q‘ﬁi

such that
w@y>0 Vvae ot

w(I} = 1.
[Note: A state @ is necessarily hermitian: (A*) = w{a) VaeQl .]
Let 47(01) be the state space of 0{ -- then 4?(01 ) is a convex
set and its elements are necessarily continuous of norm 1, thus 49(01 )
is contained in the unit ball of the dual of 1 . It is easy to
verify that f (Ol ) is closed in the weak* topology, so Jot) is

compact {(Alaoglu}.

Pact: ¥ A€M R’
S

Nall = swp {jw@f: wed o)} .

[Note: The supremum is achieved, i.e., Fw:ilall = |LO(A)|.]

If i is a cyclic representation of Ol on 3€, then one can attach



to any cyclic unit vector (2 G}e a state

w(a) =<2, )2 .

Conversely, given a state «), the GNS construction produces a
cyclic representation Tno of U1 on a Hilbert space b%;,with cyclic

unit vector {1 ,Such that

G
w@y =< 2, mm .

[Note: Suppose that i1 is a cyclic representation of O . Take

any cyclic unit vector 2 and perform the GNS construction on
wia) =<2, L2 >,
Then Tno is unitarily equivalent to Ti .]

Definition: A state ¢yis faithful if THQ is faithful.

[Note: On general grounds, Ti . is faithful iff A >0 => M ,{a)>0

(]
or still, A 0 = W(a) > 0.1

Example: Recall that a density operator is a bounded linear

operator W on ¥ with the following properties:
(1) W is nonnegative;
(2) W is selfadjoint;

(3) W is trace class and tx(W)=1.
This said, take 01 = CB(E{ ) and £ix W =- then the state

A —> tr (AW)
ig faithful iff W is invertible,
Remark: Let T be a representation of Ol on &{ -- then each

density operator W determines a state q)w,_viz, A~—> tr(Tr(A)W).

bDenote by gﬁ% {01) the set of such -- then Tris faithful iff aPﬁ (O



is weak* dense in *P('ﬁ ).

Definition: The universal representation Tiy of OT_is the

direct sum of all its GNS representations Tnd ( G_xP(OL )}, thus

K= o2, o0 o

WE P00

Remark: T u is faithful. 1In fact,

Tl U(A} =0

= MAQ =0 Y w

'l

=l ng@mQ, 1 2=0 Vo

=D w(a*a) =0 Vo

=>A*A = 0

=fiasa) = )2l 2 =0
=>Aa = 0.

Rappel: Let 17 be a representation of [ on a Hilbert space }Q --
then the following conditions are equivalent:
(1) 171 is irreducible;
(2) W(OLY' = CI;
(3) m(oL)" = B(o€);
(4) M(0IS2 = V L #0 in XX .

Definition: Let «J G’qP( 0() -- then ¢ is pure iff it is an
extreme point of xP(OL).

Fact: The GNS representation LLB associated with a state w is
irreducible iff ) is pure.

Remark: Let Tj run through the unitary equivalence classes of

irreducible representations of (J{ -- then



Vaelt, sup lin@il = jay .
Ti

Let of: 0l = 0(U be an automorphism of Ol -~ then a state

K T(W) (= wox) = .

Congider the GNS construction per ¢« -- then there exists one

and only one unitary operator U

£1u) and

w '’ Hw—_> B—{’w such that U | Qu}:

-1
Uwﬂw(A)Uw = T (aKA) Yae Ot.

[Note: The definition of U is the obvious one:

W
U(d'ﬁu(A)Qw = 'ﬁw( o(A)QQ .

Therefore U(d

unitary follows from the ¢ =invariance of W :

has a dense domain and a dense range. That Ucd is

2
v mu@ Q }]

= A lem Qe T @B S

L,y T lar)* T‘co("‘A)Qw>

= { o({A*A))

W {A*A)

CQr TmQ 5

~ 2
= | le(A).Q_(d“ .1
Let ¢¢ :G —7 Aut ft be a representation of G on 01 . Suppose

that «) is a G~invariant state:

T
Al 7)) W = W ¥ o € q.




Consider the GNS construction per ¢y =- then 3 a unitary representation

U, of Gon b—?wsuch that ¥ ¢€g, Uw(o-)ﬂw =Q°J and

U (6) Ty @MU, (6) ™ = M (ale)A) VAEO .

Therefore the triple { }QQ r T ,leg implements o .

[Note: Cyclic representations are necessarily nondegenerate.])

iy,

THEOREM (Markoff-Kakutani) Let K be a convex compact subset of
L ]
a linear topological space X. Let S be a commuting family of con-

tinuous linear maps X —> X which leave K invariant -- then 1 p€ K:

Tp=p WTE 9.

We shall now apply the preceding machinery to

Ol= c*( Lé) OT (0)) .

Suppose that Axiom III,T is in force -- then V aeRl’d, « (a) is an
gy

automorphism of 01 and it is clear that ¢x(a)Tl leaves QY(UT,) invariant.
On the other hand, the (a) commute among themselves, hence so do the
dia)T . In Markoff-Kakutani, take for X the dual of 0l equipped with
the weak* topology and let K= zP(OI ) == then the conclusion is that

3 a translation invariant state )

i }recq ’ ﬁlo

T T

T thus the triple

U Q"T} implements o .
Remark: Part of Axiom IV1. is therefore automatic. However

these generalities tell us nothing about the validity of the spectral

condition.



W*-Algebras Let of be a Hilbert space, ¥¥)a nonempty subset of

D y3¢) -- then the commutant yn' of YY) is the set of all T€ B (2% )

that commute with the elements of ¥y} . The bicommutant Tn“ is the

commutant of YY}'. It is easy to check that Tn'=m“'.

Suppose that YY) is a *-subalgebra of (3(J¥) containing I --

then the following are eguivalent:
(LM =m;
(2) Yr} is closed in the weak operator topology;

(3) " is closed in the strong operator topology.

[Note: In general, M (weak or strong closure) is m" .
Proof: Yn C —'h:\ f}?ﬁ 'CYY]| => m“cﬁ"ﬂ_n. ButTn"is weakly
closed and contains YN, hence YY}”=:;_TQ_.]

Definition: A *—gsubalgebra Y of B () containing I is a

Wr*-algebra if it satisfies one (hence all) of the preceding conditions.

Example: For any nonempty subset Yy of ®(of), ( W u M*) "

is a W*-algebra.
Example: Let T be a representation of a unital C*-algebra

on a Hilbert space #f -- then TT({0{)' and T 0 )" are W*-algebras.

LEMMA Suppose that (1 is a unital C*-subalgebra of @3¢ ).
Let YV be the strong closure of {{ ~- then the unit ball of 0{ is

strongly dense in the unit ball of ¥Y¥) .

Given a W*-algebra 17) , let Wm be the set of all linear

functionals on YY} continuous in the weak operator topology =~ then



WYT} is a normed linear subspace of TN* (which, however, need not be

closed) and the arrow

U
m».m

M=y AX

is an isometric isomorphism.
. 2 00 . \
Example: Take 8f = L°[0,11, Y\ = L%°[0,1] (realized as multi-

L 1 -
plication operators) then here W= L [0,11 and N_ Wi

{Note: In this situation, W is a Banach space, which is

™m

generally not the case.]

LEMMA Every W¥-algebra?¥Y] is isometrically isomorphic to the
dual of a Banach space,.
[Let'ﬁ;wlbe the completion of WTTL -- then the arrow of restriction

'Eﬁ —7 W is an isometric isomorphism, so Tn,‘fﬁ4 <]
™m ™ P ’ ~m

Remark: A W*-algebra Yn is closed in the norm topology, hence is
a C*-algebra. On the other hand, not every C*-algebra is isomorphic
to a W*-algebra. For example, it is wellknown that C[0,1l] is not
the dual of any Banach space.

Rappel: Suppose that {Aiﬂ < Q(¥¢) is an increasing net of

selfadjoint operators: i <3j => Aié_Aj. Assume: 3 C >0: |} Aill L cVi--

then 4 a bounded selfadjoint operator A of norm 4 C such that‘Ai—4? A
in the strong operator topology.

[Note: It is customary to write A = lim Ai.]




Let A : YN — C be a continuous linear functional -- then A is
said to be normal if for each bounded, increasing net {Mi} in Y} R’
we have

Lim A (M) = A(lim M)

LEMMA Let A€ YN * ~~ then A is normal iff J a trace class

operator T on of such that

AM) = tr(MT) VMEM.
[Note: Acceordingly, a state ¢ € AP(TY]) is normal iff (y{M) =
tr{MW) (M €YY) ) for some density operator W, so, e.g., if ey
is a unit vector and if Py is the orthogonal projection of ¢f onto

E\Q . then M—> < ) ,MCLS = E.r.(Msz) is a normal state.]

Notation: Y¥r}, is the set of normal elements of YV*.

Fact: Y, is a norm closed subspace of wn*.

[Note: Therefore YN, is a Banach space, the predual of WL .]
Remark: One can be more precise: Yn, is the norm closure in

W of W, de , MM, =-‘?7YL' hence YN ¢ ( M4 *.

To see the point, take IN= 63(¢) -- then W, x@l(}e) (the
trace class operators on »¢) and, as is wellknown, ® (3¢ ) can be
identified with (T)l( ¥ I*. The associated weak* topology on M (of)

is called the ¢ -weak topology. It is generated by the seminorms

A~ 1te(aT)| (T € ©, (¥ ).
It is clea;: that the ¢ -weak topology contains the weak operator

topology and is contained in the weak topology (the smallest topology

on @ (af) for which all norm continuous linear functionals on @ (df)



are continuous).

LEMMA TLet A €Y * —- then A is normal iff A\ is 6 -weakly
Ty

continuous.

Example: Suppose that ¢f is separable. Fix an orthonormal basis
fe,} and let M= @ (3¢ ) -- then the assignment
— 1
A Zn B (en,Aen}

is a faithful normal state, thus is in the predual Y¥,. But it is not

continuous in the weak operator topology, thus is not in W

m "

LEMMA Suppose that <) is a normal state on Yy} . Let ( h‘(’w y gy o+
Qm) be the associated GNS data -- then T, (MHIc G ( ?r(’w) is

a W*-algebra.

Definition: Let Y] be a W*-algebra -- then £2 €3{ is separating

for M if MSl= 0 (Me) = M=0.

[Note: If TN admits a separating vector {2, then ¥ normal state
W, 3xey i om) = <{x,Mx) (M €M) (x can be chosen cyclic
provided W is also faithful).]

LEMMA {2 is cyclic for YN iff £2is separating for YN '.

Fact: Yr] admits a faithful normal state iff ¥ is isomorphic to
a W*-algebra T (Y] ) which has a cyclic and separating vector.

A W*-algebra Y is ¢ -finite if every collection of mutually



orthogonal projections in ¥r] is at most countable.

I1f ¥ is separable (as we suppose in the applications), then
every W*-algebra on'}Q is necessarily 6 ~finite. On the other hand,
it is not difficult to prove that every ¢ -finite YN possesses a
faithful normal state; Consequently, in the separable case, there
is no essential loss of generality in assuming that YY1 has a cyclic
and separating vector.

The center of a W*-algebra YN is Z“h1=.vn AYM'. One says that

YY) is a factor if'ZTTl= CI.
[Note: In some sense, the study of W*-algebras can be reduced
to the study of factors (decomposition theory) but I'll omit-the

specifics as they are not particularly enlightening.]




Particle Theories Let{_Otfx‘éQ’Thtlk be a theory of local
observables ~- then Ti is faithful, SO Ot "is®™ m(0(). Accordingly,
we shall agree henceforth to identify Ol with 7Ti(0() and work
entirely in 3% . One can then embed 0{(0) in 0U0)" and this is

how W*-algebras make their appearance.

Definition: A particle theory in a Hilbert space H is the

assignment of a W*-algebra YY1 (0) to each bounded open subset 0 C M

subject to the following assumptions:
PT,: 0, 0, => MI(0;) € M (0,);
BT,: 0,10, => M0} < MI(0,)";

. : . =1
PT,: 3 a unitary representation U of ¢’ on &€ such that

1

(A ,a) MOU(A ,a)"t = MU(A,a)-0),

where

spec(UIE}'d)C:‘G;.

The quasilocal algebra 01 of a particle theory is the norm

clogure of U Y(0) and the global algebra Y] of a particle theory is
0

the weak closure of J (o).
O

[Note: Ol is a C*-algebra, YW is a W*-algebra, and M = OL".]

Remark: If G is an unbounded open subset of\B}'d, then by
definition
e = (U oy,
0C G
thus

Rt =m.



Observation: From the definitidns, ('?f is represented on M by

conjugation. This carries over to M': V¥V M'e€ ™', U(K ,a)M'U(;’\\I,a)—le ',
Thus take any M € YY} —-- then

MU(N, )M U(A ,a) "L

1 1

U(N,a)U(A,a) "t MUCR,a)M'U(N,a) "~

1 1

U(K,a)M'U{K,a)" MU(AN ,a)U(A,a)”

~ o -1 ’
= U{N,a)M'U(A ,a) M.,
o
A particle theory admits a vacuum if J a N +—invariant unit
vector {2, such that (U 'YY](O))QO is dense in ¥ .
0O

[Note: Therefore UIQO and MQO are dense in ¢ .1
Notation: A PTV is a particle theory that admits a vacuum.

Example: Take 9% = &, so @ (L) = C and assign to each O the

W*-algebra YN (0) =£~. Take Q0=l_ and let U(,"\V,a)=I V(X,a) -

then all the requirements for a PTV are met.
[Note: To eliminate this triviality, in the segquel, we shall

assume that dim &f » 1.]

THEQREM Suppose given a PTV -- then
R e 4

vl m .

[Fix M€y, M' € ™' and put U(a)=U(I,a) -- then, on the one

hand,

1

<S2gr U(IM'UR) M 2>

=dM* Qg UlaIM' €245,



while on the other,
{QO,U(a]M'U(a)-lMQ(,)

— 1 -

= <M'*Q0,U(—a)MQO>.
The Fourier transform of

* ¥
has its support-in‘G; and the Fourier transform of
a -—‘>(M'*QO,U(—a)M Q>

has its support in'G;. Therefore the support of the Fourier trans-

form of

1

a-—> <Q0,u(a)m'u(a)' M<2,>

is the origin, so, by the usual argument,
(QO,U(a)M'.U(a)_lM Q0>
is a constant function of a, thus Y a,
<mr 2 UM Ua) T >
= <M*(24,M Q0>
Since‘qulo is dense in J{, this implies that V a,
u(ayM'U(a) "t Q, =M

or still,



1

(U(a)M'U{a) "~ -M') L, =0

=

U(a)M'U(a) "t = m .

€2, being separating for Y7)'. It then follows that

vua)e Mm" =™,
as contended.]
< 1
[Note: PT3 provides a representation of (?+ onm , i.e., a

"
homomorphism (@ I—-——> Aut YY) . This representation restricts to a

representation of Rl'd on YY) and the theorem says that the action is

h "

via inner automorphisms.]

The vacuum of a PTV is said to be unique if

dim {xeb-e :U(I,a)x=x V¥V a } = 1.

3
[Note: This condition implies that the space of (¥ -invariants

b ™
is one dimensional (£ I is semisimple).]

1,4

Remark: If the vacuum of a PTV is unigue, then ¥ nonzero ac—‘_u& ’

dim {xeb{’ :U(I,ta)x=x ‘v’t€\5}= 1.
[Here is a sketch of the proof. Let E0 be the orthogonal pro-

jection of 8 onto E«QO -- then ¥ xGE":J'H , a (x,Ea ¥ > is absolutely

continuocus w.r.t. Lebesgue measure, which implies that

lim U{(I,ta) = EO
t —7 + 060 :

in the weak operator topology. If now X'lﬁg.(lo and U(I,ta)x=x% \{téiﬁ,



then
”xllz=(xJﬂLtMX)
- (x,Eo x)=0 (t —> +0),
so x=0.]
THEOREM Suppose given a PTV with a unique vacuum -- thén 7 =
G .
{From the previous theorem,
U(r,a)e M VYa.
So, ¥ M*EM ',
] -1 t
U(I,a)M'U(I,a) = M
—3
U(r,a)M' €2, = MTC2,
—
M, =cQ, (F0
=
M' = CI
=
m' =crI
=
W=m" = 8 (¥).]
LEMMA Suppose given a PTV. Assume: Y| is a factor. Let
aG\B}'d be spacelike -~ then ¥ M€ {UJWM(0),

0

lim U(I, Aa)MU(I, Q\a)_l =_(Q_0,M Q0>1
B =+ o0

in the weak operator topology.



[Since !N is the dual of YN}, Vx>0, the ball {MewWy:fimllsr}
is ¢ -weakly compact (Alaoglu). Let M, € Y(O,), where O, is arbitrary
but fixed. Consider the net

-1
ju(, Aa)My U(I, Ra) ":AZ 0} .
To prove that it is convergent to <QO,M0 QO >I in the weak operator
topology, it suffices to prove that every subnet has a subnet con-
vergent in the weak operator topology to (QO'MOQO >I. Since
Wu(z, aay u(z, aa) HHE & Mgl

every subnet has a subnet convergent in the ¢ -weak topology to some

point in the ball of radius [IM0 | . say

lim U(I, A.a)M, U(I, A.a) = A,..
= i 0 i 0
Because a is spacelike ( {a,ad) = a(z) —]a]2 <"0), Yo, 3 .9\0: A ?\0 =

(00 + Aa) 1 0, thus 310:1 Zio

=
| (o0 + ;\ia) 1o
—> -1
U(I, Aja)M, U(T, Aja) " € TYNO, + Aga) TMU(0)!,
so ¥M € mM(0),

UL, Aja)My UL, Aga) tem

= MeU(T, A ga)My U(T, Aca) L.

Passing to the ¢ ~weak limit, we get

AgM = MA, = A, € YN0} .



But this holds ¥V 0, hence A; € V', On the other hand, A, €

(convergence in the 6 -weak topology implies convergence in the weak

operator topology}), thus A0<E mn J;I,TT] being by hypothesis

a factor. Therefore

To calculate C(AO), note that

Lim €2, U(T, A a)M, U(T, Aza) "

1

Qo>

(QO,C(AO)IQO>

C(A) < <2 4, 2D

C(Acl.
And: \f‘i,
< 2 ULI, Aga)My UCT, A0 1L, >
= <Q My <>
Combining these two facts gives
C(AO) =<QorM0 Q0>r

from which the lemma.]

THEQOREM Suppose given a PTV. Assume: ¥Yr} is a factor -- then

the vacuum is unique.

[Let x € 3{:

U(I,a)x = x Va.

Take X orthogonal to glo. Fix a spacelike a -~ then V M € LJ ™X0o),
0



iim < x,U(I, Aa)M U(I, Q\a)_lno >
A—> +00

=<Q03MQO ><xr Q0>
= 0.
But -

< x,U0(I, paM (I, aa) 1O 0>

Il

< U(Ir_ Q\a)er U(I:- ?\a) Q0>

<xM2y>

x 1 (L(_)J o)) 0
=> x = 0.

Therefore the vacuum is unique.]

Remark: Suppose given a PTV for which ¥¥} is a factor -- then

TN must be (L) .

A PTV ig said to be additive if
o= Uo. = M = (U ™Mo.) \ ",
j j J

A PTV is said to be weakly additive if V¥ 0,

( Eg 7?0(0+a)) "= .

LEMMA An additive PTV is weakly additive.
WA AN

[Fix a double cone D € ) and choose a point Xo€ 0 == then

D U (O+a),
a@ID



where a runs through all d-xo (d=x0+(déx0)). This guarantees that

U {O+a)

ag ID

is bounded. 1In fact, ¥ x€0 & ¥V d€D,

fix + all

“ X + (d-xo)“
2 fxll + flall + fixyil

which is uniformly bounded in x and d. Therefore

™) m( U (-0+a))_

aeID

= ( U YY](O-i-a))".

aF_ID

ButoOis final in @ , hence
W = (U i | "
D

C(%J « U W)(o+a))")"

aGID

C((La) ) (O+a) )") "

(U o )

cm
(UM(CHa) ) =T .l
a

Remark: Suppose given a weakly additive PTV with a unique

vacuum ~- then we shall prove later that ¥ a,



10.

() M) = cI1.
C2a i

[Note: The interpretation of this fact is that there are no

nontrivial observables at a point.]



Edge of the Wedge We shall need the generalization to several

complex variables of the following standard statement from one complex
variable.

Rappel: Let

D+

{z: lz|<1 & Imz>0}

D” ={z: 1zI1<1 & Im z<0] .

]

+ +

holomorphic inﬂ{D_ having continuous
D

Suppose given two fﬁnctions {f
f

boundary values at real points |x| ¢l and that these boundary values
coincide -- then J a function f holomorphic in { z: 2] <1} such that

£]p*t = ¢t

£flp

I
h
L)

" Extensions of this result to several complex variables are called
edge of the wedge thecrems.

Notation: Let CC:E? be a proper convex open cone with apex 0,

T(C)

il

R +¥Y-T'c
(={z€c’: m zect)

the tube based at C.

THEOREM Let
e e

B =‘{z€(§%llzll< l}
Wt

and put

B NT(C)

i O+

o
Q
li

BNAT(-C).



2'

+
£F Pe
Suppose given two functions -& _  holomorphic in ' having
f -
Be

continuous boundary values at real points lell(’l and that these

boundary values coincide -- then 4 a complex neighborhood'Y] of
[lx\1< 1 and a function f holomorphic in Y} v BE\JBE such that
+ _
leC-f

leC=f .

Remark: In one dimension, take

C ={y:y>0} .

Then
+ 4+
BC =D
BC=D

and the role of Y] is played by D itself.
Application: Suppose that F is holomorphic in B NT(C). Suppose

further that

iim F(x+VY-Ty) =0 ( {txli<1).
y — 90
vy € C
Then F=0 in B N\TI(C).

[Define a holomorphic function G in BNT(-C) by

G{ix +V-1y) = F(x ~V=Ty).
Obviously,
lim G(x +Y-Ty) =0 ( Jixll<L).

vy~ 0
y&-C



So, thanks to the edge of the wedge theorem, there exists a function
® holomorphic in a complex neighborhood Y] of {lxil ¢ 1 which is an

analytic continuation of ¥. But

Nxll < 1= F(x) = 1lim Fix+ ¥-1y) = 0.
y—>0
vyEC

Therefore ¥ = 0 = F = 0.]

[Note: The last step uses the identity principle from several
complex variables: If f is a holomorphic function in a domain D
which, together with all its derivatives au f, vanishes at some

point p,€ D, then £ =0 in D. Corollary: A holomorphic function
0

that vanishes in a real or complex neighborhood of a point of a domain
must vanish identically in that domain.]

Here is an example. Let U be a unitary representation of‘E}'d
on a Hilbert space of with the property that the spectrum of U is

contained in V+:

S V_—1.<arp>
e s |

U{a) = E .
(a) J o
v+
Put
V—l <Z!p>
Uu(z) = e dE_,
~ j &
Ve
where
z=a+V=-1b¢€ Rl'd + V-1 v, .
st +
Since

WT{Z,-p) V-1<a,py =-<b,p)
e = @a e



and

— =<b,p>2> 0,
PeEV,

the integral exists. This said, W Y €3¢ ,

V:—f< 3 2
Hu@zy ¥l 2 = [ le “P2

l d<ql'Epl‘y>
v-f-
-2<b,
< 5 e p>d< L}’;EpW}
v,

acy B ¥y = Nyli?,

{~
<‘.|<--'ﬂ

+

thus JU(z){} £1, so U(z) is a contraction.

LEMMA We have
N N,

lim Ula + V=-1'b) = U(a)
b—> 0

in the strong operator topology.

[For any WY &€ )¢ ,

Nua +VI'D) Yy - u@ || 2

V-1'Ca+ V=T b,p> V-1'<a,p),2
-a ‘ a< l}’,Equ>

| e

<:[°---\

(e -1 | alV¥ e ¥y



j- - <b,p> ,2
= 1 -e l aly E v
v,
But - <
- {b,p) 2
|1 -e AT Ly
and for fixed p,
-<b:p> 2
lim |1 - e 1 = 0.

b~—>0

Therefore, by dominated convergence,

~<{b p 2
lim J’ll—e P2 A<y ELy > =0,
b—>0 %
Vi

from which the assertion.]

Now fix Y ,QOGW and A € A(d¢). Let

f,a(2) =Y ,JU(=Z)A 4> -

1l,d

- b4 - l,d
Then f'lll,A is holomorphic 11].&

+ V-llv+ and continuous on.&i +

V=T (v, Ll{Oi )z

Suppose that 4 &>0:

Il all< &g = f\}’A(a) = 0,

Then

Hh
.G
I
9
1
o
<
N
m
f
'—I
o
+
1
'—I
<



Reeh-Schlieder Suppose given a weakly additive PTV -- then ¥V O,
YYY(0) QO is dense in §f .

To prove this, fix 00 and £ > 0:

0, +aCo Ya: Jlall <& .

Consider any Wed¥: ¥ L YY}(O)Q_O. Given M, € TT}(OO).r form
flp,MO (z) =<V¥ ,U{L,z)M; 24> .

Since

U(I,a)m(Oo)U(I,a)-l

= M(0,+a)
 mo),

Na: Hall<eg

-1
fl},'Mo(a) LY yU(T,a)M) U(I,a) (L, >

= 0

f"V:MO (a) = 0 Y a.
I.e.: Ya&VWV ME Yﬂ(00+a),

<‘P:bﬂ§103> = 0.
But, by weak additivity,
( U m(oo+a))" =M.,
a

so ¥VMEWM,
Y My p=0



=> V¥ =0,
MQO being dense in 9¥¢ .
Remark: QO is separating for YN (0). Thus choose P:0C P‘L' =>
0O LP = YO) < M (P)' (cf. PT,}. By the above, () o is cyclic
for YN (P), hence separating for WU (P)', hence separating for TY(0).

Example: Let E, be the orthogonal projection of ¥ onto C QO -
Wy
then E, £ Y (0).

[In fact, E, € TYL(O) =51 - E, € MUO) & (I-Ej) QO =0 =>

I-E; = 0 =21 = E,4.]
. s 1 1,4 1 a, .
The restriction of U to R™ (R = R X\.& ) is the one parameter

Y ey Y
eV-l tH

group of time translations, hence by Stone, U(t) = , where

H is positive and selfadjoint, the enexrgy operator.

Definition: ¥ o € 3¢ is analytic for the energy if §0 is an

analytic vector for H.

[Note: Therefore ¥ 0 € Dom n Vv n and
H

&z H' ¥, 1

n=0 n!

t < + 0

for some t >0.]
Example: C)_o is analytic for the energy (in fact, H QO = 0),

The foregoing can now be extended: If TO#O is analytic for the

energy, then ¥V 0, Y 1 ¥1)(0) ¥, = LS M ¥, hence Yo, M) ¥ 0
is dense in M provided that the vacuum is unique (so Y= ®B (3 )).

A
Remark: Suppose that f(:TL:L (5) and spt £ is compact -~ then



D A
f(?\)dEh

X ® VoIl e
0 -0

o0 0Q Y-T tA
X £{t) (f e dEﬁ) dt -
$5%8) 0

A
£(H)

L]
QC_.-—-—)

o0
S f(t)U(t)de.

- 00O

A
and: ¥V YV € ¥, £() ¥V is analytic for the energy.

LEMMA In the weak operator topology,

ATaVa VeV
-tH
lim e = Eq-
t—> + 00
[First, V ’A ZOI
—t/\ 1 ( A =0}
e —>
0 (A>0
Therefore, Y X,V €M ’
~tH 0 _tA
<%, e yy = g e d(x,EAy)
0

o0
- i S TIERCILING:

= <x,E0y) .1



The Intersection Property Suppose given a weakly additive

PTV with a unique vacuum -- then Y a,

M YY}l(0) = CI.
03a i

To prove this, fix a and put -

1,4 L
sa={bev13V' : a + befa}}
- ll'd ] .L
8, =1b€R'“: 0 + bcint 07}
Then
s, = U s
a 03 a 0
Take now an M€ ()} ¥YN(0) -- then
O02a

M= M+ M¥ + Y21 M-M*
2 2V ~1

so we can suppose that M is selfadjoint. Let
Fy(b) = <.C10,MU(1,b)MQO> .
where b €5_. Since M € Y0} (0 3a), ¥ be Sot
U(I,b)MU(I,b) L € M (0+b)
. 1
C yni{int 0 )
M-U(I,b)MU(I,b) L

= U(I,b)MU(I,b) 1-M

Fy(b) = <§‘).0,MU(I,b)M Qo>



-1
<€2,,MU(T,b)MU(T, D) T HC2 o >

1

i

<€y, U(1,pIMU(L,b) "ML g>

<QO,MU(I,—b)M 2>

FM(-b).
But Sa = OLBJa SO' hence FM(b) = FM(—b) v bGSéllr a relation which

obviously persists to Sa’ Let

1,4,
W =w{vv€&£ :lwgl < lel.}‘
Then
WCs, =>WwWcCs,.

2

Fix ;Gﬁzﬁo =| w l2
Wy

(50#0) and write
$(t) = B (tW) (tER).

On the basis of the definitions, it is easy to see that the Fourier
transform of t — P (t) has its support in V; and the Fourier transform
of t —> <l>(—t) has its support in ?_. Since +(t) = C”(-t), the usual

argument implies that ¢(t) is a constant. Therefore
€2 o MU(T, )M 2

2
= <2 .M

<MQ UL EIN €2, = <€2,,M°C2 >

li

SHMQy M2,

Hu<a 0 - w1y



= lluQ 1l -1 U(I, MM 4]

=
U(I,tw)M Qy=c, MOy (Fep)

=

MSCYL UL, WM ) >

= <{M0,,c, MO >

=c. < MQO.,MQ0>

=<MQ, MO D>
=

c, =1 VYt

=

U(I,t’&)MQO =MQ Y t.
Finally, for an arbitrary x€ 3f .,

lim <UL twM O >= (=, EgMQY o >

A ——

t—> + 00

<xM82y5>=<%,E;g M2 S

> MO, = By M)

= M, <QO,MQO>Q0
=> M=<QD,MQ0‘> I,

DO being separating for Yr}(O0).



Remark: The fact that '¥(t) is a constant can be established

by using complex variables. To see this, note that

5 V-1 £t <{w,p>
$(t) = e A<M, E, ML > -

Vs

Since <w,p> 2 0 VPG@_;

- V-1't<w,p)

$(t) e AN B, MO >

il
<f ey

+

$-t) = $(r).

]

Moreover, <b(t) can be analytically continued into the upper half plane:

V=1 z<w,
b e g o EECER

Ve

A<M 2y, E MY o> (Im 2> 0).

Since <P+(z) is continuous on Im z > 0 with boundary values c}:(t) , the

Schwarz reflection principle implies that the prescription

$_(2) = $_(2) (Im z<0)

is an analytic continuation of 1) +(z) into the lower half plane. The
resulting function is bounded and entire, hence by Liouville, is a

constant.



Wightman's Ineguality Suppose given a weakly additive PTV,

where YY] is not abelian. Fix O,P:
0 C. P and dis(0,fr P) > O.
Then YY)} (0) is properly contained in YY) (P).
To prove this, we shall argue by contradiction and assume that

M (0) = YN{P). Choose & > 0:
lall<& = 0+acep

=> YN)(B+a) & M(P).

Take any b: I|bW1 <& =- then
T (O +a + b) = UL,b) MO + a)u(I,b) T
C u(I,b) M(P)u(I,b)t
= U(I,b) M (OIU(L,b)" T
= T (0 + b)
Cm(P)r
from which, by iteration,
n
W+ T oadeMeE  fla dl <& ,k=1,...,n),
k=1

™Mo + a) € NP

UJ Mmoo + a) € M)

a



2.

™ :(La) "fmo+a))" c M)

= MrEp)y<m
-

(6} =T

On the other hand, Ja:o+a lo (choogse a spacelike with [l all >2> 0),

thus, from PT2,

™o + a) < Mi(o)'.
But

U(I,a) YN (0)U(I,a) "t

= U(I,a) m U(I:a)“l

m (U(I,a) € M )

mcwme.
I.e.: YYiis abelian, contrary to assumption.

Here is an application: Each YY) (0} is infinite dimensional

provided that YY) is not abelian. Suppose false: 4 0: dim YHO) < +o0.

Choose 0 3023 Y s o, ¥ n and d13(0n+1,§_1_' On) > 0 -- then m(on)

1

is properly contained in Y} (0) Y n, hence
dim YN (0) > dim M (0;) » dim ™M(o,) ~---,
and this is plainly impossible.
Therefore YV} not abelian => MN = +00 ., If in addition, our
weakly additive PTV has a unique vacuum, then YN = B{ f ), so under

these circumstances YY) is not abelian if dim ¢ >1 and the TN (0) are

necessarily infinite dimensional.



Y-1 tH

A Theorem of Borchers Suppose that t —> U(t) = e is a

one parameter unitary group, where the generator H is nonnegative:
H> 0. Let E,F € D (9{) be projections with EF = FE = 0. Assume:
3 £ >0 such that |t| < £ =

U(t)EU{~-t)-F = F.-U(t)EU(~t).
Then VY t,

FU{t)EU(-t}) = 0.
To prove this, introduce

e pu(t)EU(-t) ™,

Due to the assumption on H, e H js invertible and its range is dense.

Given W € }P : put

£y (B =Y . e H ruiru(-t)e P @ >

our objective being to establish that £ y ig identically zero.

We may assume that € = 1. Since

o Y-1z4
U({z)y = S e dE,;\
0

is holomorphic in Im z >0, the function defined by
. -H ~H
(Y. e "FU(z)EU(-z)e " ¥ D> (0<Imz<1)
£ -\P (Z) =

VW, e Hu(zyru(-2)Fe" R ¥ > (-1< Im z <0)

is holomorphic in the unit disk and vanishes at the origin (the
boundary values coincide at real points | x| ¢ 1 and
-H
U{-z)e Imz(l

is holomorphic in ). Fix §>0: 0< § < 1/2
e Mu(z) -1<Inm 2



and for n>1l, put-

[

E;(mh) <wu€*muwg%;~sh U(-z)e™ P Wy (0<Im z<1)

n

il

2y (2ih) <\P,6_HU(Z)-Ehl---Eh U(-2)Fe P ¥> (1< Im z <0).

n

Here h=(h1,...,hn) { lhil <§ & hi;!hj (i#3)) and Eh_=U(hi)EU(-hi).
i
Obviously,

lim §+ (x+ V-1 y;h) = lim ?éql (x+ ¥ =1 y;:h)
y->0 y—>0
y>0 ¥ <0

provided Ix1 < 1- § . Therefore the function

@fp (z;h) (0<Im z ¢1)
D (z;h) =
\P

§1V (z:h) (=1 <Im z<0)

is holomorphic in }z | < 1- 8§ . an easy calculation shows that

@Wm-hi) =0 (i=l,...,n),

thus
§w(z:h)

= :
||(z+hi)

i=1
is also holomorphic for lz|< 1-§ . Since llu(z)ll £1 and
lz+b, 1 2 1zt~ fn, | 2 1-§ -§ =1 22§ if {zl=1-8 , it follows

from the maximum modulus principle that

| Btz h)|4 18 " T_T IZ+hi'l) i



if Yzt € 1-8 . Now let 8§ -7 0 to get

bey @1 £ 121 Hwil? (tzl<¢ 1.
Y

But n is arbitrary, hence £ vanishes identically in the unit disk.

¥

0 {Imz<1
Finally, f‘V ig actuvally heolomorphic in less
-1 <Imz<0

]-e0,-1]1 U {+1,+c0[, so f‘P vanishes identically in this region as well.
Therefore

0= £y (2V-T 0) = £, (t),

from which the result.
Remark: This proof makes no use of the assumption that E,F € B (3¢)

are projections.



with a unique vacuum.
The Schlieder Property Suppose given a weakly additive PTV'/\

Fix O,P for which 3 £>0: |l all<& => 0+ a L P, Take nonzero

projections E € YN (0), F € M{P) -- then their product EF is nonzero.

To prove this, assume instead that EF=0. Consider the one

parameter group of time translations: U(t) = e "Lt gince H is

> 0, Borchers theorem is applicable, thus VY t,
FU(L)EU(~t)=0
or, since the situation is symmetric,

EU(£)FU{(~-t)=0

EU(t)F=0

=
A
Ef (H)F=0,

A
where fG‘LlQE) and spt £ is compact. Choose XVO:Fly 0#0 and choocse

A M
f:f(H)F l\’ 0#0. Put ¥ 0=f(H)F TPO -— then ﬁ 0 is analytic for the

energy and E I0=0. But W& o 1is separating for ‘M (0), hence E=0, a
contradiction.
[Note: The Paley-Wiener space contains an approximate identity
A
(i.e.,3 £} :f —>3), thus £ (H) —> I weakly, so Yy,
Y reyd , we have
A N [ ]
CE,MY .y
o0

= S £, (£) {ue)y , ¢ '> dt

- 0
— <U(0)\Pr lp'> = <q"rq">

T mY 40 (V40



with a unique vacuum.
The Borchers Property Suppose given a weakly additive PTV A

Fix O,P:

OC P and dis(0,fr P} > 0
and for which 3 00:

L
0. Co M p,

0
Then ¥ nonzero projection E € ™WY(0), 3 a partial isometry v € Y} (p)

such that V*v = I & VV* = E,

Remark: If O,P are both double cones, then
OC P and disg(0,fr P)> 0
=> J0,:0 coln o
0. 0 L 3

In fact O, being a double cone, is connected with 0~ , i.e.,

—_ — = L -1
0N(0)* # @, hence (see the causality notes) (0) N P#P. But (0)
is open and (6)L N pc ot f1 P, so we can take

_ =l
Oy = (0)y" M p.

Rappel: Let V € (3¢ ) -~ then V is said to be a partial
isometry if 3 closed subspaces y{' and 3 " such that V restricted
to ' is an isometry from 3¥{' onto 3¢ " while V restricted to }}-(“J‘

vanishes identically. One calls §¢' the initial space of Vv, ¢ "

the final space of V. The adjoint V* is then a partial isometry

with initial space ¥ " and final space »{'. Moreover, V*V is the
orthogonal projection of 3fonto p{ ' and VV* is the orthogonal
projection of yfontoyl ".

[Note: Any one of the following conditions is necessary and
sufficient that V€M (3¢ ) be a partial isometry: (i) VV*V=V;

(ii)} V*V is a projection; (iii) v*vv*=v*; (iv) VV* is a projection.]



: . . . .
LEMMA QO is cyclic for M(P)' and EQ) , is separating for

™H(P)'.
[According to Reeh-Schlieder, €2 , is separating for W)(P),

0
i.e. 2 0 is separating for (M (P)') "', hence is cyclic for YY{P)'.

i
Fix 0,:0, < © N p = Yn(oo) < o) & mM(0,) © M(P). Suppose
that M'E Q.0=0, where M' € M (P)' -- then ¥ M € YWNO,), M'EM Q4=
M'MEQO = MM'E QO = 0. But Qo_is cyclic for TY){OOJ {Reeh-Schlieder

again), so M'E=0. Therefore M'=0 (apply the Schlieder property},

which proves that E QO is separating for YN(P)'.]

[Note: Since E € ¥7)(0) < Y} (P), we have M'E=EM', hence M'E=0 =>
EM'=0. This said, to draw the conclusion that M'=0, look at the
argument used to establish the Schlieder property. Here, || all <& =

O +aCP = U(a)EU(-a) € M(P). In particular: |t | <& =>

U(t)EU(-t) € YY(P) =7 M'.U(t)EU(-t) = U(t)EU(-t)-M', which sets the
stage for an applicatibn of the Borchers theorem.]
———
Define now a positive linear functional on YN(P)' by the
prescription |
M' —» < E QO,M'E Q0> .
Because
{EQ M *M'E2,>
={M'EC2,M'EC24 >
>0

if M'#0, this functional is faithful (by the lemma, E_IZO is separating

for (P)'), so 3 a vector Y 0 cyelic for YYHP)' such that ¥V M' € YN(p)!



<EQO.!M'EQ0> = <1‘|)0th lyo> *
Definition: Write
M \P0=M’EQ0.

[Note: This makes sense. In fact, M' Y g =0 =$-<fE‘f10,M'E£?O‘>=

0 ==>M' = 0 (a faithful state is injective.]

To see that V € WI(P), let N' € Y)(P)' -- then N'VM' Y =
N'M‘EQO. On the other hand, VN'M' o= N'M'E Q_O. Therefore
N'V = VN' = VE (Y}(P)')' = W)(P).

V*/=I: We have

<V*VM' -q,: O'N' q’ 0 >
= CVRM'ES2 4,8 W >

CME S,/ N W45

<MEQL,,N'ES >

CEQ M *N'EQL >
= <WOIM'*N. 'ql())

il

<Mty o'V VD>

V*V=1I,

VV*=E: We have

VEVM' = VAM'E S0

MY

VVAMIEQ) o = VM' Y

M'E Q) .



IT.e.:
vvrEM' 2 o = EM' (2
=>
VV*E = E,
2 0 being c¢yclic for YY)MP)'. Since V ig a partial isometry, VV*
is a projection, thus
E £VV*,

To establish equality, it suffices to show that the range of VV* is

contained in the range of E or still, that EVx = Vx Y x G?r? .

EVM'

Y, =EM'ESY,
= M'EZQO
= M'F Qo
= VMY,

=

EV = V
=>

EVV* = VV*
=

Indeed,



Simplicity of the Quasilocal Algebra Suppose given a weakly

additive PTV with a unigue vacuum -~ than the quasilocal algebra
01 = c* (U meon
0

is simple, i.e., has no nontrivial closed ideals.
Thus 1et-43 #A {0.3 be a closed ideal of 01l , w : oL— 0“-/«9

the canonical projection.

LEMMA 30, ON0Mooyz 0% .

A

[Assume the opposite -- then W 0, the restriction of T to
Y1} (0) is one-to-one, hence isometric, so by continuity, 17 is an

isomorphism, which implies that53==i0} , a contradiction.]

We can, of course, take the O of the lemma to be a double cone.

This done, f£ix another double cone P:
0C P and dis(0, fr P) > 0.

Choose a positive selfadjoint M € < OV (0):

i mit
S A dE,A .

M =
0
Consider the projection
~H ml)
E = ‘j; dE9\ (g> 0.

Since E € YY) (0), 3 a partial isometry V € Y11 (P) such that v*y=I

& VV*=E (Borchers).

LEMMA We have M> g E.
Ry -



[In fact, Vll’eb‘? .
I Mt
<\‘P fM.\k>=J'
0
£
- [ aacy s

0

&

1My
2 L Ad<yY JE, W

{iml
ZES- ad v rEQ\\P>
&

=€£€<Y ,E¥Y>

Accordingly,

V*MV > E V*EV,

But
VV* = E =) V*YV* = V*E

=> V*VV*V = V*EV

=>
I = V*EV.

Therefore

V*MV 2> £ I,

which implies that V*MV € S is invertible.

D =0,

A a<y 2: P

M1}

=<¥Y,ecEY> .]

But this means that



The Totality Lemma Suppose given a weakly additive PTV with a

unique vacuum. Fix a nonzero projection Eg £YnN (0,) -~ then the set

§ U(L,aEU(I,~a) Y : acR'Y, ye I
is total in f.

To prove this, put U(a) = U(I,a) and suppose <1.|J0,U(a)E0U(—a)'\y>
= 0 a &« ¥¥ -- then we have to prowve that Y, = 0 or, recast, we
have to prove that Ea‘l]lo =0 Ya => 1P0 = 0, where E, = U(a)EOU(-a).
Let P, be the orthogonal projection of ¥ onto {WO:Ea Y, = 0 Ya .
Fix O0: 3 €0 for which flall<g => Op + a 1l O -- then

EM=ME (M EO), lall<E ).

Let P be the orthogonal projection of ol onto M(O)PO}Q . Obviously,

Hall < &€ = EaP = 0, thus by an analytic continuation argument,

EaP =0 Ya, so P_<_P0. On the other hand,- it is clear that P, 4P.

0

Therefore

P——-PO.

But P € YYKO)'. 1Indeed, YN(O}P,3¢ is invariant w.r.t.V}(0), hence

% M € Yr}{(0), MP = PMP =) PM* = PM*P. Since Y)(0O) is generated by
its selfadjoint elements, it follows that YM &€ TYHO), MP = PM, i.e.,

P € TY)(0)' or still, Po € YW)(0)'. To finish the proof, we shall show

that P, = 0. First, EaPoﬁl0 = 0, hence ¥ a#0,
0 = <Q0,EaP0 Qo >

= <§2 OrU(a)EOU(_a)PO Q 0 >



= C EgSYy, U(-a)P 24>

0 = lim <CEQyr U(-ta)PC25>
t—=>+ 00

<0202y > CEgLyi 24>
=N e Qu Il 2 HEQ N 2.

But EO#O => EOQO#O,QO being separating for m(OO) . This means
that P0Q0=0. But QO is separating for YTY}{0O)' (being cyclic for

YN(0)), which implies that P, = 0, as contended.



Unigueness of the Translation Representation Suppose given a

weakly additive PTV -~- then PT3 provides us with a unitary representation

e d

U of G’¢

4+ on bf such that

1

U(A ,a) TMIOIU(A,a) ™ = M(A,a)-0),

where

spec(U| g Hc 7,.

Question: Does the agsignment O —> YY) (0) determine U uniquely?
While the answer in general is "no", what can be said is this: The
e i,4 , .
restriction Ul.}L is unique.
The proof depends on the following considerations.
Definition: An inner symmetry of a PTV is a unitary operator

T : 3¢ =3¢  such that 582, =€2, and

s M3 "t = M) Vo.

-

Example: Let-Ul,U2 be two unitary representations of (?:\on 3{

1,4
B1E
attached to a PTV. Consider the restrictions -— then for
1,4
Uzl

any inner symmetry § ,

3& = Ul(I:a)‘S U2(I,—a)

is again an inner symmetry.

THEOREM Suppose given a weakly additive PTV -~ then every inner
[V VWV

1,4
1 X

1,d
u, | R

W

U

symmetry 5 intertwines , i.e., Y a,



U, (I,a)3 = 3 U,(I,a).

Application: Choose § = I to see that Y a,

Ul(I,a) = Uz(I,a).

1,,1,8

To prove the theorem, take an f€L qi ) and let
A= 5 f(x)Ul(I,x)S Uz(I,-—x)dx.
Rl'd
Write
Y -1<{x,p)
Ul(I,x) = e dEp
Rl,d
ey
: i_l <X:q>
Uz(I,x) = S e 4rF

§

and, ignoring constants, put

~ V-1 <x,v)
£(x) = e E(y)dy.
Rl,d
W
Then
i1 fe-mae,sa
A= - E F
(p-q} p‘s q'
le
where

— — ~
&.f = {(Prq)= p€V+,q€-V+,p—q€spt £ }-

(B) Let

i

Fa¥
B(q) j f(p~q)dEp,

L (B)



where
. —_— M
Af(B) =1p=pEV+:p—q €spt £ I
Then
q) S q
b e
Here
A -_— — N
1, v, fl(V+ ~gpt £).
(C) Let
A
C{p) = f(p-q)qur
I (C
f(C)
where
— FaY
b = 1q:qeV,,p-q€spt £ }.
Then
A= j’ dE_5C{p).
A P
2,f
Here
A =V .OF £
2,8 = VOV, + spt £).
Given M,,M, € M0), introduce
- -1
Fox,y) = $S2, SMy 3y Uy (T MpUp (Tmx) 2>
_ -1
= <M{§20,3y U (L,xIM, 2 0>
and

_ -1
Fylx,y) = (2o, Uy (I, x)M U, (I,-%) 5 SMS €2 >

=<{M5<2 4, U (I, ~x) 5 M 20 > -



Now multiply through by f(y} and then integrate w.r.t. y. After

some manipulation, we f£ind that

Fylx:f) = 5 F,(x,y)£(y)dy

-1 <x,p>
(X, -1
5. (U, j- £) S, ayae m, €2,

— 1,4

Vi X
and

Ren = | mememaey
Rl'd

V=1 <x,9>
= fe M5 Q0B f £ly) 74w €2,

V_ Rl'd
ey
or still, .
¥ -1 <xl‘p>
F o (x;£) = 5~ e d/«lff(p)
Ve
and
‘)’ V—l'(x,q)
thx;f) e d,«sz{q),
v_

where for Borel sets A :

Aae (B =<y | fo S ay Bam 0>
1,4
R ’

S

and

Ay gl =<y Qo ko | ey am o>

Rl'd

.

Using the formulas for A in terms of B and C, it is not difficult to



check that
Pt My s © Dy f
Spt A, g C ~h, 4.

At this point, f is an arbitrary Ll—function, a fact which we
shall take advantage of in a2 moment. But first let's indicate how
the proof of the theorem is going to be concluded.

The function

y—><MEQ g S MG

= <M§ 24,0y (I,y) SUL(T,-y)M; 2 4>

is bounded and continuous, thus defines a tempered distribution T.
The machinery developed above will then be employed to establish that
the support of ; is the origin, so ¥ ig a finite linear combination
of derivatives of the Dirac delta. Our function is therefore a

polynomial in y, hence is a constant {being boundedi. I.e.: ¥ v,
<M§Qo,ul(1.y)3 U (T,-y)M; €2 o>
=<ME Qo SM (24>
By Reeh-Schlieder, the ng:lo are dense in B{ , hence
Uy (E,¥7) SUL(L,-IM €D g = T M, <2,
But again by Reeh-Schlieder, the Mlijlo are dense in of , hence

U (T,y) TU,(T,-y) =F§

or still,

Ul(I;Y)S = SUZ(I'Y)'

as desired.



6.

[Note: O will be suitably specialized below.]

Consider now any double cone
D(a,b) = V, (a)NV_(b) (bEV (a))

subject to

0 £ D(a,b).

A
Work with any £:spt £ CD(a,b). Recalling that
a— — Fal
Al'f =V, N, - spt f)

— — Fat
Az'f =V, N (v, + spt f),

we have
6, v, niF, - p@m}
=V, NV, (b (b, = -b)
and
- asz cv_ n{‘v‘_ ~ D(a,b)}
=V_NV_ (ay)  (ay = -a).

In this connection, note that

-D(a,b) = V_(-a)(]V+(-b)
= D(bO'aO)'
Therefore
SPt Avp g € By g @V, (q)
SPt v,y s €&y g C V_ (al).
where

vola)y N v_(q) = 4.



Picture:

The last step is to select O judiciously. Start by choosing
a double cone D centered at the origin and then take for 0 a double

cone Dy C D: (D, + %) ‘LDO Y/ xGD'L.

Picture:




Since SY 1s an inner symmetry,

-1 _
3, N0 = M (0)

-1
S My S v €M (o) VMl.

On the other hand, VxGD‘L R
U, (I,x) ™m (0)U, (1,-x) = Mo + x)
and, by construction, the elements of YY)(0) commute with those of

YN (0 + x}. Therefore

-1
SeM Ty U, (I,x)M,U, (I,-%)

_ -1
= Uy (I,x)M,U, (I,-x) -‘Syml Sy

- 41 1,4
Fl(x,y) = Fz(x,y) {x€D vYGVE )

Fl(x;f) = Fz(x;f) (xGDL).

Let

Af(b) =.A41,f(£:~.) _Az,f(A)

F(x;f) = Fl(X:f) - Fz'(x';f).

Then

' Vv -1 (X:P)
Fi(x;£) = J‘ e d/u\f(p).
Rl,«il

W



Moreover,

F(x:f) = 0 (x€ DY)

and

sptav  CV (@)U V_(q).

LEMMA Let
N ey

V-] <er>
Fix) = g e d s{p)

gled

[

be the Fourier transform of a complex measure s of finite total

variation with

Spt A Lo v+(q+)kJ v_(g_).

Assume that

F(x) = 0 (xebd’).

Then
Ar =0
Accordingly,
Mg = 0
=>
M1, T
=

/Al,f =0 &,~«2'f = 0,
the last step because the supports of_A41 £ am:'l,,,a..\2 g are disjoint.
¥ r

In particular:

L



10.

= (M3 Q2 f £ly) 3 AvM Q2 o >
Rl,d

‘e

n

[ fwm e amsn Gy Qe
Rl,d '

Ll

LT, E .

Suppose that #GC? (\Iﬁtj"d— [0} } is arbitrary. Choose D(a,b):

spt e*:'C D(a,b) (0€D(a,b)) (this is permissible (use a partition of

~
unity argument)). Write ¢ = £ -- then

(T, > = <, :{’)
= (T,:‘,El\ >
= (T,f)
= 0

=7



Inner Symmetries Suppose given a weakly additive PTV -- then

the gauge group G of the theory is its group of inner symmetries, i.e.,

the unitary operators S: 3¢ —> 3¢ such that S_C)_O = QO and

SM)3 L = Mo Yo.

Rappel: Let U,,U, be two unitary representations of C?+.on P4

attached to the theory -- then every 5 € G intertwines 1l , l1.e.,
U I l'd
215
Y a,
Ul(I,a)S = SUz(I,a).

Taking 5= I, it follows that
U, (I,a) = U,(I,a) Y a.
However, it need not be true that
U (R,a) = U,(A,a) YV (A,a).

Definition: G is said to satisfy the gauge condition if G is

compact in the strong operator topeology and commutes with the U{;kla):
SU(A,a) =U(A,a) S (T € G)

for any U fixing QO such that

(R ,a) M©UTA,a)" T = M((A,a)-0) Y o.

Remark: There are conditions which guarantee that G satisfies

the gauge condition, one being the split property: ¥YY)is not abelian

and ¥ 0,P:

0 CP and d_:i._g(o,gz P) >0,



Ja type I factor between YM(0) and YVP).

[Note: Recall that YN(0) is necessarily a proper subset of
W (P).]

LEMMA Suppose that G satisfies the gauge condition -- then U
Ny
is unique.

[Given U ,U, fixing f]o such that Y O,

U, (A ,a) MXO)U (K,a)™F = M((R,a)-0)
v (A3,
U, (K,a) M0)U,(N,a)™ = M((R,a)-0)
it is clear that
—~ s -1
v, (R,a)0,( R,a) " € q.

This said, define a unitary representation U of (?'I on 3¢ by
(~N,a) ~> Ul(K,a)Uz(R’,a)"l.
Thus, on the one hand,
V(A a) (R, ay))

-1

I

e ~ s =1,

1 -1

o L b -— b4
while, on the other,
U(Alral)U(/\zfaz)
_ L s -1 i s -1
= U (R a 0 (R rap T (0 (R,a)0,(Rpha) ™)

e -~ o -1 ~ -1
U (Ryrap) (U0R,,300, (AR08 " ) U (A a7



Here we have used the fact that

Lad e _,l

hence commutes with U2(7<l,al)-l. It follows that U is indeed a

homomorphism., Recall now that the group of unitary operators on 3‘?
is a topological group in the strong operator topology. Therefore
G is a topological group. But G acts on &f by itself: TI(3)x=5x (5 € G).

N
Accordingly)thanks o compactness, 3 cardinal numbers n'rr (TE G) such

that 11 = T?é‘ no N . Since(y + has no nontrivial finite dimensional
i

unitary representations, the action of G’I on each Ti is trivial. This
in turn implies that the action of C?:uon all of ¥ is trivial:

~ — B _l

U{A,a) = Ul(/\'a)Uz(A'a)
= I
=
- ~
a

Remark: Since G is compact, the assumption that

SU(N,a) = (A ,a)S (S € @)

is actually automatic.



Tools from Harmonic Analysis Let G be a LCA mivedsam group, U a

unitary representation of G on M -- then the generalization of
Stone's theorem to G is the assertion that 3 a projection valued

A .
measure E on the Borel subsets of the dual G such that ¥V o € G,

. Fal
u(o) = ‘J’\<5_r15_> dE(s ),
Fal
G
the spectrum of U being by definition the support of E.

Remark: Y fGLl(G); we have

5‘ f(5)U(s )AE

G .,
- S' f(o‘)(j <o-.$>da(o’~‘))ds~
G ¢
= f (j' £(0)< 6 &) dcr)dz(cr)
A
G G
NOA IS
=S £(q)dE(e).
~
G

Suppose now that YT} is a W*-algebra. Make the following assumptions:
(1) Vo€ G ue)Muls) ™t cm ;

2) 30,€3 Q0 = 1):
Ue) Qo =C2 (F€6 amME2, =X ;

(3) (spec U) N (spec U)™' ={E}.
Then it can be shown that U(G) € YY) .

Example: Suppose given a PTV -- then ¥ aevlil'd,

U(I,a)¥M U(I,a) "t M .



By assumption,
1,4 e
SpeC(UI\E, Yo v,
=>
spec(Ulgj'd) N\ -spec (Ulgj"d)
c v, N-v, =v_nv_={ot.

Therefore

U(Rl'd) <M.
W

®eturning to our W*-algebra YY), fix a unit vector QO EH .

Definition: The centralizer Y of M w.r.t. QO is
0

§reM: <Q a0 >=< M2,> ¥YuEM].
Supposing still that G is a LCA group and U is a unitary rep-
resentation of G on }{ , impose the following conditions on (TT],G,U,C){ﬂ:
(1) QO is separating for YV} :
(2) Q) is invariant for G;
G
(3) ¢ ) = ¥
- ~
(4) (spec U) M (spec U) b le }:

(5) G =.af L14f-1, where

4? = {o“éc;: U(G’)'YT]U(O‘)_lcm} .

S ——— iyl

THEOREM Under the preceding conditions,
b T P P WL VY

Ma, =5



3.

[LetAEMQ ~— then VG'C"—J &§ Y MET, we have
0

<2y, auCemu(s )AL S

-1
={ €2, U(eIMU(6) A2 0 >

<a* L UMD >

= u* Qo ,U(F) A 20> -

Specialize and take M=A and A=A* (this can be done without loss of
generality; see below). Assuming that AQO £o0 (a QO =0 =D>A =0
by (1}}, put

£(c) = {AS2,,U(8)AS2,> (6 €q).

Then
€ of = f(6) = (Y.
But G = 4? quf—l, s0
£(or) = £(67Y) Veea.
We have
_ . R
£(6) = <A, f<ﬁ-,g>dE(c-)Ano>
¢
= y<€:§><AQOde(?)AQO> .
P

G

Here the assignment

OH = (AQE(AAL, >

Fat
defines a positive measure Avon G of total mass

<A 04,00,




with
_ -1
spt A= (spt ) .

But

spt s C spec U

=
spt o = {2}
=’ Ar = K Sé\ (K >0)
=
£(6) = j <o,8>dm(6) = k<G &> =K
&
=
f(g) = f(e) Vo €Ec
=>

<2 2,.0(6)a Q>

= <A QO'AQO >
Ha, 2

]

a2, () - [12as24))

Hotera gl - flacy i

U(G‘)AQO=CO_AQO (Eico_)

=
<AQUSHIAT2, >

= <AQ0,C°_ A2, S



B Co- <AQO'AQO>
= (AR>S
=>
cC_ =1
G
=
AQO = CQO (3¢c)
—7
(A—CI)QO =0
—
A-CI = 0
=
mﬂo = CI.]

(Note: To explicate the detail omitted above, observe first

that A€ M =>a*e M, : VMET,
0 0

CPIM L LoNy:

=<AL2,,MC2 >

<ML, 24>

1l

{L€2,,M* 2 >

= <A >
=<aM* (., {2 >
=(M* 2 0, A% Y 0 >

= {Q2,,ma* 02>



This said, write

A = AtA* -+;“V-1¥A-A*)

2 2Y -1

=E + F.

Both E and F are selfadjoint and in'YTlfl_, hence
0

N

E C_I

E
=y A = (Cp + Cp)I.]

F=CFI

Remark: The case when G =.ﬂp can be treated differently. Since

QO i§ separating for YY) , it is cyclic for yi'. And: ¥V 6 € G,

U(eIMu(s)Tem =Du) Moyt me.

Therefore
e c m'’.
This in turn implies that
UiEIMU(e) Tt = M EM" =M
=
UM, = M!flo_
=
M= CI
— }7}=‘SI
=
on = 1

Observation: A consequence of the theorem is that ¥¥) must be

a factor. 1In fact, z\m= mnam < mno = CI.



Projections and Classification In this section, we shall assume

that the underlying Hilbert space }f is separable (but this restriction
is not essential).

Two projections E,F in a W*-algebra YY) are said to be equivalent

(written E~F) if 3 a partial isometry V € M} such that E = V*V and
F = VV*,
double cones _

Example: Suppose given a weakly additive PTV. Fixﬁ?,P for which
iz > 0: Nall< & = 0+ acCPpP -- then according to Borchers, A4
nonzero projection E € W1 (0), 3 a partial isometry V& Y (P) such that
V¥ = I & VW* = E. Therefore the nonzerc projections in Y7}(0), when
viewed in YY)(P), are equivalent to the identity.

Define now a partial order on the projections in Y¥] by writing

E4F if E is equivalent to a subprojection of F {i.e., E~F'L F),

LEMMA Suppose that E4AF and FAE -- then E~F.
NV AN

Remark: If Yn is a factor, then any two projections in M are
comparable: EZ4F or FAE.
A projection in YW\ is said to be finife if it is not equivalent
to a proper subprojection of itself; otherwise, it is infinite.
Example: Minimal projections are finite.
[If E is minimal, then its only proper subprojection is 0 and only
0 is equivalent to 0.]
Facts:
(1) If E is finite and if E'4 E, then E' is finite.
{(2) If E is infinite and if E'> E, then E' is infinite.
(3) If E~F and if E is infinite, then F is infinite.

(4) If E~F and if E is finite, then P is finite.



LEMMA Suppose that E and F are finite -- then EVF is finite.
Wy
[Note: This is the most delicate point in the comparison theory

of projections.]

Remark: If YY] is a factor, then any two infinite projections
in Yt are equivalent.

Definition: YY1 is finite if all its projections are finite;
otherwise, YN| is infinite.

Criterion: Let ¥ ,Y| be W*-algebras. Suppose that YYL C Y

is a proper inclusion. Let QOGH be cyclic and separating for

both Y and YL -- then Y\ is infinite.

THEOREM Suppose given a weakly additive PTV. Assume: Y¥! is not
abelian -- then % 0, the W*-algebra YYU(0) is infinite.

[Choose OOCI‘O: dis(00,§£ 0} > 0. Thanks to Wightman's ineguality,
YYI(OO) is properly contained in YY](0)}. But, by Reeh—Schlieder,Qflo

is cyclic and separating for both algebras, therefore YY1(0) is infinite.]

Terminology: Let YY] be a W*-algebra.

(1} YN is properly infinite if all nonzero projections in 2

m

are infinite.

(2) YY1 is purely infinite if all nonzero projections in YY)\ are

infinite.
[Note: Obviously, YN purely infinite =) YY] properly infinite.]
Example: Suppose given a weakly additive PTV with a unique

vacuum. Let W be a wedge -- then it will be shown in due course that




YY){W) is purely infinite.

THEQREM Suppose given a weakly additive PTV with a unique
vacuum -- then V O, the W*-algebra YY) (O) is properly infinite.

€ . 3 i -
[Let E Zﬁﬂﬁto) be a nonzero central projection then 3 OOC: 0

(00#0) such that thé containment

MEOPIER © MIE N

is strict. Granted this, it follows that Y(O)]EJ is infinite,
hence E is infinite (here it is necessary to observe that E (2, is

cyclic and separating for both Tﬂ(oo) IEX® and YNHO)IEQY ). To
establish our contention, let us suppose that the contrary held:

TNOLIER = TONEF VY 0,C 0. Obviously,

0,=0

Lic (W Tnm@.
: 0

On the other hand, in view of the intersection property, per any a€ 0O,

() Mo, = cI.

0, < ©
0019 a
Therefore
O oy - o
chCo it
-
MOIEXR = CIIEY
=> |
e =ce(2



which implies that E is one dimensional. But 3 a wedge W: O C W =
YY) (0) C YN (W) and, as has been noted above, YY)} (W) is purely infinite,
thus contains no finite projections. This contradiction establishes

the existence of 00.]

Let E be a projection in YY) -- then E is abelian if EYNE is
abelian.

[Note: If E~F and if E is abelian, then F is abelian.]

Example: Minimal projections are abelian.

[If E is minimal, then each projection in EYY}E is either E or
0. Since EYN)E is a W*-algebra, it is generated by its projections.
Therefore EYN E consists of scalar multiples of E.]

Fact: An abelian projection is finite.

W*-algebras are classified into types depending on the kinds of
projections which they contain.

Type I: A W*-algebra YY) is of type I if each nonzero projection
in Y1) majorizes a nonzero abelian projection.

Type II: A W*-algebra YY) is of type II if each nonzero projection
in YY) majorizes a nonzero finite projection but YY) contains no nonzero

abelian projections.

Type III: A W*-algebra YY) is of type III if it is purely infinite.

LEMMA We have:

T 4
(i) Yis of type I iff Y’ is of type I;
{(ii) Y is of type 1I iff YN' is of type II;
(iii)YN is of type III iff YW)' is of type III.

It is a fact that every W*-algebra Y is uniquely decomposable



as a direct sum

M=; ® My PmMygy

of distinct types.

Each of the three types can be classified further, the focus
being on factors. |

If YM}is a factor of type I, then Y1 is isomorphic to the algebra
of bounded linear operators on some Hilbert space. If that Hilbert
space ig¢ finite dimensional and of dimension n, YY} is said to be of

type I_; otherwise, YY) is said to be of type I,.

The existence of factors of type II or type III is not obvious.
To begin with, a finite factor of type II is called a factor of

type IIl; an infinite factor of type II is called a factor of type Iy

There is also a further subdivision of factors of type III but we shall
put this off for now. Examples realizing the various possibilities
can be obtained by suitably specializing the following construction.

Let ¢ : G—> Aut )Y} be a representation of G on YY) -- then the

triple {LZ (c; ¥¢), ,U} implements ¢ , where
MTME(e) = (t{c " Hme(ac)

UGS )E(T) = £(o L),

U(e ) TMU(E) S = T(A(e)M) (MEM, TE G).

Indeed,

1

(U(g) TMU(s) £) (T)

1

= (mmue) e (o7t



1

((t oM wie™ -1

il

£) (¢ ~T)

(T Yoeme(T),

while

(M{Ak (s IMYEY (T)

(R (T H A (EIME(T)

(o { T Mme(D).

Definition: The W*-algebra generated by T (YY)) and U(G) is
called the crossed product of YY) by G w.r.t. X and is denoted by
A (M,G, ).

Examples:

(1) Let 3% = t2([0,11), ™ = £9((¢,1]), and G = Q -~ then

Wty

G operates on [0,1]1, viz. x—> { X+ a‘} ( = the fractional part of
x +6 ). This action lifts to an action X of G on YN and R (G,YV), )

is a type II1 factor.

(2) Let 3¢ = L2 (R), ™M= 1 (R), and G = Q -~ then G operates
Meay Ny Noms
on ‘E, viz, X — X +g . This action lifts to an action « of G on

YN and R{(G, Y ,K) is a type II,, factor.
(3) Tet 34 = t2(®), M = L°(R), and ¢ = 2z KO, where (m, T)-(n, o)
Vv Nty L Y W

= (m+n, 2m1y+=c) -~ then G operates on R, viz. x = 27 x +6. This

action lifts to an action x of G on Y¥) and (G, Y.} is a type III

factor.



Type III Recall that a W*-algebra ¥v) is said to be of type III
if it is purely infinite, i.e;; if all the nonzero projections in YT}
are infinite.

Criterion: Suppose that TY) admits a cyclic and separating unit

vector ngV Assume further that‘Tngj = CI-and YN} #CI -~ then '™
0 v,

is a factor of type III.

THEOREM Suppose given a weakly additive PTV with a unique
N

vacuum. Let WelJ be a wedge in M <~ then YY)(W) is a type III

factor.
[Since W = (A,a)'WR for some {(A,a)¢& ﬁ’t, it will be enough
. _ 1,4
to consider W-R( = {-XGM§IX0I (xlk }J. Let a ={l,l,0,...,0}€.\£{v -
then '
Wyt ha & Wy (A20).

This is because
l2g + A1 & Ixg) + A<x + 2.
Now put
¢ =%
"f=\5>oa'

Owing to the uniqueness of the vacuum,
d_iy_%x €df :U(I,ta)x = x Y teER T =1
which implies that.gfgio ='}?G. Next,
A2 0 =D
CEAM YN (MQUCA) ™ = NG, + Aa)

- YY)(WR) .



2.

Furthermore, by Reeh-Schlieder, (}_0 is cyclic and separating for

WT](WR). Therefore
YY) (W) = CI,
R )y W

On the other hand, it is clear that TTKWR) #‘EF, thus 'Yn(Wh) is a

factor of type III.]

Remark: Let YY) be a type III factor -- then one can attach to
YY) a closed subgroup ' (M) of R, which can be labeled by a

parameter ‘A € [0,1}:

() A=0, P M) =11 :
(A) 0< <L, (M) = 4%

Ly A=1, TTtm) =10, +ool,

YY) being called type IIl,, III,, or III; as the case may be.

Example: 17](WR) is a type III; factor.

[Note: The details will be provided later on.]
Observation: Suppose that YY)} is infinite and each nonzero

projection in YY) is equivalent to the identity -- then Y¥) is type III.

[Pix E0 ceEYnN: By infinite. Consider now any nonzero projection

EE€YN . We have: E~T & Ej~I =) E~E

0’ hence E is infinite. There-
fore TY} is purely infinite, i.e., YY) is type III.]

Suppose given a weakly additive PTV with a unigue vacuum -- then
™= B {(3¢) is not abelian, so ¥V 0, MMI(0) is infinite. Moreover,

TN(O) is "almost type III" in the following sense: Fix a pair



(P, €): laly<«< & =» 0+ a CP -- then the nonzerc projections in
Y1 (0), when viewed in YN (P), are equivalent to the identity if

0,P are both double cones.



The Split Property Let E,F be Banach spaces, @& :E—> F a

bounded linear transformation -~ then @ is said to be nuclear if 3

sequences

je < B
P Z et - Tyl <+ 00
¥y © F :
such that

®(x) = 2 @ x) Y, (x€E).
1

The nuclearity index of ® is then

W@l = int T flesn - HV N

where the inf is taken over all such realizations of @& .

Let WT?be a W*-algebra. Suppose given a selfadjoint nonnegative
operator H which admits 0 as an eigenvalue of multiplicity 1, say

HL2, =0 ( ||£)o|| = 1). sSuppose further that {2, is cyclic and
separating for YN} .

Definition: The triple (‘anEL*Clo) satisfies the nuclearity

condition if ¥ [ > 0, the map

@;: M —> ¢

M- é-pﬁMQQO

is nuclear.
Consider now a weakly additive PTV with a unigque vacuum -- then
the energy operator H of the theory is selfadjoint and nonnegative.

In addition,Iiflo = 0 with multiplicity 1.



Rappel: The split property obtainsg if YY} is not abelian and

V 0,P:

0OC p and dis(0,fr P) > 0,

3 a type I factor between YY) (0) and YN (P).

[Note: The uniqueness.of the vacuum implies that Y = & (3,

which is not abelian if dim ¢ > 1, thus YY] (0O} is necessarily a

proper subset of YN (P).]

Assume: Y 0, the triple ( YN(0),H, £) o). satisfies the

condition. And: 7 nenli, P 0)0 (both depending on Q) such

(B,/p)"
@i, < Po/f (0 <p< 1).

THEOREM Under these assumptions, the theory possesses
NN

property.

Example: One can associate with the free relativistic

of spin 0 and mass m >0 a weakly additive PTV with a unigue

nuclearity

that

the split

particle

vacuaum.

It is a fact (nontrivial) that the assumptions of the theorem are

met, hence the split property holds.

A W*-algebra Yy} is said to be hyperfinite if J an increasing

sequence of finite dimensional W*-algebras Tn 0 C Y71 such that

(LJ ’Yn:n)"==7n. so, e.g., a type I factor is hyperfinite,.
n

Example: Suppose that the split property obtains and the YY){0)}

are continuous from the inside -- then the YY) (0) are hyperfinite.



{Fix O and choose an increasing sequence Olc 02C

dis(o_,fr 0_, 1) >0 & LI{ 0 =0, thus TN(0) = ((ﬁ} mio,) )

Choose a type I factor nn: '}‘Y](On)ch n CM(Om_l) -~ then
Y]lcnz ...and(L{lYln)"=M(0). But Yln=(Lk)Ylnk)"'

where Y] ., CN 1, < -+ and n ok is finite dimensional. Therefore

) (0) =(

o0 o0 00
U U TI nk )“ =( ]E.i’l Ol YI nk )", which implies
n = n=

=1 k=n
that YY}(0) is hyperfinite.]

A W*-algebra YY) is said to be injective if J an idempotent map
r: @ (}Q } -—2 63 (}r?) with the following properties:

r(®H N CmMm r{a*) = r(a)*
(a €@ (¥ ).
riM) =M (MEM), el £ {lafl

Fact: Suppose that YY) is a factor =-- then YY) is hyperfinite iff
Y is injective.
It is a theorem that up to isomorphism, ] a unique injective

type III. factor, call it ( .

1

UNIVERSAL STRUCTURE OF LOCAL ALGEBRAS Suppose that the split

property obtains and the YY) (0) are continuous from the inside. Assume
in addition that ¥ 0, the Connes invariant S{YY) (0)) of YYNO) is

[0, +00[ -~ then
™o x R @),

where 'é (0) is the center of YYI1(0).
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The Modular Theory Let T: 3 — 3{ be a densely defined linear
operator. Assume: T ig closed -- then there is a representation
T = VA, where V is a partial isometry (hence is bounded) and A is
positive and selfadjoint (hence, in general, is unbounded}.

[Note: This representation is called the polar decomposition of

T. It is unigue. Furthermore, the initial space of V is the closure

of the range of T*, the final space of V is the closure of the range

of T, and A = YT*T = jm) .1

Definition: A standard W*-algebra is a pair (WM ”Clo)' where
WY]is a W*-algebra and (20 is a cyclic and separating unit vector for
YY) .

Given a standard W*-algebra (Yn,nglﬂ), define two conjugate
linear operators by

So MQO=M*QO (M€Y )
Fq M'QY o = M'*ﬂg M'E€ YN ").
Then S, and F, are welldefined on YN 2, and TW}' €.

[Note: Recall that QO ig cyclic for IT) iff QO is separating
for Yv)' and QO is cyclic formm' iff QO is separating for n" =7Y) .
Therefore both EmQO and Y’ QO are dense in ¢¥¢ .1

Fact: &, and FO admit closure and

0
* = B
56 = Fo
£ = &
FO SO.
Put
S = SO
F=F .




S
0
[Wote: Since ig densely defined and admits closure, we have
o
. G% = g% X = Gk = Q% = P =
SD SO S SO SO FO F
_ ; hence : _ _ -]
* — * * = £ = * = =
F0 F0 F FO F0 S0 8

Fact: Each of the operators S and F has range the same as its

domain, is invertible, and coincides with its inverse.

Let A= 8*38 ( = FS}) -- then I\ has inverse .A;_l = 88* { = 8SF}.

The polar decomposition of S is

S=JYVY s*s = 7 £>1/2 .

The initial space of J is Rang, = Ran, =3¢, while the final space

of J is RanS==}€. Therefore J is a conjugate linear isometry of oF
onto §f . It is not difficult to check that

J=J*,J2=1,JQO=Q0

A2 Lo pAL/2

A" =aTAd
=>
s* = nL/2 s
- g3 nl/? ;3
=3 £>—1/2 .

Definition: Per the pair (YT]:(Q.O), J is called the modular

Example: Let 0¢ = L2([0,1]) and take YY) = L99([0,1]) (the set
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of all multiplication operators M on 3f :(Mf) (x) = m(x)f(x)) -- then

YY) is an abelian W*-algebra with multiplication defined pointwise,
the involution being complex conjugation and 1 <> m(x) = 1. The
vector QO = 1 is cyclic and separating for YY). Here SM QO =
M* QO > (Sm) (x)}) = m(x), i.e., S5 is complex conjugation, J = 8, and
O= 1,

Example: Let B’{’ =Wl°}n equipped with the Hilbert-Schmidt inner

product (i.e., < x%,y> = tr(x*y)). Take for V¥ the algebra of left

multiplication operators: Y¥} = SiLa:a ej&nk (so Yv)' is the algebra
of right multiplication operators: YN)' = { Ra:aev{ln} ). Fix a

nonsingular matrix QO of norm one and put c =Q0Q3, d =Q3Q0 -

then

Lx = _cxdul.

Write QO =Yc v =vYd ,h6 where v ig a unitary matrix such that
= -1 :
c = vdv -~ then
Jx = vx*v,

Obviously, J2'= I and

JQO v C2 %y

v (Valv)* vy

vw*yc'v

It

(1y aWa

YV)'. 1In fact,



(JLaJ)(X)
(2) 3 a3 =871
(I A J) (x)
Write
VT ¢
AN

where "log" is the Borel

il

function on C defined as Log z if z# -|=l

(JLa)(vx*v)
J (avs*v)
v{avx*v)*y
vvixviary
xv*a*v
Rv*a*v(x)'
fact,
J A {(vEdY)
J(cvx*vd‘l)
* -1 *

vi{cv*vd T} *v

"l**
vid “vtxv*c)v
(vd_lv*)x(v*cv)

c_lxd

A7) .

exp(Y=1 t log i) (t eﬁ) '

and as 0 if 2z= -Izl;
Observation: We have
V=1 (¢ - J—%l) V-1t |
AN MOy = A LN @I MEeEM )
V-1 (¢ + —--2—““'1) -1t
N M2y = O M FCY MPEMT) .



[In fact,
V-1 e - X34 Tt 1/2
FaN MQO = A FaN MQO
VT t 1/2
= N JI I MQO
Y-1 t
= A ISMC2
Y-1 ¢t
= A JM*QO

Ditto for the second relation.]

Suppose that {E ,)\2 is the spectral resolution of A\ -- then

{JEAJ} is the spectral resolution of A_l and VXEB{) '

{IE,Tx, x> = _<JE9\Jx,JJx >

{ Ix,E nJX >

4 E o JX,J% >

-Vt ® v
< X,x > = A d4{ JE %Jx,x>

- 0J

J“"" A\’—_l't

adE ﬁJx,Jx >

-0
V-1t
<A JIx,Jx >

-¥-1t



J N = N J (tER).

THEQREM Under the preceding assumptions and conditions, we have
LAt et e T W

IMa =
and
V-T't - V1Mt
AN Y A =YY} (t€R).
In particular, the theorem provides us with an arrow
R —> Aut YY)
vy Attt
t —7 G‘t,
where _
V-1t - ¥-1 ¢t
o.M = A M D .

One calls {Crtk the‘modular-automOrphiSm group of the pair (YT],fTZG).
[Note: The state associated with QO' i.e., Q)O(M) = <Q0,MQ 0>

is invariant w.r.t. o.: Qyle M) =<y, 0, M2 D=

V-1t -Vl e LS HR>
<Q,, o M a > = (2gMQ > =W (& Q=

=T ' t
1 1t Cio by the spectral theorem).]

Remark: Recall that YY) is said to be purely infinite or type III

if all the nonzero projections in Y¥] are infinite. It is then a fact

-rIf A is selfadjoint, if f is Borel, and if Ax=A x (x#0), then

f£{AYx = £{A)Ix.



that'm is not purely infinite iff 4 an invertible positive selfadjoint

V-1t
operator H such that H €M % t and
V-Te -Y-it

i.e., the ¢, are inner.

t

i

Example: Take }Q «eén and letm be as above -- then

¥ -1t
AN = L v—Tt R - ¥-1t °
c d
Since
Y -1t -Y¥ -1t
[N La & R A T £ X I

it follows that
o (M) ="M V¥ t.

Definition: A one parameter group {o( t:t_é\j}} of automorphisms

of a W*-algebram satisfies the modular condition relative t0 a state

) of YY) if given X,Y €YY} , there is a complex valued function £y ¢

which is bounded and continuous on 0<£ Im z<1, holomorphic in

0<Im z<1l, with the property that

fx’Y (t) = CO(o\'t(X)Y)
(t€ R)

£y g (£ +V=I) = (Yo (x)).

[Note: More generally, if 01 is a unital C*-algebra and

g_o( t=t€£§,} is a one parameter group of automorphisms of Ol , then



a state Wis said to be a KMS state w.r.t.o{ at inverse temperature
p >0 provided that for all A,B eD‘l , there is a complex valued

function fA B which is bounded and continuous on 0 £Im z & p .
r

helomorphic in 0<Im z< (_” , with the property that

fA,B(t) = Wl (A)B)
(t€ R)
Ay

faplt +V-I'P) = QB (A).
Such a state is necessarily of -invariant, i.e., ¥V t,

WX, (X)) = WK (xe0().]

LEMMA If x,y€Dom . . , then the function

faN
Z
erY(Z) =<X, A Y>

is a bounded continuous function of z on 053_(3 z24%£1/2 and is a holo~-
morphic function of z in 0 Re z 1/2.
[By polarization, it suffices to consider the case when x=y.

To see that x&Dom _ and H AZ%x 1l stays bounded, proceed as follows.
FAN

With {E}\k the spectral resolution of A\, we have

oD oD
=n 2 =S‘ acxm,x> o B AP = [T a s yxs.
0 0

When 0 £Re z £1/2 and A > 0,

faZ1%= 2222 max §1,20) <1+ 2



oo
S- ]')\led<x,Eax>
0

o0
. I (1 +2)a{x,E, x>

0

g 2 pat?xnn?¢ v

=>
x € Dom AZ
=>
b<x, A2 x> £ fixll - )| &% x|
clxl) - Clixn 2 Al s H2
{ +0o0.

o0
_ z
fx,x(Z) = g A d(x,E?‘x>.
Q

For n=1,2,..., put
n

$ (2) =~(‘ AZ A<xEy %) .
1/n

Upon expanding 7\2 = exp(z log A ) as a power series in z and noting
that it converges uniformly for A in [1/n,nl, we conclude that <|>n ig

a holomorphic function of z. Finally, if 0 £Re z <1/2, then

} £,,x2) - ()]

1/n 00 _
d (S ) A" acme,n
0 n
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: : 00
¢ (S +J‘ )_(1 +A)a<x,E, x)
0 n
—7 0 (n—>c0 ).

Therefore <1=>n ~—7 £ uniformly on 0 f-__lgg_ z41/2, thus f is continuous

on 04Re z24£1/2 and holomorphic in its interior.]

Rappel: Suppose that a<{b <dc and £ is a complex valued function

which is bounded and continuous on { z:a&<Im z gc} and holomorphic in

{z:a<Im z<b}

{z:b<{Imz<c}.

Then f is holomorphic in { z:a<Im z¢c .

THEOREM The modular automorphism group {cs't} satisfies the

modular condition relative to the state &) 0 associated with QO'

[Fix X,Y € YY) . Since M ). < pom , the functions
4] —_— £L1/2

-V-1l2z

g(z) = <X*C24, A YOy > (0 £Im z £1/2)
1 +Y-1'z

hiz) = C¥y* 2, A X2, > (1/2 £Im z £1)

are bounded and continuous on their strips of definition and holo-

morphic in their interior. But

Nt YTt 172
21 vC2, >

gt + ) =<X*Q0, TN A



-¥-1t 1/2
= {8XQ, & 3L Q>
1/2 -¥=-1t
= s xQ4 740 sy >
-¥~-1t 1/2
= <A v 2, A x>
V-1 ¢ + 1/2
= <Y*Q0r FAN XQO>
=  h( + XL,
2

so it feollows that g and h can be combined into a single function £
which is bounded and continuous on 04£Im z <1 and holomorphic in

0 <{Im z<1l. On the other hand,

YT ¢ V-t ¢
AN

Wy (6 (X)Y) =_<QO, AN X YQO‘;
-VY-1t -V-1 ¢t
= <A QO'X &n YQ0>
-¥-1t
= <x*Q0, AN YO_0>
= gt}
and similarly,
CQO(YG",C(X)) = hit +V-1).
Finally, let
f = £
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Then
Ey,y(E) = 98] = @ (6 (X)V)
fX'Y('t + \/—1) = hi(t + V=I) = CJO(Y G‘t(x)),

from which the theorem.]

[Note: Suppose that {}X‘tyteja} is a one parameter group of

automorphisms ofﬁrn which satisfies the modular condition relative

to W, -- then it can be shown that o ¢ =0, Y.l

Remark: The equation Gft(M) = M is valid for all t;ﬁjiiff
M E .
510

[Assuming that Gy (M) =M Vt, take an arbitrary N & TN and

consider fM,N -— then

fM,N(t)

cooto"t(M)N)

Il

CJO(MN)

and

fM,N(t +Y-1) CJO(NCT‘t(M))

W (NM) .

A certain nonzero multiple of fM,N has constant real value on the
real axis, thus has an analytic continuation across the real axis
(Schwarz reflection principle). This extension is holomorphic in a
domain D that contains ‘Bvand 0¢Im 2<1. It is constant on WRv,, hence

constant on D. Therefore fM N is constant in 0<Im z {1, thus by
¥

continuity is constant on its closure, But this implies that

Wy (MN) = O (NM) .
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Turning to the converse, fix M€ YY)Q «= then for any N € 1N and
0

alli ¢,

so f

N,M

Wy ( G‘t(N)M) = Wy, {M Oy (N))

£y ult) = £y & +Y-D),

can be extended by periodicity to a bounded continuous function

on£ which is holomorphic in each of the strips {z:n(_I_m_ z<n + lk

{(h =0, +1,...). This extended function is entire, hence by Liouville,
ig a constant. In particular, fN M is a constant
r
=
=>
W, (N o (M)
= QJG(O”_t(N Gk(M)))
= Wole (M) = W, (M)
=>

Take now N

W (NM -6, (M) =0 Yt.

= (M ~6, (M))* to get

o
1l

QO((_M —G‘t(M))* (M —G‘t(M}))

=<y M-, M* M -6, M),

2
N - 00y 241
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(M -G, 00) 2y = 0

M= t(M) r
(@] 0 being separating.]

Definition: The natural cone (? of the pair (M, QO) is the

clogure of the set

{MJMJQO: Mmemi.

Properties:

_ V=it
1 A F=0 Vt;

(2) 38 =% VYyxe(;
Mm@ VMeww;
We N (-0 =10}:

5) @ -0 ={xedf:ax=x};

6) & =5’ (={xedl:{(¥ x> 20 VFIEP}).
Fact: bQ is linearly spanned by (& .
{For suppose that x is orthogonal to the linear span of G --
then x€é=@ , hence <%,x> =0 =>x = 0.]
Observation: Let T € -- then 3 is cyclic for YN iff ¥ is
separating for YY) .
[1f T € is cyclic for YY), then § = J§ is cyclic for

™' = JYY1J, so § is separating for Y1) and conversely.]
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[Note: Let ¥ 0 € @ be a cyclic unit vector for Y1 . Since }0

is necessarily separating, the pair (TT], E‘O) is standard. Denote

by J0 its modular conjugation == then
JO -= J.

Call 6)0 the associated natural cone. Since (?0 is generated by

elements of the form

MIMI, Ty = MIMTS o,

property (3) implies that (& 0 © (> . on the other hand, in view of

property (6),
V 1%
6 -Cc&,-6,
Therefore
GC,=0 .
Since flo is, in particular, separating, the positive elements
W of YY), are representable, i.e., are the M —> (x,Mx) (x el ).

The correspondence W —> x is one to many but if we work with (¥ instead
of 3¢ , then matters can be made precise: Given any positive element

w of YN ,, there exists a unigue ?Q € & such that wM) =< }w ;M Ew} .

And: The map <) — Ea)is a homeomorphism because
. 2
Ny, - H " llw, -wyll £ - o et i} -
Wy sz | 1 2 W, sz §w1 Ekb‘

Remark: This machinery can be used to establish that every auto-

morphism o of YY) is implementable by a unitary operator U(of):

KM= Ul IMO(X) F (M €M),
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One can even arrange that

U )& =0 , Ju() = U(KX)T.

In fact,

Ulok) 5
S (™ HTew

[Note: The assignment K —! U(X) is a representation of Aut W)

on Bf .1

Let ¢} be a faithful normal state on Yr) , ( &{“}, T R QQIJ) the

_ )
associated GNS data (so W({M) = < Kjng TQO(M)SYKQ'> } == then
( 1Tooqn)"glco) is a standard W*-algebra.

{Note: The normality of w implies that Tnd(TT]) is a W*~algebra.
Of course, flbois automatically cyclic for ﬁu)(TY)). To see that
flgdis also separating for THO(YY)), suppose that Tﬂn(Mf§1LJ= 0 --
then «(M*M) = | i (M) €2, N2 =0=Dm=0 = IMmil= init 2 =0

=M= 0,]

The preceding theory thus furnishes us with a modular operator
L;Q) and by definition
-1 V-1t —\l:]?t

(& ﬁw(M) Aw }

W -

is the modular automorphism group of the pair (‘Yn,(d).

[Note: Suppose that {o( t”‘-GJE} is a one parameter group of

automorphisms of YY) which satisfies the modular condition relative

to ¢&) -- then it can be shown that 'o(t = O‘(f Vt.]
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THEQOREM Suppose that ', w" are two faithful normal states

on YY)y -- then 31 a one parameter family of unitary operators U, €T

such that
" 1 -
s¥  =v 6% vzt
- w'
Upps = U ¢ (U5

It is customary to incorporate ', ¢)" into the notation and
write
(Dca“=DcJ')(t) = Ut'

the so-called Radon-Nikodym cocycle.

[Note: We have

1

(D 3 (E) = (Da)‘:Dca")(t)‘]

0" Py
Since ', )" are faithful and normal, 3 cyclic and separating

unit vectors ', i " such that

W' =< MO >

(MEYY}).
W) =< MO

Define a conjugate linear operator SS)',LZ" by

SQI'QHMQ. =M*Q" (Mém).

As before, Sfl' o admits closure, hence there is a polar decomposition
r

1/2

SQI'Q!! = 'JQ',Q" Aﬂl’Qtl -

Definition: Per the triple (Yr}, £1°', (2"}, JSI' Pl is called
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the relative modular conjugation and £;Jl. an is called the
]

relative modular operator.

Fact: We have

VY-T t - V=Tt
(D wiD ) (€) = AQ,'Q“ AQ,_ X




Type III (bis) It has been mentioned earlier that if YI) is a
type III factor, then one can attach to YY) a closed subgroup | (Yym

of R>0. We shall now make matters more precise.
Vi

Assume: (YY) ,E‘)_O) igs a standard W*-algebra, hence possesses

a modular theory.

Fact: If YY) is a type III factor and if YY').‘:.2 = CI, then
0

s

™ (M) = spec A - {0} .

Furthermore, given an isolated element Aof spec I\ - {0} r 3 a nonzero
M € YY) such that

Va1 ¢ Vo7 t

N ML, = A M2, Yt.

LEMMA If on =£I and YN #V_EI, thémYY) is a factor of type IIIl.

[The hypotheses imply that YY)} is a factor of type III, thus the

strategy is to eliminate the cases A= 0 and 0< A< 1,

Ad A= 0: Here, spec A - {03 {l} » hence either spec N= {1}

or spec I\ = {0,1}' .
(i) spec A= {11 = L=1 = c,=IVYt=o.mm=nVYt
s Y M=M= mf} =»> YM)= CI, a contradiction.
- 0 -

(ii} spec A= _{0,11 = 9 xe‘}e : X#0 & A x = 0, contradicting

the invertibility of A .

AQd 0<A < 1l: Pix M#O in YY) :

Y-T't V=T ¢
A MY = A MY, Vot



Since

V—l t V-1t - Y1t
it follows that
Y ~1 ¢ - V=1t V-1t
FAN M 4N = A M,

§)-0 being separating for YY) . Therefore

£y £} = <y, e N>

M,N
VTt
A <,y >

and
fyy (£ +V-D) =<QoNe 0>
V-1 ¢
= A <m0 .
From the first relation,
Y=1T'(t + V-1
fy,n (t +Y=T) = A QLM o>
V-t -1
= ?\ (QOrMNQ0>
=
Y-1 t Y1t -1
A <,y = 2 QM2
=

(M 2,5 = AL, MM €2, > -



On the other hand,

V-1t -V-1't -V-1t
TAN M* DN = N M*
=
V-1t - V-1"¢
AN M*M O\
¥-1 ¢t -V-1"¢ V-1't -V-i't
= N M* I\ Y N M A
= M*M
-
G (M*M) = M*M Yt
=
M*M € TY}QO = CI
-

M*M = A4 T ( 3 a>0).

The same argument applies to MM*:MM* = v I (327 0). Normalize M so
that M*M = I -- then (MM*) (MM*) = MM* =) U2 = ¥ =) U =1, 1In other

words: M is unitary. Taking N

M* in the above then gives

LQyM* (00> = AL, MM
=7

A

1,

a contradiction.]



- Characteristic Functions Suppose given two standard W*-algebras

(YY),SlO) and (11 ,f)o) -- then the symbols

Fa r O = G

S fJ r

v m 118 ™m
S' ;J. r l. = .
n'n B tnT T

are to be assigned the obvious interpretations.

LEMMA Suppose that Ylt:‘YYl -- then the following are equivalent:
Nyt

(d)y J =

(e) A =N n‘Jm'

(a)Y] =W); (b) Sy “5m n ™'

{The implications (a) =» (b) => (¢) and (b) => (d) are obvious.

To prove that (d) => (a)}, note that

n' = JnY[ T € J_n‘rn Jn = Jm'm Jm=m'

=7 mn=mcnll=n.

To finish, it suffices to show that (¢) = (a) but I shall omit the

details.]
[Note: On general grounds, Y\ < Yy =y thTI Ty chyl, 80
Dom C Dom and V' Y € pom LY AL WD <
By [N, LN ™ =

Remark: Another useful fact is this. Suppose that
(M, 20 (m; <c@Boty))

(M, Q) (W, < GBI,



VN
lf 1
are standard with modular objects . Let U:¢{ | — &fz
£y ,92
be a unitary operator: Um,U* =¥, & UQl =Q2 -- then

* =
U &gqUu AP

UJlU* = J2
ml =m
Example: Take _ -- then JMJI=v)' (J = J*), hence
Yn?_ = ¥’
1 -1
D= I0T =D
J' = JJJ = J.

Assuming that Y] is a W*-subalgebra of V)., put

A_V__l.t V-1t
Dm’n (t) = ™ Qn .

Then the function

D{t) = Dle N, (t)

has the following properties:

(1) D(0) = I;

(2) D{t) is unitary and strongly continuous in t;

(3) D(t)§7.0 =-f)0:

{4) D(t} has a bounded analytic continuation into the strip

{z:O(}_r_n_z(l/zi;

(%) D{t + ;izzl is unitary and strongly continuous in t;
2



(6) D(s + t) = 6’{,‘,: (D(s))D(t);
{(7) D(t + JLEA)* JYY}D(t) = D(t)*waj D( t + J%él) is independent
of t;
) o)=Ly ym o)X=yl o
2 2
[Properties (1} - (3} are obvious, while (4) and (5) are variations

on the usual theme. As for (6), we have

-¥-1 (s + t) A YV -1{(s + t)

- = o
D(s + t) m T'L
A - V1t -¥-1s -1 s VTt -Vt VoI
A -V-1't V-1t
= ™m D(s) &m D{t)
- -t
= ™ (D(s)})D(t).
The proof of (7) is based on the fact that
v -1
D(t = J b(t)J .
(t + 5 ) m (t) n
Thus V N' € Y',
D(t + ”'l)N'_QO
2 .
- VT e+ X5h V-1 (¢ + XL
—_ &_ A 2 Nt
= ™ n $29
A ~V-T (& + X "2"1) V-1t - 1/2

™M Brno ey W82,



- Vo1(e + -—--—-';l)' AV—-l‘ t

m n Jn S*N' () 0
- V=Tt + -——-—“;1)' VTt
™ B I PO,

-V + X34 V=T ¢
N

m a8 In ¥ Oy
- V-T(t + —__";1) VT t
Qm AY\. Jn N'*Jn T (@I
-V-T(t + %";1)' VT ¢
p VTl s S50 VT - VTt
1 L;n (JTl N *J“ ) An ('10
&— V-1 ¢ 1/2 Y-1't - V-1t
LIE 3
. Am Q‘Yl (T N"*T ) Ah. 2,
-¥Y-1 ¢t &1/2 &'V_—Tt- - V=Tt
Am Jme ™M TN (Jn N'*J'ﬂ) A'n_
..\/__.Tt Y=-T ¢ - , -V-1t
N IS By Ty ¥y ) By 0,
-V-1t V-1t -V-T t ,
hm Jm( AN n (J“ N'*JYL) &Yl )'EQO
-V-Tt V-1 ¢ -VT t
-V-1t Y- t
Boyn Ty By In M L2,
-Vt V-1 ¢t
T Qm &TL Ty N QO

T2 (t) Ty N AP



Since the N' QO are dense in ¢¥ , it follows that

VT,
D(t + 2 }y = _JmD(t)J“ .
Accordingly,
D(t + 5 -} JmD(t)
— " * —
= _J.n D(t} JYn Jm D(t) = JYL
and
D(t) JmD(t + " )
— * —
= D(t) JYY\ JYh D(t)Jn = JY\ ’
which implies (7). Finally,
V-1
b{ ——=} = J J -
=7 7 T In
Therefore conjugation by D(t)D(-——-—u'-l)* is conjugation by
2
-V-1t V-1t
f.km &“ JY\_ Jm. But
V=T t - Vel ¢t
L:“ J“ Jmm I I .'_\“
V-1t -¥-1t
= n J“'Yﬂ I Ah
— V-1t N -V=T t
o In VI n
v-1t - ¥=1't



=YLCW '
which proves (8).]

An operator valued function D(t) possessing properties (1) -~ (8)

is called a characteristic function of YT1.

8o, to each W*-subalgebra Y} C YY) admitting f)o as a cyclic

vector, one can attach a characteristic function, viz And:

. D .
Y . YL

D = D = Y, = . In fact
m:“l ‘m;le _ 1 nz !

v=-1
D —l =
- V=T,
D oy o
‘m:ﬂz( 2) lmJﬂz
= T, T I, =7 Yy =Ny,

On the other hand, it can be shown that for any characteristic

function D(t), there is a W*-subalgebra Y} C YY) admitting.f)0 as a

- V=1t V-1t
cyclic vector with D(t} = & ™ Lk‘Tl

LEMMA Suppose that (YT),K]_O) and (Y, Q2 0) are standard

W*-algebras with Y} C 7¥]. Assume: O and A . commute -- then

™ mn
Y =YY,
[We have
SVl _ 1/2 -1/2



Therefore
1/2 -1/2 . *
(L\m f_\h ) (JmJn)
But
1/2 -1/2 -1/2 1/2
A‘"m An = An Am
=>
1/2 -1/2 , £31/2 Ls-l/z
=>
(7. J )*"J
m'n’ T I mIn
I.e
J J = J J

Now introduce

Yy o< A-—V—-_l't V-T t o

F (t) = LM N

_ -Val'e VT t

F (t) =<QOIN &Yl. Dhm M'ﬂ-0> r

where M'€ Y', NEY1 . Since I MNM=>WWM' < N ',

- VTt V-1 ¢
<Yy Do An N D

-V-1t Vo1 ¢ -V-T ¢ V-1t -V-T ¢t V=1t

™ (Qm MDA )(&‘Yl N Loy )c;n >

=<Q0r A
V=1't -V-1Tt V=T t ~-V-T't
){Ah N[.\...h )_OO>

V-1 t ~-V-1't VaT' ¢t - V-T"¢t

=<ty N A SN B N, )2 >



-Vt V-1t

=<003N hn &_m M'OO> ’
and so
+ p—
F (t) =F (t).
Next,
Vot -V1¢ e
Jngm M Qm I
V-1t - V-1t _
T D LAY Iy € M'.
Therefore

-Vl t -1/2 172 V-1't

- \[._]_l _ ,
Fie - =57 = <O N oy By By B, YWQed
V-1t -V-1t V-1'e - V-1t
(g VA ImIn By M Dy, 46>
V-1t -VT't V-1t -V-T't
=24 Wy 8 YAy Ivp) T By MDD I 2D
V-T t -V-1T ¢t Vol -V-T ¢t
= (@B, M Dy Ty ) T By N By TV 24 >
-V-1t V-1 ¢
= <{CL oM Dy I v % m“ NQ2o >
-V1 ¢ V=Tt
= QM By, I By NG >
- VT ¢ 172 V=Tt ~1/2
= <K M Doy Dy By Oy 800
= rHe + Y24,



Applying the usual argument, we conclude that

FT(t) = F () = F(0)

-Vt V-1t
<M1*Q0, &m &Yl, NQ0>

- QN )

-Vt VTt
CS‘YY\ Ll,YL N2, = NS?.O



The Fundamental Lemma Suppose given two standard W*-algebras

(M, ) and (L, 2) -

Let W(t) € ® (¥{) (t€R) be an indexed family of bounded
linear transformations with the following properties:

(1) w(t) 2 0= Qo‘
(2) W(t) is unitary and strongly continuous in t;

(3) W(t) has a bounded analytic continuation into the strip
{z:0<Im z<1/2%;

{4) Wit + _,%l) is unitary and strongly continuous in t;

(5) Wi L wit)*C 'm

(6) Wt + 'El)n'W(t + ‘;1)*c v'.

Then the relations

V-1 ¢t -Y¥-1t
fAN Wis) A = W{s-t)

mn n
_ V=1
Jm w(t)JYl = W({t + 3 )

constitute the fundamental lemma.
Here is a sketch of the proof. Given NéYl , M eW}', fix s

and define two functions of t:

V-1 ¢t - V1Tt

Fr(e) = <€y, By Wis +t) B NE2, D
_ o V-1t -Vt
F(t) =< 0N By W*(s + t) &m MY 20>

From the assumptions, F+(t) has a bounded analytic continuation into



20

the strip {.z-:-o <Im z< 1/2} and F (t) has a bounded analytic
continuation into the strip f z: - l/2<{;m_z<’0_}. It is easy to

check that

Ft(e) = F (¢) and F'(t + ——Vgl) =F (t - —"'2'1).

The data therefore produces, via periodicity, a bounded entire

function, which is thus a constant, so

V=T ¢ - V=1t

<Ly om Dy  Wis +E) A N2, >

=< muEN >

=>
V-1t - V-1t
Am Wi(s + t) &\h = W(s)
-7
Vo1 ¢ - V=1t
L*_xm W(s) An = W({s - t£).

This establishes the first relation. As for the second, its verification
proceeds along standard lines and can be omitted (see the preceding

section (proof of property (7))).

Example: Take TY)=7Y}. Suppose that U(t) = EEE('V-I t H) (H>0)

is a one parameter unitary group which leaves ()0 fixed with

U(t)'Y\nU(t)'l < YY)y (t >0},

Then
V-1 t - ¥=1 t “27 ¢
FAN U{s) N = U(s e )
and
JU(L)YT = U(~t).




3.
[Apply the above to W{t) = U(ez-nt) . This gives
Y-1 t 2N s -VY-11¢t 27is -2Nnt
N Ule [ AN = Ule e )
2T t 27t
JU{e JJ = U(- e Y.
Here
V-1
- 21 (t + )
Wit + “21) = Ule 2
21t T v-1
= Ule e }
2T t
= U{- e ).
We now claim| that
V-1't 27 s - ¥=1 t 2Tis =-2Nt
h U({ - e Y = U( - e e )
In fact,
2N g 2‘ﬁ(s+.“51)
JU (e }J = Ule
=
V-l't 21 s - V=T ¢ YT ¢t 2Ti 8 -V-T ¢
AN JU (e )N AN = I\ Ul - e | IFAN
=
V-1 t 2T s - V-1t V-1t 2T s - V-1t
FAN U - e J Y AN = J & U(e J I AN
20s -2Tt
= J Ule e )J
27 (s-t)
= J Ufe YJ
2T (s-t)
= U( - e }




2n s

U{~e e

Hence the claim,.]

[Note:

then

and

Remark:

Indeed:

spec U]
Therefore U (1

= U(t-t) = U

The macl
that the trai

PTV is unigus

Abbrevi@te UlI,a) to U{a}) (ac€

LEMMA |

]

=)

LT

t

If instead

ue)M o)

-Y=T ¢

U(s) In

Ju(t)Jd

1

YN (££0),

2Tt
= U(se H

U(-t).]

It is too much to require that

MU tem VY e

-spec U =
CYJU(-t) =
(£)U(-t) = U(t)U(L)

J = JU(t)J = U(t) = U(t) = U(-t)

= U(2t),

1,4

R
Wy

).

Let W be a wedge,.

0 # a+e?a_

Suppose that

E&W+a CW

+

0#a €V_&W+a CW.

i.e.,

ol = vyemMmVY e DuE)MUu-t) =M VY ¢.

=>I = U(0)

U is trivial.

ninery set forth above can be used to give another proof

1gslation representation associated with a weakly additive



Then

U(ta, )J = U(-ta))

Ty W)

Ulta_)J

U(-ta_).

T mw) ™ (W)

[Since
MW + a) = Ula,) YWHWMU(-a,)

MW + a_)

U{a_) M{WU(-a_),
the relevant one parameter unitary groups are
t —-7U(ta+)

t —7 U(-ta_).l

1f, as usual,

Wo ={xeM:]x0[<xl} ,

then we can take
a, ={1,1,0,...,0}

a_=1-1,1,0,...,0} .

Picture:

Zo

I




Given x€ M, write

X = Xge, + X8, + Y,

where y=(0,0,x2,...,xd). Since Wp = W +y, we have
Y (W) = U(y) W (WU (y) !
=7
J. = U(y)J vyt
YN(g) YN(W)
=

J U{y) = U(y)J .
rTI(WR) Yn(WR)

On the other hand, it is clear that a_ and a_ span the 2-plane

e, + X In fact,

Xa + X X - X
(Tt * 1~ %o
%0%0 T *1%1 '( 5 ) a, ¢ ( ; ) a_ -

%6%0 1%1-

Therefore

J U{x) = J Ulx,e, + x,e, + v}
TYHWR) YTHWh) 0-0 171

_ Xg + Xy e X - X,
= Jm(WR) u( (———;——-— a,} ul —-—2——-— a_) Uly)

X + = x - X
0 1 i 0 ,
o= (B2 ) a0 o (B0 00003 iy

U(-xoe0 -xlel + v)}J W)(WR) .

S0, when y = 0,

U{x) = U(-x)J

J .
Y (W) ™mg)




1,4
LEMMA %/ a€ R ', 4 a wedge W, such that

T ynw,) Ula) = U(=a)J yvyw ) -

[Let a = (a,,a), aeERd. If a =0, then W = W_ will work.

Suppose now that a # 0., Fix a rotation Ra:

R;Y a = (a,, 2 1,0,...,0)
and put
W, = R Wp
Then
™MW ) = YN(RWL)
-1
= U(R_,0) YN (W) U(R_,0)
_ -1
= U(R)) ™N(WL)U(R)
=
g = U(R_)J ur )t
™) a’7 ynwy) Yta
=
_ -1
= U{(R.)J u(r. )"} va)urHU(R )T
a’ " YH{Wg) a a a

1

I

-1 -
ORIy oy UO(RTT/0) (T02) (R, 0))U(R,)

-1 _-1 -1
ORI gy UCRT/RT@) (R, 0)) ULR,)



8.

” -1 -1
= U(Ra)J U(IIZ,\.Ra a)U(Ra)

(W)

_ -1 -1
= U(Ra)J U(R, a)U(Ra)

™ (W)

_ S| -1
= U(R)U(- R "a)J W) U(R))

- _ -l -1 -1
= U(R)U( R, a)U(Ra) U(Ra)J'Tn(WR)U(Ra)

-1
Ul- RR, al)J'Wf\(](taia)

Application: We have

U2a) = Ty, + a) Tmm)-

[In fact,

= -1
J m(Wa +a) "~ U(a)Jm(Wa) U(a)

=7

_ -1
Tw, +a? wmm) TP T w7 T )

[

VT vmmy T2 )

U(a)u(a)J m(wa)J 'YY)(Wa)

2
u{2a)J = U{2a).]
‘m(wa)

It therefore follows that the modular conjugations attached to the




wedges determines the translation representation of our weakly
additive PTV.

[Note: The assumption of weak additivity figures in the proof
of Reeh-Schlieder, which in turn implies that the (111(W),§)0) are
standard.]

Let (YT;,S)(Q be a standard W*~algebra.

LEMMA Suppose that U: §{ — }f is a unitary operator which

fixes f)o and has the property that‘UYY]U_lt:-TY1 ~~ then the operator

valued function

V=Tt ~-Y-1t

AN U In
has a bounded analytic continuation into the strip {z: - %u(lm_z<f0}
with continuous boundary values at Im z = - %. Moreover,

Y=1 2z -V-1 2
1 IFAN u N I} £ 1.

This lemma can be used to give a quick proof of the converse to
the claim of our basic example. Thus let U(t) = exp ( V-1t H) be

a one parameter unitary group subject to:
Uity L1, = Qo

UM UERIC ™M (£>0).

Assume:

Y-1 t -V 1t =27t
N Uis) A = U(se ).

Then



10.

(Taking s = 1, the operator valued function t — U(e-zr't), when
. \ -21F ' V-1
continued, admits the bound )l U(e™?™ %) 11 £ 1. Now put z = - ——Z£

to get
LURVACY -H
Nute 2 Hlt = Nu(VD = he N1,
But this implies that the spectrum of H is nonnegative, hence H is
2 0.1
[Note: We have
-H -H
0%£inf o (e ) = inf {x%x,& x>
Ihxl)£1
-H -H
< sup {x,e x)=3sup ole ) &1,
il 41
And:

—
-
e <1
)
A2 o
=y



The Bisognano-Wichmann Property In this section we shall take

d = 3 and work in“lft\'4 = R1'3.

Example: Put
cosh 211t - sinh 277t 0 0
- sinh 2Tt cosh 2717t 0 4]
N{t) =
0 0 1 0
0 0 0 1

Then t —> A (t) is a one parameter group of boosts taking Yo into

itself. Obviously,

271t

Ait}ai = e at .

On the other hand, the theory tells us that

P
"
=
o
1]
)
I

1).

Given xé&f, write x = X

then WR w WR + v, hence
-~}
iTﬁ(WR) = U(yﬂ'Yn(WR)U(y)
=
V=1t V-1 ¢ -1
N = U(y) In Uy}

YNW,) YT)(WR)



¥-1 t V-1t
Moy U= T D

Therefore -

V-1t - V-1t
By Y &y

VT ¢ -V1'e

V-1t (xo T %y (%1 - X -¥1'e
= N U{{ ——Ja Ju({—}ja_ ) In U(y)

U(/\(t)(xoe0 + xlel))U(y)

= UCA(E) (xpe, + %81 U(AR)Y)

= U(AN(t)x}.

For any wedge W € WS, there is a one parameter group t-J>f\w(t)
of boosts which maps the wedge into itself.

Definition: A weakly additive PTV satisfies the Bisognano-

Wichmann (B-W) property if Vwe WS,

A V-1t
g = U e

[{Note: Here,

U(AL(£)) = U(A () ,0).



£l‘v—l t -Y=1t
W Dy

-1
UCA (£, 0TI, UCA L (£)7,0)

UOA (), A (B) X BA, ()T, 0)

1l

U(I.I\W(t)x)

U(/\W(t)x).

In addition:

C;v -1 t - V-1t
YYY (W) mo) b V(W)
= -1
= U(AL£)) TO)U(A (1))
= YA L(£)-0).]
THEOREM Suppose given a weakly additive PTV -- then the B-W

property obtains iff the theory satisfies wedge duality and the

reality condition.

The proof of this theorem is lengthy =20 I am going to omit some
of it. However, let's at least get the definitions straight.

Ad Wedge Dyality: It will be convenient to abuse notation and

i
write S when we really mean the interior of the causal complement



of §. By definition, V welJ ,

(W) = U Yﬂ(o))" )
oOCwW

Now

1
OCW =W C oj'
= mMET) S M)

=> oty < mmt).

But
™M) © Moty

U wmoe U mebl cmely:
O0CW - OC W

=
( U 'YY](_O))" Cm(W‘L)”'

oCw

= wjwt)r.

MW < Mty

Definition: A weakly additive PTV satisfies wedge duality if

VWeYS, Mmw =m wi)r.

Remark: Examples are known of theories which do not satisfy

wedge duality, hence do not satisfy the B-W property.



Observation: To verify wedge duality, it suffices to check that
ML) = MG (= W) )
R R L °
In fact, if weld, then w = (A,a}-WR and

™m(w)

1

™ ((A,a) W)

U(A,2) MW U(A,a)

U(A,a) MwH ' uiA,a) 7t

UCA ,a) W) U(A,a) ™t

M| /\,a)'WL)'
=mMwly:.
Let K be a double cone centered at the origin and symmetric

w.r.t. the (xo,xl)—plane. Given A€ TN)(K), put A(K,x) = U(X)AU(-x).

[Note: Consider those x such that K + x C WR -~ then

Umx + x)
X

generates 'YV"(WR). i.e., the A(K,x) are dense in TY](WR).]

Notation: By (L we shall understand the set of all A € Y7i(K)

with the following properties:

(i) V¥ x: K + xC‘_WR, the function

U(/\(t))A(K,x)QG

has a bounded analytic continuation into the strip {z: - %{E_rg_ z <0}



with continuous boundary values at Im z = - ‘3::_% .

(ii) ¥ x: K + x — W., the function

U A(E)A* (K, %) Q2

has a bounded analytic continuation into the strip { z: 0< Im z(%‘—}
with continuous boundary values at Im z = % .

[Mote: IFf K + xCWR, then K - x cWL. In fact,

K+xCWR:§-K-xC—WR=WL.

But K is symmetric, hence K = - K.]

THEOREM The condition
¥ T WL P VN

YN (W) =YW )
is eguivalent to

(R} The set

{aEx) :a€@, k+xCwWy}

ig dense in TY](WR):

(I.) The set

frx) :AEQ* K+ xCW

is dense in 'YY](WL)-

Rappel: Given a standard W*-algebra (Y1) ’QO} , the function



t = A MQ) M EM)

has a bounded analytic continuation into the strip {z: - %(Iﬂ z <0}

with continuous boundary values at Im z = - % and the function
V-1t
t—7 A MO, mMem’)

has a bounded analytic continuation into the strip {z: 0<Im 2 (%-g
with continuous boundary values at Im z = 5 .
The B~W property implies that

W) = W),

Indeed, in this situation, (L = TM(K) = A .* and R + L holds. For

suppose that K + x €W, -- then YA€ M(R), A(R,x)E TT}(WR) and

UCA(E))AK,x) €2,

V-1 ¢

= B“M(WR) A(K,x) Y

has the required continuation properties. Similar comments apply

if K + x (:WL. Therefore condition R is satisfied. Ditto for

condition L.

LEMMA Suppose that
WYH) = W)’
~
Then WA €A & Vx: K + x CWR,Ei A € * such that

VA - Y2am,x O = AK,-x) O .
2. '




Suppose that
YYNWL) = YW )"

Then the theory is said to satisfy the reality condition if

VAEQA NQ* s Vx: K + XCWg,
~ A
A* (K, = x) = A{(K, = x)*
and
{M&MflwA&(lna*,K+xC%§
is dense in ¢ .

A
{Note: Since 2¢ (@ , it makes sense to consider A(K, - x). But

~
A€ QL *<&=>Aa*e Q. , thus it also makes sense to consider A* (K, - x).]

Assume now that the B-W property obtains ~- then, as we have

seen above, QL= M(K) = QA *, In addition,
MWL) = mw ).

Therefore the preceding lemma is applicable, hence

"

~ A -
Ak, - 0y = A a0,
2

1/2
_ *

1/2
= £57¥HWR) SA(K,x)g)_o

1/2 1/2
By T mag A mu 2 E L,

1/2 -1/2

* By Bmey T magy 2R L



A(K'X)JYY](WR)QO'

= J
TY')(WR)
On the other hand,

A N
A(R, - X)*(D, = S*A(K, - x)S')_O

—1/2 P
Ty & may 2 - 0L,

~-1/2 V=T
-1/2 1/2

T my B ) By 2R L2,

A(K,x)J

J 1.
TTKWR) WTHWR) 0

From this, it follows that the reality condition is in force.

[Note: In making the calculation, we have used the fact that

J Al/z = A"I/ZJ.I

LEMMA Let s,t be real variables and let 6, T be complex
T

rt (s,t)

variables. Suppose given two bounded continuous functions
F (s,t)

with F+(s,t) = F (s,t) V¥ (s,t) €v13_'2. Assume:

{+) F+(s,t) can be analytically continued into
{o:0<Im&<1/2¢ x {T:-1/2¢ImT< 0} ;

(=) F (s,t) can be analytically continued into



10.

{o: -1/2<Ime <0} X {T:0¢ImT < 1/2 } ;

(1) Fre + L5L, o- Y2hy = pre - X5L, ¢ 0 XL

Then 3 a function F holomorphic in

f-lcme+mzciy

. . . + -
which analytically continues F and F . Moreover, Y z€C,

Flg,T) Flg+z, T-2}.

[Note: Therefore

Fis + z, t - 2}

F(s,t) =
=

Fis,t) = Fis + t,0) (z = t)
=7

F(s, -s) = F(0,0) (t = -5).]

Suppose that the theory satisfies wedge duality and the reality
condition -- then we claim that the B-W property obtains. Thus let

AelnQ*, K+ x o and B G'YYKWi). Simplify notation and drop

the subscript ‘YTKW#) from the modular objects. Put

" V-1 s
Fis,t) = <y, B A UIA(E)AK,x) Qg >
_ -¥-1s
F(s,t) = <{lyr ARXIUIA(-E)) A BS2,> .
F'(s,t) (+)
It is easy to see that _ satisfies condition of the
: F (Srt) (=)

lemma. Since 'Yﬂ(Wt) = TTHWR)'r



llf

V-1 s

Fi(s,t) ={{2yB A UCAENAK,x) 2>

V-1s -V¥-1s V-1s

=<<L, (O B A ) (UEAENAE, )TN FENUA ()N, >
-V¥-1 s V-1 s
=<0 A B AL ) (UCAEDAKIU(ACE)) £2,>
-¥~-1"s -1 s
=S5 (WA ED AKX TIAG=E))) D B & 1S, >
- V~-1's _

= <€25, AKXV U(A(-E)) A BCY > = F (s,t).
To apply the lemma, it remains to show

(1) Fres + Y2L, ¢ - 5y 2 pe - 2L 4 M2L

Let's start with the LHS:

Fi(s + V-1 v -1

=zt

~l's -1/2 -
=<8 & D UCAWNDUOAG “52)akx) 20>

s
=<SUE A A UAEDAE-x) 2,

-1/s -1 s

<o B QL A UCAEDAEK, -0 2>

~-1/2 V-1s
RO NN-T S o I N TN Y Ne R o J

~1/2 =1/2 -1's
=& s BQ A U(A(t))ﬁ(x,—mQO >



12,

V-1 s A
=< mIN, A U(AE)AK,-x) $2,>

-1l s A '
=<2, IB* A\ UCAEDAK-x) Q4> .

Turning to the RHS, proceed from

_ - ¥-1l s
F(s,t) =02, A(K,x)U(A(-t)) B2, >

- V=1 s

= CUCAEDAER* (Y, & 882 >

to

— ' -V-1s -1/2
=CuANENTACED A0 QA A BS2, S

—7. -¥-1 s -1/2
=CUCAEDUIA (- S55ak,0* 0, A A B0, S

-V-I's -1/2
=<U(A(t))g*(x,—x>Qo,A N BS2, D

~ - V1's -1/2
= {UIALENAKR,-x)* 2y, O A - @ J

~ -V1's -1/2
= (UCADAR,-0* (1, O I BS25 5

-¥=1gs

= (UAENARE, -0 * Y, A IS*BLL, >

- ¥=1"35

= <Q0,3(K.—x)utl\(—t)) FAN S IB*IS2 > .

But

I MWL) 'T = (W) .



13.

I.e
IMNW )T = Y (W)
=>
JB*J EW\(WR} .
Therefore
e
A - V-1's
= <€2 UEAENDARK,-x)U(A-E)) A 38*3 £, >
-1 s A -¥-1s
=<2y, I UIAENAK, =X UINA-E)) A JB*3 2 >

V-1 g A
= {£2,,38%3 A UCAEDAE,-x) 2 D -

Accordingly, condition (+) is satisfied, hence

F(S, ""5) = F(OIO)
=

V-1 s
<€, A& UIN(=s)AK,x) £2,4

= <C2,.BAK,x) L2 > .
Since W‘\(WL)QO and { A(K,x) QO} are dense, we then conclude that

V -1 s
FAN U(N(-8)) = I Vs,

which is equivalent to the B-W property.



Haag Duality Suppose given a weakly additive

open set 00 == then

™MIOC (Y M)
010,

=( U m(o))'.

O_LO0
On the other hand,

Yo, ) U, mo
O(:OO

(Y, M)

0.!.00

Mg =( U m(m)

O.LO0

O.LO0

Definition: 00 is dual if

™M(0y) = M(oF )",

U mw))-.

PTV.

Fix

a bounded

The theory is then said to satisfy Haag duality if each double

cone K is dual.

Fact: In the presence of Haag duality, ¥ double cone X,

M wmw = N et

WOK WDK




LEMMA Suppose that the theory satisfies Haag duality -- then
W
the theory satisfies wedge duality.
[Fix WOGLJ . Choose an increasihg sequence of double cones
o<

K such that U Kn = W

i 0

Lo

W,
X, ‘

K,

4

Let ‘Pn ={(f\,a):(l\.a)°W0:) Kn} and put

o0
F = () F0= LA WD)

By the above, for n =1,2,..., we have

O ww = N mwt):r.
WDKn W:)Kn

But Vwe U, 3(/\,a)€6": : (A,a)-WO = W, hence

() MA@ W = () MA@ W )
Jn {n

-8

w .
N MU 8 = () [} MA@ Wy )
¥ 1 |

n n



=>

(M MCAa) W) = (\\m((/\,a)-wj ).

A Foo
But
(A ,a)-Wy D W,
=
11
(A,a) Wy C W,
=
WA Wy ) S )
=>
MG )T SYNCAa) Wy ) !
= L L
Wy ) < ) IMCAR) W)
Fon
= [ ) M(A,a) W)
0
o

C N, (1,00 = id € o ).

Since the opposite containment

W) © Y )

is always true, it follows that wedge duality is satisfied.



Half-Sided Modular Inclusions Suppose given a standard W*-algebra
(W, 20 -

Notation:

(1) hsmi(Yr}) is the set of W*-subalgebras Y)< YY) for which

€2, is cyclic and

V-1 ¢ -V-T't
A A Ytawﬂ N (t40).

(2) hsmi(YT])+ is the set of W*-subalgebras Y] < Y} for which

f]o is cyclic and

&V:ft -Vt
™ YlAWn Yl (t20).

[Note: If Y| € hsmi(YY))i, then it is automatic that the pair

(Y1,<),) is standard.]

Remark: The condition

V=T t -Y-1't
&Yh chﬂn cn VvVt

V-1 ¢
m

is a one parameter group of automorphisms of Y| satisfying the modular

implies that Y1 =YY). Indeed, under these circumstances, JA\

condition per AP hence, as the proof of uniqueness shows,

A=A =TT =M.

Example: Suppose that U(t) = expl V-1't H) (H>0) is a one

parameter unitary group which leaves f)o fixed with

ueYN u) TS YN (£>0).



Let

N, = usMmu L

Then ¥ s >0,
Mg € hsmi(¥YN) .

[In fact,V¥V t20,

-¥-1t V-1 ¢t
-¥=1t V-1t -~ V=1t V-1 ¢t - V-1"t. Yy -1 t
= &m Uis) Lnyyy O, T O A U(-s) Iy,
2Tt - V=1t V -1 t 2nmt
= U(se N AN ™ DNy  Ufmse )
2T t 2Tt
= U(s)U((e ~1)s) Y)Y U(~(e -1)s)}U(-s)
C u(s)NU(=s) = Y _.]
THEOREM Let Y] € hsmi(¥Y))~ =-- then 3 a one parameter unitary

group U(t) = exp({VY-1 t H) (H> 0) which leaves QO fixed with

s o) tem (£r0)

such that

Y1 = Uu(l)ynu(-1).

To see how U ig going to be produced, assume the truth of the

theorem -- then



Y\ = u(l) Mu(-1)

=
C>Y1:= U(l) ckYT\U('l)
=> A V-T e Vet
DTn,y1 (£} = By LLWT
-V-1t V-1 ¢
= Am U(l) &m U(-1)
20 t
= Ufe YU (-1}
20t
And:
L Y-T
D1T\,11 (t + 5 )
= J1ﬁ1D1?1:71 (t)JYl
2T t
= waju(e -l)JT]
20t
= 3171 Ule _l)JWW\JYY‘JYQ
2Tt
= U({-e + l)JTYwaﬁ
2Nt
= U{-e + l)JquU(I)JTY\U(—l)
2Tt
= U{-e + L)Uu{-1)u{~-1)
2Tit

= U(~e -1).



It is therefore a guestion of showing that this data can be used to
define a one parameter unitary group with the desired properties.

What we shall do is show that the characteristic function

D(t) = D )

(t
m:n
commutes for different values of the arguments:

D{t)D{t') = D(t")D(L).

This will prove that U is additive for positive arguments and the
rest will follow.
The key technical point is to apply the fundamental lemma to

1 27Tt
Wt) = D(——— log (e + l)) '
21 T

working, however, withfrlalone. Therefore one has to check assumptions
(1Y=-(6}. .Of these, assumptions (l)-(4) are clear (being properties

of characteristic functionsg). Since Y]EThsmi(TT?)_,
D)V D(t)* €Y Vte2o0
=
we)YQ Wit)* C Y| Vi,

which verifies assumption'(S). Next,

VS
7 = Jym

D(t + D{t)J

n

JmD(t)Jn Y]'J-n 1:r(1:)='unm

= Iy, PO M DLEI AT




S IyyMa =M aem!’

Wit + ————"2'1) Wit + ——-—-“;l)* oMn'.

which verifies assumption (6).

So:
A V-1 t - ¥Y-1t
W(is) I\ = W{s-t)
n m
or still,
V-1t 1 21 s - ¥Y-1 ¢t
TAN D{ —=— log (e + l)) FAN
n 20 T M
1 21 (s-t)
= Df{ — log (e + 1)) .
2 T
-V-1 ¢
Multiply this equation on the left by [3177 and on the right by
YV ~1
AN -~ then the LHS becomes
n.
Cx“ Y-1't V-1¢ -V-1t V-1 t!

m Ay By by
where

1 2“3

t' = — log(e + 1).
2T T

As for the RHS, write

2Tit
1 laog e
21N

£t =

and note that



1 27 (s=-t) 21t
—=— [log (e + 1) + log e i

1 271 (s-t) 21t
= — log ((e + le )

1 2Tis 2Tt

i

%]

1
2n
We thus end up with

-VTt V-1t -V-T<¢' V-1 e
S B By By

2TT ¢ 2Tt
= D{ — log(e + e -1)),

an expression which is symmetric in t and t'.

And:
2Tt 2 TiL!
U(e -1}U(e -1)
= D(t)D(t")
1 2T ¢ 2nt!
= D(——— log (e + e ~-1))

21

. ]
2T (5 log (2T E 4 &2 Tt )
u(e — -1)

27t 2nt’

This establishes additivity for positive arguments. Easy manipulations

then lead to additivity for arbitrary arguments.



Remark: The generator H is positive. Indeed, AYL > Am —

log A > log A . But
Mm ™m _

3 —V-_l_'t-mt\
act CkTr) Ciyl ) t=0

= V-1 (log An-&'fg Am)

and H is the closure of

1
— (log A - log AN ).

So

U(t) = exp( V-1 tH) (H >20)
is a one parameter unitary group which leaves 2 0 fixed. In addition,

vMuw e w20,

This 1is obvious if t=0. Suppose, therefore, that t is positive ~- then
2Tt 21t -1
Ule -1} N ule -1)
&— V-1 t A\'-—l t Yl Z_\_,,- ¥-1 t V-1t
B g M n By

-Y-T t V-1t
= Dy m (A, o,

Y] being by assumption in hsmi(YY)) . Consequently,

&'V -1 t -V-1t =27t
0] = U( )
n {s) ZL«rl se



and
J.n U(t)JY.1 = U(-t).
LEMMA We have
R e
V-1t V-1¢t '
&Yl = U(l) L&Tn U(-1).
[Take s=1 to get
V—l t -¥Y-11t 2Tt
U(l = U
Ah (1) Ah (e )
=>
V-1 t -V=-T'¢t -2T t
U(-1) In Ul = U(=1)U
{(-1) 28 ()AY.l (=1)U(e }
-2Ti t
= Ule -1)
=>
A\/?-Tt -21t &V_—Tt
U(-1) h U{l) = Ul(e -1) n
D.V—l t - V-1t V-1t
ST B by
V-1t
= ™
=
VIT ¢ VT ¢t
[_:HY.I = U(Ll) L;m U{-1).]
Let NEY| -- then ¥ t
V-1t -V=-1¢t V-1 t - V=1 ¢ ]
o € M

™ A'Y\ N AYl ‘Q‘Yh



I.e.: ¥ t,
=21t =21 ¢
Ule ~1)NU(1 - e )y €N
But
-2 (Tt 27T t
lim Ule “1)NU(Y - e )
t—>» + 0
= U(-1)NU(l) (weak operator topology)
—
U(-1)NU(1) € Y .
Therefore

Y\ S u)yyiu(-1).
On the other hand, thanks to the lemma, the modular groups of (Y[ , 2 0)
and (U(l)\ﬁﬂU(-l),fﬁwﬂ are one and the same, hence
YU = u@)m u(-1).
It remains to establish that

s uwtem 0.

But
-yY-Tt V-1 ¢ 21t
AYY\ Qh = Ufe -1)
=
2Tt ~-V-T't VTt



10.
21t - V-1t V-1t
Ule ) = Ooyy LAY

21 t -2Ti t
Ule ) YY) Ufe )

A_V:Pt V1't -V=1't V1
= m Ah U(l)-Y-nU(""l) Ah &m
- V-t V1t -VTe V-1t
A- \f-—l'tYI V-1t -V-T't V-1't

Observation: In the relation

V -1
Dt + —T) = J-m D(t)Jh

take £t = 0 to get

( 2T (—--——';1) )
u =1/ =
e " J”Y]
I.e
u{(=-2) = J J
} ™ n
or still,



11.

LEMMA Suppose that Y} € hsmi(Y"N} ¥ and Y]l # Y1 -- then Z/

a type I factor & :

Nk < m

Example: Suppose given a weakly additive PTV ~-- then \fizzo,
'YY](WR + ta )
= U(ta+) m (WR)U(-ta_l_)
Therefore (s=1})

YW, + a,) € hsmi( YN(W)) .
Consequently, the inclusion
W(WR +al) — Yn(WR)

is not split.



C*-Categories Let 7 be a category.

Notation: Elements of 0b 7 will be denoted by f ,67,... and

elements of Mor'J will be denoted by R,S,... .

Definition: 7 igs a C*-category if the following conditions are

satisfied.
(1) The morphism sets are complex Banach spaces, composition

of arrows is bilinear, and

lrRes il £ WrRI - HsH .
(2) There is a conjugate linear involutive contravariant
functor #: “J —» 7 which is the identity on objects such that

Hr*oRrRHI = R 2,

[Note: If R: ¢ — ¢ , then R*: o0 —> ¢ , thus it makes sense to

form R* OR.]
A C*=-category with a single object is just a C*-algebra.
In general, W g€ 0b J , Mor(p ,f ) is a unital C*-algebra.

It is also necessary to postulate that VR, R*OR is a

Example:
Remark:

[Note:
positive element of Mor(f /P ), 80 REOR = X*o X for some X€Mor(g ,p ).}

Suppose that 7J is a C*-category -- then

(i) J is said to have subobjects if given a projection

E€Mor(¢ ,p ) there is a V€ Mor( L)
V¥ oy = 10“ & VovVv¥*¥ = E,

(ii) ?J is said to have finite direct sums if given

p,o-e_g_lge:]' there are VeEMor(p,T), WeMor( o, T):



VoV

le
&E VOV* + WOW* = 11:‘ .

W*o W 1

&

Suppose that °J is a C*-category —-- then Y is said to be a

strict monoidal C*-category if there is an associative bilinear

bifunctor @: %Y x T—> T which commutes with * and admits a unit

1€ ob7.

In detail: Associativity means that the functors
R@xL): (T xT ) T =T
® 1x@): Tx (T xT)r— T

are equal, while the condition on the unit translates to

Q1 x 1) =_ig,J =01 x1),
where
T xl: Y — FxF 1xy : J—= Fx7T
e > (1,¢0) P — tes1)

Bifunctoriality says that 1 & 10‘ and

f
(R®S)o(R"®@ S")

1
P Do

(RoOR') @ (S o8")

whenever the composites RoOR' and S0S' are defined.
[Note: The bifunctor (X assigns to each pair of objects ¢ , o

an object ¢ @ 6 and to each pair of arrows R: ¢ —0 R': p' — ¢!



an arrow R@R'": P ® ¢' — ¢ @6 with

RAPR' = (1 & R'Y o(R®@1 _,)
o £

or still,

RA@R' (R@1 G') o CLP @ RY).

The bilinear operation (¥) is associative on both objects and arrows.

In addition,

PO 1= 1@p=¢
1, ®R=R®1, =R.

Finally,

(R @R')* = R*@R'*.]

Remark: Mor(1,71 )} is an abelian C*-algebra. In fact, if

R,R'€ Mor(?7 , 1), then

RAR' = (J.1 @ R') o(R@l.L) = R'oR
R®R' = (R®lq ) ©{(1, oR") = RoR’
=

R'"0oR = ROR'.

[Note: Mor( ¢ ,o ) has the structure of a Mor(1 ,1L )-bimodule

o
andﬁ{iég are Mor(7 ,1 ) compatible maps.]

Example: Let { be a unital C*-algebra -- then by End Ul we
shall understand the C*-category whose objects are the unital endo-

morphisms e DL —> 01 and whose arrows p —? ¢~ are the intertwiners,



ioe. r

Mor(p,q) =§{ TeOL: Tp(A) =c(A)T Vae 0L} .

Here, the composition of arrows, when defined, is given by the product

in 0l and 1me Mor (¢, p) serves as the identity: lP = 1

01. -
Now End 01, in and of itself, is a semigroup: ( P o ¢ ) (A) = £ o‘(A).).
On the other hand, if R€ Mor{p, p') and SgMor( e, ¢'}, then

Rpe(s) ( =p'(S)IR) € Mor{ p o P' o ¢')+ 1In fact,

Rp(s) p(o(a)) = Rp (S o(A))

P'(s ¢(A))IR

P'( &' (BIS)R

P (o' (A)) ' (S)R.
Agreeing to write Rx S = R ¢(8), put

P Do= pos
r1=j£m-
R@S = RXS
Then it is clear that with these operations, End 0{ is a strict
monoidal C*-category.

[Note: By definition, Mor(1,1L) = { T€Ol: Ta = AT Waec0Ol{ ,

i.e., Mor(1 ,1) = 2o

Suppose that “J is a strict monoidal C*-category -- then a

T Mor(p,p) V.l




(p,5) € 0b7Y x0b’) a unitary element £(p,¢)E Mor{ P @6, 6 @F)

such that

5(0‘:?)0&({’:0‘)=1P®6_:
E(—I:P)= E(Pf't.):lp r
Elp@c6,T) = (g(p, L)@ 1L )o0l(l, @ el(s,1)),

Elp'sa') o(R®S) = (SAR) 0 £( @, 6),

where in the last line ReMor(p +P ') S€EMor{(o, o).

{Note: The conditions

1

*
E(era)* o cle o) 0 Do

E(picg) o E{p,o)* = 10_®?

are tantamount to the unitarity of E&(p,q).]

Remark: A braided structure on ﬁf is defined by a similar set

of axioms except the requirement

r 3 ’ =1
Elg,p) o E(p.o) 0 @6

is dropped and the assumption
Elp, o @T) = (1 o RE(p,T) e (&l P;O‘)Q?l_t )
is added to the list.

Suppose that °J is a strict monoidal C*-category which admits

a permutation structure -- then a conjugation structure on 7 is an

o T~ o7
5

P —

assignment together with arrows



R, € Mor(l, p @p)

?{Pe Mor(1, e®¢ ),
where

R, = €(P.f)OR

@ e’

subject to

=, )
(RP®1F’ )0(1P®RP) lP

1
[
|

#* _ 1_ =y =
(RP®IP Yo P®RP)

the conjugate equations.

[Note: One calls'? a conjugate for p .]

LEMMA Suppose that @ € Ob “J -- then there are natural iso-
morphisms

Mor( p @oryT)—> Mor(eg.p ®T)

Mor( o @@, T) —> Mor(o, T®§¢ ),

ViZ.

S — (1§®S)0(RP®16_)

with inverse

St —> (R* 1 S
{ ?® T,)O(lp® )
and
T™ —> (T ®l.§. ) 0(16'® RP)

with inverse

T! — (lt®R*P )O(T‘®1P).



[Consider, e.g., the first assertion:

15 ® (R @00, @) 0 R, @1,)

= (1_ ®@RrR* @1 _ '
(‘,@RP@t)o(lp®e®5)omp®lf)

=(lF®R"“7®lT)0{1 -P—®?0Rf,)®(s'olo_)

i

(1? ®R’f“, dl,) O(R‘,@S')

(1? @R; ®l'c ) O(RP ®1? ®@lg)os'.

By hypothesis,

* — - @R = 1—
(RP @ lP)O(lP @RP) 1

1z @R, ®1.) oR, @lggq) oll, @ s')

P
=
= * * _ 1% = * = —
(lF ®RP) O(RP(QIP) 1?. lP
-
(1F®R?} ) oR, @1g) = 15
=
((}.F®R?}}0(RP®IF))® 1 oly) =1z @1
- _
(l-f,-@R’é@l.c)o(RP@lﬁ@lt)=1—P—®,C.

Therefore, upon precomposing with S', we end up with

1. °o8' = s'.
P DT



Ditto for the other direction.]

[Note: This lemma admits an obvious interpretation in terms

of adjoint functors.]

It follows that

Mor(p ,p )2 L MOXr(2, p @p )X Mor(1, P @p ) Mox(p,p)-

[In the relation
Mor( Pp @ T) X Mor(¢, P ®T)
take ¢ =1 and T=p¢ to get

Mor(p ,p)loxMoxr(2,p @),

hence, by symmetry,

Mor (g, @)y Mor( 2, p@¢ )-
But from

Mor(c @¢ U)X Mor(G, T@P)
with ¢ =0 and T = ¢ , we also have

MOr{p ,p )X Mor(1,P ®@p ).]

i . A : R, €M . h that
LEMMA Fix ¢ € 0b ¥ ssume: - 1€EMox(L,p;®p) suc a

(RI®@1, ) o (1, @Ry) = 1,
(R, = €( 1. p) oR)).

% 1 E =1
Rf@L, ) oll, @) e,



Then there is a unique unitary UE€ Mor ( f':', pl) with

o
]

1 (U®1P )OR‘,

oo}
l

1 = (1P®U)°RP

[This is an easy consequence of the preceding lemma.]



Dimension Theory Let U be a strictly monoidal C*-category

having subobjects and finite direct sums as well as a permutation

structure and a conjugation structure.

Assumption: Mor{il , 1) =~El‘t .
[Note: This implies that W p€0b J, Mor(g ,p ) is finite
dimensional.]

Definition: Let ¢ € Ob ") -- then by the dimension of ¢ ,

written dA( ¢ ), we understand the complex number

R*PORPG Mor(i,71}-
Re

[Note: Recall that R’;, oR is the composite U

p 7P @p

R*
——t% 1 . Observe too that the definition is independent of the

choice of Ry : V unitary U€ Mor(pg ., ¢,),

((U@Lp ) oRp )* © ((UDL, ) o R, )

R; o (U®lP 1 * 0(U®lP ) ORP

= R* o [(U* o U) ®(IP®]‘P J1eR

¢ f
= R*
Rpo(l'(.?@lP)URP
= R* 1o R
p ° F@e °F
= R*¥ o R, .1

P ¢



The dimension function

d:0b J —¥ ¢

M

has the following properties:

(L) a(p) 20;

(2) d(p) =a(p):

(3) d(p Do) = dlp)dl(s);

(4) d(p, @pP,y)r = alpy) +d(p,).

Remark: It is a fact that the gset of unitary equivalence

classes of objects in “J with d{(p ) = 1 form an abelian group under

the monoidal product, the Picard group of ff .

Let P be the strict symmetric menoidal category whose objects
W

are the nonnegative integers, its morphisms being

Mor(n,n) = P_ (Mor (0,0) = 1,)
Mor(m,n) = @ {m#n) .

Here the monoidal structure on objects is defined by addition (i.e.,
morphisms
n@n = m+n), while onxixjertyx it is given by

1 2...m ' m+l ... m+n p€ P
pP®g = :
P(l} p(2)...P(m) m+g{(l) ... m+g{n) q€P .

The symmetry T:P — P is the natural isomorphism
WW

T mn —
Tﬁ,n m+n —y m+n

specified by the permutation



1 2...m m+l m+2...m+n
(m,n) = .
n+l n+2...n+m 1 2...n
Fix now an object ¢ € 0b 7J -- then there is one and only one

strict monoidal functor E? :£ —5 T with EP {1} =¢p such that

€{Tm,n = Tef,(m), € ()

E( EP (), EP(H))
=™ pM.
First, Ef’ is uniquely defined on objects since we must have

€p(0) =2 and €,Mn) = €, (19---PL) = ¢ @---QF = po.
Obviously, EP(IO) =1, and EP(ll) = 1‘, . Moreover, Ep is
uniquely defined 0“,22- In fact, E‘,(lz) = 1.P2 and 39(1“1'1)
{ = EP((l'l)” = & EP(I)' SP(l)) = &(p.,p), as EP mnust
preserve the symmetry.

Next, for a given pegn (n >2), there are two possibilities,

viz:

(1) p(l) =1 and p = ll®p', where p'eﬁn_l;

(2) p(l) #1 and p = (1, ®P") o((1,1)®1n_2) °(1,®4q"),
where p',q'€P ..
Accordingly, if EP has been defined On\f,n-—l' then it is necessary

to set

=1 '
E_P(p) P ®£P(p )



ox

E?(p} = U, Y {P(p'))'O( E(p.¢ )®lP n-2) @y @ €pla’))

as the case may be. $So, granted existence, uniqueness follows.

To establish existence, we shall use these formulas to define

8? inductively and claim:

(a)n £, is welldefined onvgn;

f)

(b}, Ep (P oa‘,(q) = &p (poq) (P,A€R )s

(¢) & e (p@®g) = & e (p) & Ep(q) (P4 €R, )

n

(d) &

n

p ((xi8)) = Eolp P (ris =n).

[Note: 1In succession, (b}n says that EF,is a functor, (c)n says

that &£ _ is monoidal, and (d)n says that & . preserves the symmetry.]

1 £

These statements are proved by induction. They are, of course,
trivial for n = 1,2. Suppose that they have been verified for
k<n (ny2). It is clear that (a)n is valid on llQQEn_l. Assume

then that

(1;@p") 21, D@L, _,) o(1,®q")

= (1,®p") 0 (1, 1IP1__,) o (1, ®a"),

" t * " -1
where p',p ,q',q'eizn_l. Multiply on the left by (11699 } and

on the right by (llng')_l. Changing the notation, we are thus

reduced to showing that

1,®p = ((L,LIL__,) o(l;®q) o((1,1LHP1, _,)



=

1, @, = (E(P'P)@’lpn-z)oﬂp @ gpl@)eltelp, @@L

? § pn-2’"

Here, p,qé&En_l and it -is easy to check that actually p=q with

p(l) = g(1) =1, so q=ll®q' (9'€P _,). Therefore

(E(Q.,P )®1Pn_2) °ll, @ £p(@) olglp,pI®L )

(6(f,p)®1pn__2) 0(19®1P ® gpla’)) °(E("’P)®lpnf2)-

Il

(E(Pr[’)@lf,n_z) O(lpz ®EP(CI'))'°(E(f'rP)®1 Pn-Z)

1l

(E(0, 1@, 5)0 1Ly, 0elp, P@Epla) ol o]

(E(p, PI@L ) o(E(p,P)® Epla")

(glprp)oglp,pN@ ,, o €pla')

¢

1 (g")
02 @ €old

lp® 1o &® Ef,(q')

1? ®Ep(q)

lf: ®€f(P)-

Consequently, EP is welldefined. The proofs of the other properties

are similar and will be omitted.

(n)

Remark: By construction, 6? |“§n = & is a representation

by unitary elements in Mor ( Fn, pn).



Define now a linear map

1

¥, : Mor(p®, ™ —> Mor( ™, o) 21y

(J

by the prescription

T (R";p @1(’ n-1) © (1?_ @ T )o(RP ®1Pn_l).

Example: We have
'O_ZP(].PH) = (R? @1 fJn_1) o(l 5@1 P“) o (R, ®1 Pn_l)

= *
(RP®an_l) o 1?@(” e Pn_]_)

Il

Re @1, 3) 0k, @1 )

i

(R*P o RP ) @ (1 pn-1 ol Pn_l)

ace) l'l.®lpn'l

AN L g

Example: We have

Tll, @ THOTO (L, @ T)) = T o (T ) © T,

¢

. s . -
LEMMA 'QZF is positive: ¥ T, ¥_ (T o T)20.

£
[In fact,

@1

e

T?( T*o T) = ‘R*p@’lf,n-l’ o(l?;@( T™ o T )) o(R

Pn-l).

= (R*P @]_Pn_l) o(l? @ T*) o(lf'? @ T} Q(R(,@l ‘on—l)



and

((1_ ®T)o(R?®1 ))*

Fn -1

Ro @1, )% 0 (1 @D*

|

(R: @1 Pn_l) 0 (1 ®TH.]

Iteration

1

Mor(p", p™) —> Mor(p"” e h — ces—rMoxr(p ,p ) —> Mor(y ,1)

then leads to a positive linear map

Since 6? is a functor with &P {n) = Pn, of necessity

(n}

Eptgdgg(n,n))cbﬂ(?n, p™, i.e., ¢ P

(P} Mor(p”, p™.

n)

It turns out that one can compute EEP(EJP

pI) V¥ p €£n° Indeed,

o dlp) e (:—nm.) (p(1)=1)
¥ (€ (p)) =
e o

€ i;"l’ (p') (p(1)#1).

Here p'ewgn_l and p = llﬁbp' if p(l) = 1 while if p(l) # 1, then p'

is that element-ofvgn_1 obtained by dropping the number 1 in the

decomposition of p into cycles and replacing the remaining k by
k-1 (k#l).

To illustrate, consider the first possibility:



{n) _ {n-1)
( = (1 '
‘\_F_f, EP (p)) IP P@e:P (p'))

[}

T . (n-1) .,
i,((l‘,@)aP (er)el , oll, @1 )

)
pr-l
- {n-1} [
= €57 (Y o&f,(lpn)olpn_l
= g n=1) .,
= & ° (p )od(P)an_l

=aip) ¢ ‘P“'l’(p').

One may attach to E%?) two canonical proijections, namely

st - L T g
nt pep, €
€ Mor({ (’n, (Jn)
al® =L > sgnp ¢Wip,
P n! pe;En P

the symmetric and antisymmetric projections, respectively.

Rappel: For any real number 4,
4y = q@-1
0) = d(@-1)---(d-n+l)

N S sgn p -a™(P)
nf pe P
el

where m(p) is the number of cycles in p.

Since

E; ( 6(;)(131) = a(p)™®),




it follows that

(n) ,, (n)
—:P_f, ag"")
- L T s TM g™
n! pe\f’n f e
=X 2 sgn p-d(g )m(p)
nl! peP

{n)
¢

is a positive element of Mor(1 ,1 ). In other words: W n>1,

But A is a positive element of Mor( Pn, Pn) » hence _‘ﬁ(g) (A(n))

£

a(p)(@(p)-1)---(d(p)=-n+l) > 0,

which is possible only if 4(¢ ) is a nonnegative integer.



DHR Theory Suppose given a weakly additive PTV with a unique

vacuum which satisfies Haag duality. Let Ol be the guasilocal algebra
of the theéory, YY) the global algebra of the theory -- then )= 0L ",
ie., ®(FP) = OL ", hence OUl' = CI =‘>ZoL = CI.

Wy
[Note: Recall that Haag duality means that each double cone K
is dual, i.e., M(K) ='YYKK1')'.]

1,d

Notation: W open subset G of R (bounded or unbounded}, put
Wy

OL(G) =c*( U Tmo)) .

0 G
Then
OL(G)" = M (G).
[Note: 8o, for a double cone K, YN (K) = DI(KJ')"' = Ul(KJ')'.]
Consider now End O( , the unital endomorphisms of 0T -- then,

as has been seen earlier, End Ol carries the structure of a strict
menoidal C*-category.

[Note: A unital endomorphism p : 0U—> Ol is necessarily
injective. Proof: The kernel of £ is a closed ideal and Ol is simple.

Accordingly, W a€ 0L, Je@N = Wal .l

Definition: Obiects ¢ .0 € End Ol are said to be unitarily

eguivalent if 4 a unitary U€ Mor ( g.0).

[Note: U is unitary if U*U = 101 = Uu*,]

This notion splits the objects of End 0 into equivalence classes
{pl.
Example: U€Mor{(1,p)=> UA = P(A)U VY ae€0t = vav! =

P () VY a¢e 0l , so [ 1) consists of the inner automorphisms of 0



corresponding to the unitary elements in O1.

We shall now single out a full C¥*-subcategory “J < End QU with
the following prdperties:

1e0b Ty
pro €T =7pog€eT

PET=r [plcoby.

In particular, therefore, T is strict monoidal.

Definition: A unital endomorphism f of Ol is said to be localizable

if 3 00: P(a) = A VA€ CT'L(OE)L ). in which case ¢ is localized in 00.

[Note: Accordingly, ¢ is also localizable in O if OOC 0, thus

a localizable P can always be localized in a double cone KO.]
A unital endomorphism @ of Ol is said to be

transportable if VY Oq ip 0€LP1: P, is localized in ©

Definition:

0-
A DHR endomorphism is a unital f which is localizable and
transportable.

Example: The unit 1 is DHR.

Remark: Let 77, be the vacuum represgentation of O ( Tio(A) =

A Y AE€ Ol which, up to unitary equivalence, is the GNS representation

attached to the vacuum state u)o) -- then by DHR(ITO) we understand

the set whose elements are those representations 11 of { such that

Y double cone K, ﬁ'lOl(Kl‘) is unitarily equivalent to LI 1 OIUKL)



3.

or still, those representations 71 of {J| such that 3 a DHR endomorphism
¢ with the property that T is unitarily equivalent to T g °pP

Notation: 7J is the full subcategory of End UL whose objects

are the DHR endomorphisms.

1 * o e
LEMMA Ob 7 is closed w.r.t. products: { ,¢ € Ob ¥ =

Poese obJ .

[Suppose that @ is localized in K and ¢  is localized in L.

4
Choose a double cone D: D7D KUL -~ then D'L c K0 L‘L and

otr) < 0L (x%) N OLEY), thus ¥V A € 0LDY), (Poc)(a) =
f(o(a)) = P(A) = A, so Poo is localized in D. It remains to

prove that f©¢ is transportable. For this purpose, let KO be an

arbitrary double cone and let ¢ OE (el., 54€ o] be localized in

. _ -1 _ -1 . __
KO. Write {30 = UO(JUO r O = VO-G'VO (UO'VO unitary) then

R
V aeblK, ), (pyo o—o)(A) = @, (0,(A)) = p,(A) = A, hence

Po © 0y ig localized in Ky- On the other hand, V¥ a€ 01,

(Pg 00y (B) = Pyloy(a))

It

0 o WVo o (RIVH)
(U, PVy)) (@ oo ) (U, Pyt

f’o OO—OE[ Poﬁ_]r

Uy ¢ (VO) being unitary.]



[Note: Maintaining the above notation, assume in addition that

KLL -~ then P o6 =6 of .]

Observation: Let p ,¢ € Qb ] and let T€ Mor/{ f +6°) —— then
I x:TEMI(K).

[Suppose that ¢ is localized in O and ¢ is localized in P.

Since ¥ A €, TP (A) = 6(A)T, it follows that W A € D'l'(O'L) 0
i o L i .

O™ ), Ta=aT =T C€( OL(O )N OL(PT))'. Fix a double cone

K: OUPC K =9kY < ottt = 01(1{"") < 01(01‘) N otet) =>

(oteotynotedy)yr c oY) =1 e dlx:) =K .1

[Note: This argument does not require that TE€0( : It is

valid for any T € O (3{) with T p(A) = o0(A)T VaeUl,]

Fact: 7J is closed w.r.t. the formation of subobjects.
[Let E€Moxr(p ,p ) be a projection: E P(a) =p(A)E V ac 0.
Choose K: E € YY}(K) -- then, thanks to the Borchers property,

3 L. DK and a partial isometry V € YY)(L) such that V*V = 1 &

18
VV* = E, Define ¢ by

0 (A)

V* P (B)V,

Since VV* = E =>V = VW*v = EV, ¥V A, B € DU, we have

G (AB) = V* p(AB)V

VE P (B) @ (B)V

V* ¢ () P (B)EV

V* P(R)E P(B)V



V* O (A)V-V* P(B)V

= O(A) 6(B).
And:
C(lg ) = VEply )V
= vy
= Loy -

Therefore ¢ is a unital endomorphism of (( . But

o(A) = V* p(A)V

=
V G(a) = VV* o (A)V
= E pA)V
= P(AEV = pP(A)V
=7

veMor( o, p ).
So, to complete the proof, one has to check that ¢ is DHR. First,
6 is localized in L. 1In fact, L~ c k* = oul) < ouxty,

thus WV A € U'L(L'L Y.

G(A) = V¥ p (A)V = V*AV = V*VA = 3,

because V€ N(L) and L)' = "TY')(L'L ) D D’L(L'L ). Second, ¢ is

transportable. To see this, given KO' choose K':

K' C Ko.and dis(K',£fr K0)>-0.



1

Since ¢ is transportable, du: ' = UpU ~ is localized in K'. Put

B! = UEU_l -~ then another appeal to the Borchers property produces

a double cone L': K’ C L' C KO and a partial isometry V'€ M (L'):

VIRV = 1o & VIV = E'. Let

o'(A) = V'* pr{a)v' (Ae€DL).

Then ¢' is a unital endomorphism of Ol which is localized in L',

hence in K.,. Moreover, V A €01,

0
&' (a) = V'*U p(a)u v
- v -1 17y
= v'ryu p(A)UTLEYY
-1 -1
= v'*u pa)utuss v
1

= V'*U P(A)EU V'

= V'*U P (A)EEU 1y

= V'*UE @ (B)EU TV

= V'*Uvv* P(A) W*U_lvl

1

= V'*UV G(A)V*U V',

Finally, V'*UV ig unitary:

1 1

V'*UVVAY V' = V'XUEU CV' = V'AE'V' = VAW o= 1

ot

1 1

vryo E'UV = V*EV = V*V = 1

V'V *UV = V*U©
| oL

=
g'elgl.

Therefore ¢ is transportable.]



Fact: J is closed w.r.t. the formation of finite direct sums.

Rappel: Given REMor{p, ¢ ') and S€Mor(o,0 '), by definition

RXS =R @(S) ( =p'(S)R)

is the monoidal operation on arrows (on objects, ® is simply

composition of unital endomorphisms).

1,

Remark: Suppose that 422 ( = dim R d >3) -- then ¥ double

1
cone K, K is path connected. This said, assume that

¢ is localized in X ¢ is localized in L
and
p' is localized in K' ¢' is localized in L'.
Then if
KLL and K' Q. L',
we have

RXS = SXR.

Qur next objective is to equip 7J with a permutation structure,

i.e., to construct a function £ which assigns to each pair (¢ ,¢6 )

€ 0b°Y x Ob ‘Y a unitary element £ (¢ ,sc)€EMor{(poc, e op)
satisfying the usual conditions. To this end, it will be necessary
to slightly restrict the generality.

Convention: Assume henceforth that 4> 2.

Suppose given DHR endomorphisms p andg . Choose double cones

KPO, L‘"oz KPO.L LG_O and choose poe[P], 5‘06[0‘]: Py is

localized in K and g , is localized in L (= 06 =0 n0F4) -
PN 0 5o Po oo 0°Ffo

Choose unitary elements U'P € Mor(e.,p gyl Us € Mor ( g, 6‘0) .



Definition:  Put

= ®
E(P.,6) (UG‘XU?’)(UPXUO’”)
€ Mor{(poo, cop ).

[Note: This makes sense. In fact,
UP X U_ € Mor(pos , @406

U;_ X U; € Mor({ogopg,00p)
and pg 06y = 0 q0Pq-]

It is a formality to check that E(¢,6 ) is independent of

the choice of f)o,(ro, UP . QW- within the given restrictions.

LEMMA & defines a permutation structure on °) .
ey

[This is established by straightforward manipulations. When
d = 1, the definition of E€(p.,0") is different and it is no longer

necessarily true that

s ' ) =1 '
Elg.p) E (g5 o oo

i.e., in this case, the monodromy is nontrivial.]

Consequently, W ¢ € Ob “J , there is a unitary representation

E.(::) of L, on the Hilbert space & of the vacuum representation

Ty of ol .

(n) n _n
[Note: Recall that ¢ 0 (P} CMor(e™, p).1]



Remark: Suppose that (306[?] and let U€Mor( ¢, Po) be

unitary -- then
(n) (n) . (n) _(-n)
= U £ U
o0 ¢ ’
where
v = ux.-.xve More e -
This shows that the equivalence class of g(‘?) depends only on the

equivalence class of ¢ .

P
Notation: P_ is the unitary dual of P_.
priryy ) wa Tl

Since wgn is compact, E(Pn) is discretely decomposable:
(n) _
£ P = ®A DDD,
De“gn
so
® - Dee?f’\ o
vl

with isotypic projection Ej: yf —> HD'

[Note: On general grounds, the nonzero E, generate the center

{n) "
of EP S,En) -]

LEMMA Suppose that ¢ is localized in K -- then V¥ D, E, € TY)(K).
i ¥V p€P_, we have
waT1

(n)
¢

3 (preMor(p®, p™
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=
e‘;}’ () f @ = p™(a) e“’,‘) (p) (aeOL)
=
s“;’ ma=2ef’m  @eotxh))
=
5‘2’ (p) € OLxY)' = M.
Therefore
{n) "
£ P (En) < N (R)
=7
E; € TN (K).]
It follows from the lemma that if ED is nonzero, then ngy is

infinite. In fact, thanks to the Borchers property, A LDK and a

partial isometry V € YN(L) : V*V = lgy & VV* = E, thus in YN (L),

Dl’
E, is eguivalent to the identity, so the dimension of }?E)is infinite.
We shall now take up dimension theory. Here, it will be best

to proceed directly, putting aside any consideration of a conjugation

structure until later.

Definition: A DHR endomorphism ¢ is irreducible if Mor(g ,p ) = Cl

e

[Note: A sector of the theory is the unitary eguivalence class

of an irreducible TTEEDHR(TTO). In view of the correspondence

TN €&~ Tgof sectors are parameterized by the [¢ ], where ¢ is

irreducible. Example: [l ] picks off the vacuum sector,}
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Suppose that ¢ is irreducible -- then one can attach to ¢ an

element - ')\P € [-1, +1], the statistics parameter of ¢ (definition

omitted}. It depends only on [f].

N
7‘9 = 0: In this case, every Devgn occurs in the decomposition

E(n)=® n_ D,

D
e D&En
i.e., Wb, nD#O.
’)x‘,';éoz Put
1
a. = ——
e " T,

Then it turns out that df’ € “lg, a fact which places an a priori

L] . A L] L] L3 -
restriction on those DEPn which can occur in the decomposition of
ol

(n)

o

, namely:

(1) If ",\{,-—- d_L ; then nD;éO iff the lengths of the columns

4

of the Young diagram attached to D are & d? .
1

{(ii) 1If ?\P = - d——P— , then nD;ﬁO iff the lengths of the rows

of the Young diagram attached to D are &£ d e

Remark: [e@ ] is a so-called irreducible sector of the theory.

There is

infinite statistics if ’)\‘, =0,

|_J

para-Bose statistics if 7“’3 d—?— ,
-
de

para-Fermi statistics if ‘A p=
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An irreducible ¢ is said to be finite if %F’ #0.

Definition: Let P € Ob7y be arbitrary -~ then ¢ is said to be
finite if it can be written as a finite direct sum of finite irreducibles.
Denote by J ¢ the full C*-subcategory of J whose objects are

the finite { -- then

1€ 0Ob j'f

p:s€0 T, = posE b T,
PEOE T, = (¢l 0bT,.

In particular, therefore, U'f is strict monoidal. As such, it

inherits a permutation structure from °J .

[Note: By contrast with 7 , ﬂ'f can also be equipped with a

conjugation structure (cf. infra).]

Fact: ) ¢ is closed w.r.t. the formation of subobjects.
Fact: ‘j;f is closed w.r.t. the formation of finite direct sums.
Suppose that ¢ is finite -- then Mor(¢ ,¢ ) is finite dimensional.

Its center is generated by minimal central projections E; (i=1,...,n),

hence

n
[p] = @ mi[‘?i] (miévﬁ),
i=1
where ()i <> Ei and

c (=3

MOX (P ;. P 5)

0 (i#3) .
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LEMMA Let p —7 m (@) be a complex valued function on the finite
WAV
irreducibles which is an equivalence class invariant. Extend . to

arbitrary finite ¢ by writing

o]

AP) =L ~M(POE; (€ Mor(p,p)).

i=1

TM(Pl) =M(P2)T (TGM( f'lr[’z)).

Example: Given a finite irreducible £ , put

Np= —F
f= ....d_F._ (),(_P = tl, dP= 1,2,...}).

Then for arbitrary finite ¢ ,

M(P) =E+(P) "E__(P)f

where
E(p) = 2 E
0T
E(¢g) = E. .
__f’ e i
Therefore
)&(F)z-—-lp s W(p)* = Wp).
One calls @ bosonic if E_(¢) = 0, fermignic if E+(P) = 0, Of

course, if ¢ is a finite irreducible, then f is either bosonic or

fermionic. 1In general, ¢ can be expressed as the direct sum of a
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bosonic and a fermionic endomorphism:
P'_'Fq-@?..
with

QL€ E(Q)
€ Mor(e,e)
P _€&YE_(P)
[Note: ){ respects composition in the sense that »t((91 c-Pz) =
WMAP) X mlPy.]

Definition: The statistical dimension of a @ € 0b fff is

1

n
d(e)=iZ=lmidP.

It is easy to see that the statistical dimension is additive on

finite direct sums. Furthermore, d4( Pl °p,) = d(f’l)d(F?z).

Fact: Suppose that ¢ is finite -- then ¢ is an automorphism

iff A(p) = 1.
We have yet to consgider the existence of a conjugation structure.

In point of fact, there is an assignment -

Q_l_)_‘:}’f_ygg":)'f
P —e
together with arrows

RPG_M_QE(I,EQP)

'é'ee Mor(1l,p op )
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such that
R* 1 ) {(l- X El¢, (R 1 = WM
(R% %1, 5 £rP)) (Rox1y) (p)
= %1 - — . —
(RP lP) (19 X & (F'P)) (R?><lp) i)
or still,

R;E(e(p,p))RP W P)

RO PUECF, PR =24 (F).
These, however, are not the conjugate equations.

[Note: Actually, the conjugate equations are valid. What
breaks down is the relation Ry = &(p,p ) 0R, , which is valid iff

¢ is bosonic.]

Remark: Return for the moment to the abstract picture -- then

_tw;,@l‘, ol @ Blp.p)) o(R,®L,) =1,

RE@1z)0 (1, @ E(P,P)) 0R®Lr) =15,

For example, let us derive the first relation, starting from the

conjugate equation

(R; ®'1P ) 0(19®RP) =1p .
Thus

E(IIP) =1P

(R?@l?)O(l?@)RP)o e(1,p) =1,.



le6.

But
1 Mox (¢, Q)
p € Mexlp. 0
R, € Mor(2,p @¢)
=>
(1?®Rp)oa(1.p) = EP P PR, QL, ).
And
Ro = a(?.p)ok?.
Therefore
1, = ((E(p.p)OR,I*®Lo) © E(P @, p) O(R,®L, )
= ((R}, 0 €(p,PN®Lp) © E(P®De,P)Oo(R,@Lp).
But
E(P®@eip) = (E(F,p)BL,) ol @ ElP,p))
=>
((RY, o &(p,p)®@1y) © Elp @eprp)
= (R 0 E(p, pNDBL, ) 0 E(F,0IVLp) 0l @ £l e, p)).
And

((RY, o0& (P gVl )0 (E(F,PIDL,)

]

(R¥%, © gE(p.p)o a(?.ﬁ)@(lf,ol{,)

=(RP ol?®e)®lp

R?@lp.
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Consequently,

lP = (R’E) @19)0(15 X elerp)) O(RP®1P)r

as claimed.

The escape from this difficulty is simple: Alter the given
permutation structure on 3'f in such a way that in the new permutation
structure a legitimate conjugation structure can be defined, thereby
paving the way for an application ¢f dimension theory. Fortunately,

no ambiguities arise: The two potential meanings of d(@ ) are the

same.

Definition: Given ¢ ,¢ € 0Ob 'J'f, put
§P, o) =5 Uoxle +1p x:le) + X(PIx1, = X (p) x M (a))

€ Mor( p oG, Pocg).

Properties:

(1) E(p,6)8(p,0) S(e.,p) Elp.o);

(2) dlp.,cYd(p.o) = Lo

xlu_xl_

(3) S(poc,T) =30 _

P

+ K(p)x]b_xlt +]1,xl€_X‘M(t)

- MPIX1 . XHM(T)) (1, x & (0,T)).

P

Definition: Given p,o € 0b J;, put

§(F,0'> = €{(p,00)d(P,07).

Fa”
LEMMA & defines a permutation structure on jf.

N sy



18.

[The verification is purely computational.]

A
Remark: The passage & —7 & is called a Klein transformation.

A
To see that ( ﬁif,e ) admits a conjugation structure, it suffices

to modify R? + leaving RP as is:

R, = R
£ ¢
Fal
_ N A
R(,——C(P:P)RP-
A2
We then claim that the pair (RG"RP )} satisfies the conjugate equations,

i.e.,
o A
* =
(R? XlP )U? ® RP) lP
E* X1 )(1—><EA) 1+
(P P e ¢’ ¢
or still,
L A
R*P?(RP)=_IP
A _ 2
R? P(Rf) = 1;

To illustrate, consider the first relation. On general grounds,

we have

So, since K (1} = lL ’

(W(P) X MIPNIR, = M(P op)Rp =Ry W (1) =Ry
But '

M(P) X Wip) = 1z XMAP)) (P ) X1p)
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=
(lﬁ XK(P))(M(P)xl‘,)RP =RP
=
(M (PIX1, )R, = (Ly XU(P)IR,
=
~
— N AN
Ro = &lp,PIRy
= &(p.pP) d(F.PIRp
1 ~ o~ -
=7 €1 (1y +1p XMUP) + MIPIX1, - WP op)) Ry
= E(¢, 1— X R, .
e g X M(P DR
Therefore

o ~
*
(R X1?)(IPX'RP)

= ((E(E,F)(l?— X K(F))RP)*XIP) (1o XR,)

I

(my @r xwieINe(F prxlp) Ay xR,)

((R"; 1z XK(P))E(p,p))xlp) (IPXRP)

(R*) x1, 1{(l=~ X K(p)x1

) X1 1 R, ).
0 ¢ o J(el(p.,p) X F.)( X )

¢ £ e

But
{ 1, xR, = E(pP op.pIRy

E(p.PIE(Pop,p) =P (ECP, P)).
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Therefore
N
RE X1 )(1, X R, )
(RpX1p )1, X Ro
= R; e (P ECP, p) EL Eop,p)RP
=_R:; pxrieNplelp,.P)IRp
=R";9(M(P)E(P'P))RP.
But
=
‘K(P)E(f‘,p)=()—((P)XIP)E(p,p)
=E(p.p) Qg X M(P))
=&(e,p)pmlp)).
Therefore
Ka] A
*
(RPXI?)(lPXRP)

= R} plECE. P plp({PI)IRy

i

(Rfo x1, )(1;9- X g(p,fv))(li’_ XPO(PIN(R, x15)

(R*PXIP )(1?'—>(E(Q;P))(l?,— xlp XM(P))(RPXIP)

il

R* 1 1. P 1 _ X )) (R 1
_(PXP)(ng(p P))(POP (P)(PXP)

Il

(R’E,Xl(, )(1? xe(p.p))(RP x m (g )
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(R:; xlf,)(l? xe(e,p))(Rle Y, xwm(p))

(R*P x1l

¢

1—
)(P

]

u

P

X 5(3,9))(Rpx1?)M(P)

MIPIM(P)

u(m2=1p.



The Field Algebra Suppose given a weakly additive PTV with a

unique vacuum which satisfies Haag duality. Maintain the convention
that d2 2 and append a subzeéro to the Hilbert space underlying the

vacuum representation of Dl : I.e., write }?O in place of 3¢ .
Finally, let WA be the set of double cones KCM.

The ingredients underlying the theory of the field algebra are

the following entities.

(a} A representation 11 of Ul on a Hilbert space of containing

iy as a subrepresentation on }fo C 3P .

(b} A compact group G and a faithful unitary representation

U of G on §{ leaving }QO pointwise fixed.

(c) An inclusion preserving map K — “F(K) from )4 to the
W*-algebras on 3{ .
THEN:

(1) There is a one-to-one correspondence

p—

rr ‘)Jf/N > 8

[p1e>3

between the sectors of the theory and the unitary dual of G with

a(g) = A(% ).
(2} There is an orthogonal decomposition

o . @

M

| }€? @DvSQ(S‘}.
TEQ

(3) U operates on P as

Fa

Ue) = D 1QU (g) (0 €6,
Tel



where,\d"g R UE‘ is an irreducible unitary representation of G of

dimension d( 7§} and distinct ¥ give inequivalent U§ .

(4) 1T operates on §{ as
Ta = D, 7.1 ;aedt),
TEG

where W %, 113. is an irreducible DHR representation of {J

( Tf,_g € Trgop under [plé& § ) and distinct § give inequivalent

T1§ .
(5) VRKEX & Yoeag,

Ule) F (u(e)™ L = 9F(x).

(6) ¥ K€ X, st(K) ( = F(KNU(G)') leaves each 2r?§
invariant and
G —
¥ (K)leg = T OL(K)).

In particular:

FEx | ¥, = 0lm).

(1) VRE XK, FK X o Spans a dense subspace of o,

{(8) If K and L are spacelike separated, then the elements of

¥ (K) commute with the elements of TI( 01(L)).

Remark: The left regular representation of G on LZ(G) is

unitarily equivalent to

(39 df U .
Ted LRAS



On the other hand, by the above,

= @ d{%
T <€A (3)Ty .

The field algebra '8: of a particle theory is the norm closure

of U H K.
K

One has

Fr'=CcI=THOO' N T,

where

i

THCOL)' = u(e)".

Remark: Lety € Aut % -~ then ¥ = Ad U(o ) for some G € G
iff ¥ acts trivially on TI(O1).

There is an additional element of structure that reflects the
Bose-Fermi alternative, namely 1 an element 35 € Zg (the center of G):

32 = e, which controls the commutativity relation in % .

Thus let [' = U(%), so

Fr2-1, FP=1"12ps,

{Note: One can be precise. Indeed, U.§ (%) = )t.? . hence

= D :

Traditionally, X _ is referred to as the stat

3




Put

1 -1
Xt =3 (X + X 7).

Definition: X is bosonic if P XT ! = X, fermionic if Px it

[Note: x+ is bosonic, X_ is fermionic, and X = X+ + X .]

Fact: TIf K and L are spacelike separated, then

X € A (K)
Y € (L)
=
X, Y, =YX,
X ¥_ =YX 8§ XY =YX
XY +YX =0.

[Note: 1In suggestive notation, this says that
F . (X) commutes with Z(L)
¥, (L) commutes with F (r)
¥ _(R) anticommutes with F_(L).]

Now set
X" = ZXZ*,

where

1. - 2 oy,
o (L'b( +V-1'T") (=>z mH

7 =

_Xa



Then

Put

FER) = 2 F (K 2.

Then twisted Haag duality obtains:

Ftx = &Y.

[Note: It is not difficult to check that
Ftw) <o xt).

For, by definition, ?F(Ki'} is generated by the ¥ (L) with K.iL.

So fix such an L and consider [Xt,Y] (X € F(K), Y € F (L)) -- then
x%,v] = [X, + V-I'f=x_, Y, +v_]

= v_l'([r’x_,y+1 + ['x_,Y_1).

[Fx_,vl="0UxXy -Y X

i

2
Pxy - Py, PX_

Fxy - My, rx_

re_y, - ry rx)

" (x_¥Y, - ¥,X)

Fo = o.



By the same token,

[PX_,Y_]

MX_Y_ - T"Y_rx_)

My + v x)
=170 =0.]

Remark: Recall that Haag duality => wedge duality. Here,

twisted Haag duality =) twisted wedge duality: ¥V welws,

Ftw = Fwt) .

By definition, our PTV comes equipped with a unitary representation

g

Uy of § , on , such that
—~ —~— ] T~
UO(/\,a)'YYl(O)UO(I\;a) = M(( N,a) -0},
where
spec(Uol\E}'d)c: G;.

It remains to incorporate this fact into the theory of the field

algebra.

Definition: Suppose that ¢ is finite -- then £ is said to be

covariant if 3 a unitary representation Uf’ of OJI on }{0 such that

1

—~ =]l

P (We(R.a)a0a (K a)™h = v, (R,a) p v, (K,a)™.

Yo

[Note: It can be shown that

l,d o
“ seec(_UPIé‘}v ) < v,
Example: The unit @ is covariant.

[Simply take U =U

1 0]



LEMMA Suppose that ¢ , p ' are covariant and let R€ Mor( gL' -
then V (}\V fa),

RU 5 (R,a) = U P.(.?\J,a)R.

ot

[Define an action X of & Ion Mor( ¢ .p ') by the prescription

A(A,a)R = U ?'(”\V'a)RUP (N, a)*.

This makes sense, i.e.,

~ L %
Ui (R,a)RU G (ALa)* p(R)

= .P.(A)U Pn(X:a)RU? (X:a)*

or still,

U?.(A,a)RU? (N,a)* p(R)Uo (A ,a)

= p'(.A)UP.(K,a)R.

Indeed, the LHS equals

U o (K,2)R p (05 (R ,2)*aUG (R, a))

= U, (K,a) 0" Wy (R,a) a0, ( R,2))R

U, (R, AR,a) % o' (MU L, (A,a)R
ot (Riaw 5 (K2 pr @)Y o, (R,a)

p'(A>UP.(K,a)R.

which is the RHS. But Mor(p ,P') admits an inner product with the
property that the c&(?{.a) are unitary. Since Mor( g p') is finite

dimensional, it follows that \f(?(,a), &£ {(N\,a) = I, hence the lemma.]

Application: U is unique.

f




[In the lemma, take ¢ = ¢' and R = 1? .

[Note: Another corollary is the containment
NT n
In fact,
Mor(g ,¢ )} = (00"
and the UE,(7<,a) commute with the elements of Mor(p ,p )}, so
Y (Ria), U, (R,a) € O]
Denote by ffc the full C*-subcategory of 3'f whose objects are
covariant -- then
1e Y,
pice J, = pos €0b T,

PEOC T =r(plcob Y.

Fact: ffc is closed w.r.t. the formation of subobijects.

Fact: tyc is closed w.r.t. the formation of finite direct sums.

In addition, it can be shown that

PEO T, =>peo T,
Therefore jc has the same structure as Uf.
Remark: It is conceivable that every finite p is covariant but
this is an open question.

The theory of the field algebra can then be written in terms of

ffc as opposed to tff. Of course, in this situation,

Irr fj c Soa 2 6

e

[p1€> 5 .



But there is alsc a new ingredient, viz. a unitary representation

U of G’I on ¢ with the following properties:
(1) U(K,a) Q4 = Q24s
- i1l d >
(ii) sEec(Ul‘E‘ Y V.

(iii) U(B"i) < THOL

1

(iv) 0(K,a) FERUXR,a) " = F((K,a) K.

Remark: Per the orthogonal decomposition

. @ W, @A)
o< '§E&§“ §'695l '

we have

uR,a = D v (R,a®l,
see 3 ®

where U ¥ > UP under [P ]¢* % , thus

1. 1

—~ L™ — . ) -
UE(A,a) TT—§ (A)U-s (AN,a) WS(UO(A,a)AUO(A,a) ).
[Note: The symbol U has two meanings:
. . . 50
(1) U is a unitary representation of ¢ _ on ¥{;
(2} U is a unitary representation of G on }Q.

Obviousgly,

U(N,a)U(6) = U(S)IU(N,a).]



The Statistics Theorem Suppose given a weakly additive PTV

with a unigue vacuum which satisfies Haag duality, where d2 2.

Assumption: The inner symmetry group of the theory is compact,

i.e., satisfies the gauge condition.

For any wedge WE LS , there is a reflection j(W) in the char-
acteristic two-plane of the wedge which leaves the apex of the wedge

unchanged. For example,
J(WR)(}{0'}:1"}{2"“'th{) = (—XO’_Xl'XZ"”’xd)‘
. : £
Remark: F(W)E ¢ + {but ](W)¢ & +) . Moreover,
w

A g ) = FEA () I ) =A (-t) .
W

Definition: A weakly additive PTV satisfies the modular con-

jugation principle (MCP) if Yweld,

Jm(w)m(K)J-m(w) =MGWK) (K€K ).

[Note: It can be shown that the B-W property implies the MCP.]

We shall assume that the MCP is in force throughout the remainder
of this section.

The adjoint action ég(j(w)) of j(W) on ﬁ’I has a unigque lift

o

-~ T
to a homomorphism 2d (j(W)) of C?+

-
L]

1o 5§
l J
e — s )

Ad (3 (W)



LEMMA, We have
Wy
L L ™) . e
Ty Vo (N @ ey = Ug (BT M) (A,a)) .
[The prescription

R

(Nya) =7 Ty Up (B (5 (W) (A @) T )

L

defines a unitary representation of 6’+ on b—?o that leavesQo

invariant. 1In addition, ¥ K€ K ’
-~ ~ . pili o~ -1
J')‘T](W) U0 (Ad (F(W}) (A ,a) )JYYI(W) YV\(K)J-),),_K\.,‘.‘,}U0 (Ad(j(W)) (N,a)) JTY)(W)

= Tyy ey Up @A (M) (A,2)) M (30 -K) Uy GBI G () (A,2) Ha 0

= Ty TN (A5 (W) (A ,2) 3 (W) *K) 3 ey

=N (GBI (W) (A,a) (W) *K)
=M (ad (5 (M%) (A,a) k)
=YN((A,a)-K) = N, a) k).
So, on the basis of the gauge condition,
Ug (R 1) = Tppy 0y Uo B3G5 WD) (K ,2)) Tyyqeggy #

from which the lemma.]

There is a hommorphismévl l) (?I embeddingvg} as the group of

rotations in the 1-2 plane. Let exp:R —> ‘g‘l be the covering map --



then the diagram

: . 1
admits a filler r.‘g.v—*'» 63+

which is a homomorphism of groups.

Given © € [0,2T1], let WR( ® ) be the image of Wy under the

rotation by the angle & in the 1-2 plane ( => W o= W (1)),

Ro(t) = Uo(r(t)) (tevg).
Then

Ry (8) HHR,(-0) = TN(W(0))

=

Ry (@ )Jm(wR)Ro("e) = Imug(8))
=

Tm, e /2))7 meuy)
= Ry (8 /2)Jm(wR)R0 (= e/2”)’)’)(WR)

A g4 2
R (©/2)Ug (Ad (3 (Wp) ¥ (= 8/2)) Ty

Ry (© /2)R, (O /2)

il

RO(B).

Put



Example: We have

1

Ro 2T = Iyntwg () Imwg)

J J
™) M)

J J
m(wR) m(wR)

It

id -
A

[Note: In general, J Bear in mind that Haag duality

-m= Jm'.
=> wedge duality,-hence'Yn(wR)‘ = Tn(WL).]

The statistics theorem is the assertion that in the covariant
situation,

u(r(2vi)) =1,
¥ irreducible

thus = ¢ € b T _,
U‘,(r(ZT‘n))®1=1®XP
=> Up (£(2T)) = Mg idoq

[Note: This agrees with the preceding deduction: Take £ =1L,

S0 U? = U0 -- then Uo(r(zrr)) =K.l ;'_._q._}eo ('}4_1 = +1).]

Facts:

MV weld, (Fw,02 o) is a standard W*-algebra;
@) ¥ WELS s I 45 iy 1 3 = Ty

3y ¥ weld,

Tox y 'V (AT 5w = THT oy iy AT M @ €0,



(4) W weld,

J o wy V(N a)d ¥ (W) u(ad(j(Ww)) (A ,a)}.

Ema YV wels,

2w =9y w2t

{(Put T = J T W then
R _
Z2J = ————— (id + YIrmao.
1 +vVor R
But
rgmr = Fgmr !
= u(s) § wu(s)t
= % (W)
=
rFrar=2a
=7
Ffag=ar
Therefore
zJ=——l—-—(J+V:er’)
1 +Y-1
_J(_;L_j;g - V=I'h)
1 -v-T &

I
o
&3
%




Observation: Recall that here twisted wedge duality obtains:

Y weld,

Ftuw = Fwh)

or still,
- i..
7z F(wyz* = FWwT)'.

Since 2 is unitary, it follows that

* = =
Hawm? =T guwt)y T gw)-
In particular:
F (Wg) F ()
Proceeding as before, we find that

T F e /2 T Fy = UEO).

Consequently,

U(r(2T))

J J
% (wo(m)) U F (W)
= J J
G (Wy) ¥ (Wy)

= ZJ Z*J
F (W) F (W)

Z%J J
94 (WR) ¥ (WR)

22 J

]

2
F (W)



To interpret the statistics theorem, specialize

1 1

Ug(A,a) Ty(@US (A7 = Tig (U (R,a)A0,(N,a) )

to

(r(27i)) "t 1

{(r(2T)) Ti,s.(A)U }

U Ti(Ug (x (211 )) AU (x (27T1))

or still,

s

1

Ug(r(?-TT)) '|T§(A)U-§(r(2‘l'|)) Te(a).

Since 'IT3 is irreducible, it follows that -
U_(r(2v)) = s_ id
3 L
where sE. is a complex number of modulus one,

Definition: The spin of the sector represented by'ri.§ is s¥ .

In this terminology, we have therefore proved that the spin Sf?

is precisely the statistics phase 143..



Normality Suppose given a weakly additive PTV with a unique
vacuum which satisfies Haag duality.
Fix:

(1} An increasing sequence {Onﬁ of double cones such that

oD
Rl'd = U On:

N l
(2) A seguence (K.} of double cones such that Vn, K, 10, .
Then VK€ X , AN(K)}: n2ZN(K) => K1K .

: h ' i1 + = K1
[Choose N(K):K C ON(K) . hence K C ON(K) - KN(K) K KN(K) .

Since n > N(K) => On‘:) ON(K) , i1t follows that K_LKn as well.]

LEMMA Suppose that ¢ is a DHR endomorphism which is localized

in K€K -- then 3 a unitary U€OT :

p) = _UMU_l (M €ENI(K)).

. , . | -1
[Choose ?ne (f1: P, is localized in K,say ¢ =U.p-U",
where Une@( Pp n) is unitary -- then ¥ n 2N(K), we have
— 4
K.I.Kn =»> KC Kn

= MK) < Ul(Kl‘,l" )

= p M =N

- -1 _
=> U MU~ =M

— _ -1
=> Py = u " oMU

And, as we know, the U, el .]



[Note: By definition, Ol is the norm closure of {JYN(0), where
' Q

O ranges over ) . From the above, it follows that WM € Y0},

P, (M) = M eventually. If now A€OU is arbitrary, then 3 a sequence
M € m(Ok) :

1im IIMk - all = 0,
k —> 00

Fix & > 0 and choose k(& ):
M -all<e (k 2k(&)).
Choose N = N(E€ }:
PalMe(e)) = Mgy 2N
Then W n >N,

P (a) - 2l

e, - P 0 o))+ e (M o) -all

Elle,a-m i+ e oy - Al

Wa - o)l + i e, -2l < 28

Therefore

lim ) p (a) - al) = 0.
n —>oj

This implies that @ is the strong pointwise limit of DHR inner

automorphisms, viz.:



Lim |l e ~¥ ™ =0,
n—y 00

where

-1
¥ () = U~ AU (a€DT().]

Remark: 3 a double cone LD K and a unitary U € ML) :

e = oo™l (1 € ex)) .

[From the preceding considerations,

pon = ut Mo meME).

n

Choose a double cone L:L D KUKn -~ then VYV A € G‘L(L'L Y,

pa) =a
(’n(A) = A
=>
-1 -1
U @ (RYU_T = U AU~ = A
=
U A = AU
n
- N
u, € 0L(LT)' = ML),
so we can take U = Ugl.]

A left inverse for @ is a bounded linear map 9 : 0t — B

with the following properties:



i 1 = id :
(i) PA m_) L'bf(

(ii) A >0 => P(A)> 0;
(iii) P(a*) = F(A)*;

(iv) F( P(A)IB) = A B(B).

One then shows without difficulty that T (0()c Ol and

Bor(p™, p™C mor(p™ 1, p™h (m=1,2,...).
[Note: By definition,
N Ill= sup HBmil .
liall £1
Therefore
s >1 1 = |} id. =1

21 C By N = Hidyli = D)
and we claim that || ®)] = 1. Using the positivity of ®, one checks
that

B@a*a) 2 D@ F@mzo

HSasall > I} S Tl = Hswll 2.
This said, to get a contradiction assume that 3 a: il A|| £1 &
(3l > 1 - then |} a*all = Nall %¢1

=)
HEN > a2

Proceed from here by iteration, replacing A by B = A*A:



20> saamil 2

> [[3@n 4.
So, ¥ n>o,

Nl > Haw@il 2,
an impossibility.]

To establish the existence of a left inverse for £ . introduce
the set L (0L, ®(2¢)) of all bounded linear maps T: 01l —r (3 (€ )
and let B = {T: el & l} . Equip L (01, H(3¢)) with the pointwise

0" -weak topology, thus a net {Ti} converges to T if Ti(A) —7 T(A) in
the ¢ -weak topology WA € 0T -- then in this topology, “% is compact.

. -1 -1 _ -1 _- - .
Consider now the sequence 1} ¥ n b e Y, () = UAU =7 Yn CL UL, D).
Since U_ is unitary, it is clear that 5('3' ﬂl}C B, so {}' -17] has a

n ’ n W' n
limit point §. Any such limit point is a left inverse for ¢ .

Remark: The significance of the existence of a left inverse $

for ¢ is simply this: Take ¢ irreducible -~ then

PCECP L)) € Mox(p.pP) =SLle
is a scalar which turns out to be independent of the choice of '§and

igs in fact the statistics parameter ?\P .

Review:

MWHK) = xLl)e

oLzt = wyxd )
=

oLxt) ¢ oty



Gna'

=\‘h(KJ')
=gt )
= YN{K)".

Suppose that @ is a DHR endomorphism which is localized in

KE )X -- then g (YN (K)) is contained in TN{K). Thus let
{ M € M(K)
M'e OL (k).

pM)yp (M)

Then

e M’

£ (MM")

PM'M)

P M) p (M)

M' P (M) .

Therefore

pIME) C OLY) = Mx).

Now fix a wedge W:KC W -- then it follows that @ ( Of (W)) is
contained in {(W).

[Note: Bear in mind that if 0 X, then ¢ is necessarily localized

in 0.]

LEMMA - a unitary U € DU :

1

P(a) = VAU~ (A € OL(W).



1 1

[Choose LE A : LCW ({ = WC L ) -- then 30‘6[9]:6‘is
localized in L, hence 3 a unitary VEOl: ¢ =v-p w71, since

oL C oL@y, W a e ol :

0{(a) =2

vemav!=a

P(a) = vav™l (v =vhH.)

Rappel: If YN and Y} are W*-algebras, then a morphism 45 Y —>
Y\ of the underlying C*-algebras is said to be normal if it is
0 -weakly continuous. When this is so, the image $ (YN)) is a
W¥-subalgebra of n.

Since by the lemma, the restriction @ |OUW) is unitarily
implementable, it extends to a normal endomorphism of YJU(W), call

it Q  thus p W(TY)(W)} is a W*~-subalgebra of YY){W).

iNote: To check continuity in the ¢ -weak sense, simply observe

that YV T€ (D, (3{ ).

1

|§£(UAU*1T)| | tr (Uay~ Tou™t) |

= lgg(AU‘lTU)l

and U TTy € 051{3-‘2 ). Accordingly, if A, —> M ¢ -weakly (A, € OlLiwy,

1 1

M €YW), then UAiU_ ~» UMU © ¢ -weakly, hence, via extension by

continuity, @ W(M) = umu~t VM EMwW).]

LEMMA The pair (pw(m(W)) ,Uf)_o) is a standard W*-algebra.




[U()_0 is cyclic for PW(YY)(W)). Proof: Given \Pé'}? , choose

-1 -1 .
M, Em(W).MnQ 60— U Y == then UM U -UCY, oV
8} QO is separating for ¢ W,(T'V)(W)). Proof: For UMU Y.u QO =0
1

=7 UMQ0=O =>M§).0=0='>M=0=>UMU" = 0.]

LEMMA 0 W(YY)(W)) is a factor.

[Suppose that Zp (M) = @ (M3 ¥V METIW, where 7 is in the

center of PW( YYI{W)). Write Z = ()W(MO) -= then

0 M) P = 00 p (M)

=
P wMgM) = P, 0M,)

Since thisg is true for all M € M(W) and YV)(W) is a factor, it follows

that My = CI (3C) =7 Q(M,) = CI.]

Rappel: Multiplication on the left or right by a fixed element
of (H( ¥ ) defines a map H (0 ) — B (I ) which is continuous in
the ¢ -weak topology.

Notaticn: Put

Mor(p ., o) ={TE MW :TP ) =p (T ¥YM EMW S .

LEMMA We have
L W WS



Mor (¢ ,p ) C Mor(p@y, py)-
[Let TEMor(p , ) -- then by definition, T P(A) =¢ (A)T
WV A€0( . hence in particular, T P(a) = P(A)T YA € OL(W). I.e.:
¥acg Olw,
toav~! = vavTlT,

So, if Ai-%' M ¢ -weakly (A, € Ol(w), M €EM(W)), then

TUAiU_l —> rumu~t

1 1

UAiU- P — UMY T

TPLM =P (T VYME MW .

Therefdre
Mor (@, ) C Mor (@ pPu)e

as contended.]

Fact: Suppose that @ is finite == then
Mor(p ,p) = Mor(pw.pw).

Remark: When P is finite, one can attach to the inclusion

P (W) —> TN (W) a nonnegative real number Ind(¢), the Jones index.

On general grounds,

Ind(P)€ § 4 cos®(I): k€N, k233 U [4, +o0].



10.

But, in the case at hand, Longo has made matters precise:

Ind(p) = a(p)?,

where, as usual, d(¢@) is the statistical dimension of P .



Some Results of Longo In this section we shall take d = 3 and

work in R4 = R1'3.
v vy

Suppose given a weakly additive PTV with a unigue vacuum which
satisfies Haag duality and has the B-W property. In a change of

notation, put

cosh t sinh t 0 0
sinh t cosh t 0 0
N(t) =
0 0 1 0
0 0 0 1
Then
V-T ¢
AN =

-2 :-.: -
[Note: Since the field algebra is not going to play a role,
there is no need to append a subzero to U.]
Now fix a DHR endomorphism ¢ which is localized in Kc:WR. Assume:

(1) ¢ is finite;

(i1) e is covariant.

LEMMA Put
NS N

Zp (t) = UP (N(ENUIA (-t)).

Then

z o (£) € M)



[To begin with,

UCAEIMU(A(-£)) € MW (M E N(WL))

U( A(E)IM'UCA(-t))E TN (Wg)' (M' € ™M) ).

In addition, KT WR = W;‘ = WL - K'L, so P is the identity on

DL (W) — OU(RY). This persists to OL(W_) " = YN(W,), i.e., to

Yn(WR) ' {wedge duality). Therefore

PUCAEDIMTIA(-E))) = UIAEDIM'UIA(-E)).
But

@ (UEA(L)IM'U( N{-t)))

Up (A(t)) P(M')UP(/\(-t))

U?(I\(t))M UP { AN(-E£))

U N(E)IM'U(AN(-t}) = U ¢ (AN(ENIM'U _ (A(-t))

P
=
UCAED ™ U, (AR € M) " = MGy

Replacing t by ~t and taking adjoints serves to complete the proof.]

S e e

Application: The prescription

o £ = U CAEDMU, (AG-E) (€M)

defines a one parameter group of automorphisms of TN} (WR} .



But

[One has only to observe that

¢ ‘ - -
KL (M (W)) zp(t)U(l\(t))m(WR)U(/\( t))ZP( t)

I

2 o (t) M(WR)ZP (-t)

il

m (WR).]

Define H by writing

¢

Uf’ (N(£)) = exp( ¥-1 ¢ HP ).

THEOREM We have
WA

d(‘?) =<Q0: e Q0>-

Example: Let's run a reality check and take p =7 -- then
1-1 t
AN = exp( ¥~1 t log IN\)

U{A(-2TI L))

EE.(E( Y-1'(-2w t)H.L }

=>
Lg_g&--z‘nﬁl
=
log A -2%H
e Qg=e 2.



=) ,
- “Hl
e 0, =,
=
-2 T Hy
{2y, e 2,5 =<Qu 2> =1,
0 0 0 0
which agrees with the fact that 4(77) = 1.

LEMMA The formula
LW Y

-UH - TH
Wpxty) = —2— (e Fx0 e P2 >
a(e)

determines a faithful normal state on m(WR) such that

. - ¥-1t
(lt)c‘:JP :Do)o) (t)y = 4(¢) z P(-Zﬁ t).
[Note: The modular automorphism group of the pair (777 (WR) ’ o.)P )
can be explicatéd:
) _ -1
cp ¢ M) = U, 6 (MU,
V-1 t - V-1t -1
= (D (.)P :Dwo) (t) o, M AN (Dco(, :DtJO) (t)
-¥=1 t V-1t - V-1t V-1t _
=UP(/\(-21'H:))A FaN M FaN UP(/\(ZTit))
= UP ( /\(-ZT’ft))MUP {A2Tt))
= e (M) .1

-2Tt




Then

But

=>

Choose a cycliec and separating unit vector () _such that

Wo = L2, MBS (€ M)

Y-T ¢ ~-V=Tt
(DCJP :DOJO) (t) = QQ,Q? &QO (AQO =IN),

V-1 ¢
Z o (=27 t) = d(p) (Dwp :Dwg) (£)
VTt Va1 t -V-1t
U N (-2Tit))U 21it)) =4d FAN
p(. ( YU ARTIE)) (p) AOO,QP Qo
=>
V-1't VY-I't
U, (A(-2TiE)) = alp) AQO'QP
=
V=1t V-1't
exp( Y-1 (-2T‘it)HP) =d(p) /—\QO,QP
=
= - -1 .
2TTH? log AQO,QP og d(¢)

Definition: The free energy of W

P relative to Q’O is

F(C..}Pl(.do) =<{{2p ,(H



Therefore

1
2T

Fleo, | o) = -<p 1 (== 1og alp N, D

- X 10g a(p).
2T

Consequently, the possible values of F{ ¢ lGJO) are quantized:

¢

1
Flw A - —— { log n:n=1,2,...¢ .
Pl OE 2T = r }

Remark: Recall that p determines an endomorphism F’W of
R

YY](WR), thus one can introduce the conditional entropy of Cw :SC(P),
R

which, by the Pimsner-Popa theorem, is

log Ind(p )

or still,

2 log d(p).



Past and Future In all that follows, (M,g) denctes a space-time.

So:

(1) M is a connected c*® manifold of dimension 1 + d (d21);
(2) g is a lorentzian metric of signature (1,d4) (+, -,...,=};
{(3) M is time orientable, i.e., admits a timelike vector field.

Remark: The tangent space MX at a given x€ M is Minkowski
space-time. Therefore a vector XG&MX is timelike if g(X,X)> 0,
lightlike if g(X,X) = 0, and spacelike if g(X,X) { 0. The complement

in Mx of the closure of the spacelike points has two components

{"timecones") and there is no intrinsic way to distinguish them. If
one of these cones is singled out and called the future cone V, (x),
then M, is said to be time oriented. A timelike or lightlike vector

in°% on V+(x) is said to be future directed. The other cone is

denoted by V_(x). A timelike or lightlike vector in®T on V_{x) is

said to be past directed.

[Note: If T is a timelike vector field, then M_ can be time

oriented by specifying the timecone containing 'tx.]
Remark: Suppose that g9)+9, are lorentzian metrics on M. Assume:

Y xeEM & ¥ XE€M,,

gl(x,x) = 0 iff gz(X,X) = 0.

Then 1 a c¢® function 2:M -> R such that
v >0
g2 =le.

A curve in M is timelike, lightlike, or spacelike if its tangent

vectors are timelike, lightlike, or spacelike.



[Note: If ¥ is a geodesic, then g(é’,Z’) is a constant, hence
a geodesic which is timelike, lightlike, or spacelike for some value
of its parameter is timelike, lightlike, or spacelike for all values

of its parameter.]

A curve in M is causal if its tangent vectors are timelike or

lightlike. A causal curve is future directed (past directed} if its

tangent vectors have this property.

A future directed causal curve ¥ :I— M is said to have a

future endpoint (past endpoint) if ¥ (t) converges to some point in

Mas tTsup T (t)inf I).

A past directed causal curve Y :I——> M is said to have a

past endpoint (future endpoint) if ¥ (t) converges to some point in

Mas tTsup I (£}inf I).

A future (past) directed causal curve § is said to start at a

point p€ M provided that p is the past (future) endpoint of ¥ .

A future (past) directed causal curve ¥ is said to be future (past)

inextendible if it possesses ro future (past) endpoint.

Notation: W p#g in M,
p <€ g: F a future directed timelike curve from p to q.
P <g: d a future directed causal curve from p to q.

[Note: Obviously, p<< g => p<d. Write p£q if either p<g
or p = q.]

Definition: The chronological future of p is

I"'(p) = {a:p<< q}



and the causal future of p is

st ={arpeql.

The chronological past of p is

S IT(P) =iq:a << e}
and the causal past of p is
I37(p) = {a:q<p}.

[Note: For a nonempty subset S T M, the sets Ii(S) ’ Ji(S) are

defined analogously. E.g.: I+(S) = {q:p << q (dpe s} and

¥ () ={qipeq (Ip€s)y . Obviousiy, 17(s) = U 1*(p) ang
pe s
gtesy = U 3%p). Furthermore, 3*(s)D su1t(s).]
PE S

LEMMA If x<< y and v4£z or if x4y and y < z, then x << z.

Application: We have

1T(s) = 1Y (1%s) = 1T (ots)

1

gtatsy « atwats) = 3t (s).

Rappel: An open subset C of M is geodesically convex provided

C is a normal neighborhood of each of its points. Accordingly,
given q',q" € & ,  a unique geodesic segment ¥ :[0,1]—> M such that
Y0) = gq', (1) = q" with F[0,1] € € . Furthermore, it can be shown

that g' ¢< gq" iff ¥ is future directed and timelike.



[(Note: C is a space-time in its own right. And, in obvious

notation,

(1) qeI’(p, C ) <=> g

_e_g_c_pp(X) . wWhere xev+(p):

(2) g€ (P, © ) <=>q

_e_zc_pp(X) , where X€V+(p) .

It then follows that I+(p,e ) is open and J+(p,(? Y = I+(p,(°, Y.l

LEMMA If p << ¢, then 4 neighborhoods Np of p and Nq of g such
that

t
N
P'EN,
=> p'<< q'.

'
quq

[Suppose that ¥ :[a,b] —> M is a future directed timelike curve
with Y¥(a) = p & Y (b} = g. Choose a geodesically convex neighborhood

c q of g and fix a point qge C q on X before gq: q << ¢. Choose
a geodesically convex neighborhood C P of p and fix p+ < C’,p on ¥
between p and q : p << - << 9 . Now put Np = 1" (pt, @ p) and
'EN
p'e p

Ny = 1 (q", CqJ : = p' << P << a4 <K< g .l

TEN
qu

Application: % peM, I7(p) is open.
[Note: It is obvious that I+(p) is nonempty and connected.]
Facts: W p€MN,

(1) int I'(p) = I7(p);



(2) 17 = {x:1v0) c 1T } ;
(3) fx I (p) = {x=x¢1+(9) & J;+(X) C'I+(p}§ .

In Minkowski space-time, Jf(P) is closed but thig fails to be

R1,1

true in general. For example, let M = R” with the point (1,1)

deleted and take for p the origin:

No causal curve from p can reach points on the dotted line, thus J+(p)

consists of I+(p) together with the lightlike geodesic rays e and e .

In particular: J+(p} is a proper subset of I+(p)j

LEMMA If ¥ is a future directed causal curve from § to a point
N )
qeatisy - tH (s, then ¥ is a lightlike geodesic that does not meet

t(sy.

Facts: %W S CM,

(1) int 37(s) = 17(8);

2) e 1ts).

Definition: A space-time (M,g) is said to be chronological if

M contains no closed timelike curves, i.e., ¥ p, p¢I+(p).
l-llu-_---—-lﬁ-
LEMMA A compact space~time (M,g) contains a closed timelike curve,
¥ L el .

hence is not chronological.



{Since the I+(p) are open and M = &gM I+(p), '3 points Pyree«sPy
p

+ + . +

such that M = I" (p,)U ---UTI (p ). And: 3 i(1): P €T (Py q))
(12i()<n), J i2): pi(l)€I+(pi(2)) (1 £i(2) 4 n) etc. This leads
to an infinite sequence +.. << Pj (k+1) << P; (x) L KL Py - Since n

is finite, there are a finite number of distinct Pi(x)+ SO there are

pi(kbeh1+(pi(k))' which means that (M,qg) contains a closed timelike

curve, ]

Definition: A space-time (M,g} is said to be causal if M contains
no closed causal curves.
0f course, "causal" => "chronological® (but the converse is false).

Definition: A space-time (M,g) is said to be strongly causal at p

if given any neighborhood O of p 3 a neighborhood 0'C 0 of p such
that every causal curve segment with endpoints in Q' lies entirely in O.
If (M,qg) is strongly causal at p, then there does not exist a

causal curve segment ¥ :[a,bl! — M with 3 (a)

p = ¥ (b). Thus choose
ty€la,bl: W(ty) # p and 0: Y(ty) & 0. Take O' per the definition --

then Y (a,bl C 0, a contradiction.
Fact: The set of points at which (M,g) is strongly causal is open.

Definition: A space-time (M,g} is said to be strongly causal if

it is strongly causal at every point.

Example: Suppose that (M,g) is strongly causal and K CM is



compact. Let ¥y :[0, +08] —> M be a causal curve with image' in K --

then
lim X (t)
£t —7 + 0
exists.

[By the compactness of K, we can assume that lim P, = P exists,

where Pn =Y (n). Claim: _]_._1_;_!1 Y{t) = p. Suppose false, so 3 a
t—> 4 od

neighborhood 0 of p such that Vto, 1t >t0: 3 () )E/ 0. Choose a

neighborhood 0' of p per strong causality. Fix n, > 0 nzno =

p. = ¥(n)€0' —- then 3t>n0: X(t)ﬁ’o. But dm>t & ¥ (m€E 0',

n

thus Y [ng,m] C 0, a contradiction.]

Remark: Suppose that (M,g) is strongly causal -~- then the

I+(p)n I (q) (p,gEM) are a basis for the topology on M.



Globally Hyperbolic Space-Times A space-time (M,g) is said to

be globally hyperbolic if it is strongly causal and V p,g€M, the set

IT ()N 3 (q) is compact.
[Note: This implies that J+(K)f\Jf(L) is compact whenever

K and L are compact.]

. : + .
LEMMA If (M,g).ls alobally hyperbolic, then ¥ p, J (p) is closed.

[To get a contradiction, let us suppose that E[q€J+(p) - J+(p) .

Choose a seguence {an - J+(p):qn-—% g and fix an XG:I+(q). So:

pl_-qn & g << x.
Since g€ I (x) and I (x) is open, it follows that A N:n2N = q, € T (x).

But q@J" (p) => qfJ (PIM I (x). On the other hand, q € 3" (p) (by

assumption) and q €I (x) € J (x) (if n>N), hence Vn2zN,
qne'J+(p)r]J-(x), which implies that qE§J+(p)(]J_(x), an impossibility.]

[Note: More generally, K compact ::>J+(K) closed.]

The following space~times are globally hyperbolic: Minkowski,
Robertson-Walker, Schwarzschild-Kruskal.
Example: Let (M,g) be an arbitrary space-time. Suppose given

a subset 8 of M -- then the future development D+{S) of S8 is the set

of p€M such that every past inextendible causal curve starting at p
meets S ( => s C D+(S)C: J+(S)). Assume now that S is achronal, i.e.,
no timelike curve meets S more than once -- then int D(S), if nonempty,

is globally hyperbolic.



[Note: The definition of D (S) is dual. The union D{S) =

D+(S)k!D—(S) is the domain of dependence of S.]

Definition: A Cauchy surface is a closed, connected hypersurface

Z € M which is intersected exactly once by each inextendible causal
curve in M.

. 1,4
So, e.g., ln'gh'

. the hyperplanes X = constant are Cauchy
surfaces.
Remark: ILet = CM be a Cauchy surface. Fix a timelike vector
field X on M -- then the trajectories of X partition M, soV pcM,
the trajectory of X through p meets Z at a unique point r(p) (trajectories
are necessarily ineXtendible). Using Brouwer's theorem on invariance
of domain, one c¢an show that r:M — 3> is a continuous open map which
leaves 7 pointwise fixed. Consequently, any two Cauchy surfaces in

M are homeomorphic {(if Efl,jiz are Cauchy and if r,,r, are the

corresponding retractions, then r, I’Zl, rllzz are mutually inverse).

[Note: It is clear that D(Z) = M, hence M = int D(Z) is

globally hyperbolic.]

STRUCTURE THEOREM Suppose that (M,qg) is globally hyperbolic --
then there exists a d-dimensional manifold > and a diffeomorphism
¥ :R X Z —> M such that Yt, Zt =T ( 1ty x T ) is a Cauchy surface

in M, hence

m= 1l 5,

t

' o0
is foliated by a C -family %-E;tza of Cauchy surfaces.




Addendum: ¥ 6 € 2, the map t —> ¥ (t,6”) is a future directed

timelike inextendible curve. Accordingly, if > 0(: M is a Cauchy

surface, then ¥ (t,¢ ) intersects ZO exactly once at the parameter

value ¢t = T v {g). We call T :E-—\} R the time level function
0 Tt

Zyp

of 3,. It is c® ana ZO={E( T 0(r_r),v:r): O“GE}'. Moreover,

=

if 21,22 are Cauchy, then the map Zl--> Zz defined by the rule

T (T (e),oo) = TE( T () ,07)
Z

Zz
is a diffeomorphism.
P ———ly
LEMMA A globally hyperbolic space-time (M,g) admits a time
function, i.e., a c ®° function T:M —> R whose gradient is a future

directed timelike vector field.



Gordon
Klein~ Let (M,g) be a globally hyperbolic space-time.

Notation:

(L) 4 2 is the d'Alembertian on M per g, thus in a coordinate

neighborhood U,

1
kR Pl
2 G\" 9, ),

Naf =

(12 =ls|
where

(2} A is the positive measure on M determined by g, thus in

a coordinate neighborhood U,

o =

ey = § ol

U

dx.

THEOREM Fix m >0 -- then 3 continuous linear maps
WA

+
E c";’ (M) ~> ¢ )
such that
+
E"(Ij2 + mz)f = f
+
( 1% + md)E” £ = £.
Furthermore,

+ +
spt B £fCJ (spt f).




+
It turns out that E are integral operators:

* ' T
E f£{x) = ‘f E (x,y}f(y)daly).

M
Let
E(x,y) = E (x,7) - E (x,¥) -
Then
EE (x) =5 E(x,y) £(¥)drnly)
M
and

+ +
spt E fCZJ_(g_El: £}

spt Ef C J(spt £f).
Remark: Take M = MIHEAXSWRK XSXMEEXXKIRXX R1'3. In this setting
Aoy
it is then customary to deal with the
causal Green's function EC

retarded Green's function E+

advanced Green's function E_

as well as the
positive frequency function b

negative frequency function D .



The connhections between them are:

gt = g€ 4+ Dt
E =E° - b
=
E" -8 = bt +p° =FE
Here
' VT V-L'<p,x>
D (x) = - e a (p)
(2> J, 7m
Xl'fl
_ ARy - V-1'¢p. x>
D (x) = u———lg JA e da,. ()
(2M)
X
=
£ (o) f ( V-1 <p,x-y> V-1 <{p,x -.Y))d o)
X, ¥ = P
(2T‘[) "
m
or still,
E(x,y} = —(‘2—1_[*'3' j sindp x-y > da, (P) .
X
m
Let

o(f,,£,) = S J’ £ REEX, V) E, (V) dmx)daly).
M M

Then ¢ is a nondegenerate alternating bilinear form on Cgo(M:R)/ker E.
W*—

[{Note: It is a fact that



E{x,y) = -E(y,X).

Accordingly,

G (£,,£)) = S S £, (X E(x,¥) £ (¥) dar (x) dac ()
M M

Il

{ ffz(y)E(y,x)fl(x)d/»\(y)dm(x)
M M

- S 5fl(x)E(x,y)fz(y)d/u\(x}d/t«(y) = - o(f5,£,).]
M M

Definition: The Klein-Gordon algebra of the pair (M,qg) is

Ot

= CCR(C®®(M:R) /ker E, & ).
*) C Yy | ——

There is an evident assignment
0—> 01 (0) = c*{ W(I£]): spt fc 0}
from the bounded open subsets of M to subalgebras of Glg and

0ty = c*¢ Ot on.
C

I : Suppose that O

g p is contained in 02 -- then 0‘(g(01) is

contained in 01g(02).
IIg: Suppose that Ol is contained in M-J(Oz) {meaning that 01

and 02 are spacelike separated). Let



flec (M;R): spt £, C O
C Whm, ——
od
f2€ Co (M.ﬁ). spt f2 c 02.
Then

6(f,,f

{ S £) (0 E(x, ) £, (¥) da () danly)
M M

1’ 2)

j £, (%) EE, (x)danlx)
M

- OI
In this connection, recall that
spt Ef2C J(spt f2) (< J(Oz)) .

Therefore the elements of O'[g(ol) commute with the elements of 019{02) .

IIIg: Suppose that P is contained in the domain of dependence

of O -- then [)‘(g(P) is contained in D’Tg(o) . To see this, take a
(2] o0 .
Y € ¢l (P;R) -- then I $ € C, (O:;R): Ed= EY (proof omitted),

hence ¢ -V € ker E = [$] = [ Y1 = Wild]) = W(lY 1) =

mgm - 0'(g(0) .

IVg: Suppose that 35 :M ~Y M is a diffeomorphism -- then 3 defines

a symplectic isomeorphism
(Bgro o) =7 (Egugr Tgug)s

viz. [f]1—7 [f ©F ]. Here we have put



_ D . —
Eg = Cc (M,\E)/ker E, crg =4 etc.

So, by Bogolubov, 3 an isomorphism

such that

O(_S(W[f]} = W[E o3 1.

It is not difficult to check that V¥ 0, o<3 sends (J'[g(O) to

-1
Oix*g (3 o).

THEQREM Suppose that 77 € M is a Cauchy surface. Fix
A e e L VS

u,u'GC:O(Z) —- then there is a unique f €C%(M) such that

(D2+m2)f=0and

[Note: Tacitly, ¥ is spacelike, i.e., g | T, Z X T Z is

negative definite VY & € Z. In addition, —aa—-ﬁ- is defined using the

future directed unit normal along 2 .l




OQuasifree States

Let E#0 be a real linear space equipped with

a nondegenerate alternating bilinear form 6 .

Notation: @Given a state &) on CCR(E,d¢ )}, put

$ () = W) (£€E).

LEMMA Suppose given a complex valued function.¢ on E -- then
P Y ]
$=$, for some state coon CCR(E,¢) if $(0) = 1, A —> $(Af)

(A evlz) is continuous, and

N
o
o

. £, . - £,)>0.
2, T o (£, £5)) Py - £020

e ————

Example: Let < » > be a real valued inner product on E with

log, a0} £ <£,£> Y2 (9,952 (£,9¢m).

Then the assignment
1
£ —vexpl - 7 <£,£> )

satisfies the conditions of the lemma so0 3 a state ¢don CCR(E,s )
such that

WME)) = expl - 5 <E,£> ).

[Note: States of this form are said to be quasifree.]

Notation: IP{(E,qg" ) is the set of real valued inner products 4« on

E which dominate ¢ in the sense that

fo(f,90 1 2 € mi£,£) ~lg,9) (£,9€E).



Accordingly, there is a one-to-one correspondence a4 —> Cin

between the elements of IP(E, ¢ } and the quasifree states on CCR(E,5 ).

Given a € IP{E, ), let B{;« be the completion of E w.r.t. the

topology induced by s and denote by 6. the a(-continuous extension
of g to }k@uk—w then there exists a unigque bounded linear operator

A’M : HA —7 }(’A such that

o, (%, ¥)= Mm(XA y) (Xx,y€ N/.\ ).

It is easy to check that

= - L
AL = AAA r “AM” - 1.

[Note: In general, AME¢ E.]

Example: Take for E a complex Hilbert space, view E as a real

linear space via restriction of scalars, and let

¢ ix,y) = Im{x,y) .
Then
A (x,y) = Re {X,¥>

is a real valued inner product on E. Moreover

F<xoySt e W=l -yl

I O-(X,Y) ‘2 f M(X:X)M (YrY) .

In addition,

{x,¥y>=Rex,y) + V-1 Im<x,v)



<fo"—1IY>

V-TrRe<x,y> - Im {x,¥>

Im {x,y) = - Re{x, V-Ty> = Re {x, =V-Ty).

G (x,9)= Am(x, - ¥-T'y).

Therefore A/M is multiplication by - V-1,

LEMMA % ig nondegenerate iff A, 1is njective

[Note: Suppose that ¢

V.. 1s nondegenerate -- then the range of

A, |is dense (a(x,A, vy) =0 Yy =0, lxy) =0 Vy = x = 0), hence

A is densely defined (but possibly unbounded)}.]

Let
A/M = JAIAM|
be the polar decomposition of AA . Since AL = - AM r Bl is normal,

hence J,, and [Aﬂl commute. In addition,

— * — — — —
a* =|a |g A SN
=
J la { ¢ = - 32 |a !
A A, A, AP AL *

But|J |A IJL is positive, so the uniqueness ¢of the polar decomposition

gives




Definition: Let m € IP(E,qg ) -- then «, is said to be pure

if Y £ €E,

An(E,£) = sup fo(£,9)1°
g€ E- {0} 4(g,9)

Example: Consider again the case where E is a complex Hilbert

spage, soO

6(x,y) = In<x,¥>
Ar(%,¥) = Re {X,¥) .
Thelll Y x#0,
G (x, VT %) = mlx, (-Y=T) V=T %) = alx,x) = =} 2
=7
2 4
o (x, V-T' x) 1 W= 2
= = {Hxll “.

A V=-1"%, V-1"x) It <l 2

Therefore sa is pure.
e —
LEMMA _a.is pure iff {A_ |= I.
[Note: It follows that if s« is pure, then N is nondegenerate,]
Remark: Suppose that ¢’ is quasifree: ) = W, -- then W, is

pure iff s is pure.

[Note: Recall that the GNS representation 'rrw associated with
Pas™

W is irreducible iff Q.. is pure.]

Fact: Given A+€IP(E,q ), put

Mp(f:g) = A (£, | AMI g).




'I'hen‘,.,‘p &IP{E, 6°) is pure.

[Note:,N\p is called the purification of a« .]

Example: Consider again the case where E is a complex Hilbert

space, soO

f G(XrY) = _I_I_Q<XaY)

). rlx,y} = Re (x,¥)

Fix A>1 -- then v = 2N € IP(E, g ). But

T,y = mlx, - VI'y) = Aaalx,~t y) = U(x._Y7:_l'Y)
=
-VY1
A\J: ?\J-I = ‘AU)=._];§,I.

Therefore

— .—.3;_.. =
Dp(x,y) w(x, o y) An(x,y).

Assuming that s is pure, put
C
e = + -1
WE =¥, + VT,

and extend q;\,/“.to all of}Kjﬁ by taking them conjugate linear in

the first variable, linear in the second variable. Viewing gu_ as

an element of (B(I = ), write
A

SRt DA,
where
of * =_{X:J/A x = +V=1x }.

Let P¥ be the associated orthogonal projection. Define a real linear



map K:E— }f+ by setting

x = pHiE.

call < ,)vg the complex inner product -onb{vg -- then Vf,ge E, we
P s

have

C + + C
K' e P' [y
<Rf,Kg> {P£,P g>

= Adp7g,p%g)
_ + +
= m(P £, J/\-«P q)
-1
1

+ +
= I a(P f,JAP g)

VT

+ +
- V-1 G-/‘-“\(P £,P g)
v et +

C
But x e -
Vxed £

X = P+x + P x
=>

I x=J3 p'x+3 P

AT T A X

= Y=Totx - V-1'p x

=

+ Jﬁqx + ¥-1 x

P x =

2Y-1

Therefore

o (V-T pte,ptg)



7.

JLE+V-T'E J g+VTg

Pac®
= & (V-1 , )
4 2V-1" 2V-1
=_._41 T £ +V1E, 3 g +VT g
-1
- - 3(‘1'( o (3 £03,,9) + VT 6, (3, £,9) - VT 6 (£,3,.9) + ga(£,9))
=) (e (T f,9) - e (ETLqg)) + —E (. (T £,T. g) +6(£,9))
4 AL -:/V\ l’g Pan® r Mg 4 v:—l' A AR r Mg lg s
Since

G‘M(Jﬂ f’J/‘*- g) = M(JﬁfrJAJMg) = A (f'J/\A g)

O“M(f;JMQ} M(frJAJMg) - M(frg)l

it follows that

C _ ~(£f,9) o (£f,9)
{KE,Rg H K = +
ZM 2 2 V-1'

Accordingly, K is one-to-one (Kf = Q0 = an(f,f) = 0 =>f = 0). PFinally,

KE is dense in }(+. Indeed, E is dense in'}{M_, thus it need only be

shown that P+M/- is dense in 3¢*. so fix y € 3¢" and suppose that
+ C + C C
P r oo = _— th 0 = ;P e = ! e —_—
<P'x y)jﬁ 0 ¥Vxe€ .. en <x y}ﬁu <x sz‘ >
y LY =>v1HS =y-=o0.
v Paa®

[Note: One could equally well have used P . This would give

CKE,Kg ¥E =8 yop _olf,9)
S 2 ) 9



which is actually more convenient in the applications.]

Summary: Let a € IP(E,g-) be pure -~ then 1 a complex Hilbert
space (¥ , <, > ) and a real linear map K:E—>f such that

(1) K is one-to-one and has a dense range:;

(2) ¥ £,9€E,
CKE,Rg D> = 22E.9) pympalf.g)
2 2

[Note: It is not necessary to assume that s is pure, the only
change in the statement being that the complexified range KE +V -1' KE
of K is dense in 3{ (the proof is an elaboration on the preceding

theme) .}

Remark: If (K',( )—'E’ ', <,> ")) has the same properties, then 3
a unitary U: 3 — &€ ' such that UoK = K'.

[Put ,J)= KE C¢ , .\J" = K'E <M ' and define T: ;P—) 2 ' by

the prescription T(Kf) = K'f -- then V x,ye.ﬁ’ '

<TXJTY>. = <XrY>-
Therefore T extends to a unitary U: H —r 3 ' such that UoK = K'.]

Maintaining the assumption that A€ IP(E, ¢ ) is pure, consider
"}'S(b-? ) == then, as we know, a CCR realization of (3f .,Im<,>) is

the C*-subalgebra of (3( ¥ _(y{ )) generated by the W(x) (x €d{), where

Wix) = exp(VY-1 §S(x))

———

and

(x) + c(x)).

=...}._.(a_
ve S



9.

T ————

LEMMA The assignment

LY
W(f) —> exp( V-1 (a(Kf) + c(Kf)))
defines a representation of CCR(E,6 ) on H:S(B?).

[In fact,

W(f)W(g) = exp (— Y-l o’(f,g)) W{f+g).
2

On the other hand,

exp(V -1(a(Kf) +v3}Kf))) exp(V -1(a(Kg) +‘Eng)))

- 2

(_ V=T o—(f,g)) exp(V-T (a(K(f+g)) + c(K(f+g)))).
2 /] ~ o

exp (— Y =L 1 (V2 KE, V 2'Kg)) exp(V -T'(a(K(f+g) + c(K(f+g))))

exp

—

The assertion is therefore manifest.
[Note: It is not difficult to see that this representation is

equivalent to the GNS representation T&d associated with the state
PN

W, .]

Let m g 1Ay CIP(E, ¢) be pure and let Trl,‘n2 be the representations

of CCR(E, G ) constructed above.
Problem: Determine conditions under which 3 a unitary U: H:S(}QJ)

—»'38(3{92) such that UTilU—l = T,

Pirst, it is easy to see that there is no such U unless,AAl,fqz

are equivalent, i.e., 3 C >0, D>0: ¥V f€ E,



10.

Therefore 3¢ = é{AA , label it }fk\. Define a linear map

M1

Q: MN — }-Q/“ by

2

Ml(X:QY) =,M2(x.y) -,Ml(xfy) .

Then i, and ﬁ‘2 are unitarily equivalent iff Q is of the trace class.

[Note: To explicate Q, observe that A a~l
g

linear operator on }ﬁ“. And:

=

2

—extends to a bounded



Hadamard States Let (M,g) be a globally hyperbolic space-time.

Fix m> 0 and consider the associated Klein-Gordon algebra Dlg -- then
the issue is to isolate a physically relevant class of states on Ulg.

Since it is a guestion of states on
o0
CCR(Cc {M:R) /ker E, ¢).,

the generalities from the previous section are applicable, thus we
shall restrict our attention to those states which are quasifree.
Suppose that <), is a quasifree state on O . Given f.,f (§C°°(M;R),
LA g 1'-2 C ey
put

ALE D, [E,]) o ([£,1,1£,])

+ VT .

2 2

/\/M(fl,fz) =

Then /\N\is a complex valued separately continuous bilinear form on
Cc® (M;R) .
C e

Definition: A separately continuous bilinear form

o0 <0 LD
N =C, (M'\E)ch (M;R)—> C

satisfies the Hadamard condition if

A(£),£,) = lim f A ¢ Br@) £ (P)E, (D) d A (P daa (@) «
gdo MxmM

[Note: Here the /\E are certain kernels whose exact form we shall

not insist upon at present ( A = GE + H, where G is singular

& &
ard depends on (M,g) while H is smooth and depends on A ).]

A guasifree state cQw\on Cﬂg is said to be a Hadamard state

provided f\w\satisfies the Hadamard condition.



It is a fact that pure gquasifree Hadamard states exist.

[Note: Such a state is sometimes called a Hadamard wvacuum, ]

LEMMA The set of quasifree Hadamard states on 01g spans an
Nt

infinite dimensional vector subspace of the topological dual of {1 _.

Rappel: Given a C*-algebra Ol, representations W, and Ti, of

0l are said to be quasiequivalent if every subrepresentation of T,

contains a representation which is unitarily equivalent to a sub-

representation of T,

[Note: Equivalent conditions are:
(1) 3 an isomorphism $ : T1,(01 )" — T ,(0()" such that

d(n, @) =1, Vaedl;

(2) 4 a cardinal number n such that nTi; is unitarily equiv-

alent to anz.]

Rappel: Given a C*-algebra (Ol , let Tf be a representation of

Ol on ¥k -- then the folium of Tj is the set of states on O of the
form

A ""'> EE( H(A)W) [
where W is a density operator on &Q.

[Note: The folium of a faithful representation of Of is weak*

dense in the set of all states on (.]

Fact: The folium of Ti determines its quasiequivalence class.

e Wit~

EﬁEOREM Let WirW, be guasifree Hadamard states on 019 -- then




Y/ bounded open OCM, T7 0, \ mg(O) is quasiequivalent to ““’2 | 01_9(0) .

[Note: As usua1,1Tco.(i=l,2) is the GNS representation associated
i

Another point is this. Suppose that cgﬁkis a quasifree Hadamard

state on U’(g ~-- then Y pEM,

(H\ P {0))" = CI.
0dp © Ulg .

Agggndix

The precise formulation of the Hadamard condition is complicated.
So, for simplicity, we shall restrict ourselves to the case when
dim M = 4.

Convention: All Cauchy surfaces are assumed to be spacelike.

Definition: Let T CTM be a Cauchy surface -~ then an open set

NCM containing 3 is said to be a causal normal neighborhood of Z if

N p.q€EN: qEJ+(p) = 4 a geodesically convex set € € M such that
TN IaT@ct.

[Note: It can be shown that every Cauchy surface admits a

causal normal neighborhood.]l
Notation: Let € C M be geodesically convex -- then for p,g € .,

0 (p,d) is the signed sgquare of the geodesic distance from p to q:

b . . 1/2 2 .
o{p,q) = + ( S | g ¥(t) (@), 3Nl at ) ( W(a)=p, ¥(b)=q),
a



the plus sign being taken if ¥ is spacelike and the minus sign being

taken if ¥ is timelike. E.g.: When M = Rl,3' o (p,g) = - (p—q)z.

Notation: JC MxXM is the set of causally related points (p,q)
and b C J is the set of causally related points (p,q) such that
J+(p)(\J-(q) and J (p)N J+(q) are contained in a geodesically convex

subset of M.

LEMMA There is a neighborhood U of 3 on which ¢ is welldefined
N A a

and smooth.
[It sufficas to let

U

Uy = C x C
3 (p,a) € ) (p,q)

(pea}’

where C is a geodesically convex subset of M containing

(p,a)
I )N I (q) or 3T (p)N T (q) (whichever is not empty) ard thus

containing p and q.]

Let T be a Cauchy surface. Fix a causal normal neighborhood

NDT .

LEMMA In NXN, there is an open set 0. D JN{NX N} such that
Lv ey weiy) N

the closure HN of ON in NXN is contained in U, N (N XN).

d

{Using the definitions, it ig easy to check that JN(N XN)C Uy
is closed in N XN. Accordingly, there is an open subset ON of NXN

for which

J N (NXN)C ONC oNC Uh N {(NXN).]




Fix a Cc’OI function X :NX N — [0,1] such that

X(p,q@) =1 ({p,9) € Oy

X(p,q) =0  ((pa) ¥ Uy )
Given a time funf_.'tion T:M —> ‘R, for each neyli and & > 0, define

a function Gg’n on Ua by

T,n

GE (p q) =

A N S Y

3 (d) log( Ce (p,9)) .
{2 71) Cp {p,q) -

Here
o (p,@) = 6(p,q) + 2 VoT' E(T(R) - T(®) + € 2.

In addition, A is the Van Vleck-Morette determinant and

n
vi™ (p,q) = > e (o (@,an®,

the Ve being expresgible in terms of the Hadamard recursion relations.

Definition: A separately continuous bilinear form

AN 0% (M;R) X € (M;R) — C
C ey o] p e

satisfies the Hadamard condition if for some choice of 2 ,N, X, and

T, there is a sequence of functions HnGCn(NXN} such that ¥V n and

Vv £,.£,€ C'ZO (N;R), we have

A(£;,£,) = lim f AT (p, L, (PIE, (g)d m(p)danla),
E\l/O N¥XN
where
T,n

/\Tg’n(p,q) = Alp, QG (p,q)} + H (p,2).

&



[Note: "X is zero off of Uh , hence /\'IE"n is defined on all of

N XN.]
T P
Remark: If (3 ,N) is fixed and X is changed to xi , then

the condition is still valid {the changes are compensated for by

choosing another sequence Hr'l € Cn(NXN) ). On the other hand, if A

satisfies the condition per one choice of ( = ,N), then it satisfies

the condition per any other choice ( 2 ',N').



The Vacuum Let 3¢ be a Hilbert space -~ then, as we know, the

C*-subalgebra of ()( F _(3€)) generated by the W(f) is a CCR

realization of ( P, Im<, ).
Definition: The vacuum is the state W, on CCR(}}?,EE <05

characterized by
W (W(E)) = exp( - = N1£1 &),

[Note: Therefore Wo is quasifree, and, in addition, pure.]

LEMMA We have
WVANY
WomE)) =<y, WHIL > .

[Note: It is this result which justifies the terminology.]

To prove the lemma, a preliminary will be needed.

Exponential Construction: Given x¢& }{’ , but

exp x = 1®x P V%_!‘ x@x@...@ V%_fx@...@x@... < ?-S(M),

Then

{x,¥>
{exp X, eXp y ) = e

and the set exp of is total in ?‘FS(B‘? ).

Using the definitions, one now finds that

W{f)exp x = exp i—- rhen . % (f,x}} exp( -f—?+ X) .

Since.‘()o = exp 0, it follows that

<Qgr WO D



2.

— 1 2 f
—<exP 0, exp( - r {IER]] ) QEE(T?)>

li

exp(- 3 £ %) Cexp 0 expE)>

exp( - 3 NEI %) = L ().

1,3

Example: Take for M the Minkowski space-time \,13.

and fix m>0 =--

then the associated Klein-Gordon algebra (JI sits in

2
CCR{L™ X s anp )y Im < ),

hence ¢y , determines by restriction a state on 0l which will also be

referred to as the vacuum. Explicitly: ¥ fecc‘,’“’ (\51’3;&),
W) = exp §- U £ x, 1 %Y
0 eXp 4 m N

[Note: We shall see later that Q)O is a Hadamard state.]



The Wave Front Set Let T be a distribution on “&n -~ then a

point (x,¥) Evlin xva{vn is called a reqular directed point for T if
3 be co® (R") with $(x)#0 such that VN Acy >o:
1P (301 £ cg(l + I3 47
for all ' in a conic neighborhood F’C:‘é? of T .
[(Note: As usual,\h? =‘£f - %0} . To say that [" is conic means:
s'el = tx'€el ¥Yi>o.]

The wave front set of T, dencoted WF(T), is the complement in

53‘ x\:&n of the set of regular directed points of T.

[Note: Accordingly, WF{T) consists of the pairs (x,% ) such that
the Fourier transform of 4!T is not rapidly decreasing in the direction
% no matter how closely ¢ is concentrated at x (bear in mind,
however, that since 4@T is compactly supported, its Fourier transform

4:& is necessarily a slowly increasing function). One interprets

% as a "singularity® of T and § as a "direction of propagation” of
this singularity.]

Rappel: Let T be a compactly supported distribution on,gg —
then T is a C function iff its Fourier transform ?’is a rapidly

decreasing function, i.e., WV N QCN'>0:
N " -N
lze3)l £ c @ + 151
for all T €R".

Let T be a distribution on‘ﬁ? == then a point.:aéjgp is called a

regular point for T if 3a neighborhood U of x and a function F € COO(U)




such that

T(f) = J-f(x)F(x)dx ¥ £ §_;;_>_E £fC U,

The singular support of T, denoted by sing spt T, is the

complement inyg? of the set of regular points of T.

Remark: The singular support of T is the complement of the
largest open set on which T is c® or still, is the projection of
WF(T) onto the first variable. Therefore the wave front set of a
c® function is empty.

Example: We have

WF(S) = {(0,%): s#0}.
[In fact

FaN
$8(%)

(z-n)"n/z 8 { CP e @(X,E) )

S 0,

which is not rapidly decreasing in any direction.]
Example: Consider &(x-y), the distribution on\5n>g§? which

sends f(x,y) to 3“f(u,u)du -- then

/N .
$8(x-y) (¥,M) = 2M)™" &(x-y) (q,e\/-_l'ﬂx.y),(‘s‘,*)w )

(2™ ,[“i‘(u.u) e VI <u 3+M) 4y

P (IT+7M) ( Bw) = Pu,u)).

Therefore the singular support of S(x-y) is the diagonal x=y and the
directions in the wave front set of & (x-y) are subject to the

restriction ¥ +‘) = 0.



Properties of WF:
(1) WF(T) is a closed subset of‘§?><é?;
(2) V differential operator D, WF(DT) C WF(T);
(3) YV compactly supported C ° function £, WF(£T) < WF(T);

(4) WF(T + S8) is contained in WF(T) + WF(S),

Let S gfl—# 33 be a diffeomorphism —- then by definition

{IT,£Y = ff(*s(x)) | T« (x)) ar(x),
where JS (x) = det 435, the Jacobian of 5 at x. Define 3,: \Enx-ﬁ“

Ty

Sex,F) = (3(x), dFXF)).

Fact: We have
WF(3T) = T, WF(T).

It is clear that all of the preceding discussion can be carried
over to distributions on open subsets of'gg. This, in conjunction
with the last fact, then allows the theory to be written for dis-

tributions T on a Ccz)manifold M, thus now

WE (T) & T*(M),

where T*M is the cotangent bundle of M with the zero section removed.



The Theorem of Radzikowski Suppose that (M,g) is a globally

hyperbolic space-time with dim M = 4. Let

where
is defined as follows.

(i) When Xy # Xoe there is a future directed lightlike geodesic

¥lE) = x 7 () <5 %1
&
X(tz) = X%, i’(tz) éTg—> EZ .

(ii) When x; = X,, “5‘1 and ‘52 are lightlike, equal, and in

V+ (xl = xz).

Now fix m >0 and consider the associated Klein-Gordon algebra
Glg. Let @, be a quasifree state on Ofg -- then the theorem in
question says that /\,, satisfies the Hadamard condition iff WF(A )= .

Example: Take for M the Minkowski space-time Rl'3. Consider

My

the wvacuum GJO -~= then WF({ p\o) equals

$(x, X5y, ~F)IE T*H(M xXM) :

x # v, (x=9)% = 0, S W(x-y), I,>0%

U

[t Yo%, -Fremomxm: §2=0,3,50}.

Therefore WF { ﬁ\o) has the required form, thus GJO is a Hadamard state,



