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Puincipal Fiber Bundles Let

G —» P
ln
M
be a principal bundle with structure group G, which we shall take to

be a Lie group. Therefore P is a free right G-space:

PXG —3 P

(pr6) —» p-o=R _(p)
with
Ma2 P/G.
Moreover, T is a submersion and 'n(pl) ='n(p2) iff 3 € G:plo6'= Py
Finally, there is an open cover §;Ui} of M such that Vi, PlUi is
equivariantly diffeomorphic to U, X G over U;:

D .

1

Ui —_— U XG

17\ \/ pry

@, = (TR, b))

4’1(13’0') = C#i(P)'O" .

Definition: A local trivialization is an open set UC M and a

diffeomorphism



B (p) = (M(p),$(p))

Ppa) =Pp)-o .
Observation: Fix U -- then there is a one-to-one correspondence
between the Eﬁ and the sections s over U,

[Given @ , define s by s(x) =§'l(x,e). Given s, define @ by

R(sx)-6) = (x,6).]

LEMMA A principal G-bundle is trivial iff it admits a global
Ny

section.

Rappel: There is an injective morphism of Lie algebras

g —> @1 (P)

X —» X

with the property that

1

(Rp) WX = 2A(GT XK.

Given p€ P, denote by T;(P) the vertical subspace of TP{P):

v _ u -
e = { rer (®): am(m = 0}.



FACT VW X€g, E‘pe T;(P) and the arrow

v
— T (P
g S p(. }

—

X —> X
P

is a linear isomorphism.

Suppose that F is a left G-space -- then the prescripticn

1

(p,x)- @ (p-§ ,0 —-x)

defines a right action of G on PXF. Put

P )(G F = (P XF)/G.

Then there is a commutative diagram

pPYy

PXF > P
pro \l ™
P X, F > M
Tip
Here
M, ([p,x1) = T(p) ([p,x] = pro(p,x)).
[Note: VY p €P, the map
‘sp: F—> (P X F) T (p)
defined by
x—%[p!x]
ig a diffeomorphism with the property that
-Sp-o' (x) = 35 (ox).]



Definition: (P:XG F, M, TIP,F) is the fiber bundle associated

with

G —> P
m
1

Let

mapG(P,F)
be the set of G-equivariant maps
f:P—> F,
so Vo €ag,

£prs) = 6 L.£(p).

LFMMA There is a one-to-one correspondence
NN '
mapG(P,F)——é sec(P X F).

[Assign to fEmapG(P,F) the section S¢ of Pxs F defined by

sc(x) = [p, €] (P € M L)),

In the other direction, assign to s € sec(P xG F)} the map fs:P —>F
defined by
_ -1
fs(p) = ‘Sp {s(wip))),

the claim being that

£ (o) = _c"l-fs(p) Veea.

First, ¥V X€F, XXX T X503 B 6 X REPPINX K B R 20 H0HK



-1 o -1 i
x=3 ¢ ( 356 (x)) =% 0. (5,06:%)
=>
-1 - =1
o -x = SP'G ('SP(X)).
Now specialize and take x = fs(p) -— then
= <1 .
fS(P o) -.SP‘O" (s( TT1{p-67)}))

_ -1
-Spw(ﬂnwn)

_ -1
—396(3¢m3

-1

= § T-X
-0l s ts(me)
= O‘—l-fs(p).]

Example: Take F=G and let the action be Int -- then

" =P %, 6

is the bundle of Lie groups associated with P.

Example: Take F=g and let the action be Ad -- then

g =PXs9
is the bundle of Lie algebras associated with P.

Suppose that E —>»M ig a vector bundle -- then the sections of



6.

E @ AN

are the k-forms on M with values in E.

Notation: Put

/\k{ZM:E) = sec ( E@/\kT*M 3.

[Note: Conventionally,

)\0 ({M;E) = sec(E).]

So, for k>1, a given W € /\k(M;E) can be viewed at each x€M
multilinear :

as a/\w antisymmetric map w x:TX(M) ) R )(TX(M) _— E.
Structurally,
~Eaney e Aoy @ o AFa,
C

(M)
where

(S@w)x (leooo;xk) =wx(x1;...;xk)S(X).
Remark: If E ig a trivial vector bundle with fiber V, then

ﬁ\k(M;E) is the space of k-forms on M with values in V and is denoted

by /\k (M: V).

Let @ be a representation of G on a finite dimensional vector

gspace V -- then a k~form
k
W e AT(PE:V
is said to be of type ¢ if

- -1
R )*w = pleiew VYV eoee



and

uJ(Tl,...,Tk) = 0

whenever one of the 'I'i is vertical.

Notation: Write
NE (p;v)

¢

for the space of k-forms of type ¢ and let E be the vector bundle
P)(G v.
LEMMA There is a one-to~one correspondence
VW v

/\]2, (®:v) —> AF M E) .

k

[The element st f\k(M;E) corresponding to W& /\P (P;V) is
defined by the prescription
s (x x) =3 (w], (T T.)) (PET L(x)
m N l'...'k pwp l;-ook ’

where the T,€ Tp{P) are such that dTrp(Ti) =X, (141 <k).]



Classification Suppose given
G —> P
\LTI
M L
THEOREM Assume that M is contractible -- then P is trivial:
LT T Vo TN TN
P MXG.

In particular: Principal G-bundles over Rn, [O,l]n, B" and D"
are trivial.

THEOREM Take M=S" and ¢ path connected -- then the set of iso-
WAyl Vi
morphism classes of principal G-bundles over M is in a one-to-one

correspondence with the elements of T __,(G).

In particular: If G is path connected, then every principal

G-bundle over Sl ig trivial.

THEOREM Suppose that G and M are path connected. Assume:
NP,

T, (6 = 0 (g<dinm M).

Then every principal G-bundle over M is trivial.
more

[Note: This is ordinarily proved in a me&r general context, viz.

when M ig a CW complex. In our situation, M is a Cpomanifold, thus M

can be triangulated, hence carries a CW structure,]



Example: Let G=§gﬁ2) and assume that M is path connected with
dim M=3 -- then every principal G-bundle over M is trivial.

[This is because 1Tq(§912)) = 0 (g=0, 1, 2).]



Connections Suppose given

G —> P
A
M.

Then a connection |'is a G-invariant distribution on P which projects

isomorphically onto TM, 1In other words, |" consists in the smooth

assignment

h
P — Tp,(_P) C Tp(_P)

of subspaces, said to be horizontal, satisfying:

R h o,
(1) T, (P) -TP(P)@TP(P),

h _.h
(2) AR G(To(R)) = T) _ (P).

Remark: There is a short exact sequence
A
—_ —_ PYy—> T My —> 0
hence

Niepy ~
TP(P)’“ T (M) .

7 (p)

1 . .
LEMMA If X€g and T€ of) (P) is horizontal, then

[X,T]

is horizontal.

A connection P gives rise to a l1-form



1
@ E A (P? )r
r g
viz.t
- v h
X, Pre T (P) @ Ty (P)
—> Xggq.

Therefore co[,(T)=0 iff T is horizontal. And:

(1) QP(§)=X=

-1
2 R_)* = Ad .
(2) o . W (¢ )GJF

[Note: Conversely, if
w :OtEr—> COO(P{g)
satisfies these two conditions, then Ell F such that
) =<D[1 .
Indeed, the assignment
p—3 T0(P) =§ TET,(P): @ (T)=0 }

defines the connection f' .]
1 unique h
FACT Every X € D (M) admits a lifting X to a horizontal

N
vector field on P such that TI*X}1=X.
[Note: xP G_Gf)l(P) is invariant under the action of G and
every horizontal vector field on P with this property is the 1ift of
some vector field on M.]

Remark: Let Y be a representation of G on a finite dimensional

vector space V -- then in the presence of the connection f’, the



correspondence

/\];, (p;V) ~—> /\k (M; E)

which sends @) to s is defined by the prescription

w
_ : h h -1 '
Se ) Xpre X)) = @ (X ., X1 (pET T,

If rl' I"2 are connections, then

l -

Conversely, if [ is a connection and if GJE/\;;d(P:g) , then
@) +
P «
determines a connection.

Notation: Q1 (P} is the set of connections.
Agreeing to identify [ with Wp , it follows that OU(P) is an

affine space with translation group A\;d(P;g). Indeed, the action

_ L (p:
Wp-@ =W, +@ (WEN L (Rig))

is free and transitive. 8&ince

1 1 P
N aa(Psglg N (Migh),
one can also say that 0U(P) is an affine space with translation group

ﬁ\l

(M:g_P) .
Example: Consider P = MXG -- then the assignment

h _
(x,6 ) —7 T(X’G_ ) (MXG) = TX(M)



4.

is a connection . Let () be the canonical l-form on G, i.e., ® is

the left invariant g~valued l~form on G characterized by the condition

{(dL ) (X).

¢ 1o

@O_(X)

Then

("')r' Pr§ (@ ) ]

where

prZ:MXG — G.

[Note: This particular connection on MXG is called the standard
connection., If P is arbitrary and if r’e’Gﬂ(P), then [7 is said to be

flat if every x€M admits a trivializing neighborhcod U such that

P : 'n"l(U)-—‘i UX G sends the induced connection on TT-l(U) to the
standard connection on UXG.]
insert 4.5
LOCAL CRITERION Let {Ui} be a trivializing open cover of M.

Suppose that W¥J, Otj is a g-valued 1l-form on Uj such that whenever

Uj 0N Ui?‘!ﬂ ’

_ -1
01.] -Ad(gij)omi + @13
on Uj()Ui, where gij:UjrﬁUi-b G is the transition function and

& i = gij® -~ then 3 a unique connection [ such that Vj,

= * R

sj:Uj—¢>‘ﬁ -l(Uj) the section associated with the trivialization

(U, éj).



Let {Ui} be a trivializing open cover of M -- then Vi, we have

£

> U X G

w I

Uy

B, () = (), ¢, (D)

$.(pc) = . (p)-C
and
s;:U,—>P|uU;
s, (%) =§“1 (x,e)
i i r=n
Suppose that Ui()Uj %_ﬁ —-— then the function

gji:Uint —

defined by the rule

95100 = $,@ (¢ eNTH eT )

is called a transition function.

[Note: It follows from the definitions that

s; (x) = sj(x)fgji(x)-]

Properties:

-1

gii = e, gij = (931) ’ gkjgji = gki'



[By definition,
F.: W LU, —> U, XG.
] ] J

Put

wj = (pry o §j)* mj + (pr, o§j)* .
Then the element W € Al(P:g) for which

w |7y = w,

determines the connection [ .]

Application: Take P = MXG -- then for every g-valued 1l-form

Ol on M, there is a unique connection [” such that

0'l=s*u}r1,

where s(x) = (x,e) (xEM).



Exterior Differentiation Suppose given

G —> P

ln

M

and let @ be a representation of G on a finite dimensional vector

space V. Fix an element [ € O((p).

Definition:  Put

r
d W =dwoh (WEAN*P;V)).

It is easy to show that

o € A (P;V) => dr'&) € N ;*1(9;\7).

¢

Define now a bilinear map

gRV —> V
(A;V)"""} A'V;
where
av =L (p (exp(tr)) (v)) |
dt (4 t=0,
Given
k
X EN (P:E)
p < /\’?(P:V):
let

XA, € AL v



be defined at each point of P by
(“APP) (Tl'...’Tk"“"?)

R 2 (5916) 66 (T &gy re 1T g ()

kt £ o‘Gsku,

B (T U"(k-!-l)”"'To'“(,Q))'

E.g.: Take V=g, ¢ =Ad -~ then

(X Apg B (TyreeeiTy,,)

- 2. tsano ) [eUT grgyreerT )

k!t 2! G"E'Sk_‘_’q

p(T o—(k+l)"“'T0‘(k+,Q))]'

Specialized to the case when X = =@ and k=4 =1, we get

(s Agg @) (X,¥) = TQ(X), (D] - [w(Y), W(X)]

2 [wX), W],

Rappel: A graded Lie algebra over a commutative ring R with unit

is a graded R-module L = @ Ln together with bilinear pairings
n>0

[ ,1: Lnme—-? Ly sm such that

x| [yf+1
[x,¥] = (-1) [y,xl]

and

Ix\z| [yl x| iz} Iy}
(-l) I[XIY]IZ} + (_1) [[Y;Z];X] + (_1) [[Z;X];Y]“o-



E.g.: Let L =A*(P;g) and [ , 1 = A ad —- then L is a graded Lie

algebra.

FACT If o(e/\k(p;_g), p Gl\‘etp;g), then

QX ApgP) = dKAL B + (DX A, 4P .

Returning to the general case, one has the following fundamental

result,

k

THEOREM Let @ € /\P

(P;V) -- then

dFQ) = da + cor, AP(A.)

[Note: Written out, this says that for each p€ P and all

Tl, reer TPy c TP(P) '
(dGO)p (th,...,th+l) = (dc.))p (Tl""'Tk+1)

+._.]_'._ z (sgno-)((o )

ki GE€s ., I

p(To.(l))-wp(To.(z),...,T O"(k+l))‘]

Definition: A matter field is an equivariant map 4>:P‘—§'V.

[Note: This means that
P e) = PLEHIPE= o' bip).]

E.g.: When V=g and p =Ad, ¢ is called a Higgs field.

Remark: Since

mapG(P,V) <> sec (P XG V).



a matter field can also be viewed as a global section of the vector

bundle P XG V.

Let c‘::P -—> ¥V be a matter field -~ then Ct’ € /\% (P;V), hence

by the theorem,
rl
d'p =ad + WpNd

—:—-d#-i- G.’r‘#.
Here

(Rp A, $) (M = dp(m- $ (@)
Suppose that $:U —> TI_]'(U) is a section -- then it is clear that
s*(drtb } = d¢ c.’f o s) + s*GJr, -(4’05).

Suppose in addition that £ :U— &n is a chart with coordinates

1, ..., %™ == then still

(s ocghiral ¢ =adosog™ss o @™ Qp-(posow™),

1

To simplify, write ¢(xl,...,xn) in place of (1)050 Q_l(x reee X)L

Put 01_ = g% oo‘.. and let

(@™hH=0ot = Z 0, ax™,
A
where each OTM is g—valued.
Specialize now to the case when G=§£(2) and take for @ the funda-
mental representation of SU(2) on C2:
Sty Y
24 a b zy
—

)



1
Let # = be an equivariant Cz-valued map on P, Working in
v
2

local coordinates, the exterior derivative is computed componentwise, i.e.,

rz 34,1 dx /™ ]

M

de,

L™ ?x -
1 Z '34,1 -
A x4 $,
= dxM = ,a dxM .
AL P M 4’2
> 2%
L A M J

Since
mﬂ- 4’ = 0‘[M4+ {(matrix multiplication),

it follows that the local expression for dr'4= is

$1 1
s (2 M ) e

AN\, “\ ¢,

If @ is the trivial representation ( @(g)v=v V¥ 0€G), then

P)(G Ve MAV and the elements of /\]?,' (P;V) project uniquely to the



elements of /\k(M;V), i.e., YVa € ;\}; (P;v), 3! w € /\k(M;V):

TT*ay=a& . Here

T XyeeniXy) = @ (T o, D) (PET ), AT (Ty) = X)),

a definition which does not depend on the choices. So, if s:U—>TT

is a section, then cne can take T, = s {X,) (since X, =
i wx 1 i

{Tro s)*X(X.) = 10

i (s*x(xi))). Therefore

*5 (x)

W Eyree X)) = @y gy (8,5, (Xydrevars, (X))

(s*ew ) o (xl, ceerXy)

U,

€l
i
i
A
£

on U,

LEMMA We have
R

[In fact,

(dfd)p (Tl’...’Tk"l"l) = (d(“*a))p (Tlf""i'Tk_'_l)

(M*@B)) ) (Ty,eeesTyyy)

= (dw) (T

T (p) (

(Tl)""‘f

*p T‘*p Tk+l))

Q@) oy (Map (BT reeer myp (WTy )

1

(1) oy %y

1

(U)



-
(n (dw))p {(hT
(d(ﬁ*a))p (hT

(dco)p (th,...

r-l

(d”° @ )p (Tl,..

1;.0. 'th-l-l)
170 0Ty )
hT

k+1’

.,Tk+1).]



Curvature Suppose given
G —7 P

\L'n

and let I” be a connection.

Definition: The curvature form (2 . is

r
d'ﬂoo { =da, oh)
[ r :
I.e
Q) =
F(X'Y) dw r (hX,hY).
STRUCIURAL EQUATION We have
R s ]
X,¥) = dw X,¥Y) + X}, Y)l.
£)1ﬂ( ) f {X,Y) 1 Qj[w( } er {Y)]
[Note: The theorem in the previous section does not apply
{since (or. ﬁ{/\id (P;g)). It would lead in any event to an incorrect

result as we'd be off by a factor of 1/2:
[ Wpr®Wpl =% Ve Ay @p -]
re9r ) =2 %91 faa @p-

FACT [' is flat iff .(')_l..=0.

Example: The standard connection on MXG is flat.

{In this situation, cor. = prﬁ(@ ). And:

d&@ + [ ®,E) = 0 (Maurer-Cartan)



=
dmr,=dpr§ (D)
=pry A@)
-pr3 - [©,O1)

= = lpry (®), pry (@)]

= = W, , .
On the other hand,

Qr.=dwr+[wr|rw ]a

"‘l

hence ﬂ = 0,]

[1

Example: Take M=R -- then every € Ol(r) is flat.

[The horizontal subspaces are one dimensional, hence
X, ¥}y =4 {hX,hY
O_r( ) W )
=AMdwp (1, 1)

= 0.]



2.5

LEMMA Let @) E /\k (P;V) -~ then
VA P
r.r., _ A
d d w = Ql—l f,w.
{We have
r.r r I

d 4d a& =dd W + wrz\‘,dw

dcal.. /\(,OJ - “’F !\(, dur + wrhpdw + oor./x‘,(w A )

rre

Il

dtur A‘,w +% (wp A ag wr)f\‘,w

(dc.Jl_I + [ wl-..wr.l)/\Fw

Qr A‘,m.]

So, if " is flat, then

@ly?=o.



3 -

Observation: {)} € /\id(P?g_) .

r

[In fact,

(RO')*Q[—' = (Rd..)*(d‘.\’rr + [O.Jrrwrl])

AREI* wp) + [Re)*Wp, Re)* Q]

a@d( e wp) + Ad( e 1) o ,Adca‘lmr]

r

Ad(c"l)(dcor + [ wr,, wr])

Ad(o-“'l)ﬂr .

Therefore

rl
d ﬂr, = dﬂr, + (,jr AAdnl" .

Claim (Bianchi Identity): We have

dpﬂ

& = 0.

[To begin with,

'do'[’ t @ Aag Qr,

1

1
+ wr )\Ad(do.)r + 5 w!"AAd wr.)

1
5 d((\)rl AAd wr)

b P

F WA AWp g O A (B Ny @)
But

_ 1-2+1



Therefore

1
*WRApg W+ 5 Ppfpgladn Ay @ gl

1
7 P Naal Wp Apg @p )
And, thanks to the graded Jacobi identity,

Wp Naal Op Apgg @p) =0,

from which the claim.]

Definition: The field strength %ﬁ, is that element of /\2(M;gP)

which corresponds to.(lr.under the identification
N2« APasgh) .

Given a section s:U — T _l(U), write

4 1 s*cor. (the local gauge potential)
and

Ef = g* flr, (the local field strength).

Then
%F = a0t + [0OC ,0C 1.

Assuming that U is a chart with coordinates xl,...,xn, we have
- PV _ 1 Aa Vv
ot = z 0'(# dx“™ and ?-—2— pa d'a:ﬂp ax” A dx ’
A A, U

where thE'OTZAand the ?F

v 2re g-valued functions on U. Consegquently,

Foom 0.0, -,00, 10, 00,1,

A




the derivatives being computed componentwise in g.

Remark: If si:Ui-——b“n_&(Ui) and sj:Uj-—§ Trﬁl(Uj) are sections
and if gij:UjﬁUi-—‘—*I G is the associliated transition function, then on
an U,
oL, = Ad_(g}_%) o O'Li +@ ..

] 1]

and

I

EFj Ad(gl%) o Eij

3¢, when g is abelian, EFj = ?Fi on Uj(\Ui, and the local field strengths
- g~valued
can be pieced together to give a globally defined/\Z—form Ton M, namely

F - %



Gauge Transformations Suppose given

G —>» P

\Ln'

morphism

P — P

over M. So:
(1) £f(p-s) = £f(p)-6 ;
(2) TT of =17 .

Notation: JB(P) is the group of gauge transformations.
Let

Int(P,G)
be the set of Coo functions Ar:P —» G such that
-1
Arx(p-6) = T “aiplo.

Then on general grounds,

Int (P,G)€~> sec (GP) .

LEMMA There is a one-to-one correspondence
A WL T

S ry—>1mt(r,0).

[Assign to £ € .a%,(P) the element Aag € Int(P,G) defined as follows:

,Akf(p) is the unique element of G such that f(p) = P-MAf(p).]



[Note: In the special case when P = MXG, we have

S f(x,o') rMmellx,e) o)

= o‘-l/uf(x.e)ﬁ' .

thuS‘AAf is completely determined by
M — G
X =7 A4z {x,e).

Conversely, if g:M —> G, then the prescription

1

gix,6) = ¢ "gx6E

extends g to an element of Int(P,G).]

Remark: The preceding identifications respect the underlying

group structures.
insert 2.5

suppose that [* €01(P) -- then I erand VE€ Y@, Mt &

£* ) . Here

_l
* = *
fCL)I—- Ad(,qf)m‘—. +/‘Af®.
The prescription

[ fe—>r*
“p

defines a right action of AH(P) on {FL(P):
oLy x &) — Ole).

Definition: Two connections [7,,{", € Ol(p) are said to be gauge
equivalent if 1 £ E.,%f (P):

<) = f*xg) .
r, ry



Informally, Int(P,G) is a Lie group with Lie algebra /\gd(P;g).
[Note: The exponential map
exp: /\gd(P;g}—-?Int(P,G)

is defined by

(expeX ) (p) = exp(eX{(p)).]

Therefore each &« &€ /\gd(P:g) induces a one parameter family of

gauge transformations:

Eon € vy,

where

f‘x’%(p) = peexp({ Nk (p)) (N G“Ij‘)’.

And

| * r
M : = deX +W_ A =d &
an KA} a0 P DA™



The orbit space

ot/ ()

Definition: An automorphism of (P,M;G) is a pair (f,fM), where
f:P~—> P is an equivariant diffeomorphism, fM;M—w> M is a diffeomorphism,
and the diagram

£

> P
ke
M

P
A
M

~

commutes,

[Note: If f:P—> P is equivariant, £ :M—» M is a diffeomorphism,

M
and fM O =TMof, then £ is necessarily a diffeomorphism.]
There is an evident exact sequence

1—> Y (p)—> Aut P —> Diff M,

but the map on the right need not be onto. For example, consider the

Hopf bundle

Sl —y 83
LY \:\['v
82 -
L™ -
Then the antipodal map\g?—4§‘g? does not lift to an automorphism of
(83,82;51). However, when P=M X G, the arrow Aut P—> Diff M is obviously

Werw  vaat et

surjective.
fM ™
Let M y M & P be a 2-sink, where £4€ Diff M, and form the




pullback sqguare

£54P ~:1-§

K3
;
£

n
et M & P — P be a 2-source with fMolT

2
=

—_—

Eu

an arrow P —¥ f;ﬁ and a commutative diagram

S

P -———4? f*P

P

=1 0 f ~=- then there is

\_\ v} l‘ﬂ (f=myo ¢

> M
£y

Rewriting the triangle as a commutative sguare

*
P > f2e
nl l}
'>.
M i Mo,

it follows that ¢ris an equivariant diffeomorphism. Conversely, if we

are given a commutative diagram

-ilé'fﬁp

nl: I3

> M,

ldM

where*+ is an equivariant diffeomorphism, then it is clear that the

lifting problem admits a sclution.



Rappel: If fM:M-—}M is smoothly homotopic to idM, then there

is an equivariant diffeomorphism <t> :P —7 fﬁP and a commutative diagram

$

PR, *

P SfMP

nl T

v

M —/—'" M .
J.dM

So, when fC:idM, the lifting problem admits a solution.
Notation: DiffOM igs the suvbgroup of Diff M consisting of those

diffeomorphisms fM which are diffeotopic to the identity, i.e., for

which 3 a smooth one parameter family Hte Diff M: H0 = idM, Hy = f

M.
LEMMA VfMeD:LffOM, 4 an equivariant diffeomorphism f£:P~> P such

that fMoT\' = Tro £,

Let p be a representation of G on a finite dimensional vector

space V -- then ¥V £ € ;H(P) , £* defines an isomorphism

x. AK 7Y — k .
£*; ﬁ\P (P;V) /\P (P;V)

and

Frek =An gl ( oceAkP

(P;V)}.
Example: %V [ € Ol (P), we have

Qpe=0Qp =2auh Q.



To have a concrete illustration of the foregoing, consider

G —>» P
J'rr
Sl,r
vy
where G is path connected -- then P is trivial: PﬁE’Sl)<G.

Vs

Agreeing to work with‘§}>(G, specialize and assume that G is

a compact connected semisimple matrix Lie group. Write Ol in place

of DL(P) and 55 in place of ‘éy(P).

Convention: View the circle Sl as the unit interval [0,1]
W,

with boundary points identified, parameterized by T € [0,1].

Ad 0L : We have

——

o1 é——>Cm(Sl:g_) .
ey

We have

ad Y

Y —=>c®stiq).
VAAA,

The right action of #) onOl is given by the prescription

Yag+ gt g,

A—>a9 = g~
[Note: The precise meaning of a9 is this:

29(t) = g HTIA(T)IO(T) + () L g (T).

Here

L _1(g(Td) = e
g(T)



But

Put

dL _q g’ (T e g.
g(T) 1 2

i—fwrfdgrt+m)q
a i

2 =0

(Tt

g(T) L

g'(T) &€ g.1

ﬁe= {9678 : g(0) = g{l)

Then 789. is a normal subgroup of )gj .

Observation: The map

is bijective.

B — K _xo

g —>(g g(0)™, g(0))

d
= g(T +2\)
a’a ’%=o

ef .



Given 6 € G and g_ € Y, let

-1
69, =090 .

Then the multiplication per the semidirect product ’&,e X G is given

by the rule
90 Ya'yro') =lg (69, co")-

Claim: The canonical bijection

Y — Y x6

is an isomorphism of groups.

[In fact,

1 1

(g g{0)" ", g(0)) (h h(0) ~, h{0))

L (g(0)-h b)), g(orh(0))

(g g(0)~

1 1 1

(g g(0) " g{(0)h h(0) ™~ g(0) =, g(0)h(0))

1 1

g(0) ~, g(0)h(0}).]

I

{(gh h(0)~

LEMMA We have
WAANA,
VS I

and

ot /& 22 G/Int,



the set of conjugacy classes in G.

[This is a simple application of holonomy theory.]

Remark: Let T be a maximal torus in G, W = N(T)/T the

associated Weyl group -- then

G/Int G2 T/W.



Parallel Transport Suppose given

G —> P
LTI
M,

where G and M are path connected, and let I" be a connection.
continuous and
Convention: Curves areﬁ?iecewise smooth.

THEOREM Let 'y :[0,1]—> M be a curve. Fix a point
N Ny

poe Tl-l( J(0)) -- then there is a unique curve 3’1\:[0,1]-—?1? such

0

that (i) ¥7(0) = py, (1) W' =¥, (iii) FT(ererhp,, (p)(0£t £1).

Application: There is a diffeomorphism

Tyt RO = W)

called parallel transport from ¥ (0) to ¥ (l) along ¥ satisfying the

condition
T, ©R. =R ol Yeea.
(In fact,
T (py) = ¥T(1).]
¥ 70 )
[Note: 1If ¢ :[0,11— [a,b] is a homeomorphism with C#(O) = a
& +(1) = b such that ¢ and 47“1 are C ™ except at a finite number of
points, then the parallel transport per ¥ is the same as the parallel
transport per 'b‘o+ "1
Remark: The parallel transport along X'q'is the inverse of the

parallel transport along ¢ .




[Note: As usual,

¥ L) = ¥ -y
If A4:{0,1] — M is a curve from x to y and »:[0,1]1—> M is a
curve from y to z, then the composite
AA(2t) (0Lt £1/2)

YO AN (L) =
v (2t-1) (1/2£t4£1)

is a curve from x to z and

T = T T R
L oA 1/0 AA
Let f:P—> P be a gauge transformation. Put [7' =["-f ~- then

-1
T =f "0, 0 f.
¥ J



Holonomy Suppose given

G —> P

&n

r

where G and M are path connected, and let I’ be a connection.

Notation: V xé€M, £2(x) is the loop space at x, i.e., the set
of all closed curves starting and ending at x.
For each ¥€ 2(x),

T)’ : T -l(x)—‘7 Tl_l(x)

is a diffeomorphism, the set of all such being the holonomy group

of r'at X

Hol ([ ,x).

The subgroup of Hol([l" ,x) consisting of those TB’ for which ¥ is

nullhomotopic is the restricted holonomy group of Mat x:

Holo( .=},

Let p g T L(x) -

then Y ye 2(x), Hga,e G:

T_(p) = prg .

3 ¥
Observation:
. = T

P g)JoM v oxa (p)
=T, (T (p))
= Tv(p-g/u)
=T @R (p)

v %

= Rg o Tv (p)



=R_ (p*
qM(p g,,)
= P'91’ gp&
=p'(gng)
=
ngﬂ.=gD%M.
Observation:

P (c_f;?r 9.6 _l) = pee

=7 ng?'l=e

=7 q. =
g ¥ g

Put
Hol(r,p) = {g,: ¥€ QA0]Y .
Then Hol(|',p) is a subgroup of G and VY € €G,
Hol(F ,p-6) = c‘_lHoltr',p)o" .

[Note: Holo([',p) is defined analogously.]

. LEMMA The arrow
e
is an isomorphism

Hol ([ ,x) —> Hol([",p)

of groups.



[One has only to check injectivity. Suppose therefore that

g

-

zr1ﬁ-g72
Then

T (p) =T {p).
¥ ‘32
So, V @ €,

T (pr&) =T o R _(p)
81 3, .3

il
=

Rappel: HolO(I",p) is the identity component of Hol([l ,p) and

is a connected Lie subgroup of G. There ig a surjective homomorphism
T, (M,%) =¥ Hol([7,p) /Ho1’ (" ,p)

of groups, hence

Hol (T ,p) = Hol® ([ ,p)

when M is simply connected.



tNekrxxxTRRxHGX AT X kAR AXRQNENFARRx RO QAR ARBKRRX xXAX Bx X

AMBROSE-SINGER THEOREFM Fix a point p.€ P -- then the Lie algebra
e ] 0 -

of Hol(r‘,po) is spanned by the flp(X,Y) (X,Y6=TE(P)). where p ranges

over the points in P which can be joined to Py by a horizontal curve.

Remark: Let

ﬁ(p)r —{teYm®y:re=r}.
Then the image of the arrow
d‘%(P)rl—"‘; G
f—7 A (P)
ig the centralizer of Hol([ ,p}.
Write
h e 7 = 4g, -
(y.p:y) Iy
Then
Twwvc)=T?oR (p)
=R0_oTz (p)
= pP-g
za‘
= (pro)- (e tg_g)
P4
=

h,pre:¥) = ¢ Thil,p:y) o -



Let f:P—> P be a gauge transformation. Put "' = {+f -- then
hif',p: ) = g .
M. _g‘a
But
-1
' =
T‘J f oT_a,of.
And
f-l

(T (£(p}})

f‘l(T.a, (p-,uf(P) ))

-1
f (T_a_ o Rﬂf(p) (p))

-1
= f (RAAf(P)OT'a' {(r))
= f-1(p°g.a. A (P))

£ p) g

¥ mAAf(p)

= P'Mf_l(P) gy Arg (P)

= p-»«f(p)'l-g,‘ “Ar ¢ (P)
= P.g'
¥
=
h F'rP??) =/“(f(p)”l h(Frp?X)Mf(p)°

Example: Suppose that G is compact. Let e be a representation

of G on a finite dimensional vector space V. Define a function

Wo Me) x Q) (x)—>C



by
W‘,(P;b’) = tr(p(h(f,p:¥))).

Then W? does not depend on the choice of p € n-l(x) . Furthermore,

WP is gauge invariant, i.e., ¥ £ € OL(P),
WP (P'frz) = We (r'rf)o
Therefore WP (—, ¥ ) defines a function on O((P)/4 (P).

[Note: Per ¢ , Wo (—, ¥) is the Wilson loop associated with

T .1

LEMMA Let Fl' r'2 be connections. Suppose that ¥V ¥ €L£12(x),

h{ r.lrp? ¥) = hi rlzrpF-a')'

Then I"l, I"2 are gauge equivalent, hence
[r'l] = [rzl
in Ol®y/ Y (»).
[To define £ € -,Qj(P) such that I"1 ?’ ["2, take any point poe P,

let ¥ be a curve joining ﬁ(po) to T (p), and put

flpy) = Tz_z_loT]:b, (Py)+

where Tl is the parallel transport per r‘l and T2 is the parallel

transport per r'z. This makes sense. Thus let ’61, 2[2 he two curves
joining T[(po) to T{(p} -- then

ot o2

T {(by hypothesis)
-1 -1
4,09, %%,



1,

Tl o Tl = T2 o T2
2 1 2 1
=
Tl&' = T%J o T -1 o Tl
2 2 1 1
=
T2 o Tl = T2 oT -]
-1 > -1
2 2 1 i

[Note: By construction, f is the identity in the fiber over x.]

1f dJe€cg: Vo€ O (x),

h([',p:¥) = ¢ Thil,,p¥) e,

then it is still the case that

[ Pll = FE].
In fact,
6_1h( r'zrpi'd' )6 = h{ r.zrp’f ;Y.
Choose a gauge transformation f:P — P such that f(p) = p-&
(ﬂ)o’=ﬁkf(p)) -~ then

h{( r‘z,p-o' ;¥ = h I"z-f:m ).

so, ¥ ¥ € C)lx),

h([y,p; ¥) = h([,-£,p; ¥).



The lemma thusg implies that

Remark: If instead one assumes that ¥V 7 € Cixy, i 0'3.. € G:

h(r'l;PF?') =d-3'_l h(FZ;P??}G‘.X ’
then it need not be true that

The preceding considerations can be generalized.

G —> P ¢ —> P
J;ﬂ and Eid
M M
Let ' €0((p), T—"fe 0’1.(3') and assume that Y8 € Q) (x),

M, p:¥) = h(",T:%),
for some

pentx, e T .

Claim: 3 an equivariant diffeomorphism

1

over M such that £, ['=

To see this, let

Suppose given



be defined by

(g€ G).
0 —> ‘ﬁﬂﬁ
Put
$=%~ 05.7: P, —>P..
P P X X
Then
_ -1
Sp) = ‘Srﬁ osp (p}
=5 5le) = p.
Furthermore,

b ™
So R,.= ReoS .
Now define f:P —¥ P fiberwise by the rule

£ b oS o T

- Tyl ¥ -

Here y is any point in M and ¥ is any curve joining y to x. This
makes sense. Thus let ¥ ,§ be two curves joining y to x -- then we
have to show that

-~

3 T54_030T5

or still, that

¢

30T305_1=T?°8_1 °3 .

By hypothesis,

T
ol
Q
On
|
a

g =h{l,p: ¥ed H) = n(l,
Y ob



and

Therefore

But

10,

T sl ® TRI Lo
T oyes-1® =BT
SorT Jo§-12°8)
= S0 Yos _1 % R4 (P)
='SORfoTv°6_ﬂm
= 3 (p*g -;og-l‘”
=50 Rg }'08-10— (p)
- &, < (p)
¥ odé-l
=’§§~?°6_1, S (p)
=%xo5—1‘ ®
"PT o051
Yo &-1 © 3{p-§)
="I“"8°6,_10'50R°.(p)
=T s-1°R, © S



11‘

[
o
X
-
o]

Specialize and assume that

k k k k
_ 1 2 3 4
G = Gl XG2 XG3 XG4 ’

where G, = U(n}, G, = 8U{(n), G, = O(n), G, = S0{2n+l).

[Noté: " This covers the case of U(1)X SU(2) ¥ SU(3), which is
ey iy, R a oy

the group involved in the standard model, One can also include

X
5 with G. = S0(2) or SO(4).1
ey VWA

Gy 5

LEMM2A Suppose that { 6‘i=1€ I } and {'[‘izle I} are collections

of elements of ¢ = such that Vi,,...,i, €I, &, -+ &. is conjugate
1 k 1, i

to Til"‘ -Clk - then 396 G_:

_ R .
6, =9 T; g Vi€l

Let r'l' |_'2 €0U(P). Assume: ¥V irreducible character X of

X ,p:¥)) = X(([,,p ¥ V¥e Q).
Then
(ryl=ar,n.
In fact, since the X separate conjugacy classes, V ¥ € Clix),

h{ Fl,p:z) is conjugate to h{ f'z,p; ¥). But this persists to products,



12,

so it follows from the lemma that 4 o € G:
h([,ps¥) = ¢ T h(l,piy)e VIEQR),

which, as has been seen earlier, implies that

[Fy1 = (,).
Remark: Let

Then
oy (—0 ¥V OUE/ Y (Y —r ¢

and the above discussion shows that the W:t(——q'z) separate the points

of OU(PY/ H(p), i.e.,

Wy (L1, %) =W (L), Y) VXse VY

=
L1 = le.
Let K be a positive integer -~ then G operates on Gt:
(@1“..,6ﬂ-6'=(071615,”.,0715K¢)
and the functions
(Gyreeer o) —> ‘X,(ril--- o’ik) (iy,...0i € Y1,...,KY)

associated with the irreducible characters X of G are invariant

under the action of G.
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Claim: The algebra A generated by these functions is dense in

cic¥/ay .

[Since A is closed under conjugation and contains the constants,

it need only be shown that A separates points. Assume therefore that
(& reer 0)
( tl""' IK)

have the property that VX and all il""'ik € { 1,...,K},

x(d‘i ""d—i ) =x(Tl "'Ti )o

1l k 1 k
An application of the lemma then gives a g€ G:
-1 .
0. =9 T. 9 (i=1,...,K),

from which the claim.]



Reconstruction Theory Let P run through a set of representatives

for the isomorphism classes of principal G-bundles over M.

Problem: Identify
1 ovey/ Y ey
P

in terms of M and G alone,
*x&€M -~ then n
Fix a point,\a smoothy family of loops is a map }P:UCQ& —> U ),

where U is open, such that the function ¥ :U X [0,1]1—r M defined by
the rule
T(x,t) = Y¥(x)(t)

is smooth.

LEMMA For every smooth family of loops ¥, the function

U—>G

x —> h(]",p: Y(x))

is smooth,

Aggunexagwxthakx Mx i sx pa Lt ERRRERXRRX AREX I XX AXRRIREX XXM
Definition: Two loops ¥ , & € €2 (%) are said to be thinly
homotopic if they are homotopic via a homotopy H:[0,1] X [0,l]1— M
such that
H([0,1] X [0,11) C ¥ ([0,1Hv &§(I0,1)),
where H is piecewise smooth for some paving of [0,11X [0,1] by

poelyaons.

[Note: Accordingly,



H(t,0) = ¥ (t)
{0t <))
and, since H is rel 9(0,1],
H(O,t) = x
(0t <l).]
H{l,t) = =*

Remark: The image of a smooth curve cannct fill a two dimensional
submanifold.

Two loops ¥ , & € C2(x) are thinly equivalent, written '3’*{ &,

if 4 a finite 'sequence"’)l,...,'jné £ X%) such that ‘]1 =)’,...,’)n =8
with W?i thinly homotopic to 7) $e1°

FACT Composition and inversion of loops gives rise to a group

structure on

Qs 5 = nyn,

the thin fundamental group of M.

[Note: The homotopies used in the proof that Ij(*)ﬁ:==TT1(M)
is a group are thin (after smoothing at a finite number of non-
differentiable points).]

Remark: There is a canonical surjection
wton — m o
1 1

which is an injection when dim M = 1.



LEMMA Suppose that ¥~ & -- then WP sV 7 € OUP),
(Wl t
h(F,p;¥) = h(P,0:8) (PeT (#).

[Note: In general, if ¥~ §, then

hl.p:¥) # hi(f',p; §).1

Therefore h( f’,p;—) gives rise to a homomorphism

ﬂ'l:(M)-—-& G

which is smooth in the following sense,.
Definition: A homomorphism
h: T (
Ty (M) —> G
is smooth if for every smooth family of loops W:U —> L2(+) the

is smooth.
Notation: Hom°°(111];_(M) ,G) is the set of smooth homomorphisms

h: 1111:(M)—->r G.

The group G operates to the right on Hom( Tr; (M) ,G), viz:
-1
heg = 0 "heg .

Denote by
Hom( T (M) ,G) /G

the associated set j;[h]} of equivalence classes.



Observation: Hom°°(11§(M),G) is a G-stable subset of
t
Hom(TTl(M),G).

If py,p, € TI " (+), then

[h(] ,pyi—)]1 = [h{[,pyi—)1,
hence the class of
h({,pi—)
in
Homoo(jTE(M).G)/G

is independent of the choice of pG”ﬁ_l(*). On the other hand,

[Py = (P, = ([, p—)] = h(l,,p;—)].

THEQOREM The arrow
NN

(M1~ [h( [, P;—)]

implements a bijection

1 ower /4 @ — mon® (Wi ,6) /6.
P

Remark: Let OiF(P) be the subset of JOL{P) consisting of the
flat connections -~ then it follows from the Ambrose-Singer theorem

that ¥ " € O(. (), #01 ([, p) =fe} , so

F>E =7 h(M,p:¥) =h(l,p: &),

thus the map

T = hil,p;¥)



passes to the guotient and induces an arrow
T, (M—7¢6
which is a homomorphism of groups. If h:*ﬂi(M)——§ G is a homomorphism,
then the composition
h
Ty 00—> T, ) —25

is necessarily smooth. It is wellknown that

Lot ) /8 @< som(Tr, ) ,6) /6.
P

P : f ]
[Note: Let M be the universal covering space of M -— then M— M

is a principal TTl(M}-bundle. Each he-Hom(1Tl(M),G) determines a left

action of TTI(M) on G. The associated fiber bundle M XIT (M)G is a
1

principal G-bundle which admits a natural flat connection.]

Example: Suppose that dim M = 1,

Case 1: M=R -- then every principal G-bundle is trivial:

PR XG. Here
vl

t =
niR) = Wy (R)
and

Hom { 1§ 1 (‘1‘3') +G) /G

Hom({x,G) /G

= £+1 ,
thus D’[F(P)/ .'%(P) is a singleton.

Case 2: M=Sl. Here
ey



and

Hom(‘l'fl(“S:) /G)/G

]

Hom(Z%,G) /G

= G/Int,
the set of conjugacy classes in G.
[Note: 1In both cases, W P, UOU(P)= DiF(P). This is obvious when
M=R: All connections are flat and, up to gauge equivalence, there is

Y

only one, namely the standard connection. When Mff}' in a local
trivialization consisting of a coordinate neighborhood U diffeomorphic
to R, we have ﬂ_l(U)',:U)(val_vaG, thus ¥ I € OU(P), the induced
connection on Trﬂl(U) "is" the standard connection, i.e., Mis flat.]

Two loops ¥ , & € £2(») are said to be holonomically equivalent
if Ve e VIe O,

h(P,p;¥) = hiP,p:8) (pe Tl'_l(*)).

Accordingly,

¥ . 8§ thinly equivalent =y ¥, § holonomically equivalent.

Notation: ¥R, is U#) modulo the holonomy relation.

FACT With the obvious operations, ’}L&b is a group, the G-hoop
group of M.

Remark: There is a canonical surjection

t

The preceding theory can be written in terms of )QﬁyG as opposed

to TI;(M), the upshot being thé following conclusion.



THEOREM The arrow
WA e

[(F1—> [h(]",P;—)]

implements a bijection

Ll oty /Y (py—>uom™ (MY .6 /c.
P

Definition: A connection " € 0L (P) is irreducible if

Hol(P ,p) = G.

FACT Suppose that
|"1 € 01(Pl)
M, € 0UPr,)

are irreducible with

ker h( {;,p;—) = ker h([,,p;i—),
where
h{ FZ,P:—"-)
are viewed as homomorphisms }QJH(;—-Q'G - thenla an equivariant
diffeomorphism f:P; ~—> P, over M such that £, ', =T1,.

Rappel: A groupoid G is a small category in which every morphism
is invertible. So, V¥V X€0b G, Mor(X,X) is a group under composition.
[Note: A group G is a groupoid with one object e:Mor(e,e) = G.]

The notion of "holonomically equivalent™ for loops can be generalized



to arbitrary curves.
Definition: Let ¥ ., S be curves such that x= ¥(0)= S(0) &

y=F(L)= §(1) -- then ¥ ,8 are holonomically equivalent if Ve s
Y € oL,

Ty =Tg -

G’,HG is the groupoid whose objects are the points of M and
whose morphisms are the equivalence classes of curves from x to y per
the holonomy relation.

[Note: - Therefore
Mor(*;*) = B‘Q%G.]

By a point structure on P, we understand the specification of

a point in each fiber of TT.
Claim: Fix a point structure on P -- then every P e ot

determines a functor
h r : @;ﬂG —>G.
[Send the objects of G’;QIG to the identity of G. As for the

morphisms, take [¥ 1€ Mor(x,y) and, relative to the given point
structure on P, let p€ n Y, q€ ‘n‘_l(y) . Define gze G by the
relation

Ty (P) = I gy -
Then gx depends only on the holonomy class of ¥ . Putting

h =
one checks without difficulty that h‘, respects composition, hence

igs indeed a functor.]



P:C — D
Rappel: Let "W ™ be functors -- then a natural trans-
G:C— D '
b d L d

formation "= from F to G is a function that assigns to each X&O0b C

an element ';_XG Mor (FX,GX) such that for every f&€ Mor(X,Y) the square

—
e

Ff GE

FY —=™> GY
=Y

commutes, = being termed a natural isomorphism if all the =, are

X
igsomorphisms, in which case F and G are naturally isomorphic.

[Note: If ‘g,\Pﬂ are groupoids, then it is automatic that the EX
are isomorphisms.]

Example: Let G,K be groups, thought of as groupoids (thus
functors G —> K are homomorphisms). If f,g€ Hom(G,K), then a natural
transformation = :f —> ¢ consists in the specification of an element

M € K such that W 6 € G, there is a commutative diagram

W

e > e
fleo )l ‘g (o)
v
e > e .
1 ¥1
0f course, — is necessarily a natural isomorphism. Therefore, to say

that £ and g are naturally isomorphic amounts to saying that

[£f] = [g] in Hom(G,K)/K.
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Example: Letthbe a groupoid, K a group. Let ¢ ,P :‘ﬁ'—-‘) K
be functors -- then a natural transformation = : ¢ —> is a function
X = EX from Othi to K(= Mor{e,e)) such that VCFE Mor (X,Y), there

is a commutative diagram

e S I =
§+1 l?ﬂb
e ——> ¢ .
=Y
The construction of
h[1: Gxin——é-G
hinges on a choice of the point structure for P. If this is changed,
say
p—>p' =p6
a—>q' = 9T .,
. -1
then is replaced b 'o=T . Proof:
93 p Ygz, g?d‘
Ty(p-o") =T.a,oRa_(p)
=R0‘°T3' (p)
= R .
s 9 q),)
= Q’ng

1

-1
01’).( -
{q T g?’,o')
From this, it follows that there is a natural isomorphism

= :h'. ~— h .
- r r



11.

In fact, assign to each x€M the element

- ]
= € Mor (h I"X'hl’ %)
corresponding to g . Let [¥]€&€ Mor(x,y) -- then by the above, the
diagram
e e > e
y ‘ lgx
V .
e < =y e

=x
h' % > h_x
r
h' [Y] h_ [¥]
P r L4
h',y > h'ly
= r
4
commutes.
Notation: Hom( (P Y ,,G) is the set of functors h: Y .—> G,

So, each [’ € 0L(P) determines an element

hp € Hom( Y o6 -

VDL DL XK HEEK SN KX U KXy KPR X P B XK XK XS K XU AR A X EE K XK

Moreover, it can be shown that the arrow

f— '_hrT

implements a bijection

1! OLip) —= Homoo( GﬁG,G) .
P



12.

There is one final point in this circle of ideas.
Fix a point structure on P -- then every £ € JH(P)

a function Ff:M-—-) G, namely
x-—%uﬂmf(p).

Obviously, Ff = Fg =» f=g, so we have an injection

A (P)—> Map®™ (M,G) C Map(M,G).

[Note: If
p—7p' =peo,
then

f(p') = £f(p)-&
= p- AMeiple
- ’ -1
=p'-C Mf(p)cr‘

=>
-1
[ ] —

determines



The Analytic Setting In what follows, we shall take G compact

and assume that the base of our principal G-bundle is analytic rather
than smooth.
[Note: Every paracompact c® manifold admits an analytic structure
which is unique up to a c™® diffeomorphism. ]
Suppose therefore that M is analytic and path connected with
continuous

dim M> 2 -- then in this context, a curve is %Kpiecewise analytic

map ¥ :[0,11—> M which is a piecewise embedding, thus
P :[O,tl]U e Y [tn_l,l]--> M
and ¥ T (t)#0 on [ti’ti+l] unless 'X[ti,ti+l] = {XS for some x& M.

[Note: 1In the analytic category, two curves can intersect in
an infinite set only if they overlap on some closed interval. This
is false in the smooth category.]

An edge is a curve e:[0,1] — M whose restriction to 10,1[ is
an embedding.

[Note: We shall not distinguish between edges which differ by
a reparametrization, i.e., by an analytic orientation preserving
diffeomorphism of [0,1].]

FACT Given a finite set of curves ¥, (k€K), d a finite set
of edges .y (€ L) such that

(a) ¥ ke€xk, 3 L, €L such that
*
3’]( = [ l ex H
Ly

B)V R ALy e g (8)) = ey (£) = &8y € to,1}.



Remark: An embedded graph is a nonempty subset A C M for which

there exists a finite set of edges €y (X€ L} such that

/\=k,l eg
and

V 2,#4,, egl(tl) = ey (£ > t),6,6 10,1} .

2
The preceding result thus says that given a finite set of curves,
3 an embedded graph with the property that each curve admits a
representation as a product of certain edges of the graph (and their
inverses),

[Note: A is a finite one dimensional CW-complex. As such,

there is no unigque choice of the e£ satisfying the stated conditions.]

Example: If Y :Efﬂ-% M is a loop, then the range of ¥ is an

embedded graph.

Consider now the definition of "holonomically equivalent™.
Ostensibly, this definition depends on the choice of G. However,

since we are working in the analytic category, this dependence can

be partially eliminated.

Definition: Let ¥ ¥, be curves -- then )’2 is said to arise

from ¥ 1 by inserting a retracing if there is a T &€ [0,1] and a

curve ¥} such that

Y, (2t) (02t&-5 )
N - 5 ( 5 2t¢5 +
£) =
$2 g+ - (L +Teeel s
¥, (2t-1) (L ¢ zaeel).



THEOREM Suppose that G is a compact connected nonabelian Lie
A e
group -~ then two curves ¢ , & are holonomically equivalent iff 3

a finite sequence ‘]l,..., Y’n of curves ‘)i such that "}l=3’,..., ')n=5

where ’)i and n i+l differ by a reparametrization or ‘qi+l (’)i)
arises from Y)i {9 ,4) by inserting a retracing.

[Note: This description is completely internal to M.,)

Under the foregoing circumstances, we shall write CR{?,'}QAH in

place of(?,%jG, }(’a&G

Remark: It is clear from the theorem that if two loops
Y, 8§ € C2(+) are holonomically equivalent, then they are thinly

equivalent. Consequently, the canonical surjection

gIon —> Ry

is an isomorphism.

[Note: The fundamental groupcid TIM is a quotient of the holonomy
groupoid G’:%( .]

The relation figurin@ in the statement of the theorem is an
equivalence relation of general applicability, call it ~..

FACT Composition and inversion of loops gives rise to a group

structure on

Cs)/~ = L (x).

So, in the nonabelian case, £ (*) is the hoop group. On the

other hand, if G is a compact connected abelian Lie group, then

HRY =L /L (), L (0],



a description which is again completely internal to M.

Remark: Suppose that G i1s a compact connected Lie
group (e.g., U{1l)X SU(2)X SU(3})) —-- then there are just two
W e W

possibilities for o8 %Y :

/T L (0, £ (%)] (G abelian)

£ (%) (G nonabelian).

[Note: G is necessarily reductive.]

INTERPOLATION PRINCIPLE Suppose given
AAAPAANRAASAAAANARS A Ay

where G is a compact connected Lie group. Let [3&},..., [3}& € }?}56 -

then 'V hé& Hom( Y /G, J reotr):

h[?k] = h(r';P: a’k) _(k=l:°*01n)



Ashtekar Space Suppose that M is analytic and path connected

with dim M> 2 -- then by the term "graph" we shall mean a connected
embedded graph, Gra M standing for the set of graphs in M.
Notation: Given a graph /A, denote by E(A)} its set of edges

and V(A) its set of vertices.

If A /N, are graphs, then A, £ A, if each edge of /\l is a
product ¥y of edges of /\2 and V(/\l)C V(I\z)..

FACT Gra M is directed by £ .

One may attach to each N\ € Gra M the groupoid G’E’f\ which is
freely generated by the edges of A/. Thus the ijects of G’;QJA are
the vertices of A\ and the morphisms are all possible compositions
of the edges and their inverses.

Assume now that G is a compact connected nonabelian Lie group --
then the notion of "holonomically equivalent" does not depend on G
and the groupoid 4 is generated by edges (but it is not freely
generated by edges). In fact,

O = colim 6”9/\ .

AN
Let

01,\= Hom ( GﬂA :G)

)Qi,\= Map (V(A),G).

Since a functor h:(‘?,@j}\—? G is determined by the images of the

e€E(AN), it is clear that

oL A FEIN)
/\NG -

Analogously,

T o~ HVIN)
:%ANG )



Therefore ﬁ,\ and )9/\ are compact Hausdorff spaces.

Observation: There is a right action of r%j

N B‘LA, viz.

™ [ T J——
oL, % A, AN
(hr¢) e h‘¢ ’

where

h- d(e) = $(e(1)) ! hie)d (e(0)).
FACT -ELA/ ;-g/\ is a compact Hausdorff gpace.

Let 111( A) be the fundamental group of A (based at a vertex) --

then ‘ﬁl(/\) is free on 1- X (A) generators (X (A) = $V(A) - #E(AN)).

The hoop group of A "is" the fundamental group of A and
ot o 2 Hom( 7w, (A},G)/G.
N R 1 /

Suppose that A ., 4 A, -- then there are arrows of restriction
1-7*2

denoted in all three cases by Tri.

FACT These maps are continuous, open and surjective.

One can check that

2 3 3
N{ERy €Ny T OTT, = W)

!

which sets the stage for passage to the limit.



Definition: Put

01

lim DtA(C'ﬁO'LA)

& = lim ;HA(C'I;\T,%}A)

OL/%Y = lim &’LA/.%A (CT;\[ OIA/,HA ).

e ]

Obviously,T;E,JH, and 31/}5 are compact Hausdorff spaces.

There are projections

W — 8,
¥ — 3,
LY W T

denoted in all three cases by TU\ .

FACT - These maps are continuous, open and surjective,

THEQREM We have
N A ot

Dl o~ Hom((?ﬁ /G)

&

~ Map(M,6).

Observation: There is a right action ofichlﬁl, viz.

ol % Y 2
SURIPELNNE St INE NI




THEOREM We have
A T e e

0L /Y~ OUY =~ Hom(¥H.Y .6 /G,

Remark: A choice of a point structure on P leads to embeddings

ot(p) —> 0L .
PR (63 W 2 S Wi A 1V T
Hey— Y

Each has a dense image.
Let E* be the subgroup of;g‘j consisting of those strings crx(xe M)

such that ¢, = e -- then it is clear that

—

Y exy,
Claim: We have
Hom( (Y ,G) % Hom( 0.8 .6) x Y,
[Let E = {exzxe Mi , where e, is the trivial loop and YV x#»,
eXEMor(*,x) is an edge. Define

@ p: Hom(®Y ,6)—> Hom( RY ,6) x H,

by the prescription

H{¥1 = h[ ¥
@ gh = (H, $g):
¢0(x) = hex.

Then it can be shown that @E is a homeomorphism.]

[Note: Hom( {2 ,G) is a right Y -space:

he$ ([¥1) = $(FANTRITNS (¥(O0)).



The same is true of Hom(} .Y ,G) x}j*. Indeed,

H-$ ([¥D) =0 LwIYD & (o)

(B, o) -d= (b, $y )
(¢o.¢ y(x) = t}(x)_l¢0(x) ¢ (%)

Working through the definitions, one finds that @E is actually

R’ -equivariant.]

Application: We have

Hom ( (P & ,G)/;g

~ (Hom({ 3¢ Y ,6) X vg*)/(G X §*)

g4

Hom({ ¥ .Y ,G) /G X Q*/ :U-*

224

Hom ( ¥4, G) /¢.
it /;Q_j 2~ Hom( 3 &, G) /G.

SLICE THEOREM For any h € UL, J a subset »f < O such that -
WY Nt

(1) )P -E is a neighborhood of h';ﬂ-— with he€ .\? ;

{2) 3 an equivariant retraction r: q? ;9 — h-)g with

—

'l({h}) = .

H

SHRPRERXERAXXMXISXARAXYRIRXARAXRARRXIKRREE R ERRxE kMM xR xdx



Types Suppose that M is analytic and path connected with
dim M7 2 and G is a compact connected nonabelian Lie group.
INpkrxxxThesexaxexanxxsEaRdTngxagsuRpkxaraxinxkhgxaeguekxk

Let hea = Hom((?;ﬂj .G) be given ~- then

H

p=h(qYrce

is the holonomy group of h and

zh = CenG Hh

is the holonomy centralizer of h.

FACT Let H be any subgroup of G -- then ] he Ol :H = H.
[Note: There are no topological requirements on H.]
Remark: Fix a point structure on P -~ then each [’ € 01(p)

determines a functor hr| : Y — G, viz.

lmr (31 = gz (Tv(p) = q-gz ).

So, working at the base point * and taking F€ (L (%), we have by
definition

HOL(T.p) ={g,: Y€ AU}
hr,(}eﬂ;j).

LEMMA VQ,G_E,
Hh.+ = #(*)_l Hy & (%)

()7t 2, b,

1

Zh*(}P
The orbit h-;ﬁ is a compact Hausdorff space:

hey = ;‘&_jh\g.



FACT We have
4. \¥Y =z~ g \axy,.

So, as a corollary, if Zh and Zh are conjugate in G, then

1 2

the orbits hl.ZJ and hz-iy are homeomorphic.

Definition: The type typ(h) of an orbit h-}H ig the conjugacy

class in G of Zh.

[Note: This definition depends only on [h]e'ﬁi./jy . In fact,
. . _ -1
if h' = h-+ , then Zh' = tb(*) th‘a(*).]

From the above, therefore, if two orbits have the same tvpe,

then they are homeomorphic.

Rappel: A subgroup H of G is said to be a Howe subgroup if

there is a set 8 (G such that H = CenG s.

Example: Take G = §H}2) -- then the maximal tori are Howe

subgroups.
Notation: f] is the set of conjugacy classes of Howe subgroups
of G.
[Note: Since G is compact,:T is at most countable.]
L] + L . L
Given t,,t, € T , write t) £ty if 3 H,€ t;, H,€ t, such that

H) D H,.

Example: The maximal element in ") is the class tm of the center

ax
2, of G.

Example: The minimal element iJl:r is the class tmin of G itsgelf.

Notation: Given t €& '.T . let



B, . ={nedl: tyotmy ¢}

5 =t = fhedl : typ(h) = t}
Bl., ={hebl : typm e},
Properties:

(1) -U_'l,>t is open;
{2) B—L[_t is compact;

(3) ﬁ=t is open in ﬁ-’—t'-

(4) 01.=t :Ls denge in mé_t.

THEOREM V t > typ(h), 3 h €01 :

typ(ht) = t.

Let ‘h be the trivial element of Hom({P Y ,G), i.e., h(¥ ] = e

W [ = ‘:.:) = = .
A4 then Hy &elj Zh G, hence typ(h) tmin' It therefore

follows that YVt € TF , 3 h, €0t :
typ(h. ) = t.

In other words, the set of orbit types exhausts the set of conjugacy
classes of Howe subgroups of G.
Rappel: Let X be a topological space -- then a collection,op= {S}

of nonempty subsets of X is said to be a stratification of X {(the S

being strata) if X = _LI_ S and
&

S o s
SNs' # 8 =>
St N(SUS') = s,



[Note: Write s<£ S' if sNs’ # # -~ then it is easy to prove
that

5= U g
s£s!

Example: Take for X the unit cube in 33 Let;.? consist of the
interior of the cube, the relative interiors of the six faces, the
relative interiors of the twelve bounding segments, and the eight

corners -- then >f is a stratification of X.

THEOREM The collection 1_3{_ it € 'I} is a stratification of
AN A =t

m L]
An element h €0l is said to be generic if
typ(h) = tax
[Note: Therefore, when h is generic, Zh = ZG.]
Let
m—gen = 01"=t ‘
max
Then
... = O ,
gen —tmax
50 Rgen is an open subset of E‘-l.. On the other hand,
0l = O‘L‘_,__t ,
max
hence Otgen is a dense subset of 0.

[Note: It is clear that m‘qen is Y ~invariant.]

An element h EE-L ig irreducible if Hh = G,



Obviously, h irreducible => h generic. The converse is false.
Proof: Fix a proper subgroup H C G: Ce_nG H = ZG --= then 3 heé"f. 3
Hh = H, thus h is generic but not irreducible.

[Note: One can take for H the subgroup generated by a countable

dense set (H is countable, hence is a proper subgroup of G).l



The Holonomy Algebra By way of motivation, we shall first

look at a special case. So suppose that M is analytic and path

connected with dim M = 3,



Congider

SU(2) —» P
‘wiwer
l'n'
M.
Then P is trivial: P;‘:MX%Q(Z) .
[Note: The canonical section s:M —-‘erg‘H(Z) is given by
s(x) = (x,e).
If g:M—> SU(2}) is smooth, then
L asd

s (x) = s(x)-g(x) = (x,9({x))

is another section and all such have this form.]

Agreeing to work only with MX&H(Z) , write 0l in place of Ol(P)
and ;%I in place of :ﬂ {(P).

Given a connection [ on M XSU(2), let

Wil ,¥) =%tr(h(f‘,p:b’))..

Then

W(§', ¥) depends only on [J'] € Ul/:ﬂ and [¥1€ RY , thus wi—, [T 1)
is a real valued function on OU/ ¥ .

[Note: Recall too that -

h(l,p—): RAY — su(2)
is a homomorphism. ]

Since

b
Y ( i _)e su(2), fai? + |b{? =1
-b ey,
=

a

0f laj &1 => -2€a + a<2,



it follows that

Claim: The complex vector space spanned by the W{(—,[ ¥1) is
closed under the formation of products.
[V g,hEVSVIi(Z), we have

tr{g)tr(h) = tr{gh) + tr(qh_l).

Therefore

W(—, LY VLT ,]) + W(—, (¥ 1Y, 175

o)

Denote this algebra by ®®01 and call it the holonomy algebra.

Claim: ¥ Q1 is a unital commutative x-algebra.

[fThe x-operation is
(Zl CiW(_r[Ell))* = Zi ciW(_’[-Xi]).]

Equip € O0{with the sup norm -- then its completion M is a

unital commutative C*-algebra, thus 0L~ C{Spec ¢{01 ). And (see

below) ,
Ot/ Y = spec R OU .

[Note: The identification

Hom (3 ,G) /G 2 Spec H Bt

(G=8U(2))
he @, v

is characterized by the relation

@ (W(— [¥1) = 3 tr(hiy]).]

XBSREAAE R K X RUBALHA XK Xl XK K Tt X X Rl R X X PR KRR XK
AT XX KK X KK DRXKX



To generalize these conclusions requires some preparation.
Assume that M is analytic and path connected with dim M2 2

and let G be a compact connected nonabelian normal subgroup of
U(N) (N22).
VI

Notation: Per M XG, Ol is the set of connections and :8 is the

set of gauge transformations.

Rappel: Let H be a topological group -- then 3 a compact

topological group H and a continuous homomorphism o :H-—> H with
the following property: ¥V compact topological group H' and V
continuous homomorphism e':H —>H', 3 a unique continuocus homo-

morphism § :H —> H' such that ' = P oo :

[Note: e{(H) is dense in H and H is unique up to isomorphism. ]

Definition: Let H be a topological group -- then H is said

to be injectable if KereX ={e}.

[Note: In general, the kernel of X is equal to the intersection

of the kernels of the continuous homomorphisms of H into all compact
groups or, equivalently, is equal to the intersection of the kernels

of the finite dimensional irreducible unitary representations of H.]

Example: Equip ¢, with the discrete topology ~-=- then ¥¢-Y is

injectable.

[In fact,

r] ker h(I*,p;

—) = {ia, .} -1
Peot HY



Definition: Let H be a topological group -- then a bounded

continuous function f:H-—>C is said to be almost periodic if f is
Yoy

the uniform limit of finite linear combinations of matrix coefficients
of the finite dimensional irreducible unitary representations of H.

FACT Let fE:Cb(H) -- then f is almost periodic iff 3 a con-
tinuous function f:H -—-‘9& such that f = Teex .

Example: Equip 304 with the discrete topology -- then
Hom (MY , G) 2 Homc( MY, 6,

the subscript standing for continuous.

Denote by AP(H) the set of almost periodic functions on H --
then AP{H) is a closed subspace of Cb(H), hence is a unital commutative
C*-algebra. And: AP(H)Ry C(H) via f— T.

Pass now to MAG and define
W: 01/ XY — ¢
v
by

WP, [¥)) =5 er(a(M,p 7).

Definition: The holonomy algebra fpt is the algebra over C
Wy

generated by the W(—, [¥1) ([¥Y1e oYy ).

[Note: The elements of Ol thus have the form

n,
i
cy 'l_l' W{—, [B’ji])-]

1 ji=

n
i=

Since




it follows that MOl is an involutive subalgebra of B(OU /& ),

the C*-algebra of bounded complex valued functions on OU/>§

LEMMA There is a canonical map
WA Y
h—>r « h
from Hom( ¥ Y ,G) to the continuous multiplicative linear functionals
on M .
[Given h, define

@p: 807 ¢
by

=z~

@uW(—, (¥ 1)) = % tr(ly ).

That (g h actually does extend to a multiplicative linear functional
on Ol ig implied by:

1. If

[¥q),eeer Y]
€ HY
[8111-..p[5m]

and if
W—, (@D W—, (7 1) = W(—, [§ ;1) - W (—, [ & 1),

then

n m

T @n@— 19,00 = T T @qti— 1§, ).
A

k=1 ,?::]_



n i

> e T we—tryn=o,

1=

[
ol
Il
=
[

then
n nj
oo TT @pti—ta; 1 =o.
i=1 ji=l
Ad 1: Owing to the interpolation principle, 3 " eot

h[a‘k] = h{",p: Jk) (k=1,...,n}

h[éj 1 = h(]7,p: SX ) (R=1,...,m).

Therefore
n
TT @p®— 17,10
k=1
n
= Lertmro.n
N k
k=1
n
1
= ﬁtr(h(r'rpF a’k))
k=1
n

= WO, Ly, D)

o
I
=



m
= TT w8, n
A =1 2
m
= TT § ;e 80
£ =1
m
- TT 5 trag §, 1)
R =1
m
= T7 Q@pM(— 1§, 1.
R =1

Ad 2: Owing to the interpolation principle, 3 |_'0 c0l:

= - L3 L s L
h{ ?Jl] h{ Porp: ?Jl) (lL<£i<n, ]-/:Ji_.-ni)-
Therefore
n ni
S e T @p W — 1¥5 1)
i=1 j;=1
n.

n 1
- 1
= :E: c; | | S tr(h['in])

i=1 ji=1

n ni
_ 1
D - I tr (b (Mo 75 )

i=1 j.=1 1

i



™
-

WP [y 1)
1

To establish the continuity of «,, choose I"0 as above and

then note that

n ny
REIN Z ¢y I | W(—f[?(ji]))l
i=1 j.=1
i
n nj
- | o; TT wirg oyl
i=1 j;=1 =
n ny
£  sup | 32 o TT wer,tyy D)
Fefl/y i=1 3= .
n B3
= IS e T1 w(—-—,[a'ji])uoo.]
i=1 j;=1
Denote by &8 Dl the closure of MO0 in B{(O1 /5 ) -~ then

H Ol is a unital commutative C*-algebra. And, thanks to the lemma,

there is an arrow

Hom ( Hb rG)"—_‘_) Spec }?O-L r

viz. h—> Q-



10.

e ———

[Note: Tacitly, (¢, has been extended by continuity to MO,
which is permissible (Leh_is a continuous linear functional, hence,
of necessity, is uniformly continuous).]

Obviously, ¥V ¢ € g,

@ (=Q

) =@ .
h-6 ¢ lheo h

This said, suppose that U!h = Lq.h -= then V (¥1 € H;Q‘i .
1 2

tr(h [71) = tr(h, [T ).
But
Hom( A ,6) 2 Homc(ﬁ (G .
So, if

51:3335 —>G
Hz:afff"'} G

correspond to

hl: )Qiy-—4§ G

h22 }Q*ﬂ"—_} G,

then there is an equality of characters

X Hl - X 52

since oA is compact, it follows that I UE U(N):
Vg



11.

Therefore

=
@, W 171)

tr(hy (¥ D)

Z =

tr(U"lhl[a’ 10)

e 2

1

@y WE— (X)),

LEMMA The conjugacy classes in G per U{(N) and G are one and
VAN Vvl

the same.

Conseqguently,

Hom ( 899 /G)/U(N) = Hom (A ,G)/G.
Summary: The arrow h-4>tgh'passes to the guotient and induces
an injection
1 :Hom{ Y ,G) /G —> Spec 2001 .

[This is the upshot of the foregoing discussion.]

RY HY
View Hom( o€-Y ,G) as a subset of G and take G in the



12,

product topology -- then Hom( 3¢ ,G) is closed, hence is a compact

Hausdorff space. Next, give Hom( 3P ,G)/G the quotient topology --
then it too is a compact Hausdorff space. Finally, equip Spec 3001

with the Gelfand topology.

Observation: Since the W(—, [ ¥ ]) generate MO, the Gelfand

topology on Spec §0( is the initial topology determined by the

~
W(—,[¥])): Spec ROL —>C,
Wiy
i.e., is the coarsest topology for which the functions

W =W (W(—,[¥F1)) (w € Spec 0L )

are continuous.

LEMMA The injection
WA e

 :Hom( Y ,G)/G—> Spec RO

is continuous.

[Bearing in mind that

Hom (3P ,G)/G

carries the guotient topology, one has only to check that the

composite

Hom (2¢,% ,G}) —> Spec 2R OL

is continuous. In turn, this will be the case iff ¥V [¥ ], the

function

A
W(—,{¥1)
>

Hom { p4 & ,G) —=> Spec ¢ OL C

Wy



is continuous. But, from the definitions,

al
W— (Y1) (@) = @, (W(—,[¥1])

1
5 tr(h(d 1),

and V' {¥ ], the function

Hom( 2% ,6) —> ¢
YA

h —> % tr (h[¥ ])

is certainly continuous.]

We have

Ot /4 < Hom(RY ,G) /G ¢-?'—‘-)Spec o001 ,
where

wirr, ¥ 1

& tr(h(T,piy)).

Claim: The image T (Ol/& ) is dense in Spec 3¢ O .

[Suppose that f:Spec 0L —> C is a continuous function which
VA,

~
vanishes on 2 (0C/& ). Choose 436 ¥HOoL : ¢ =<l’ -- then ¥V [ "],
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FAS
0= £(1IPD = (LIrh =$uUrn

Therefore
1 :Hom (¢4 ,G)/G —>Spec ¥ O

is a homeomorphism, hence

Hom( 30 & ,G) /G 22 Spec QO

or still,

Homc(}Q;H /G) /G 2 Spec O -

A ————

Remark: Introduce the constructs DU, 2 , OL/5Y —- then, as

we have seen earlier,
o/ ~ —6'—(./3%“;?; Hom( 30>Y ,G) /G.

On the other hand, 7 ( 0{/H4 ) is dense in Spec ¥ O{ , thus the

notation is consistent.



Abelian Theory Maintaining the assumption that M is analytic

and path connected with dim M >2, let us turn now to the case when

G = U(l) -~ then again
Wy
Hom ( 30X [U(1)) N Spec o Ot
h«?—-’-}qh.

Observation: Hom(XP A4 ,U(l)) is a compact abelian topological
Yy

group, call it OC /& .

e —— .

Let A1, be normalized Haar measure on Ot/#& ~-- then ¥ O can

A —————

be represented on L2( ol /Y P4 )

AN
(TTo(Pror (@) = dapfla,) (F€L2(0T/ ).

[Note: 1In particular,

T A
( HgWi—, [N (@) = W(——;[ﬁ])((ih)f(QIQ

hIY1£(@,) ]

On the other hand, there is also the regular representation

of OU/f on L(OU/Y 1) :

Pl E(@,,) = £(@,,®,)

= f(Qhuh) .



Given [ X ] € Y , define

%[a,]zm/;ﬂf——>ml)

by

Xiyjley) =nix).

Then ’X.[a.] is a character of O(/ & .

FACT 2% (discrete topology) is isomorphic to the character

group of O(/& via the map
A

(1 —> % o

Remark: Given fEJfL(Oi/Jy ). its Fourier transform
fa

s O/

A
£

.5, s
Fal —
ELo] =J EX 1 3A-
o/ %y

Let W, be the state on 0 determined by Ayt

~
0-’0(4’) =‘J, P dau,.
ot/ 4

Then

Fa¥
W, W(—, (¥ = J W(—, (Y1) dm,
ot/ Y



= X 171940
oL/ Y
14if [Y] = id
_ ALY,
0 if [J] # iad .
HY
To illustrate the preceding generalities, take M = R3 and denote
WA
by
O{-- the set of connections
Aﬂ -- the set of gauge transformations
per
3
(L—>R X U(1)
WY M\LW\M
R3.
Y
Ad 01 : There are identifications
1,.3 00,3 3
Ot <> AT (R7; V-T R)&>CcP(R”;R7),
Y W Yy ey
viz.
" &—> w_&—>2 ’
r r
where

UJr, = - V—l'Aadxa
A‘ﬂ = (Al,AZ,AB).

aAd 1 The elements of 456 COO(R3)

Wy

operate on CDO(R3;R3) via
YW e

A—>A+VP .



Holonomz- ‘We have

hi:¥) = exp( -5 wr, )
¥

exp({ Y~-1 j‘ Aadxa).
J

[Note: Since U({l) is abelian, it is permissible to write
iy

h(f’;Y ) in place of h( [ ,p:d }).]

The assignment

A '—"'75 Aadxa
)4

is a compactly supported distribution with components (Xl 2

3
, X0, X)) .
> S S |
So, symbolically:

a _ a
j‘ Aadx = 5 AaXB’ dx.
g r3

vinA

Observation: We have

2xy Xy  oxYy

+ +
D L D2 D3

[In fact,

’ 9 Xy - 2@
Ql’ 0 = - r Xa >
? < axa } Z_ <axa 3'
a=1 =1
_ 0@ . a
Jiy D x2 *



Remark: There is a unitary representation U of xf(RB;RB)T
W

on L2( oL/ i), namely

V(B E(@,) = £l @p)

where

L(’F[B’] = exp( V-1 j F),
&
and a unitary representation V of ¥{#H on L2( o/ ﬁo) , namely
VYD E(Q,) =xﬂ}]“hﬂﬂth
[Note: From the definitions,

U(R)V([Y 1) = exp( V-1 JB‘ Fyv(l¥umE,

which are the analogs of the canonical commutation relations in
this setup.]

Given t >0, let

2

1 X
f_ (x) = exp( - =).
t (2Tit) 32 2t

Then, in the sense of distributions.

lim £, =5 .
£Jo

Definition: The form factor attached to t,d is that element

3 .3 . .
Xt,'a’ € j (‘E{W,&w) defined by the convolution
a _ _ a
Xt, ¥ (x) = j £, (x y)xa, (y}dy.
3

R
v,



Observation: We have

3 _3.7T
e,y € LERR)

[In fact,

a
ai _ 9%y
iv X = —r®
t, ¥ 2 &

D] a
= - £, (x-y)X, (y)ady
5'3 .Dya t 4

R
ha '

- 5 Vft(x —)
&

0.)

holonomically
It is clear that herarenigakky equivalent loops have the same

form factor, hence ¥t >0, there is a map

aRY
[§] ——> X

Y

> A e’
t, ¥

which respects composition, i.e.,

= +
. Y08 Xe, v T %8
. _ 3.3, T .
Recalling that “J = ;$E§Q&EM) , define
BT —0VY

by

(@, WIYI = exp( V-1 ?\(Xt,})’”‘



LEMMA Y t, @t is measurable.
*
[The relevant 0 -algebra on J is

Cyl = Bor .

————

On the other hand, the relevant ¢ -algebra on U1/ is the ¢ ~algebra

generated by the ‘x,[a,] ([F1eNY ), i.e., the Baire ¢ -~algebra.
Therefore @t is measurable iff V [¥1 € Y, XL (Y1 a @t is

*
Borel measurable (as a function from '.T to U(l)}). But
Wy

(X (512 @ N

L]

(@t')\ JI¥] = exp(¥-1 7\(Xt‘x })
and the composition

A —> %(Xt,x ) —> exp( V-l’ ?\(Xt‘r3 ))

is obviously Borel.]

*
Let A« be a Borel measure on :T -- then (@® t)*/u ig a Baire

measure on 01/ , hence admits a unique extension to a Radon measure

on U4 .

—————

Remark: The topology on OU/4 is the initial topology determined
by the 'x[a,] (IY)E XY )y anaVIXyl, X (Y1 o@t is weakly



continuous, hence strongly continuous. Therefore

* ——
@tzo‘]/s 01'/78
*
is continuous. But trs is a Souslin space, thus so is its image

*
Gat(fy's), which, while not necessarily Borel, is at least measurable

w.r.t. (Gaiﬁa:’* (i.e., is in the domain of the completion of

(D) M)

[Note: A compact Hausdorff space is Souslin iff it is second

countable, a property that in all likelihood 01/ does not have.]

*
Take now for A the unique gaussian measure Xr on GJ with

-0 /2
Fourier transform e . where
Q, (F) =<F, (- )F > (Fe))H.
LZ(R3;R3)
VWA ey
To be in agreement with the physics literature, choose r = - % -
then
N V-1 XN(F)
P g (F) = e ay 1 (A)
-1/2 -3
de*
-1/2
=exp( -3 <F, (-D)  F> )
L2(R3:R3)
Y Yy
1 AN
= expl - 5 F-F d?).

3 HSH



Put

M= (BT -

a—p————

Then A&, determines a state w , on 201
A
w ($) = ¢ dax,.

Therefore

W W(—, (1))

=S Xix1@NIAY )5 (A

7*
=J (@, AF1 ATy, (A)
‘J.a*
=S exp ( V—l %(Xt'a))dal_l/z (?\)
*
7 &8
=exp(-%—j t.y t.¥ ay ).
NENTEST

VS
FACT The measures in the set {,ut:t>0 } W {N 0} are

singular w.r.t. one another.
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Since O01/f is a compact abelian topological group, it

follows that none of the My is guasi-invariant under the action

of Ol/;% on itself by multiplication.

—————

[Note: Every gquasi-invariant measure on O{/R) is equivalent

to the Haar measure }ao.]
Thanks to the Hahn-Banach theorem, the arrow of restriction
3 3* *
R”:R —>
o @) —> T
A —> AT

is surjective. This said, suppose that ¥V X A= 0 -~ then A |¢J'= 0.
Thus let FEYJ :

F=-V X (G % curl F)

P, AY = -d VKRG % curl F), AD

=-{G+rourl F, VY XA D

= 0.

[Note: This argument is suggestive but formal, there being no
assurance that G * curl P is rapidly decreasing so, strictly speaking,
integration by parts is not permissible. The way out is to appeal

to the homology theory of currents which implies that an element

™ € 5§ (R%R%) " admits a potential é € if D) iff ¥ X A= o.
But then

P y=<KF, VD

= <div F, ¢>= 0.1
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. *
LEMMA % t, the X,  separate the points of 7J .

*
[Let D, # P 5 be distinct elements of T~ -- then the claim

is that 3 ¥ : ')\l(xt'a,} # ')\2(Xt'3,) or, rephrased:

Ay 5 ) =0 YV ¥ => n=o0.

But ¥V & ,

0 = ‘?\(Xtra’) =<ft*xa"?\>
-—<ft*}\ ,Xa,.>
= j ft*?\

J

=

Oﬂcurl(ft*?\)

=ft*curl?\
=>

0=F (v x A"
=>

(v X)) =0
ooty

¥ X A= 0.1
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Rappel: Let o€ , X be Hilbert spaces. Suppose that T: 3f — XK

X -- then T is surjective.

is an isometry such that ran T
[Given Y€ X, J a sequence {xn} fall, ' Tx —> y. But

WTx, §i = W= )] , hence {xn} is Cauchy, so x, —>x =Sy =

lim Tx = Tx, i.e., ran T = MKl

The map
f-—>f 0®t

induces an isometry

T:12 ¢ o1 /Y PAag) —"'>L2('T*; . 4 ~1/2)

via the change of variable formula

oL/ 4 T

*
Since the X y Separate the points of %Y , standard generalities
r

then imply that the functions

V-1 A(x )
A —>e £

*
constitute a total subset of Lz( T ¥ _y/p)- But

V=T N L)
(K (519D J(N) =e €y,

Therefore T is surjective.
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s . . . *
Fix £t 50 and consider the restriction of ®t to GT -y 'T :

Ber =O F
—

= V ' a
R3
Vi

Since

® t,Fl-FFZ = @t,Fl‘ ®t,F2 :

there is an action = of Yon OU/HY :

o/ X7 — o0L/Y

(W F) ———> @y B p -

FACT s, is quasi-invariant w.r.t. =

£
Let
—p VY “"W
be the map
Cn =R, @, p (=T (@)
and put
A p = (o P A (= (@D, ¥ 10,5

so that
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j £ Ay p = j £ oEt,F SR
SVZS | o1/ R

Then the prescription

dA, _n 172
am . t,-
U (F)E(R,) = £(Q- @ 1) = (ay)
“e

defines a unitary representation of 0T on L2( O‘L/;e-j : KA 1:) .

other hand, the prescription

da, 1/2
U(F)E(A) = £{ A+ F) “1/2,=F () ]
a7 _, ,»

*
defines a unitary representation of ff on L2(‘j' : 3’_1/2).

LEMMA The diagram
AAAANW

2-—-——""- T

LY OL/Y P AN L)

2 *
> (T ¥ )

U, (F) U(F)

L2 (O i) ——> LT ¥y,
T

commutes.

[As a function of ),

U(F)TE I N

On the
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ay 1/2
=Tf(?\+F)[ "1/2"'F(?\)J
d7_1/2

avy

iy 1/2
@ (A+TF)) { ‘1/2"F(?\)]
-1/2

Il

49 1/2,-F 12
f(@t?\-®t'F)[d =3/2. (9\>] :

7 _1/2
while
TU, (F) £
A
= U BYE(@ L )
1/2
Ay, -F
=@ N O ¢,F [jd — (@) ]
A4y
Since

ay_ ) 1/2 .
[d? 1/2,-F ] € L2(7 ; 34-1/2)’
-1/2

there exists a nonnegative function

2
fr € L0/ s )
such that

1/2

ay._ -

{ 2ok J =500 ,.
¥ 1,2
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bt —

But for every Borel set B 0O1/% ,

A, pB = (@0 ¥ 5B

_ -1
= 3’_1/2'_F(® . B

d ¢
[ —1/2,°F (?\)] a¥_y 0 (A
av_y,,

Il
—

-1
®, B

(£, 0@ % (N A¥_y,, (A)
@ 1s

t

(@ NPT, A

I
Q—-—’—\ C-’—\

-1
OIS

It il
UJL_—-—\ L——-——\
[s ]
: ‘} ¥
~ ct
m
| W
[o ]
T
t
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1/2

iy 4 1/2
1/2,7F () ] = [ i Ty (@ N\ ] :
49172

Therefore

UGWOT==TOUJFL]

*
There is another unitary representation of fr on Lz(f)' ;}Y_l/z),
viz.

V(F}f = ’X_Ff,

where we have written

V-1 A (F)
'xF<w=e F.

However, the analog of this in the 01/*9 -picture is not so
transparent: Put

V (F) = rlov(mio T

and define

mg el OUNY P4y
by

?CF = mF(}cjtf

Then

-1
Vi(FIE =T ( Xp(fo@))

T_l((m.F o@t) (fo®,))
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= me.

ﬁxample: We have

7CXt,3’ =1X;[3] oD,

=>

e,y "X



Cylinder Functions Suppose that M is analytic and path

connected with dim M> 2 and G is a compact connected nonabelian

Lie gjroup -~=- then

Ol = 1im Ol = Hom(P Y ,q).



if 3

commu

scala
and p

Consil

f ¢
A

Definition: A function £€ C(01) is said to be a cylinder function

A€ ¢ra M and f/\e C(‘Fiﬁ\) such that the triangle

R {
oL —L>

EN

Write Cyl(E{) for the set of cylinder functions on 0L .

Ql

N

N

—

fo

tes.,

LEMMA Cyl{0{) is a »-subalgebra of C({L).

[It is obvious that Cyl(E{) is closed under conjugation and

r multiplication., Therefore the issue is closure under sums
roducts. This hinges on the fact that Gra M is directed.
der, e.g., sums. Let fl,fze Cyl(ot): fl = fhlo nAl, f2 =

. n/\z. Choose /\3: A 3 ?_/\l,/\z -~ then

"
th
>
=
L)
=
—
<]
- |
>
+
H
>
b
9
=
b
g
o |
P

il
H

€ Cyl(a).]




Rappel: Let X be a compact Hausdorff sgpace. Let A LI C(X) be

2 *-gubalgebra of C(X) which separates the points of X (xl#xz = 3 fea:

f(xl)

then

#f(xz)) -- then the uniform closure of A is all of C({X}.

LEMMA Cyl(O() is dense in C(0L).
e e TN

[Take h #h, inO®l and choose A € Gra M: T () T (D) -
3 f,\G.C(Dif\):

£, (T Ay DFE (T, (hy)).

Since| f_ o T}, € Cyl (O0) . it foliows that Cyl (EL) separates the

points of Ol

N

AN
.1




The Ashtekar-Lewandowski Measure - Let X be a compact Hausdorff

space] —— then a linear functional I:C(X)—> C is said to be positive
if £20 =7I(f)> 0. This said, the Riesz representation theorem
provides a one-to-one correspondence between the positive linear

functfionals I on C(X) and the Radon measures A4 on X:I &> A4, where

i I(f) = ‘[ fdm .

X
[Note: C(X) is a unital commutative C*-algebra and its states
are the normalized positive linear functionals, hence are parameterized
by the Radon probability measures on X.]

Specialize now to the case when X =01 -- then given any state

W on C(0L ), there exists a unigue Radon probability measure A

on ! such that

w (£) =j fFapm .
— @
o

Moreower, the assignment

|
s f — f
. } kJ )

(£) = £
| T, 0P = ¢
definks a cyclic representation of C{ Q1) on Lz(E{ :/MIM). Here,

of colrse,

£) = 1, 31 .
w(f) =< Trw{}>

On the other hand, every cyclic representation of C({Q() is unitarily

equivalent to a representation of this type.




Radon

Suppose given a collection -[ /LAA} , where WA, /QA is a

probability measure on O'L/\ -=- then {AA} is said to be

consistent if

|

>

j fonid/b\/\2= j fd/q/\l {(f€ C( 5{/\”'

41
0-L"\z N

Example: Every Radon probability measure on {f gives rise to

a congsistent collection {’Mf\} of Radon probability measures on

the 01 .

N

[A state (y on C(B‘I) defines a state (,UA on C({ H/\ )} via

the prescription

(,u/\(f) =w(f01TA Y.

The converse is also true: Every consistent collection { /*/\}

of Radon probability measures on the 01/\ gives rise to a Radon

—

probapility measure on O . To see this, let W be the state on

c( oL

f o
A

Then

AN

) determined by Ax, . Given f€ Cyl(Ul), write £ =

FAN
T[ A and put

W (f) = w,\ (f/\ Y.

W : Cyl(0t)—>cC
VAl



is a welldefined normalized positive linear functional.

OPbservation: A positive linear functional I on Cyl(QLl) is

necessarily continuous.

uniqu

Radon

Then
proba

is ca

- 1

[Take f real -- then

F£0 £ el => fell +£20
=> I(1) - £} +T(E) 7 0O

=> JuH) £ - el )

since Cyl(0l ) is dense in C(0V )}, it follows thatt admits a
= extension to a state on C(Bi.), which in turn determines a

probability measure on 0.
Let /ar\ be the normalized Haar measure on

—_— $E(A)
OL/\ ~ G .

the collection {JAAﬁ\} is consistent. Granted this, the Radon
bility measure on Ol thereby produced is denoted bygAAAL and

1led the Ashtekar-Lewandowski measure.

[Note: Write w,; for the state on C{0Vl) corresponding to

L




Suppose that £ is cylindrical w.r.t. /\1 and /\2, i.e.,

£ = f/\loﬂ‘/\l and f = fAzo 11,\2 -- then f is cylindrical w.r.t.

any N 3 }_/\1. /\2. Accordingly, it will be enough to prove that
5.... N N .J:_ Eard s o

wherel A & A'.

Let e i, be the edges of A ({ =Hn = #E(A)); let ei,...,e',

17+ n

be the edges of A' (=n' = $E( A')) -~ then, since A\ & A', each

edge e. admits a decomposition in terms of the edges ei,:

1
_ . £(i,i")
e; =TT (efqs,ivy ,

il
where r(i,i')€ {1,...,n'}, E(i,iYv€ {-1,+1}. Furthermore, for
each i€ $1,...,n}, I k()€ {1,...,n'} with the following properties:

(a) i#j = k(1)#k(3);

(b) ey (3, is not used in the decomposition of the &y (1< 1);

+

. —

() (ek(i)) is used in the decomposition of ey exactly once.
]

Observation: The arrow of restriction Ty : : 0‘(,\, —> O, can

n

] ]
be identified with the map Trﬁ :¢" ~—> " that sends

(flf...'d-n')




to

¢ T1

il

(Tra,in)

€(1,i")

o 1T

L

o .
3 ( r{n,i

With this preparation, we can now prove that -

where

NENT.

J-— f da =I~—- f ' d/‘-\ L
., A~ A o, A A

Thus

nl
TT dm,,
i'= *

nl

i'=1

n.
_l—r d/“\iu

it=1

i'#kll,n]

f,\l(o-ll"'! O-nl)
n'
T d Ausg f/\ ew, (61s0--

f,\(-l;l: (Ur(l,i'))

[ dmy (1)
G

’ O'n|)

E(1,1i"
(1,1 ),...,'ET (d'r(n,i')}

[ dﬁ“k(n)
G

A

LIPS o-k(n)...)

')) 8.(11;1')).

E(n,i'))



nl

=S 1T dni.j d’“k(l)”'{ daay (n)
G G

al' =n it=1

i'@ k[1,n]

f/\(chk(l)""' fk(n))

=S T duy £, (eyieeray)

i=1 n

= j‘ f da
""’01 N FAS
N

Example: Consider the simplest case, viz. when n'=2, n=l,§& =+1 --
then

g Admle )amla)f o loyrey)
2
G

}' danle)dmia )NE, (o0 ,)
2
G

S d)k(d'l) J- dﬂ\(crz} fA(o-la-z)
G G

S dalg)E (6.
G
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Fxample: Consider an analytic circle f\u with a single vertex

u -
<;i eu

Fix a| peint v#u and thereby determine a second analytic circle /\v

u and| a single edge €.’

with a single vertex v and a single edge e,:

e@v
v
Then el
« Qv
€2

is an| element A\ of Gra M refining A and A _:
u,v u v

eu = e2el
ev = elez.
Suppose that
f=fu¢:,-r'|',\u (fueC( OtAu))
9=9,0Tp  (9,€c000, ).

Then

where




6B.

T7..¢ O ——> O
\ v <31/\u,v O1f\v

So, from the definitions,

\Y fg dﬁAAL
ol

‘L’ﬂ

(£,0 77 Q) (9, 0 T PaM

444
Au,v
=5 Aa6dT £, 0 W (¢,T) g, o (6, T)
GXG
= 5 doaT £ (To) g, (oT)
G XG

-1
j a7T | J dg £ . (0) 9 (TOT 7).

G G

j;_ fg dpanp = ¢ j £, ¢ 5. =
ot

Therefore

G G

provided that 9 is G-central.
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Properties of Mar,

(D/MAL(O'() = 1;

(2) £€c(OL), £70 =>w, (fH) >0;



(3) Anpp (Dlgen) = 1

[The first property is obvious (look at the construction of /L;\AL) .

Turning to the second property, note first that if UCG is open and

nonenmpty, then A (U} 0. In fact, { vos:05€ G} is an open covering

n
Of G; 803 6‘1'...,61'16 G:G = J"‘k:}]- Ud-i
= _1 ' 1 -1
Av(U) = }i:zu(uo-i)z = mi(G) = =
Now put F = ff and let U = F'l(] il Fll gy /2, +ool). Since OlL= lim O’LA,

FA:T f;l(U/\) Cu (U/\ C‘D_-lA open and nonempty)(true by the

definition of the topology on Jl). We then have

W (F) =J-_ F da
AL o AL

?—j’ Fdamar

|3)

2{ Weny, /2 duy,
U

> DElg /2 |1 any

U
2 “F"OD /2 5- 1 daagay
-1
LIRS
2 I Flg /2 S' 1 dm,
A

(U, ) >0.



The verification of the third property is more difficult and will be

omitted (recall that agen is open, hence is measurable).]

Fix an edge e:[0,1]~—> M and for s €1[0,1), put

es(t) = e(st) (04t £1).
Define a map

T 50

)vh

h
by

vh(s) = h(es) .

Let A AL be the completion of pn 5y, —- then it can be shown that the

-mea of
A% Ay sure

{hEE‘L : 3 s:v, is continuous at s t

is 0. Therefore the ;AL—measure of

{heot : vV s:v, is discontinuous at s}

is 1.
[Note: ¥ P, 3 an embedding O((P)—> UL with a dense image.
The Vi associated with the M€ 0((P) are certainly continuous, so

AL AL(U'L(P))=0.]
Rappel: There is a right action of ;Ej/\ on ﬁ/\ , Viz.
O‘LAX ;Ej/\ > 01/\
(h,$) —> h- ¢,




where
h- (&) = e nie)d (ef0)).
Let n = $E(A ). Fix elements d‘i, G‘i € G (i=1,...,n) --

then ¥V Fe (6™,

n
1 2 1 2
‘r'|' d,ui F(o'lo'lo'l,..., o'no'no-n)
i=1

Gn

"

n
.I::’:; dﬂi F(dllo-olan).

Gl’l

Therefore A4 1is -invariant.
NN

Rappel: Thexre is a right action oflfjon.01, viz.

o X Y > 0
SERTRUN RS CNE N

LEMMA A4, o is A -invariant.

[Tt suffices to check invariance on the cylinder functions.

But, on the basis of what has been said above, this is immediate.]

It follows that L2(01: AAAL) supports a unitary representation

of &, viz.
£F—> ¢.f (bedly ),



10.

where

¢t |h=f(h-¢.) (hell).

Indeed,

g___' 1P-£ 1% an,, = j_ £ 12 apy,,
o ol

Axpg being 2 -invariant.

Remark: Let Tj :‘G‘i_—n-? O_‘L/,g be the projection and put
Ay = Tls (A,p) -- then it is clear that

2 res ~ 12, .
LI (OUsan ) 3 L0/ ).

Let Diffo" M denote the analytic diffeomorphism group of M -~

then I}iffUJ M operates on Gra M in the obvious way:

N—> @ .

Moreover, this action preserves the partial order on Gra M:

ALEN, = @A, L @A,

. e M . .
LEMMA AAL is Diff M-invariant.
[Let (@ € Diff M -- then /N € Gra M, there is an isomorphism
of groupoids @;&1/\—’? 65:80”\, hence, by contravariance, a homeo-

morphism

Hom( & 5 @A ,G) —> Hom( @)&1/\ »G)



1].

or still, a homeomorphism

Ap— ———

AU Otta/\m> O A"

When combined, the Gf\ lead to a homeomorphism (g : oL —> Ol

rendering the diagram

@

\
2|

@an @,

o |
|~
>
Lt e— 3|
| <
o
>

commutative. Suppose now that £€Cyl(0l), say £ = f/\ o TT/\

then

5_ fd(g_q)*,uAL=j_ fodq dp, .
o ot

— A A
ot

=5_ f/\ 0(2,\ OTTU“\ A,
ot

=S._. t-/\‘D(‘Q/’\ d/“"\utt/\'
O.L‘-Q/\



But

l

FAS

1z,

-~ o~ ¥E(@AN\) =n
Ot —= 5
@M .
-
’ )
v
— =~ $E(A) = n
Ot = > a

Here, the arrow on the right is a topological automorphism of Gn,

hence has modular function = 1 (G" being compact}.

LATPIN
n
[ 94y
i=1
n
1“1 d A,
i=1 .
£ 4
A AA
N
£ o
~ ‘Tb\

Therefore

Q@A

(a—l'...’d-n)

The lemma implies that there is a natural unitary representation
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G

of Diff M on L2(01=fAAL)- However, it turns out that the only

invariant elements in L2(lT(;/AAL) are the constants, hence that

W
the action of Diff M is ergodic.

A curve ¢ :[0,1] —>M is said to have no self-intersections

if (') = ¥(e") = t' = t" or t' =0, £t" =1l or t' =1, t" = 0.

Definition: A piecewise analytic edge is a curve which has no

self-intersections.
Every edge is, of course, a piecewise analytic edge.

Suppose that (@ :M —> M is a homeomorphism -~ then ¢ is said to

be a C0 diffeomorphism if V¥V piecewise analytic edge e, the composite

@ 0 e is again a piecewise analytic edge.

Remark: Using piecewise analytic edges, one can form piecewise
analytic graphs. Therefore a homeomorphism (¢ :M—>M is a C0 diffeo-
morphism iff @ sends piecewise analytic graphs to piecewise analytic
graphs.

Notation: DiffO M is the group of C0 diffeomorphisms.

FACT s, is Diff’ M-invariant.




Two Dimensional Yang-Mills Theory Recall our standing

assumptions: M is analytic and path connected with dim M2 2 and G
is a compact connected nonabelian Lie group.

Suppose given

where M is orientable and semiriemannian.

Rappel: The Yang-Mills lagrangian A:YM is the functional with

domain O((P) defined by the prescription
L o (1) --j <Fn o Fyy vol.
M
It is invariant under)% (P}, hence passes to the guotient and defines
a functional on the configuration space OC (P)/ £1(P).
Now let P run through a set of representatives for the isomorphism

classes of principal G-bundles over M -- then is defined on

YM

Llotwey/ ¥ (e
P

or still, & M ig defined on

Problem: Extend the definition of & ym t°

Hom( oY ,G) /G,

i.e., to
oY Y .

[Note: The motivation is the quantization of Yang-Mills theories.



A t——

Since Q1 /& is the quantum configuration space, heuristics arising
from constructive field theory and functional integration suggest

that one should consider

-

M
d"“YM = e dMAL'

Here as,, is the Ashtekar-Lewandowski measure on 0(/& but the exact

- K

meaning of e ™ emains problematic.])

In what follows, we shall consider a particular case, viz. when

G = EE(N) (N>2) and M is the plane. However, even in this situation,
the analysis is by no means simple.
First we need to deal with a generality (valid for arbitrary M).

Fix "€ 0U(p) and let UcM be a local trivialization of P with

. 1 n . . .
coordinates x ,...,x . Consider a small sguare of side length £ in
the x™ -x¥ plane:

<V
' y.
< []x
~ ~
A

Here [} < is the plaquette loop traced in the counterclockwise direction
.ﬁ
e

.
v r Xt Eey ),

N -
defined by its four corners (x,x+&e, , x+ Eeﬁ_\ + €

where X€ U and ‘é:‘ ,-gu are unit vectors., Let f’l‘a} be a basis for

EE(N) and write

a

zZ F T,

S
a a

7

P "4

"

[Note: By definition, oF = s*(Q is the local field strength:

rl



1
?: ..2.. z ?MU dXMA dxv '

Pa V4

where the ?Ehvare su(N)-valued functions on U.]

APPROXIMATION LEMMA We have
AN AT NN N AN N PPAAIAN

Lern(M,p;, 0O,)

2 a
_ €
=1+ = Za F .., )
N S 1 ' 6
+ = = v (XY T (x)tr(TaTb) + 0(g").
Remark: Since it is a guestion of su(N), tr(Ta) = 0. Therefore
the expansion reduces to

! ey 5 wF” 6
5 Er((P,p; W) = 1+ azb en B F e (T T ) 40(E ).
Now take M = R2 {base point the origin) -- then P is trivial. And:

XK%§§§§§§§NMKXXXM&£;'

2 1
‘a:'r‘ = % q:‘lzdxl/\dxz + % :]:216{}( Adx

1 2
= ?nax Adx .
Write
a
T, - E Fq, Ty
Then

a 1 2
0‘}'..= z (=F12 T )dx” Adx

a



=
= 7 (‘}’a()dldz?b()dldz)(:ptrT
_a’bg 12}{ XoaAdx, 12}{ X./\X (a'b))
1 a b
=-F Z FL00F L0 trir,T).
Therefore

1
1l —ﬁRe(tr(h(r’:PF DX)))

4
~ & <8:Fr q'r.>(x).

[Note: The Killing form :.E&(X,Y) of su(N) is 2Ntr(X,¥).)

Let /A be a finite square lattice in \53 with spacing € and length

RE (Re W) having the origin as a vertex, thus A contains ,QZ
Yy

plaguette loops 1] ..

Notation: Given [J , choose a path PE] in A from the base point -

to the lower left hand corner of [0 and then put
-1
'a'D = PD o[l o (JD .
{Note: The }‘U thus generate 11'1(/\).]

2 . . N
Let 0L = OU(P) (PSR % 8U(N)) -- then the Wilson lagrangian £

is the functional with domain 0 defined by the prescription

L5 =25 T a-lretertn(p ;g oM,
€2 0
or still,
LM = T a-Llrerh(P ; ¥ 1)),
W 82 d N 0



It is clear that o(/r; is gauge invariant: WV f€& ﬁ (= ;?j {p)),

L0(F-£) = L0,

P rrr————

so of?q lives on O/ . More is true: g(/; extends to OL/ A . Indeed,

for any h€ Hom( 3¢& ,gU(N) )/8U(N) ,

P | 1
Kgm = =5 ‘é (1-g Re{tr (h( ¥ )))).

Notation: A -—-‘:'R2 means that £ —>e0, &£— 0.
has'd

HEURISTIC PRINCIPLE VWV €O .
WA N e

R AT R £
,\___}RZ W

or

w )

[In fact,

e~ T T F s 6

>2 j.M <'37P, 'g:r‘> vol

A—R

I

L oy (M) ]

To simplify, henceforth write G for SU(N) and g for su (N},

where N > 2,

2
Let pA: o/ — G‘e be the projection

'QZ

Given a continuous function 4:/\ :G -—> C, we have
LV



S"""‘h#’ © P, dary = f22¢AdMA’

T/ Y
G
12
Aaf\being the normalized Haar measure on G .
. N 2
Example: J W CPAO p/\ , where
$ () == T (A-FReltr( oy ).
N | —e_f 0 N 0
Put
- _ Fal
Z{A) -I exp (=K 3y (h))dm,, (h).

o/

e .

Since the function h — exp(~ & Q (h)) is continuous and 01/% is

compact, it is clear that the integral defining Z(A) is finite,.

In fact,
2
Z(A) = < S exp(- =5(1 = £ Re(tr(g))))dalg) )‘Q
G &
Given a loop & in A , let
1 A
Xy = e f exp(-f N M) tr(h[¥ Dd ey, (h) .
20/ e
ot/ Y

Write

E3 €x

¥ = ¥ Do (€. = +1)

cj‘ll E]ik J

Then
£ £
Bi¥1 =kl ¥ 5 1oenl ¥ X
11 *x
1 A
X(¥:A) = S exp (- > ( 6 V)
Z(A) W =



k €.
Xxtr( T o2 Jdam

) Dij A(O‘D ).

The next step is to calculate YK(Y¥ :A) in closed form. This is a
difficult undertaking and the final result, while explicit, is somewhat
complicated to state, thus I will omit the details. From here, one

then proceeds to the main conclusion, which simply says:

lim % (¥ iA)
A= R?
exists.

Example: If ¥ is simple in the sense that [& ] contains a loop

with no self-intersections, then
. -CA
lim  X(¥:A) = e B¥),

A~>g2

where ¢ is a certain positive constant and A(Y¥ ) is the area enclosed

by ¥ .

A——————

THEOREM There is a Radon measure .. on 0U/ ¥ of total mass 1

such that
lim K rin) = ermiE sy, m.
[Note: A4 is called the Yang-Mills measure.]

M

Remark: Proceeding formally, it is tempting to write

lim X (¥ i)

/\"—>R2
Wy



- L . lim  exp(- oC'W\ (h)) tr (h{¥ 1)dra,, (h)
Allm_ZZ(_/\) 01'-—/78 /\-?Rz
— Ve

-1 J' exp(- & gy (h))tr (h{¥ 1) dau, (D).
Ug

However (see below}, such a procedure is necessarily doomed to fail.

Properties OfJﬂAYM:

(1).AAAL and,A«YM are mutually singular, i.e.,‘a a measurable

set W< O(/54 with

Aapp (W) = 0 & Ay (W) = 1;
(2) Ay (BT /) = 1
(3) angyl OURY/H (P)) = 0.

Properties (2) and (3) are the analogs of what we know to be

true of A, i on the other hand, (1)} implies that éffa measurable

function s . on O(/38 such that

Ayy T @ s



Decomposition Theory Suppose that M 1is analytic and path

connected with dim M >2 and G is a compact connected nonabelian
Lie group.

Let J1be a set of representatives for the unitary eguivalence
classes of irreducible unitary representations of G. Given Ti G‘TT,

denote by d o its dimension and write [ TW(&)],. (1£i édn, 1£544_)

J L

for the matrix elements of TI{¢ ) (g c G).

Rappel: The functions

are a complete orthonormal system in LZ(G) and their linear span is
dense in C(G).
[Note: If Lz'*(G) is the closed linear span of the

Vd.‘.T [11(-)]ij, where TT # TTt (the trivial one dimensional

representation of G), then

2 _ 2, *
L7(G) -\31631- (G).]

Remark: Up to unitary equivalence, every irreducible unitary

. n
representation of G" (n>1) has the form CZD Ty (T eTh.
k=1
Therefore the functions
n
Ya? tm1;
[ l Tﬂ( k 37 I

k=1



are a complete orthonormal system in L2(Gn) and their linear span

is dense in C(Gn).
Suppose now that A\ € Gra M —— then
— n
ol faN

—_ E{'/\ o GHEIA)

~

and

2oy @ .
e€ E(A)

Furthermore, there is an arrow of insertion
1200, ) —> 13 (FL s pa,.)
N\ AL

and the union

, —
}\JL(MA)

. . 2, ~F
is dense in L (Cﬂ.,AAAL).
[Note: The subspace corresponding to the empty graph isvg}.]

Let TT(A) stand for the set of all functionz TT:EA)—> T1 .

Determine ie and je per T, (= T7i(e)) and put

i

i=fi} azijza )
=]

i={3.) (&i 4a_ .
e

Definition: The edge network

T P
AF-]_I:_]_-_!l



is the cylinder function 1 —> C defined by
-

h—>1 | Vdne'[n‘e(ﬂ/\(h) Vi

e€ E(N) e'e

[Note: 1If the orientation of an edge is reversed and the
corresponding representation is dualized, then the edge network
is unchanged. This type of overcompleteness will be ignored in

the sequel.]

LEMMA The span of the
WA

AiTEig (NEGram

is dense in C(QV ).

It follows from this that the set of edge networks is total
in LZ(Ei-/u )
H AL .

Example (Fleischhack}: Contrary to what might be expected,

the set of edge networks is not orthonormal. To see this, take

for A an edge e and then decompose e into the product e e, of two
edges by placing a vertex in the interior of e:
€2 €1
———— >——e -
Denote by A' the graph thus obtained, so that N <{ A'. Fix

TI ET‘- : dTT » 1 and fix indices



Put
r=Yag tnen, ol oy

an edge network per A . Define W& TT (A') by

T, = T
w, =T,
€2
Let
io=4 i(=4i_), m( =1i_)
N Y
Lo L
| _{ . o } (l_m_d.n).
llTl_ m{ = je]_)’ ]( = Jez)
Then the
Tm=Vdn'[TT(TfA.( )|el)lim°\/d-n'[1'r(1'f/\.( )]ez)]mj

are edge networks per A'. From the definitions, Ava c0.,

LN (h)lel T 0],

i

h(el) h(ez)

h(elez)

nie) = T, (],



hence
d T = T .
Vi T,
But
Tm'Tn>=S.__ Tan d-/“‘AL
ot
- 2 .
= () 5__ SLESINEL) PRRR PP R TTA.(h)Iel)]in
ot
SR (PRYEY e lng © LTICTE (h)lez)]nj d payp (h)
= @_)? 5 (e, - T(e),, dale)
G
X j rr(o—)mj . Tr(o')nj dsa(g)
G
2 Snm Smn
= (4 )
11 ao d_n
= 6Il'lI'l
_=>




Since dTT'> 1, it is clear that T#Tn, yet, by the above, T and T,

are not orthcgonal,

Consider LZ(G) -~ then GX G operates to the right on G, viz.

_ -1

the corresponding unitary representation on LZ(G) being the assignment

-1
f(g) > (6,0 0 ,),
which decomposes as
b newm -
weET]

[Note: For us, the inner product is conjugate linear in the

first slot, hence it is a gquestion of ?T@Tl’, not Tl'@qhﬁ' .1

Therefore

o)~ @ 1 (q)
A\ e€E(A)

~ X P T

e€CE(A) TTETT

Here $ € ;8/\ operates as

& D TT(P(e(l))) @ (P (e(0))).
e€EE(N) TTETT

[Note: Recall that ¥V h € 07/\ ,
h-P(e) = P (e(1)) " nie) P (e(0))

= he)-(Ple(l)), P(e(0))).]



Taking into account the associativity of tensor products and

direct sums then gives

2ol )~ & ®

N ETTIA)  e€E(A) Te @ Tre’

the action of ¢ € )8/\ becoming
D @ T (e TT, (dem).

TLE TTIA)  e€EE(A)

Put

2081 ;7T vy =
GO, 51T = Tre-
Al e€u(n) 2P

Then L2( 01/\;11 )} is a finite dimensional ’EtN -invariant subspace
of Lz( 01,\). Since iﬂ o~ G#v(/\), its irreducible unitary

representations are in a one-to-one correspondence with the functions

g :viny—>TT.

50, denoting by
Lz( 5{ 11+ )
N — L

the isotypic 7%b\-subspace of L2( 6{7\;II) of type ? , we have

2—_ 2_
; = L ; : .
Lo, s ) ;9 (O, TT7 @)

[Note: There are, of course, bug'finitely many P for which

2—
L™ ¢( : ; )
PR LEN ¢

is nonzero.]



Spin Networks Maintaining the assumptions of the preceding

section, suppose that A € Gra M.

Notation: Given v€ V(A), let

siv) = {e€ E(A):e(0)

v
v} .

T(v) = {e€E(A):e(l)

[}

With the understanding that an empty tensor product of rep-
resentations is the trivial one dimensional representation . of G,

we can then write

2o, ~ @D Ve (@ T @D .

N TETT(IA) VEVI(A) e€Tv) © e€s(v) °©

In this description, the action of 4) G)gj,\ is

D & (@D TP @ @ T dwn.

EGT‘-(/\) vEVIA) e& T(v) e € s(v)

Notation: Given TT &€ TIH(A) and vEV(A), let

Inv(ﬁ,v)
be the Gw-invariants in
& = @ @ :
e ET(v) Te e € S(v) Te

[Note: Since

D f.® @

e €CT(v) e€CsS(v)

is a unitary representation of G, it can be decomposed into irreducibles.

Assuming that ‘ITt actually appears, Inv(,v) is simply a direct sum



of a certain number of copies Ofw% on which G acts trivially.]
The space LZ(O"LA/ﬁA )} can be viewed as the subspace of

721/\ -invariant elements in L2( O'LA }. Therefore

LZ(MA/’&I/\ y @ @ Inv(¥T,v).
71 ETHA)  VEVIA)

Rappel: If Tl'l and 1T2 are finite dimensional unitary rep-
resentations of G, then the subspace of G-invariant vectors in
ﬁl @1‘[2 is isomorphic to the space Hom( 1']‘1, TTZ) of intertwining
operators from TTl to TIZ.

[Note: Let H. be the representation space of TTi (i=1,2) --
then ffl® H, can be identified with the set of linear transformations

T:H, —> Hz, the inner prloduct being

1

{T,8> = tr(Ts*),

Here,

T =X, @X
xl,xz =1 2

*
sends y, to <xl,yl > X,r thus Txllrxz sends y, to <X2'y2 > X. To

run a reality check, fix an orthonormal basis {ei} in H, -- then

2

<xl®x2, xi@xé >

- <Tx1'X2' Txjoxy D

. T*
tr(TX T

17%5 Xi'xi)



i
™
\

H
®

|

i
-

Il
™
AN

H
:x':-a-

i
AN
\
»

PO
©
'_).
Y4
"
|..:-
N
o
e
t'D
-
\'%
b
ot
v

- <Xi'xl> Z <ei,x2> <el,xé >
= <xpoxp > <xp0%5 >

= <rpxi > g, <k S -

Next, if

A:H, —>H

1 1

B:H.—> H

2 2

are linear transformations, then

AR B:Hl® H, —> Hl® H

is defined by
(A@ B)T = BTA*

and we have

(A® B) (x,®x,)

2

= Axl D sz.



In fact,
(AGDB)(xldgxz}’ = BTX \x A*yl
Yq 1772
= B(<X13A*Yl >X2)
while
M1‘3“33“2' = Tax.,Bx, Y1
Y1 1 2

= <Axl,yl>Bx2.
This said, TE& Hom(rrl,n?_) iff Veoe G,

T, (6) = T,(6)T

<=>
-1
T = 1T2(0')T rrl(o- )
<>
<=>
T =

(M (g )@, (0))T,

the condition that T be G-invariant.]

Conseduently

Inv(7f,v) 2 Hon( & Ter D
- e €T(v) e€ S(v)

).
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n2( 0 /;%}/\)';; P D Hom{ &
N TMETTIN) VEVIN) e €T(V)

It remains to make this explicit.

Let

n ,..."n
{ Moo T }
‘n 'onogn
{Top, oo TTp_}
be two finite subsets of'TT. Fix an orthonormal basis

{ek;ia (1£i, 4a )}
k

ep .. (143, %4 )
{ R ,jbx Qg Ty }
in the representation space of
{k=1,...,K)
'lTak

ﬂb}( (R =1,...,L).

Suppose that

K L
I€ Hom( @ TTak: @ ﬁbj )
k=1 £ =1

is an intertwining operator -- then

I(elﬁia®'..®eK:ia )
1 K

e!’

@
e€s(v)

ne‘



But V¥V 6 € G,

I(ﬁal(O‘)@"'@ﬂaK(d'))

= (T, (6)@ @7, (6))1

or still,

I = (W, (0)@: @, (¢))1(m, (¢ h®--- @1 (¢7h).

1 K
Therefore
j OOQj
by by,
T
ia ...i
1 Ak
B J
b1 bL
= [T, (¢)] . {41, (6]
bl b
nb L nb
1 L
n 1
by by
x I
m_ +--m
a 2k
ma ma
-1, 1 -1 K
X iy, 6771 - I, (671 .
1 ia K ia
1 K

S0, e.g., these observations apply to the

1,€Hom( QD 7., @ T)-
e €T(v) e € S(v)




Note the index pattern

subscripts <—>T (v)

superscripts «-75(v).

Definition: A spin network is a triple (A;717,I) consisting

of a2 graph N\ € Gra M, an element TN €TI(A), and a set

I= {IV:VG V(/\)} + where

reton( @  m. @ -
e €T(V) e&S(v)

Every spin network determines a function _zl-/\ 47,1 ©On 0'(,/\ via

the following procedure: Assign to a given h € O‘TLAthe number

[ @ T, heenl « ¢ @ .1,

v

eC E(A) vEVIN)

where the bullet ¢ stands for contracting at each v&€V{(A)} the upper
indices of the matrices corresponding to the incoming edges, the
lower indices of the matrices corresponding to the outgoing edges,

and the corresponding indices of Iv'

[Note: The function 92/\,11 I is called a spin network state.]

(Loops) Take for A the graph

v

Let 'ITGTrand let I be the identity intertwining operator -- then

- g3
2, W The )y &1



= tr(T7(h{e,))) .-

Example: Consider the graph

<
’—I
N;z
N
¢
w<:

Here

stv) = {ej,e,}, Tivp = 8
s(v,) = {e3} r Tlvy) = {el,ez}
s(v3) = £, T(vy) = {ey}.
We have
Ivl: L _>1Tel® 1Te2
I"zz Tre1®TT"‘2_:3'TT‘93
Iv3: 1Te3_'§"n t'
Therefore
(h) =
E/\ i __!__]_:_
il J.'2 i3
[TT., (h{e,))] [TF7. (h(e,})] [T7, (h{ey))]
ey 1 jl e, 2 j2 ey 3 j3



LEMMA The functions
VWA

§/\:E,g
are §3ﬁ‘-invariant.

[This is a bit of a mess to write ocut in general but the idea
can be illustrated with the preceding example. Thus let Cbe;&j/\ -
then the claim is that \ih.G‘Oif\,

¥ A\ ;E;E(h"# ) = g/\;TT:_I_(h) !

where
hed (e ) = $le (1)  hie) $le (0)) (L£a£3),
Consider
i i, i,
Ir.el(h-cb(el))]_ [ﬂez(h*‘#(ez))]t [ne3(h-4a(e3))1_
iy I Js
jljz j3
X (T, ) (I, ~, (I,
1 21,1, 3 1,
i
-1 1
= [Tl ($le;(1)) " hieg) P (e (0)))]
1 3y

i2
hie,) $ (e,(0)))]
32

-1
. [Tlez(Cb(ez(l))



. [rre3(<1>(e3(1)

j,3 j
X )2 a 7
1 2 5.4 3
172 3
-1, 1 k) £,
= [T (Pvy)) 1 (T, (hieg)l = [T, (Plvy))]
1 kq 1 ' 1 iy
-1, 12 %2 X
(T, (Pvy)™H1 2 (11, (hiey))] (7T, (v
2 X, 2 _22 2 3,
- k !
-1, . %3 3 3
[T, (4>(v3) ) ] [TT, (h(e3))] [T, (Pv,1
3 k3 3 ,€3 3 3
.3 J
X a P2 a0
1 2 1112 3 13
k) kK, k4
= [TTel(h(el))] [T|‘e2(h(e2))] [”93“‘(33’”
1 2 3
23 X, 3135
X [“el“l""l)”. mez“f""l)”. (Ivl)
1y 12
£ j i
3 3 -1 1
[T, (Pv,] (T, ) 7 (T, (P ) O * (17, (Pivy)
A ey 2 3s V2 i,i, ey 2 ky e 2
X (1, ) [T, 4>(v3)‘1)1i3
Vi i 3 k

)—l

13

10.

i

hey) P ey (0] 3

J3

3



ll.

ky ky ky
- h
[T, (h(eylg” [T, (hie)) 1" (77, (o3,
215, £ 3
X Ty (1, ) (1,0
2’ xk, 3'x,

Congider now the inner product
<EANmz, Ensms > .

Omitting for the moment the terms involving the intertwining operators

(which, being constant, can be taken outside the integral sign),

consider
[ 1 e
[T (601 % (mwite)l ° ae
e€ E(N) Je Je
G
or still,
1—T $ Te, Te s s
igeil @ 3.3
c€E(N) (d d .)1/2 e’'"e e’“e
Te Tig
Thus there is no contribution unless Tl'e = ;é, leaving
l ‘ 1
d__ Si 1! & 50 -

e€E(N) Te a’Te Jerle
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Restoring the terms involving the intertwining operators then gives

< TAFE:E ! E/\?Er;' >

= '1—T D{v) I _,1' ,
vE V(A) < v v:>

where

D(V) = I l d_l_ .
e€ s(v) T,
- [ B
[Note: The fact that ZIV,IV‘ > appears as opposed to <IV,.IV >

is a consequence of our definition of the inner product on

Hom { ® ' @ )y
e€T(v) Tie e €5(v) e

viz,
' = *
{1,018 tr (I I*),

which is conijugate linear in the second slot rather than the first

slot.}]

Fix IIGETWY/\) and adjust the definitions in the obvious way --

then the foregoing discussion implies that the arrow

L _"'i/\:rjrl
injects

@ Hom ( R P ®

)
vE V(A) e €T (V) e c€s(v) Ve

isometrically into L2 017\,/i9/\ ).
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[Note: The map

vEVINI e€T(v) Te e €5(v) e N ’8/\

that sends {I_Y to ¥ is multilinear, hence gives rise to
v N E:_l_

a map

y —
® Hom(® e D TT.)—> L (O'LA/XQJA)

vE V(A) e €T (v) e€S{v) °©

that sends ®Iv to E/\? .E’E.]
Remark: Choose an orthonormal basis fIv(b) : b€ Bv} for

Hom( ® r @ )
e€ T(v) Me e€s(v) e

and let I ={Iv(b) : VE V(A )} run through all possible combinations

thereof -- then the spin network states

¥ IND.: (1w € T
constitute an orthonormal basis for L2( a/\/)ajf\ ).
Suppose that A\ < A' -- then there is an isometric injection
2, = Y 2, = o

which takes spin network states to spin network states.

LEMMA The spin network states
WP

32/\?[[';_ ({ A€ Gra M)

span L% ( ot/ Y ) -
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[Mote: Recall that the union
5 = —_—
tﬁ’ L2 0L, / X A)

is dense in LZ(E{/%-;/AO).]

There are certain redundancies in the description of spin
network states.

Example: Suppose that A' arises from A by subdividing an
edge of /\ into two edges labeled with the same representation by
inserting a vertex to which one has attached the identity inter-
twining operator -~ then, as functions on ai,

EA:?_T.;“ i/\',ﬂr'f,r_' .

——

[Consider

and

ThethG 01-/\ ,

_ i 3
Ym:ﬁ:; (h) = [T(h(e))Iy (I, )° (T, )y

and Vh'e GL- t e
N
I/\|‘Jr w.,I' (h')

— -
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i

_ \ 1 . i

= [T(h'(e;))] & [T(h'(e,0] 2 (1,
31 3y 1
i i,

= [Tih (e, Y (TR (e 2 (1)
31 Iy 1
K i

= [THh' (e ] [T(h' (e 2 (1,
i X 1

Let

N ~ e
? g —
LN Ui,\ 0T

be the canonical projection and take

h=11" (h').
A

Then
h(e) = h'(e,e;) = h'(e,)h'(e;)
=
Ti{h(e)) = TT(h'(ez))TT(h'(el))
=>
i, i,
[ T(h(e))] “ = [TT(h'(e,)))
Jq k
=>
I
EE/\';E';I‘(h) = [Then
1

i
[TIth(e))] (I
]

H

k

[TT(h' (e;))]
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=§/\:1_'_r,5 (h).]

Another type of redundancy involves TT &

[Note: Let us agree that the spin network state attached to
the empty graph is the function = 1 -- then for any A #§, the spin

network State:'{EA;T_LE’ where Ve, ‘r‘re = ‘n't and Vv, Iv = ldTTt'
is also =1.

Example: Consider

V2: e2
ThethG 3'-[/\,
g T, T (h)
i 1 3 y
= [(TM(he,)] b [T then] 2 ()t ) (1, )2
3y P 1 2 i, 3 il

But i2 =1, j2 = 1, hence
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EA:E:E (h)
i 3
= [Trhie 1 2z )7t )
iy 1 3 i, !
where, to normalize the situation, we have taken Iv = 1. Let
2
€1
. - . a
f\l. vy > ¢ v,

and take ‘ﬂé =T1. guppose now that h € ol —- then, in view of the
1

commutative triangle,

-
— /\ ——
v1 > MA
ral v A
. ] ’
Ny N
\ -
01/\
1
we have
T N |
{(h) = T ( TV o (h))
Ny ey N A ey
- T ] . -
Therefore
Y"\lsﬂel (TN, )
i i
1 1
= [T 77 {(h) 1] (Z.. ) (I..)
Ny Iel ' Vi V3 i



18.

= [THT, () ] )1%1 (1, )1 (1, )
13, 1 34,
=¥\ m,r (T )
=>
§/\ il ML i/\:1:1:5 MAVNE

1

Remark: There are two other ways to modify a spin network
without changing the state it defines, viz. reparametrization and

orientation reversal.

THEOREM There exists a subset Gra0 M of Gra M such that the

spin network states
‘{,\;H'E (NE Grag M)

constitute an orthonormal basis for Lz(aa,/ib ;/40).
[Note: An element{ﬁ\G'Grao M is minimal in the sense that it

cannot be obtained from another graph /' by subdividing edges of
/N' (but to prevent overdetermination, not all minimal graphs are

allowed...). Moreover,y e€E(A)}, TWe # T, and each

I ={Iv(b) 1 vE V(/\)ﬁ- is as before. Bear in mind that the empty

graph determines the constants.]

Remark: It follows that thﬁi /D&j;/ao) is not separable.
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Let 44 be a Radon measure on 01/ . Given an element
¥ of the orthonormal basis for L2{ 01 /5% ; M) per the
N T, T 0

theorem, put

LEMMA Assume that the set
VWYY
fnmD B, s D0 PO 3
is uncountable -- thenj/fE‘Ll(a‘-t/)g :/O«O) such that dAaa = fd/uo.

[Special Case: There is no square integrable f such that

dsM = fd/ao. In fact, if this were true, then

e= 2 ¥ qupfe

:Z:( qJ;- - gEjf\:TT,L fdpag) £
oY -

=2 ¥

d) £
— /\.?ﬁrl
ot/.Y =

< i/\?ﬁ'l D £

But the set of nonzero Fourier coefficients of £ is at most countable,
S0 we have a contradiction.

General Case: There is no integrable f£f such that d A = fd/ao.
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Supposing the opposite, choose a sequence fne Cyl (Ot /iH )

fn-—=> f in Ll(G'-L /)8 ;_,U\O) {with fn real valued} -- then

<§/\:E,_I_’ fn>

/N
el

Since the set
Q)
U {(/\?Erl) : <Y/\;11,I’ fn>9£0}
n=1 -

is at most countable, we once again have a contradiction.]

Example: Consider two dimensional Yang-Mills theory (thus

M=R2, G=SU(N),N >2). Take J simple -- then
WA, Ve -

S . (¥ Damgy,h)
ot /4

- e—cA(3')'
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which is nonzero for uncountably many & . Therefore,A\YM cannot

be absolutely continuous w.r.t. At 0*

[Note: The standard representation of SU(N) on CN is
Ve, hadd
irreducible and relative to it, the function h —~>tr(h[ &1) is

a spin network state.]



The Weyl Algebra Suppose that M is analytic and path connected

with dim M > 2 and G is a compact connected nonabelian Lie group.
Let S be a nonempty subset of M.

Definition: A curve ¥ :[0,1]— M is

S-external if intd N S = ¢

S-internal if int ¥< s,

Let & :[0,1] — M be a curve -- then curves ¥ Jreees & _ are

n

said to be an S-~admissible decomposition of if ¥ = o n--.a'

1

and Vi, Vi is either S-external or S-internal. BAn S-admissible
decomposition ¥ = ¥ nt e 71 is termed minimal if for any other

[} 1
S-admissible decomposition ¥=¥ _, --- 3’1 there are indices

1=3y<3,<3,< <3, 1<3, =n'

such that

LEMMA If a curve & has an S-adnissible decomposition, then it

has a minimal S-admissible decomposition.



[Let 3’=?n. *0-3’1 be an S-admissible decomposition of & -—-

nl
]
then there is a partition U Ij of [0,1] into closed subintervals
j=1

I;= i L = r v T i ‘. ‘..
J [tj—l tj} (to 0 tn 1) with Y} I;; <—‘>3'J Cancel from
the set T =.-{ to”“'tj""'tn'} those tj#o,l such that
int ¥ J [ty qrty4) Ns =g
or

int ¥ | [tj-l’tj+l] C 8.

Let T = {to,...,ti,...tn} be the resulting subset of T', thus

(0,1}

n
U Ii' where Ii = [ti_l,ti} (t0 =0, tn = 1). So, if
i=1

ral I, €%, then the decomposition ¥=9 IERE ?fl is S-admissible

i

and we claim that it is in fact minimal. To see this, let

¥y = S mo " 51 be an arbitrary S-admissible decomposition of g .
m

Here ¥ ' Jk (P‘)sk and [0,1] = U Jk‘ Can J, overlap I; and I. ,?
k=1

I.e., does 3 € 70 [ti—s ' ti+g 1< Jk? This would mean that
P 4 (t,) € int 8}{ and there are then two possibilities: B‘(ti)' € S or

P 1 (ti)¢ S. Consider the first:



Y€ s =>int 5, = int Y| 5, Cs
=
int¥| 1,8 s int ¥l1,,,Cs

=

int ¥ | (1, VI, ))

=int ¥l U { (e} U int ¥ I,

C s

ti¢ T,

a contradiction. Ditto for the second. Therefore the S~admissible

decomposition ¥ = H’n---xl_is minimal.]

[Note: A minimal S-admissible decomposition is unique (up to

parametrization of its components).]

Definition: 8 is called a pseudosurface if every curve‘xihas

an S-admissible decomposition.
ag&%& The embedded analytic submanifolds of M are pseudosurfaces.

Example: Let S be the open subset of M =v§f lying above

¥y = x 8in{(l/x) and bounded by x = 0, x = 1 -- then the straight line



¥ between (0,0) and (1,0) leaves and returns to S infinitely
often, hence does not have an S-admissible decomposition. Therefore

S is not a pseudosurface.

et ¥ ,d "' : [0,1]1—> M be curves -- then ¥ , ' have the

same initial (final) segment, written ¥ PP¥Y ' ¢ ¥ L b ¥y, if
3 o<e<1:¥l0,e1 = ¥"110,€1 (¥l(1-€,21 = ¥ [1-€,1]).
Definition: Suppose that S8 is a pseudosurface. Let 0‘;: ﬁ'g

be Z-valued functions defined on curves.
Wi

¢ ¢ is called an outgoing intersection function for S if

1. 2((0)# s =>¢ () = 0;
2. ¥ITT ¥ =6 (¥ =0 (¥,

T is called an incoming intersection function for S if
L]

LYW s=Da i) =o

-

+ +
2. ¥dd ¥ =>ag¥) =0 (Y.
Let d'; be an outgoing intersection function for S and let 6';
be an incoming intersection function for S -- then the pair

- +
O-S = (dsr G-S)

is said to be an intersection function for 8 if ¥V ¥,

- + _
G (¥ + TLY) = 0.



Example: Let S be an oriented embedded analytic hypersurface

in M -~ then S carries two natural intersection functions.
Type I: Put o‘;(a") = 0 if 3"(0)¢S or 3"(0) is tangent
to 5 and put 6 5(¥) = 1 (-1) if F(0)€ S and & (0) is not tangent
to & but some initial segment of ¥ lies above (below) S (except ¥ (0)).

[Note: The definition of d'g is dual.]

Type II: Put 6';(3') = 0 if B’(O)# S or some initial segment
of ¥ is contained in S and put 6‘;(2’) =1 (-1) if J(0)€ S and

no initial segment of ¥ is contained in S but some initial segment

of ¥ lies above (below) S (except & (0)).
[Note: The definition of 6‘; is dual.l

In both cases, the terms "above™ and "below" refer to the
orientation of S. There are, of course, two choices for the orientation
and the associated intersection functions differ by a sign.

Rappel: We have

ol N Hom( @Y ,o)

iﬂ =} Map(M,G)

and there is a right action of )&fon 0l, viz.

Ol x Y — Ot
he ¢ (I = AN Lty PF ).

. . . - +
Fix a pseudosurface S and an intersection function CTS = (CTS,O'S)

for S.



Given h € D, 4:!6 )% , define a G-valued function K

ho ¢

curves as follows. If ¢ is S-external, put

¢S (¥) & (¥)

Ky, 4 (¥) = (¥ (1) hy) ¢ (7(0))

and if ¥ is S-internal, put

Ky, ¢ (41 = n(¥).

on

1f ¥ is arbitrary, let ¥ = 'b’n'-- 3’1 be its minimal S-admissible

decomposition and put

Ky ¢ (¥) =Ky ¢ (¥ Ky o (T

Example: ¥ & , we have

Ko b (T7H =%, 6 ()7L

{Take ¥ S-external -- then
6;(3"1) <:r'sF
K, b (X7 = ¢ (¥ tan Ry h @ o)
-0';(3') -0 ,(Y)
—l i

= $ (¥ () h(¥) " P (¥ AN

_ -1

= Kh'¢(y) .

(¥~ h

LEMMA Kh passes to the quotient and defines a map from
VAAAANAY r¢



®.Y to 6. Aas such, Kh,<}> is a functor, i.e., Kh;dﬁ' c ot .

Fix tb € D%’ and put

K¢(h) = Kh; ¢

Then
Kt# s 01 —> O

is a homeomorphism.

LEMMA A AL is Kq, -invariant.

[Let N\ € Gra M -- then J a graph A'> A such that every edge

e' of A' is Swexternal or S-internal. This =said, define
Ke.:G -G
by

G;(e') G;(e')
K, (6) = $le' (1) TP (e'(0))

if e' is S-external and

Ke.(ﬁ') =&

if e' is S-~-internal. Now enumerate the edges of A' : ei,..

——— F > n' ;

and indeed

(K4 (h)) = (K, ce. XEK_, , (h) .
i (Kg, () (e:LX XK ) T, ()

N



Therefore

Al
= { TT
N

)* (T‘A‘OK¢)*MAL

N
= (TTA )* (Keix..’XK In')*M/\l
Ai
= (7 '
As A
A!
= ('I'I‘*,\)ﬁ= (TTA')*A“AL
= (T, )My
= 14,\
=>
(Kp)y Mpp, = AMpp-]
Definition: The Weyl operator attached to '¢ € AB is the unitary
operator

w¢ : LZ(E"L— s AR ) -—>L2(5_'f.:/‘-AL)

W#’f = f<3K4’



[Note: Since‘/AAL is qu~invariant, we have

j Iw,fl2 dMpy = 5__ lfoxq,lz dM, 1
o ot

2
jalfl d(K<l> Y, AMoap

Jo_{] £1% apyg -]

A Weyl operator depends on S and G'S:

S,q
Therefore

5,¢ * 5, ¢ -1

4 g, 5T = Wy %)

B WS;<YS

- -1

s,-0

=W¢ S -

LEMMA Let S, and S be disjoint pseudosurfaces with respective
WA l 2

intersection functions 6 g and O'S -- then V¥V 4’1, 4’2 6)8 . we have
1 2

S1r 0 g 52'0'52 52"5'52 S1r0°g
W¢ oW
1 ¢,

1l
W‘Pz OWq,l .
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Let ¥ € Map(M,g) and define

E_ : R—>4 ( = Map(M,6))
T v
by

Ex(B)], = exp(t T(x))  (x€M).
FACT The map

t 5165
'_E’WES_(t)
is a one parameter unitary group.
[Note: 1In particular, this entails continuity in the strong

operator topology.]

By structure data for the theory we shall understand a nonempty

subset;g of the set ¢of pseudosurfaces in M plus:

. Vsex? , a nonempty subset Z (S) of the set of inter-

section functions for S;

* Vsef . a nonempty subset F(S) of the set of functions

from M to G.

Per some choice of structure data, put

w= (U U J {WZ;GS}.

sexf g€ () e F s

Then the Weyl algebra (of gquantum geometry) is the C*-subalgebra

WS of @ (I M, )) generated by C( 0l) and W.

[Note: Here, the elements of C{Ul ) are to be regarded as

multiplication operators on Lz(Ei;/UAL). Accordinqu,uJ'admits



Irreducibility By its verv construction, W depends on the

choice of structure data and the problem now is to find conditions

on the structure data which serve to ensure that S operates

. . 2,

irreducibly on L™ { O ,/LAAL) .
[Note: Since w o C(E'-( ), the constant function 1 is cyclic.]
To this end, we shall impose the following assumptions:

><? : )? consists of the oriented embedded analytic hypersurfaces
in M.
* \fse xf , 2.(8) is the Type I intersection function

carried by S;

* Y/ s€ )(F ' §(S) is the set of G-valued constant functions

on M.

irreducibly 5 —
THEOREM 1 operates ixxeduriky on L (0 :/(AAL) .

The proof requires some preparation.

Definition: Let S € )(f , let A\ be a graph, and let ¥ be an
edge -- then a point x€ S is called a puncture of § and (A ,¥ ) if
SIYNA=g and S{)int ¥ ={x} , where ¥ (x) is not tangent to S and

G-

S(XIndn

I
=

(x = (t), 0Lt

i

¢f (Ylto,eh = 1.

[Note: The empty graph is allowed.]

FACT Let ¢ be an edge and A a graph. Assume: d and the edges



of N intersect at most at their endpoints -- then V x €int & ,
3 SE} such that x€ S is a puncture of 8 and (A, ).

S,0
§C)'
'§¢(M) = {0'} (6 €G), and given TT € [l , denote by ’X"n' its

s

Notation: Given SGAJ? , Write WOS: in place of W , where

character.

LEMMA Suppose that & and the edges of A intersect at most

at their endpoints. Put

T = T .T E - L) -
¥ :TH,m,n /\Fﬂrf_‘_—_rl

Let Sl’ 52 be elements ofxf such that the punctures Xyr X, are

distinct -- then
' 2 2
S s Yok T 2) oWl 5)
1 2 793 wo o
W (T, W2 (T)) = .
< B g 42
111

[Determine points tl,t2€ 10,11 (tl#tz) :

¥ (t))

bt
|...l
I

¥ (ty)

Take tl<t2 and let
¥, €>F|i0,t,]

¥ o €y [ty 8]



Then

Ty :mw.mn
L
= T « T « T N
d-n- P.q 3’1? Trrmrl? 3'0? ,p.q yz?ﬂrq:n

So, from the definitions,

(

+ 2 X
= T Tie ) ™me,) T, . T
dﬂ klf /Ql P:q Xl:ﬁ,m,kl l klp l p’fl XO’T['&? l!q 3’2! ﬂ;q,n
1 2
= ™G ) T . . T . . T .
dTT k '1 1 k .Z er Tr:m,kl y[]tﬂfflpq 3'2, Tm,d,n
1"-1 171 g
and
S
2
wo-z (Ta ;ﬂ;mfn)
D
= T T, me,) e ,) T ., .
d-rr k2’£2 p'q Wll‘rrfm.fp ?Ofwfp!kz 2 k2q 2 q/Qz 32:1"[:,?2'1'1
1 EE' 2
= —— ﬂ(d } T . e T . . T . .
dﬁ kz”gz 2 kzlgz % 3’1:11';111;13 a’or T[,P,k2 XZ,TT' ‘?2'1]
Since
S s
1 1
= N T ] ]
W L (T) Wo_l Ty .17 ,m,n’ NI
S s
w2l () =w? T



it follows that

S

<wsl Ty, W .2 (T) >
1 ",

3 ]

1 2
= W T : W T - s :
< o-l ( B’;TT,m.-n) 0'2 ( X?ﬁrmpn) > <T/\FE:_~’_—_:J_’ TA?E!&!J_>

-3 X b pED

I Rk ka1 Ry P
oDy 5 X TTED, ,
171 2 X
X< ¥y Tk " T oy Tm,p D

T ¢ T
x < 3’0;'”', ﬁl;q Zo?ﬂrpsz >

X < szfﬂrqrn' T-alz?-n'r 22'“ >



Er (TG 2)) et (TT(O 2))

2
dTT

2 2
Ko 61« Kol 6 3)

2
dTT

Remark: If TTF is abelian (hence TtTTis multiplicative and

dTT = 1}, then

W (1) = K (69T (sexf ).

TO prove that W ig irreducible, it suffices to prove that LJ"'

consists of scalars only. On general grounds,
COIC W => W'C (00" = L1005 4,,).

Let f €W "' -~ thenV w€ W) ,

fow=wof.
But

wof = w(f)o w.
Therefore

w({f) = £

. O, met .
in LYV 01 P Apr)
Consider now a nonconstant edge network T -- then we claim that
{T,£> = 0.
Because T is arbitrary, this implies that feg%l, as desired.

Bearing in mind that w € { W) =D w*&€ W) , we have



{r,£) = {r,wx(6) >

{wim) , £ .

Therefore
<wl(T),f S>={T,f )= <w2('1‘),f>

for all w,,w, € {w) .

Write

T + T

=T .
K?Trrmfn A?ﬁr}_:_j_

Here ¥ and the edges of A intersect at most at their endpoints and

T1 # Tit (however, T/\ ] might be trivial).

Case 1: T( is abelian -- then
Wo (1) = X (gDT
G Ti
=
S
KT, £ = KWg (T),£ D

(6% L1, .

since T# Ti,, 3 6 € G: X.ntdz) #1, thus <T,£> = 0.

Case 2: 71 ig nonabelian -~ then 3 TE G: ’XTT(T) =

{due, in essence, to the Weyl character formula). But 3 G € G: 6'2 = T
=>
2
’)cns ¢°) = 0.

So, in view of the lemma,



S, s, ’X,T,(crz) )C.n(dz)
(g (M, W, (M > =
d2
b3

Choose an infinite subset Xf(/\ 3.)C:,x¥ :

51526 3 (5, ) =15y
Then the collection

{wg (M : s€ "Jo(/\,a')}

is an infinite orthonormal set in Lz( a ;,QAL) . Call P the orthogonal

projection onto its span:

Pf = 'Z- <WSG, (T), PEf > wg_ (T)
s€ X n,¥)

- 2> LWy (1), £ D W (T).
s€X(n,¥)

By the above, all the Fourier coefficients are equal. Since
P 5 ’
I<we (M, £ ) <oo,

s€ X (n, %)

the conclusion is that Vs € x?( AT’
L4

<wem, £ =0,

Therefore

<T, £y =0.



