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ABSTRACT

These notes provide a systematic account of certain aspects of the
statistical structure of quantum theory. Here the all prevailing notion is
that of a campletely positive map and Stinespring‘s famous characterization
thereof. I have also included a systematic treatment of "quantum dynamical
semigroups”, culminating in Lindblad's celebrated description of their gen-

erators.
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POSITIVITY

§1., OPERATORS

In what follows, H stands for a camplex Hilbert space, the convention on
the immer product < , > being that it is conjugate linear in the first slot and
linear in the second slot,

Denote by B(H) the set of bounded linear operators on H.

. Qz(H) is the #*-ideal in B(H) consisting of the Hilbert-Schmidt operators.
. Q]_(H) is the x-ideal in B{(H) consisting of the trace class operators.
Recall that L, (#) is a Hilbert space while I, (#) is a Banach space. More-

over, Ly (H)  L,(H) with

lally = [[afi, = [Ia}].
[Note: By definition,
= |lally = trdal)
_ 1all, = cexqal®h2

oL (H) is the norm closed *-ideal in B(H) consisting of the compact
operators.
N.B. We have

&l(H) c QZ(H) < I_.w(H) .

1.1 LEMMA Every closed ideal T < B(H) is necessarily a x-ideal.



1.2 REMARK If H is infinite dimensional and separable, then there is only

one proper norm closed ideal in B(H), viz. I_,m(H). In general, for each infinite

cardinal « < dim H, let ]lfK be the set of all elaments of B(H) whose range does
not contain a norm closed subspace of dimension at least k —— then I|< is a proper
norm closed ideal in B(H) and any such has this form for some «.

[Note: Here, the term "dimension" is to be taken in the sense of Hilbert

gpace theory, i.e., the cardinality of an orthonormal basis.]
Write
L (f)* for the dual of L_(H)

L) ()* for the dual of L, ().

1.3 THEOREM The arrow

Ly (H) > L (H)*

that sends T to Ay, (T € Ly (H)), where

Ap(R) = tr(tA) (A €L (1),
is an isometric isomorphism.
1.4 THEOREM The arrow
B(H) » 1, (H)*

thatsendsAtohA (A € B(H)), where



Wp(T) = tr(dAT) (T € L, (1)),

is an iscmetric isomorphism.

Topologies:

e The strong operator topology on B(f) is generated by the seminorms

1Al = laxl] e H.

¢ The weak operator topology on B(H) is generated by the seminomms

AL,y = |2y xy € H).

» The weak* operator topology on B{H) is generated by the seminorms

[allg = ftr(ma)| (T € L, (H).

N.B. The weak* operator topology coincides with the weak* topology on B(H)
when B(H) is viewed as the dual of gl(H) via 1.4.

1.5 REMARK Each of these three topologies is weaker than the norm topology.
None are metrizable unless H is finite dimensional, in which case they all agree

with the norm topology.

Dencte by U(H) the set of all unitary operators on H —— then U(H) is a group

under operator multiplication.

1.6 LEMMA The (relative) strong, weak, and weak* cperator topologies

coincide on U{H} and make U(H) into a topological group.



1.7 REMARK The strong closure of U(H) in B(H) consists of all isometries.
On the other hand, the weak closure of U{H) in B{H) is the entire closed unit
ball of B{#)}.

1.8 THEOREM Suppose that f is infinite dimensional ~- then U(H} is
contractible in the norm topology, as well as in the weak and strong operator
topologies.

[Note: Needless to say, this is false if H is finite dimensional.]

Consider now the duals

(B(H),T)* (7 = SOT)
(B(H), T )* (1, = Wom).

1.9 ILEMMA We have

(BUH) , T )* = (B(H), T )*.

In other words, the set of SOT-continuous linear [functiocnals is identical
with the set of WOT-continuous linear functionals. Furthermore, given such a A,

it can be shown that 3

STRE
e
Yyreeed¥y

for which




n
MA) = I <y, ,Ax> (Ale B(H)).
M S

1.10 REMARK Given x,y € H, let

PX'Y = <y ,— >X.
Then P, . € B(f} and
[Py, 1 = HIxlT il
In fact, Px,y € Ql(H) and
tr(ery) = <y,X>.

Since any T € L, (H) of finite rank admits a representation

n
T= § P
k=1 *kr¥k
for certain
- XyreeorX
€ H,
Y]-'...'yn

it follows that v A € B(H),

n
T <yk,Axk> = ¥ tr(PAxk'yk)

k=1 k=1
n
= I tr(ap )
=1 e ¥y

tr (AT)




= Ap(B).

Therefore the S0T-dual { = the WOT~dual) can be identi

finite rank operators equipped with the trace norm.

B(H), = {A € B(H):A 2 0.

Then a linear map $:B(H) » B(H) is said to be positive

O(BU,) < B(H),.

[Note: Positive maps are necessarily bounded.]

N.B. Iet

B(HY gy = {A € B(H):a* = A},

BB ) = Bl gy

if ¢ is positive, hence for all A in B(H),

d(a*) = ¢(A)*.

Given A,B € B(H), put

]

AoB %(AB-I—EA).

Then the operation
o:B(H) x B(H) + B(H)

is called the Jordan product, a Jordan morphism being

such that Vv A,B,

fied with the set of

» if

a linear map 9:B(H) - B(H)




®(d o B) = ¢(A) o &(B).
A linear map @:B(H) - B(H) is unital provided ¢{I) = I.

¢ An order isamorphism is a unital linear bijection ¢:B(H) -~ B(H) such

that

$(B(H),) = B(H) .

e A Jordan iscmorphism is a unital linear bijeLction d:B(H} + B(H) such

that v AR,

¢{a o B) = ¢(d) ¢ &(B).

1.11 IR Suppose that ¢:B(H} > B(H) is a unital linear bijection -- then

? is an order isomorphism iff ¢ is a Jordan iscxmrphi&n.

let ®:B(H) + B(H) be a unital linear map.
¢ is a *-morphism if &(A*) = ¢{A)* and o(AB) = ¢(A)&(B)

¢ is a *x-antimorphism if ¢(A*) = $(A)* and ¢(AB) = &(B)o(a).

Assgign to the terms *-~iscmorphism and x-antiisomorphism the obvious sig-

nificance —- then both are Jordan isomorphisms.

1.12 THROREM If ¢:B(H) -+ B(H) is a Jordan isomorphism, then ¢ is either a

*-isomorphism or a *=-antiiscomorphism.

1.13 LEMMA Every order isamorphism (or, equivalently, Jordan isamorphism

{cf. 1.11})) is weak* continuous.




82, STATES

The weak* continuous linear functionals on B{H) ¢

in the theory.

2.1 ILEMMA A bounded linear functional A:B8(H) -

there are sequences {xk}, {yk} in H with

cCcupy a special position

C is weak* contimuous iff

— 2
E | [x]]< o
" *x
2
L[yl e
such that
lCA)=}}i<yk,Axk> (A ¢ B(H)).
[Note: The operator
T=5P
k *k'¥x

is trace class (the RHS being a trace nomm convergent

tr(T) = ]E <yerk>-]

sum) and

2.2 IEPMMA A bounded linear functional A:B{(H) -+

there is a trace class gperator T such that ) = )‘T'

C is weak* continuous iff

Write B(H), for the norm closed subspace of B(H)* consisting of the weak*

contimious linear functionals on B(H) — then B(H), is called the predual of B{H).



2.3 THEOREM B(H), is isametrically isomorphic to Ly (H) i), +» T.

[Note: In view of 1.4,

(B(H) )* = Ly (> = B(H).]

A linear functional A:B(H} - C is said to be positive if
Az0=>2x(@A) =20,

[Note: Positive linear functionals are necessarily bounded.]

2.4 LEMMA A positive linear functional A:B(H) + C is weak* continuous iff

there is an orthogonal sequence {xk} in H with
2

T [19 = [[a

g1 = 1l

such that

AMa) = L <x, Ax, > (A € B(H)).
I i

2.5 LEMMA A positive linear functional X:B(H) -+ C is weak* continucus iff

there is a positive trace class operator T such that X = )\T

A positive linear functional X:B(H) - C is said to be completely additive

if for every collection {Pi::i. € I} of mutually corthogonal projections,

AMZI P = T OAP.).
jer v ier *

[Note: Let F c 2% be the set of finite subsets of T — then I P, is the
ier



strong limit of the

P,= T Pi (FeETF
icw

while
I A(py) =swp I A(P.).]
i€l FEF i€F
2.6 THEOREM A positive linear functional A:B(H) » C is weak* continuous

iff it is completely additive.

2.7 REMARK Suppose that A:B(H) ~ C is a positive linear functional with

the following property: For any bounded increasing net {Ai:i €T} in B(H)+,

Aisup A,) = lim A(Ai).
ieT i€I

Then ) is completely additive, hence is weak* continucus.

A state on B(H) is a positive linear functional w:B(H) - C such that w(I) = 1.

Iet S(B{H)) be the state space of B(H) (meaning the set of states on B(H)) -
then S(B(H}) is a convex get and its elements are continuous of norm 1.
[Note: The extreme points of S(B(H)) are called pure states.]

E.g.: Each unit vector x € H gives rise to a state W, viz.
wX(A) = <, AX> (A € B(f)).

If c € C and |cf = 1, then

wcx(A) = <CX,ACK> = CC<X,AX> = wx(A) .



fNote: ILet Px be the orthogonal projection onto Cx —— then

w B = tr(A) (A€ B(H).]

2.8 REMARK The u (||x}| = 1) are pure states but when H is infinite

dimensional, there are many others.

2.9 IEMMA 1Iet w € S(B(H)) - then

w(A*) = w{A)
|w (A*B) |2 < w(A*A)w(B*B) .

Denote by S (B(H)} the subset of S(B(H)) consisting of those w which are
weak* continuous or, equivalently, completely additive (cf. 2.6).

[Note: An element of S (B(H)) is termed normal.]

N.B. In the quantum mechanics literature, Sn(B(H}) is usuwally abbreviated
to S(H), its elements then being referred to as states on H.

A density operator is a positive trace class operator W with tr(W) = 1.

Iet W(H) be the set of density operators —- then W(H) is a closed convex

subset of L, (H) and the arrow

W{H) > S(H)

W+)\.w



is bijective.
[Note: By definition,

NeA) =) (A€ BH)).
In particular:
o =u (lxl] =D

X
X

2.10 EXaMPLE Take fl = _C_I_z — then relative to an orthonormal basis, the

matrix representing a given W € #/(H) has the form

T 1+ z Xx-v-ly —

N

{x,v:,z € E) ’

__x-!-/:fy l-2z2

where x2 + y2 + 22 < 1. Therefore W(H) can be identified with the closed unit

ballinlf, itsboundaryx2+y2+22=lparaneterizingtheraxﬂconeortl'logonal
projections.
[Hote: Let
-0 17 T 0 =/T7 -1 0
o, = ,Gy= 1 0, = .
1 0 e 0 _ _ 0 -1
Then
T 14z x=-v-ly ~

|

x4+ /-ly 1-z



"
(S

2.11 IMA If {wn} is a sequence of nonnegative real numbers such that

I W = 1 and if {Wn} is a sequence of density operators, then {wnwn} is summable
n

w.r.t. the trace norm topclogy and its sum

is a density operator.

Let W € W(H) -— then by a decamposition of W, we understand a collection

{wi:i € Iw} of positive real mmbers subject to 7 W, = 1 and a collection

:LEIw

{Pi:i € IW} of rank one orthogonal projections such that

{(Note: The index set IW is at most countable.]

2,12 LEMMA Bvery W € W(H) admits a decamposition.

PROOF Fix an orthonormal basis {ei:i £ I} — then

l=+trM™W

r <e, ,Wei>
iex

I <Me,, Me,>,
. i i
iel



IW=_{iEI:]|VWeiH =z 0}

is at most countable. Given i € Lge Put

2
Wy = ||‘/ﬁ_ei[|
and
. =/W_ei
R ~
i
from which

W= £ w P .
X.

In fact, v x € H,

<X, Wx> = <v‘ﬁ x,\/ﬁ K>

]

z [<ei,|/ﬁ“x>[2
ieT

D | Meprl?
iEIW
On the other hand,

x, r wP x>

i€, 1%y

= I w.<x,P x>
X

ier, + i

L W, <X, <{, XX, >
' Xlrx 3

i€er 1



2
Eoowy | x>

iEIW

J.Tei |2

wi|<x,

b3
ier, <7

D axoMes| %

i€l
[Note:; In general, W will have many different decompositions (as can be
seen already when H = C°) and it may very well happen that P =P _ for distinct

i 3
i,j e Il

2.13 LEMMA The extreme points of ((H) are the rank one orthogonal projections.

PROOF Consider a W ¢ W(H) suchthatW2 z W -~ then W has an eigenvalue

A € 10,1[ corresponding to a rank one orthogonal projection E. This said, write

W= 3E+ (-0 |
1-2

W - JE _‘

to see that W is not an extreme point of (). Conversely, supposethatW2=W

and W = )\Wl + (1—;\)w2 for save ) € ]10,1[. Fix a unit vector xO:Wk = x, — then

0 0

. 2 2
<x,Wlx> = <x,W2x> =0 if x L Xqo But <x,Wlx> = |[./W]__x|| and <x,W2x> = ||,/W'2“x|| ‘

thusvﬁ;x=Vsz=OifXJ.xo,whichirtpliesthatwlx=wzx=Oifx.r.xo.

Since W, and W, are selfadjoint, 3 CysCy €ECiWy =¢C

tr(W2)=l=>c =c,=1=>W

17 % 1= ¥

2=W.



2.14 REMARK ILet W € W/(H) -~- then

tr (W) s | [W]i{tr®) = ||W]| < tr() =1

and W2 = W iff tr(W%) = 1.

By Ab(S(H)) we shall understand the set of real valued bounded affine
functions on S(H) equipped with pointwise ordering and the supremm norm.

N.B. Fach A € B(H)g, gives rise to an element = 2 (S(H)), viz.

é‘mw) =20 (W WH).

[Wote: 11 is real valued. In fact,

AW = tr(dW) = tr(A*W) = tr(AW) = XA(W)-]

2.15 IEMMA The arrow

B(H) g —> B, (S(H))

A > A

is an order and norm preserving linear iscamorphism.

PROOF Iet F € Ab(S(H)) —~— then F = ClFl - CZFZ' where Cl > 0, C2 > 0 are

constants and Fl'FZ are elements of Ab(S(H)) whose range is contained in [0,1].

Accordingly, one might just as well assume outright that F is an affine mapping
from S(H) to [0,1]. But such an F can be uniquely extended to a positive linear

functional AF:QI(H) + C (cf. infra). Since ]\F is positive, it is bounded:



10.

hp € L(H)*. S0 3 A € B():

!\.F = AA (cf. 1.4).

And A is necessarily selfadjoint:

tr(aW) = tr(aA*W) v W ¢ W(H)

A

A* (cf. 7.4).

[Note: Here is a sketch of the extension procedure (a detailed rendition
is given in §84). Thus put AF(O) = ¢ and for each positive trace class operator
T = 0, set

- T

The fact that F is affine implies that
AF(Tl + '1‘2) = AF_(Tl) + AF(Tz) .

Next, extend AF to the selfadjoint T € l;'l(H) via the prescription

Ao = A = AL(T)
and then to arbitrary T € LI(H) by

A (T} = Ap(Re T) + V=1 hp(Im T) ]

2.16 THEOREM There is a one-to—one correspondence between the order iso-
morphisms B{ff) - B(H) and the affine bijections S(H) -+ S(H).
PROOF If 2:B(H) - B(H) is an order iscmorphism, then ¢ is weak* continuous

{cf. 1.13) and the restriction of $*:B(H)* -~ B(H)* to S(H) is an affine bijection.



11‘

In the other direction, suppose that Z:S(H) - S(H) is an affine bijection. Define

F(;:Ab(S(H)) + Ab(S(H) )

bytheruleFC(f)=f°(:—~thenFCcanberegardedasanarrw

B(H)SA > B(H)SA (cf. 2.15).

ExtendFCtoallofB(H) by sending A to

FC(Re A + /-1 F':(Im A)
to get an order isamorphism d:C:B(H) + B(H} such that @E:B(H}'* + B{* restricts
to o3

* =
¢Q|S(H) g

or, spelled ocut, v w € S(H),

w(%(A)) = (cw}(A) (A € B(M).

Write P{H{) for the set of rank one orthogonal projections. Define a map

PUH) x P(H) + C

(By/P,) > tr(P.P,).

2.17 1IEMMA VY P.,P, € P(H),

i 2

0= tr(PlP < 1.

2)

PROOF Assume that Pl z P2 and choose unit vectors Xy 1 ¥y 3



12.

|
g
Coar
-]
)

tr(_Ple). - X, X

= <X ,szxl>

= <Ry <Ry R OKy>

= X)Xy 1%y

2
I<xer2>f

A

2 2
[y 12 1) 12 = 1.

- P, and let P be the

Keeping to the preceding notation, let A = Pl 5

orthogonal projection onto the subspace spanned by Xy and Xy = then

— A%
AAXl

i

(1 - tr(Ple) )xl

A*Ax2 (1 - tr(PlPZ) )x2

A*p = (1 - tr(Ple))P.



13.

2.18 LEMM v P|,P, € P(H),

- _ - 1/2
_ _ 1/2
|12y = Byll, =v2 (1 - tr(eR,))
- _ 1/2
_ HP]. - 92”1 = 2(1 - tr(E;P)) %
PROOF All assertions are trivial if Pl = Pz' S0 assume that Pl z P2 — then
from the above,
[{a*a]| = (@ - trep,) | (2]
or still,
2
|18} = @ - trep,)
=2
1/2
[[Py = 25[] = (1 = tr(PP,)) /2,
Next,
2..1/2
HP]_ = P2||2 = (er(|a|™)) /
= (tr(awa)) Y2

1/2

(e ((1 - tr(p,P,))P))

= - ewep)? went’?

1/2
V2 (1 - tr (PP} .



14.

Finally,

|ip = tr(|A})

1~ By

er ((ava) V2

- 1/
er(( - tr@p,)) %)

1/2

tr(P) (1 - t.r(Ple))

_ 1/2
21 - tr@p,)N 74

2.19 REMARK A transition probability space is a pair (P,p), where P is

a nonempty set and p:P x P + [0,1] is a function such that

p(1,0)

p(o,1)

. plg, 1) l <= og=rT.

E.g.: Iet plo,t} = § Or, what is germane, take P = P(H) and let

ot’

P(Py,P,) = tr(P.P,)).

Put H = H - {0} and set

P(H) = C\H".

Then #* carries the topology induced by the metric and we shall agree to equip
P(H) with the quotient topology.



15.

2.20 LEMMA P(H) is a Hausdorff space and the projection

H > P(H)

is open and continuous.

[Note: P(H) is second countable if H is separable.]
2.21 REMARK It can be shown that P(H) is simply connected.

The transition topology on P(ff) is the initial topology determined by the

functions fy:P(H) ~C (v € HX) , where

£,8) = [oy | (lxl] = 1.

2.22 IFMWMA Equip P(H} with the transition topology — then the canonical
arxow P(H) » P(H) is a homecmorphism.

[The cancnical arrow is certainly bijective and continuous, thus one has only

to prove that it is open, an elementary if tedious exercise.]



1.

§3. EFFECTS

An effect is a positive operator E which is bounded above by the identity
I:0 <E < I.
let E(H) be the set of effects — then E(H) is convex and partially ordered

(but E(H) is not a lattice unless # = C). In addition, there is an arrow

L:E(H) ~ E(H) that sends Eto E- = I - E, Obviously, B =Eand E < F => F < E'.

[Note: For use below,

Ec€cE{H) == 0<E" " sE<TI

—> B® € E(H).]

Write L(H) for the set of orthogonal projections — then L(H)} is a lattice

vhich is contained in £().

3.1 LEMA L(H) is the set of extreme points of E(H).

PROOF Consider an E € E(H) suchthathzE-—then

I-(E-E) = (I-E?2¢tH

oE - B2 € E(H).

But

2

E=%E+ (2E - E%),

N

thus E is not an extreme point of E(H). Conversely, let P € L{H) and suppose



that there are effects El,E such that

2

I

P }‘El+(l-)\)E2 (0 <X <1).

If Px = 0, then

0= <x,Px> = 3\<x,Elx> + (1 - l)<x,E2x>
2 }\<x,E1x> =0
=2
0 = <x,E\x> = </E:1' x,/E_l >
Analogously,
I—P=A(I—El) + (1-;\)(1-1‘::2),
50

Px = x=>E X = X.

Given E € E(H) and a unit vector x, let

ME,P) = sup {x € R:)P < E}.

Then ?\(E,Px) is called the strength of E along PX.

[Note: Obwiously,

0 = ?\(E,Px) =1,

but, in general, the function J\(——,Px):E(H) + [0,1] is not affine.]



3.2 LEMMA We have

?\(E,PX)PX < E.

PROCF d'mseasequencekn:anXSEaJﬁkn+k(E,Px) ~ then vy € H,

)tn<y,ny> < <y,By>

ME,P)<Y,P y> < <y,Ey>

N.B.
EAPX = )\(E,PX)PX.
For by construction,

<
MEP )P < P

ME'PX)PX < E.

1f nowFst (¥ € E(H)), then}.=‘=)\]§.PX ()\Fsl) andFsEforces)«FéME,PX).

3.3 LEIMMA 3 a unit vector % and a real muber A:AP_ < E and
X

A<x,P x> = <x,Ex>.
X

PROOF If <x,Ex> = 0, then we can take x = x and A-= 0. On the other hand,



if <x,BEx> 2 0, then we can take

- 2

| Ex] | <x,EBx>

3.4 ILEMA Iet E,F € E(H) =~ then E < F iff

MER) < A(F,P)

for all unit vectors x.

PROCF The direct implication is trivial:

)\(E,PX)PINI <SE =P

=> A(E,Px) < J\(F,Px}.
To discuss the converse, choose;?andiperE {cf. 3.3) == then

X < A(E,P) < A(F,P)
x

®

=> X_<F
X

A<x,P_x>
%

<, AP x>
X

14

<x,Fx>.

Therefore E < ¥, X being arbitrary.



3.5 THEOREM V E € E{(H),
E = vi{XMEPR)P_:|{x{| = 1}.

PROOF First, of course, v X

)\(E,,Px)}?x < E.

Next, if F € E(H) and )\(E,PX)I?X < P for all %, then )\(E,PX) < MF,PX) for all x,

which implieg that E < F (cf. 3.4).

3.6 REMARK According to 3.1, L(H} is the set of extreme points of E(H).
Here is ancther characterization: An effect E is an orthogonal projection iff

Y X, X(E,Px} e {0,1}.

3.7 RAPPEL If A € B(H) is selfadjoint, then
H=ZXer A ® Ran A,
In particular:
Ran A = H => A invertible.

1/2

3.8 THEOREM Iet E € E(H) and suppose that E is surjective == then v x,

= |1g-1/2 =2
MERY) = [|E T ]| 7.
PROOF To begin with, we claim that

=Y 2|1 < E.



1/2

Thus put £ =E ““x — then vy € H,

w EY % g5 = [1e] 12y p >

Il

el %<y, <x,yox>

1/2 1/2,,

-2
e[| “<y.<E

£, v>E
= 1el| "%y, Y 252 2%z y>
= 1g| | %<eY?y, £><g,EY %>

= |I£||'2<El/2y,P£,£El/2y> (cf. 1.10)

18

el ey 11 11EY %012

- 2
11E1172) 121 %<y, Ey>

I

1l

<y Ey>.
Therefore

eV %1%, < E,

as claimed. Matters are thus reduced to proving that

w < E=>0 s | BT %] 72

But vV v € H,

1/2

v| |2

J\]<x,y>|2 < ||E



or still,

1/2 2 1/2 2
A<e %,y < |12V )|

A

or still,

1/2 2
A|<E,E / v>| |]El/2y] 2.

1A

Nowtakey=E-l/2£:
Al<g,e>]? < e} ]?

=5

Mlell? < 11g]1°

< | 1g]172 = EY %

1/2

[Note: If E is surjective, then E is surjective, hence invertible.

1/2

Proof: V¥ y € H, El/zy = E(E 7 “y). Consequently,

1 _ 1 — 1 1

= = = ]
12V %¢ |2

<x,E_lx> tr (PXE"l) W, (E-l)

3.9 REMARK Fix E € E(H{) — then it can be shown that

EI)\>0:)LPXSE<=>xERanE]‘/2.

So, in general

—1/2x| !—2

~ e 1/2

if x € Ran E
AEP ) =
x

0 ifxﬁfRanEl/z.



3.10 EXAMPLE Suppose given 20 < Ao < 1. Assume: VY X, A(E,Px) = AO —

1/2

then E = A.I. To see this, cbserve that E must be surjective (cf. 3.9}, hence

0

v X,

3.1l ILEMMA Let X be a unit vector and E an effect — then

A (E,PX) < <¥x,Ex>

)\(E,Px) = <x,Ex> <=> Ex = A(E,Px)x.

Recall that by 3.1, L(H) is the set of extreme points of E(H}. In addition:

3.12 LEMMA Suppose that f is infinite dimensional -- then the weak closure
of L(H{) in B(H)} is E(H).



54, AUTOMORPHISMS

let U(H) denote the set of all antiunitary operators on H. Put

Rat # = U(H) v UH).

Then Aut H is a topological group in any of the three topologies figuring in

1.6 and U(H) is its identity component.
[Note: Recall that the product of two antiunitary operators is unitary

while the product of a unitary operator and an antiunitary operator is antiunitary.]
N.B. The quotient

I(H) = {zI:|z| = 1}\Aut H

is called the symmetry group of f.

4.1 LEMWA If U € U(H), then the map
A-mrt @e B

is a *-isomorphism, call it 6. On the other hand, if U € Uy, then the map

A > A T

is a »-antiiscmorphism, call it o_.
U

4.2 EXAMPLE Take A = C and let K be the camplex conjugation -- then

L(H) = {I,K}. Here B(#) = {‘I‘z:z € C}, where T W = zW, thus T; =T_and 'I'Z

is unitary iff |z| = 1.



(]
Q
=]

I
-3
H
~

Il
Nli
gﬂ
l"i

"

L

il

=

I.e.: 0, is the identity map on B(H) .
z

- -1

TKT KL =TTT =T.
W 2

I.e.: GT K is the identity map on B(H).
z

If z € Cand |z| =1, then

9y = % (U € UH))
o _=o_ (0eTH.
AD) U

E.g.: ¥ x € #,

o _Ax = (zU)A*(z0) -1,
20

= zﬁA*tTl_zx

1

= ZUA*z0 x

= 20za%T 1x

zEfIA*ﬁ—lx



= VA "x
= D_Ax.
U
Given
U Ui
_ U e U,
write
ol
€ Z(H)
G
for its equivalence class.
4.3 IEMA If
~u T U
e U or e Ul
v v
and if
O, =0, 0r 0_=0_,
v VT s §
then

[U] = V] or [U] = [V].

PROOF It will be enough to deal with the unitary case and for this it can

be assumed that # = C (cf. 4.2). If o,(a) = o,;(A) for all A € B(H), then in

particular UU(P} = csv(P) for all P € P(H), hence v unit vector x € #,



~1 _ -1
UPXU = Ve V
or still,
PUx = va'

which implies that Ux = z2(x)¥x (z(x) € C, |z(x)}| = 1), the claim being that z(x)

is a constant independent of x. Take two unit vectors Xy rXye

Case 1: <Ky Ky> # 0 — then

<Xl PXo> = <le ,Ux2>

i

<z (xl) VX 12 (X5 Vx>

It

z ixl) Z (x2) <vx1 ,Vx2>

= zixli z(x2}<xl,x2>

zixl)z(xz) =1 => z(xl} = z(xz) .

2
X, + X
(Xl,—-———]-——'z—)?‘O
”xl"'lel
=>
X, t X
20) = 2( —2—2—)  (cf. Case 1)
Hxl"'lel

le + uxz = U(:»{l + xz)



X, + x

= |xy + x5 | 1 2
|12 + %51
X, + X x, + %
=[], + x| |2( —2—2— )y —L 2
Hxl-!-lel ”xl"'lel

= z(xl)vxl + z(:u:l)vx2

1]

le + z(xl)Vx2

sz = z(xl)sz => z(xl) = _z(xz) .

N.B. The proof shows that o

g OF 9. is determined by its restriction to P(#).

(o]

4.4 LEMA If U € U(H) and T € U(H), then o = o_ provided dim # > 1.
U
PROCF To get a contradiction, suppose that Oy = 0_- Proceeding as in 4.3,
U
v unit vector x € H, 3 z(x) € C of absolute value 1 such that Ux = z(x)ﬁx. This

said, consider a pair X)Xy of orthogonal unit vectors ~- then

U(xl + xz) = Ux, + Ux

1 2

!

z (xl) E.le + z (xz)t_;lxz.

Meanwhile
xl + x2
Ulx; + Xy = ||x; + %,[|0(
' ||x]_+X2H
X, + % X, + X

—1 "2 g+ 2

17 %2
[Ty + 3,1 Haxg + %51



X, + X X, +
=z(.——l-———3——)w:1+z(——i——xz——)fm2.
L%, + %] [Ty + %] |
But Ux, and Ux, are linearly independent. Therefore
X, + X
z(x)=z(—-——l———2—)=z(x).
! [y + %1 2
1 2
Now repeat the computation using instead
xl+/qx2
|[xl+/'-Tx2|l
to conclude that
X, + V-1 x x, + /<1 x
2(x)) = 2( —> 2_), alxy) = - z( —* 2
Py + /=T %] [, + /=1 %,]|

fraom which the sought for contradiction.

[Note: It is to be emphasized that 4.4 is false if dim H = 1 (cf. 4.2).]

Write Aut B(H) for the group of Jordan iscmorphisms.

4.5 ILEMA Every ¢ € aut B(H) is an isometry: v A € B(H),

|[le@ |} = t|a]| (&€ B).

S0, in view of 1.12, every *~isomorphism and every *-antiisamorphism is an
isometry.

[Note: TFor this, 1.12 can be obviated: One need only quote standard



C*-algebra generalities.]

4.6 THEOREM Every *=-isamorphism ¢:B(H) = B(H) can be implemented by a
0 e U{H), i.e.,

2(A) = VALY (A € U(H)).

PROOF FixatmitvectorxEHanddetennjneaunitvectoryeH'byPy

o 2,). Bearing in mind that y is cyclic for B(H), let

UAY = 0(A)x (A € B(H)).

Then
Hayll = [1apyl| = ||z ]|
= Hoewr)) || = [feme@) || = |le@p, ||
= |le@rx|| = [[e@)x]|] = |[uay]].

Therefore U is welldefined and isametric. Since the range of U is B(H)x, it

follows that U is unitary. Finally, for all A,B € B(H),

vay tex = was™t (B)y
= s T B))x
= ®(A)Bx
=
wmrt = e a).

4,7 THEOREM Every *-antiisomorphism $:B(H) - B{H) can be implemented Ly a



Ue T, i.e.,
3(A) = BT (e BUH)).

PROOF Fix a conjugation K, thus X € [{H) and K2 = I. Define ¥:8(H) » B(H)

¥{a) = ¢(KA*K) (A € B()).

The map A » KA*K is a *-antiisamorphism, so ¥ is a *%-isomorphism. Using 4.6,
choose U € ({H}:

¥{a) = e (A € B().
Then
K(KA*K) *K = A
=
d(A)} = ¢ (K(KA¥K) *K)
= Y (KA*K)
= UKA* (UK) 2.
And
U=UK € TOH .

4.8 REMARK Neither U nor U is unique but rather is unique up to phase:

b — [U] € Z(H)

$ ~ [T] € Z(H).

4.9 SCHOLIUM The canonical arrow

Z{H) > At B(f)



is surjective and is bijective if dim H > 1.

Write Aut W(H) for the set of affine bijections ¢:W{{) - W(H) -- then

Aut W(H) is a group and there is a bijective arrow

Aut B(H} - But W(H)
of restriction (cf. 2.16).
[Note: v ¢ € Aut W(H),
Z(P(H)) = P(H).)

N.B. Fix W & W(H).

ey U e UH),
J\W(UAU-]') = tr WA
= tr(U‘lwum
=x _, (a.
vt
v U c U,

N @A*TY) = tr (WTArT )

tr (0 wia%)

i

n

TR
L

A (a) .
7L

Write Aut P(H) for the set of those bijections p:P(H) ~ P(H) with the



10.

property that
tr(p(P))p(P,)) = tr(P,P,)

v Pl'PZ € P(H).

fNote: But P(H) is a group.]

4.10 LEMMA Given ¢ € Aut W({ff), put p = ¢|P(f) — then p € But P(H).

PROOF Let ¢_ € Aut B{H) be the order iscmorphism corresponding to =~ then

o

either ¢. = o, (3 U € UH)) (cf. 4.6) or ¢, =0_ (3 U € UHY) (cf. 4.7), fram
U

which the assertion.

Consequently, there is an injective arrow

Aut W{H) > At P(H)

of restriction.

4.11 LEMMA Every p € Aut P(H) admits a unique extension to an element
r € Aut W(f).

PROOF Iet W € W(H), consider a decamposition of W,

W = z W-P- (Cf. 2012) I
ier, i

and define (W) by

cW) = X wio(Pi).

J.EIW
To check that z is welldefined, suppose that

W= L ijj
:IGJW



1l.

is another decomposition of W. Given a unit vector x € H, choose y:

D(Py} =2, (lyll = 1.

Il

EWi<er(Pi)X> - ZWj<XrO(Pj)x>

I

. .} - Iw, .
Zwltr (PyPl) W‘_‘j tr (PyPJ }

P. -~ Tw.P.
tr (PY(EWlPl ij) )

1

tr(PY(W - W))

=o.
Therefore
I w.p(P,) = L w.p(P.).
. 1 1 .
ier, jer, I

The verification that 7 is an affine bijection is straightforward.

The arrow

aut W(HY - ant P(H)

of restriction is thus bijective and v p € Aut P(H), 3 U € U(H) or 3 U € UH)
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such that
p = aylP(H) or p=o_|P(H).
U
To recapitulate:
Aut B(H) = Aut W(H) = Aut P(H).

[Note: When H = C, each of these three groups consists of {crI} alone,
whereas L(H) = {I,K} (cf. 4.2).)

Write Aut E(H) for the set of those bijections vy:E(H) » E(H) such that
v E,F € E(H),

E+ ¥ € E(H) <=> y(E) + v(F) € E(H)

E+FeE(H) = Y(E+F =v(E) +v(F).
Then Aut E(H) is a group and there is an injective arrow

Aut B(H) » Aut E(H)

of restriction which, as will be shown below, is actually bijective.

4,12 IEMMA Iet vy € But E(H) — then v E,F € E(H),
E < F <=> ¥(E) £ yv(F).
PROOF IfFE<PF, thenF= (F-E) +E, with F - E € E(H), hence

Y(F) = y(F - E) + y(E) => y(E} = v{(F).

And conversely... .

4.13 IEMRA 1et v € Aut E(H) -— then v(0) = 0 and y(I) = I.
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PROOF First
0=0+0=>v(0) =v(0+0) =v(0) + v{(0)
=> y(0) = 0.
Toy(D) s I
Y o<1

vy rm) sy <1

-
Il

4,14 1FMMA Iet y € But E(H) - then VE € E(H),

YEYH = y@®*.

PROOF In fact,

YE +EY = y@® + vEH

!
n

v(I)

li

YEYH =TI - yE) =y@*.

4.15 IEMMA Iet v € 2ant E(H) — then V E € E(H),
Y{rE) = xry(E) (0 <r <1).

PROCF Assuming that r = 0,1, startwithr=%(n€ij,n>l) and write

E+'"+EE {n terms).

YE = & B)



14,

or still,
1., 1
Y(H E) = n Y(E).
But this implies that
Y{XE) = ry(E)

for all rational r € 10,1[. To handle an irrational r, choose a sequence {rn}
of rational r € 10,10:

r -= <rn<r
Then for n>>0:
1
rnE < rE < (rn + H)E

1A

1
Y(rnE) s v (xE) wr((rnl + H’E’

1A

r Y@ Y < @+ Dy@E,

80 in the limit,

ry(E) < v(rE) < xry(E).

4.16 REMARK Vv E € E(H),

E= v AfE,P)YP {cf. 3.5),
PP (H)
thus v y € aut E(H),
'Y(E) = v Y()\(ErP)P)

PP (H)

n

v A (ErP) Y {P).
PEP(H)
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4.17 ILBMM2 let v € Aut E(H) — then v is an affine bijection.

PROF v r e [0,1] and v E,F € E(H},

Y(rE + (1 - r)F)

It

Y{rE} + v((1 - r)F}

il

ry(E) + (1 - r}y(F.

4.18 REMARK Aut E(H) is strictly contained in the set of affine bhijections
E(H) > E(H), the point here being that an affine bijection ¢ need not send 0 to
0 but instead ¢(0) = 0 or ¢{0)} = I.

We shall now extend a given vy € E{H) to an order isomorphism @Y:B(H) + B{H)
with the property that

<I>Y|E(H) = .

Step 1: E:cteIﬂYtoB(H)+bywriting

A

tal|

v, @) = ||Aaf]v(

)
if A 2 0 and set Y+(0) = 0. Note that
Y+(rA) = ry, (a) (r =z 0).

Furthermore, vy, is additive on B(H)+:

v, +B) = ||]a+B||y(—2XE_,
|{A + B[ |
= |]a+ Bl jy( —2—+ —2
{2 +B|] [}a+B[{
clpsny Al _a . _lisll s

|[a+ B} [[a[] |ia+B]] [|B]]



l6.

= la+ s =Ly By 4 jja gy LB (B

l1a+8[]  {[alf [la+B||  [[B]]

L -

a1 Bl

Y, (@A) + v, (B).

]
>
=

)

Step 2: Extend v, to B(H)g, by writing
— + -
YSALA) -Y+(A) -Y_l_(A).
Yen (B) =5~r (|a] + &) —iv (|al - n
SA 2 '+ 2 '+ *

Note that

Ygn (FB) = rYg, (A)  (r € R).

Furthermore, Yea is additive on B(H)SA:
+ -
YSA(A+ B) = Y+((A +B) ) -~ Y+((A+ B) )

=%Y+(|A+B| + A + B) —-]2;Y+([A+B| - A -B).

A+ Bl +A+B

= {a+B| + |a| + [B] - (|| - &) - (|B] - B)

|]a+B| +A+B+ (|a] -2) + (|B] ~B)
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= |a+B| + [a] + [B]

Y, (|]A+Bj +Aa+B+ (|]a] -a) + (|B] - B))

= v, (|]A+B| + A+B) + 2y, (&) + 2y, (B)

= v, (|a +B)) + v ([AD + v (B

Y, (|2 +B|] +A+B)

= v, ({a +B[) + v, (|aD + v (|B]

- 2y, (%) - 2y, (BD).
And likewise
Y. (|A +B| -~ A ~-B)
=y, (a+B|) + v (Ja]} + v (|B])
-2y, &Y - 2,69
Therefore

%—Y+(|A+B| + A + B)

%Y+(]A+B| - A - B)

I

@& = v @) + v, B -y, 6

= YSA(A) + ’YSA(B)-

Step 3: Extend Yoa t° B{H) by writing

@Y(A) = ySA(Re a) + /1 Ygp (Im B) .
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N.B. From the definitions,

o [EH) = .

We then claim that cI>Y € Aut B{H}. In any event, ¢Y is unital (y(I) = I

{cf. 4.13)) and positive (by construction}. Moreover, @Y is surjective (its

range containg E{H)). BAs for injectivity, suppose that <I>Y(A) = 0, hence

T Yga(Re B) =0

g
&z

|
o

To conclude that A = 0, it suffices to show that Re A= 0 and Im A = 0. Let usg

check this for Re A, the argument for Im A bheing analogous. Thus write
+ -
ReA=(ReA) - (Red).
- — + — -
Ygp(Re A) = 0 => Y. ((Re A} ) = v _((Re B} ).

If (Re A)T = 0 but (Re A)” = 0, then

0=y, ((Re B))

= | Re &)y —EB__,
|1 (re &) ||
=>
(_M:__) = = (ReA)_=0,
|} (re &) |

a contradiction. BAccordingly, we can assume that both (Re A)+ 0 and (Re &) = 0,
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S0
+ -
[ Re &)Y |y( BB __ ) = (e m)7}[y( BB __,
| re 27| H (Re &)
=3
(Re )"

I1®e M| + || (e 27|

_ |LRe 2)*]] (et
[Een || + || ||E ]
= || (re B&)7|] v( —ARe NS
|| Re &[] + [} (re &)7[] || (e )7}
- (Re A)~

|| e M7} + || (Re BT}

Re At = R A =R A=0.
Therefore the bottom line is that the arrow
Aut B(H) - Aaut E(H)

of restriction is bijective.

4.19 REMARK Consider a bijection y:E(H) > E(H) such that v E € E{H),

v(EH = yE@*
arnd v E,F € E(H}),

E < F <= v(E) < v({F.
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Suppose that dim H > 1 -=- then it can be shown that v € Aut E(H).
[Note: The assertion is false if H = C. Indeed, on [0,1] the functional
equation £(1 - x) = 1 - £(x) admits infinitely many strictly increasing solutions

that are not additive. E.g.: Given ¢ > 1, consider

fc(X) =

L+ (1 -x°

In terms of the inclusions

WY < E(H)
U U < B(H),
P(H} c L(H)

it remains to consider Aut [ ({H), which we shall take to be the set of those

bijections A:L(H) - L(H) such that ¥V P € L(#H},

A@EYH =A@t

and v Pl,Pz € L(H),

Pl < P2 <= A(Pl} < A(Pz) .

Then Ant L (H) is a group and there is an injective arrow

Aut E(H) -~ Aut L(H)
of restriction which is trivially bijective if dim H = 1 but matters are not
80 simple if dim H > 1, a condition that will be assumed henceforth.

N.B. If we identify the lattice L(H{} with the lattice of all closed linear

subspaces M of f, then Aut [ (H) is the set of those bijective maps A that preserve
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orthogonality and order:

A = At

Ml c M2 = ﬂ(Ml) < A(Mz).

4.20 LEMA ILet A € Aut L{H) — then A(0}) = 0 and A(I) = I.
PROOF v P € L(H},
0 <P => A(0) < A(P).
But A is bijective, thus A(0) = 0. 2nd then

MDD = Aoh) = A0t =0t = 1.

4.21 LEMM Let A € Aut L(H). Let P.,P, € L(H) and suppose that P, 1 P, =-

1 2

then A(Pl) 1 MPZ).

PROOF In fact,

AR)T 2 AlR,)

=> A(Pl) L A(Pz) .

N.B. v A c€aut L,

A(P(H)) = P(H).

Write Aut P(H) for the set of those bijections pw:P(H) + P(H) which preserve
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"transition probability zero", i.e.,

tr(ﬂW(Pl)ow(Pz)) =0 <=> tr(Ple) = 0.

Then Autw P(H#) is a group containing Aut P(H) as a subgroup.

4.22 EX2MPIE Take H = (_32 —- then in the notation of 2.10, the elements of

P{ff) are the matrices of the form

1
5 (12 + xorx + ycry + zcz) ‘

where x2 + yz + z2 = 1, so the bijections of P(H) correspond to the bijections

(x,v,2z) - x',y',2")
of §2, the unit sphere in 33. Using variables (1,4,8) (0 <o <mwm, 0 < O < 2m),

2

define £:5% » g% as follows:

£(1,6,0) = (1,4,0) (6= 3

and
T _ i
f(lfi’re) = (lr"z'rg(e))r
where
- 92
g(8)="? (08 <m
2
g(9) =-(—8-—T_?—E)—+ T (7 <0 < 2m.

—

The function pf:P(H) + P(H) induced by f preserves transition probability zero,

hence g € Autw P(H). still, £ ¢ aut P(H).
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[Note: In terms of cardinalities,

gaut P(CY) = ¢

c

2, _
#aut, P(CT) = 27.)

4.23 REMARK The two dimensional situation is the anomaly: If dim H > 2,
then it turns out that

aut P(H) = Autw P(H) (cf. 5.18).

4,24 LEMMA lLet o, € Aut, P{H}) —- then there is a unique A(pw) € Aut L(H)

such that A(pw) (P) = pw(P) for all P € P(H).

PROOF Suppose, initially, that M is a nonzero linear subspace of H (M not

necessarily closed). Let
Ap) (M) = {x € p (P }H:u € M, ||ull =1},

put A(pw) ({0}) = {0}, and cbserve that

T M= Al A]D) 09

_ -1
~ M-ﬂ(pw)ﬂ(ﬁ“) (™) .
Next,
T ueM, |yl =1

_ v e mt, [Iv]] =1
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tr(P P ) = ]<u,v>|2 = 0
tri{p (P }o (P )} =0

wou w v

Ao 09 1 Ap ) 01)

Mp) 017 < Ae,) (™.

And
M= (A ) Al ()t
> AEH (heey) ()
=>
Mp) () > Alp) ().
Therefore

Alp,) M) = Ao mt.

If now M is in addition closed, theani=M, SO

Me,) 0 = Afe,) ((eh)h)

Ap,) 01,

which implies that ﬂ(pw) (M) is closed as well.
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The arrcw

- Aut,, P{H) ~ Aut L(H)

by > Moy

respects camposition and is bijective. In fact, injectivity is obviocus while
A€ Bat L(H) => A[P(H) € Aut, P(H)

and this proves surjectivity.



§5. GLEASON'S THEOREM

The set L(H) of orthogonal projections is a camplete orthamodular lattice.

N.B. If {Pi:i € I} is a collection of orthogonal projections, then

AP, =qg.l.b. {P,:i€ I}
ier 1 1
v P, = £,u.b. {P,:i € I}.
ier t 1

[Note: A 1is the orthogonal projection with range
iex
N Ran Pi
iex

and Vv P, is the orthogonal projection with range the closure of the linear span of
ieT

U Ran Pi.]
i€r

5.1 LEMMA If {Pi:i € I} is a collection of mutually orthogonal projections,

then

A" P. = Z Pin
iel ieT

A charge on [(H) is a function y:f(H#) > [0,1] such that u(I) = 1 and
v PysPy € LiH):

Py L Py => ;J(P:L + P2) = u(Pl) + u(Pz).

[Note: It then follows that p{0) = 0.)



5.2 IEMMA Let py be a charge on L(H) =-— then p is monotone, i.e.,
P, <P, = p(Pl) < p(Pz).

PROOF In fact,

P2 = (P2 - Pl) +Pl

W, - By) = pu(p,) - u(P,)

u(Pl) < u(Pz) .

5.3 LEMMA Iet p be a charge on L(H). Assume: = PP, == then

PiPy = PyPy
u(Pl APy 11(Pl VB, = u(Pl) + u(Py) .
PROCEK Since Ple, Pl(I - Pz), and P2(I - Pl) are mutually orthogonal

projections, we have

]J(Ple) + U(P]_(I - Pz)) + u(Pz(I - Pl))

= u(Ple + Py - Ple + P, = PzPl)

2 = PPy

]_1(]?1 + P

i

u(Pl v Py).



But
- P; L Py(I - P,)
_ P2 L Pl(I - P2)
=>
T u(B) + u(Py(I - Py)) = u(Py + P, - PyP,)
= u(Pl v Pz) .
~ H{P,} + WPy (T = Py)) = u(Py +P, = P;P,)
Therefore
u(Pl v Pz)

u(Pl A Pz) + p(Pl(I - Pz)) + u(PZ(I - Pl))

il

U@y A Pz’ + WPy VP, = u(Pl) + u(Pz).

[Note: It is thus a corollary that

u(Pl v Pz’ < u(Pl) + U(PZ)

provided Ple = PzPl.]

5.4 IEMA Iet y be a charge on L(H). Suppose that {Pi:iEI} iz a



collection of mutually orthogonal projections — then

it = {i¢e I:u(Pi) > 0}

is at most countable.

Iet u be a charge on L(H) — then an element P € L(H) is said to be p-null

if y(P} = 0. E.g.: 0 is p-mull. If the set of y-null elements has a greatest

member Pu, then I --13']J is called the support of u, written spt .

5.5 LEMMA Suppose that spt u exists —-- then

u(P) = 0 <=> P L spt u.

5.6 EXAMPLE Fix a unit vector x € H and define pX:L(H) + [0,1] by

ux(P) tr(PXP) = <x,Px>.

'IhenuxisachargeonL(H}and

uX{P) 0 <=>P % Px'

Therefore the set of ux-null elements has a greatest member, viz. P]J =1 - Px,
X

henhce spt M = Px.

Let 1 be a charge on L(H) —~ then u is said to satisfy the J-P condition if

U (Pl) 0

=> u(PlvP = 0.

2}

1
<

u (Pz) =



[Note: "J-P" stands for Jauch-Piron.]

5.7 LEMMA Suppose that spt y

PROCF  For
]J(Pl) =
_ u(Pz)
On the other hand,
- P, <Py v P,
_ PysBy v

exists -- then y satisfies the J-P condition.

=> P]_,,P2 <P .

]
o

=> Pl v P2 < Pll => u(Pl v P2) < u(Pu) =0 (cf. 5.2}.

e A charge y on L(H) is said to be g-additive if for any sequence {Pn:n € N}

of mutually orthogonal projections,

ul v

Pn) = 7 u(Pn) .

neN neN

[Note: According to 5.1,

® A charge p on L(H) is said to be cawpletely additive if for any collection

{Pi:i € I} of mutually orthogonal projections,

p( vP) = T u@,).
jex V' qeg 1



{Note: According to 5.1,

v Pi z P..]
ieT ieT

5.8 THBEBOREM Suppose that y is c-additive —— then spt u exists iff p is
campletely additive and satisfies the J-P condition.
PROOF Assume first that spt p exists — then in view of 5.7, we have only

to show that 1 is conpletely additive. Introduce I+ as in 5.4 and put

+
P= vpP,,P = v P.,,P.= ¥ P..
jer * jert ¥ 0 jergt?
Then
P=p v Py P+PO =0,
and
+
u@)=u@}-+n@& {cf. 5.3).
But
i€T -1 =>p, <P
i H
= <
> P0 Pl.l
=> u(PO) = 0,

Since y is g-additiwve, it follows that

u(@® = w@ehH

z U(P°) = Z M(Po)-
iert Y e *
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I.e.: u is campletely additive. Turning to the converse, we distinguish two

cases.

Case 1: (P} > 0 v P = 0, In this situation, it is clear that spt u = I.

Case 2: I P& L{H):P = 0 and p(P) = 0. 2Zornify to get a maximal collection

{Pi:i € I} of mutually orthogonal projections such that v i, P, # 0 and u(Pi) = 0.

Set
P = VP.
B er

Then by complete additivity, u(Pu) = ( and the claim is that Pu is the greatest

p-null element in L{H). To see this, note that
p{P) = 0 => (P v Pu) = 0 (J-P condition)

= nP v Pu -Pl-l) = 0.

PvP =P P
(V’}.l u)lr

so by maximality,

Therefore

as claimed.

5.9 EXAMPLE Fix W € W(H) and put

(P = tr(Wp) (P € L(H).



Then Mg is a g=additive charge on L{H}. Let PW be the orthogonal projection

onto Ker W, so

UW(PW) = tI(WPW) = 0,

and Py is the greatest 1.1W-null element in [(H) (hence I - PW = gpt "'W) . For

suppose that uw(P) = (0, Take an orthonormal basis {ei:i € I} for Ran P and note

that
0 = 1 (P) = tr(Wp)
= I <e,,Wpe,>
jer + %
2
= I |IW el
i€T

RanPCRanPW=>PSPW.
Owing now to 5.8, Wy is campletely additive and satisfies the J-P condition.

[Note: The results embodied in 2.5 and 2.6 imply that, a priori, Uq is a

campletely additive charge on L(H).]

5.10 THEOREM Assume: dim H # 2. Suppose that u is o-additive —— then u is

conpletely additive iff 3 W e W(H):p = Wy

N.B. The point, of course, is the representation of a completely additive p as



a %.
[Note: The one dimensional case is trivial: L{H) = {0,1} and

u{0)

Il
=

=y = uI.

L
il

u(T)

In general, the range of Wy is {0,1} only when dim H = 1 (use a decamposition of
W {(cE. 2.12)}).]

5.11 REMARK Gleason's theorem is 5.10 in the case when H is separable of
dimension > 2 (o-additivity and complete additivity are one and the same in the

separable setting).

Iet S(H) = {x € H:}|x|] = 1} — then a function £:S(H) + R is a frame function

if f(ex) = f(X) Y CEC:

¢| = 1 and 3 a constant C(£f} (the weight of f) such that

v orthonormal basis {ei:i € I}, the series g f(ei) is absolutely convergent and
i€l

has sum C(f). E.g.: IfTE€ gl(h‘) and is selfadjoint, then the function

fplx) = <x,Tx>  (x € 8(H))

is a frame function.

5.12 LEMMA Suppose that dim H > 2 and let f:S(H} > §>O_be a nonnegative

frame function — then 3 a selfadjoint T € Ql(H) such that £ = fT
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This is the technical crux of the matter but the proof is a bit involwved
so we'll postpone it for now (see the Appendix at the end of the §).

Returning to 5.10, let u be a completely additive charge on [(H). Define
fu=§(ﬁ') > R.o by

fu (x} =1 (Px) .

Then for any orthonormal basis {ei:i € I}, the camplete additivity of u gives

5 £ (e.) L u@E. )
i Y i &

It

p{ v P_}
ier ®1i

I

u{I)

It
£

Therefore fu is a nonnegative frame function, hence by 5.12, I W € W(H):

To prove that u = 1, take a P € L(H) and choose an orthonormal basis {ei:iEI},

vhere I=J UK (JNK=g@) and
{ej:jEJ}anortluxomlal basis for Ran P

{ek:k € K} an orthonormal basis for (Ran P}J'.

Then using once again the camplete additivity of yj, we have

u®) = n( v e, )
367 3

=% u(P_ )
jer 5
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I
-3
Hh
[}
b

i}

s |
=l

(]
e

Il
b
7

l;-
g

uW(P} .

S50, modulo 5.12, the proof of 5.10 is complete.

5.13 EXAMPLE Gleason's theorem is false if # = C°. Thus fix a set R of

representatives for the antipodal equivalence relation on §2 and let

I
<

r(0) 1 (P €R

¢ H(P) =

i
[

n(I) 0 (PEZR).

Theni{W:u=uw.

Additional insight into the structure of 2ut L(H)} can be obtained by applying
the machinery developed above.

5.14 1FEMA Jet A € BAut L(H). Suppose that {Pi:i € I} is a collection of
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orthogonal projections ~ then

T A VD)= v A®P,)
ietrt  jer 1

AM AP = A A(P.).
jet1 ¥ jer *

5.15 EXAMPLE Fix W € W(H), A € Aut L(H), and put
g a(B) = EEGAR)) (P € LUN).

Then Wt A is a completely additive charge on L(H). In fact, A(I) = I (cf. 4.20),
hence

Vg A(I) = tr(WA{I}) = tr(W) = 1.
And if {Pi:i € I} is a collection of mutually orthogonal projections:

B o6 v P)
W, A il 1

il

tr(WA( v P.))
ieT

I

tr{W v A (Pi) }
icT

(v AP )}
UWieI 1

]

T AP ))
ieIuW *

= I iy (By)-
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5.16 LEMA Assume: dim fl > 2 — then v A € Aut L(H), there is a unique
z(A) € Aut W(H} such that
(A} (P) = A(P)
for all P € P(H).

PROOF 1In the notatiocn of 5.15, consider p -1
W, A

and determine W' & (H) per

v 4By =p (P).
W,A Wr

Definition:

L{A) (W) = W',
Then ¢{A) € but W(H). To confirm that

t{(AY(P) = A(P)
for all P € P(H), it suffices to show that

tr(z(A) (Pl)Pz) = tr(A(Pl)Pz)
for all P]-,,P2 € P(H) (cf. 7.4). But
(M) |P(H) € Aut P(H)  (cf. 4.10).

Therefore

triz(A) ()P,

tr (g (A) (B T () (2 (W) T (B)))

-1
tr(PlC (A} (Pz) )

I

tr (P r () @,))
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[}

tr (2 @,)P))

i

tr(Pzﬂ (Pl) )

= tr(A(P,)P,).

The arrow
Aut L(H} » Aut W(H)

A > g (A)

respects camposition. Moreover, it is injective. For suppose that

c(A)W) =W (We W),

z(A) (P)

P (P e PiH))

or still,
AP) =P (P € P(H)).
But this implies that A is the identity map. Thus fix PO E L{H) and write

P.= v P.,
0 jer?
1nu:l'xe.r\ePirangesovvertheele:n'ae.ntsc:f P{H) whicharesPo—-then

APL) = v A(P;) {(cf. 5.14)
0" jer 1

v P,
ier *
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Consider now the diagram

Aut L(H) - Aut W(H)
I l (@im H > 2).

Aut P(H) «— But P(H)

As it stands, the vertical arrows are isoworphisms and the horizontal arrows are

one-to-one but it will be shown below that they too are isomorphisms.

5.17 LEMMA Consider the diagram of groups

Assume: o,B,Y,S are injective and

Boa°6°y=idG3.

Then «,8,Y,8 are surjective.,

PROOF The hypotheses imply that the three remaining compositions are the

respective identity maps on G4, 1:Gy+  B.ga: Given gy € Gyr

YoBoac6(94)=g&

Beao S(y(Beace 6(94))) =R oq o G(g:l}
=>

Boao dlg) =8°a-c dlg)
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And this leads to the surjectivity. E.g.: Given g, € Gy»

Y (93) = 94

ifg3=B°a°6(g4).

Working with Aut P{H},
e € Aut P(H) => p € Aut P(H)
=> A(p) € Aut L(H)

=> £(A(p)) € Aut W({H).

But the arrow

Aut W(H) -~ Aut P({f)

is simply the arrow of restriction and v P € P(#},

c{Alp)} (®) = Alp) (P} (cf. 5.16)

p(P) (cf. 4.24).

Therefore 5.17 is applicable, hence all the arrows in the diagram

Aut L(H) —— Aut W(H)
T l (@im H > 2)

Aut,, P{H} —— 2aut P(H)

are isomorphisms.
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5.18 REMARK In particular:
dim H > 2 => Aut P(H) = Al.ltwr P(H) (cf. 4.23).
{Note: Suppose that dim # = 2 and consider the diagram
Aut W(H) + Aut P(H)} + Aut P(H) - aut L(H).

Then the first and third arrows are isamorphisms while the second arrow is

injective hut not surjective (cf. 4.22).]

N.B. Maintaining the assumption that dim H > 2, v A € aut L(H), 3 U € U(H)
or 1 U € U({H) such that

A= O‘UIL(H] or A =gc_|L(H).
U
In fact,
A|P(H) € But P(H)
and 3 U € U{H) or 3 U € U(H) such that

AP = oy PUH) or A[P(H) = o_|P(H).
8]

On the other hand, given any P € P(H), we can write

P= v P,
jer 1

where P, ranges over the elements of P(H) which are < P. Therefore

A@) = v AP (cf. 5.14)
jer
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v 0.(P,) =g.(vP,) =g (P)
jer ¥ * Uljer * v
v A(P,) =
ier *
v c_(Pi) =ag (v Pi) = ¢_(P).
_der @ U ier g
APPENDIX

ASSERTION G: Suppose that dim H > 2 and let £:5(H) ~ R.o be a nonnegative

frame function == then 3 a selfadjoint T € Ll({-f) such that f = fT (cf. 5.12).

I do not intend to give a camplete proof of this result. Nevertheless, it
is instructive to isclate the essentials behind the argument.

N.B. In what follows, we shall allow our Hilbert spaces to be either real
or complex.

[Note: 1In the real case, a frame function f is "even", i.e., f(x} = £(- x)
(x| = 1.1

Frame functions of the form fT, where T € I:l(H) is selfadjoint, are termed
admissible.

[Note: Recall that

£a(x) = <, Tx>  ([|x]] = 1.]

The technical key to the whole business is to first prove Assertion G in the

3 2

special case when H = R” and S(H) = 5", 2

In other words: If £:8" >R _, is even

0
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and 3 C(f) such that for any orthonormal basis .{el,ez,e3}, f(el) + f(ez) + f(e3)

= C{f), then f is admissible. Proof: Omitted... .
Granted this, the proof of Assertion G hinges on two preliminary steps.

[Note: Every frame function £ can be extended to all of H by the prescription

x| Pe—ES & =0
x

F(x) =

0 (x=0).}

IinsacmplexHilbertspace,thenaclosedsetSOCHisarealsubspace

if (i) a,b ER& U,V E Sy = au+bveS, and (ii) <,>|soxsocg.

0
Step 1: Suppose that {f is conplex of dimension 2 and let £:S(H) + R.o

be a nomnegative frame function. Assume: The restriction of £ to the unit sphere
of every real subspace of H is admissible — then £ is admissible.
[Iet M =sup £, thus 0 < M < C(f) and f actually takes on the value M. To see

this, choose anit vectors X

f(xn) +M
_ Xn - XO.
Set
K KA
v, - %nr¥0 x .
<xn,x0>[

Then |[yn|| =1, 1j_myn=xo, andthereallinearspanso(n) of x5 and v is
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a real subspace, hence 3 a symetric Tn:SO(n) - SO (n} such that

£(x) = <x,T x> (x € Sym),||x|] =1).
Write

|£(xg) = M| s |E(xy) - £ )] + [£ly) - M|.

o |£xg) - £(v,)|

|<x0,Tnx0> - <yn,Tnyn>|

= |<X0 - Yn'Tn(XO + Yn)>l

1A

Hxg = vull g + v} 11T

A

2llz 1] {1x, - ¥,

1A

2c(f) | [xo Ak

¢ [£(y) - M|

g0
] <xntxo>l

x) =M

|<x_,3x.>|
= n""0 -
=] —2 2 f(x) - M

| <X Xg” |

|f(xn) - M|.

£ (xo) = M.
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et Yo be any unit vector orthogonal to X and let Sy be the real linear span

of Xq andyo. Note that

P{x M

0)

F(yo} C(f) - f(xo) = C(f) - M.

Since the quadratic form corresponding to £ in 30 attains its supremm on the

unit sphere at X it follows that

Flax, + byy) = aM+ b2(C(5) - M)  (a,b € B).
If a,b € C, ab = 0, then
Fax, + by,) = F(—;—! (Jalx, + EI%L ¥y)
= F(lajx, + [bly})
where
Yo =3 TEI_YO

is a unit vector orthogonal to X Therefore

Flaxy + byy) = |a|2M + |b|2(c(f) - M.
The same relation is valid if either a or b vanishes. Consequently, F(x) = <x,Tx>,
T the diagonal matrix
- u 0 -
0 Cif) - M}

w.r.t. the orthonormal hasis {xo,yo}. But this means that £ is admissible.]
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Step 2: Suppose that H is complex of dimension >2 and let f:5(f) - R.o

be a nonnegative frame function. Assume: The restriction of £ to the unit sphere
of every two dimensional subspace of H is admissible — then £ is admissible.
[Written ocut, the assumption is that on each two dimensional subspace K < H,

3 a selfadjoint 'I‘K:K + K such that

£(x) = <x,Tx>  (x € K, {|x[] = 1).

If %X,y € H are linearly independent, then x,y span a two dimensional subspace K
and we put

T(X,y) = <x,TKy>.
If %,y € H are linearly dependent, say x = cy (¢ € C), take for K any two dimensional
subspace containing x, let

T(x,y) = <x,Ty>,
and note that

<:x,TKy> = <x,TKcy> = c<x,TKx> = cPF(x),

which is independent of the choice of K. Therefore

T:H xH~C

is welldefined. And by construction,

T{x,x) 2 0
T(x,y) = T(y,%)

T(x,cy}) = cT(x,y) {(ceQ.

We then claim that

T(X:Y]_) + T(Xryz) = T(xryl + YZ) .



In fact,

But
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Re T(x,v) = %‘— (Fix+v) -F{x-v)).

Re T(X!Yl) + Re T(XrY2)

=7 EG+y) ~Fx-y) +Flx+y) - Fix - ).
2F(x) + 2F(y) =F(x +y) + F(x - y)

Fix + yl) + P(x + y2) - Flx - yl) - F(x - yz)

BN

=—(F(x+yl+x+y2) +F(x+yl-x-y2)

-Fx -y, +x-9,) -Flx -y, -x+7Y,)))

N

(F(2x + y; +vy,) +Fly; - v,)

“F(zx"Yl"Yz) —F(-Y1+Y2))

N -

(F(2X+Yl +Y2) "F(ZX-Y]_ _YZ))

Re T{x,y;) + Re T(x,y,)

o =

33 Fx+y) +y) - F2x = y; = 7))

3 Re T(2t,y] + Y,)

l

= Re T(x,yl + yz) .
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Next

T(x, - -1y} =Re T(x, - /1 y) + /1 ImT(x, - /L y)
or still,

T(x, - /<1 y) == /=L T(x,y) = - /L (Re T(x,y} + y-1 Im T{x,v))

Im T(XIY) = Re T(Xr - /:—i. Y)

Im T(X;Yl) + Im T(erZ)

Re T(x, - f-Tyl) + Re T{(x, - /:Iyz)

Re T(X; - ‘/__1 (Yl + y?_))

Im T(x,yl + yz) .

This settles the claim. The final detail is the boundedness of T:

|T(x,y) | < |Re T(x,v}] + |Im T(x,y}|
= |Re T(x,¥}| + |Re T(x, - /~I ¥ |

(Flx+vy) +Fx-y) +Flx-/~1y) +Flx+ /1y))

=

]

<CE (x4 g2+ - yl12+ flx = FTyl12 + | ]x+ AT y]1D)

< C(f) (||x||2 + ||y||2)
=>

[Tx,y) | < ) ([[x[] =1, {ly[] = D).
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Thus there exists a unicue T = 0: V %,y € H,

T{x,y) = <x,Ty>.

But this means that £ is admissible.]
We are now in a position to prove Assertion G.
Let K < H be any two dimensional subSpaceandletsocK be a real subspace.

Take .‘:‘.0 two dimensional (matters are trivial if S0 is one dimensional) and f£ix
aunitvectorxolso. In the real linear subspacespannedbyxoandso, the

restriction of £ to "§2“ is admissible. Therefore the restriction of £ to the

unit sphere of S, is admissible. So Step 1 implies that £|8(K} is admissible

and then Step 2 implies that f itself is admissible.

RAPPEL A cardinal k is measurable if k is uncountable and 3 a positive

measure m = 0 on the power set of x such that m{({x}} = 0 v x € «.

LEMMA Suppose that dim H is uncountable -— then every c-additive charge u
is campletely additive iff dim H is not measurable.

PROCF Fix a c-additive charge j and assume that dim { is not measurable.
Fix a collection {Pi:i € I} of mutually orthogonal projections. For each i € I,
chooseanortlxmonnalbasisinRanPiandcampletetreiruniontoanortkmomal

basis {ek:keK}forH. Define a positive measure m 2 0 on the power set of K by

m{L c K} = u( VPe
Lelh TR

and set m{(#) = 0 — then m is finite, hence

) L= &)

D = {k € K:mm({k}) > 0}
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is at most countable. Because K and K-D have the same cardinality, the restriction

of m to the power set of K-D must vanish identically. Iet

K'={k€K:ai€IstekERanPi}

and
I'={i€e:RanP. N Ran vP_ = 0}).
1 kD Sk
Then we have
W vpep)=nu(v P_}
jer t kex' €k

= m{K")

m((K' N D)UEK' N (K-D))

m{K' n D} + m(X' N (K-D))

=m{K' N D)
) u(k\é{('nnpek)
= u(iéI'Pi)
" e MY
T e

Therefore 1 is canpletely additive. To treat the converse, fix an orthonormal

basis {ek:k € K} for H and suppose that m = 0 is a probability measure on 2K

which vanishes at every point of XK. Define p:t(H) + [0,1] by



2?.

2.
u®) =/ |[p, ||“am().
KI %k
Then
2
wI@ =7 |le | "amti)
K
= [ ldm(k} = 1.
K

Moreover, in view of the monotone convergence theorem, uy is c-additive, thus by

hypothesis is completely additive. Accordingly,

l=pu@ =u(vP_ )}

kek Sk

= T u@. )
ke Sk

=0,

a contradiction. So dim H is not measurable.

REMARK Under the preceding assumptions, every o-additive charge u on L{H)
extends to an element of Sn(B(H)) (= S(H)) (cf. 5.10), i.e., extends to a normal
state. If, however, u is merely a charge on L(H), then without any conditions of

a set-theoretic nature, it can be shown that p extends to an element of S(B(H)),

i.e., extends to a state.



§6. STATISTICAL MODELS

An effect algebra is a system (E,0,1,9), where 0,1 are distinct elements of

E and ® is a partial binary operation on E that satisfies the following conditions,

EO: Ya€c€E, a® 0 is defined and equals a.
E,: Ifa®bis defined, then b ® a is defined and a ® b =b & a.
Ez: Ifadband (a®b) @ c are defined, then b®d cand a ® (b & ¢) are

defined and a® (b@® c) = (adb) & c.

EB::

Y a € E, there is a unigque a' € E such that a ® a' is defined and

a®a'=1.

E4: If a ® 1 is defined, then a = 0.

—

The elements of E are called effects.

6.1 EXAMPIE Iet (Q,A) be a measurable space (meaning that Q is a nonempty
set and A is a o-algebra of subsets of Q). Given A,B € A, define A B=AUB

ifAnB=g — then (A,6,0,8) is an effect algebra.

6.2 LEMMA The condition E0 is redundant, i.e., is implied by El - E4.

PROOF Use E, toget 1':1 ® 1' =1 or still, 1'® 1 =1 (cf. El)' hence

3
1' = 0 {cf. E4). Now write
l1=1e1l"

=1®0

(a®a') ® 0 (cf. E3)



={(a'"'®a) &0 {cf. El)

a'e (a® 0) (cf, E)).
But

a'®@a"=1=>a"=a

6.3 EXAMPLE The unit interval [0,1] is an effect algebra under the partial

binary operation a @b =a + bvwhenever a+ b <1 (here a' =1 - a).

6.4 EXAMPIE Given a measurable space (R,A4), let E(Q,A) be the set of all
Borel measurable functions £:Q - [0,1] =— then E(R,A) can be viewed as an effect

algebra in the obwious way.

6.5 EXAMPIE If H is a cawplex Hilbert space, then E(H) is an effect algebra:

E®F=E+ Fprovided E+ F < I (here, E' = E!' = 1 - E),

6.6 IEMA Iet (E,0,1,8) be an effect algebra. Assume: a®b=a® c —
then b = ¢.
6.7 ILEMMA Iet (E,0,1,8) be an effect algebra. Assume: a & b = 0 -- then

Given an effect algebra (E,0,1,8), write

a<bif 3ceEa®dc=Dhb.



6.8 LEMMA The binary relation < is a partial orderingon Eand 0 ca <1
for all a € E.

[Note: The fact that < is reflexive, i.e., a 2 a, follows fran E,:a ® 0 = a.]

0

N.B. In 6.3, 6.4, 6.5, < is the usual partial ordering.

6.2 REMARK In general, (E,s<) is not a lattice.

6.10 ILEMA Iet (E,0,1,6) be an effect algebra — then a ® b is defined iff

6.11 ILEMMA Let (E,0,1,8) be an effect algebra -— then

An element a € E is sharp if a 4 a' exists and equals 0. Denote the set of

sharp elements in E by E; — then 0,1 € Eg and in 6.3, Eg = {0,1}, in 6.4, Eg =
{XA:A € A}, in 6.5, ES = L{H).

The operation ® can be extended to any finite set of elements by recursion:

Ayse-,8, are summable if a, & +-- a,

-] =xists and (a, ® -+- ® 2, _;) & a exists,

1 1

in which case we put
a®---®a = (a,®---Ba ,)ba.

A subset D < E is summable if every finite subset of D is sumable. We then define

the sum ® D as the supremum of all partial finite sums (assuming that the supremm



exists in E). An effect algebra is a c-effect algebra if every countable sumable

subset has a sum.

6.12 LEMMA 2An effect algebra (E,0,1,8) is a o-effect algebra iff for every

increasing sequence a; < a, < ..., the supremum v a, exists.

n

N.B. The effect algebras in 6.3, 6.4, and 6.5 are g-effect algebras.

Iet E,F be effect algebras — then a map ¢:E ~» F is additive if

a ® b defined => ¢{a) ® ¢(b) defined

d(a @ b) = ¢{(a) ® ¢(b).
If ¢:E + F is additive and if ¢{(1) = 1, then ¢ is a morphism. A worphism ¢ is an

isomorphism if ¢ is bijective and ¢_]‘ is a morphism.

6.13 LEMMA Suppose that ¢:E + F is a morphism — then ¢(0) = 0.

PROCF In fact,

1=¢(1) =4¢(1 6 0)

It

$(1) ® ¢(0)

1 & ¢(0)

$(0) & 1

$(0) =0 (cf. E4).



6.14 ILEMR Suppose that ¢:E > F is a morphism — then ¥V a € E, ¢{a') =
d{a)’.
PROOF 1In fact,

1=¢(1) = ¢(a®da')

= ¢(a) ® ¢{a")
=>

¢@@') = ¢@" (cf. Ey.
A morphism ¢:E > F between o-effect algebras is a c-morphism if for every
increasing sequence a; < a, < ..., we have

B (v an) = I‘; ¢(an)-

n

6.15 EXAMPLE Iet (R,A) be a measurable space, H a complex Hilbert space =-—

then a semispectral measure on (2,A) is a o-morphism A + E(H) (cf. §7).

A state on an effect algebra E is a morphism s:E » [0,1], thus s(0}) = 0,
s(1) =1, and s{a ® b) = s(a) + s(b). Write S(E} for the set of states on E —

then S(E) is a cawex set.

6.16 EXAMPLE Iet X be a nonempty set — then ([0,11%,0,1,8) is an effect
algebra, where 0(x) = 0, 1(x) =1, (£ g)x = £(xX) + g(x) (x € X). Dencting
by B(X) the Banach space of bounded real valued functions on X, a map

s:[O,l]X -+ [0,1] is a state iff 3 a (necessarily unique) positive linear functional



A:B(X) + Rwith A(1) = 1 such that A|[0,1]% = s. 1In particular: S$([0,11) is

a singleton, viz. the identity map on [0,1].

6.17 EXAMPLE ILet [0,11° = [0,1] x [0,1] — then [0,1]% is an effect algebra,

where (al,bl) & (a2,b2) is defined iff a; & a, and b, @ b2 are defined in [0,1],

1
in which case
(al,bl) @ (a ,bz) = (al o <':12..bl ] bz) .
Here
S(10,11%) = {s 10 s o s 1)
sa(a,b) =aa+ (1 -a)b.

A o-gtate on a o-effect algebra E is a o-morphism s:E » [0,1], hence

s(® an) =@ s(an) . Write SG(E) for the set of g—states on E — then SG(E) is
n n

a o=-conwvex set.

[Note: Obviocusly, SG(E) c S(E).]

6.18 EXAMPIE Let (2,A) be a measurable space and let MI(Q,A) be the convex

set of probability measures on (,A}. Given u € MI(Q,A) r POk

w(f) = J'Q fap (£ € E(Q,A)).
Then u € SG(E(Q,A)) (monotone convergence theorem). Moreover, every s € SG(E{Q,A))

is of this form.



6.19 REMARK The extreme points of MI(Q,A) are the probability measures

# such that v A € A, either u(@) = 0 or p(A) = 1 (observe that 0 < p{a) < 1

=>

u:u(j\)’ M + U—""}J(A})l Hi= N (2 - A)) ).

u (A} u(@ - A)

E.g.: The Dirac measures 6w(w € ) are extreme points of M'][_'(Q,A) (however
distinct » might give rise to the same cSm) . In general, there are others. Thus

take Q uncountable and let A be the set of all subsets of @ that are countable or

have a countable complement. Iet u(d) = 0 (A countable), u(A) = 1 (A uncomtable) ~-—
then y is an extreme point of M;(Q,A) but u # §_ (v ® € 0). On the other hand,

if Q@ is Polish (i.e., if & is a camplete separable metric space) and if A = Bor
(the o-zlgebra of Borel subsets of ), then the extreme points of My (2,A) are

the Dirac measures, so in this situation there is no pathology.

6.20 EXAMPIE Iet H be a separable complex Hilbert gpace —— then
SG('E(H)) = WH .

[Employing a step~by-step procedure, one can extend a given s € SU(E(H))
t0o an element )‘W € S{H). BAnd:

s(B) = (B) = tr(wB) (B € E@).]

Fix a Polish space M and let E be a o—effect algebra — then an observable



on E is a o-morphism X:Bor M -~ E. Spelled out,
X(@ =0, X(M) = 1
;. N Sj =g{izj) = X(Ili 8,) = g X(s).

We shall call X sharp if v 8 € Bor M, X(S) is sharp.

Notation: OM(E) is the set of observables on E.

6.21 EXAMPLE FixaEEandtakeM=g—thentheprescriptimXa:Bor R + E,

where

1 if {0,1} n s = {0,1}

a if {0,1} n s = {1}

X (8) =

a' if {0,1} n s = {0}

0 if {0,1} n s =4,

defines an ohbservable on E, the indicator of a.

6.22 REMARK Every u € M'{(M,Bor M) can be regarded as an cbservable on

E = [0,1].

Suppose given a convex set § whose elements are called states and a set ¢
whose elements are called gbservables.

My To each A € S and to each X € ¢, there is attached a probability



measuremx

I,\c:nBorM.

MZ: Vﬂl,ﬂ2€SaIﬁ0<w<1r

X

X X
_ =wm, + (1 -wn, vXeo.
Moty + (L =wh, ~ A A

1 2

M3: VxleOarxiVBorelfunctionCI):M+M,Elxzeo:vﬂes,

A pair (S,0) subject to M - M, is called a statistical model based on M.

6.23 THEOREM Let E be a v-effect algebra —— then the pair (SU(E), OM(E))
is a statistical model based on M.

PROOF Given s € SG(E) ; X € OM(E) , put

+
m§=s°X€Ml (M, Bor M).

[Note: V Borel function &:M + M, the composition X ° o7t is again an

observable on E.]
We shall now specialize to when E = E(Q,A).

6.24 LEMMA Suppose that
X:Bor M -~ E(Q,A)
is a sharp observable -- then

SNT=f@=>X(8)X(T) = 0.



10.

PROOF Let

- X(8) = Xa

(A,B € A).
X(T) = XB

xA+stl=>AnB=ﬁ

=> YpXg = 0-

If £:9) » M is Borel measurable and if

X.(8) = x _ (S € Bor M)
£ £ 1) '

Xf:Bor M -+ E(Q,A)

is a sharp observahle.

6.25 LEMMA Suppose that

X:Bor M » E(§,A)

is a sharp observable — then 3 a Borel measurable function £:Q + M such that

X=Xf.

PROOF To illustrate the ideas, consider the case when M = R and, for
convenience, work with the elements of A rather than their characteristic
functions — then

U X({x}) = ¢ (see below)
xR
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and since the unicn on the LHS is disjoint, we can define £:Q + R by stipulating

that f(w} is to be the x € R such that w € X({x}}). Therefore

£l(s) = x(s) (s € Bor R).

Write

R= U [k, k + 1.

= U X(kk+ 1[)}.
k= =

Fix w € @ and choose k:w € X(Ik,k + 1[}. Iet I = [k,k + 1]:
X1 = x(fk,k + 1{} U X({k + 1}

= w € X(I).

Put Il = T and define In = [an'%] recursively:

an+bn an-!-bn
w e X(In} =X([an' -'——2———]) U X([ — 5 bn])
=>wEX(In+l),
where
a +b a +b
_ n n n n
L+1= By =31 or l—5—, byl.

By the nested interval principle,

O

n I = {x} (3 x € R}.
n=1 O
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But

XXn )= n X(I)
n=1_:|:rl n=1 Ih

And this proves that

U X({x} = Q.
XER

['Note: The general case is analogous. In this connection, recall that a

metric space (X,d) is camplete iff for every descending sequence Cl o C2 > ... of

nonempty closed sets such that diam Cn + 0, the intersection n Cn is not empty.]
n

If ¢:E(M,Bor M) - E(R,A) is a c-morphism, then the restriction ¢|Bor M is
an observable. There is also a converse. For suppose that X:Bor M + E(Q,A) is
an cbhservable. Write X({w,8} = X(8) () — then

by o = X0, € M7 (M,Bor M)
and the prescription

XF(w) = J, Fmaw, m (F € E(4,Bor M)
extends X to a o-morphism

X:E(M,Bor M) -+ E(Q,A).
Indeed, ¥ S € Bor M,

ixs W) = fyy Xg @y  (m)
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= le,w(s)

= X(w,8)

= X(8) (w).

So, in sumary, there is a one-to-one correspondence between ohservables

X:Bor M + E(Q,A) and o-morphisms ¢:E(M,Bor M) =+ E{Q,A).

6.26 EXAMPLE Since

R
SG(E(Q,A)} = Ml(Q,A) (cf. 6.18),
it follows from 6.23 that the pair

-+
(M7 (2, A) , 0y (E(2,4)))

is a statistical model based on M:

m}; =pueX (X:Bor M~ E(Q,A)).

[Note: If
X:Bor M -~ E(Q,A)
_ Y:Bor M+ E(Q,A)

are observables and if

X Y +
W o=m Voue Ml(ﬂ,:‘\) ’

then X= ¥. Proof: vSeBorMand v wE Q,

X(8) (w) = 6 (X(8)) = & (¥(S)) = ¥(S) (w).]



14.'.

6.27 REMARK The arrow

' MI(Q,A) > M;(M,Bor M)

X

Y — m

H

is an affine map. In addition, it is weakly continuous and

m’g(:-:») = X(8) (w)
w

is a measurable function of w. Conversely, any affine map MI(Q,A) + MI(M,Bor M)

with these two properties is of this form for a unique observable X:Bor M - E({2,A).



§7. SEMISPECTRAL MEASURES

Iet (Q,A) be a measurable space, #f a camplex Hilbert space —- then a

semispectral measure on (Q,A) is a o-morphism A > E(H) (cf. 6.15}). In other

words, a semispectral measure on (§,A) is a function E:A > E(H) such that
AN Aj =f d =3 = E@ UA U ...) =E@;) +E@R,) + ...,

where the convergence in the summation on the right is in the strong operator

topology. A spectral measure on (,A) is a semispectral measure E such that

¥ A € A, E(4) is sharp, i.e., E(A) € L(H).

[Note: Suppose that E:A » E(H) is a function such that

E(#) = 0, E(Q) = I.

Then E is a semispectral measure iff v x € H, the map A +~ <x,E(A)xX> is countably
additive. So, for instance, given any u € MI(Q,A) . the prescription

E@) = p@I (AEA)

defines a semispectral measure.]
7.1 REMARK Write M(Q,A;H) for the set of semispectral measures on {Q,A) --
then M(R,A:H) is a convex set and every spectral measure is an extreme point but,

in general, there will be others (cf. 7.8).

7.2 LEMMA Let E:A + E(H) be a semispectral measure ~-~ then E is a spectral



measure iff v A,B € A,

EA n B} = E(A})E(B).

et E:A -~ E(H) be a semispectral measure -~ then v W € {/({), the conmposition

Mg © E € M (@A)

And the arrow

T W) - M @,A)

W-»AWOE

is an affine map.

7.3 THEOREM If O:W/(H) - M’l’m,A) is an affine map, then there is a unique
semispectral measure E:A -+ E(H) such that (W) = )LW ¢ E,

[The point is this: Every affine map f:W(H) - [0,1] can be represented by
a wique E € E(H), i.e., £W) =) (E) = tr(WE) (W € W(H)).]

7.4 RAPPEL Iet A € B(H). Suppose that tr{AW) = 0 V W € W(H) — then A = 0.

[Iet x € S(H) andtakeW=Px:
tr(APX) = <X'AX> = 0... .}

7.5 IR If

T E:A »> E(H)

_ F:A > EGH)



are semispectral measures and if

)«W,°E=J\W°FVWEW(H),

then E = F.

7.6 REMARK Suppose that H is separable — then SU(E(H)} T W(H) (cf. 6.20).
Now fix a Polish space M — then the observables X:Bor M » E(H) are precisely the

semispectral measures on (M,Bor M):
OM(E(H)) = M(M,Bor M;H).

And the pair
(W (H) ,M(M,Bor M;H})
is a statistical model based on M {(cf. 6.23).

[Note: Consider the case when M = R — then in this situation there is a
one-to~one correspondence bhetween the set of selfadjoint operators on H and the
set of spectral measures on (R,Bor R). Here, of course, it is a question of
potentially unbounded operators A:Dom &2 ~ H and we shall denote by EA the spectral

measure Bor R + L(H) attached to A (thus for f£:R + R Borel, the spectral measure

attached to £(3) is the assignment S - EM(£1(8))).]

If Q- {ml,wz,...} ig finite or countable and A is the set of all subsets of

2, l.e., A= 29, then a semispectral measure E:A » E(H) is campletely determined by
the E(mi) S E({wi}). So, ¥ subset A c @,

E(A}) = T E(wi).

wiEA



In particular:
z E(wi) = I.
wiEQ

N.B. Suppose given effects Ey (k=1,...,n):

n
z = 1.
k=1Ek

Take 2 = {1,...,n}, A= 29', and put

E(A) = T .
kEAEk
Then the arrow
E:2" + E(H)

is a semispectral measure.

[Note: One can identify MI(Q,A) with the simplex

n
(Ogreeeidgdihg 20, 3 Ay = 1k]
7.7 EXAMPLE Take H = C° and let
—1 o~ ~ 0
_1 _1
B2 r By =3
0 0 _ 0
-1 1" 1
=3 _1
B3 7 r BT
11 -1




Then El'EZ'ES'EAi are effects and

Therefore this data generates a semispectral measure.

7.8 EXAMPLE Take H = 92 and let P]_'P2'P3 be orthogonal projections onto
three vectors with anglesbetweantkm%ﬂ -~ then
2 2 2 =
P3Py r3Ph=1

The associated semispectral measure is an extreme point of

M@, 2%c® @@= ,2,3)

It it is not a spectral measure.

If E;A » E(H) is a semispectral measure, then Vv x,y € H, the arrow
A+ <x,E(A)y>
is a complex measure ]ix y o0 § whose total variation is at most ||x|| |ly]].

Given a bounded measurable function £:Q ~ C, put

Bf(x,Y) = J'g f(w)dux'y(w) .

Bf:HXH‘*g



is a sesquilinear form. Since

Bete | < [1€ll, Lxll vl

it follows that 3 a bounded linear operator T, € B(H) such that

f
Be (%,¥) = <X, Tey>

for all x,y € # and |[Tf|| < |{£]|,. In suggestive notation, one writes

Tf = fg f(w)dE{(w) .

Examples V¥V A € A, TX = E{(A).
B

7.9 LEMMA We have

Tf+g=Tf+Tg
ch_-CTf
T = T%,
7 £

7.10 RAPPEL If S is a subset of B(H), then its commutant $' is
{T ¢ B{H):TS = ST v S € 3}
and its bicommatant S* is (S*')'. EIC:
T Scg

St=8'"v = ...

I LU

[Note: S is commutative iff S ¢ S'. And



Sc8t=>38"c 8 =8"t= (SN,
Therefore S" is comwmitative.]
Put

S* = {g*:5 € S}

and call S selfadjoint if $ = S*. If § is selfadjoint, then S' and $" are
x=gubalgebras of B(f).
[Note: A »-subalgebra of B(H) is called a W*-algebra if it coincides with

its bicommitant.]

The set

{E} = {E(A):A € A}

is selfadjoint, hence {E}" and {E}" are s—subalgebras of B(H).

7.11 LEMMA V £,

T_€ {E}".

A semispectral measure E:A » E(H) is said to be coaamtative if v A,B € A,
E(A)E(B) = E(B)E(A}.

[Note: Every spectral measure is commutative (cf. 7.2).]

7.12 IEMMA Suppose that E is commtative —- then E" is comwtative, hence

v £.9,



7.13 IFMMA Suppose that E is commatative — then v £, Tf is normal:

TeTE = TETe.

[Note: Recall that T = T_.]
£

N.B. If E is a spectral measure, then Vv f,q,

So, in this situation, the arrow £ = T¢ is a norm decreasing *-homomorphism from

the commutative Banach algebra B(R) of bounded complex valued measurable functions

on { into an algebra of normal operators on H.

7.14 REMARK ILet A be selfadjoint (unbounded in general). Given X € R, put

B = EBP(]- »,A]) — then v x € #, F_(}) = <x,E%> is an increasing right continuous
A X A

function on R and

<, F*(1a,bl)x>

]-lx’x(]a:b] )

I

F () - F_(a),

thus T ig the Stieltjes measure induced by Fx {and F, is the cumlative distrib-

ution function of W X) . Here
Dom A= {x € H:fR }\2d<x,E§x> <o}

and v x € Dom A,



<K B> = j‘B xdq,E?x> _
2 2
a2 = s A% .

[Note: If x =y, then the function )\ - Q{,E?y‘:- is of bounded variation

(as can be seen by polarization) and My is the associated Stieltjes measure.]

Yy

7.15 RAPPEL Assume that H is separable and let {Ai:i € I} be a cammutative

set of bounded selfadjoint operators —~ then 3 A € B(H) cA and Borel functions

£;:R ~ R such that Vv i,

7.16 EXAMPIE Assume that H is separable and let E:Bor R > E(H) be a
commtative semispectral measure -— then 3 A € B(H)y, and Borel functions wg:R > R
such that V¥ S,

B(S) = Jp deEA.

We turn now to a method of constructing semispectral measures from spectral
measures.
Suppose given two measurable spaces (Ql,Al) and (QZ,A2) — then a probability
kernel is a map
K:Rl e Az - [0,1]

such that K(—-—,Az) is measurable for every A2 = AZ and K(ml,-—-) 'S MI(QZ,AZ) for
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every w; € Rl. E.g.: If f:ﬁl > is measurable, then

K(wl,Az) = XA2 (£ (wl))

is a probability kermel.

7.17 EXAMPIE Consider the setup of 7.16 —— then the integration can be
taken over the spectrum (A} of A. Moreover, one can always arrange matters in
such a way that

0 =< ws(k) <1 (8 € Bor R,A € 0(A))
and v A € o(A), 8 » wS(M is a probability measure on R. So if

Ql = g{A), Al = Bor a(a)
0, = R, A2=Bor]3,

then K(},8) = ws(l) is a probability kernel.

lLet Elel + [(H) be a spectral measure. Define EZ:A2 + B(H) by the rule

r

1

E, (Az)

or still,

By = T -

7.18 LEMMVMR E2 is a commtative semispectral measure.
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PROOF To check that E2(A2) € E(H), note that -

0 < <x,E, (Az)x>

o, Klopdgdn, . ()

58

IQ 1du (u)l)

1 K,X
= <x,‘1‘lx>

= <x,7 x>

&

_<x,El(Ql)x>

= <¥,%>,

7.19 EXAMPLE Iet A = [lmI fm=1,...,M, n=1,...,N) be an M-by-N matrix

whichisstocr;asticintimesensethat-lnszaruivn, zhnmzl. Put
m

2
]
il

3%

el

L= e NE (A
Qz'-_"{ll’"'l’M} (A2=2 )0

Fix a spectral measure n -+ E; (n) and define a probabhility kernel K by

}trmo

K(n,AZ) = I
MRy
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'Ihentl‘aemducedsenispectralmasurem+E2(m) is given by

E,{m} = :ﬁ AgpeEy (0 -

7.20 RAPPEL Take H = L°(R) and let

(Qf) () = A£(X),
where

Dam Q = {£2/, A2[£(0) |r<s).
Then Q is selfadjoint (but unbounded) and the associated spectral measure

E%:Bor R + L2 (R))

is the prescription

EX(S)f = XgE -

[Note: Q is the position operator. If UF:L2 (R} » L2 (R) is the unitary

operator provided by the Plancherel theorem, then P = U;,lQUF is the moentum

operator. Bxplicated,

(PE) (M) = = /=L £ (N,
where
Dom B = {£:/;, |£' (V) [“Ahcw],
the derivative being in the sense of distributions. So, v x € Lz(f_l) (=l =1,

0, B (9)) = tr@E (5)
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<;~t:.,E!P (S)x>

= <, U xgUp>
= <Upx, xgUpe>

2
/s |UFx(3\)| ar.)

il

Fix p 2 O0:p(d) = p{= A} and fp p(W)dX = 1,

7.21 EXAMPLE The assigmment

Q
S » fg (p*xs) {A)AE™(})

defines a semispectral measure Qp, called an approximate position operator, thus
2
¥ ¢,¢ € L7(R},

<¢;QD(SNJ> = fg (p¥xg) MeRTY (M) an.

Put

9 =9, =R, Aj = A, =Bor R
and define

Kp:g x Bor R + [0,1]
by

KQ(A,S) = (D*XS_) (A},
Then Kp is a probability kernel, so the formation of QD is simply an application

of the foregoing generalities.
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[Note: Q itself is formally recovered by taking p = ¢ (d*xs = xs) .1

N.B. Approximate momentum operators can be defined analogously.

7.22 EXAMPLE Fix a real valued unit vector £ € Lz(l;!) :

£ €Dom Q N ban P

and
<g,08> = 0
, & even.
<£rPE> =0
Given «,B € R, put
£V = B -0 (en.
Then
Coprag” T @
<EaB'PEaB> = B.
Given
we wielm),
write
1
W(O‘-rB) = '2'1? <€aB.W£aB>.
Then

J 2 W(a:B)dadB = 1.
R
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To check this, consider a decomposition of W:

W= .E WiPi {cf. 2.12)

1
ﬁ fRz <gaB'Pi€aB>d°ﬁ8

1

=57/ 2 <€ agr Xy rEog ¥y >dadB

1 2
i 2 | <Bggex;>|"doas

1 2
= [, | == <§_..x,>|“d0dB
R2 vam ap™i

I

Iy % MEM - o) |%dMds (PLancherel)
R® 0t

2 2
£ o M1 lE@ | e

1

1, 117 112112

= 1.
Therefore

IZW(a:B)deB= r w,=1.
R

i€T, i
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For each S EBorg_{z,thearrm

is an affine map W(LZ(R)) + [0,1], hence there exists a unique E(S) € E(L*(R))
such that
fg Wle, B)dodB = tr(E(S))  (cf. 7.2).
The definitions imply that
E:Bor 52 -+ E(L2(13))

is a semispectral measure and V S € Bor R,

T OEGS xR = Sy (8] % aEd ()

E(R * S)

12
Ig ([Exxg) (aE”

or still, in terms of the marginals,

it

T E(— xR} =Q
2 2
|£]

i

E(R ¥ —) P . .
- 12

—_——

[Note: E is not commatative.]

Fix a Polish space M, take H separable, and let E:Bor M + E(H) be a

commitative semispectral measure:

E(S)E(T) = E(T)E(S) v S,T € Bor M.
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Put
~ A= E(8)
_ B =E(T)
and let
o
: Bor R + L{H)
B
T A
be the spectral measures determined by .
B

N.B. Since AB = BA, for all U,V € Bor R,
PO = EWME D).

Abbreviate MI(M, Bor M) to MI(M) and let

+
M. (31)
c 241

A

be the g-algebra generated by the sets of the form

{u:u(sl) <clf .re fu(Sn) <cn}f

where the Si € Bor M and the c: ER, thus (M']‘_'(M),AM) is a measurable space. Given

S € Bor M, define

“S:M-'l-(m + R

TFS(].() = u(s).
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Then Mg is Borel measurable. Therefore

e € E'(MI(M),AM) (cf. 6.4)

7.23 LEMMA EIaspectralneasureX:AM+L(H) such that v U € Bor R,

EN0) = X(r ().

[Note: It can be shown that X is necessarily unique.]

7.24 THROREM (Holevo) We have

A=E(S) =7/ Te (WAX () «
MI(M) S

PROOF Let x € H:||%|| = 1 and define y_:L(H) + [0,1] as in 5.6:

Uy, (P) = <x,Px>.

Then
b © X € My (4T () A
And
<x, (f 0y (u)dX(].i))X>
M'{(M) S
= f e )dlu, ° X) (1w
My ) O %

]
—,
et
O
o

o
o«

[+]
=

w
——
=
g
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= I M e BN )

n

i) R Ad<:x,E?x>

= <X,Ax> = <¥,E(S)x>.

[Note: If

92=Mr 42=BOI:M,

then K(y,S) = TI'S(I.I) is a probability kernel.}

7.25 EXAMPLE TakeM=13and1etthedatabeasin?.l7,thus

E(S) = K(A,S)aE (A) (S € Bor R).

L5

Denote by  the function o(A) ~ Mj(R) that sends A to K(A,—) — then « is

measurable and

X=E o K“l:AR > L(H)

is a spectral measure such that

Fa mgOEG) = 5, agdE o T ()

M (R) M (B)
o ) (NAEP(N)

= fU(A) ('rrS

K(\,S)EE>())

Ts@)

= E(8).
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[Note: This capital "A" is not the same as the "A" figuring in the

statement of 7.24.]

Semispectral measures can show up unexpectedly. As a "for instance",

consider von Neumann's inequality: If T € B(H) is a contraction (meaning that

||T|] < 1) and if

n n
akzk, p(Ty = L aka,

p(z) = T
k=0 k=0

e |} £ sup [p(2)].
|z[=1

To prove this, ope can assume ocutright that ||T|} <1 (since 1lim T =T.

r+l1
Let A = {z:|2}] = 1} -- then the series

cz) =T+ 3 @k +
k=1

is uniformly convergent on A, so ¥ X,y € H,
f& zn<x,C(z)y>dz = <:x,Tny> n=0,1,...}.
Given S € Bor A, the integral
fS <x,C(z)y>dz

makes sense and

o
1A

fs <x,C(z}x>dz

1A

a+z £ (7|5 =2
k=1
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In addition, V x,y € H, the function

Bor A > C

§ »fg <x,C(z)y>dz

is countably additive, so 3 a semispectral measure E:Bor A » E(H) such that

<x,E(S)y> = fS <x,C(2z)y>dz.

and vnz0,

Iy Z'dE(z) = T

1§

 ar
o | = 1] £ &a"]]

n k
=||f, (E z )dE(z) | |
A k;oak

|1/, p(z)dE(2) ||

fA

-

lip2)|], =  sw |p(z)
tzf=1

7.26 EXAMPIE Suppose that U € {(H) and consider the trigonometric poly-

. h k _
nomial —E--nak on A then
n 0o . n
Lz e =1 1 el
= 1] T akU]”'H

k= -n
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§8. THE KOLMOGOROV CONSTRUCTION

Let 2 be a nonempty set — then a kernel on @ is a map K:Q x @ + C.

Definition: A kernel K on Q is positive definite if v n € N and for all

wlfo.-;wn E ﬂ

Cyre-+sC, €Cy

n
% c.c.K{w, ,u.) 2 0.
ig=1 I

8.1 EXAMPIE Take Q = H, a complex Hilbert space -- then XK(x,y) = <x,y> is
a positive definite kernel on fi.

Iet A = [aij] be an n-by-n matrix (ai. € C) — then A is said to be positive

J
definite if for every seguence CyrmeesCy of n camplex mumbers,

n

I c;c.a,. = 0.
i1+

[Note: A positive definite n-by-n matrix determines a positive definite

kernel on {1,...,n} (and vice-versa).]

8.2 REMARK If K is a positive definite kernel on Q, then the matrix

[K(wi,mj)] is pogitive definite, hence in particular



K" = Klw',u)-

8.3 IEMMA If A= [aij] and B = [bij] are positive definite, then so is

{aljblj] {the entrywise product of A and B).

PROOF let
%.. = ¢.c.b.
ij ivy7ii”

Then X = [xij] is positive definite:

n n

T Z.Z.X.. = E zzccb
i,j= 173713 i,9=1 S S I A i

n
= I (z c )(z Cc.)b..
1,51 373 i7i73i
n — —
= z z.c.)(z.c.)b. .
L (Z50;) (Z505)by 4
z 0.
Therefore tr{aX) = 0, i.e.,
n n
T 8,.X.. = T a..c.c.b.
i,9=1 ity g i,4= 3797171

= T c.c.a,.b.
1,51 179713713

v
o
.



Denote by K(Q) the set whose elements are the positive definite kernels on

 — then 8.3 implies that K{(Q) is closed under pointwise multiplication.

8.4 LEMMA If A = [aij] is positive definite, then so is [E(A)ij], where

aij
E(A) i3 =e .
Corollary: K € R(Q) => € € K(D).

8.5 THEOREM (The Kolmogorov Construction) Let K be a positive definite
he:melonfz—-—then3acarplexHilbertspaceHKandampA:Q+HKsuchthat
K{w,w"} = <A(w) A w'}>
and the set {A{w):w € 9} is total in Hy -
PROOF Consider the vector space g(ﬂ) of all camplex valued functions £:Q + C

such that f(w) = 0 except for at most a finite set of w. Put

<, f'>= I TWE' (w")K{w,w').
wew'

Then the pair (f_‘,(m < » >} is a complex, potentially non Hausdorff, pre-Hilbert
space. To get a genuine pre-Hilbert space, divide out by N = {f:<f,£> = 0} (which

thanks to the Schwarz inequality, is linear) and then take for HK the campletion
of g(m/N. As for A, simply observe that

Kw,w') = <Gw,5w,>.



[Note: If HI'( is another complex Hilbert space and if A':Q > Hf( is another
map satisfying the preceding conditions, then there is an isametric iscomorphism

A{w) Ve Q]

1l

T:H’K > Hf( such that TA(w)

8.6 EXAMPIE Take 2 = H, a complex Hilbert space, and let

Kix,y} = e<XrY> {x,y € H).

ThenKisapositivedefmitekermlonHaIﬁHK=BO(H), the bogonic Fock space
over .

[Note: Hexe A:ff > BO(H) is the map x + exp x:

<X,V
XY

= <exp x; exp y>.]

8.7 EXAMPIE Let Hl"“’Hn be camplex Hilbert spaces with respective inner

products < , >l,...,< r }n’ Put

n

K({x,y) =W< AT
et TRIKK

® = (xl,...,xn)

Y= (Wyreeen¥y)

—

Then K is a positive defmibakernelonﬂlx P Hnand

HK=Hl@ ..‘Qﬂl’l'

the Hilbert space tensor product of Hl,.. "Hn'



8.8 REMARK Write HILB for the category whose objects are the complex Hilbert

spaces and whose morphisms are the bounded linear operators -~ then the functor

2:HIIB X HILB - HILB

and the object C together with the canonical natural isomorphisms serve to equip
HIIB with the structure of a symmetric monoidal category. This data does not
directly reflect the presence of an inner product but it appears indirectly since

HILB is also a *-category, i.e., ¥V H']_,H2 € Ob HIIB, 3 a map
*:Mor(Hl,Hz) = B(Hl'HZ)

that sends a moxphism A:Hl - i‘-i'2 to its adjoint A*:H2 -+ H, subject to

1

I* = I, (AB)* = B*A*, A** = A,

For the applications, it will be necessary to extend the definition of kernel,
replacing the target C (= B(C))} by B(H) (H a complex Hilbert space), thus now
K:Q x Q> B(H).

Definition: A kernel K on @ is positive definite if v n € N and for all

ml,...,wn < Q

Kyreeor¥X, € H,
we have

n

E <x, Klw, ws)x.> 2 0.
S

N.B. The condition on K amounts to requiring that v n, the operator matrix



K(wl,wl) K(wl,mz) .es K(ml,wn)

K(mz,wl) K(wz,wz) oo K(mz,wn)

- - -
- - »

K(wn,wl) K(mn,wzj cee K(wn,wn)

defines an element of B( 3 H)+.

[Note: V¥ x € H, the matrix

<x,K{w,wx> <x,K{w,w')x>

< Klw!,w)x> <K' ,w")x>

is positive definite. Therefore

<¥,K{w,w')x> = <x,K{w',0)x>

=>

<Kflw,w")*x,x> = <K(w',0)x,x>

RKiw,w")* = R(w',w).]

8.9 EXAMPLE Let H,K be complex Hilbert spaces and suppose that A:Q -+ B{H,K)
is a map. Put
K{w,w') = Al{w)*A(w').
Then K is a positive definite kernel. In fact,
n n

T o<x, Rw, ,w.)x.> = L <, Alw, ) *A(w,)x.>
i, 0 + 043 ig=1 + 0 3



n
T <Alw.)x, Alw)x.>
i,9=1 e 33

1

1z 12
¥ Aw.) = 0.
Z )% ||

There is no difficulty in extending 8.5 to the present setting.

8.10 THEOREM Iet K be a positive definite kernel on @ — then 3 a complex

HilbertspaceHKandamapping p:QxH»HKlmearinthesecondvariable such that
<x,K{w,w')x'> = <plw,x) 0w ,x')>
and p(§,H) is total in HK.

()

PROOF Replace C by H (@ and write

<f £'>= T <f(w), K{e,o)f{w')>.
wew'

[Note: If.Hl‘(isanothercmplexHilbertspaceandifp':QXH-*HI'{is

another map satisfying the preceding conditions, then there is an isametric iso~
morphism T:HK > Hf( such that T o p = p'.]

N.B. Take H =C (= B(C)) and let A{w) = p(w,1) — then

Kiw,w") = <1,K(w,u')1>

<plw,D),plw',1)>

i

<Afw) JAlw")>.
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8.11 REMARK Given w € 9, let A(w) = p(w,—) — then A(w) € B(H,HK) and

Kw,w') = Alw)*Alw').

Let K(Q;H) stand for the set of positive definite kermels K:Q x O - B(H).

Given K, K' € K(Q;H), write K z K' if K - K' € K(Q2:H) -

8.12 EXAMPIE Given K € K(Q;H) and E € E(HK), put

KE(w,w') = Aw) *EA(w").
'IhenI%eK(g;H) andKaKE.

(e have

n n
T <X, K (W ) X.> = T <X, ,Alw:)*EA{w.)x.>
e CRTERIT T gy ST

n
T <Alw)x, ,BA{w.)x.>
i, =1 i1 32

n
= E </E A(wi)xi,/E_ A(wj)xj>
1,1

n IIZ
z Alw ) z 0.
2 /B Alad

Kiwen') - KE(w,w')

= A(W)*IA{w") - A(w)*EA(w")

= A(w)* (I ~ E)A(w')

=K _ E(m,w') .l



8.13 IEMMA Iet K,K' € R{;H) and define

T Aw) € B(H,HK)

(w e

At (w)

m

B(H,HK.)

as in 8.11 -— then K = K' iff 3 a contraction T:HK—>HK. such that

A (w)

TA(w} (weEQ).
[Note: The totality of p(R,H) implies that T is unique. And

K'{w,0*) = A (w))*A" (w")

(TA (w) ) *TA{w")

A{w) *T*TA ('),

where T*' € B(HK) is a positive contraction (cf. 8.12).]

There is another version of 8.10 which is based on the following observation.

8.14 IEMMA A map K: x > B(H) is a positive definite kernel iff for any
finitely supported collection {.I!\{JJ € B(H) :w € 1},

z . A;K(w,w‘)Aw, z 0.
w,n

I.e.: The IHS is in B(f),.
[Note: Finitely supported means, of course, that

#{w € Q:A = 0} < .]
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To make use of this, some additional structure will be required.

So let E be a right B{H)-module — then a B(H)-valued pre-inner product

on E is a function < , >:E X E » B{ff} such that v a,b,c € E, VA E B(H), v X € C:
(1) <a,b + ¢> = <a,b> + <a,c>;
(ii) <a,\b> = X<a,b>;
{1il) <a,ba> = <a,b>A;
(iv) <a,b>* = <b,a>;

(v) <a,a>» =z 0 (=> <a,a> € B(H)+).

If
<a,a> =0 =>a=0,

then < , > is called a B(fHl) =valued inner product.

[Note: < , > is "conjugate linear" in the first variable:
<ah,b> = A¥%<a,b>.]

A pre-Hilbert B(H)-module is a right B{H)-module E equipped with a B(H)-valued

pre—-imner product < , >.

8.15 IEMMA Suppose that E is a pre-Hilbert B(H)-module -- then Vv a,b € E,
<a,b>*<a,b> < ||<a,a>|]<b,b>.
PROOF Take ||<a,a>}| =1 and let A € B(H):

0 < <aA - b,ad - b>

A*<a,a>h - <b,a>A - A*<a,b> + <b,b»>

1A
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Now take A = <a,b> to get

0 = <a,b>*<a,b> - <b,a> <a,b> ~ <a,b>*<a,b> + <b,b>

or still,
<a,b>*<a,b> < <h,b>.
Put
Hall = |]<a,2|{¥? @em.
Then 8.15 implies that ||.!| is a seminom on E:
~ fla+ [l = [|al} + |ip]]
Ixat] < [af Jlaf].
Moreover, ||.|| is a norm if the pre-inner product is actually an inner product.
Let

Ny = {a € E:|]al| = 0.
ThenNEisasuhroduleofEandthepre—innerproductandsaninormdroptoan
inner product and norm on the quotient module E/NE

E is said to be a Hilbert B{H)-module if the seminorm is a norm and E is

camplete.
[Note: Identify C and B(C) — then the Hilbert C-modules are the complex
Hilbert spaces.]

8.16 IEMMA The campletion of E/NE is a Hilbert B{H)-module.

8.17 EXAMPLE View B(H)} itself as a right B(H)-module and put
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<A,B> = A*B (A,B € B(H)).

Then B(H) is a Hilbert B(H)-module.

8.18 THEOREM Iet K be a positive definite kernel on § —- then 3 a Hilbert

B(H) -module EK and a mapping A:Q »> Ex such that

Klw,w') = <Aw) ,Alw')>.

PROOF The set of all finitely supported collections {Aw € B(H):w € R} is

a right B(f)-module and the prescription

' = %« ' '
<{AUJ}'{ALU}> % AwK(wrw )Am

equips it with the structure of a pre-Hilbert B(H)-module (cf. 8.14), thus by
definition,

Ki{w,w') = <{6w§1:§ € Q},{ﬁw,c,I:;' € ql>.

The rest is clear: Mod out by the elements of seminorm zero and then complete
(cf. 8.16).

[Note: There is also an assertion of uniqueness.]

8.19 REMARK As has been seen earlier, C-valued positive definite kermels
can be miltiplied pointwise but while this operation makes sense for B(H)-valued
positive definite kernels, the pointwise product of two positive definite kernels
need not be positive definite. The escape from this difficulty is simple: Replace
pointwise multiplication by pointwise composition of mappings. So suppose that
H,H' are coaplex Hilbert spaces and let K:Q x  + B{B{H),B{(H")) be a map -~ then
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the following conditions are equivalent.

® For all
wlpo.o;wn & Q
and all
- Bjreeasd € B(H)
| Bjree B € BUY,
n
z AMK{w, ,w.) (A*A.)A' = 0.
i, =1 1 1] L] ]
® The map
B:(B(H) x Q) x (B{H)Y x Q) » B(H")
that sends

(AW, @A r0’})

K{w,w') (A*n")

is a positive definite kernel.

Under these circumstances, we shall again refer to K as a positive definite

kernel (8.18 is applicable via k, hence

Klw,w') (A*) = K(w',w0) (A)*).
If now H,H',H" are camplex Hilbert spaces and if
T K x Q- B(B(H),B(H"))

LR x @ B(BHY),BGHM)
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are positive definite kernels, then

L o K: x @ > B(B(H),B(H"))
is a positive definite kernel. Here

(L ¢ K) (w,0") = L{w,n") o Klw,w"}.

Iet E be a Hilbert module — then E is a Banach space. Write B(E) for
the set of bounded linear operators T:E -+ E and let B*(E) dencte the subset of
B(E) consisting of those T € B(E) for which there is a T* € B(E) such that
<T*a,b> = <a,Th> v a,b € E. In other words: B*(E} is the set of bounded linear

cperators on E possessing an adjoint w.r.t. the B(f)=valued inner product on E.

[Note: The adjoint T* of a T € B*(E) is unique, belongs to B*(E), and T**
Therefore B*(E) is a unital *—algebra with involution T > T*. More is true:
v T e B, [|T*|| = ||T|]|%. Since B*(E) is a closed subalgebra of B(E), it
follows that B*(E) is a unital C*-algebra.]

N.B. Every T € B*(E) is B(H)-linear: T(aA) = T(a)A. In general, however,
an arbitrary bounded B(H)-linear map E + E need not have an adjoint.

[Note: Another point is that as elements of B(ff},

<T(a),T(a)> < |IT| |2<a,a> (a € E).]

8.20 EXAMPIE Given a,b € E, define Ga b:E + E by
-_ r
Ga,b(c) = a<b,c> {c €E).

Then ea,b € B* (1), where

e;,b = G)b,al’
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[Note: An element P € B*(E) is a projection if P = P* = P2. E.g.: ea a

is a projection provided <a,a> = I.]

Iet A be a unital x-algebra with unit e. Suppose that $:4 > B(H) is a
linear map (it is not assumed that ¢ sends e to I) ~=- then ¢ gives rise to a

kernsl K(D:A x A+ B(H)Y, viz.

Ky (€)= 3(E%n) .

8.21 EXAMPIE Suppose that ¢:A +~ C is linear and positive, i.e., ®(E*) 2 0
v EA— then Kq) is positive definite:

n
L C,c.K (E.,E.)
i,5=1 1739T1 7]
n

T c.c.0(E%.)
i,=1 +J 1)

11
z £ )% E.
{1 ‘I’((clEl) cJE;J)

]

n n
(I c,E)*( L £
() egf* (T oy

2
o

let E be a Hilbert B{H}-module —— then a unital *-representation of A on E

i a unital *-homomorphism m:A > B*(E)., Given a € E, define @a:A -~ B(H) by

@a(g) = <a,m(E)a> (£ € A).
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8.22 IEMMA Put K, = K@ — then Ka:A x A -+ B(H) is positive definite.
a

PROOF Bearing in mind 8.14, suppose that {AE € B(H):£ € A} is finitely
supported:

L A*_(£,E8Y)A,,

g5 -2 2

= I A§<a,1T(E;*E;')>A€,

= I A§<a,1r(€)*w(5')a>}\£.

= F A§<1T(E)a,ﬁ(g')a>AE,
£,

= ¥ <(Tr(£)a)A ;(F(E')a)AE
£,&'

= I <m (&) (aAg) r“(g') (aAE|)>
€,E"

= <% m(n) (aAn) L m{n) (aAn)>
n n

—>-t 0.

8.23 PRAPPEL Let A be a unital *-algebra —— then an element £ € A is

mitary if £ exists and equals £*. One calls A a Ut-algebra if A is the

linear span of its unitary elements. E.g.: Every unital BRanach *-algebra is

a Uk=algebra (hence, in particular, every unital C*-algebra is a U*-algebra).
[Note: Recall that a Banach *—~algebra is a Banach algebra A equipped with

an isometric involution: ||&]] = ||g*]| (€ € A (l[e|] = 1).]
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N.B. For a class of examples of U*-algebras which are not unital Banach

(G)

*—-algebras, take any group G (discrete topology) and consider C under con-
volution ecquipped with the involution £ + f£*, f*(¢) = f(o’I) -- then the §_ are

unitary and their linear span is all of g(G) .

8.24 THEOREM Let A be a U*-algebra and suppose that &:A -~ B(H) is a linear

map. Assume: Kq) is positive definite -- then 3 a Hilbert B(H)-module E, a unital
*=representation m of A on E, ard an element a € E such that
o(g) = <a,m(f)a> (§ € A).

Moreover, the linear span of w(A)(aB(H)) is dense in E.
PROOF Consider the algebraic tensor product A & B(H), viewed as a right

B{H)-module in the obvious way. Define

< , >:A @ B{H) x A& B(H) > B(H)

n m
<Z g, 8A,, % n. QB>
S = T

= I Af0(En)B,.
i, + +1 3

Then A @ B(H) is a pre-Hilbert B(H)-module. On the other hand, A & B(H) is also
a left A-nodule and
N =Ny @ B(H)

is an A-submodule of A 8 B(H). To see this, let £ € A be unitary —— then
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n n
<g(i§l g 8 Ai),g(iil £, RA)>

n I
<% EE, A, I £E, RA>
=1t tym R

I

A% I *EEL)A,
R U

T AXG(LXE*LL )A.
igj v

_Z_ A;.‘-CP(IZ?E.)A.

i,3 13
n n
=<1 €i@Ai,_Z EiﬁAi>
i=1 i=l
=3
EN < N.

But A is spamned by its unitary elements, thus
AN = N.
Proceeding, set
E, = A 2 BN/
and given £ € A, write

no(g)(X+N) =X + N (Xe AR B(H).

Then m,(g*) = e (E}* and there is no difficulty in showing that Ty extends to a

unital x-representation 7 of A on the completion E of EO (wo(g) is an isometry

if £ is unitary). Finally, viewing
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a=e®I+N

as an element of E, we have

<a,m{fla>=<eQ I, 8 I>

|

I*o(e*f)I

I

¢ (ef)}

o (&)
and the linear span of

m{A) (@aB(H)) = {w(&) (ad) }

{taa+ N}

isEowhichisdenseinE.

8.25 REMARK Suppose that ¢(e) = I — then from the above, <a,a> = I.

Therefore Pa = E)a a € B*(E) is a projection (cf. 8.20) and the arrow

A > O4,a

ia a *=-isamorphism of B(H)} onto the closed *-subalgebra PaB* (E) P of B*(E).
Furthermore, v b € E,

P_T(E)P, (b)

Paﬁ (£) (a<a,b>)

P_(n(8) (a) <a,b>)

Pa(r(i)a) <a,b>

a<a,m{E)a><a,b>
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ad(&)<a,b>

= eatﬁ(?c;) ,a(b)‘

I.e.:

2(8) » 0 =P m(ER, (Z€A.

o(8).a
So, in summary: If Ky is positive definite and if ¢(e) = I, then 3 a C*-algebra

B containing B(H), a projection P € B such that B(H) = PBP, and a *-hamomorphism
m:A -+ B with ¢(§) = P(E})P v £ € A,

8.26 EXAMPLE (The GNS Construction) Iet A be a U*-algebra and suppose that

$:A + C is a positive linear functional (cf. 8.21) —- then we can write
®(Z) = <a,m(E}a> (§ € A) (cf. 8.24).

Here E is a Hilbert B(gj -module or still, E is a complex Hilbert space, and a is

f—=cyclic: w(A)a is dense in E.



§9. %-SEMIGROUPS

Let H,K be complex Hilbert spaces and let R € B(H,K) — then an element

B € B(K) is called an R—dilation of an element A € B(H{) if

A = R*BR.

One writes A = ARB and calls A an R—compression of B.

[Note: If R*R = I, then R is an isametry and H can be viewed as a closed
linear subspace of K. With this understanding, R* is the orthogonal projection

PHofKontoHandeEH,Ax=PHBx. To reinforce this convention, it is

custanarytowriteA=erBamitocallAapmjection of B and B a dilation of A.]

9.1 EXaMPIE If T € B(H} is the projection of U € U(K), then T is a con-

traction. Proof: Vv x € H,
[Tx|| = [{pux|| < [[ux]] = }|x]]
= ||T}| < 1.

Conversely, let T € B(H) be a contraction -~ then 3 K> H and U € U{K) such that

T = erU.

[Put K = H & H and let

T D'I'
U= EB(K)J'
-D T*



where
DT=(I'—'I‘I'*)1/2 (0 < I -TT* < I)
D.=(I-mnY2 (0<1-7Tr<T)
- < < I).

Identify H with the first factor of K -~ then
‘I‘x=PHUx (x — (x,0)),

PH the orthogeonal projection of K onto H, and the claim is that U € U(K). Fram

the definitions,

% -
T Dt T D
U*J =
- *
B DT T RN DT* T B
and
_ P _ . — _ _
DT T* DT*
Ug* =
- Dpx T* iRE Dy, T ~
or still,
_T*T+D2 ™D_ - D T*_
T* T T*
U*yU =
DT -TD D2 + TT*
T T* T




U+ =
or still,

U*u
and

uU*

But the off diagonal

In any event,

p an arbitrary polynomial.

DT - T

- * *
DL T* + T*D,

- D, + DT

entries vanish. To see this, one has only to show that

DT = TDpy (=> T*Dp = D, T*) .

2 2

DT = T,
==

ZnT_ 2n

Dp T = DL,

pOAT = To(DZ,),

Since



2,1/2

D = (D)
Dy = (D,%*)l/ 2

and since 3 a sequence of polynomials P, such that v A € B(H) ,

p (@) +aY? (som,
it indeed follows that
DT = TDyy-]

[Note: These considerations imply that every element of B(H} has a normal

dilation.]

9.2 EXAMPIE Every effect E € E(H} can be dilated to a projection.
[Take K = H ® H and work with

- E (E—E2)1/2 -

® - gy /2

A *-gemigroup is a semigroup ' with unit e equipped with an involution
*:T - T, thus
E¥* = g, (En}* = n*g*, e* = e.

E.g.: Every group G is a *—semigroup {(o* = c_l) .

[Note: Every unital *-algebra A is a *-semigroup (per multiplication).]
N.B. We have

e* = ge* = e**e* = (ee*)* = o** = e,



A representation of a x-semigroup I' on a complex Hilbert space H is a

homomorphism 7:T -~ B(H), 7 being termed a *-representation provided w(&*) =

TE)* vV EEeT.

9.3 REMARK Suppose that n:T - B(H) is a *-representatiocn of I' —= then
w{e) is an orthogonal projection and m is said to be unital if w(e) = I. In
general,

H=n{e}H ® (I — n(e))H.

Therefore m is the orthogonal direct sum of a unital *-representation and a null
*=-representation.
[Note: A representation of a group G is a unital *~representation iff it is

a unitary representation.]

9.4 EXAMPIE Let (Q1,A) be a measurable space — then A is a *-semigroup:

Al -A2=AlﬂA2, Q - A=21, A* = A,
So, if m:A -+ B(H) is a *-representation, then

It

™ (Az)

I

@) 2 (a)

I
i

m{A)* = w(A*) = 7(a).

Thus the 7(A} are orthogonal projections.

Iet T be a *-gemigroup. Suppose that ¢:T + B(H) is a function and m:T -+ B(K)

is a *~representation -- then we write ¢ = AR'!T ifveerT, o) = ARﬁ(g) and we

write ¢ = pr ifvger, o) = ern(E;).



[Note: Call 7 minimal if @(T)RH is total in K. A minimal v is necessarily

unital.]

2.5 IEMA Suppose that 9:T » B{H) is a function. ILet

- :T > B(K

T 1)

'n2:I' - B(KZ)

be *-representations of I' for which 3 R, € B(H,Kl) &R, € B(H,Kz):
AP-lﬂl =¢ = AR21T2.
Assumes T, and T, are minimal ~- then there is an iscmetric iscmorphism T:Kl > 1'(2
such that TR, = R, and Tm = m,T.
PROCF Extend the arrow
T EpRxy > D8Ry
in the olwiocus way.

[Note: We have

<y (E) R %,y () R x>

I

<R¥my (&) *ﬂl (€) R x,x>

<R{1Tl (E.A*) Trl (g) RleX>

<R':T_TT1 (EXE) Rlx,x>

<R3, (EXEV R, x>



= <Tr2(£)R2x,ﬂ2(E)R.ZX>.]

9.6 LEMMA Suppose that ¢:T + B(H) is a function. Let

7. :T + B{K

1 1

'n2:1“ - B(Kz}
be »-representations of I' for which
prym, = $ = er'sz.

Assune:

Trl(I‘)h’ is total in Kl

1T2(I')H is total in Kz.

'I'henthereisaniscrretriciscm::rphismT:Kl+K23uchthat'I‘x=xVerand

T T.

1~ ™
(This is a special case of 9.5. Bear in mind that
R1:H+Kl
B R2:H + KZ
are isometric embeddings and ¥V x € H

n =
Rlx X

xll.]

R

Let T be a *—semigroup =-- then F(I',H) will stand for the camplex linear



space consisting of all functions f:T + H such that £(£) = 0 except for at most
a finite rnumber of £.

N.B, There isamap I' x H >~ F(T',H), viz. (E,x) + fﬁ <’ where

xifn=¢§

0if n = E.

Suppose that ¢:T + B(f) is a function —— then ¢ gives rise to a kernel

K.:T x T > B(H):

o
Ky (E,m) = 2(E*).

and the condition that Kq) be positive definite is that v £ € F(T,H),

L <£(5),e(E*n)f(n)> 2 0.
£

9.7 LEMMA If K, is positive definite, thenv £,n € T,

¢

S(EM* = d(n*E).

9.8 EXAMPIE Take I' = 2 — then a function ¢:2 -+ B(f) is simply a collection

{Tn:n € 2}, where V¥ n, 'I‘n € B{H), =0 K@ is positive definite iff for every finite

sequence
K_reesrX_rXgeXpreeeeX € H,
we have
n
b <x ,T, . X,> 2 0.
K, 0= - 2 4

IrrposenmtheconditionTo=IarﬂVn, ‘I‘_n=Tg-—thentheassm|ptimthatK¢



is positive definite forces the Tn to be contractions, This can be seen as follows.

Fix Xy € H, ng € Z, and define fo € F(T',H) by

fO(O) = Xy fO(no) = - T—n X

0O

letting fo(n} = 0 otherwise:

I <f (n}, 7 f.(m>z= 0.
n,m 0 m=-11 0

I.e.:

<x'o,§1 Tmfo(m)> + <f0(n0) P Tm—nofo (m) >

m

= <x0,x0> + <x0,Tn0(— T”n0x0)>

+ < =T XO,T_nx>+<—-T XO,I(-T_nx

- . )>
Ny 0?0 Ny 0

0

- - %
<x0,x0> <Tn0x0,T_nox0>

= <x0,x0> - <T_n0x0,T_n0x0> > 0.

Therefore the '1'n are contractions, as claimed. On the other hard, let us start
with a contraction T and put

" =1 (m=0,1,...)

n
T = (™) (n=1,2,..0.,
Then TO =T and V¥V n, 'I'__rl = T;. In addition, K<I> is positive definite. Thus let
T(r,0) = ¢ rmleT ‘“E’Tm (0<r<1,0<6x2m.

-— 00



100

/=1 0

Since ||T || < 1, the series is convergent in norm. Set z = re - then

T(r,0) =

J‘—I+Ezm1m)+(%1+

( Z0rx) ™
2 1

[l e 4

= Re(I + 2.3 20
1

= Re(I + 2z (I - z1) *

<x,T(r,0)x>

= lzl1® - 123 |yi* 20 =@ -2zt

Fix a finite sequence

X_reeerX 10XqiX reee Xy EH

and in the above, take

N
k= -n
Then
n
X e'/::Ij (k-£)8<xk,'1‘(r,9)x£> 20
k;/E: -1
or still,
n oo
T T e/_—l (k~L+m) er|m|<>g1{,T xp> 2 0
k'£= -1 - m
or still,
oo n
T e']_—l bm z rlmz-k|<xk,'1‘m+£_kx£> >0
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k'£= -1

= lim ) r
r+l k,f=-—n

9.9 IFMA If ¢ = AR'IT for some *-representation m, then ch is positive
definite.

PROOF In fact, v £ € F(I,H),

T <E@E),P(E*NE(R)>
£:N

= I <£(&),R*1{£*n)RE(n)>
E:N

= ¥ <m(E)RE(E),m(n}RE(N)>
E:M

= ||z mrRe@ }|? = o.
1
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Suppose that @:T -+ B(H) is a function — then ¢ is said to satisfy the

boundedness condition if 3 a map B=P+B>0 suachthat vueTand v f € F(T,H),

L <EE),o(E*p*um)£(n)>
£

< B(u) B <E(E) ,(E*n)E(m)>.
(PR

9.10 IEMA If ¢ = ARTI' for some *-representation 7, then ¢ satisfies the

boundedness condition.

PROOF In fact, vueceTadyv f € F(T,H),

L <E(E), (X un)£(n)>
£en

= T <£(5),R*M{EFP*un)RE(n) >
g/

= gz <m (W T{EYRE(E) ,w(u)w(N)RE(n) >
M

[T E TWREMW) | |2
WV

A

e 1) Ez <E(E}, @ (E*n) £(n)>.
il

9.11 THEOREM (Sz.-Nagy} Suppose that 6:T - B(H) is a function. Assume:
Kq) is positive definite and ¢ satisfies the boundedness condition ~- then 3 a

complex Hilbert space K, a minimal #*-representation m of T on K, and a linear map
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F(I',/H) ~ K

£f - f
ontoadenselinearsubspaceofKsuchthat@=AR1randvf,geF(I‘,H) &vuerT,
<Emg> = I <E(E),(EMmgin)>.

Em

9.12 EXAMPIE If G is a group, then the boundedness condition is autamatic
and specialization of 9.11 leads to the following classical assertion. Given a

positive definite function ¥:G » C with x(e) = 1, put KX(O,T} = x(o_l'r) {(c, T €GQ -
then the kernel KX is positive definite, hence 31 a camplex Hilbert space HX' a
homomorphi sm UX:G - U(HX), and a cyclic unit vector XX € HX such that v 0 € G:

¥ (o) ~ X(O’)XX

9.13 EXAMPLE Iet T € B(H) be a contraction -- then 3 K> H and U € U({K)
such that T" = pr 0" or still, T' = P,(U"{H} (n = 0,1,...), Py:K > H the orthogonal
projection (cf. 9.1 and 9.8). Furthermore, {U'H:n € 2} is total in K.

[Note: Let

EY:Bor[0,21] + L(K)

be the spectral measure attached to U:

uv=/7

gT[ e/—_l edEU(e)

P = fg'rr e/:f anEU(B) .
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'I'henE=PHoEU|Hisasemispectralneasurearxi

T = fgﬂ e’/'T nedE(e);

a conclusion that should be campared with that arrived at during the course of

deriving von Neumamn's inequality in §7.]

While the proof of 9.11 is "canonical", it is on the lengthy side so we shall
break the argument up into a series of steps.

Step 1: Given £ € F(T,H), define a function £:T -+ H by

£(2) = £ S(E*M)E().
n
F(T,H) = {£:f € F(T,H)}

is a complex linear space. Put

EaSreY

<f,g>

i

ey o

<E(E) ,g(E)>

and consider the RHS:

v

<E d(g*n)E(n) ,g(g)>

T <€() ,g(E) >
& n

£ <€£(n) ,0(E*n) *g (&) >
n

e 1

¥ <f(n),oin*g)g(E)> {(cf. 2.7)
n

Lah Mng]

= % <f{n),z o(n*E)glE)>
n £

<E(n) 19 (n) >

i
1
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+h>
il
>

<f,g>=1I <§(£),g(£)>
g

=T <§l(£),g(£)>
£

T <f1(n),§(n)>
n

ﬁ <f1(n),§1(n)>

2 <189, 0)>

= <fl,gl>o
Therefore
<, >:F(T,H) x F(T,H) - C
iw welldefined.

Step 2: Since Ky is positive definite,

LA T el

<£,f> = 1 <£(8),£()>
g

=L L <E(n),2(n*g)}£(E)>
En
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= § <f(5),d(EMEM)>
gm

= 0.
And this implies that
A 2 o~ A
|<£,9>|° < <f,£> <g,g>.
Step 3: We claim that
<f£,f>=0= £ = 0.
For then <f,g> =0V g, i.e.,

E£@LM@>=OV@

In this relation, take g = In g
r

0= I <E(8),q. (E)>
£ N.Y

= <f(n),y>
=> E =0,

n and y being arbitrary. Therefore < , > is an inner product and F(T,H) is a

pre-~Hilbert space.

Step 4: Given f and u € T, write

£ (*E)

il

Fp(E)

Z¥E*Em) (B eT).
n

2}

Iet Yj = _f(nj) (j =1,...,m be the nonzero values of £, thus
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m
F = 3% O{E*Yun.)v..
11(E) i (g unJ)yJ
Define Fu as follows:
Fu(\)) = T yj if un, = v (3 2)
HNL=V
J
and
Fu(v) = 0 if unj v (3=1,...,m.
Then
P € F(T,
" € F(T,H)
and v £ €T,
n -~
B = * F '
H(E) kil (& \Jk) u(\)k)

where {v ,...,\)n} = {unl,...,unm} and Vi # Vp for k = £. Consequently,

Fu € F(T,H).

Step 5: Define m<p> by the rule

(r<u>E) (E) = £ (W*E).

m<p> i F(T,H) + F(T,H)

is linear ard

M<UY> = MUV,

In addition,

~ A

<m<u>f,£>

=
g

=X
g

<F(u*E) ,£(E)>

L <@ (E*un}£(n) £(£)>
n
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Z <f{n} @ (g*un) *£(£) >
n

Jre T

H

e )

T <E{n) ,o(n*p*g}£(E) >
n

1l
t

<f(n) ,Z e((un) *E)£(g) >
n £

<E(m),£Gm)>

"
™

~ -~
= <f,mep*>E>,

So, by polarization,

A A

<m<p>E, g = <€, mepkeg>,

In particular:

<m<y>E, wep>£>

o~ -~
<E,maypFon<y>t>

<£,mep*t>.
Step 6: We have

<E, m<p*ust£>

X <f(n),§((u*u)*n)>
n

L <f{n},£{u*pn)>
n

= % <E{E},e(EXu*un) £(n)>,
£

which, by the boundedness condition, is
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iA

Blu} & <£(&) () Ef(m)>
g/

B(1) <E,£>.

h

Therefore
<1T<]J>§ITT<U>E> < B(p)<§,§>.
Step 7: let K be the completion of F(T',H) per the imner product < , > ~
then <> admits a unique extension to an element w{()) € B(K) and
m:T -+ B(K)
is a *-representation of I'. Moreover, by construction the arrow

F(T,H) - K

Ea

f-+f

has the stated properties.

Step 8: Define R:H »~ K by

Then R € B(H,K):
2 _ ~ ~
Hee] [ = <fe,px'fe,,x>
= <x,P(e*e)x>
= <x,ble)x>.
And
<X, R*m (1) Rx>

= <Rx, (1) Rx>
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~

= < >
fe,x’“(“) fe,x

é 2 <fe’x(n),®(n*u£)fe'x(€)>

= <, d (x>

®=AR17.

Step 9: ILet £ € F(I',H) — then

It
™~

£(5) (E%n) £(n)

]
1

L o((n*g)*w)f (u)
nu e, f(n)

]
3™

Il
=™

(M, () B

]
&1

(m(n)RE(n)} (E) .
n

Step 10: 7 is minimal, i.e., W(F)RH is total in K. This is because each

f e F(T,H) is a finite linear coambination of elements of 7({IRH and F(T,H) is
dense in K.

The proof of 9.11 is now complete.

9.14 REMARK Suppose that ¢(e) = I — then ¢ = prm. Proof: 7 minimal =>
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T unital

R*R = R*m{e)R = ®(e) = I.
[Note: Here is a corollary: v £ €T,
(E)*0(8) < ¢(E*E).
Indeed, V x € H,

le(£)x| |2

It

<x,$(8) *¢ (&) x>

x| |2

A

<x,T(E*E) x>

<X, P (E*E) x>,

£ = £% = 0(6) < 9(E9).]

In certain situations, the assumption that Kq) is positive definite forces
the boundedness condition.

9.15 EXAMPLE Suppose that A is a unital Banach *-algebra thought of as a
*—semigroup w.r.t. maultiplication. Let ¢:A > B(H) be a linear map and assume

that KQ is positive definite. Given f € F(A,H), define wf:A + C by

weln) = I <£{E) , e (Exm) £(n) >
En

Then we is a positive linear functional:
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we (W) = I <€(E),e(E*p*un) £(n)>
£/

<f, m<p*p>f>

<<, >

W73
Lo
.

So, by standard generalities,

lwog@u) | < wf(e)(r(u*u))l/Z,

r(.) the spectral radius. That the boundedness condition is satisfied is thus
manifest.

9.16 IEMMA Fix a *-semigroup I and let 0:T - B(H) be a function. Assurme:

Ky, is positive definite -- then the following are equivalent.

1. 3 amap R:T -+ §>0 such that vu e land v £ € F(T,H),

L <E(E),¢(E*u*un}f(n)>
£m

< B(U)gz <f£(8),0(E*)E(n)>.
N

2. 3 a map B:I' » 5}0 sach that v u € I"' and vV x € H,

<X, b (E*u*pE) x> < B(u) <x,d(E*E)x>.

3. 3 a positive constant K and a submultiplicative map o:T + R_, such that

0
vyvuerl,

fle ] = Raw).
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4, EIan1app:F+13>osucl1thatVuEFarxivaF(I‘,H),

.. 2k 2k
lu]:l inf ( & <£(8),2(E*(p¥ )} " ) £(n)>) < p(w.
+® E.n

PROOF

e ] => 2: This is obvious (same B).

e 2 => 3: Suppose that ||x|| =1, |lyj} = 1 — then

|<y,®(u)x>|2 < <y,d{e)y> <x,¢{p*u)x>

14

Blu) <y, d(e)y> <x,d(e)x>

s | [o(e) | |

A

1/2

[leaw || < 8™ 4{|ete .

Thereforewecantakea=81/2,l(= | |@(e} |

. Choosing B to be minimal gives
a(pv) < a(plalv), the asserted submultiplicativity of «.

¢ 3 =>4: Note that

| 1o (* e Py | |

Kt (£* () )

14

14,

Ko (2%) o ( () 2 )

Ko (E%) a(m o (k)

{128

Blu) =< afp*w).
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¢ 4 =>1: First

|<meuriog, £512 < | [nanng] 12 | 1€] |2
T.e.:

| = <f(£).®(€*u*nn)f(n)>12
g

< (T <E(E),B(E* () 2 £(n) >)
&

x { L <E(&),2(E*n*)E(M)>).
£

Thus, by iteration,
L <E£(8),0(Exu*un) £(n)>
£
=k

< (T <E(E),0(E*(u) ) () >) 2
&N

1-27k
X (gz <E(E) ,P(E*n*)£(n)>)
eN

And so forth.

9.17 THEOREM Suppose that ¢:T -+ B(H) is a function. Assume: ch is positive

definite and 3 M > 0:
||etw)|] <=MV uer.

Then ¢ satisfies the boundedness condition, hence 9.11 is applicable.

[Thanks to 9.16 (3 => 1), this is inmediate.]

9.18 REMARK It can happen that Ks is positive definite, yet ¢ fails to
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satisfy the boundedness condition. For example, let I' be the *-semigroup of all
camplex polynomials on the real line (the *-operation being camplex conjugation).
Given £ € T, put

(8 = [y £(tye tae

to get a function ¢:T = C (= B(C)} — then it is clear that K, is positive definite.

P
Still, ¢ does not satisfy the boundedness condition. Thus write EO for the poly-

nomial £ -+ £ and note that
@(53) = nl.

If now ¢ did satisfy the boundedness condition, then it would satisfy 3 in 9.16
for a sumltiplicative o, hence

n! = |<I>(€E)I
< Ka(Eg)
< Ka(Eg)"
=2
nt.1l/mn
Dt(E.'.o) 2 (R'_) '
an impossibility.
[Note: Sans Stirling,
1
(ml)l = l — = l -
A s v
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9.19 LEMMA Suppose that K is a complex Hilbert space containing H as a

closed subspace. Let A € B(H), T € B(K) —— then T|H = A iff
= * =
A erT and A*p erT*T
or still, iff
@0 'a) = pr o) (1,5 = 0,1,...0).

PROOF It need only be shown that the conditions

N

A= prT and A*A = Pry

imply T{H = A. To this end, let x € H —— then

| ax| |2

I

<x,A%Ax>

= <x,P HT*Tx>

I

&
<PHx,T Tx>

<%, T*Tx>

|
E]

But at the same time,

¥
N
3
2

Therefore

2
B
5
®
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Tx = Ax => T|H = A.

Iet A € B(H) - then A is said to be subnormal if 3 a ocomplex Hilbert space
K containing H as a closed subspace and a normal T € B(K) such that T|H = A.
[Note: In general, every A € B(H) can be represented as the projection of

a normal T € B(K} in some extension space K:A = erT {(cf. 9.1).]

9.20 EX2MPIE Every isometry A is subnormal. For A is a contraction, hence

3 K> Hand U € UK) suchthatA=erU {cf. 9.1). But v X € H,

=l = [|ax[] = [lpgox[] < ||ux|[ = |]x[]
=> PHUx=Ux
=> U|H = A.

.21 IEMMA Suppose that A € B(H) is subnormal -- then v XgrEyreeor¥, € H,

n b *
T <a'x, ,A:'xi> z 0.
i,=0

PROOF The IHS equals
n L] L]
Z <Tl x.,Tin>
i,5=0 ]
or still,
n

_ E <xj , (F0) *7Ix 3>
1, J_O
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or still,
n ' .
z <>~:.,.T:j (Tl) *Xi>
i, §=0 7
or still,
n ' i
T <(m)*x., (T YA, >
i,3=0 3

n Tk* >
IIREO( el

v

0.

9.22 THEQFEM Iet A € B(H) and suppose that v XXy reearX € H,
n , .

5 <Alx.,iji> > 0.

i, =0

Then A is subnormal.

PROOF Take for I' the set of all pairs £ of nonnegative integers (i,3j), with
(iL,3)@d3 = a@+4i', 3 +3")
(irj)* = (jri) , € = (0,0).

Then T is a *-gemigroup. Define 0:T -+ B(H) by
3(E) = o(i,9) = (ax)ial.

Claim: K{p is positive definite. Proof:

T <E(g),eE*ET)E(EN)>
£,8"

= T z <f(i,3),9(3 + i',1 + 3£, 3%)>
(i,3y ({1'.3Y
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5 L <E(1,9), @0 I A g 5
(1,9 (G319

- .
= 3 R AL TENR IS Lo A TR TE TN
(1,9) G139

it i
I XL <A xi,A xi,>

ii

I

0.
x; = g AIE(i,5)

st
X,y =3 A F(',3').

As for the boundedness condition, we have

oG9l < [1a]*H

[FS

it
2} 1+

ali, j }
is (sub)multiplicative:

af(i, 3 @'3") =ald +1',3 + 3")

|
El

':'l-'
[~
+

“l
+

Wl

= a(i,jald',ji").

Therefore one can quote 3 => 1 in 9.16, Now apply 9.11 to get 7:% = pr,m



30.

{cf. 9.14 (¢(e)} = (0,0} = I)). Since the semigroup operation is commutative,

the 7(£) are normal. Iet EO = (0,1) - then a given £ = (i,3) can be written as

£= (1,000,107
_ i
= (&3 'g),
S0
7(E) = (1) i,

where T = 1T(£0) . Accordingly,
a0 iad = o1,3) = prmE,3) = pryo’? @3 =0,1,..0)

=>

T|H=2a (c£. 9.19).

9.23 REMARK Retaining the notation of 9.16,

. L 14
afi,j) = ||A|[l J
=>
. i+ 2
e, = 181124 = a0 = (a2
Consequently,
n L] L]
y Aty ,A3+1xi>
i,§=0 J
n . N
2 i
< |{a]| T <A xj,Ain>.

i,3=0
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APPENDIX

Our definition of *-semigroup incorporates the condition that I' be unital,
an assumption that simplifies the theory. Here, we shall retain the involution
*:T + [ but drop the existence of the unit e: T will thus denote a nonunital
*—semigroup.

What can be said about 9.11? For the most part, no use was made of the unit
which, in fact, makes an appearance only near the end, viz. in Step 8 (construction
of R}. Still, 9.11 dees go through in the nonunital case provided we append an
extra hypothesis (see below).

Going back to the beginning for the moment, the first point is that 9.5 and
9.6 remain valid (the proofs, however, are a little more complicated). Next, the
boundedness condition does not change but 9.16 needs a slight revision: Replace
3 by

3'. 3 a function K:T' ~ &)0 and a submultiplicative map a:T - 1320 such that

vuerT,

[1e(e*u*ue) || < R(E)aly) .

Turning to the nomunital version of 9.11, introduce the following condition:

C: aanet{ei:iEI} in T suwch that v £ € T,

b(Eey) + @(E)

9(e3E) ~ o)

weakly and

y = sup ||otere;} ]| < .
iex e
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RAPPEL Let H be a camplex Hilbert space. Suppose that {xi:i €I} is a

boundedweakCauchynetinH-thenthereisauniquexeHsuchthatxi->x
weakly,

RAPPEL Let f,K be complex Hilbert spaces. Suppose that {Ti:i €I} is a

weak Cauchy net in B(H,K) such that v x € fi,

sup | |Tyx]| < .
i€l

Then 3 T € B(H,K) such that Ti + T weakly.
[v xeH, {Tix:i € I} is a bounded weak Cauchy net in K, bhence is weakly

convergent to a unique element of K, call it Tx — then T:H » K is linear. But,

by the uniform boundedness principle,

sup |]T,]] =M < .
icI

Therefore v x € H& Vv € K,

i€l

A

MUyl =[],
So T is bounded and by construction, Ti->Tweakly.]

[Note: In general, B{#,K) is not weakly camplete. E.g.: Take H = K
infinite dimensional and T:H - H linear and unbounded. Given a finite dimensional

subspace F < H, let Tp = T o PF' PF the orthogonal projection of # onto F -~ then

{TF} is a weak Cauchy net in B(H) which does not converge weakly in B(H).]
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Given £ € T, define RE:H + K by

Rex) (W) = £, (W) (= 3(E)x) .

ILEMA VY E €T, RE € B(H,K).

PROOF Supposethatxn+oinH—-tl‘nen

Bl A

<f £
grxn E;rxn

It

>

[ {Rgx, |1

= <xn.¢'(€*’c2)xn>

1A

1%, 112 [Hoce*e) ||

‘* 0.

IEMA Vv E,n €T, we have

R‘an Q(E*n) .

PROOF V %,y € H,

<x,R§R n‘y>

<Rgx,Rny>

<f€,>:'fn,y>

<x,P{E*N)v>.

Continuing the discussion, granted C (maintaining, of course, the assumption

that K is positive definite and satisfies the boundedness condition), put
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Ri=Re. {1 € I) — then
i
<Rix,Rix> = <fe ’fe >
i,x i,X
= *,
<x,¢>(eiei)x>
2
< vilx|[®.
Thus 3 M > 0:

sup | |Ri| | = M < » (uniform boundedness principle).

ier
On the other hand, the definitions imply that {Ri:i € I} is a weak Cauchy net,
hence 3 R € B(H,K):

R=lim R,  (WOT).
ieT
With this preparation, we are finally in a position to deal with Step 8 in

the proof of 9.11, viz. the assertion that ¢ = AR'n, i.e., VUET,

®{p) = R*T(Y)R.
First

()R = 7{n)lim Ri (WOT)
jier

1im ()R, (wor) .
ie1 1

But

11(1J)Ri ﬂ(u)Re. .

i

TR, %) (E) = (ML ) (&)
ei ei,x
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= ¢(E*uei)x
= (R _ x}(2).
vey
Therefore
mT{uR., = R
i ey
=>
m{}R = 1lim R o (WOT) .
ier W84
IEMMA We have
R = lim R (WOT) .
Hooder M&4

PROOF v xe fHand v £ € F(T,H),

sl ~

<R e x,f» = «£ P )

H i Uei X

= 2 <§ ¢(E*n)fueirx(n).f(£)>

= I <0(E*pe,)x,£(E)>
£ 1

> I <@ {E*p)x,£(E)>
&

~

= I85>

r

I
A
h.

il
%
-
X
o>
v
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So, in conclusion,

m{PR = lim R e (Wor)
ier M1
= R -
1
But then
E*n(uR = R*Ru
= (1im R¥MR {(Wom)
jer + M
= lim (R*R ) (WOT)
ier 1%
= lim (R* R ) (WOT)
i€T eiR“
= lim @(e{u) (WOT)
ie1
= ‘I’(H) I3
as desired.

FEMARK 7 is minimal (cf. Step 10 of the proof of 9.11).

[Note that
(Rx) () = &(E¥)x

(m(Rx) (§) = 2(E*u)x,

which leads to the formula in Step 9.]



§10. DILATION THEOREMS
In this §, we shall consider some important applications of 9.11.

10.1 RAPPEL If {’I‘i:i € I} is an increasing net of positive operators

converging weakly to an operator T, then Ti + T strongly and

T = l.u.b. {'I‘i:i €1},

Suppose that (Q,A) is a measurable space and E:A + E(H) is a semispectral

measure.

10.2 THEOREM (Naimark) There exists a complex Hilbert space H containing
fl as a closed subspace and a spectral measure E:A + L(H) such that V A € 4,
E(R) = PE®) [H,
PH:R + # the orthogonal projection of H onto #. FPurthermore, the requirement that
{E(B)H:A € A}

be total in fi determines H and E up to iscmetric isomorphism (cf. 9.6).

PROOF Recalling that A is a *-semigroup (cf. 9.4), view E:A - E(H) (c B(H))
as the "o" of 9.11. There are then two points.

1. The kernel
A x A~ B()

(A,B) ~ E(A n B)



is positive definite: For all
. BpreensB €A

Xl,...,Xn E H’

we have
n
I <x.,B(A; N AJx.> = 0.
i bt )
To establish this, put
n
u= I U .
i=1 %%

Then by polarization and the Schwarz inequality,

”x.,x. <<p i,i=1,...,n).
1]

benote the corresponding Radon-Nikodym derivative by fij and let 7\1,...,

¥V A € A,
0 < <‘%.‘ Aixi,E(A) ()':i ljxj)>
i J
= I XA.<x.,EBEQ)x.>
= £ AU (a)
L3 Ny
= T AASF..dpu.
i,] 1 J°A1]
Therefore
n

T A AL >0 e.l.
i,i=1 3] 13(w) w a-e.1



On the other hand,

n 9 n _
Po axa €= 1 X, > 0.

X
i=l PR g 5m T IAYMR

Now apply 8.3 to conclude that

n
z

fi.(m) 20 [ a.e.l,
i,3=1

X
AiﬂA. J

]
which upon integration over () gives

n
0 < r S
i,ji=l

X £, .du
2 AiﬂAj 1ij

n
I T n g
1. 1 ]

i

n
= T <x.,E@&, n A)x.>.
i, YRS

2. E satisfies the boundedness condition:

n
L <x,,BE(A, NANA.IX.>
i=1 * 7 7

n
< B{A) L <x,,E(A, nA.)x.>.
5

Indeed, the assigrment
n
A~ . E <xi,E(Ai Nnan Aj)xj> {z 0)
i,j=1

is a measure whose value at § is



n
z <Xi,E(Ai na)x.>.
i,5=1 J 1

The boundedness condition is thus satisfied by taking B(A) = 1 (A € A).
Tharnks to 1 and 2, 9.11 is applicable. Denote the "K" there by H and the
"' there by E:

~ E:A > B(H)

E= eré‘ (cf. 9.12 (B = I))

with
{E(a)H:A € A}

total in f. The fact that E is a unital #~representation of A on H implies that

E@)
, BE() = I.

E@)?

I}

E(A)* = E(a)

I.e.: E:A > L(H). It remains to prove that E is a spectral measure. To begin

with, E is finitely additive. For let A/, € Awith &) NA, =@ ~= then v

ABec Aard v x,¥v € H,

<EB)y, E(B) + EA)E@)>

<E@) E@)) + E@,)E®)y, x>

i

<E(A n A NBly + E@A N A, N B)y,Px>

1]

<B,E(a n A n By + PEQANA, N Bly,x



<E(A N A, N B)y + E(A N A, N Bly,x>

<E{A N (A; UA,) n By,

<PHE(A n (&, VA) nBlYx>

<E@E®, U AZ)E(B)y.PHm

<E@®)y,E@, uA)E@)x>

E(Al uA,) E(@a)) + 'F:(Az).

Finally, if Al c A2 < ..., then
E(Al) < E(A2) £ was

and by the same procedure, we find that
limE@A) =E(U A)
W =E(U A

weakly, hence strongly (cf. 10.1).

In the proof, minimality was used to force the countable additivity of E.
However, minimality may not have a direct interpretation, while the construction

of a larger "H" and "E" does.

10.3 EXAMPIE Take 2 Polish, let A = Bor £, and fix a Borel measure p.

Suppose given a collection of unit vectors e, {(w € Q) such that the function



@ > ||ew[| is continuous with

I= fQ Pemdu {w) (sor) .

So v x€H,

x=[ 0 <em,x>ewdu {w)

and V v,x € H,

WX = *:yl,Jf'52 <ew,x>ewdu {w)>
= [ Q <y,ew><ew,x>du {w) .
Put
E(a) = fA Pe A {w) (AcA.

[\
Then E is a semispectral measure. Let A = LZ(Q.U) and define a spectral measure
E by
E(Q)f = Xaf (A€ A).

Identify # with a closed subspace of H via the isametry x ~ fx, where

2 2
£ (w) = <e x> (|]x]|" =/ |t<e, x>l “@uiw)).
Kiw,w') = <ew’ew >,

Jo klew)E (') dulw')

J‘Q <@ e 1 ><e . x>du(w')

i

<@ ,x>
]

fx (w) -



On the other hand, v £ € #',
g (w0 £ (") dp (')
=/ <ew,ew,>f(w')du(w')
=/, Wf(w')du(m')
=/q fe—wmf(m')du(w')

= 0'

Therefore the orthogonal projection PH of H onto H is an inteqgral operator with
kernel ¢. Finally,
E= PHE|H.

In fact,

PI-FEfx ()

IQ K(w,w')xA(w')fx(w')du(w')

fA <e /8 17<e , sodu(w').

And, by comparison,

fE @) x(m) <ew,E a) x>

= <ew,fA <e ,x>ew,du (w')>

fA <ew: ewl' ><e(.0' >duw') .

10.4 IEMMA Let T be a *-semigroup, ¥:T - B(H) a function. Assume: K_ is

—_— ¢



positive definite — then for all x € H and for all

Eyrerer €T

Cl,...,cn e g'

we have

n
T oc.eL<x,b(EFEL x> = 0.
i 2

10.5 EXAMPLE Let A be a U*-algebra and suppose that ¢:A > B(H) is a linear
map. Assume: K<I> is pogitive definite -- then % satisfies the boundedness condition.

To see this, 1etul,...,unE._Abeunitary-—theanGHandvgel‘,

Il
T C.C.<X,d (E*pFu.Eix>
i,5=1 *J ]
n —
= L ool ((nE)* . i)x>
i,=1 *3 i
2. 0.
Therefore the matrix

[<x, &( (uiEJ '*‘qu) x>]

is positive definite, hence its operator norm is < its trace which equals

n

i—E-]_ <X, d( (Uia) *Uigl x>

n
= iil <X, P (E*u‘J?_ui&)x>



n

f

n<x,¢ (g*g) X>

n
T C.C.<X,0(E**p. ) x>
i,5°1 * +J

n
< (n T

le; 1% <x, 0 (£%E) 2.
i=1

Since any u € I' can be written as a finite linear cambination of unitary elements,
it follows fraom 2 in 9,16 that ¢ satisfies the boundedness condition.

[Note: Specialized to the case when A is a unital Banach *-algehra, we have
thus recovered 9.15 by a different argument.]

10.6 REMARK Here is another proof. Using 8.24, write

o{u) = <a,m(Wa> (p€A.

Then
[fet |} = }[<a,m(ura>]]
< |lal} |InGwal] (cf. 8.12)
< [lall? [Iraa [}
In 3 of 9.16, take K = ||a] ]2 and set a(n) = ||w(p) || to conclude again that &

satisfies the boundedness condition.

10.7 THEOREM ILet A be a U*-algebra and suppose that $:A + B{H} is a linear
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map. Assume: Ky is positive definite ~~ then ¢ = AR-n, where 7 is a minimal

*~representation of A on scme camplex Hilbert space K.
PROOF In view of 10.5, this is implied by 9.11 modulo one detail: Linearity

of 7. But, due to the minimality of n, w(A)RH is total in K and V X,y € H,

< (n)Ry, (m(gy) + m{E,))m(E)Re>
= <Ry, ('n(n*ElE) + ﬂ(ﬂ*Ezﬁ))R}P
= <y,R¥T(n*E E)Rx + R (N*E,E) Re>
= <y, 2(n*g;E)x + ¢(n*E,E) x>
= <y, B (N*E,E + MHELE) x>
= <y, e(n*(§; + E))E)x>
= <y,R*T(* (&) + £,)E)Rx>

= <n(n)Ry,m(g; + &} (E)Rx>

ﬂ(f::l + 52) = ﬂ(El) + Tr(Ez).

Ditto:

m{cE) =cn(f) (c €.

10.8 REMARK In 10.7, take for A a unital Banach *-~algebra -- then

b = !_\.Rn {= R*1R} is continuous:

& € B(A,B{H)).
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Proof: A *-representation of a Banach *-algebra on a Hilbert space is necessarily

continuous (in fact, contractive).

[Note:
_ 2
llo]| = |IRI[® = ||R*R]|.
For
®(E) = R¥nm{E)R
=>
e || = {[R*|| {|m@ ] }IR]]
< [IR[I1% [1=] 11gl]
2
< HRHS Vg dnl] s
-
l1of] < |IR] (%
On the other hand,
¢(e) = R*R  (w(e) = I)
==
||R*R|{ = ||o(e) ||
< |1o]] Ilel}
< |[{e]| (lte]| = D.]

10.9 RAPPEL An approximate unit in a Banach *-algebra A is a norm bounded

net {ei:ie I} such that v £ € A,

Il
o

lim ||ei€ ~ £|]
iel

i
e

:!'im Ilgei - 5“
1eT
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10.10 LEMMA TIf A is a Banach *-algebra and if A admits an approximate
unit, then every positive linear functional on A is continuous.

[Note: If w:A » C is a positive linear functiocnal, then

|w(E*nE) | < r(M)w(E*E}  (n = n*),
r(.) the spectral radius.]

This lemma leads to an "automatic continuity" result. Thus let $:A > B(H)

be a linear map. Assume: Ky is pesitive definite — then
o € B(A,B(H)).

Proof: Vv x € H, the linear functional
wX(E) = <x,0(E}x>

ig positive, hence by 10.10 is continuous. Polarization then implies that

v XY S Hr
wx’y(ﬁl = <x,d(E)y>

is continuous, tlmsBMXy>0:
PNGIIET AN LI

But by the uniform boundedness principle,

= & (L) < o
[tet] IIS‘ETISl” §

<=> ¥ x,¥y € H,

s | <x, 8 (E)y>| < e
Tel| <1

[Note: In the case when A is unital, this approach provides another route

to 10.8.]
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10.11 THEQREM Iet A be a Banach *-algebra with an approximate unit and

suppose that 0:A4 + B(H) is a linear map. Assume: Ko is positive definite -- then
b = ARTr, where 7 is a minimal *-representation of A on same complex Hilbert space K.

PROOF It is a question of applying the considerations in the Appendix to §9.

Since ¢ is continucus, Vv & € A,

<I>(€ei} > ¢(f)
in B(H) (norm convergence).
‘Ne‘i’é) > ¢(&)

On the other hand, if

sup ||e;]]| < C,

ieT
then
[1etetep || < [lo]] |lete ]|
< [lel] Ilex]] |legl]
< {lel] 1legll?
< |]l]c?

Y =sup |[¢(e¥e) ]| < =,
ier 11

I.e.: Condition C is satisfied. There remains the verification of the boundedness

condition. Thus fix x € { — then
wx(.E*ll*D?,)

= <X, ¢ (E*p*nL)x>
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a8

r (), (E%E)

r{u*n) <x, e (£*E) x>,

So condition 2 of 9.16 is met if we let B(u) = r{u*p).

10.12 EXAMPLE (The &NS Constructicn) Specialize 10.11 to the case when ¢ is

a positive linear functional — then Kq} is positive definite (cf. 8.21) and 3 a € K:
$(E) = <a,nE)a> {cf. 8.26).
For let a = R{1) (R:C ~ K):

<R{1},m(E)R(L) >

<1, (R*n(Z)R) (1) >

= <1,¢(5)1>

8() .

[Note: 7 is minimal, hence m{A)RC is total in K. But m(A)RC = w(A)R(1),

which is linear, so R(1l) is m—cyclic.]

10.13 THEOREM (Stinespring) Let A be a C*-algebra and suppose that

¢:A > B(H) is a linear map. Assume: Kq) ig posgitive definite -~ then ¢ = AR1T,

where 1 is a minimal *~representation of A on sare camplex Hilbert space K.

[This is a special case of 10.11 (every C*-algebra admits an approximate unit).]

1et A be a U*-algehra and suppose that ¢:A > B(H) is a linear map. Assume: Kq)



15.

is positive definite and ¢(e) = I - then 10.7 is in force and RR* ¢ B(K) is an

orthogonal projection.

10.14 IEMVA We have

{€ € A:d(E*E)

I

e(E)*9(8) }

= {g € A:d(nE) = ¥(MO(E) Vv n € AL

PROOF If d(nE) = ¢()®(E) vV n € A, take n = E* to get $(EXL) = (EX)P(E) =

¢(g)*d (&) (cf. 9.7). To go the other way, assume that ¢(£*8) = ¢(£)}*@(£), thus

R*7 (£*E)IR = (R*m(L)R}* (R*w(£)R)

or still,
R*w (£} *1 ()R = R*n (&) *RR*1 (£)R.
Iet
T = (I - RR*)T(L)RR*.
Then
T*T = RR*11(£) * (I - RR*)} (I - RR*)1{£)RR*
= RR*1(£)*(I - RR*) 7 (E)RR*
= RR*n (£} *n1 (E)RR* ~ RR*1 (L) *RR*7 (£) RR*
= R{R*n(E) *n(E}R — R*7 (&) *RR*1 () R)R*
=0
=
T= 0

m(E)RR* = RR*1 (£) RR*.
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So, ¥ 1 € A,
R®(nE)R* = RR*T (n&)RR*
= RR*7 (n) 7 (£) RR*
= RR*w (n} RR*1 (£) RR*
= RO (n) ¢(LIR*
2=
R*RO (NE)R*R = R*R¥(n) ¢ (£)R*R
=
o(ng) = ¢(M)e(g) (R*R =1I).
[Note: If
T a(gfE)) = olg))*e(g)
P(ERE,) = B(E,)*0(E,),
then v n € A,
?(ngyE,) = 2(ng ) 2(E,)
= B o)) 8 (2,)
= 2(n) (5, E,) -
Therefore

{£ € Az2(E*E) = 2(5)*0 (&)}

is a unital subalgebra of A on which ¢ is multiplicative.]

10.15 IEMMA 1If ¢:A -+ B(H)} sends the unitary elements of A to the unitary
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elements of A to the unitary elements of B(H), then ¢ is a *-homomorphism.

PROOF Given a unitary £ € A, we have

& () *0(£) = d(e) = d(E*E).

S¢, v €A,

¢(ng) = ¢ e(E)  (cf. 10.14).

Therefore ¢ is maltiplicative on A. But ¢ is also a *-map (cf. 9.7), hence & is
a *-hancmorphism.

Given a *-algebra A, define y:A » [0,«] by

Y(&) = sup {|m(E}|],
m

where 7 ranges over the s-representations of A on a complex Hilbert space — then
A is said to be a GN-algebra if y(£) is finite for all & € A,

10.16 EXaMPLE Every U*-algebra A is a GN-algebra. For if £ € A is unitary,

w12 = | @ %) ||

|l (E*e) [|

i) |} < 1.

10.17 EXAMPLE Every Banach *-algebra A is a GN-algebra. In fact, Vv £ € A,

v&) < e Y2 < |1exg| (Y2

10.18 EXAMPLE The *-algebra A of all cawplex polynomials p:R + C is not a
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@-algebra.
[Note: The multiplication is pointwise and the involution is complex

conjugation.]

Suppose that A is a @-algebra ~=- then y:A -+ B>O is a submiltiplicative

seminorm and

vE*) = v (en.
Let
Ag=NEKerm (= {E:v(8) = 0}).
i)

Then AR ig a *=-ideal in A and v induces a C*-nom on the quotient A/AR. Denote the

campletion of A/AR by C*(A), the enveloping C*-algebra of A, and write p A\ for the

canonical *-homomorphism A » C*(A).

10.19 EXAMPLE ItcanhappenthatA=AR. Thus let A be the set of all complex N

~by-N matrices that have only finitely many nonzero entries in each row and each
colurn ~- then A has no nonzero *-representations on a camplex Hilbert space.
[Note: The maltiplication is matrix mumltiplication and the involution is

conjugate transpose.)
10.20 ILFMMA Suppose that A is a @l-algebra. If B is a C*-algebra and ®:A - B
is a *~homomorphism, then there is a unique *—homomorphism $:C*(A) + B such that

<I>=5°pA.

10.21 IFMMA Suppose that A and A' are GN-algebras and $:A > A' is a
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x~homororphism —— then there is a unique *-homomorphism C* {¢) :C*(A) » C*(A")
rendering the diagram

Py
A - C*(A)
¢ l C* (4}
¥
Al —  C*({A')
Py

'ocmmtative .

Suppose still that A is a GN-algebra and let ¢:A > B(H) be a linear map.
Assume: ¢ is y-bourded, i.e., 3 M > 0 such that
PeE) )] < My(E) (£ € A).
Then@vanishesonAR, hencedropstoA/A.R, and fram there extends by continuity

to a linear map o:C*(A) ~ B(H) with the property that ¢ = b o Py-

10.22 LEMMA Ks is positive definite iff K_ is positive definite.
¢



§11. COMPLETELY POSITIVE MAPS

Iet A be a *-algebra.

n
* Write A+ for the set of all finite sums of the form I

0 Ei&i and call

the elements of A+ positive.
* Write ASAforthesetof all £ € A with the property that £ = £ and

call the elements of ASA gselfadjoint.

11.1 LEMMA The linear span of A+ is A2.

PROOF In fact,

CDF €+ (D E*E + D).

T b1 w

1
E*n':_
4 0

11.2 LEMMA ﬂmeljlxearspanofASAisA.
PROOF In fact,

E= (£ + E*%)/2 + /=1 (£ - E%)/2/-1.

11.3 ILEMMA We have

_ 2
A, - A= Ag A%

PROCF The definitions imply that the LHS is contained in the RHS. On the
other hand,
n

T OEn, €A, NnA
i=111 SA

2



(Esn; + n{i{)

((E% + n)*(EF + n,) - Eiig - n;?_ni)

€A -A_.

[Note: Therefore

Let A,B be #-algebras —— then a linear map ¢:A -~ B is said to be positive if

G)(A+) < By.

11.4 LEMMA Suppose that ¢:A + B is a positive map -- then v §,n € A,

P(E*n)* = o(n*g).

PROOF V c € C,

0 < o({cg + n)*(ct + n})

= [c|?e(e*E) + 38(E*n) + cO(N*E) + @(n*n).

Take ¢ = 1 and ¢ = /=1 to conclude that

P(E*N) + 2(n*E} = B(E¥N)* + d(n*E)*

€ B

_B(E*N) - B(I*E) = B(MRE)* - O(EFM)*



and then add these equations.
[Note: Therefore A = A2
=5

d(EY* = o (E%) (£ € A).
In particular, this is the case when A is unital.]

Write Mn(A) for the algebra of n-by-n matrices with entries from A made into
a *-algebra by the specification
I:glj]* = [53‘1] .
And ditto for B.

[Note: If M (A) is identified with A@ M (C), then

(E @A)* = E*@A*’

A* the conjugate transpose.]

11.5 EXAMPLE I1et

[Aij] € Mn(B(H)).

[A;5] € M (B()),

iff v Al,...,An € B{H),

n

L AL A, 2 0.
i1t

If now 3:A »~ B is a linear map, then v n, ¢ gives rise to a linear map



d)n:Mn(A) > Mn(B)' viz.
¢n({£13” = [cb(glj)]'

Definition: ¢ is n-positive if ¢, 1s positive and ¢ is completely positive

if & is n~positive v n.
[Note: ¢ n-positive => ¢ m-positive (m < n).}

N.B. It is false that "positive" => “"campletely positive". E.g.: The arrow

of transposition

T M(©Q M ©

A+AT

is positive but not 2-positive.

11.6 EXAMPLE A »-homomorphism ¢:A -+ B is positive:

n n
°(Z EfE) = I S
n
- I 0y €8,

Since ¢ n is also a *-homomorphism, it follows that ¢ is completely positive.

11.7 EXAMPLE Suppose that H and K are camplex Hilbert spaces and w:A - B(K)

is a »-representation -~ then v R € B(H,K), ¢ = AR‘n is completely positive,

11.8 REMARK An n-positive map (D:Mn c) ~» Mn(g) is necessarily campletely

positive. On the other hand, one can construct examples of k-positive maps



@:Mh(g) > Mn((_:) which are not (k+l)-positive (k=1,...,n-1 (n > 1)).

Every n-tuple ‘51’ ces "En of elements of A determines a positive element £

of Mh(A), viz.:
£ = B2 = [EE],

where =% is the element of Mn(A) whose kth row is El"“’gn and whose other entries

are 0 (any k between 1 and n).

11.9 LEMA Let § € Mn(A) be positive — then £ is a finite sum of positive
elements of the form [S‘{Ej] .

PROOF By definition, g is a finite sum of elements of the form Z*E (E € Mn(A)).

11

thekthrwof_andOOmerwise-—then

[11
+
+
[1]

Decompose = fa
as n’ k

in

*F = HRE. 4 ees 4 TRE
171 nn

and each term on the right is of the form [E;F_Ej] .

11.10 THEOREM Suppose that $:A > B(ff} is a linear map — then ¢ is completely

positive iff K® is pogitive definite.

PROOF If ¢ is campletely positive and if gl,...,gn € A, then
*

n
=> [@(E;Ej)] € Mn(B(H))+ = B( @& H}+.



Therefore Kq) is positive definite. Conversely, let £ € Mn(A) + then in view of

n

11.9, to prove that @n(g) € B( ® H)_, one can assumre that ¢ has the form [g;gj],

+l'

in which case matters are immediate.

Consequently, the requirement that a linear map ¢:A + B(H) be completely

positive is: v n € N and for all

gl'..-'gn e A

XpreensX € H,

we have
n
T o<x,,0(E¥.)x.> = 0.
=0 4 )

Here is a variant.

11.11 IFMMA Suppose that ¢:A + B(H) is a linear map. Assume: &(£)* = o(&%)

(£ € A) = then ¢ is completely positive iff

Eqrereriy
v €A
Npreesmy
and Vv x € H, we have
n
i,j-E-l <xr¢(ﬁ§_)®(5j§‘_€j)¢>(nj)x> > 0.

PROOF Let X run over a set {xi € H:1i € I} such that {cb(A)xi:i € I} is total



11.12 RAPPEL Suppose that w:B{H) -+ C is a bounded linear functional such
that ||w|| = w(I} = 1 — then w is positive, hence is a state on B(H).

11.13 LEMMA Iet $:B(H) > B(H) be a unital linear map. Assume: ¢ is
bounded and |[¢|] < 1 -~ then & is positive.

PROOF  Given x € S(H), define w :B(H) > C by w (A) = <x,2(®B)x> — then u_
is a linear functional of norm < 1. But wx(I) =1, so
W, € S(B(H)) (cf. 11.12).

Therefore
A€ B(H)+=> wx(A) > 0.

Since this is true for all x € S(H), it follows that

A€ B(H)+ => &{A) € B(H)+.

[

11.14 EXBMPIE Iet &:B(H) » B(H) be a unital linear map. Assume: ¢ is

2

bounded of norm < 1, idempotent (i.e., ¢ P} and

o(XYZ) = X0(Y)Z (X,2 € Ran ¢ & Y € B(H)).
Then ¢ is campletely positive. To see this, note that ¢ is at least positive

(ef. 11.13), thus v A € B{(H), o(A)* = &(a*) (cf. 11.4). Now let

Al,...,An

€ B(H).

Bl'oooan



n
L o(B,)*A*A,0(B.)
i, =1 13 )

n n
= (L AOBI*( I ASMB)) 20
g BT L RO By

n

* *
L <, 0(BD e(AtR) 0(B)%>
1,5=1

n
I <x,0(B.)*0A¥A.)&(B.)x>
i,9=1 * 11y 3

n
I <x,0(0(B,)*A%A_ 9(B.))x>
i,3=1 o3

n
- * Nk
<x,¢(i ‘E]_ @(Bi) AiAj‘I)(Bj))x>
r]

IV
o
M

Therefore ¢ is campletely positive (cf. 11.11).

Let X be a ICH space, C_(X) the algebra of complex valued continucus functions
on X that vanish at infinity. Equip C_(X} with the sup norm and let the involution
be camplex conjugation.

N.B. The dual C_(X)}* of C,(X) can be identified with M(X), the space of
camplex Radon weasures on X:

W I, T (6 = Sy fdu.



[l = [uf e,

|u| the total variation of .

11.15 THEOREM If 4:C_(X) » B(H) is positive, then ¢ is completely positive.

PROOF It suffices to prove that K, is a positive definite kernel {(cf. 11.10}.

&
S50 let

- fl"“'fn = cw(x)

Xl"..’Xn E Hc

Then the claim is that
n -

T ox,,o(f.£.)x.> = 0.
=1 +  *3
To begin with, v x € H, the assigmment

£+ x,0(f)x> (£ €C_(X))
is a positive linear functional, hence is given by integration w.r.t. a Radon
measure 3

<Xqu>(f)x> = fX fd';_lx.

Therefore

n

i,—_,,z-:l Q{il‘b(f)xi> = fx fdl-ir
where

n
p= I .
i=1 pxi
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Because ¢(Ff) € B(H),, we have
|<xi,¢(ff)xj>|
< o@D %, || |]®(Ef)l/2xj1|
- 3 1/2 = 1/2
= <xi,<b(ff)xi> <xj,¢)(ff)xj> .

So, thanks to the Radon-Nikodym theorem, 13 ¢:i.j € Ll(X,u) such that v £ € C_(X),
<xi,¢(f)xj> = IX f¢ijdu.

Next, for all )\l,...,)\n € C:

n
I R As<x,,0(E) x>
i,=1 tI 0t J
n _ n
=<3 anx,0E) I Ax.o>
i=1 *7t j=1 JJ

= 0.

Consequently,

I
L oA ... (x) 20 [pa.e.d.
=1 M

But the matrix [Eifj] is positive definite at every x € X, thus on the basis of 8.3,

n -
z
i,j=1

fifj[bij 20 [pa.e.].
And this implies that

n —

L <x,,0(£.f.)x.>

350 -



1l.

b2
i,3=

S < fifj ¢ijdu

( 3§ £.f.0

) du
ig=1 *

ij

I
[=]

11.16 REMARK If A is an arbitrary commtative C*-algebra, then 3 a ICH
space X and an isomorphism A + C_(X). Therefore 11.15 can be restated: Every

positive ¢:A » B(H) is necessarily campletely positive.

11.17 LEMMA Let A be a U*-algebra and suppose that ¢:A » B(H) is a positive
map —— then ¢ is y-bounded (hence lifts to a positive map 5:0*(.4) + B(H)).

PROOF We claim that v £ € A,

4

He) || < 2] lete) ||v(E).

| |®(2) | ]

1A

2 sup |<x,0(E)x>].
XES (H)

Now fix x € S(H) - then
wX(E) = <x,0(E)x>

is a positive linear functional, thus 3 a unital *-representation of A on some

complex Hilbert gpace K and an elerent a € K such that

li

wx(g) <a,m{L)a> (cf. 8.26).

"

HEY |2 <a,m{e}a>

<x,d(e)x>
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1

|1oe) |]

l<x, 01| < ||a}|?]meE) ||

1A

1A

leter|lyee.

11.18 1IFMVMA let A be a Banach *-algebra with an approximate unit and suppose
that ¢:A + B(H) is a positive map —— then ¢ is y-bounded (hence lifts to a positive
map §:C*(A) > B(H)).

PROCOF As in 11.17, it suffices to estimate

|<x,8{E)x>] (£ € A,x € S(H)).

To this end, note first that the discussion following 10.10 implies that

o € B(A,B(H)).

Butviel,

|<x,<p(eig)x>|2 < <x,@(e§‘_ei)x><x,®(g*g)x>.
Therefore

|<x,0(E)x>] % < Mex, o (E*E) x>,
where

M= |[e]] sup ||ete,]].
ieT 11
5o, if
wx(E) = <x,0({)x>,
then
— 2
Moty = suplla (8) |Fw (£*€) < 1}
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<M,

a bound which is independent of x € S{#). Using 10.12, write

w (§) = <a,m(g)a>.

Bearing in mind that w(A)a is dense in K,

la]|? = swp  [<a,y>{?
yeS (K)

sup |<a,w(£)al>|2
(£) g (K)

sup | (5)]?
w, (EXE) s1

o |y

1A

M

tax, 0(E)x>| < |]al %] [m®) ||

1A

138

My (E).

11.19 THEOREM Let A be a cammtative U*-algebra or a commutative Banach
*-algebra with an approximate unit and suppose that ¢:A » B(H) is a positive map —
then ¢ is completely positive.

PROOF It is clear that
A commutative => C*(A) commtative.

But $:C*(A) -~ B(H) is positive, hence is completely positive (cf. 11.16), so
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K_ is positive definite (cf. 11.10). Therefore Ky is positive definite (cf. 10.22),
9

hence ¢ is completely positive (cf. 11.10).

Iet X be a ICH space — then v p € X, there is an arrow
evp:Mn(Cw(X)) > Mn(g)

of evaluation.

11.20 ILEMMA Let F = [fij] S Mn(Cm(X)) . Assume: VYV pcX,

evp(F} € Mn{g)_l_.

FEM (C(X),-

11.21 THEOREM Let A be a *-algebra and suppose that $:A ~ C (X} is positive —
then ¢ is completely positive.

PROOF Iet £ € Mn(A)+. To establish that
@n(g) € Mn(Cm(X))+f
we can and will assume that £ = [qgjl (cf. 11.9) — then v p € X, the matrix

<I>n( 8P €M ()

is positive definite. Proof:

n

L C.c.o () (P);.
i=1 +3 n'z ij

—

= ¢;0,0(E4E5) ()

n
z

i,j=1
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n
- ‘e
(b(i,jv-_zﬂl_ cicjgigj) {p)

n n
= ¢(( L EV*(E ¢ £.))(p)
M & T

1'%

0 ]
Therefore

2.(8) €M (C, (X)), (cf. 11.20).

[Note: One can, of course, replace C_(X) by an arbitrary commtative

C*-algebra (cf. 11.16).]

11.22 REMARK It can be shown that if A and B are (C*-algebras, then there

is a positive but not 2-positive map ®:A -+ B unless A or B is commtative.

11.23 EXAMPLE A linear functional ¢:A ~ C is positive if v £ € 4,
d(E*E) = 0. Claim: Positive linear functionals are completely positive. To

see this, in 11.21 take X to be a singleton -- then C_(X) = C{X} =C ... .

[Note: One can also proceed from first principles: Use 8.21 and quote
11.10 (A was unital in the discussion preceding 8.21 but this plays no role in

the argument).]

11.24 LEMMA ILet A be a unital *-algebra and suppose that ¢:A -~ B(H) is
2-positive =- then v £ € A,

(E)*0(E) < [|ole) [|o(E*E).

PROOF ¥ £ € A, we have
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1 g 1 €
o, }
_ 0 0 _ _ 0 0
T (e} o(5)
= € M, (B(H) .

P(E)*  Q(EXE)
So, ¥ X,y € H,

<x,0le}x> + <x,0(E)y> + <y, d(E)*x> + <y, (E*E)y>

= 0.

If ¢(e) = 0 but (&) = 0 (3 &), choose y subject to $(£)y = 0 and then take x to

be a large multiple of - ¢(f)y, from which an obvicus contradiction. Therefore

b2 0= 0(e) =2 0.

Now let
-1
x =~ [|ote) || "9 (E)y,
multiply the above inequality by ||#(e)||, and then vary y over H to get
Hate) ||~ e (e) *a(e) 2 (E)

- 20(£)*0(E) + ||dle) ||oE*E) = O.
It remains only to note that

2()*(I - ||o(e) || Fa(e))e(E) € BWH,.

11.25 LEMMA ILet A be a unital Banach *-algebra and suppose that ¢:A - B(H)
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is positive. Bssume: £ € A is normal, i.e., EE* = £*f — then
e (EY*0(E) < ||o(e) ||o(E*E).

PROOF ILet A(Z) be the closed *-subalgebra of A generated by e and £ — then
A(£) is a unital commutative Banach *-algebra, hence the restriction of ¢ to A()
is canpletely positive (cf. 11.19), in particular is 2-positive, so 11.24 is
applicable.

11.26 RAPPEL The closed unit ball in B{H) is the closed convex hull of U(H).
[Note: In fact, every A € B(H) with [|A|! < 1 is a convex cambination of

unitary operators.]

11.27 THEOREM Let H and K be complex Hilbert spaces and suppose that
6:B(H) + B(K) is a positive map —— then ¢ is bounded and ||¢|| = []|®(D)]].

PROOF That ¢ is bounded is standard. This said, let U € ({H):

|1q>(U)||2 = ||e *e () ||
< |Jle@ |} (tew*n || (cf. 11.25)
= |lem ]}
The contimiity of & and 11.26 then imply that ||¢]| = |]e(D}]].

In other words: “Positive maps ¢:B(H) ~ B{K) attain their norm at the identity

coperator".

11.28 EXAMPLE Is it true that if ||¢]|] = |[{e(@)|] and (I) 2 0, then ¢ is
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positive? The answer is "no". E.g.: Consider the linear map @:Mz((_‘,‘) > Mz(g)
defined by

11 %12 31 212
& ) =

21




§12. OPERATOR SYSTEMS

Iet H be a camplex Hilbert space -- then an operator system is a linear

subspace S ¢ B{H}) such that T € S and S = S*.

12.1 REMARK In view of the Gelfand-Naimark theorem, every unital C*-algebra

A "is" an operator system.
Given an operator system S, put
S, =S8 n B(t),

S

an = S N B{H)gpe

Let A € S5, ~ then
A=A -A”

but it need not be true that A ,A € S.

12.2 EXAMPLE Take H = C° and identify B(H) with M,(C). Let

8 = {A:all =a,, = a33}.

Then $ is an operator system and




But
-1 0 1 B | 0 -1
+ _ 1 -_l
A =3 0 0 0 P A =3 0 0 0
1 0 1 -1 0 1

do not belong to S.

Nevertheless, it is still possible to express A € SSA as the difference of two

elmlentsin3+:
1 1
a=3 ([IAllT+2) -5 ([a][1 - a).

Since the real and imaginary parts of each element of S also belong to S, it follows
thatSistllelinearspanofS+.

12.3 IEMA VAl,Az € S+,

18, = 8,01 < maxt] 12 1, [1a,1[3.

The notion of positive linear functional on S is clear and the standard facts
obtain.

12.4 IEMA If w:S + C is a positive linear functional, then w is bounded and

Ho|l = w(D.

12.5 LEMMA If w:S -+ C is a bounded linear functional and if ||w|] = (I},



then w is positive.

12.6 THEQREM (Krein) BEvery positive linear functional w:8 + C can be

extended to a positive linear functional w:B(H) - C.

PROOF Thanks to 12.4, w is bounded and ||w|| = w(I). Now use the Hahn-
Banach theorem and extend w to a bounded linear functional w:B(H) ~ C with

||®]] = [lw]]. That & is positive is implied by 12.5.

If

S <« B(H)

T « B(K)

are operator systems, then a linear map ¢:S » T is said to be positive if
ib(_S_l_) cT,..

N.B. ¢ is »-linear:

d{A)* = §(A%) (A €3).

12.7 EXAMPIE In general, a positive map ¢:S -+ B(K) can not be extended to

a positive map 3:B(#) » B(K). To illustrate this, take H = C7, let

X = diag(l;ﬁ;—l;— l/:]—-)!
and denote by 8 < M4(§} the operator system spamned by I,X,X* — then
al + bX + cX*

is selfadjoint iff

Q
It
o

o)
I
1



and is positive iff in addition
a = 2 max (|Re b}, |Im b|).

Consider now the linear map ¢:S -+ M,{(C) that sends

al + bY + cX* to .

Then ¢ is positive and

It
'—l

| |e(D) ]|

i
y

e ||

Since ||X|| = 1, this implies that
el = v2 > {lem ]|

But if there were a positive extension 5:1\'14 c) -~ M2 (C), then

3] = | |8 || (cf. 11.27),

an impossibility.

12.8 IFMMA Suppose that $:8 ~ T is positive — then ¢ is bounded and

[12]|

PROOF There are three steps.

1A

2 ey,

1. IfA€S+,t1'1en

0<Acx |[|JA]|T => 0 < o(B) < [|A][o(D)



e@y ]} < [1a]l [le@]].

2., IfAES then

SA!

lle@ || = [fo ([[allT +a) - 3 (||al[z - an ]|

1

= zmax {[|e(]|allz +a) ], [led]]allr - M|}

< [fal] [{e@

3. If A eS8, then

A=Re A+ /~IImA

l{e@)|] < {|rRe A[| + |{Im a[|

< 2al] el

(cf. 12.3)

12.9 REMARK The constant 2 in 12.8 is sharp. However, under certain circum-

l|o(T) || (cf. 10.8).

stances, it can be reduced. For instance, if X is a compact Hausdorff space and if

®:C(X) > B(H) is positive, then ¢ is completely positive (cf. 11.15) and ||®]|]| =

12.10 LEMMA Suppose that ¢:S »+ B(K) is positive — then ¢ extends to a posi-

tive map on the norm closure of S.

Given an operator system S, it makes sense to form Mn(S), an operator system



n
Mn(_B(H)) ~ B( & H)

and we shall put

M(S), =M (8) nM (BH)),

M (Shgy = Mn(S) N M (BH}) -

If 8,7 are operator systems, then a linear map ¢:8 - T induces linear maps

@n:Mn(S) + Mn(T) n=1,2,...)

and ¢ is termed campletely positive if v n, <I>n is positive.

12.11 EXBMPLE Given

= [aij], B = [bij] EMn((_:)r

their Schur product A*B is [aijbij] (the entrywise product of A and B (cf. 8.3)).

Now fix A and define a linear map S,:M (C) + M (C) by §,(B) = A*B -~ then the
following are equivalent:

1. A is positive definite; 2. Sp is positive; 3. Sa is completely positive.

12.12 IEMMA Fix an operator system S and let X be a campact Hausdorff sgpace.

Suppose that 9:C(X) > S is positive -— then ¢ is completely positive (cf. 11.15).

12.13 IEMMA Fix an operator system S and let X be a compact Hausdorff space.

Suppose that 9:S -~ C({X) is positive —— then ¢ is completely positive (cf. 11.21}.



[Note: Specialized to the case when X is a point, the conclusion is that

every positive linear functional w:S -+ C is completely positive.]

N.B. We have

1A

el [ = [legll < [Heyl] < wou < [ }] = oun s

Set

Helly, = swp {][e,|[n € N).

Then ¢ is said to be completely bounded if ||o| ch < «» and completely contractive

if ][] < L.

12.14 EXAMPLE The arrow of transposition

M (C) > M (C)

A->A'

is completely bounded and, in fact, [|r[] 4 = n.

Suppose that 3:8 » T is campletely positive — then ¢ is campletely bounded.

Proof:

He,ll = 2[]e, (]| (cf. 12.8)

= 2|{e(@m]]

l1e]lep = 2] 12D



With more work this can be sharpened to:

1)y, = [1el] = [le@]].

Matrix Trick v A € B{H),

[Al] < 1 <= € M,(B(H)),.

12.15 THEOREM If S,T are operator systems and if ©:8 - T is campletely
positive, then ¢ is completely bounded with

[ellg, = tell = [le@[].

PROOF The assertion is trivial if @(I) = 0 (for then ¢ = 0 (cf. 12.8)), so

assume that $(I) = 0. Noting that

T M0 (S) =M, (S)
M,04 (T)) = M, (T),

take a ocontraction A € Mn(S):

I 3
|lal] = 1= z 0.
Then
-1 A—
@211( )



- ¢ (T) o (&)

= > 0
~ ¢ A* 9o (T) ~
But
0 <6 (D < |je (D}[I
= |{e(T) | |I.
Therefore
e |l o @ -
~ ¢ (B)* [1e(T) || ~
Hem [T - 2, (D 0 -
0 [fe@{]T - ¢ (T)
- <I>n(I) o @)
.|..
_ o (By* o (I) _
=0
- 1 o m/Ilem]|] ~
= z 0

cbn(A)*/| jo (1) | I
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He @ /1em] |} =1
=>
o, @] = []em ]
=>
o || < e ]|

Helly, = [le@l].
On the other hand, trivially
et = [lelf = [fe]l 4-

[Note: Just what space "I" operates on is to be inferred from context.]

12.16 RAPPEL LetAEB(H)'—'-then—ISASIifthEI_?.,
la - /T ex|] s  + 3172

12.17 1EMMA If S,T7 are cperator systems and if ©:8 + T is a unital linear
map, then ¢ is completely positive iff ¢ is completely contractive.

PROOF Cne direction is immediate:

$(I) =TI = ||e(I}]|]| =1
= {lo]f4 =1 (cf. 12.15).

As for the converse, YA € 8:— I < A < I, we have



1l.

[o(A) = /=T £I|| = |[o@®) - /~I to(I)}|

[l

[le(a = /T £I) ||

14,

Hell 1A - /1 e1]

1A

A - /T 1]

a+ t2)1/2

A

Given E€ 8:0<xE=<I, letA=2E~TI —then-1I <A c<1I, so

-1 =<0(A) <1
or still,
0 < ¢&(®) < I.
This proves that ¢ is positive. The same argument also works for @n. Therefore

¢ is completely positive.

Given an operator system S, write L(S,Mn(g)) for the vector space of linear

maps from S to %(Q} ard write L(Mn(S) /C) for the vector space of linear maps from

M_(S) to C.

o There is an arrow

LSM Q) ~ LM (9),0),

viz. & = A, where

¢'
1 n
A (IA.:]) == LI <e,, b, )le.>,
e By ni,j=l 1 i3’ 73
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sThere is an arrow
L(Mn(S) $L<) - L(S,Mn(g)).

viz. A ~ §,, where

Af

¢

Jﬂl(A)j_j = n!\.(Eij @ A).

[Note: Here, ©yreeer€ is the canconical basis for gn and Ei 1<i, 3J<n,

jl

are the matrix units in M (C), thus E;y @A is the element of M_(S) whose ijth entry

is A and whose other entries are 0.}

N.B. We have
¢ > A{D - @A =93

A=+

12.18 LEMMA Let 9 € L(S,Mn(g)). Assume: @n is positive -~ then Aq} is
positive.

PROOF let

be the vector

_1

12.19 IFEMMA Let ¢ € L(S,Mn(g)). Assumes Aq) is positive — then ¢ is



13.

canpletely positive.
PROOF Put w = Aq)anduselz.ﬁtoexterﬁmtoapositivelinearfunctimlal
WM (B(H)) » C — then the map

¢ :B(H) - M (C)
& n'=

extends ¢, thus matters are reduced to proving that ¥ = ¢ is campletely positive

HL
1,2,...). Solet A €M (B(H),, say

or still, that ¥ is m-positive (m

A

[A{Aj] (cf. 11.9).

Since le([AiAj]) operates on an ; to check positivity, it suffices to work with

n
x=xl$---$xm€(_3'm, xiegn, xi=p£lcipep'

This said, write

*
<X, LE'm( [AiAj] yx>
m
= T <x,,Y(A*A (x>
ij=0 + t3 3
m n _
= z I ¢, c. <e  VYAa*p.le >
. . 1
i,9=1 p,qel WP I P 3'Tg
m n - -
= )X E . . nin{E @ A%AL).
Cip°iq™ Epg @ 2Ry

i,J7L p.el



14.

Put
i1 %2 "7 Cin
0 0 O | @<is<m.
0 0 «.. 0 _
Then
n —
C*xC., = I c.c.E .
13 5,1 P
Therefore
<X ,‘i’m( [A{Aj] } 3>
m —
=n T w(C*C. @ A*A,
g L B A

i

m m
nu({ I R AY*( I QA ))
k=1 % @ B k=1 % @ B

12.20 REMARK Suppose that ¢:S » Mn(g) is completely positive — then (Dn
is positive, hence ""cp is positive (cf. 12.18), and the proof of 12.19 produces a
campletely positive extension ¥:B(H) - Mn(g) of ©o.

[Note: We have

il = [le@ ] = |[le@ ] = [[e]] (cf. 12.15).

Iet X be a normed linear space and let K be a cawplex Hilbert gpace. In
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B(X,B(K))* (the dual of B(X,B(K})}, write B(X,B(K})}, for the closed linear span

of the linear functionals Ax G where x € X, X € B(K}, (cf. 2.3), and

AX';\(A) = A{Ax) (A ¢ B(X,B(K))}.

Then B(X,B(K)) is isometrically isomorphic to the dual of B(X,B(K)),, hence can
be equipped with the weak* topology. Taking into account Alaoglu's theorem, it
follows that a bounded net {Ai:i € I} of bounded linear maps A;:X » B(K) has a
convergent subnet.

N.B. A bounded net {A;:i € I} in B(X,B(K)) converges to A weak* iff v T € L, (K},
tr((AX)IT) > t((Ax)T) (x €X)
or still, v u,v € K,

tr( (Aix) Pu,v) + tr((Ax) Pu,v) (cf. 1.10),

tr{ ) > tx(P

P (Aix)u,v (Ax)u,v) d

iaeo ri

<y, (Aix) u> > <y, (Ax)u>.

Let X = B(H) and equip B(B(H),B(K)}) with the weak* topology. Denote by
CP_(B(H) ,B(K))

the set of completely positive maps B(H} + B(K) of norm < r.

12.21 IFEMVA CPr(B'(H),B(K)) is compact in the (relative) weak* topology.

12.22 THEOREM (Arveson) Let S c B(H) be an operator system, K a camplex
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Hilbert space. Suppose that ¢:S > B(K) is campletely positive -- then ¢ admits
a canpletely positive extension V¥:B(H) -+ B(K).

PROOF Given a finite dimensional subspace F < K, put
0(n) = P2} F (AE€ES),
where PF is the orthogonal projection per F -=- then i8S > B(F) is completely
positive. But B{(F) = Mn(g-) (n = rank PF) , hence 3 a completely positive extension
'PF:B(H) + B{F of @F (cf. 12.20). Pass now fram ‘PF to GF = ‘PFPF, S0

¥p:B(H) > B(K)

and GF is again campletely positive. Order the P by inclusion to get a net {@F}

in CP B{#), :

il

[¥pll = |14 @ || (cf. 12.15)

I

JEReE T

178

@] |

i

Heg(D ||

1A

leml]

fle]]  (cf. 12.15).
Using 12.21, choose a subnet of @F} that converges to some element
P = CPI [‘Dl | (B(H) ,B(K)) -- then the claim is that

¥|S = o,
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To see this, fix A € 8§, take u,v € K, let Fu = gpan {u,v}, and consider any

;V

Fo Fu,v:

<, ¢ (A)u> <V,PF(I>(A)L1>

= <V,'PF(A)1J>
= <V, -
‘PF(A)PFu>

= W,@F(A)uh

Let T < B(H) be an operator system -- then 1 is said to be injective if given
operator systems T c T' c B{(K)}, every campletely positive ¢:T » T has a campletely

positive extension ¢':T7' » T.

12.23 EXAMPIE B(H) is injective. For, according to 12.22, a campletely
positive @:7 » B(H) admits a completely positive extension ¥:B{K) - B(H), thus one
can take ¢' = ¥|T'.

12.24 REMARK Every unital C*-algebra A can be regarded as an operator system
(cf. 12.1), so it makes sense to ask whether A is injective or not.

12.25 1A T is injective iff 3 a campletely positive projection
Ti:B(H) » T of B(H) onto I.

PROOF Suppose first that T is injective. In the above, take K = H and let



18,

T=1

T'

]

B(H) .

Then the identity map I - I has a completely positive extension NM:B(H) » I which
is obviously idempotent. Turning to the converse, assuwe that I has the stated
property, consider operator systems T ¢ T' < B(K), and let &:T + I be cawpletely
positive. Postcampose & with the inclusion 1:7 > B(H) to get a completely positive
map 1 ¢ &:T » B(H) — then 12.22 provides us with a completzsly positive extension
Y:1B(K) + B(H) and ¢' =T & (¢17T"):T" » 1 is a conmpletely positive extension of
:vyBET,

$'(B) = N(¥(B)) = H(r ° &(B})) = %(B).

[Note: Schematically,

TeT' <« BK)
<bl l‘}'
1
1 > B(H) .

<

Take I injective and Il per 12.25.

N.B. I is unital (= |[{n}| = |II(@D)|] = 1 (cf. 12.15).

12.26 LEMVA VY A,B € B(H{),
I{I{A)B) = N(N(A)II(B}) = N(ANI(B)) .

PROOF By linearity, it can be assumed that A and B are selfadjoint -~ then
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0 n@) 0 nay

T = and H’2(T) =

_ A B _ n@  ne _

are selfadjoint elements of M,(B(H}), hence

I, (’I‘)2 < I[z (_Tzl_ (cf. 11.24).

Therefore
_ , _
T(a) T(A) T (B)
_ @@ a2 + ne?
—_ 2
Tm@E) % (T (A)B)
=
| IEn@)) nm@? + 8%
=
T @) 2) I(I(A) T (B))
2 2
e n®@) nam? + 1@
o ?) I(L(A)B)
=
_ TET@)) nmm? + 8% _
=>
- 0 O(IABY - TN@AITABYY

_ IER@) - HIEn@)) —

[\
L]



But

Thus we have

where

Fix

with the property that

20.

(L(H(A}B) - M(I(A)TI(B) ) *

T((n(a)B)*) ~ N{(I(AITI(B))*)

N(B*(Aa*)) ~ T(N(B*)T(A*))

L(BI(A}) - N(R(B)(A)}.

X = H{II(a)B) - N(MAINI(B)).

311 412
€ M, (B(H)) g,
*
_ 2%
- — -2
X 411 4315
R aly a5,

]
22
.

all=a12=0=>x

(R (A} B)

1

T (A)TI(B)) .



21.

Finally
I(ANI(B}) * = I{Il(B*)A%)
= TI{II(B)A}
= (BT {A))
=>
IN(aAN(B)) = M(I(B)TI(A))*

HIA)n(s)).

12,27 THEOREM Suppose that I < B(f) is an injective operator system —— then
the assigmment

IxT-~>1

(A,B) > A o B =TI(AB)
I}

defines a multiplication on I. Furthermore, T together with this multiplication
and its given *~operation and norm is a C*-algebra with multiplicative identity I.

PROOF The maltiplication is associative (cf. 12.26):

A e (B o) = IAN(BC)) = N(M{A)A(BC)} = N(N{A)BC) = T{ABC)
I I '

(A o B) o C=T(N(AB)C) = N(IN(AB)I{C))= T(ABH(C)) = NI{ABC).
- I il

NMext, vAc I,

I oA=T(IA) =TI(A) =24
T

A o I = T[(AI)
- It

n@E) =4A
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and v A,BE 1,

(A ¢ B})* = TI(AB)* = _]'I(B*A*) = B* o A%,
Il IH

Therefore 7 is a unital *-algebra. But the continuity of T implies that T is

norm camplete. And ¥ A,B € S,

i

Ia o B[}

i

(a8 ||

1A

Uall fast] < [|aB]} < |{a[] ]]B]].

Therefore ] is a complex Banach algebra. It remains to verify the C*-condition,

viz.
2
||a* - A]| = {[a[]".
It
On the one hard,
|[a* o a|} = ||n@*n) ||
i
< [[T]] |{a*al]
2
= |{a*a]| = [|a]]%,
while on the other,
T{(A*A) = TI{(A)*TI(A) {cf. 11.24)
= A*A
=
||a* o A]| = ||m(a*a)}]
IH
* _ 2
> ||a*aj| = }[a]]%.

Let Al'[ stand for T supplied with the C*-algebra structure set out in 12,27 -~
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then ¥V n, the arrow

LM (B(H)) + M (B(H))
determines a C*-algebra structure on the range A]I .

n

12.28 ILEMMA There is a canonical *-iscmorphism

M,y = A

‘n

PROOF 1In fact, Vv A,B € Mn(AH)-, their product is the matrix

[Z A, e .] [Z TI(A, )]
k ik I Bkj X 1kBk]

1l

Hn([li Aj.kBkj])

T (aB).

[Note: A *-isamorphism of C*-algebras is necessarily isometric, thus one can

n
identify Mn(AH) and Ann. Accordingly, Mn(AH) has the relative B{ & #) nom and

n
M (D) NBe M, =M (A),.]

N.B. In general, AT[ is not a C*-subalgebra of B(H).
[Note: It is easy to prove, however, that AH is monotonically camplete in

the sense that every bounded increasing net A; € (AH)SAhas a least upper bound.]

12.29 REMARK The multiplication in I is independent of the choice of II in
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the following sense. Suppose that

Hl:B(H) >+ T

H2:B(H) > T

are campletely positive projections of B(H) onto T == then the diagram

I — A

[

] —

2

has a unital filler E):Al., - AI[ which is a *-isomorphism.
1 2

Iet A,A" € T and let B € B{H} - then {cf. 12.26)
T(AL{B)) = N(O{A)B) = II{AB)

M{(B)A') = N(BI(A")) = [I(BA'").

12.30 LEMMA Suppose that I is a subalgebra of B(H) — then
N(ABA') = AN(B)A',
PROCF Since 1 is closed under mualtiplication,

An(B)A' € 1

N(AN(B)A') = AN(B)A'.



25.

But

NANI(B)A') = TI(ATI{II{B)A'))
= NI(AII(BA') )
= NI{ABA'} .

[Note: Therefore NM:B(H) » I is an I-bimodule map. In particular, I might

be a unital C*-subalgebra of B{H) in which case I is called a completely positive

conditional expectation.]

Let A be a unital sx-subalgebra of B(H) —— then A is said to be generated by

projections if the linear span of the projections in A is norm dense in A. E.g.:
W*-algebras have this property.

12.31 IEMMA Suppose that A is generated by projections. Assume: 3 a unital
idempotent $:B(H) -+ B(H} of norm 1 whose range is A — then ¥V E,n € A & ¥ A € B(H),

$(EAN) = £ (A)IN.

PROOF To begin with, ¢ is positive (cf. 11.13), thus V A € B(H), d(A)* = 3(a*)
(cf. 11.4). This said, it suffices to make the verification when &,n are projections
in A and then one has only to show that &(ZA) = Z&(A).

Indeed,

¢(an)* = o((an)*)

o (n*a*)

n*e (A%}

= n*@ (A) *

3(An) = (N*dQ@Y*)* = b(A)n.
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Iet £' =1 - £ — then ¥V AA" € B(H),

So, VtEB)O,

llea + £a'| |2

= || (EA + £'A")*(EA + £'A") ||

= }|arza + Avsg'at]]

i

|[a*eall + [|at*g'a]|

|1axgrent| + [|ar*gr*g at||
= || Em*gal| + [[E'an*earl|

= [1ea]|? + Jjerar) )2

1+ 02 [greEm ||?
= |le'ocEa) + t2rocEn) | |2
= ||g'e(zn) + t@(E"i’(SA))Hz
= [|etoca + t£ro(eA)) | |2

I1ea + tro(em) | |2

N

I

Heal]? + | |egrecea |12

Va2 + €2 |eracea |12

1

2t + 1| |g'eEa) |12 5 ||l

HeraEm |12 = o
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1l
o

£'o(En)

Il

o(ga) = £2(EA).

Replacing £ by &' and repeating the arqument leads to

EO((T - 5)A) = 0
or still,

£e(a) = go(ga).
Therefore

¢ (En) = £o(a),
as desired.

[Note: Consequently, ® is completely positive (cf. 11.14), hence A is

injective (cf. 12.25).]

12.32 EXAMPLE TakeA=QIandlet@beasinl2.3l——thenVA€B(H),
o(A) = w(@AI (0(d) €C)

and w:B(H) + C is a state on B(H) (I = ¢(I) = w(I)I => w(I) = 1). Conversely,

if w:B(H) » C is a state on B(H) and if we let
P(A) = w(A)I,

then ¢ is unital (w(I) = 1), idempotent (3(3(A)) = ¢(WA)I)= w(R)H(I) = w@)I = 3(A)),
and {2 = [{wl]| = 1.
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APPENDIX

The following result can sometimes be used to reduce a nonunital situation

to a unital situation.

IFMMA Let 8 c B(H) be an operator system, K a complex Hilbert space. Suppose
that ¢:S + B(K) is campletely positive —— then 3 a unital campletely positive
¥:$ + B(K) such that

o) = oMy @emY?@e 9.
PROOF Let T = ¢(I) € B(K), and let P be its support projection —— then P
is the minimal P € L(K} such that TP = T and the sequence

1/2

/20 + 1m)” V2 ¢ BK),

is increasing and converges to P in the strong operator topology. Fix x € S(H)

and define ¥°:S > B(K) by

1/2 1/2

¥y = (T + I/m)” @) (r + I/m) + <, B> (I = Py

Then ¥ is carpletely positive and we claim that v A € S, the strong limit of

{Wn(A)} exists, To establish this, it can ke assumed that 0 < A £ I, hence

0 < &(a) <0(I) =T, so 3 CAE B{K):

1/2
CAT

$(8) 1/2 _

1/2.4
T “Ct.
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Therefore
o@ Y2 + 1m” V2= CATl/ 2+ 1m” Y2 s cpy
(sor) .
(T + I/n) Y 2¢(A) 7z _ (T + I/n) v 2pt/ 203 + P C*y
But

Ho@ 2T + 1/m)~ Y2

< |Icyl].
e+ 1/~ Y@ 2)

Since multiplication is jointly continuous on bounded sets in the strong operator
topology, it follows that

1/2 .
> PrCaCAFp

v+ 1/n)" Y%0@) (0 + I/n)”
strongly, from which the claim. Now define V¥:8 > B(K) by
¥(a) = lim ¥7(A).
Then ¥ is coampletely positive. Moreover, ¥ is unital:

¥(I) = lim v™(I)

Lim((T + I/n)~ Y25(1) (7 + 1/m)” /2

n

+ <x,x> (I - PT))

1m((T + T/~ VM2l 2 L oomy- V2 4 (1 - Py))

PTPT-I-I—PT

= I.



And lastly,

30.

r + 1/mY 2R @) (1 + 1/m) 2

= $A) + <x,Ax> (T + I/) (I - PT)

Tl/ 2‘{, @) Tl/ 2

(A + <x,Ax> P(I - PT)

®(d) + <x,Ax> (T - TPT)

o(a).



§13. RADON-NIKODYM THEORY

Let T be a *-semigroup.

Notation: Given functions $,9':T + B(H) whose associated kernels KQ,K

are positive definite, write ¢ > ¢' if K, — K_, is positive definite.

$ @
Suppose that

G, T > B(Hl)

are representable, i.e.,
0 = hp Ty (B € BlHyK)

0= gy (Ry € BlHyK)),

T, il -+ B(Kl)

1

112:I' > B(Kz)

are minimal *-representations of I’ on

K

Ky s

respectively.

[NOte: K .rch
2

satisfy the boundedness condition (cf. 9.10).]

are necessarily positive definite (cf. 9.9) and both ¢

@

1+%



13.1 LEMMA Let X € B(H),H,). Assume: 3 X € B(K /K,) such that

- ~

XR, = RX and Efml(g) =T, ()X (£ €.

2112
[1x[178; 2 x*¢.X.
PROOF Given

Eyroerby €T

Xl'- ..,Xn E Hl'

we have

n
L <Xy X%, (EXE.)X00.>
i3=1 1 2'71731 %

n

L SRRy Ry

(1

n
. ji]_ SR 4Ty (€)%, (Ej) R2XX3>

Il
i'jzl <ﬂ2(Ei)R2}bci,ﬂ2(Ej)R2Xxj>

H z Xxk||2
2 om,(&)
k=1 2 kRZ

n ~ 2
[l 5 m,(5) |
o 2 k! R



n
> 2
|%( = 7,(&) YH
| o ' ) B %%

1A

| 1%] 12 e m (B IR %, | |2

~ 2 n
I T oo gy,

Therefore

%[ 1%, = x*ex.

13.2 RAPPEL Let H be a camplex Hilbert space. Suppose that A c B{H) is
a *»subalgebra and has a trivial mull space (Ex =0V £ € A => x = 0) — then the

closure A of A in the strong operator topology contains the identity operator I.

13.3 IEMMA Iet X € B(Hl’H2)' Assume:

r2¢>1 z x*d:zx 3r>0).

Then there is a unique X € B(Kl’KZ) such that

XR, = RX and Xm) (£) = 1y (D)X (E € D).

PROOF Proceeding as in 13.1,

n
2
V2 m () b
1 2 (B ) RyXxy



n
I <X, X*0,(£%E.)Xx.>
i,9=1 i 271737

I

2 n
r I <X,,®, (E¥E.)x.>
i,5=1 b IR R Ry s |

1A

2] T m IR 12
wep 1K il e

s0 there isauniqueie B(Kl,Kz) such that v £ € T,

X ()R = 7, (E)RX.
And then V Em €T & V X € Hy,
fiﬂl(i)ﬂl(n)Rlx = ﬁnl(in)Rlx
= T, (En)RXx
= 7, (E) 7, () RXx
= m,(€)Xm) (R X
since m (TR H, is total in K;, it follows that X intertwines m, and m,. It

remains to prove that ;CR]_ = R X, For this purpose, consider the x-subalgebra

W< B(Kl ¢} K2) of all diagonal matrices

Wl 0
W= ¥
0 W



Wl = i Ck'lTl(Ek) (i= 1,2).

Because of minimality,  has a trivial nullspace. Accordingly, thanks to 13.2,

its closure # in the strong operator topology contains the identity operator

ButhEHl,

§<‘

Fx = X T (G Ryx

s ckfinl(gk)Rlx

k

= L, (G ) RyXx
x

= (I ¢ T, (£ ) )R Xx
k

= WpRk.

Now let W approach I to conclude that ;ml = RX.

N.B. ¥ x € Hl'

A

Hmy@ryxe| |2 < £y )R x} |2

~ 2
[ 1%y ©)Ryx] |2 = |1, @ R, |2



1A

2| |m (©ORx| |2

WA
o

1%}

13.4 THEOREM Suppose that X € B(Hl'HZ) intertwines 2 and 3,:

X@l(E) = QZ(E)X (£ €T).

Then there is a unique X € B(Kl,f(z) such that

-

XR, = R,X and )Ewl(a) = wzts)i (EET.

Moreover,

PROQOF First, for all

Epreeesb €T

xlfooorxn E Hlf

n
T <X, X*.,(E*C.)Xx.>
i,9=1 i 2=i=97

n

= I <, X*XP, (E¥E.)X. >,
i,5=1 i 1'=i~§"7]

Next, v £ €T,
Xy (E%) = 0, (E9)X
=>

(X0, (E¥))* = (2, (E)X)*



Ql (E*) kYR = X*(I)z(g*) *

@lta)x* = x*tbz(g)' (cE. 9.7)

=>
X*X01 (£) = X*¢, ()X
= @l(E)X*X.
n
Consequently, in & Hl’ the operator
A = diag(X*X}
commites with
E= [@1(*;;53-)].
But
n

a,aeB(eH)+

n
.AEEB(QH)_'_.

n
SO, V}_{EQH]‘F

|
43
14
-
=
(1)

"
=
A
f
I
1
-
i,
~
)
Y



s | [xx] | <2

< 11x1]? x50
Therefore
In

T <X, X*0, (E¥ . )Xx.>
i;j=l 1 2 "1 J J

5 M
< |1xt T <x,,0, (E¥E.)x.>.
i,j=1 b R B Ry M |
The existence (and uniqueness) of X is thus guaranteed by 13.3 (and r = | 1x}]

=[xl = |Ix]D.

13.5 REMARK This result implies that there is a "lifting map" X > }2 from
the set of operators that intertwine o and ¢, to the set of operators that
intertwine Ty and Ty
¢ If X is a contraction, then so is X.

OIfxisunitary,thensois}E.

and 9, -— then X*:H, - H

[Note: Suppose that X:Hl - H2 intertwines ¢ 2 5 1

1

intertwines ¢, and ¢; and its lift is X%k > K

2 > K-l

Let A be a U*-algebra —- then 10.7 is applicable.

[Note: If ¢:A > B(H) is campletely positive {or, equivalently, Ry is positive

definite (cf. 11.10)}, then & = AR'n is "the canonical representation" of 4.]




Denote by CP(A,B(H)) the set of campletely positive maps A > B(H) and for
$,9' € CP(A,B(H)), write ¢ = 3" if & ~ @' € CP(A,B(H)).

13.6 LEMMA Suppose that ¢ > ¢' — then there is a unique contraction
T € B(K,K') such that
TR = R' and Tn(E) = n'(E)T (£ € A).

PROOF In 13.3, take

o
]

1 <I>(=><I>=ARTT, R:H + K)

=
]

5 o' (= o' = AR,'.'T', R':H > K"},

r=l,andx=Itoproduc:efi:K+K' of norm £ 1 such that
XR = R' and X1 (5) = T (E)X (£ € A).

Now change the lettering and write T in place of X.

[Note: Using the notation of §8, put A(Z) = w(£}R — then

H

R*n{E*n)R

R*m(E) *m(n}R

A(®)*a(n)  (cf. 8.11).
According to 8.13, the assumption that ¢ > ¢' (which is equivalent to the
assumption that Kg 2 K@,) entails the existence of a unique contraction T:K + K'
such that

A'(g) = TA(E)
or still,

' (£}R' = Tn{{)R.



10.

This "T" is the same as the "T" figuring in 13.6. In fact, R' = TR (take £ = e).

As for the relation Tn = w'T, it suffices to verify it on w(A)RH. But
T TrE)T(n)Rx = Tr(En)Rx = w' (EN)R'X

o' {E)ITr(mRx = 7' (E) 7' (N)R'X = 7' (En)R'x.]

13.7 LEMMA We have

T*T € n(A)"' (cf. 7.10).

Put

D(D(ét»‘) = T,

Then D@(tﬁ') is called the Radon-Nikodym derivative of ¢' w.r.t. o.

N.B. ¥ E£¢€ A,
é'(8) = R"*n'"(E)}R'

R*T*t (E)TR

= R*n () T*TR

R**Pr(E)R  (cf. 13.7)

R*D(D(@')ﬂ(i)R

rD, (01) " ?1(£)D, (09 V2R,
[Note:

Tn(g*) = 7' (EX)T
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TI(E*)*'I'* = Pt (E*)*
or still,

T(E)T* = T*n'(E).]

13.8 EXAMPIE Suppose that ¢:A -~ C is a positive linear functional —— then

¢ is campletely positive {(cf. 11.23) and the GNS construction enables one to write

®(£) = <a,m(E)a> (§ € A) (cf. 8.26 and 10.12),

' < & => ¢'(8) = <a,D (2" W(Da> (E € Ay.

13.9 EBEXAMPLE Iet X be a compact Hausdorff space. Suppose that 1 is a Radon

measure on X — then the assigrment

f > fX fdu (£ e C{X))
defines a positive linear functional @u on C{X). As such, @u is completely positive
{cf. 11.23). To explicate 10.7 in this situation, let '.'Tu be the canonical repre-
sentation of C(X) on K]J = LZ(X,u} , thus

wu(f} = Mg,

where Mg is the operator of multiplication by £. Here Hu = C and R]_l:H]J > Ku

sends a caplex mwber z to the constant function on X with value z. It is then
immediate that

¢ (£) = R*1 (fIR
u() l—lﬂu()]-l

and nu(C(X))Rqu is total in Ku' Assume now that v is another Radon measure on X
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with
Sy fau = fy fav  (f € C(X))
or still, @u = @\) — then

Dq)u(@v) = DU(U) € nu(C(X)) ! {cf. 13.7).

%w)em¢¢emen,

M o the multiplication operator per ¢. Therefore, in suggestive notation,

D, (V) = dv/du € L (X0,

which is in accordance with the facts since the Radon-Nikodym derivative is only
determined {p a.e.] (note that HDU(\)) i, < 1. Indeed,

%(f) = fx fav

= fx f(av/amadu.

Given ¢ € CP(A,B(H)), put
[0,2] = {6' € CP(A,B(H)):0 = &},

Then [0,9] is a convex set.

Note: v o',¥' € [0,9] and v t € [0,1],

' + {1 - t)¥' € [0,0]

Dq)(t@' + 1 -8Y") = tD¢(<1>')- + (1 - t)DQ(‘P')‘}
Let A € T{A) ! arxd define a linear map CI>A:A + B(H) by

2, (E) = RAT(OR (£ € A).
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13.10 1I2MMA If ®A= 0, then A = 0.
PROCF Bearing in mind that w(A)RH is total in K, Vv X,y € H, we have
<m{£)}RX,An (n) Ry>
= <x,R*m(£) *Ar (n)Ry>
= <x,R*m(E*}Ar (n) Ry>
= <x,R*AT(E*n)Ry>
= <x,8, (£*n)y>

- 00

13.11 1IMMA If A € w(A)' N E(K), then @A € CP(A,B{H)} and, in fact,

@A e [0,%] (cf. 8.12).

[Note: Restricting A to w(A)' n E(K) rather than just E(K)} does not conflict
with 8.12. The point is this: Every completely positive ¢ gives rise to a positive
definite kernel KQ:A x A + B(H) but there may be positive definite kernels |
K:A x A » B(H) that do not came from a completely positive ¢. In particular: If
E € E(K) is arbitrary, then

R*m (£) *ET(n)R

K (E,M)

is a positive definite kernel anqu) > KEbut in general, Ky * Ko for scme

@‘ E [0'@]0]

N.B. There are two other elementary points.

oIfAl,AZEﬁ(A)'arx:lifOsAls:AzsI,thenOE

i
AT A
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®Tf A A, e n(A)" and if 0 < ¢
A By a ',
13.12 THEOREM The arrcw
m{A)' n E(K) » [0,¢]
that sends A to N is bijective.

PROOF To establish surjectivity, take a ¢' € [0,¢] and let A = Dq)(<I>') -- then,
as observed above, ¥ § € A,

' (£) = RD (8")T (DR,

' = ¢ e
D, (")

13.13 REMARK Turned around, the arrow
[0,9] = w(A)' n E(K)

that serds $' to D¢(®') is bijective.

13.14 EXBMPLE Take A = B{H) (dim H = n} but, in a change of notation, let
K play the role of "H" in the foregoing theory and take it finite dimensional
{dim K = m). Define
o € CP(B(H)},B(K))
by

= o £V
o () = =—1I (A € B(H)).

K



Given x € H,vy € K, let

be the operator

Fix an orthonormal basis

where

In fact,

1
/A i=l k=l

m

nos 3

2
/n i=1 k=1
n m

% DL <E,
i=1 k=1

15‘

Px,y:K > H
Px,y = <Y ,— >X {cf. 1.10).

e]_,...,e:n for #

fl; .. 'fm for Ko

n
i T WAvik (A € B(H)),

1
V.. = —P
ik n ety
n m
LT vk AV
io1 ey KA

= LI V*ikA<fk,y>ei

% <fk,y>V*ﬂg\ei

y><ey o>ty
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1 n m
= = Z @.,M-) E <f ’Y>f
nig 11, k k
_ tra)
.___—n Ilé’
= ¢ _(A).
T

LetRTbethemap

K>-H@& K& H
that sends v € K to
n n
i—El kglvﬂ(yﬁfkﬁei

and let

mB(H) >~ BHR K& #)
be the »-representation of B(H) on H R K@ H that sends A ¢ B(H) to

AQIKQH.

Then the definitions imply that <1>T =8 T is the carmonical representation of @T.
o _

Suppose now that ¢ € CP(B(H),B(K)). Claim: 3 c®>0 such that

chcbt = 0.

To see this, mote first that

n

T P &P € B{H & #)
i,3°1 %% S0

=11

is the orthogonal projection of H & H onto the subspace determined by

e;Be;, 8 (HaH.

[ =]

51 |-

i=1
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Since ¢ is completely positive, the operator

is positive.

So, VA € B(H)

n
L P 2P }
ig=l %1% Sy

=
|

1
= (f @ IH) (ﬁ-

n
L 5 3@ .
i, j=1 i’j i"™j

]

€ B(KQH)

In addition,

<fk&e M (f£@6)>

1 n
a <fk 2 e, z <I?'(Pe ,e

) & Pe
OI'.rB=l a B

(f, R e,)>
2’ Sa £ 3
In
T <f ﬁe,@(P £, @ P
a,B—l k e, reg £

=R

ea,eB 3

n

T <fk 2 e, ¢'(P
o, B=1

B

£, 8 <e,,e.>e >
a’8£ B3 o

n
z <fkﬁe ,@(P e )fzﬁea‘)

=1 N

gSl=

n
T <f ,0(P
o=1 k S’ 3

1
= )f£><ei,ea>

1 <
= <f ,o(P YE,>.
n k ;s 3 2

ard v v € K,

Ri(A 2 MQ))RTY

n m
T ¥ o<e,Ae.x<f @ e; ,M (f, & e }>P Y
{57l k= + 3K ¢ forfy

Bl
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n m

1
= = X T <e.,Ae.><f (P YE, ><£,,v>f, .
n® 1,521 k,e=1 1+ 3 k & s F AR AL
Write
n
A= z <ei,Ae.>Pe e."
i,9=1 I 858y
Then
I
y= LI <f,v£
i1 ETTE
=>
m
d@A)y = L <f£,Y>®(A)f£
£=1
m m
= I <f,,y> I <f_,8(B)f,>f
=1 HT T KEK
n m
= z L <e,  he ><f ,B(P VE,><£,,v>f, .
i,5=1 k,£=1 17597 7k ei,,eej Al 4 k
Therefore
R*(A & MR ==1——<I>(A)y
T o' Y 2
or stilil,
My 1
R*(A & Ry = —————0u- (A)y.
M 2
T S TR 2 )
Since

M
[
IHQ me w(B(HIY' n E(K & ),

it follows that
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if

[Note: Set

M
" — 0]
DQ(‘P } -—IH@ W.]

13.15 RAPPEL A nontrivial *-representation m:A + B(K) is topologically

irreducible iff w(A)' n L(K) = {0,I} or still, iff 7(A)' = CI.

Let & € CP(A,B(H)) be nonzero — then ¢ is said to be pure if [0,%] =

{t®:0 < t < 1}.

13.16 ILFEMRA The pure elements of CP(A,B(H)) are those ¢ for which 7 is
topologically irreducible.

PROCOF Suppose that ¢ is pure —— then

a(A)' n E(K) = {ch(ttb}:o <t <1}
= {£T:0 < £t < 1}
=>
(A} n LK) = {0,1I}.

Therefore w is topologically irreducible. Conversely,

T(A)' = CI
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m{A) ' n E(K)

{tI:0 < t < 1}

[0, %) {t$:0 < t < 1}.

13.17 REMARK Iet V:V - H be an isametry ( => V*V = I) -- then
9 pure => V¥4V pure.
In fact, the canonical decomposition of V*¢V is

VAR*TRV = (RV)*1RV.
[Note: Since w is topologically irreducible, it is automatic that mw{AYRVV

is total in K.]

13.18 EXAMPLE ILet X be a compact Hausdorff space —— then the pure elements

of CP(C(X),B(H)) are the functions &:C(X} » H of the form

o(f) =fx)Aa (x€X),

whereAeB(H)_l_hasramcl.

13.19 REMARK Consider the setup of 13.14 -~ then <I>T is not pure unless

H=K=C. Indeed, the cammtant of

T(B(H)) = B(H) & CI

KaH

B(HR@ KR H) = B(H) @B(KaH
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is

CI, @ B(K 2 H).

H

13.20 IEMMA Fix ¢ = 0 in CP(A,B(H)) — then the extreme points of the

convex set [0,9] are the o5 (Pea(d)' n LK) (cE. 3.1).

We shall now return to where we started. So let T be a #-semigroup and
suppose that &:T -+ B{H} is a function which is representable, i.e., ¢ = AR‘IT

(R € B(H,K) and m:T » B(K) a minimal *-representation of ' on K) -- then there

is an arrow X + X from &(T)' +o w(T)* subject to XR = RX (cf. 13.4).

[Note: By construction,

X(Z TEDR) = T TEIRK; (5 € Tx; € H).]
1 1

N.B. X € {RR*}'. In fact,

(X*) = (0* (cf. 13.5).
Therefore
XRR* = RXR*
= R(RX*)*
= R(X*R)*
= RR*X.
Thus the range of the arrow X + X is actnally 7(IY' n {RR*}'. As such, it

~

is a *~homomorphism. Furthermore, X

I

0 iff RX = 0.
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13.21 LEMMA The arrow X + X is surjective.
PROOF Write R = (RRY)Y%W, Wil » K a partial iscmetry and
Wit (RR%) /2 = (mré) Y qmr = (Rt Y/

Given T € 7{1) " n {RR*}', put

4
]

W*TW € B(H).

(RR*)
= (RR%) Y A
= ren) M 2m
= T(&RY) YW

='IIR.

g
Il

Ad Vv £ €T,

XB(E) = XR*T(E)R
= WTWR*T ()R
= v (RR%) Y 2 () R
= wer (RR%) 2 (5) R

= w (Re%) Y 2o (£) R

R*T(L)TR

= RéT(E)T(RRY) /%9

H

R*T(E) (RR*) Y 2w
= RAT (E) (RR*) A rw
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R*1(E£}RX

$(E)X.
Therefore gt =T,

13.22 LEMMA Suppose that Ker R = {0} ~~ then the arrow X - X is a
*—isomorphismn:
(T} = w(T)' n {RR*}*.
PROOF In view of 13.21, the claim is that X = 0 => X = 0, To get a contra-

diction, say X = 0. Choose x € H:Xx = 0. But

;{=0=>;m=0=>Rx=0=>Rx>c=0=>xX=0... .

13.23 REMARK If %(e) = I, then R*R = I (cf. 9.14). Therefore Ker R = {0}

and 13,22 is applicable.

The assumption that R has a trivial nullspace has certain consequences. E.g.:
T topologically irreducible => n(l')' = CI => ¢ topologically irreducible.

[Note: v £ €T, ¢(E)* = ¢(&*) (cf. 9.7). Therefore &(I'} c B(H)SA and the

statement that ¢ is topologically irreducible means that the only closed subspaces
of H which are invariant under ¢(I') are {0} and H.]

13.24 EXAMPIE Take I' = A, a U*-algebra. Let ¢ € CP(A,B(H)) and assume that
$ is pure and unital -—— then m is topologically irreducible (cf. 13.16), hence 9 is
topologically irreducible.
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Write CPU(A,B(H)) for the subset of CP(A,B(H)} consisting of the campletely

positive unital maps ®:A + B(H) —— then it is clear that CPU(A,B(#)) is convex.

13.25 EXAMPLE If ¢ € CP(A,B(H)) is pure and unital, then ¢ is an extreme

point of CPU(A,B(H)}). Thus consider a convex decomposition ¢ = Ay + )\2@2

(0 < X }\2 & ll + J\z = 1), where <I>l;ti>2 € CPU(A,B(H)) — then

ll‘

(=
[N

Ay @

1A
L=

Ay, = t,d

1°1 1°1 1
=>
_ 0 < )de>2 < ¢ _ 12¢2 = t2<I>.
But
(Dl(I) = H(I) =1 ll = tl @l = {
= =
<I>2(I) =§(I) =71 Az = t2 <I>2 = b,

Therefore ¢ is an extreme point of CPU(A,B(H)).

13.26 LEMMA Suppose that & € CPU(A,B(H)) is an extreame point of CPU(A,B(H)) -

then the map
T(A) ' > B(H)
A —r R¥AR
is injective.
PROOF Assume that R*AR = 0 and without loss of generality, take A selfadjoint.

Pix =,t € B>0:

S I =8A+tI < I

NI
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and put
X=gh + tl.
Then R*R = I, so
1 3
-4— I <t < Z I,
thus 0 < £ < 1, Now form
= P
CIJX R*X1R
- * -
_ 81 y = R¥(I-X)7R.
Obviously,
¢ = d)X + ®I-X
or still,
§ =t le) + (1-+) ((-t) Yo )
X I-X°
But
@x(e) = tI
_ <I>I_x(e) = (1-t)I.
Therefore
Tt A
Consequently,

R*XmR = tR*1TR = R*(tI) TR
=>» X = tl (cf. 13.10)

=> ¢tI=SA+ tl=>sA=0=>A=0.

13.27 REMARK 1In 13,26, take H finite dimensional — then it is a corollary
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that m(A)' is finite dimensional.

As it happens, the converse to 13,26 holds as well.

13.28 LEMMA If 0 € CPU(A,B(H)) and if the map

T{A)' + B(H)

A — R*AR

is injective, then ¢ is an extreme point of CPU(A,B(H}).

PROOF Consider a convex decomposition ¢ = A ¢, + )\2<I>2 (0 < ll,l

191 &

2

Ay + A, = 1) —- then A0, € {0,8], s0 3 A € T(A) ':%,% = R*AmR (cf. 13.12), hence
llI = R*(AlI)R = R¥*AR
=>
)\lI = A,
Therefore
J\l®l = R*(J\]_I)'.-TR = A]_CI)

13.29 RAPPEL Let m:A > B(H) be a *-representation -- then m{A)H is total
iff the only X € H with the property that n(£)x =0V £ € A isx = 0.
[Note: Therefore
T unital => w(A)H total.]
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13.30 EXAMPIE Suppose that m:A -+ B(H) is a unital *-representation —— then
m € CPU(A,B(H)) (cf. 11.6) and in view of 13.29, its canonical decomposition is

"T=q" (R=I), thus m is an extreme point of CPU(A,B(H)) (cf. 13.28).

[Note: This shows that in general an extreme point of CPU(A,B(H)) need not

be pure (r is pure iff m is topologically irreducible (cf. 13.16)).]



§34, MATRIX STATES

Given operator systems
~ S < B(f
T c B(K),

denote by CP(S,T) the set of completely positive maps § - T and by CPU(S,T)

the set of completely positive unital maps § - T.

14.1 EXAMPIE let (I):Mn(g) > Mm(g) be a linear map — then ¢ is comwpletely

positive iff it has the form

m
o) = iil VIV, (A€M (Q),
m
where the Vi € Mn,m((—:)' 80 ¢ is unital iff j_il v‘{vi = I.

[Note: CPU(M (C),M, (C)) is a convex set. What are its extreme points?

Answer: Those ¢ which admit an expansion

£
(a) = R V§AVi (& € Mn(g));
i=1
L
subject to £ < nm, I ngi = I, and {V‘J!'_ijl < i,j < £} linearly independent
i=1

(=>£2sm2=>£sm).]

If 9,9' € CP(S,T), write ¢ 2 ¢' provided ¢ - &' € CP(S,T).



14.2 IEMA If 9,6' € CPU(S,T)}, then ¢ = ¢' iff ¢ = @',

PROOF Assume that ¢ - ¢' is completely positive —— then

————

[]® = @'|| = |]e(X) - &' (T) || (cf. 12.15)

= 0.

Let ¢ € CP(S,T) be nonzero — then ¢ is said to be pure if ¢ > ¢' => ¢' =

{0 < t < 1).

14.3 LEMMA Suppose that ¢ € CPU(S,B(K)) is pure —- then #(8)' = CI.

PROOF The range of ¢ is a »x-closed subspace of B(K), hence its cammitant

¢(S)' is a »—subalgebra of B(K). But
¢(S)' =2(8)"' = (e(S)")*",

so 9$(8)' is a W*-algebra, thus the linear span of the projections in ¢(8)' is

rnorm dense in $(8)'. This said, fix a nonzero P € $(S)' — then

=P + (I - P}O(I - P)

¢ = PP => PP = té {0 s t=<l)
= P=tIl =t =2 0
=P =1I.

Therefore ¢(S)' = CI.
[Mote: It follows that

2(S) < BlK)gy

is topologically irreducible (cf. 13.24).]



Let S < B(H) be an operator system — then a state on S is a positive linear
functional w:S > C such that w(I) =1 (cf. 12.4 and 12.5), thus CPU(S,C) is the
set of states on 8 (recall that positive linear functionals are completely
positive (cf. 12.13)}.

N.B. View CPU(S,C) as a subset of S* (the dual of 8) and equip S* with
the weak* topology -- then CPU(S,C) is bounded and weak* closed, hence is weak*
compact (Alaoglu).

[Note: CPU(S,C) is not empty (cf. 14.5 infra) and convex. S0, thanks to
the Krein-Milman theorem, CPU(S,C) is the weak* closed convex hull of its extreme

points. )

14.4 RAPPEL 1If XO is a linear subspace of a normed linear space X and if
R is a bounded linear functional, then there is a bounded linear functional

p:X + C such that |[p]|| = []oy}| and o|X, = 04-
14.5 1EMMA IfAessAa.tﬂif?\Eo(A) {(the spectrum of A}, then I a state
w € CPU(S,C) such that w(a) = A,
PROQOF For all covplex numbers a and b,

[Aa + b| < |]aA + bIi].
Therefore the prescription

wo(aA+b) =Aa +b
defines a bounded linear functional w, on the linear subspace {aA + b1} of S with

||w0|l = wy(I) = 1. Now apply 14.4 to get a bounded linear functional w on $ such



that [ul] = |lug|| and

w{A)

It
>

wg (a)

w(I) = wy(I) = 1.

Then o is positive (cf. 12.5), thus w € CPU(S,C).

14.6 THROREM ILet A € S. Suppose that w(A) = 0 v state w — then A = 0.
PROCF If A is selfadjoint, then o(a) = {0} (cf. 14.5). But either ||a|]| or

- l|a]| € o@), so [|A]] =0 => A= 0. IfA is not selfadjoint, write

A=ReA+vV-1 InA (ReA,ImAES).
Then v w,

wi{d) =0

0 = w(Re A) + V=1 w(Im A)

wi(Re A) =0
(w(SSA)cB.)
_ w(ImAa) =0
=>
T ReA=0
..—.}A:O



14.7 IEMA Iet w € CPU(S,C) == then w is pure iff w is an extreme point

of CPU(S,C).

PROOF That

"pure => extreme"
can be gleaned from 13.25 (matters go through with no change if A is replaced
by S). BAs for the converse, viz.

“extreme => pure",

suppose that 0 < w' < w (w' € CP(S,C}), thus 0 < w'(I) £ w(I) = 1 and

[Jw*l] = w'(T) (cf. 12.4),

so w'(I) = 0= w" =0, while w'(I) =1 =>w=w" (cf. 14.2). On the other hand,
if 0 < w'(I) < 1, then we can write

W= A, + A,

171 272
where
)\l=m‘(I), )\2=1-w'(1)
_1 1 _1 1
qu-x;w,mz—-xgtm—w).

Since Wy 0y € CPU(S,C) and since by assumption, w is an extreme point of CPU(S,C),
it follows that W = wor still, w' = Alw, as desired.

[Note: Therefore every state is a weak* limit of convex combinations of

puare states.]

14.8 THEOREM Iet A € 8. Suppose that w(A) = 0 ¥ pure state w -~ then
A =0 (cf. 14.6).



14.9 THEOREM Every pure state w on S can be extended to a pure state w on
B(H)o
PROCF et Sw(B(H)) be the subset of S(B(H)) consisting of those states that

extend w -- then Sw(B(H)) is not empty (cf. 12.6). Moreover, Sw(B(H)) is a weak*

closed convex subset of S(B(H)}, thus is weak* compact, so by the Krein-Milman
theorem is the weak* closed convex hull of its extreme points. Fix one such

extreme point w. Claim: @ is a pure state on B(H). Bearing in mind 14.7, consider a
convex decomposition ® = Aywy + Ay, (0 < )\1,12 & Ayt Ay = 1), where

51,52 € S(B(H)), and restrict this data to S:

w=0u[S=2wlS+ A262|s

.——‘>.

w|$=52|8=m

1

al,az € Sm(B(H))

A matrix state on $ is an element ¢ € CPU(S,M (C)).

[Note: According to 12.15,

Hell = o] = [ix]] = 1.}

14.10 EREMARK CPU(S,Mn(C)) is not empty. Proof: Take any state w:S + C



and consider

o, A =uw@I, (AE3).

14.11 IEMMA Suppose that $:8 - C is a linear map ~ then ¢ is a matrix

state iff ¢ N is positive.

View CPU(S;Mn(_C_)) as a subset of B(S,Mn(g)) and equip B(S;Mn((_l')) with the
weak* topology (M, (C) = B(C")) (cf. §12) -- then CPU(S,M_(C)) is weak* compact,

hence, being convex, is the weak* closed convex hull of its extreme points (Krein-
Milman).

[Mote: It can happen that CE’U(S,Mn((_:)) has no pure elements at all (recalling
13.16, take S = C(X) (X a compact Hausdorff space} and consider CPU(C(X) ,Mn((_l) n>1)).
T™is is not a contradiction since an extreme point of CPU(S,MH(Q)) need not be pure

(the proof in 14.7 that "extreme => pure" breaks down if n > 1).]

14.12 RAPPEL If ¢ € CP(S,Mn(g)), then 3 a Ve CPU(S,MH(Q)) such that

s@) = oMY 2vmemY? @cyg.

[Note: For the details, see the Appendix to §12.]

14.13 THEOREM Suppose that :8 » Mn(g) is a pure matrix state —— then ¢ can

be extended to a pure matrix state :B(H) - Mn(g).-



PROOF Iet Sq}(B(H)) be the set of campletely positive maps B(H) -+ M (C)
that extend ¢ — then Sq}(B(H)) is not empty (cf. 12.22), convex, and its elements

are unital. Fix an extreme point % e SQ(B(H)) (such exist ...). Claim: ¢ is

pure. To see this, we first argue as in 4.9 and deduce that ¢ is an extreme point

of CPU(B(H) ,Mn(g)). Owing now to 13.26, the map

TBH) ' + M (C) (= B(EM)

A — R*AR

is injective (here, & = R*R is the canonical decomposition of 3). To conclude

that & is pure, one has only to establish that 7 is topologically irreducible (cf.

13.16), which is equivalent to showing that dim w(B(H))' = 1 or still, that
Aim{R*AR:A € T(B(H))'} = 1.

So let P ¢ T(B(H))' be a projection — then R*PR is a scalar multiple of the

identity. In fact, EP e [0,3] (cf. 13.11), where

¢, = R*PuR.
Write (cf. 14.12)
T = 50 2RE,mY? (G, =1,
which, upon restriction to §, gives:
1/2 1/2

o = &, (I)™ 7 (4|8 4 (T)
=

@Y 2@ 95,m Y =60 (0stysD)



@P(I) = tPI
R*PR = 1.

14.14 REMARK This arqument is completely general: Any pure ¢ € CPU(S,B(K))

admits a pure extension ¢ € CPU(B(H),B(K)).

14.15 EXAMPIE 1Iet S c Mn((_z) be an operator system and suppose that

¢ € CPU(S,M (C)) ispure--thenmsnandaanisauetryV:gm-»gnsuchthat

$(A) = VVAV (A € ).
Thus choose §:M, () ~ M (C) per 14.13: © = R*7R. But, being topologically

irreducible, 7 is unitarily equivalent to the identity representation:

T(A) = U*AU (A € M_(Q)).

Therefore

2(n)

R*U'AUR (A EM ().

AndV=Uﬁisanisorretryfran§m+__Cn {(=>mz< n).

Let ¢ € CPU(Mn(g) ,Mn(C)) -- then, in the notation of 14.1,

$(a) = LVIAV, (A€M (D),
i



10.

Write
FIX, = {A:¢(3) = B}
and let
v={v,,viL
Then
V' < FIX,.

Note too that

=> A%
AGFIX(D > A EFIXQ.

14,16 REMARK Fqu) is an operator system. However, in general, FI}(cIJ is not

an algebra. E.g.: Define @:M3 C) > M3(g) by

AV I a7 O 0
¢ 851 8y 2y = 0 ayy O .
a + a
a) 33y Ay 0 o 22
J— f— f— 2 -
Then
T a 0 Q o
FIX, = { 0 b 0 : a,b € C}
0 0 a+bhbh
2

oontains no nontrivial subalgebras.



11.

[Note: One choice for the Vi is

1 0 0 0 0 0

v, = 0 0 0 . V,= 0 1 0
_ 0 0 0 _ _ 0 0 0 _
-0 0 0~ o0 0 o -

v,y = 0 0 0 PV, = 0 0 0
12 0 0 _ 0 vz o .

Here V' = CI.]

]

14,17 IERMMA The following conditions are equivalent: (i) FIX v';

(ii) FIX_ is a unital x-algebra; (iii) A € FIX, => A*A € FIX,.

[0 i) i
PROQF It is clear that (i) => {(ii) and (1i)} => (iii). &So assume (iii} is

in force and let A € FIX(I):

o
A

L [aV,][a,V,]*
1

= AA* + O(AA*) - G(A)A* - AQ(A*)

= AA* + AR* - ARA* - AA*

[A,Vi] =0 (v i).



12.

Analogously,
[A,V3] = 0 (v i).

Therefore A € V', which implies that FT{. is contained in V', hence is equal to V'.

®

14.18 EXAMPIE Iet S c Mn(g) be an irreducible operator system. Suppose that
$ e C:PU(Mn((_:) ,Mn(g)) has the property that FIX(D > S =— then it can be shown that
FIX; = M (C),

thus, as a corcllary, the identity map on S is pure.

APPENDTX

The following result is a "pure analog" of the lemma in the Appendix to §12.

IFEMMA Suppose that ¢ € CP(S,MD(Q)) is pure —— then 3 m < n, a pe element

¥ € CPU(S,M (D), andalinearmapY:Qn—*gmsuchthat

&{a) = y*¥@A)y (Ae€S).
PROOF Put T = &(I). Assuming that T = §, let m be the dimension of the range
ofT(tllusmsn)ar;dwritegn=KerTeRanT. Denote the orthogonal projection

of C" onto Ran T by P ~— then P € ¢(8)' (exercise), so

N
]

P3P + (I-P}d(I-P)

v

PoP.



13.

Since PP is completely positive and ¢ is pure, 3 t € [0,1]:

PP = P

PO(I})P = to(I) => £ =1

P3P = 4.

Withrespecttothedeccmpositiongn=KQrT® Ran T, T = 0 ® R, where

R:Ran T + Ran T is selfadjoint and has strictly positive eigenvalues., Set

- T+=0$Rl/2

_ 'I'_=0$R_l/2.
Then

PT, = TP, PT_=TP
and

FixanismetryW:(_:m+gnforwhichRanW=RanT(henceP=W,I=W*W). Define
¥ € CP(S,M_(C)) by

Y = WAT_9T W,

Y(I) = WAT_&(I)T W

il

WAT_TT_W

"

W*PW



14.

%

¥ € CPU(S,M_(C)).

We claim next that ¥ is pare. To check this, suppose that ¥ = ¥', thus

WYW* = WY'W*,
But
WYW* = WWAT_OT WiW*
= PT_OT P
= T_PSPT_
= T_¢T

] —
T+WP W*'I‘+ =t (O

A
r+
1A

1}

Y IY'I

WY W

i



15.

W (LT_4T )W

n

£ (W*T_0T_W)

= tY.

Therefore ¥ is pure. Finally, let y = W*T+:

*yy =
YRy = T WA,

I

T W*T_OT_WIWPT,

T,PT_#T_PT,

T,T_POPT_T,

= PoP



§15. COMPLETELY BOUNDED MAPS

Let H be a complex Hilbert space —— then an operator space is a linear

subspace S ¢ B{H). In particular: Every operator system is an operator space.

15.1 EXaMPLE If Hl and H2 are complex Hilbert spaces, then B(Hlsz) is

an operator space.

[The arrow

is an isometric embedding of B(Hl,Hz) into B(Hl o Hz).]

15.2 REMARK Every Banach space A "is" an operator space. To see this, equip
its dual with the weak* topology and let X be the closed unit ball -- then X is a
campact Hausdorff space and there is an isometric embedding A ~ C(X) ( c B(!:z(x))).

The notion of “campletely bounded linear map" between operator systems carries
over without change to operator spaces.
So let 8 and T be operator spaces and denote by CB(S,T) the set of campletely

bounded 9:S + T — then
[Hef] < |leli,, => BE,T < BS,T.

and, when equipped with the cb-norm, CB(S,T) becomes a normed linear space.



15.3 I1EMMA Suppose that T is complete —— then CB{S,T) is complete.

15.4 THECREM (Wittstock) Iet S c B(H) be an operator space, K a complex
Hilbert space. Suppose that $:S -+ B{(K) is completely bounded -- then ¢ admits
a completely bounded extension Y:B(H) + B(K) with [|o][ 4 = {|¥| [ op?

This result is in the Hahn-Banach mode (cf. 12.22 for its completely positive

analog) and various proofs are known, one of which will be detailed below.

15.5 THEOREM Iet S < B(H) be an operator space, K a complex Hilbert space.
Suppose that 9:8 + B(K) is cawoletely bounded — then I a complex Hilbert space X,
a unital *-representation m:B(H) » B(X), and operators R)/R, € B(K,X) such that

@(a) = R{'ﬁ(A)Rz (pae 9.

Moreover,

1A

18] ],

1R[] iR, ]

[Note: Therefore

o]} g

Ry [ Ry
In fact, ”TrHCbE 1, so

el < R 1] IRyI1]

let us grant 15.5 for the moment and put

¥(@A) = R{?T(A)R2 (A € B(H)).



Then ¥ extends ¢ and |[o|| 4 = |{¥]|4,r from which 15.4.

We shall now turn to the proof of 15.5, which requires same preparation.
Iet E be a vector space over R —— then a function p:E + R is sublinear

if v a,b € B, p(ath) s p(a) + pb), and va e E, v t 2 0, p(ta) = tp(a).

15.6 PRAPPEL If p:E + R is sublinear, then 3 a linear f£:E + R such that

Y a€E, £{a) £ p(a).

Let E_ be a cone in E ~ then a function q:E+ + R is superlinear if

v ab € E,, qgla) + g(b) < g(atb) and v a € E . Y t

v

0, gfta} = g(a).

INTERPOLATION PRINCIPLE Iet q:E_ + R be superlinear and let p:E + R be

sublinear. Assume: Y a € E_, g{a) < p{a) —— then 3 a linear f:E -+ R such that

1A

T gfa) < f(a) (a€E)

f{a)

A

p{a) (a € E).

{Put

r{a) = inf{platb) - q(b):b € E }.

Then r is sublinear, -p(-a) < r(a) < p(a}) for all a € E, and r{-b) < -g{b} for

all b € E,. Consider any linear f:E - R such that f(a) < r(a) (a € E) (cf. 15.6).

Given an element

T=12 & v
kAk k



in the algebraic tensor product S 8 K and an element T € B(K,H), write
Tt =2 AT
k
thus Tt € H.
Given finite sequences
Tt:i = 1,..--,11 E S 9 K

1;-..,11 E Kf

t..l
I

write {Ti} S {yi} if v T € B(K,H)},

2
LA TSP BIL AT
1 1

15.7 IEMMA We have: {Ti} < {yi} iff 3 an element [Aij] € Mn(S) of norm
<lsuchthat vi=1,...,n,
T, = ;Ai' 2 yj.

i
3 3

N.B. The map $:8 » B(K) induces an arrow $:S & K » K, viz.

3(0) = 62 A8y
k

L oAy, .
v MY

It will be convenient to divide up the proof of 15.5 into steps.

Step 1: It follows from 15.7 that

5y < (g =3 1ot |12



2 2
< lell2, 5 |1y 112
1

Step 2: Let E be the set of all functions ¢:B(K,H) - R such that for some

finite sequence Yyreee ¥y in K and all T € B{(K,H),

2

o] <z |[1y;|
1

']!rmEisavectorspaceoverl}andthesubsetE+ofpositivefunctionsisacx:ne
in E.
Step 3: Define p:E > R by

. 2 2
p() = nfCllol1g, T 1% 1),
where the inf runs over all finite sedquences Yyreee oYy, in K such that ¢(T) <

Ty, |2 for all T € B(K,H) — then p is sublinear.
i
Step 4: Define q:E_ >R by

a®) = suplz |letzp 1%,
1

where the sup runs over all finite sequences TyrneesTy in 8 8 K such that |

z |jTry |:2 < ¢$(T) for all T € B(K,H) -— then g is superlinear.
i

Step 5: Since
q{$) = p(d) (¢ € E+):

the Interpolation Principle implies that 3 a linear £:E + R such that

T oale) < £(¢) ($ EE))

£(¢) = p(9) (¢ € E).



Step 6: Extend f by linearity to a function on the complexification
E + v-1 E and denote it still by f. Write F for the set consisting of all functions
F:B(K,H) - H such that the map T - }|F(T)] | lies in E. Noting that the function

T + <F) (T) ,FZ(T)> lies in E + /=1 E, put

<Fp,Fy> = E(<F () Fy(-)>)  (Fy,F, € F).

This prescription defines a pre-inner product on F, hence, in the usual way, leads
to a Hilbert space X.

Step 7: Given an element y € K, define FyzB(K,H) + f by Fy(T) = Ty —— then
F_€ F, thus

b

2 2
<FY'FY> = Hd’”cb Hit]™y

so there is a linear operator V,:K » X with ||v; [} < [|e[{ 4 such that vy is the
equivalence class of FY in X.

Step 8: Up to equivalence classes, define a unital *-representation
m:B{H) + B(X) by

T(A)F(T) = AF(T).

Step 9: VAiES,VyiEK,

2
||§ 2a)y; (17 5 £(9),

- 2
¢ (T) H?Ai]:"yi(T)H .

Consequently,

1z 0y |1 s 112 vavyy |



and the recipe

e:ctendstoalinearoperatorV2:X+Kofnomsl.

Step 10: Obviously, ||v;|| [|v,]]

1A

|19} 4,- 2nd, by construction, v A € S,

V21T(A)Vly {d)y ¥y € K}.

To camplete the proof of 15.5, one has only to change the notation: Ilet
R =V3

_ Ry=vp

15.8 REMARK Unlike the completely positive case, there are no known conditions

that force the data to be wmigque up to unitary equivalence.

15.9 THEOREM Iet S be an operator system. Suppose that $:S + B(K) is
copletely bounded —— then 3 completely positive maps ®1,¢2,®3,@4 from S to B({K)
such that

¢=¢l—q>2+/:i‘(®3—q>4).
PROOF Put (cf. 15.5)
T e = TR RMR Ry

>
H

2 = R, - RYMMR, - Ry)



0y = 4"1(32 + /-_-TRl)*Tr(R2 + J-‘l‘Rl)

4, = 4Ry - /T R)*T(R, - VI R)).

Let V be a complex vector space — then M (V) is an M () bimodule w.r.t.
matrix multiplication.

Notation: Given A € Mn{V) ;, B¢e Mm(V), write

A 0
A®B= eM (V).
Assume now that for eachn € N, ||| is a norm on M_(V} -- then V is said
0 be a matricial nonmed space if
QVAEMH(V) &VBEMm(V]:
- a 0
— maxc{| 2], | [B]|_}.
0 B nHn
e Va,BEM(C) & VAEM(W:
Heagtl = ot [1all, 18]

If V,V' are matricial normed spaces and if ¢:V » V' is a linear operator, then

¥ n, there is an induced arrow d:n:Mn(V) ~>Mn(v') and ¢ is said to be completely
bounded. if

ey, = supi|le [|m e M)



is finite. In addition, ¢ is a complete iscmetry provided ¢ is invertible and

Hloll g = 11671y, = 1.

15.10 EXAMPIE Every operator space S < B{H) is a matricial normed space.

[The norm on Mn(S) ig, of course, the norm which it inherits as a subspace

n
of M (B(H)) = B¢ & H).)

15.11 THEOREM (Ruan) If E is a matricial normed space, then 3 a complex

Hilbert space H, an operator space S < B(H), and a camplete isometry $:E - S.

[Note: I am going to omit the proof of this result but, in essence, what it

says is that a matricial normed space can be regarded as an "abstract operator space".]

Let S and T be operator spaces — then v n, there is a linear identification
Mn(CB(S,T)) = CB(S,Mn(T))

and the cb-norm on the RHS can be transferred to a nomm {|-}| on the IHS.

15.12 1mMA CB(S,T) is a matricial normed space.



§16. OPERATIONS AND CHANNELS

let H he a camplex Hilbert space —- then the weak* topology on B(H) is the
initial topology determined by the elements of B(H),, i.e., is the smallest top-
ology for which each A € B(H}, is continuous. Accordingly, a function f£:X - B(H)
from a topological space X to B(H) equipped with the weak* topology is continuous

iff v X € B(H),, the composition A e £:X + C is continuous.

16.1 RAPPEL Iet {Ai:i € I} be a bounded increasing net in B(H)+ and let A

be its supremmm -- then

A, >A in the strong operator topology

A, ~A in the weak* operator topcology.

16.2 LEMMA let H and K be canplex Hilbert spaces. Suppose that $:B(H) - B(K)
is positive ~- then ¢ is weak* continuous iff for every bounded increasing net

{a;:1 € 1} in B(H) ,

&( sup Ai) = sup tI)(Ai).
iex iex

PROOF Assume first that ¢ is weak* continuous:
*
Ai + sup Al {weak*) (cf. 16.1)

ieTr

o(a;) > ¢(sup A;) (weak*).
t ier *



On the other hand, {@(Ai):i € I} is a bounded increasing net in B(K)+, hence

<I>(Ai) + sup @(Ai) (weak*) {cf. 16.1).
iel

Therefore

®(sup A;) = sup $(a,).
i€I i€l

Conversely, if ¢ has the stated property, then v positive A € B(K),, A o ¢ is
weak* continuous (cf. 2.7). But an arbitrary element of B(K), can be written as

a linear combination of four positive elements. So, ¥ A € B(K)e, A o ¢ is weak*

continuous, thus ¢ is weak* continuous.

16.3 EXAMPLE Suppose that ¢:L, (H) > L, () is linear and positive (T 2 0
=> ¢(T) =z 0} —— then ¢ is bounded: 3C¢>Osuchthat
1) = clixl] @ ez @)
Tet ¢ = ¢*, thus
&Ly () * + L, (H)*
or still,

$:B(H) > B(H) (cf. 1.4).

Explicated: v A€ B{H) & v T € El(H).

tr (G (R)T) = tr (A (T)).

2(B(H),)  BH),.

Moreover, 9 is weak* contimuous. For, in the notation of 16.1,



£r(G(A)T) = tr(@;¢(T))

+ tr((sup Ai)¢(T)) = tr(d(sup Ai)T).

ieT iex
I.e
@(Ai) -+ d(sup Ai) (weak*) .
ieT
Meanwhile
P{A,) > sup d(A.) (weak*).
i . i
1€1
Therefore

o(sup A;) = sup ¢(A;).
ier i€l

And this implies that ¢ is weak* continuous {(cf. 16.2).

Assume henceforth that H is separable and let K be another complex Hilbert
space, which we shall also assume is separable. Iet m:B{H) -+ B(K) be a unital

s—hamomorphism, so [|w(@a) |} < |A]] @ € B(#H)).

16.4 RAPPEL There is an orthogonal decomposition

K=K, 9 @ .
0® .2 K
where KO and Kk are m-invariant.

e The restriction w, of m to K

0 o armihilates the elements of E.m(H) , thus

To is actually a representation of the quotient B(H)/L_(H).
* The restriction of Ty of 7 to Kk is unitarily equivalent to the standard

representation of B(H{} on H, so v k, 3 a wmitary operator Uk:H + Kk such that



v A€ B(H),

A= U]‘zw (A)Uk.

[Note: The index set k is at most countable,]

Suppose that $:B(H) + B(H) is campletely positive and let ¢ = ARTr be its
canonical decamposition.

[Note: Recall that w:B(H) »> B(K) is a unital s~hamomorphism and K is necess-
arily separable (even finite dimensional if this is the case of H).]

DenotebyPOtheorthogmlalpmjectionofKontoKoandbyPktheorthogonal
projection of K onto Kk. Put

V

0 = PR (> Kp)

=U]thR (H+Kk+H).

If ¢ is finite, matters are straightforward: v & € B(H),

d(A) = R*1{A)R
= R*(p TT(A)PO + I P '!T(A)
kek
= R*P 'ﬁ(A)POR + E R*pP. Uk

—V*1r (A)V + V]’ZAV.
kek

N.B. Take H finite dimensional and recover 14.1 (n=m & Ty = 0).

The situation when ¢ is countable, say v = {1,2,...}, is more complicated

because there are issues of convergence.



16.5 IFMMA Vv A € B(H), the series

o R
is weak* convergent.

PROOF It suffices to establish this for an effect E € £(H), thus 0 <E < I.
Put

E = I V*EV.
n ksnkk

EneB(H)_'_andEnsEm_l.

In addition, v x € H,

<x,V]’;Eka> = <ka,Eka>
< <ka,vkx>
= <XV
=>.
ViV < iV
=5
E < ¥ Vv
n o opn k'k

A

5 R*P P, R
o kK kK k

I
%
o™
v

W‘-—l‘
w



Therefore

lim En (weak*)

n->w«
exists (cf. 16.1).

[Note: The conclusion of 16.5 is order independent, i.e., if x = {k

l' 2,0..}

is another enumeration of k, then

converges weak* to

T Viav .]
k=1 Kk
Iet
P =P + I P .
{n) 0 k<n k

Then

P(n) + I {weak*)
and v A € B(H),

n
R*P(n)Tr(A)P(n)R= V'STTO(A)VO + E v]tAvk.

k=1
By the above, the RHS converges weak* to

VEn (A)V, + I V*AV
00 0 k=1 k'k

and we claim that the LHS converges weak* to

R*T(A)R ( = ¢(a}).



16.6 IEMA Iet R € B(H,K) =— then

T € g.l(H) => RTR* € g.]_(K)
and v X € B(K),
tr (R*XRT) = tr (XRTR*),

From the definitions, P comuates with w(a), so

(n)

n(A)P (A} > w(A) (weak*).

Pn) ) "~ F )
In 16.6, take

T(A)P

=Py (n)"

ThenVTEL.l(H),

tr (R* P 1T(A)P( )

Tr(A)P( )RI'R*)

(n)
+ tr{m(A)RTR*).
But
tr{T{A)RTR*} = tr(R*n(A)RT) (cf. 16.6).

And this settles the claim, T € L, () being arbitrary.

To recapitulate:
16.7 THEQREM Suppose that $:B(H) -+ B(H) is completely positive —— then 3
Vi € B(H} (k € «) such that

D(A) = VAT, (A)V, + I VAV, (A€ B(H)).
kex



[Note: The series converges in the weak* operator topology (and in the strong
operator topology) .]

We want now to impose an assunmption on ¢ that, among other things, will serve

to eliminate "TTO" from 16.7.

Assumption: ¢ is weak* continuous — then 16.2 is in force, hence
®(a;) > ¢(sup A;) (= sup ¢(A;))
iex icl

both weak* and strongly.

16.8 IFMVMA Iet {Ai:i € I} be a bounded increasing net in B(H), and let A
be its supremum -- then Vv X,Y € B(H),
Q’(X*AiY) > ¢ (X*AY)

in the strong operator topology.
PROCOF Write

*
o(X AiY)

|
]

(X + Y)*Ai(x + 1))

1
-7 HE - X - X))

- % (X + VI Y)*A; (X + /-1 Y))

/L

+ 3

S((X - f-TY)*Ai(x - /=1 Y)).



16.9 IEMMA w:B(H) » B(K) is weak* continuous.
PROOF Use the notation of the proof of 9.11, replacing i by Ai' £ by X,

and n by Y to get

<1T(Ai)§,:;}>
= I I <e(X*AV)E(Y),q(X)>.
XY
Bearing in mind that I I is actually a finite sum, it then follows from 16.8 that
XY

L L <¢(X*AYEW),g(X)>
XY

converges to
LT <o (X*AY)£(Y) ,g(X})>.
XY

A

<r (Ai)f,g>

converges to

<Tr(A)§,g>.
Therefore w(Ai) converges to T(A) weakly (recall that F(B(H),H) is dense in K}.
But {m (Ai) :1 € I} is an increasing net of positive operators, hence W(Ai)+ 1 {(A)

strongly (cf. 10.1) and

m{A) = sup ﬂ(Ai) -
i€l

Consequently, T is weak* continuous (cf. 16.2).

[Note: The net {ﬂ(Ai):i € I} is norm bounded:

Hn@p || < (1301 = [1all.
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This said, there is a generality to the effect that if {Ta} is a norm bounded net
in B{K) with the property that
<TaYrY'> + <Ty,y'> {(y,¥y' € ¥),

where ¥ c K is dense (orjusttotal),thenTa-rTmeakly.}

Armed with this result, it is then easy to see that KO consists of the zero

vector alone. In fact, this is automatic if H is finite dimensional, so take H
infinite dimensional and, to get a contradiction, assume that 3 y, € K0:| [yOH = 1.
Put

mO(A) = WO;W(A)y0> (A € B(H)).

Since 7 is unital, wO(I) = 1. Moreover, Wy is weak* continuous. Proof:

1l

wO(A) tr(PY T(A)) (A € B{H)).

0
Therefore

I = v P
PeP(H)

wO(I) = 1 wO(P) =0 {cf. 2.6 and 5.1).
PEP(H)

16.10 THEOREM (Kraus) Suppose that #:B(H) » B(H) is completely positive

and weak?* continuous-—tlmﬁVkEB(H) (k € ¥) such that

Ay = T V]:Avk (A €B{HN.
ke

[Note: The series converges in the weak* operator topology (and in the strong

operxator topology).]
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16.11 REMARK For each T € Ql(H) , the series

I OV, TV
ke k7K
is trace nom convergent. For if m > n and T is positive, then

|] = v, - T V, TV} |
xem K kg, Kokl

m
[z w1l
k=n+#l © K1

(T VTV
knt+l £ K

m
(T VLT
kentl 5K

H

Er(( I V)T - tr({ T V)T,
ksm ©® ken © K

But I v;;vk converges weak* (cf. 16.5). Therefore the sequence I Vk'IV]"é is
kn ksn

Cauchy in the trace norm, thus

T OV, IVF
kEKkk

makes sense (it is order independent). The extension of these considerations to

an arbitrary T € Ql(H) is immediate. So, if ¢:L.1(H) > Ql(H) is defined by the rule

¢(T) = I V TV,
k€K kk

then ¢ is linear and positive. Furthermore, its dual ¢p*:Ly (H)* - L, ()* can be
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identified with ¢ (cf. 16.3).

An operation is a completely positive weak* continuous map ¢:B{H) -+ B(H)
subject to the constraint ¢(I) < I.
[Note: The weak* continuity is automatic if H is finite dimensional.]

N.B. An operation is contractive:
[|2]] = [|e@|] =1 (cf. 11.27).

The effect corresponding to an operation ¢ is, by definition, ¢(I).

16.12 EXAMPIE If E € E(H), then the assignment A - El/ZAE!l/Z is an operation

and the associated effect is El/ 2El/ 2 = E.

16.13 IEMA 1let Vk k=1,2,...) be a sequence in B(H). Assume: V finite

subset F < N,

Then the prescription
(a) = I VRAV (A € B())

defines an operation.

16.14 EXAMPLE Suppose that the Vk are positive — then the Luders operation

associated with the Vi is the prescription

As T v;t/%zw}li/2 (A€ B(H).
k=1



13.

A chamnel is a unital operation $:¢(I)} = I.

16.15 EXAMPLE If U € U(H), then the assigmment A > U*AU is a channel.

[Note: More generally, if Ul""'Un € U(H) and if )\l,...,)\n € [0,1] with

n

L X =1, then the assignment
k=1

A~ 3 Q0

ia a channel.]

16.16 EXAMPIE Fix a positive trace class operator T = 0 — then the assign-

ment

tr (AT)
tr(T)

ia a channel.

16.17 EXAMPLE Take H = gn and let U(n) = U((_Zn) -- then the assignment

A~ fu(n)U*AUdU

ia a channel, call it @av.

[Note: Here, dU is normalized Haar measure on H{n). Since d)av(A)UO = Uo¢av(A)

for all U, € Uin}, 3 a linear functional A:B(H) + C such that
2., = 2B

But

tr(a) = tr(@av(A))
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A(A) tr(T)

I

A (A)n

tr(A)
@av(A) - I.)

let §:B(H) +~ B(H) be an operation —- then by 16.10,
(A = T VrAv ,
kek Kk
where

a condition which carries with it sowe additional structure.

16.18 RAPPEL Iet K be a camplex Hilbert space -~ then W € B(K) is a

coisometry provided WWw* = I.

16.19 IERMA Suppose that T € B(H) is a contraction —— then 3 a complex Hilbert

space KT containing { as a closed subspace and a colsametry W € B(KT) such that

# is W-invariant and WiH = T.

16.20 THEOREM 3 a complex Hilbert space K containing H as a closed subspace

and coisometries W, € B(KY (k € k) such that -Wsz =0 (k # £) with WkH c H{ and

H = k.
wkl v, v

K
PROCF IetHK=$Handdefj.neTEB(HK)by
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T(xl,xz,...) = (lel,szz,...) .

Then T is a contraction, so 16.19 secures KT = h'K and a coisometry W € B(KT)
such that H_ is W-invariant and Wi = T. Write K= H_@ H_ — then w.r.t.

this decomposition of KT, the matrix of W is

Herexk:H"'+HandY:H"'+Hl. Because WW* = I, we have
K K K
N RARL RS
In addition,
T OXY*=90
YY* = I,

If Y*¥ = I, then all X = 0 and the V, are coisometries with orthogonal initial
spaces, thus matters are trivial. Otherwise, Y*Y z I and there exists a collection
7, € B(H!) of coisometries which have orthogonal initial spaces. let K = H @ H,

and define Wk € B(K) by

Wk=




16.

Then the Wk are coisometries with the stated properties.

Since Wk is a coisometry, W}’;Wk is an orthogonal projection.

W WM, =0 (k= ).

Therefore

T WML e L(K).
kek k'k

bDefine now a map 9:B{K) » B(K} by stipulating that

o) = ¢ W (B € B(K).
ker

16.21 LFEMA O is a *—endaomorphism.

Given x,y € H and A € B(H), we have
<x,P,0@P,)y> = <P, X, T WHAP W y>
1O PRy A
= 3 <W X,AW V>
ke Wk Awk

= I

<V, X,DV. ¥>
kex K k

«<x, T VXAV
ke k ky>

<x,b(A)y>

$(A) = P,O@P,) [H.

On the other hand,
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2 -

<P,x, T WEO(AP,)W,y>
”XﬁeK 2OV Wy,

= ¥ <W,X,0(AP )W, y>
P 4 Hp

= b <V x,0ap,)V,y>
Pex fas H Ve

L <V,x, L AP WV, y>
£ex £ kEKW].l(r H'k'£

r I V%X, AP W V,v>
kEKﬁEK<Wk£' Wkt

= T I <V VXAV V,y>
kek Lex k't k't

=<x, I I VSURAY V,y>.
kex fex KTk

On the othey hand,

<x,8% (B)y> = <x,0(3(8))y>

<x,d( L VXAV )y>
kex kk

<X, T &(VAAV Yy>
kek Kk

<X, % T OVAEERY V y>.
ke £5k Lxk7KL

Therefore

2,00 b o2
o7 (A) = PO" (AP |H.
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16.22 THEOREM Suppose that ¢:B(H) - B(H) is an operation —- then 3 a
conplex Hilbert space K containing H as a closed subspace and a *—-endomorphism
0:B(K) > B(K) such that v n € N,

'a) = PE (AP |H (A € BU)).

{This follows from the foregoing by iteration.]

Although I shall omit the details, it should be mentioned that it is possible

to rework 16.20 so as to ensure that

L VW =1=> % W*W]=I.
kek k'k kEKk

Consequently, if ¢ is a channel, then 0 is unital and

I = o(I) = PyO(P,) |H.



§17. SEMIGROUP THEORY

This is a vast subject, a small portion of which will be reviewed below.

Iet X be a camplex Banach space — then initially, a {(cne parameter) semi-
group on X is just a collection of bounded linear operators Tt:x + X parameterized
by £ > 0 such that

17.1 EX2MPLE The "trivial semigroup” is the prescription Tt =1 (£ z0).

N.B. Typically, X is a complex Hilbert space H or a unital C*-algebra A

(e'g‘f B(H))a
17.2 EXMMPLE Teke X = C —- then the prescription T z = e Tz (t > 0) defines
asanigroupanthlzl‘v't>0.
17.3 EXAMPLE Take X = 92 — then the prescription
Tz T -1 - -1 -
21+t 2 t?1” %
l -
'1‘t = 5 + e 3 {(t = 0)
z, 1 -1

defines a semigroup and



&
]

¥ t>0.

Starting with {Tt:t 2 0}, one then proceeds to impose various continuity
oonditions.
First, consider the following topologies on B(X).

The norm topology: A net T; (i € I) in B(X) converges to T iff

{7, - T[] > 0.

The strong topology: A net T, (1 € I) in B(X) converges to T iff

vx€X {|rx - || 0.

The weak topology: A net ']:'i (i € I) in B(X) converges to T iff v X € X*

&v xXxeEX, )\.(Tix-'ltx} + 0.
Returning to our semigroup {Tt:t > 0}, one says that it is norm continuous,

strongly continuous, or weakly continuocus according to whether the map

R, > B(X)

20

t+Tt

is continuous when B(X) is endowed with the norm topology, strong topology, or

weak topology, respectively.

17.4 IEMMA A semigroup {Tt:t 2z 0} is strongly continuous iff it is weakly

continuous.



Becauge of this, it suffices to consider strongly continuous semigroups

only (noxm continuous semigroups being a special case).

17.5 EXAMPIE Take X = C[0,1] (sup norm). Put T, = I and for t > 0, write

0

_t t
(th) (x) = x £(x) - x log x £(0) (0 < x <1},

letting (th) (0) = 0 -~ then {'I't:t > 0} is strongly continuous on 10,«~[ but is

not strongly continuous on [0,<[. In fact,
lim ! |Tt| I = =
t+0

17.6 IEMA Suppose that {Tt:t x 0} is strongly continuous -- then 3 constants

acRand M 2 1 such that

iz, 1} < me*

for all ¢ =z 0.

PROOF V x € X, the function

t+Ttx (0 £ £t<1)

ig in C([0,1],X), hence

sp [T x|} < e
O<t<l

Therefore, by the wniform boundedness principle, I M 2 1:

||Tt|| SM(OStSl) (T0=T=>M21).

If now a = log M and if for a given t > 0, n is the least integer = t, then



_ ny oL t+l _ . at
ol = Ther )0 = o < M7 = me®

17.7 EXAMPIE The function t + [|T,|| need not be bounded. E.g.: Take

X=“C:2andlet

1 + 7
'rt=
_ 0 I
Then
lim [T || = .
t + o t

17.8 EXAMPIE The function t > HTtH need not be continuous. E.g.: Take

X = 1°[0,1] and let
Fls+t) (0ss+ts<l)

(th) (s} =

0 (s+t > 1).

|
-

- T (0

14

t <1

T =0 (t > 1).

17.9 I1EMMA A semigroup {Tt:t > 0} is strongly continuous iff v x € X,

lim Ttx = X.

=+ o

PROOF The necessity is cbvious. To establish the sufficiency, fix t, > 0 and

0




let x € X ~= then

Lim {|T, .x - T, x||

mo @ o
= lim ||T, (T, x - x)!|
hyo G D

< [T, |} lim {7 x - x]| = 0,
% mo B

from which continuity on the right. As for continuity on the left, take h < 0

angd write
[Ty g - T xI
0 0
= ||Tto+h(x - T ||
< 117l | Hle = ]
< C| [T_hx - x|,
where

||'1't|| <C (0= tsty (cf. 17.6).

17.10 IEMMA Suppose that {Tt:t = 0} is strongly continuous -- then the map
[0, X ~ X

(t,x) » 'I'tx

ig jointly continuous.



PROOF Take s > t and note that

Hrgy - txfl s [Ty - 0 || + g - TOx]|

s Nl Hy = x|+ 1l 11T, g - x|

17.11 RAPPEL Assuming that the semigroup {Tt:t =z 0} is strongly continuous,

let Dom L be the set of all x € X for which
T x -~ X

lim -& -

t->0

exists and define L. on Dom L by the equality

Ttx-x

Ix = l1lim ——;E-"—.

t=>0

Then Dom L is a dense linear subspace of X and L is a closed linear operator

(nbounded in general). In addition,

xEDomL=>TthDcmL

d - =
gt Tpx = LI x = T, Ix.

Finally, vxe€X & vt >0,

t
J"O Tsxzds € bom L

Tx -x L(IE Tsxds)

I

fg TSLxds if x € Dom L.



[Note: L is called the generator of the semigroup {Tt:t > 0}.]

17.12 EREMARK As a complement to 17.4, let w-lim stand for limit in the
weak topology on X —— then it can be shown that the set of X such that

'I'tx-x

t+0

exists ocoincides with the set of x € X such that
Lim Ttx ; X

t=+0

exists and the linear operators defined thereby are identical. In brief:

"weak generator™ = “"generator".

17.13 LEMMA If {Ti‘::t z 0} and {Tg:t = 0} are two strongly continuous semi-
groups with the same generator L, thenT{__=T;Vt20.
PROOF Fix t > 0, let ¥ € Dom L, and define £:(0,t] + X by

fis}) = T T'x (0 <8< t).

t-s'g
Then
- g
£(0) T X
_ fit) = T:_x.
n the other hand,
d_ f(g) =~-T' IT"X+ T IT"x
ds t-s" 8 t-5 'S

= 00



Therefore f(s) is constant on [0,t], so Ti': = T;j_ on Domm I.. PBut Dom L is dense in

t —
X, thus Tt Tt'

Given L € B{X), put
Then the series on the RHS is norm convergent and the assignment t - et defines
a norm continuous semigroup with L as its generator.

17.14 EXAMPIE Iet X = C° — then

0 i | cos t sin t

L = =>etL=

_ =1 o __ —-sint cos t |,

¢ 1 ~ cosh t sinh t —
L = =>etL=

1 0 _ __s:i.nht cosh ¢t |,

-1 1 T 1+t t -
L= =>etL=

17.15 I1EMMA Every norm continuous semigroup {Tt:t > 0} is of the form

Tt=et1' (t = Q)



for some bownded operator L € B{X).

[Note: We have

Tt—'I

t

lim ]|
t+0

- L|| = 0.]

17.16 EXAMPLE ILet X = B(H) (H a complex Hilbert space). Fix H € B(H)SA
and put

TA = oLt~ L gy

Then {'I't:t > 0} is norm continuous and its generator L is given by

IA = v=1 {[H,A].

17.17 REMARK There exist strongly continuous semigroups {Tt:t 2 0} such
that the series
@ n
X E--Lnx

n!
n=0

converges only for t= 0 or x = 0.

17.18 THEOREM Suppose that {Tt:t > 0} is strongly continuous with generator
L such that
at
HT s Me

for some ac Rand M 2 1 (cf. 17.6). Let L' € B(X) and specify that

Dom(L + L') = Dom L.
Then L + L' is the generator of a strongly continuous semigroup {T;::t > 0} for
which

|IT1'-_-|| <Mexp(a+M

L't (&= 0).
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And in norm,

Tyx = lim (T, e /ML e,

n-+w«

[Note: The "bounded pertwrbation™ L + L' is necessarily closed. If L' is
not bounded, then L + L' need not be a generator (e.g. take L unbounded and con-
sider L + (- L)...).]

N.B. There are integral equations

- T = t
TeX Tx+f0TtSLT_xds

(x € X).

] —_ t ] [ ]
Tix = Tx + [ TIL'T,_ xds
17.19 IEMMA Maintain the notation of 17.18 — then 3 C > 0 such that
”Tt-Ti':H <¢C (0= t=sl),

PROOF In fact, Vv x € ¥,

T % - Ti';x| ! L'T xds| |

t
I fO Te—s

1A

t 1
Fol T L' Tix| {as

1A

¢ sw [T || suwp [[T* [] [u']] |ix][.
O=u<l O=u1'<1l u'

[Note: One can construct exanples of strongly continuous semigroups
{Til_::t
{Ti:t

I

0}

v

0}



such that
l7g - T2l sce (0 <t =<1,

vet
Dom LY ﬂDomL2= {0},

thus L:L and L2 do not differ by an element of B(X).]

17.20 EXAMPIE Iet X = = {the elements of X are all sequences {cn} (cn € C)

such that lim ¢ = 0, equipped with the sup norm). Define a strongly continuous

n -+

semigroup {Tt:t > 0} on X by
{elf:‘T ntcn}.

Tt{cn} =
L{cn} = {/-1 nc,},
where
bom L = {{cn} € 90:{/:1 ncn} € EO}'
Partarb L by Ll:l € B(X):

Ll;_{cn} = {O;ooc ,O;D.Cnfo,...}.

Then L + L} is the generator of a strongly continuous semigroup {T} gt 2 0}

{cf. 17.18) and V x = {cn} € Dom L, we havwe
||(L+L1;)x-Lx|| = [|Lr'lx[| =nlc | >0 (n >,

I.e.: L+ I‘i; converges pointwise to L on Dom L. Still,

t
2 (] = &,
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sovt>0, 3Ix¢€ X:{'I‘IIl x} does not converge (uniform boundedness principle).
r

If A € B(X}, then its dual A* € B(X*):

(B*)) (x) AMAx) (x € X, ) € X¥),

li

[la*|] = |[al].

17.21 RAPPEL I1et A be a densely defined linear operator cn X -- then its
dual A* has for its domain the set of all X € X* with the property that the linear
functional x + A{AX) is norm continuous on Dom A, A*) € X* being, by definition,
the extension of this linear functional to X.

o If A is densely defined, then A* is weak* closed (hence is norm closed).

¢ If A is closed and densely defined, then A* is weak* densely defined
(as well as weak* closed).

17.22 REMARK If X is reflexiwve, then the weak and weak* topologies on X*
coincide, so if A is closed and densely defined, then Dom A* is a norm dense linear
subspace of X*.

N.B. In addition to the norm topology, the strong topology, and the weak

topology, B(X*) also carries the weak* topology: A net Ai (i € I) in B(X*)
cnverges to A Iff vy x € X & v A € X%, <x,ﬁi>\-ﬁx>+0.

[Note: Technically, this is the "point weak* topology" but for simplicity,

we shall omit the adjective "point" from the terminology.)
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Suppose that {Tt:t 2 0} is a strongly continuous semigroup on X with
generator L —- then {TE:t > 0} is a semigroup on X*.

Note: If {Tt:t > 0} is norm continucus, then so is {ngt 2 0}:

|[T* ~T* || =]||T. -1 |].]
= 5

& i

17.23 IEMMA {T’é:t z 0} is weak* continuous.

PROOF (ne has only to obhserve that

l<x, (T*¥ = T* )A>| = |<(T, - T_)x,A>|
H 5 o T
< |1, x - T, x|| [{r]].
Y <

If X is reflexive, then it follows from 17.23 that the semigroup {Tg:t z 0}

is weakly continuous, hence is strongly contimuous (cf. 17.4), but this fails to

be true in general.
17.24 EXAMPIE Tzke X = CW(I_{) and define Tt by
(th) (®) = £{x + t}.

k =
Then Tt6X Gx-!-t and

T8, = 811 =2 (&= 0.

Therefore the semigroup {T;:t z 0} is not strongly continuous (cf. 17.9).
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Since L is closed and densely defined, L* is weak* closed and weak* densely
defined.

17.25 LFMMA Dom L* is a T,"C'—i.nvariant linear subspace of X* and for all

A € Dom L*,

%) = PR
L*Ttl TtL A.

17.26 IEMMA Vv X € X & Vv A € Dom L¥*,

t
<x,T1’_:k - > = 'FO <x,T;L*A>ds {t > 0).
PROOF We have
<X,T§)\ - > = <Ttx - X,A>

il

<L(f’g Tds) > (of. 17.11)

n

t
<J"0 ‘I‘Sxds,L*b

- t *

t
0

f <x,T;L*7\>ds.
[Note: Analogously, v x € Dom L and v A € X*,

t %
<Ix, S 0 Ts)td3>

I

<L{f§ T_xds) 1>

<Ttx - X A>

<x,T§A - >
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t x
fo Ts)\ds € Dom L*.]

IetDomLV";bethesetofalllEX* for which

T%) - A
. t
lim  ———

t>0
exists (weak*) and define L‘:; on Dom L,:; by the equality

T:‘_.)x - A
*Y = i —_—
I,wk lim = .

t—+0

Then L} is called the weak* generator of the semigroup {T_’E:t = 0},

17.27 THEOREM The dual L* equals the weak*® generator L“;.

PROOF i@shallbeg:’.nbyshmhmgthatL*cL“;. So fix ) € bom L* — then

Y X € X,
- l L] l t *
lim = <x,T*) - x> = lim = [ <x,T*L*}>ds
t t t 0 s
t=-0 t-+0
= <x,L*)>.

Therefore ) € Dom L‘; and L:TA = L)x. Conversely, for any A € Dom L‘,’} and for any

x € Dom L,
<, IL*)> = lim —]-'-<xT*J\—)\>
e ' t Tt
t >0
_ R 1
= 1lim E<Ttx—x,)\>
t -+ 0

<L, A>.
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Therefore A € Dom L* and L*) = I{'y\, i.e., L,;; c L*,

17.28 REMARK In the reflexive case, {'I'Ezt > 0} is strongly continuous and

its generator is L*,

17.29 EXAMPLE Contrary to what obtains in the strongly continuous situation

(cf. 17.13), the weak* generator of {T;:t > 0} need not detemine {ngt = 0}

wmiquely within the class of all weak* continuous semigroups on X*. E.g., consider
the setup in 17.24, thus X* = M(R). With Lebesgue measure as the reference, each

u € M(R) admits a decomposition 1 = Mac + Mg into an absolutely continuous part
and a singular part, so in obvious notation,

MR) = MR), © MR,

where both M(R) . and M(R)  are closed in M(R) and invariant under Ty. Given

a > 0, define a weak* continuous semigroup A: by

Qo g *
Jr"t]‘l Tt“ac + Tontus‘

Then t Af;p ig strongly continuous iff ) = My Therefore the maximal subspace

of M(R) on which each Ag is strongly continuous is the same for each o, i.e., is

M(g)ac, and on this space, the action does not depend on o, hence all the A?:‘

have the same weak* generator (see 17.30 infra).

[Note: The theory developed below implies that {'I't:t = 0} is the only

strongly continuous semigroup on X whose dual has weak* generator L*.]
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let

= (A ex*: lm ||T8x - A]] = 0}
t+0

Then XO is Tz-invariant and we put

o _
T, = T,glxo.

N.B. XO is a nomm closed linear subspace of X*. Proof: Suppose that

o
kn*k(lnEX)——then

Plmga = Al = JITga - o, + 1, - A + A, — Al

e =2 (1 + [m = (] + = 2]

A

el T = AL+ 1wy, = 2 l]+ Ha = Al

A

= 1T 11 Hg = AL+ Ll = a0+ T = Al
Choose C > 0:
HT il s € (0 <t <1) (cf. 17.6).
Given £ > 0, choose N:
e
[Py = M < sy

and choose t(g,N) < 1:

0 <t < t(e,N) => ||T§)\N-—)\N|| <%.

e £ £
HTEA - M| < Cstam * 2% 3

=¢ {0 £ t < t(e,N)).
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17.30 IEMMA Dom L* is contained in X°.

PROOF Iet X € Dom L* — then v X € X,

t

|/ <, mansasas| (cf. 17.26)

t
f§ [<Tx,1*x>|ds

1A

1A

t
o HTxl] [12*r] {as

14

e sup | |T AN Ix|] [

O<s<t

[Iex - A] < eCsup (lT |} [{L*al .
0<s<t

Therefore

Dom L* ¢ X~

Accordingly, the norm closure Dom L* is contained in XO but even more is true.

17.31 IEBMMA We have

Dom L* = XO.

PROOQF I.et)\GXo#thﬂlVXGX,

|Qg%f§T§ds—lﬂ
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s s [T - Al] x|
O<s<t

1 ¢
|| & /o T*Ads = A|| = s |[|T*A - A||+0as t+ 0.
t°0 s O<sst s

But

1l .t
o J"O T;Ads € Dom L* {cf. 17.26).

Therefore x ¢ Dom L.

Because XO is a nom closed linear subspace of X*, it is a Banach space and

from the definitions, {T?::t > 0} is a strongly continuous semigroup on XO {cf. 17.9,

bearing in mind that v t, [{T¥]| = [|T,[]).

17.32 REMARK 1If X is reflexive, then XO = X* and {T{‘__:t z 0} is strongly

continuous, a point that has been noted earlier.
0 * O
Iet L~ be the generator of the semigroup {'I‘t:t =z 0}.
17.33 1EMMA Dom LO is weak* dense in X*.
PROCFE Infact,DanL*isuea{*denseinx*,hencethesaneistmeofxo

(c£. 17.30). But Dom IC is norm dense in X°.

o relate LO to L*, introduce the part of L* in XO, viz. the operator L*/XO
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whose domain is {} € Dom L*:I*) € X°} with L+/x°x = L*)\.

17.34 1EMMA L0 is the part of L* in xo and L* is the weak* closure of LO.

17.35 EXAMPLE Take X = Ll (R) and define Tt by

(T £) (%)

flx + t).
Then X* = L™ (R),

(TE) () = §(x - t),

1]

and X° = BC,(R), the bounded uniformly continuous functions on R. Here the generator

L is differentiation and Dom L is the set of all £ € t (R) which are absolutely con-

tinuous subject to f' € Ll (R). However, Dom L0 # Dom L* (consider the function

x + {sin x|).

17.36 IEMMA Let )\ € X* — then the following conditions are equivalent:

(1) X € Dom L*;
(ii) lim sup t°%]

|T*x = A}] < o
£y 0 t

(iii) lim inf €] |0 = Al} < e
t+0

PROOF That (i) => (ii) is contained in the proof of 17.30 and (ii) => (iii)

is trivial, so assume (iii). Choose a segquence tn + 0 and a constant C > 0:

1-1:—||T§)\->L||scv:x.
n n
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Then the linear functional x + A(Ix) is norm continuous on Dom L. Proof:

. 1
AIx) | = | Lim = <T_ % - %, |
n+otnm

1

1
| lim = <x,T* A - X>|
n+°°tn 'tn

1A

C||x

-

Therefore » € Dom L*,

If x € Dom L, then

t
TtX - X fo Tslxds {cf. 17.11)

| ITex - x| st(sup [|T}|)]]|1x]]|
O<s<t

1l
vl

lim sup €7 T x = x|| <
40

Never theless, in general, this can not be reversed.

17.37 EXAMPIE Take X = C_(R) and define T _ by
(th) x) = £(x + t) (cf. 17.24).
If £ € C_(R) is absolutely continuous with derivative f' € L°(R} but f' ¢ C_(R},
then

. -1
lim sup £ [T f - £}] < [[£']],-
40

still, £ ¢ Dom L.
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17.38 RAPPEL Suppose that L:Dom L -+ X is closed and densely defined -- then

the resolvent set p(L) of L is the set of all complex numbers z such that

2T - L:Dom L -~ X is bijective —— then
- ~1
R(z:L) = (2I - L}

is a bounded linear operator on X {closed graph theorem).

[Note: The spectrum o(L) of L is the carplement in C of p(L).]

Supposa that {Tt:t > 0} is strongly continuous with generator L such that

at
| < me

for some a € Rand M = 1 (cf. 17.6).

17.39 LEMMA The spectrum of L is contained in {z:Re z < a}, hence the

resolvent set of L contains {z:Re z > a}.

17.40 IEMMA TIf Re z > a, then

(zI - 1) Ix = f‘; e'ZtTtxdt (x € X).

MNote: Therefore

- -1
| {(z1 ~ L) l||sM(}‘Ez—a) .1
17.41 THEOREM (Post-Widder Inversion Formula) Vv x € X,
_ . n 0, n, . . - E -n
T x = lim (ER(IQ.LJ) pid lim (I a L) "'x

t
n =+ oo n =+ w

uniformly on compacta in t.
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Iet ff be a complex Hilbert space — then in what follows, it will be a
question of a semigroup {Tt:t > 0} on the Banach space B(H) which is weak* contin-
uous.

N.B. Recall that B(H) can be identified with the dual of L].(H) (cf. 1.4).
S0, to say that {'I't:t z 0} is weak* continuwous amounts to saying that the function

R,o ~ B(BH)

t+Tt

is continuous when

B(B()) = B(Ll(H)*)
is endowed with the weak* topology, thus v A € B(H) &§ v T € ;_.l(H),

lim H(TAT = tr (T, 1.
t >t t %

In particular: V X,y € H,

lim tr((TA)Px'Y) tr((TtA)Px)

t >t t o XY
or still,
lim 1 (P ) = tr (P )
£ >t (TtA)x,y (‘I‘t Ax,y
0 0
or still,

lim <y, (TtA)x> = <y, (‘I‘t Ayx>,
t > to 0

17.41 1IEMMA Suppose that {Tt:t > 0} is weak* continuous ~— then 3 constants



24.

acRand M 2 1 such that

7] < me?*

for all t = 0.

PROOF We first claim that [[T,|| is bounded in some neighborhood of the

origin:3 § > 0 and M{§) = 1:

IITtII < M(§) (D < t< ).

Assme not, thus there would exist a sequence t > 0:t - 0 and |]'I't || = n.
n

S0, by the uniform boundedness principle, 3 A # 0 in B(H) such that {| |Tt Al
o

is wnbounded. PutAn=TtAand let %,y € H — then
n

<y,Anx> +> <y,Ax>,
Therefore the ssquence {%x} is weakly canvergent to Ax, hence 3 C > 0:V n,
|2 x| < c.
which, by another application of the uniform boundedness principle, implies that

1C > 0:¥ n,

a1l <,

a contradiction. Proceeding, given t > 0, write t = kd§ + 1 0stT<sk€e€Z )

0

T = T ||

i

HT](G ° TTH

iM

TERTRRILAY
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< M(G)k+1

t/§

[58

M{SIM(S)

1(3)e?t (a = 571 10g M(8)).

17.42 IEMIA Suppose that [‘I‘t:t 2z 0} is weak* continuous. Assume: V A € B(H)

and ¥ x € H,

Lim |[(r2) &) - ax|[ = o.
t >0

Then v A € B(H) and ¥ x € H,

lim [[('I'tA) (x) - (T, A) Gyl o= 0.
t>t, 0

{One can argue as in the proof of 17.9 (continuity on the left at t, > ©

0
being secured by an application of 17.41).}

[Note: The condition

lm [T 0 - (T A @] =0
’t-*t0 0

is weaker than strong convergence which would read

lim }|T,A - T, Al|] = 0.]
trt, © %0

17.43 EXAMPLE Suppose that {'I‘t:t > 0} is weak* continous. Assume:
v £, T :B(H) > B(H) is 2-positive and HTtIH <1 — then v A € B(f) and v x € H,

lim {7 A) () - 2x|| = 0.
t=+0
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To see this, start by writing

|| r2) () - 2| |2

<(TtA) (x) - Ax, (TtA) (x) - B>

il

<, (TtA) *(T,A) {(x)>

- 2Re <Ax, ('I'tA) (x}> + <Ax,Ax>.

But

(T A)*(TA) < ||TtI||Tt(A*A) (cf. 11.24)

s T, (A*R) (HTtIH < 1).

Therefore

|l (T2 () - Ax[|2
< Q{,Tt(A*A) (x) >

- 2Re <AX, (TtA) (x)> + <Ax,Ax>

> <X AFAX> = 2<A,AX> + <BX, A
(t > 0)

"
=]

Maintaining the assumption that {Tt:t > 0} is weak* continuous, suppose further
that v t > 0, the map T,:B(H) » B(H) is positive and nommal’ — then (T :t 2 0}

gives rise to a predual semigroup {(Tt)*:t > 0}, i.e., a semigroup on B(H}, or still,

TLet 0:B(H) > B(H) be a positive linear map — then ¢ is normal iff ¢ is

weak* continuous.
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on L.l(H) (cf. 2.3). Spelled out, YA€ B(H) & v T € L, (H),

tr((TA)T) = trA(T), D).

17.44 [EMA The predual semigroup {(T,),:t = 0} is strongly continuous.
PROCF It suffices to show that {(T ),:t = 0} is weakly continuous (cf. 17:4):
VAEL (H* & v TeL ),

t - to 0

But 3 a unique A € B(H)} such that A = 7\,_\ (cf. 1.4), so

Lim - AT T = (T, ),T)

t+t0 0

lim tr(A((Tt)*T - (Tto),,T))

t+t0

lim tr((TtA)T - (Tt A)T)

t-*to 0

= 0,

The dual {((T),}*:t 2 0} is precisely {Tt:t = 0} (cf. 16.3). Accordingly,
if L is the generator of {T :t = 0}, then L is weak* closed and weak* densely

defined. Its domain consists of those A € B(H) such that

TtA-A

lim T

t-+0
exists (weak*). And, owing to 17.31,

5 T = B(in°,
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Dom L itself being characterized by 17.36.

[Note: In obvious notation, (L,)* = L.]

17.45 RAPPEL If Ai -+ A (weak*), then A;I'_ + A* (weak¥*),

IV T € L (M),

tr(TAf) = tr(T**A¥) = tr((AiT*)*) = tr(AiT*)

+ tr(AT*) = T ((ATF)1*) = tr(TA*).)
Since Tt is positive, Vv A € B(H),
TtA* = (TtA)*.
17.46 IFEMMA Iet A € Dom L — then A* € Dom I and IA* = (LA)*,

PROOF By hypothesis,

TA - A
+ 1A (weak*).

Therefore

- D)% * o Ak
(TtA A) _TtA A

t t

+ {(LA)* (weak¥®).
So, A* € Dom L and LA* = (LA}*.

[Note: If ¥ t = O, TtI=I,thenIEDanLandDanLisanoperatorsysten.]

17.47 RAPPEL The subset of B(B(H{)) whose elements are the 4:B{H) -+ B(H)
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which are weak* continuous is a norm closed linear subspace of B(B(H)).

If {Tt:t > 0} is norm continuous, then a fortiori, {Tt:t z 0} is weak*

continuous. Supposing still that the T, :B(f) > B(H) are positive, the relations

Tt-I
1im || € _L”_'O
t~+0
n k
ln |t - £ M| =0
n > e k=0 ™°

imply that the T, are normal iff L is weak* continucus (cf. 17.47).

N.B. The semigroup {Tt:t > 0} is unital if TI=IVtz20.

17.48 EXAMPIE Fix H € B(H)SA and let

2
’ . X /2t e/-_l xH, e—FI xH
‘/fi-n-t —

ds (& € B(f)).

Then {Tt:t > 0} is norm continucus and unital. Moreover, V t = 0, the map
Tt:B(H) + B{H) is positive and normal. Finally, the generator L is given by
1l
IA = — 7 [Hr [HrA]]

—%(HZA+AHZ-2HAH).

[Note: From the formala, it is obvious that L is weak* continuous.]
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17.49 EXAMPLE If U € U(H) and A > 0, then the prescription

® n
ra= 1 M TR (e osm)

n=0

defines a nom continuous unital semigroup {Tt:t > 0} whose generator L is given by

LA = A(U*AU -~ A)

or still,

LA=-—%’—(V*W§+AV*V—2V*AV)

ifv=vxU. AndtheTta:epositiveandnonnal.

17.50 REMARK Take H separable and suppose that the semigroup {'I‘t:t > 0}
is norm continucus with the Tt completely positive and normal —— then in the
terminology of §16, ﬂaeTtareOPerationsithIsIvtandtheTtarecharmls

].thI=IVt.



§18. GENERATORS

let X be a complex Banach space —- then a semigroup {Tt:tzo}onXissaid

to be contractive if v t, T, is a contraction (i.e., }|T

t t[{sl).

18.1 EXAMPLE Take X = L°(8") and define T, by

2
- -n/2 -|x-y|“/4t
(T £) (x} = (4mt) f e £ (x)dx.

Then the semigroup {Tt:t 2 0} is strongly continuous and contractive. Its generator

L is the laplacian

2 2
,'ﬁ - -—2-3 + v + ——78
g d ’
1 xn

Il

Dom A = {£:4F € L2 (&Y).

Here Af is understood in the sense of distributions, hence Dom A is the Sobolev

space W' 2 ().

18.2 THEOREM (Hille-Yosida) Suppose that L:Dom L + X is closed and densely
defined —— then L is the generator of a strongly continuous contractive semigroup
iff

pL) > Rgand [[GI -D7H| s % (x> 0).

[Note:



Therefore the conditions are certainly necessary (cf. 17.39 and 17.40). That

they are also sufficient is one of the pillars of the classical theory.]

Suppose that Li:Dom L = X is a densely defined linear operator -- then L is
said to be dissipsa tiveifoEDanL&VrE&o,
N - x| = =] ixl].
[Note: Therefore rI - L is injective and
Hex -7 | < 2 [)x]]

for all x in the range of rT - L, or still, in (rI - L)Dom L.]

18.3 I¥MMA If L is dissipative, then L admits closure.
PROCF Consider a sequence {xn:xn € Dom L}
I X >0

Ix + Y.

Claim: y = 0. To see this, note that v x € Don L,
|le@eT - Lyx, + I - Lix|| 2 r|[rx + x]]

=>

|| =y + (eI -~ L)x|]| 2 ||x|] (n~+«)

=

[} -y +x-Zmxfl 2 {[xl]

[| =y +x|] 2 [|x|] 2 (x+=.



But Dom L is dense in X, hence y = 0.

N.B. The closure L is again dissipative.

18.4 LEMMA If L is closed and dissipative, then rI - L is surjective for
some ¥ > 0 iff rI - L is surjective for all r > 0.
PROOF Iet O c R , be the set of r such that rT - L is surjective. Take O
nonempty — then
p(L) open => O open.

But O is also closed (=>O=§_€>O). 'I'InlsletrnEO:rn+r>0. Given v € X, 3

XHEDCXIIL:

rnxn-]'.xn=y.
And

-1

x| < et e T - x|
-1
=r, lyll sc 3 C> 0.

Now write

rtlx —-x 0l s G -x) - B, - x) H

= ||rmxn - rmxm - an+ Lxm][

= ||rmxn-y-lxm—mn+]:xm||

I

Mgz, - v = Ix |

[ 17 = Tr¥al |



FPEEARIPAT

1A

Clr, - x|

to see that {xn} is Cauchy, SO X, X

IX, =rx -y >rx-y.

Because L is closed,
X€bomL and Ix = rx - vy.

Therefore

= ~Ix=(rI - L}x =y

Ran(rI - L) = X

=>r € Q0 => 0 closed.

18.5 IFMMA If L is dissipative and if rI - L is surjective for some r > 0,
then L is closed.
PROOF In fact,

o -7 e B,
hence rI -~ L is closed, which implies that L is closed.
Given x € X, its duality set is defined by
PR = DL € X*ou@ = |1x[1% = |1a]1%)
X Ax J\}: ‘

[Mote: D(X) is not empty (Hahn-Banach).]



E.g.: If X = f, a camplex Hilbert space, then D(x) = {x}.

18.6 IEMMA Suppose that L:Dom L + X is a densely defined linear operator --

then 1. is dissipative iff v x ¢ Dom L, 3 AX € D{x) such that

Re ) _(Ix) < 0.
x

PROOF Assume first that the stated inequality is in force. Take x € Dom L:

[1x|| = 1 and choose )\X € D(x) accordingly (=> }\x(x) = IIXHZ _ ”)\Xllz = 1) — then

vyr >0,

)

et - x| = |7 ] 16T - x|

I

A ((rT ~ L)x} ]

2 Re Ax((rI ~ L)x)

Re (r)\x (%) - 'Xx {Lx))

[\

r,

which is the implication in one direction. Proceeding to the converse, fix x € Dom L:
||x]| = 1 and assume that
[ (I - Wx|] =z ¢
for all r > 0. Choose
}\r € D({xrT - L}x)

and put
A

_ r
N = ]I)\rll *

r < |1 (T - Lx||



In (rT - L)x) ]

rRe nr(X) - Re nr(LX)

< min{r - Re n (Ix), rRe n_(x) + |[Ix]|]}

1
Re n_(Lx) SOandl-;__—[leI[ < Re n_(x).

Let n be a weak* accumilation point of the net {nr} (r » =2). So
Re n{Ix) < 0 and 1 < Re nix),

with, of course, ||n{| < 1, thus
1R nx) < Inx)| =< ||zl =1

n € Dx).

Put )\X = n to camplete the proof.

18.7 RAPPEL Given x € X, an elawent )\ € X* is called a tangent functional

at x if A(x) = ||x|] VIx|][.

Write T(x) for the set of tangent functionals at x — then P(x) < T(x).

[Mote: The contaimment D(x) < €(x) is proper if x = 0.
A A
then 5 € T(x) but 5 £ P(x).]

18.8 LEMMA Suppose that L is dissipative -~ then VX € Dam L & ¥ X € T(x),

Re A{Ix) s O.



PROOF Fix xeDom L and Jet A € T(x). Put

_ A
T TIIT

Then v r > 0,

(T + rL) (%} || 2 Re n({T + zL} (%))
= |1x]|} + rRe n{ix).
Therefore
Re n(Ix) < Lim sup = (|| (I + xL) G |} - ||x[ ).

r40
Congider now any ¥ € Dom Ls

[T + e x| < [|x + ey|] + 2|y ~ Lx[|

14

[T - xL)(x + oy} || + z|ly ~ Ix||

Ux|| + 22| ly - x{| + 22| |Ty] |-

i

Therefore
Re n(1x) < lim swp 3 (2x|ly - x| + x?||1y||)
ri0
= 2|y - x{|.
But Dom L is dense in X, hence
Re n(Ix) = 0.

18.9 LEMMA Suppose that {Tt:t z 0} is strongly continuous and contractive ——
then its generator L is dissipétive.
PROOF Take any x € Dom L and let ) € T(x} - then



. 1
AIx) = lim = A (T, x - x)
t+0t t
= lm g Oz - [] IxlD.
t->0
But
x| < T [Tl
< 1AL T x|
< [IAf] Tl 1.
Therefore
Re M{Ix) < 0

and one may quote 18.6.

18.10 EXAMPLE Let A € B(X) —— then A - |(a}|I is dissipative. For

|lexp(t@ - [[a][IH]]

| |lexp (tA)exp (= t][A[ {1} }]

A

Hexp(ta) || |exp(- t|[a] (D) ]|

LAl ¢l 1A

1A

18.11 THEOREM (Iumer-Phillips) Suppose that L:Dam L ~ X is a densely defined
linear operator — then L is the generator of a strongly continuous contractive

semigroup {Tt:t z 0} iff L is dissipative and for same r > 0, Ran(rI - L) = X.



PROOF The necessity follows from 18.9 and the fact that p(L) > R As for

O.
the sufficiency, 18.5 implies that L is closed. But L closed and dissipative forces

the surjectivity of rI - L for all r > 0 (cf, 18.4), thus p(L) > R.g and

e -0 <X eso.

One can therefore apply 18.2.

18.12 EXaMPLE 1If X = H, a complex Hilbert space, then a densely defined L
is the generator of a strongly continuous contractive semigroup {Tt:t = 0} iff
¥ X € bom L,
Re<x, Ix> < 0
ard for all r > 0,

Ran(rI - L) = H,

Suppose that L:;Dam L > X is a densely defined linear operator -- then we shall

call L a generator if L is dissipative and for all r > 0,

Ran(rI -~ L) = X,

18.13 BAMPLE If L and L* are dissipative, then L is a generator,
[In view of 18.3, L admits closure, hence L makes sense, and, as mentioned
there, I is dissipative, so matters reduce to proving that v r > 0,
Ran(rI - L} = X

or still, v r > 0,

Ran(rI - L) = X.
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To get a contradiction, assume that 3 r > 0:
Ran(rl - L) = X.
Then, by the Hahn-Banach theorem, 3 A = 0 in X* such that

<{(rI -~ L)x, 2> =0 (x € Dom L}).
Therefore A € Dom I* and

<X, {rI = L*)X}>=0 (x € Dam L) .

But Dam L is dense in X, hence (rI - L*}) = 0, which violates the injectivity of

(rI -~ L*) (by hypothesis, L* is dissipative).]

18.14 THEOREM Iet L be a generator and suppose given a linear operator A with
Dom A > Dom L
subject to
[|ax}| < al[x{| + b|jtx[| (x € Dom L
for some a 2 0and 0 <b < 1. Assume: Either A or L + A is dissipative — then
L + A is a generator.

[Note: The domain of L + A is Dom L.}

It will be convenient to proceed via a series of lemas.

18.15 IEMMA If A ig dissipative, then L + oA is dissipative for all o =z 0.

PROOF According to 18.8, vx € Dam L & vV X € T(x},

Re A(Ix) = Q.

But, being dissipative, the same holds for A, thus Vv x e bam L & ¥ X € T(x},

Re A({L + ad) (x)} < O.
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Therefore L + oA is dissipative (cf. 18.6).

18.16 IEMMA If I, + A is dissipative, then L + oA is dissipative for all
a =z 0.

PROOF 1In fact, v A € ¥(x) (x € Dom L},

Re A{(L + oA) (x))

1l

oRe AL+ A (X)) + (1 - a}Re A{Ix)

< 0,

Therefore L + oA is dissipative (cf, 18.6).

18.17 1¥MMA If05a1<%5,thenL+alA is a generator,
PROOF To begin with, vx €X & v r > Q,
-1
| |xa(T - rL) x|}
-1 ~1
< al||r(I - rL) "x|| + b} |rL(I - ¥L) x[].

But

[2L(T - r) x| |

| |- zL(T - rL)”1x||

[0 - £L) - I (T - I x| |

Il

@ - 1~ rm Y.
So, bearing in mind that
P (T «-rL)'—lH < 1,

it follows that
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||EAT - D) "Yx|| < (ar + 2b) | |x]].

Nowchooserosud*ithatal(ar+2b) <1lfor ¢ sr <r, and put

0

- -1
Ar = ccer(I ~rL) .

Then
HArH s oqfar + 2b) <1
=>
-1
(1 - A) "~ € BX.
Therefore
Ran(I - r(L + alA))
= Ran((I - A ) (I - rL))
= Ran(I - Ar)
= pam(I - A) T = x.
Y
Since L + oA is dissipative, 18.5 inplies that L + o.A is closed, thus by 18.4,

Y

rI - (L + alA)

is surjective for all r > 0. Consequently, L + A is a generator.

1 .
18.18 1IEMMA If02a2<ZE—,thenL+alA+ azAlsagalerator.

PROOF ¥ X € Dom L,

| {ax| !

A

al|x|| + bl j1x[}

1A

al|x]] + b||Ix = oyBx + oyAx]||

1A

al bt | + Bl @ + agaix] | + boy | |2 |

1}
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<allx|] + b|| @ + aix|| +3 |{Ax]]

-

[12x[| = 2a]fx{| + 2b]| (@ + oyB)x|

From here, one may argue as in 18.17 to conclude that L + or.lA + azA is a generator,

Iteration then implies that

n
L+ (Z )& (0 < < =)
k—-lak ak 2k'b

is a generator. But

%+ ib Toeee Zib == _bz—n y
Therefore L + oA is a generator for all
05a<}—:gz—_-n.
Since b < 1,
n>>0=>—1_b2_n>l.

Accordingly, L + A is a generator, the contention of 18.14,

18.19 REMARK It is an interesting point of detail that

18.14 => 17.18.

18.20 EXAMPLE The assumption that b < 1 in 18.14 cannot, in general, be

replaced by b = 1. E.g.: Let H be a camplex Hilbert space and let A he selfadjoint
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but unbounded — then vy=1 A and - /-1 A generate strongly continuous contractive

semigroups. On the other hand,
|} - /T af| = |1 a[[,

so the conditions of 18.14 are met with a = 0, b= 1. However, v=1 A + (- /-1 A)

is the zero operator on Dom A, thus is not closed, thus is not a generator.

18.21 REMARK If A* is densely defined, then b = 1 is permissible in 18.14

provided the conclusion is modified to read: L + A is a generator,

If A is bounded and dissipative, then 18,14 implies that L + A is a generator.

Proof: v X € Dam L,

| |2x] |

1A

[af] [1=]]

[all [x[! + bllzx[] (0 <b<1).

(12

18,22 EXAMPLE Let X = B(H) (H a camplex Hilbert space). Consider a con-

tractive semigroup {Tt:t = 0}. Assume that {'I‘t:t > 0} is weak* continwous and, in
addition, that v t = 0, the map Tt:B(H) -+ B(H) is positive and normal -~ then the

predual semigroup {(Tt)*:t > 0} is strongly continuous {(cf. 17.44) and contractive

1

(||{'I't)*|| = ||({Tt)*)*|| |]Tt|| 2 1}). Suppose now that A € B{ff) is the dual of

an element T of L, (f): A= T* — then T - ||T||I is dissipative (cf. 18.10), thus
L, + 7~ {|T|{T

is a generator, so L, + T is the generator of a strongly continuous semigroup
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(cf. 17.18). Therefore

(L, + T)* =L+ A

is the weak* generator of a weak* continuous semigroup on B(H).
[Note: The growth bound on the semigroup per L, + T is exp(}[T|[t), hence
the growth bound on the semigroup per L + A is exp(|[A]|£).].

The formulation of 18.11 simplifies if L is bounded.

18.23 THEOREM Iet L € B(X} -~ then the nomm continuous semigroup e:t 2 0}

is contractive iff L is dissipatiwve.
Of course, we need only deal with the sufficiency, the crunch being 18.27 infra.

18.24 RAPPEL Iet L € B(X) — then the frontier 50(L) of the spectrum ¢(L)
is contained in the approximate point spectrum of L.

[Note: This means that given z € 30(L), 3 a sequence x EX:lIan = 1 and
n1_J;mm ||an - zan = 0.)

18.25 IEMMA Suppose that L € B(X) is dissipative -- then
3a(L) < {z:Re z < 0}.

PROOF Fix z € % (L) and choose the %, as above., Put )\n = _J\xn {cf. 18.6), thus

Re An(]:.xn) < 0.
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But

%(an - zxn) >0 (n-> )

An(lxn) - zln(xn) +0 (n -+ «)

ln(lxn) -z2>0 (n-~> )

Re An(an) >Rez (n~+ ),
Therefore Re z < 0.

= 2 _ 2 _
[Note: Recall that A (x) = [Ix {|%=|[A [|°=1, so

Iln (an - zxn)|

1A

A Il [l - 2= ||

I, = 2% ] »0 @]

18.26 RAPPEL Iet L € B(X) — then the set of z € ¢(1) such that z is not an

eigenvalue and Ran(zI ~ L) is closed but not all of X is an open subset of C.

18.27 IFPMMA Suppose that L € B{X} is dissipative —-- then p(L) > 5>0.
PROOF ¥ r > 0, rI - L is injective, hence r is not an eigenvalue. On the

other hand, rI - L is bounded, thus closed, so (rI - Ll is closed. But

(T - L)-l:Ran(rI - L) + X

is bownded. Therefore its damain Ran(rI - L) is closed. BAnd, in fact,
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Ran{rI -~ L) = X (otherwise, use of 18.26 would lead to a contradiction of 18.24).]

18.28 RAPPEL ILet a,b be two points in a Banach space E — then the function

t+|la+tbl| (teR
has a derivative on the right and a derivative on the left at every t0 € R.
In 18.28, take E=B(X), a=1I, b=1, t0=0--then
Yi I ([ -1
£4+0 t
exists.
Notation: Given a unit vector x € X, fix A_ € D(x) (= X (x) = [ x| |2 =
1A 1% = 1) and put
o(L) = sup _ Re A (Lx).
x:|jxl| =1
18.29 LEMA v L € B(X),
o(L) < Lim UTHEL[ =1
40
PROOF We have
A G+ tIx) | = |1+ tRe ) (Ix) + /-1 t In ) (Ix)|

= ((1 + tRe J\X(Lx))z + t2(mm kx(Lx))Z)l/z

1 + tRe AX(Lx) + oft).
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Therefore
A (x + tLx}| = 1
Re )\X(Lx) = lim €
t40
But
A (= + twx) | < [[A_|] [1(x+ twx]]
< || + tnf].
Therefore
Re A (Ix) slimm"'zl‘” -1
X £40
=
o) = 1im LT+ I =3
40

18,30 LEMA ILet L € B(X) and suppose that

yim HZ+eE)] ~ 1
0

0.

Then L is dissipative, hence {e™:t > 0} is a norm continuous contractive semi-
group (cf. 18.23).

PROOF For ©{L) =< 0, thus one may cite 18.6.

[Note: To establish that L is dissipative, it suffices to work with unit

vectors (see the proof of 18.6).}

Now specialize and take X = B(H) (H a complex Hilbert space).

18.31 THEOREM Let L € B(B(H)) and assume that I is #*-linear — then e
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is positive for all positive t iff
LTI + UK{LI)U > (LU*)U + U*(1U)

for all U € U{H).

The initial step is to reduce matters to when LI = 0. Thus let K = - LI/2

and define

L';B(H) » B(H)
by

L'A = KA + AK.
Then V t € R,

etL' {a) = etKAetK

and {e ':tEB} is a norm continuocus group of positive maps on B(H). But in norm,

Yyt=z0

LY (ay = 1y (WRIL /MLy gy 1gy,

n -+«

t(L+L")

Therefore et is positive for all positive t iff e is positive for all pos~

itive t. To camplete the reduction, it remains only to note that

{L+L')I =L - LI/2 - 1LI/2 = Q.

Obwiously,
=> etL(I} = I.

tL

So, if e is positiwve, then

e =1 (ef. 11.27).
Now let U € U(H):

<, e x>
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<etL (Uix, etl' {(U)x>

l1eT x| 2

1w |12 ]x] 12

14

(e 1ol 2] )=l

[FaY

1A

<HLH>

eTwmeTw < 1.
Differentiation at t = 0 then gives
0 = (LU*}U + U*(L0) .
[Note: At this point, replace "L" by L + L' to get
0z ({L + LYUMU + U*((L + L")U)
or still,
0 = (LUX)U + U*(1U)
- (LI/2)U*U + U* (- LI/2)U + U*(~ LI/2)U + U*U(- LI/2)

or still,

LI + U*(LT)U > {LU*)U + U*(1U).]

Conversely, since etL is unital, to prove that etl'

is positive, it suffices
to prove that ||etL|| < 1 (cf. 11.13) and for this, we shall apply 18.30. To begin
with,

[T+ tL]| = sup |lU+ twW0]] (cf. 11.26).
vl (H)
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But

U+ ol |2 = || U + =@ + ) ||

= [|T + £(@UMU + Ur @) + £ o)) |

which, for 0 < t < 7TT%TT’ is

<1+ t2| |L| [2 (see below).

so
Iz + tu}] < @+ €[] 152
=
g HExenll -1 gL (1+t2||1-l|2)l/2'1=0,
£40 € 40 ¢

Therefore [|etL[| < 1 (cf. 18.30).

18.32 RAPPEL 1et T € B(H)SA — then

HTlt = sup |, >
XES (H)

The assumption is that
0 =z (LU*)U + U*(LU)

and, fram the definitions,

.

|| @o*)u + ux@ || s 2} |5

This said, given x € §(H), consider

<x, (I + t((WHU + U* (W) + t2(I0) A1) x>
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= 1+ tex, ((LUMU + U*(LO)) x> + £2<x, (LU) *LUx>.

1

0 <t <aT7ErT

1 + t<x, ({(LUMU + U (L) )x> = 0.
Thus, with this restriction on t, we have

[T + €((LU*)U + U*(LU)} + tz(HJ)*LUH

= sup |<x, (T + t((LUU + U*(LU)) + t° (L0) *L0)x>|
xS (H)

= sup <%, (I + c{{IUMU + U*{LU)) + t2(LU)*LU)x>
%ES (H)

= sup 1+ t<x, ((IUY)U + UF(LO))x> + £2<x, (LU) ¥IUx>
XES (H)

< sup 1+ t2<x,(IU)*LUx>
XES (H)

1+ t2|[L[|2.



§19. DISSIPATIONS

Fix a camplex Hilbert space H. Let L € B(B(H)) and assume that L is »-linear.
Consider the following conditions.

1. et is positive (t = 0).

2. (I - 1)"? is positive (r > ||L]]).

3. B*(LA)B 2 0 if AB = 0, where & € B(#) , B € B(H).

LA2 + A(LT)A = (LAA + A(LA).

19.1 THEOREM We have

4=>3=>2=1=>4.
The proof is spelled out in the lines below.

19.2 LEMRA Assume 4, let A € B(H), let w € S(B(H)}, and suppose that

w(d) = 0 — then w(1a) = 0.
PROOF Vv B € B{ff),
w(vAB) = 0 = w(BYA) {cf. 2.9).
But
IA + JA(LD)YA > (LVA)/A + /A(L/A)

w(ld) + (AL /A 2 w((L/A)/AB) + o{/ALYE))



w(La) = 0.
19.3 RAPPEL Let T € B(H)y, — then T € B(H), iff v w € S(B(H)), w(D) > 0.

4= 3: vuwe SBH),
w(B¥AB) = 0.

On the other hand, w(B* B) is at least a positive linear functiocnal, thus on the
basis of 19.2,

w(B* (IA)B) = 0.

B*(IA)B € B(H) SA’

B*{(Ia)B = 0  (cf. 19.3).
3 => 2: It will be enough to show that if A € B(H)SA and if (rI ~ L)A € B(H),
then A € B(H),. To this end, write A=A’ - A", Since A'A” = 0, we have
A" @aha” > 0. In addition,

A (I - L/r)(A)A

[=]
1A

AAAT - A (L/r) (A)A™

]

]

aAat - -2 @ @t - ana

- @) - 2 @/ @HA + AT/ (3)A”



3 - 3

@7 <« a1 + A a/n aha”

1S

AT (L/r) (A)A .

14,

IfA- = 0, then

-3 -3
Ha H= = Jf@a)7|]

1A

Ha (/) a)a™] |

el 1a7] )2

12y

Il

-3
a7,

a contradiction. Therefore A

0, so A =A" € B(H),.

[Note: The map

(eI - L) L:B(H) > B(H)

is »-linear, hence respects B({H) SA']

2 =>1: This can be seen by writing

o = 1im (T - %L)-n (cf. 17.41).

n =+ o

19.4 1IEMMA AssmnelandfurtherthatLI=0mthenVAeB(H)SA,

1% > (IA)A + A(A).

PROOF Obwviously,

LI = 0 => e™(T) = I.

So, if e™ is positive, then ]|etl'|| =1 (cf. 11.27), hence

eL@ady > e@?  (cf. 11.25).



Differentiation at £ = 0 gives

LA2 > (LAYA + A(LA).

1 => 4: As in the proof of 18.31, introduce L' and then pass to L + L'.

Since (L + L'")I = 0, from the lenma we have

(L + L9I2A% > ((L + LY)AA + A((L + L')A)

or still,
1a% + (- 11/2)a° + A% (- L1/2)
> (IA)A + (- LI/2)A% + A(- LI/2)A
+ A(IA) + A(- LI/2)A + A% (- LI/2)
or still,

LA2' + A(LT)A = (LA)A + A(IA) .

19.5 REMARK Replace 4 by 4': v A€ B(H)SA’

1a® > (LA)A + A(IA).

Then the proof that 4 => 3 goes through undexr 4', thus 4° inpliesthatetl'is

positive (t = 0).

19.6 LEMMA Suppose that LI < 0 — then LI is dissipative.

PROOF Fram spectral theory (cf. infra),

eI -7 <

%(r>0).

So, ¥ X € H,

|| eI ~ LDx|| = || T = L) (eI = 1) Yy |



= ||y|!.
But
e -0y} < [T -] |yl
_ Lyll
r
=>
Hyl] = ][I - tDx}|
-1
> 2| (1 - L) Yyl |
=rl|x|].
[Note: Write
-1 _ 1
(eI -ID™ = [ oo 7o dE])::I
Then

LI < 0 => o(LI) < R,

|| (I - LD) =
reo(nI) T

1

<)

19.7 IEMMA Suppose that LI < 0 —— then v t 2 0,
He™™ o 1] < 1.

tL(I)

PROOF The assigmment t » e is a nomm continuous semigroup on H(not

B(H)...). Since its generator LI is dissipative (cf. 19.6), we have

e <1 (ef. 18.23).



But

tL

e (I) = etL(I).

tL

19.8 THEOREM e is a positive contraction for all t = 0 iff

12 > (LA)A + A(L2)
for all A € B(H)SA.

tL,

PROOF If the e are positive contractions, then

eme™®(r) <1

(LI)I + I(LI) <O
=» LT = 0.

SO,VXEH&VAEB(H)SAr

<X, A{LI)Ax> = <AX,(LI)Ax> < 0
=

A(LD)A < 0.

1aZ + A(LDA

gt\.'l
1\

1%

(LA)A + A(LA) (cf. 1 => 4 in 19.1).

Conversely, the relation

1A > (A)A + A(IA) (A€ B(H) )

implies that the etL are positive (cf. 19.5) and, on general grounds (cf. 11.27},

t1.
e[ = [|em

.



Now take A = 1 to get
LT = 2LI => LT = 0.
Therefore

e @M <1 (cE. 19.7).
Let A be a x-algebra.

e A *—dissipation is a *-linear map &:A > A such that

S(EXE) = S(EX)E + E*S(5) (E € A).

¢ A +—derivation is a x-linear map 8:A - A such that

S(En) = 6(&)n + E£6(n) (E,m € A).

[Note: Recall that 6§ is #~linear if § is linear and S(E)* = &§(E*) (thus
£=&x => §(E)* = 8(8)).]
N.B. While these definitions are the point of departure for a "general theory",

we shall deal only with the case where A = B(H), H a complex Hilbert space.

19.9 EXAMPLE If &8:B(H) - B(H) is a *-dissipation, then

6 (I)

S(II) = 28(I) => &(I} =< Q.

19.10 EXAMPIE If 6:B(H) » B(H) is a #—derivation, then

i

§(I) = 8(II} = 286(I) => 6(I) = O.

19.11 THEOREM Suppose that 6:B(H) ~ B(H) is a *-dissipation — then ¢ is

dissipative.



PROOF Fix A € B(H) and let A € T(A*A):

Al =1 = r@*) = [[a#a[] =
||A|[2) — then M(I) =1 (hence X is positive (cf. 11.12)). Proof: Write
MI) = a + /T b and note that
a2+ 6% = (% <1,
@-202+b%= a1 - 228/ [a] D)% < 1,
from which a = 1 and b = 0. This settled, define A, & B(H)* by
A (B) = A(A*B).

Then vV B:}|B|| = 1, we have

1,8 % = [r@*B) |2
< A{A*A) ) (B*B) {cf. 2.9)
< [1a}1? 118] |2
< |laf|?
IENIENEE
On the other hand,
|1a]]% =

A@ara) = 0, @) < [yl] HAll

Hall = [[x0]-
Therefore

a® = 12 = (gl 1Al

AA € T(A).



Next

But

since, e.g.,

2Re AA(G(A}) =2, 8(a) + AA(MAH

MA*S(R)) + A(A*S(R))

AA*SA)) + A {((A*@))*)  (cf. 2.9)

A(A*S(A)) + A(5(A)*A)

M(S(A*)A) + A(A*S(A))

A(S(A*A) )

i

- as¢]1al)3t - a%a)) + (Al 2.
S(I) <0 => A(S{I)) < 0.

A(8([]a}%T - a*a))

-~ A6H) ®= (|[a]]% - a3

A= §(B%))

1A

A(- §(B)B - BS(B})

- A(8(B)B) - A(BS(B))

0,

1A (s@)B) |2

< MSBAIABD  (cf. 2.9)



lot

AE®3) J[A[120(@ - A@*a))

A(6(B)2) (0)

= Q.
Therefore &§ is dissipative (see below).
[Note: v A € B(H),

Re J\A(G(_A)) < 0.

50
2] HAL = Re 2, (8)
< Re AA((I - rd) (A)) (r > 0)
< 1l T - ey @
=>
Al s [ -9 W]

T.e.: & is dissipative.]

19.12 IEMMA Suppose that 6:B(H) - B(f) is a *-dissipation —— then § is
bounded.

PROOF In fact, & is dissipative (cf. 19.11}), hence admits closure (cf. 18.3}
or still, § is closed, thus is bounded (closed graph theorem).

[Note: In particular, *-derivations are bounded.]

19.13 REMARK If 8:B(H) - B({} is a *~dissipation, then § is the generator

of a norm continuous contractive semigroup {eta:t > 0} (cf. 18.23).
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19.14 THEOREM Suppose that §:B(H) » B(H) is a bounded *-linear map —— then

§ is a *—dissipation iff v A € B(H),
ara) » F@aneP @ =0,
PROOF Differentiation at t = 0 gives
S(A*A) = S(A%)A + A*S(A).

Conversely, if § is a *-dissipation, then eta is positive {cf. 19.5). Fix A € B{(H)
and let

£(t) = etcs (A*n) - e.t(S (A*)ets (A} (t=20).

£ ey = s ara) - setar))etl @) - %) (et @)

£(t) — eOf(0) = I d_ (o(t8)8:0yyas

&

{t-s) 8

IE e (s> ar)e%% (a))

- (533" %0 () - 5% ar) (8e%%(a)))as

£t) = SPE(0) = 0

Har 2 MPanetta) @z 0.
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We shall now narrow the focus of 19.1.

Let L € B(B(H)) and take L *~linear — then L is said to be conditionally

completely positive if v n € N and for all

J—

A),..e)B € BUD

xl,...,xn € H,

we have
n
o<, ,L(A*A.)x.> =2 0
i, j=1 * td
whenever Alxl + eee 4 An = Q.

19.15 IEMMA L is conditionally coampletely positive iff v n € N and for all
"~ Aps-.. A € B(H)

B ’...'Bn e B(H}?

1

we have

n

L BIL(A¥A)B., 2 0
i, 3=1 o

whenever AlBl + e 4 Aan = (.,

Let Ln be the extension of I to Mn(B(H)).

19.16 IEMA L is conditionally campletely positive iff v n € N and for all



3.

finite collections

A B € Mh(B(H));

we have
T B*L_ (a*A VB, = 0
klzgknj—’k-a‘i =L

whenever I = 0.
> Bk

[Note: The verification hinges on 11.5 and 11.9.]

N.B. ¥neghN,

19,17 THEOREM ILet L € B(B(H)) and assune that L is %*~linear — then etl' is

completely positive for all positive t iff L is conditionally completely positive.

PROOF Suppose first that the e are completely positive. Fix n € N and let

Al""’An € B(H)

Bl,...,Bn € B({H)

subject to A1B1+ +Aan= 0 — then
L
n e (A*A.) - A%,
L BY ( i 1y B,
ij= t t ]
n
=1 ratl ax
=% L Bfe (AiAj)Bj 20

i,3=1
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n
I BXL(ASA,)B. 20 (t - 0).
i,j=0 + I3 3

Conversely, thanks to 19.16,

AB = 0 => B*L_(A*A)B 2 0.

tL,

Therefore condition 3 of 19.1 ig in force (details below), so e  is positive. As

this is true v n, it follows that etL

is completely positive,
[Note: If A€M (BIH)), , thenA=/A/Aand AB =0 <=> vA B = 0 (recall that

/A is the strong limit of a sequence of polynamials in 3).)

19.18 THEOREM Iet L € B{(B(H)} and assume that L ig #*-linear —— then etL is

completely positive and contractive for all positive t iff v n € N and for all

Alr---rAn € B(H)a

we have

[L@aga)] = [LEHA; + ALG)].

Here is an initial preliminary to the proof.

19.19 ILEMMA Let $:B(H) » B(H{) be a bounded #*~linear map — then ¢ is completely

positive iff v n € N and for all

A]‘f".’An E B(H)f

we have

][d:l][@(A}’_Aj).] > [@(.A;)@(Aj)].
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PROOF That the condition is necessary is a consequence of 11.24 and 12.15

({lef} = tla |]). That the condition is sufficient is immediate: V¥ x;,...,x €H#,
el | = e Ik
o] T o<, b@RIx>z |1 @)% % 2 0.
1490 A 133 el By %y

So, if {etL:t > 0} is a semigroup of completely positive contractions, then
tL tL tL tL tL
e @Ay > lle™1 [e @A)] = [T (Ape @]
=5

[L(A}‘_Aj)] p- [L(AI)Aj + A;L(Aj)].

To reverse this, some additional considerations will be required.

N.B. In its simplest form, the condition on L implies that the etT" are
positive contractions (cf. 19.8).

19.20 IEMMA Let o € S(Mn(B(H))). Assume:

w([A;!‘_Aj]) = 0.

w([L(A;Aj)]) 2 0.

PROOF Define By € Mn(B(H)) by

Al - - An
0 ... 0
— 0 - - 0 —_ -
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Tren w(@%3,) = 0, ts v X) € M_(BU)),

wXAy = 0
{cf. 2.9).
wdgXy) =0

In particular: v X ""'Xn € B(H),

w([A;F-Xj]) = 0.

Therefore

w( [L(A:’{Aj) B

> m([L(A:{)Aj]) + w([A;L(Aj)])

= 0.

19.21 IEMMA L is conditionally campletely positive.

PROOF Fix n € N and let

- By,-e. 0B € B(H)

HKyreoe Xy eH

a:bjecttoAlxl+ see HAX = 0 — then the claim is that

n
T <. ,L(A%A.)x.> = 0.
¥ 2 T
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let
*
- n
x = . e H
xn

and let W, denote the associated positive linear functional:

m}_{(}_\) = <x,Bx>  @AeM (BH)).

Then
n n
* 3 *
wﬁ([AiAj]) iil <X., JEl AiA-X.>
= 0.
Therefore
w}j([L(AiAj)]) z 0 (cf. 19.20).
I.e.:
n
T <x,,L(A*A x> = 0.
i, v T

Consequently, the e are ocompletely positive (cf. 19.17).

19,22 THEOREM Let L € B(B(H)) and assure that I, is *-linear - then etL
is completely positive and unital iff LT = 0 and v n € N and for all

Ajsese /A € B )

Bis.--,B € B{H),

we have

n .

¥ * - - F 3

.z Bi(L(AiAj) L(A{)Aj AiL(Aj))Bj > 0.
i,Fl
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PROOF Suppose first that et is completely positive and unital. The relation
n
IT = 0 being obvious, consider the asserted inequality. Put Ay = I, By = - z AB, -
i=]
n
then ¥ AiBi = 0. Since L is conditicnally completely positive (cf. 19.17),
i=0
n
X *
K BJ._L(AiAj)Bj 20 {cf. 19.15)
i,+0
or still,
n n
- * -
( izl A;B, ) *LI{ izl A;B.)
n n

+ (- L AB)* T L(A,B,
e T

n n n
+ T BXMLAX(- I AB.) + I BXL(A*A.)B, = 0.
=1 * & =t 13 qi,&= t tJ3

But LT = 0, hence
n
* % - * — A%
] .Z Bi(L(AiAj) L(Ai)Aj AiL(Aj))Bj = 0.
i, ¥l

Asfortheconverse,LI=0=>etL

wnital. Furthermore, if the inegquality obtains,
then the matrix

- * - A%
[L(A;Aj) L(Ai)Aj AiL(Aj)]
lies in Mn (8 (H))+ (c£. 11.5}), =0 etL is completely positive (cf. 19.18).
Iet ®:B(H) - B(H) be completely positive. Fix K € B(H) and define

L:B(H) + B(H) by

IA = 0{A) + K*A + 2K (B € B{fY).
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Then it is clear that L is *~linear and conditionally campletely positive. The

converse is also true and is of pivotal importance for the theory.

19.23 THEOREM Suppose that L € B(B(H{)) is x-linear and conditionally
completely positive -- then 3 a completely positive map 6:B(H) » B(H) and an
operator K € B(ff} such that

1A = ¢(A) + K*A + 2K (A € B(H)).

PROOF Fix x, € S{H), define K by

0

<y Ko = <x0 'I'PXOrYx>

1
-5 <x0 ,LPXO ’x0x0><y,x> ’

and then define ¢ by

d(A) = 1A - K¥A - AK (A € B(H)).

To check that ¢ is completely positive, let

- ByreeesBy € B{H)

Xl"..’}(n E Hl‘

and congider

n
I <X, ,0A%AL)x.>
im0

or still,

n
L <x.,LA¥.)x.>
i3=1 & AiRI%S

n n
- % <x K*AfA.X.> - I <X, ,A¥A.Kx.>,
ij=t * *rI i4=m P PI
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which we claim is the same as

n
T <X, L{AFA )x.>
i,g0 + t 13

if
n
A,=- T AP _ .
0 =1 P X 1 Xg
Granted this,

AOXO.'-AIX]. 4+ e +Anxn

-AP X, = +++ — AP X
xl,xOO nxn,xoo

TRAX e A

=T AKXzt S AX A e AR

I <x.,L{a*A.)x.> 2 0
i,40 Bihy% ‘
L being conditionally completely positive. Therefore ¢ is completely positive. As
for the claim, in the expression
n
I <x,,L{A*A.)x.>
i'j_:O xll ( § J)XJ

isolate

<X LA§RG) %4>



We have

But

21

3—1 Ko LAGA) X

n
T <x ,LG\ A )x
i=1

.

P

<X L (BEAG}¥,>

n I

XarL(( I AP )*(
%9 i=1 i X5 1% j=1 3 xj,x

n
)X
L, J_l

<X0,L(P A¥A P

XgeX; 1] xj

P *A_.P v
XO'XiAl 3 %y %y

I

XqeXs 1]

or

AP ))x0>

'xo) x0>.

P ATAL X0 Y,

VORI,

1373

<x0 ,y><xi,A‘."A X >xo

1737

|

<Aixi 'Aj Xj >P

Y-
XO ;XO
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Next

n

E Q{O,L(ABAj)xj>

J=1
n

= - T <. ,L{P A¥A Yx. >

i,j=1 ] XgeX; 173773

n

= - I <L(P A%¥A ) *x x>
id=1  Xor¥y A1 07

n
=~ I <L, _ )x,x.>
i,3=1 A5y 03

n
= - I <L({P )xo,xj>
R Y *

n
=- z <X0rL(P YEXL >

¢ s * 5|
i,j=l Ainxi,xo

n
= - r <x0,L(P IX. >
. g *
1i,3=1 xO,Ainxi

Analogously
n

*
iil <x; LRFAG x>

L <L{P )xi,x >

N 0
= *
i,j=1 xo,Aiijj

It reamins to deal with
n n

- T <x. K¥D¥a.x.> - L <x. A Kx.>
ig=0 + tII 3= P EI D



23.

or still,
n n
- % <Rx, ,A¥A.X.> - T <ARA.X, ,Kx.>
05 A o
or still,
n n
- T <A¥A.x, ,Kx.> - I <A*p.x. Kzg.>
or still,
n n
s * —— *
i,j=1 xo,Aiijj i,i=1 xO,Ainxi
1 n
+ = <x_.,LP X > L <A¥ALX.,X.>
2 70 %qrXq 0 i,j=1 1371
1 n
+ > <x0,LPx x x0> X <A*.=Aixi,x.>.
0% ¥ i,5=1 ]
Since L is *-linear,
pro'xo € B(H)SA,
hence
<x0'LPx0,x0x0>
is real. and
n b —————————————————————————
T <BFALX.,X.>
i,4= 1973771
n
= I <x.,AiA.x.>
i,9=1 ha J3
n

i

z <Aixi ,ijj>

i j=1
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while
n
T <AXA. A, ,X.>
ig=a 2t
n
= T <ALX. ALK.>.
i
We have thus accounted for
*
<XO,L(A0A0)XO>.
What's left is obvious.
Put
=2l % - k).
Then
H e B(H)SA.

19.24 LEMMA Suppose that LI = 0 = then

LA = D(A) -% (P(I)A + AD(T)) + /-1 [H,A] (a € B(H)).
PROOF In fact, v A € B(H),

- %- (B(T)A + AG(D))

-~ 5 (K = KMA - A(K - K¥))

{(K* + K}A + A(K* + K))

b =

-% ((K = K*)A - A(K - K¥))
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= % (2K*A + 22K)
= K*A + AK.

19.25 REMARK Take H separable, consider the representation of L per 19.24,
and impose the additional condition that L is weak* continuous — then ¢ is weak*

continuous, hence in view of 16.10,

d{A) = T V*kAVk (A € B{H)).
keic

Accordingly, v A € B(H),

= .1 - -
TA = - Ekén (VA + ARy, - 2VFaV) + /=T [H,A2].

[Note: This representation of L is, of course, far fram unique.]



§20. DERIVATIONS

Fix a complex Hilbert space H. Let H € 13(!—!)SA and given t € R, put

TA:eH%e- y=1 tH

. (A € B(H)).

Then the assignment t - 'I't is a norm continuous one parametexr group of *-autcmor-
thisms of B(H) and its generator L is given by

1A = V=1 [H,A] (cf. 17.16}.

20.1 THFOREM Suppose that {'I‘t:t € R} is a norm continuous one parameter
group of *-automorphisms of B(H} -— then 3 H € B(H)SA such that v t € R,

I = N

T, A (A € B(H)).
The proof depends on two mreliminary lamas.
20.2 IEMMA Let & € B(B(H)) -— then etﬁ(t € R) is a one parameter group of
*—automorphisms of B(H) iff § is a *—derivation.
PROOF The derivative at t = 0 of the function
t » &S (apr) = (M) (Hpyx

is

1]

§(AB*) = (SA)B* + A(SB)*,
thus 8§ is a *—derivation. To go the other way, assume first that 0 < s < t and

consider the function

s -+ e(t"s) 8 { (_esGA)_ (eS(SB) *}.



Since § is a *-derivation, the derivative of this function vanishes identically on

[6,t], hence

et (ap*) = (&%) (e50p) %,

I.e.: et‘s is a »~hamomorphism. An analogous argqument shows that the inverse e—t6

has the same property, from which the assertion.
N.B. A »~derivation 8:B({) -~ B(H) is necessarily bounded (cf. 19.12).

20.3 IEMMA Suppose that §:B(H) > B(H) is a #-derivation —— then 3 H € B(H)SA
such that v A € B(H),

sy = /-1 [H,A].

PROOF Fix y € S(H) and define H € B(H) by

-~

Hx = G(PX y) (y) (P = <y,— >X}.

r

Given A € B(H), we have

(A - 2 () = 6By, ) (¥) = AR, ) (7))

6(APx'y) (y) - (A(pr,y)) (y)

= ((GA)PX’Y) (y) + (AP,

r

Q@) - @R, ) @)

= (8RR, ) (¥)

r

SAE, (1))

SA(<y,y>x)

SA(x).



Therefore
SA = HA - AH,
It remaing to be shown that H can be mdified to V-1 H, whexre H € B(H}SA. To this

end, note that

-~

HA* - A*H

= § (&%)
= S(A)*
= AMI* - H*A*
or stilil,
HA - 2H = AH* - H*A,
Accordingly,
=i, H - B
LY 2 IA A\ 2 )

= (BB~ M) + 2 (H* - HW)
=1 (A - A +1 (B -2

o we can take

-~

H o= (H;H*}.
Vel

Turning to the proof of the theorem, let § be the generator of {Tt:t € R} -

then the first lemma implies that § is a *-derivation and the second lemma implies
that
§ = /-1 [H,—].



Finally

TA = o = Tt - T (e 97 96,

The assumption that {Tt:t € R} is norm continuous can be substantially

weakened but then matters become more technical in execution.

20.4 THEOREM Suppose that {Tt:t € R} is a weak* continuous one parameter

group of *-automorphi ams of B{(H} -- then
TA=UAUf (A€BH),

where t - Ut is a strongly continuous group of unitary operators on H.

N.B. Stone's theorem says that 3 a selfadjoint operator H (in general un-
bounded) such that v t,

20.5 REMARK It can be shown that if {T :t € R} is a strongly continuous one

parameter group of *-autcmorphisms of B(H), then {Tt:t € R} is necessarily norm

continuous.
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