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ABSTRACT

Suppose that G is a compact group. Denote by Rep G the category whose
objects are the continuous finite dimensional unitary representations of G armd
whose morphiams are the intertwining operators —- then Rep G is a monoidal

*»=category with certain properties P1,Py, ... . Conversely, if C is a monoidal
*—category possessing properties Pl’Pz' ..., can ore find a compact group G,

unique up to isamorphism, such that Rep G "is" C? The central conclusion of

reconstruction theory is that the answer is affirmative.
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§1. MONOTIDAL CATEGORIES

Given categories C,D, their product is the category C x D definred by
Ob(C xD) =0bCx0bD

Mor ((X,¥), (X',¥"))

Il

Mor(X,X') x Mor(Y,Y'")

iy g = 4y iy,

with composition

i

(f!rg') o (frg) (f' o frg' 2 g)-

Now take C =

]

-~ then a monoidal category is a category € equipped with a

functor @:C x C > C (the multiplication) and an object e € Ob C (the unit), together

with natural isomorphisms R, L, and A, where
- IS(:X fe->X

LX:eQX-*X
AX,Y,Z:XQ Y 7Z) ~{XY) @ Z,

subject to the following assumptions.

(MC]_) The diagram

A A
Xa{ye(2aw) Xy a{ZzawWw) ~(XaY) 7 QW
id@Al IA@id
X@ ((YR2Z) aw s {(XR{Yeaz)) aw
A

cammates.



(MC,) The diagram

A
X2 (eQY) »(X@e) Y
idQLl JRﬂid
ey — =¥ @QRAY

commtes.
[Note: The "coherency” principle then asserts that "all" diagrams built up
from instances of R, L, A (or their inverses), and id by repeated application of &

necessarily commte. TIn particular, the diagrams

A A
e XaY > (e@X) Y X2 (YRe) > XQY) Re
Ll 1L®id idQRj lR
i@y Xey XY —wer—— XY

cc:muteandLe=Re:eQe+e.]

N.B. Technically, the categories

cx(Cx0
€ xC) x¢

are not the same so it doesn't quite make sense to say that the functors

X,(¥,2)) »Xa (ya?2
Cx(CxQ >

(£, (g,h)) ~ £ @ (g h)



((X,¥),2) »{(XQY) @2
CxQ xc~g

((f,g0,h) ~{f@g) @&h

are naturally isomorphic. However, there is an obvious isomorphism

1
Cx(CxQ > (CxQ xcC

and the assumption is that A:F > G ¢ t is a natural iscomorphism, where

F
Cx(CxQ ~¢

Y

CxQ x¢ =g
G

Mccordingly,

Y (X,(Y,2)) € 0b C x (C xC)

v {£,(g,h)) e Mor C x (C xQ),

the square

AX,Y,Z

Xe(¥eRid) ——— (XQY) & Z

£8 (g&h) J l (fRqg) & h

X'ea ¥y ez') — (X'"y') ez

Bgr oy g

comraltes.

Interchange Principle If

f € Mor (X,X"}

g € Mor(Y,Y'},



(f®@id ) o (id, 2g) = f£@g=(id @ qg) o (f @& id_ ).
MRS y ay

[Note: Since #:C x C + C is a functor, in general

(Ecf" YR (geg')=(£R9g) o (f' 8 g').]

1.1 EXAMPLE Given a field k, let VEG be the category whose objects are the
vector spaces over k and whose morphisms are the lirear transformations -- then

\ZE:_(;‘.k is momoidal: Take X @ Y to be the algebraic temsor product and let e be kK.

[Note: If
£:X > X'

g:Y¥ Y'r

R {£,9) =fRg:XQY+X'QY'

serds x 8 vy to £(x) & gl{y).]

Let H and K be canplex Hilbert spaces —— then their algebraic tensor product

H 8 K can be equipped with an inrer product given on elementary tensors by
X RYyXy B Y S X)Xy Y

and its completion H & K is a complex Hilkert space.

N.B. If

A E B(Hl,Hz)

B E B(Kl'Kz)’



then

AﬁB:HlﬁKl-*HzﬁKz.
extends by contimuity to a bounded linear operator

A@B:#H, @K +H, @K,

Denote by HIIB the category whose aobjects are the complex Hilbert spaces and

whose morphisms are the bounded linear operators.

1.2 EXAMPLE HILB is a monoidal category.

PROOF Defire a functor

&:-HIIB x HIILB -+ HILB

fH,K) =H @K

and

A B
a(H, » H,,K; »K,) =ARB

and let e be C.

1.3 EBREMARK Both Vec, and HILB admit a second momnoidal structure: Take for

the multiplication the direct sum ® and take for the unit the zero object {0}.

M(C) = Mor{e,e).

Then M(C) is a monoid with categorical composition as monoid multiplication.



1.4 IEMMA The monoid I:_l{(_‘_‘) is commtative.

PROOF Take s,t € M{C) and consider the commutative diagram

]
43

e —>ePe-— eRe ——— Qe — s e

E 1-. A
t id 2| t s @ |id
e [

e — el e sﬁt aRe e
s s @ lde 1deat

e ——>aeafle —m— eRe — eBe —— e,

Rlo(set)oR =R1o(toes) oR

) e e e

t o s,

4]
a
ot
li

Given f € Mor(X,Y) and s € M(C), define s-f to be the composition

;7L sQf 1.
X >e 8 X >e®@Y —> Y.
1.5 IFMMA We have
- ide-f = f
s- (t+f}) = (s o t).f
(teg) ¢ (s+f) = (£t ° 8)+{g o £)
(s-f) & {(t-g) = (s = £).-(f & g}.




A monpidal category € is said to be strict if R, L, ard A are identities.

So, if C is strict, then

X2 ¥Rz =XeY) &2
ard
XRe =X
e =X

[Note: While momvidal, neither VEg] ror HITB is strict monoidal. ]

N.B. Take C strict and consider M(C) -~ then Vv £,9 € M(C},

fRg=faogmgef=gat.

1.6 EXAaMPLE Iet $ be the category whose cbjects are the nonregative integers

ard whose morphisms are specified by the rule

Fifn#m

Mor(n,m) =
$n if n=m,

ocomposition in Mor(n,n) being group multiplication in Sn. Define

2:3 x 8> 8
on objects by

8{nm) = n+m
and on morphisms by

g T
ﬁ(n -+ n,m > m) = pn’m(G;T};



where

is the cancnical map, i.e.,

1l 2 n n+1 n+ 2 aes N+ m

p_ {o,1) =

_0(1) ag{2) g{n} n+ t(i) n+ 1(2) ... n+ T(m)__

and let e = 0 —— then with these choices, 3 is a strict monoidal category.
[Note: $ is equivalent to the category whose objects are the finite sets and

whose morphisms are the bijective maps. ]

1.7 EXAMPLE Iet MAT, be the category whose objects are the positive integers
and whose morphisms are specified by the rule

Mor{n,m) = Mn’m(l_c) '

the n-by-m matrices with coefficients in k. Here idn:n +n is the unit diagonal
n-by-n matrix and composition

o:Mor{n,m) x Mor{m,p) -+ Mor(n,p)
is
B o A= AB,

the product on the right being ordinary multiplication of matrices. Define

@:MAT] X MAT} + MAT;

- - -



on objects by
2(n,m) = mm
ard on morphisms by

A B
e(n »m, p +q)

allB AN almB
= . € Mor {np,mq)
_ a,B ... a_B ~

ard let e = 1 —— then with these choices, MAT] is a strict monoidal category.

[Note: Write FDVEG, for the full subcategory of VEC, whose aobjects are

finite dimensional — then there is an equivalence MAT]_ + %&. Thus assign

A
to each dbject n the vector spacelgnaxﬁtoeachmrphismn+mﬂxelinearmap

from k" to K that serds (x),...,x) €K to (yj,...,v) €K, where y, is the

:i.th entry of the 1-by-m matrix [xl, e ,xn]A.]

1.8 EXAMPIE (iven a C*-algebra A, let End A be the category whose objects
are the unital *-homomorphisms @:A +~ A amd whose arrows ¢ + ¥ are the intertwirers,
i.e.,

Mor(®,¥) = {T € A:10(A) = Y(A)T Vv A € A},

Here, the camposition of arrows, when defined, is given by the product in A and

1A € Mor{?®,d) is 1 Define

b
#:End A x End A > End A



10.

on cbjects by
R(6,0') =0 o &'
and on morphisms by
T ™
(¢ » ¥, &' — ¥)

= TO(T'} (= Y(T')T) € Moxr(d » &', ¥ o ¥')

and let e = id 4 then with these choices, End A is a2 strict wonoidal category.

[Note: v A € A, we have

TO(T*') (P o &') (A)

TO{T') 0 (D" (A))

= T({T*'d’ (A))

Y(T 9" (A))T

It

Y{y'(m)T)T

Y¥ (A ) ¥Y{TYT

(¥ o ¥') (A)TO(T").]

1.9 EXAMPLE Giwven a category C, let [C,C] be the metacategory whose objects
are the functors F:C » C and whose morphisms are the natural transformations I
from F to G. Define
g: [C,C] » [C,C]

on objects by

2(F,F') =F o F'



1l.

ard on morphisms by

&(F -_: G, F -E>' G')
=7Z@73,
where
(E & 2y
= Es'x o FEZy (= GEy o EF'X},

ard let e = J'.dC {the identity functor) -- then with these choices,

strict monoidal category.

[Note: If

[1]

€ Nat(F,G)

(1]

' € Nat(F',G"),

then
VX,YE0bC T v £ € Mor(X,Y)
ard
_¥VX"¥Y*edbC v ' € Mor(X',¥"),

there are cammtative diagrams

[C,C] is a



12.

XI
F'X' —— G'X!
o | e
F'¥y' — = G'Y".
:'."
In particular: The diagram
F'X
FF'X — GP'X
vl | i}
X l l %%
FG'X ——> GG'X
HG'X

coaamites. This said, the claim is that

E@ T ENat(F o ', G o G"),

i.e., that the diagram

= =
(ZQE )X
FFP'X > GG'X
FF’fl lGG'f
FF'Y > GG'Y
(= 8 E'JY

camates. In fact,

Il
h
o
[}
1
)
1]



13.

B

GIG'E o 31 o 3
£ ey

G(EL o F'£) o &
X F'X

GE! o GF'f o =
Y F'X

i

(2 E')Y ¢ FFP'f.]

1.10 1EMMA Suppose that C is monoidal and let e,e' be units -— then e and
e' are isomorphic.

[There is an isomorphiam ¢:e » e' for which the diagrams

id e ¢ ¢ & id
Xe—— > Xae' e @ — ' 8 X
X X X X
commite, viz.
=1

¢ = L o(Ré) e re@e' +>e').]

e!



§2, MONOTDAL FUNCTORS

Let C, C' be monoidal categories —- then a monoidal functor is a triple

(F,£,5), where F:C ~ C' is a functor, &:e' -+ Fe is an isomorphism, and the

= . '
“X,Y'FX f' FY >~ F{X @ Y)

are isomorphisms, natural in X,Y, subject to the following assunptions,

(ME‘l) The diagram

idea = g
FX &' (FY ' FZ) —— > FX @' F(Y & 2} > F(X & (Ya7Z))
A FA
(FX Q' FY)  Fz — > F(X @ Y) @' FZ > F{(XQY) @ 7)
= e id 2
coamtes.
{MF,) The diagrams
Rrx Lex
X Q' e — > FX e' 8" FX —— > FX
ida%;l TFIS( Eﬁi’dl TF’LX
FX @' Fe > F(X @ e) Fe &' FX > Ple @ X)

-

[#3]

cammite.

[l

N.B. A momoidal furctor is said to be strict if £ and S are identities.

2.1 EXAMPIE Write FDHILIB for the full subcategory of HILB whose cbijects

are finite dimensional -- then the forgetful furnctor

U:FDHIIB - FDVEC,




is strict monoidal.

[Take for

:'X,Y:UX RUY ~UXKaY)

the identity :i.dX Qv and let £ = idc.]

fNote: A forgetful functor need not be mornoidal, let alone strict monoidal.
E.g.: Give AB its monoidal structure per the tensor product, give SET its mon-
oidal structure per the cartesian product, and consider U:AB > SET - then the
canonical maps

UAxUB—:-U(AQZB)

{} 2 {(x->0)

are not isamorphisms. ]

Iet

(r,£,2)
(G,9,0)

be monoidal functors — then a monoidal natural transformation

(F,£,5) » (G,6,0)

is a natural transformation o:F - G such that the diagrams

a =
e =
Fe — = Ge FXR' FY — F{Xay
‘ET Ts O‘x@""}fl laxay
e' — — e, GX &' GY ——> GX 8 Y)



Write [Q,g']@ for the metacategory whose objects are the monoidal fumctors
C ~ C' and whose morphisms are the monoidal natural transformations.

N.B. A monoidal natural transformation is a monoidal natural isamorphism

if o is a natural isomorphism.

2.2 REMARK Some authorities assume cutright that Fe = e', the rationale
being that this can always be achieved by replacing F € Ob [C,C' ]Q by an isomorphic
]ﬁ

F' € 0b [C,C’ sach that F'e = e' {on dbjects X = e, F'X = FX).

2.3 LEMMA Iet
(F,5,5) (FiC ~C")

(FI'EI'EI) (Ft =gv > gn)

be momidal furctors — then their composition F' ¢ F is a momoidal functor.

g’ F'g
[Consider the arrows et!! > Fla' > F'Fe and

N

' F1g
F'FX @'' P'FY — %KY poipy gt gy — XY prex @ v) .1

Write MONCAT for the metacategory whose objects are the monoidal categories

arnd whose morphisms are the moneidal functors.

2.4 RAPPEL ILet C, D be categories -~ then a functor F:C -~ D is said to be

an equivalence if there exists a functor G:D —+ C such that G o P = idC and

F o G = id,, the symbol % standing for ratural isomorphism.



2.5 LEMA A functor F:C -~ D is an equivalence iff it is full, faithful,
and has a representative image (i.e., for any Y € Ob D, there exists an X € Ob C

such that FX is isomorphic to Y).

N.B. Categories C, D are said to be equivalent provided there is an eguiv-
alence F:C + D. The dbject isomorphism types of equivalent categories are ina

one-to-one correspondence.

102

2.6 RAPPEL Given categories , functors

D

Mor o (FF x id)

adjoint pair if the functors from (_30P X D to SET are maturally

Mor o (1c‘|.(:0P x G)

XeEoC
isomorphic, i.e., if it is possible to assign to each ordered pair -

YEOhD
a bijective map EX Y:IVbr(Fx,Y) -+ Mor (X,GY) which is functorial in X and Y. When
!

this is so, F is a left adjoint for G and G is a right adjoint for F. 2ny two

left (right) adjoints for G (F) are mturally isomorphic. In order that (F,G)

be an adjoint pair, it is necessary and sufficient that there exist natural trans-

idg

u € Nat(id., G ° F) (V) o (Fp)
formations - subject to
v € Nat(F » G, idD) _ {Gv) » (1G)

1dG -

The data (F,G,u,v) is referred to as an adjoint situation, the natural trans-




u:idC+G o F

forma tions being the arrows of adjunction. 2n adjoint equiv-

\):FOG'*idD

alence of categories is an adiint situation (F,G,u,v) in which both y and v are

matral isomorphisms.

2.7 IEMA A functor F:C ~ D is an equivalence iff ¥ is part of an adjoint

equivalence.

Let C, C' be monoidal categories -— then C, C' are monoidally equivalent

if there are monoidal functors

F:C > C

FriCt > C

and moncidal natural isomorphisms

F' « F x id

2.8 LEMMA Suppose that F:C - C' is a monoidal functor. Assume: F is an

equivalence -- then F is a monoidal equivalence.

2.9 REMARK FEmbed F in an adjoint situation (F,F',u,u'), where

u:idc > F'eF

U':F o F* > id
Cl



are the arrows of adjunction (cf. 2.7) ~ then one can equip F' with the structure
of a monoidal functor in such a way that the natural isomorphisms u, u' are
monoidal natural isomorphisms. Thus first specify £':e »+ F'e' by taking it to

-1

U F'g

be the composition e —&, F'Fe > Ple'. As for

2t sF'X' R F'Y' > FP (X' & Y'),
xl 'Yl

build it in three stages:

H
1. F'X" @ P'Y' >~ F'F(F'X' 2 F'Y');

Frat
2. F'P{F'X' QF'Y') —— P'({FFP'X' @' FF'Y");

1
Ux'

3. FF'X’ = X'
.ul
YI

FF'y! > ¥

u' fu' FF'X' ' FF'Y' > X' @ ' Y

F'(p' @ u' ):F'(FF'X' @' FF'Y') >~ F' (X' &' Y').
X! Y!

If C is monoidal, then (_L:OP is monoidal when equipped with the same @ and e,

taking
- g¥F_gl
LOP - L—l
20P ~1



83. STRICTIFICATION

A strictification of a morpidal category C is a strict monoidal category

which is monoidally equivalent to C.

==k

3.1 EXAMPLE MAT, is a strictification of %

[The equivalence MAT, -+ FDVEC, constructed in 1.7 is a momoidal functor,

hence is a monoidal equivalence (cf. 2.8).]

3.2 THEOREM Every monoidal category C is monoidally equivalent to a strict

monoidal category gs e

The proof is constructive and best broken up into steps.
Step 1: Iet S be the class of all finite sequences § = (Xl,...,xn) of cbjects

of C, including the empty sequence #. Given nonempty

S = (Xl,...,Xn)

T= (¥,.--,¥),
let

S*T": (leou.,xn,Yl;t.a,Ym)

and write

Sx*x@=5=¢ x 5.

Step 2: The claim is that S is the object class of a strict monoidal



category (-:str' i.e., S=0b gstr' In any event, the multiplication

#:8 X8 >3

is associative, so we can take A to be the identity. Also, # serves as the unit

and

- RB:S*ﬂ+S

LS:,G*S-!—S

are the identities.
Step 3: Given S, T, we need to specify Mor(S,T). For this purpose, define

amp :S5~>-0bChyTf=e, F'{({X)) =X, and T(S » (X}) =TS @ X, thus

T‘(Xl,. .- ,Xn)

= { ...(xl@xz) 8...) axn,

where all opening parentheses are to the left of Xl. Definition:

Mor (S,T) = Mor(l's,lT).

This prescription then gives rise to a category C_, . withCb C_, = S.

Step 4: We shall now defire a functor *zgstr ® gstr - (—:str that serves to

render (-:str strict monoidal, the issue being the meaning of

u u'
u+xu ==%(S T, S' ~ T")

eMoxr{S » S*, T % T")

=Mor(T{(S % 8'), T(T « T")).



Bearing in mind that

u <~—> f

Mor(S',T'} = Mor(I'S',Ip'})

n' <—> fl'

let u * u' be the composite

fof?
r(s+«8') »~>TS@TS" —> I'TATT > T(T x T,

where the outer arrows are the obvious canonical morphisms in C. Accordimgly,

with this agreement, C str is strict wmonoidal.

Step 5: It is clear fram its very construction that T‘:gs r

+~ C is a functor
which, moreower, is full, faithful, and is isomorphism dense. But I'f = e and
there are iscomorphisms

Es,’r:FS BITT>T(S »T),

natural in S, T and satisfying Mrl, MI‘2 of 82. Therefore I' is monoidal. To finigh,

it remains only to quote 2.8.

[Note: It is not necessary to quote 2.8: Simply observe that there is an

inclusion functor y:C > C g A0G

.__|
o

-

"

Ho
I(}n‘




Detail: From
Mor (y{'S,58) = Mor(Ts,TS8),
let

dg <> idpg,

thus as:yr‘s + 8 and asy o [ > idc is a monoidal natural isomorphism.]
=str

3.3 REMARK Let C, C' be monoidal categories —- then each ronoidal functor

F:C » C' induces a strict monoidal functor F c! and there is a

:C -
str’—-str = str

comutative diagram

F
c > ¢!
Y l b'
L)
Sotr F > € gty
str

Here, on an object S,
Fstrs= (E‘X '.‘-'Fxn)'

while on a morphiam u:s -~ T,

Fstru

> (FY

(Fxl,... 'Fxn)

l""’FYm)

is that element of Mor (IFS,TFT) defined by requiring commuitativity of the square

TFs > [FT
Frs > FI'T,

Ff



where £ € Mor ('S, T'T) corresponds i 1.

[Note: Composition of monoidal functors is preserved by this construction.]

There are five ingredients figuring in the definition of a monoidal category:
®, e, R, L, A. Keeping track of R, L, A in calculations can be annoying and cne

way out is to pass from C to Copp- But this too has its downside since Cotr is

—_— —

a more complicated entity than C. So, in what follows, we shall stick with C and
determine to what extent R, L, A can be eliminated from consideration {(i.e., are
identities).

Suppose that

(®, E, R, L, A}

(@', ', R", L', A"}

are monoidal structures on C —— then these structures are deemed iscmoﬂ'c if 3 a

monoidal equivalence of the form (idc,E,E) between them.

N.B. Therefore £:e' » e is an isomorphism and the

fal - 1
_X’Y.Xﬁ Y+-X@Y

are isomorphisms, subject to the coherence conditions of 82.

3.4 REMARK The philosophy is that replacing a given monoidal structure on C

by another iscmorphic to it is of no consequence for the underlying mathematics.

3.5 IL=MA Iet (®, e, R, L, A) be a monoidal structure on C. Suppose given

amap ®':0b C x Gb C ~ Cb C, an object e' € Ob €, an iscmorphism £':e ~ e', and




isomorphisms

Then there is a unique monoidal structure @', ', R'

(idgf g. r

is an isomorphism,

PROOF Extend ' to a

-1 -
“X,Y'X 8y +-Xa Y,

E'):(Qr /', e', R, L', A"} » (Q; ®, e, R, L, A}

functor @':C x C + C by the prescription

X,Y
X,y — = @'(X,Y)
Q(frg) l{ l 2’ (frg]’
Q(X' rY') el Q' (X' ;Y')r
_xl ,Y'

so @2

(via Z' € Nat(Q,2')).

This done, define R',L', A' by the diagrams

R' Ll
Xa' e > X e' &' X > X
=Y IR E'T TL
X@ge' < XBe e' &X < e 28X
ide ¢! £r @ id
A!
X' (¥ye'2) —— (X Q" Y) R 2
jo | =1
5 T [_
Xa (vy e 2) (X R"'Y) 8?2
idﬁE'T IE‘Qid
Xe (v & 2) > (XOY) @ 2.

A

, L', A") Ong such that



3.6 THEOREM Iet (8, e, R, L, A) be a mnoidal structure on C. Suppose that
e' is an object isomorphic to e, say £:e' - e — then there is an isomorphic
monoidal structure (&', e', R', L', A') on C in which R, L' are identities,

PROOF Bearing in mind 3.5, put

X Y¥Y=X2YifXze' 2Y

and
Y if X = e
X8 y=
_ XifYy=el.
Define
ol | - ]
_,Xfy.XQY—*XQ Y
by stipulating that E}I{Yis to be the identity if X = e' # Y, otherwise let
r
E' =R, o (id, @ f)
X,e! ES( dx
g7 = o (£ @ id.).
ey Y dy

To establish consistency, i.e., that

R e (id && =L o (£E@id ),
e! el e! o'

set L' = g'l —- then

g et

e@8e . . . se't@ae’

is an isomorphism and due to the naturality of R, L, the diagrams



Re Le
efpe —m e e e —ms e
1 Ly ] . '
E;@:Ldel 15 1deﬂgl lg'
e'Re — -~ o efe — !
R L
el !

commte. Therefore

R o (id @QE) e (E'@EY)
a' e’

R o (' @ id)
el €

- =t
£ o R

I

gl o L, (Re = L)

=L o (id. & £")
e' e

=L e {£@id ) o (§' @ &)
e’ e’

from which the contention. #inally, by construction {(cf. 3.5), R', L' are
identities. E.g.:

‘o B o id, @ &' =
Rt iR R

or still,

Ry © R, e (id, @ £) o id, @ L' = R,

or still,
Reo R TRt BT idy

[Note: If A is the identity and e' is not in the image of ®, then A’ is



alsc the identity. Proof:
e' € {X,Y,2) => A}'(YZ = id

e' ¢ {X,¥,Z} &' € Tmo=> A}‘Qz = AXYZ']

3.7 REMARK Take e' = e — then the preceding result implies that by passing
to an isomorphic monoidal structure, it is always possible to arrange that
vXedb C,

XRe=X~e g X,

The situation for the associativity constraint is more complicated and it will
be necessary to impese same conditions on C.

Definition: A construct is a pair (C,U}, where

U:C » SET

is a faithful functor.

3.8 EXAMPIE Define a functor Q:SETC - SET as follows: On objects, OX = 25

£
and on morphiams, Q(A + B):QA + OB sends X c A to the inverse image f-l(x) cB., In

this connection, recall that

£
A+ B € Mor SETX

means that

£
B+ A ¢ Mor SET.

Therefore (SE‘I‘OP,Q) is a construct.
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Let (C,U) be a comstruct —— then (C,U) is amestic if a C~isomorphism £ is
a C-identity whenever Uf is a SET-identity, i.e., if X,Y € b C, if f:X + Y is
an isomorphism, if Uf = id, then X = Y and £ = id.

Iet (C,U) be a construct — then (C,U) is transportable if v C-object X

¢
and every bijection UX ~ S, 3 a C-object Y with UY = S and an isomorphism ¢:X + ¥

such that U¢ = ¢.

3.9 IEMMA If (C,U) is amestic and transportable, then the pair (Y,¢) is
unique.
PROCF Say we have
b, d

Y ——1>X_——-2—>Y.

Then 9

5 © @Il is an isomorphism and

-1, _ -1 =1
U(@z o @1 ) = U¢2 o U@l

it
=
a
h=2
It
R
&

il
I—l-
o
|
W
e
|
S
L]

. ~ ~1
Therefore by amnesticity, Y1 = Y2 and @2 ° cpl 5 1

3.10 EXAMPIE The construct %{ is amestic and transportable but the

full subcategory of M@_C‘q( whose objects are the En, while ammestic, is not trans-—
portable.

3.11 IEMMA If [:SET + SET is an isomorphism and if (C,U} is amestic and

transportable, then (C,z ¢ U) is amestic and transportable.
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3.12 THECREM Suppose that (C,U) is ammestic and transportable. Iet
(2, e, R, L, A) be a mmoidal structure on C —— then there is an isomorphic strict

monoidal structure (@', e, R', L', A') on C.

The proof is lengthy, the point of departure being 3.2:

Tty > €

10

~str
Step 1: Given 8§ € Ob gstr' consider

{s} x UTS € Ob SET.
Then the projection

s

{s} x Urs > UT's

is bijective, so there exists a unigque [S] € Ob C with U[S] = {8} x UI'S and a

wmique isomorphism T[S: [8] » T'S such that Ul'[s = Tge

Step 2: There is a functor f:(-:str -+ C which on objects is the prescription

TS = [S]

and on morphisms is dictated by requiring that T € Nat(f,r'):
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TS > TS
Tu l l IMa
T > TT.

Step 3: F:gstr + C is an equivalence of categories (T:T » I' being a natural

isomorphism). In addition, T is injective on objects.

Step 4: Define a functor y:C ~ Copr On Objects by taking YX = yX if X is

not in the image of T and letting Y[S] = S otherwise. Next, define
vx:Wx + X
by

II{YX]
[vX] ————> TyX = X

—

iinsnotintheimgeoffandlet\)x=idxifx= [S] for some S, Since T is

fully faithful, we can then define Y on morphisms by requiring that v:T o ¥y + id,
be a natural iscmorphism,
Step 5: The arrow

U= id:idc +%Y oT
=str

ig a natural isamorphism.
Step 6: The data (f,;,u,\)) is an adjoint situation:

id_
r

(W) o (Tw
{cf. 2.6).
id

Y

I

() o (uy)



Explicated:
T v_ o Tug = id_
s I's
?\)X °yu_ =1id_ .
" X YX
Claim:
T ov_ =1id_ N qu= id
'S rs I's
&
Yoo= 1d_ u_ = id_ .
_ X ¥X _ X ¥X
But

As for the relation

Yy = dd_ (S p_ ),
¥X ¥X

since T is faithful, it suffices to show that

Tyvy, = id_
X TYX

for all X € Ob C. But from the definitions, v £ € Mor(TYX,X), there is a

commutative diagram

e YE
TyIvyX »> TyX
Y v
7 J l X
m > X -
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Nowtakef=vxtoget

Fyx
or still,
Ty, = v_
X I'yX
or still,
Tyv, = id_ ,
S
as desired.

Step 7: The adjoint situation (f,?,u,\)) is an adjoint equivalence of cate-~

gories (u and v are natural iscamorphisms).
Step 8: Put

X'y

T(¥X » YY)
and let e' = T — then

YX &' Y) = YT(YX * YY)

?X*?Y

ye' = Tg = 4.

Step 9: We have

Xa' (Y& 2)=T(¥X* JY e z))

T(YX * YY % Y2}

T(Y(X &' Y) * Y2}

i

xa'y & 2,



so A' = id will work.

Step 10: Let

Then this makes sense:

XxXa e
e' 8" X!

Furthermore, the diagram

lS.

Ry = %
_ Ly = %
= T(YX « YIP) =

]
i

T(¥TH * vX)

X + X.

T(¥X » #) = T¥X

T(# = ¥X) = T¥X.

A' = id
Xe e' Y XQ' e' Y
id @' 1! l lR' 2' id
Xe' Y X8y

commites. To see this, note first that

X' e' @ Y=T(yX * ye' * 7Y)

And the arrows

I

]

x— ﬁ‘ Y.

- PS‘(Q' idY:xa'e' g'
id @' Ly : Xe'e' @

T(YX * § * YY)

THX * 7Y)

¥Y¥+X& ¥y

Y+-X@'y
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are identities. E.d.:

R, @' idy

L] 1}
1] =i
o )
e :x:é
*
*
E‘ - |
|—|—
o {

Il
—3
o
b
—

YX * yY

id_ _
T(YX * ¥¥)

=id .
Xe'y

Step 11l: It is clear that

-?: (919' 2R LAY > (gstrr*rﬁrRrLrA)

is a monoidal equivalence {(cf. 2.8), thns the same is true of

ry: (C,2',e',R',L',A") > (C,2,e,R,L,A) (cf. 2.3).

But there is a monoidal natural isomorphism 'y = id.: VX EOb G,

n:l N
ox X5 g —X

> X

Therefore the monoidal structure (&',e',R',L',A'") is isomorphic to (8,e,R,L,A).

Step 12: To conplete the proof, it is necessary to fine tune (®',e',R',L',A')
by an application of 3.6:
(Qt rel ,R' ,L',A') - (ﬂ' L] 'el' 1 ,R' ¢ ,L' ] ’AI l) .
choosing e'' = e (cf. 1.10). So, R'', L'' are identities. However, by construction,
A' ig the identity, thus if e is not in the image of &', then A'' is also the

identity. To ensure that e is not in the image of ', it is enough that e is not
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in the image of T. Suppose it were —— then

Ue = {S} xUS (35€0bC, ).

Now use 3.11 and replace U by U, where ; has the property that rUe is not a

cartesian product of two sets.

3.13 EXAMPIE Consider the construct FDVEC, — then the failure of the

tensor product to be associative "on the nose" is an artifact of its definition
by a wmiversal property which determines it only up to isomorphism. While the
usual procedures do not lead to an associative tensor product, the lesson to be

drawn from 3.12 is that it is possible to find a tensor product on FDVEC, such that

Xe k=X

k@ X=X



84, SYMMETRY

A symmetry for a monoidal category C is a natural isamorphism 1, where

TX,sz 2Y>»YRX,

such that

TY'X o TX,Y=XQY +>¥XRY

is the identity, RX = LX a Tx,e' and the diagram

A T
X8 (Y 2 Z) > {XayY)az > Z 8 (X8 Y)

marl lA

Xa (Z2aayY) > (XQ2Z)ey > {(Z@aX)ay
A T @& id

comemtes. A symmetric monoidal category is a monoidal category C endowed with a

symretry 7, A ronoidal category can have more than one symmetry (or none at all).
[Note: The "coherency"” principle then asserts that "all" diagrams built up
from instances of R, L, A, T (or their inverses), and id by repeated application
of 8 necessarily cammite. ]
N.B. let

£:C x C»C X C

be the interchange —— then f is an isomorphism and 7:8 + @ o £ is a natural iso-
morphism.

E.g.: VEC, and HTLB are symmetric monoidal.

4.1 EXAMPIE Iet C*ALG be the category whose objects are the C*-algebras




and whose morphisms are the *-homomorphisms — then under the minimal tensor

product or the maximal tensor product, C*ALG is a symmetric monoidal category.

4,2 EXAMPLE Iet CHX be the category of chain camplexes of abelian groups
and chain maps — then CHX is monoidal: Take X 2 Y to be the tensor product and

let e = {e } be the chain complex defined by ey = Z and e = 0 (n = 0). Further-

X=X -
{ p} xexp
mre, if and if , then the assignment
¥ ={¥ cyY
{q} Y q

XRY->-Y®&X

is a symmetry for CHX.
X8y~ (—ZI.)pq (y & x)

4,3 REMARK 1In the strict situation, matters reduce to the relations
Te,x = Tx'e = 1dx and
xoy,z” (Tx,z®)elid, @7, ).
[Note: Therefore

vev,z® voez,x°®Tzaxy"

4.4 EXAMPIE Iet $ be the permutation category introduced in 1.6 =-— then 3

is symmetric monoidal. To establish this, one mast exhibit isomorphisms

Tn'm EMrin®m, m& n)

= P



fulfilling the various conditions. Definition:

1 2 .o n n+1l n+2 ... n+m

m+ 1 m+ 2 R m+ n 1 2 m

with the understanding that Tn,O = :|.dn = To’n, thus
Tm,n ¢ Tn,m = ]'dn 2m

As for the remaining details, it is simplest to work with permutation matrices,

so take n > 0, m > 0, and note that

0 Irn
T = .
n,m
I 0
n

(Tn’p e 1dm)o(1dn f Tm'p)

0 I 0 - L 0 0o -
= In 0 0 0 0 Ip
~ 0 0 I ~ ~ 0 I, 0 ~
-0 0 Ip -
- In 0 0 _Tn@m,p.
_ 0 Im 0 _




[MNote:
VGESn
_VTEﬁm,
-0 Im_‘o 0 -0 T
_InO-_-O T_ _U 0_
T 0 0 Im
0 g I 0 .

Therefore naturality is manifest, i.e.,

Tnma (c@&1T) = (T & g) oTnm.l

r r

Iet ¢, C' be symmetric monoidal categories -~ then a symmetric monoidal

functor is a monoidal functor (F,&,Z) such that the diagram

Déﬂ

Y
FXQ' FY — 5 P(X @ Y)
T
TFX, FY Py, v
FY®' FX — > F(Y 2 X)
%Y, X

commuites.
N.B. The monoidal natural transformations between symmetric monoidal functors

are, by definition, "symmetric monoidal" (i.e., no further conditions are imposed



that reflect the presence of a symmetry).
[Note: Therefore the subcategory [_C_,(_:']Q’T of {(_:,g']& whose objects are the

symretric monoidal natural transformations is, by definition, a full subcategory.]

4.5 EXAMPLIE Recall that %, has the following presentation: It is generated
by OprveesSy 1 subject to the relations

2
. = 0.0, .0, = O, .3, O,
% L i%+1% T %% 0103

= 0503 (li-3] > 1).
Suppose now that C is symmetric strict monoidal and fix X € Ob C. Define auto-
morphisms Hl,...,ﬂn_l of x&l by

i_ ,
= ldxﬂ(i"l) 2] Txfx f ldxﬁ(n—iwl)'

Then there exists a unique homomorphism

g+ At X
of groups such that

T[xn(cii) = Iii {t =1,...,n=1),

Conbining the T then leads to a symetric monoidal functor F:§ » C such that

Fn = X,

4.6 LFMMA Let F:C - C' be a monoidal equivalence. Assume: C is symmetric —
then the symmetry 7 on C can be transferred to a symeetry 7' on C' in such a way
as to render F symmetric monoidal.

[Define TFX,FY by
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FX@' FY _ > F(XQY) —> P(YRX) - FY @' FX

and recall that F has a representative image (cf. 2.5).]

4.7 EXAMPIE If C is symmetric monoidal, then C_, . is symmetric monoidal

and y:C + gstr is a symetric monoidal equivalence.
4.8 LEMMA Let C, C' be symmetric monoidal and let (F,F',u,u') be an adjoint
equivalence. Assume: F is symetric nonoidal -- then F' is symmetric monoidal

(ct. 2.9).




§5. DUALITY

Let C be a monoidal category — then each X € Ob C defines functors

— 8 XiC > C

Definition: C is

left c¢losed

right closed

if vXe ObC,

T — ® X admits a right adjoint, denoted lhom(X,—)

X 8 — admits a right adjoint, denoted rham (X,—).

[Note: C is closed if it is both left closed and right closed.]
So:

C left closed => Mor(Y & X,2Z) = Mor(Y¥,l1hom(X,Z})
C right closed => Mor(X & Y,7) = Mor{Y,rhom(X,Z}}

for all ¥,Z € Ob C.

N.B. The functor

— lhem(X,—)
rhoem({X,—)

~ left
is called the internal hom fimctor attached to X.

right




5.1 REMARK If C is symmetric monoidal, then left and right internal homs

are naturally isomorphic and if C is left or right closed, then C is closed.

5.2 EXAMPIE Given a comutative ring k, let MoD, be the category whose
objects are the left X-modules and whose morphisms are the k-linear maps —- then

MOD, is symmetric monoidal. Moreover, MOD, is closed and

lhom(X,2) = Hcmk (X,Z}

rhom(X,2) = Hom  (X,Z).
5.3 LEMMA Suppose that € is left closed — then v X € Ob C, the functor

-— @ X preserves colimits (being a left adijcint) and the functor lhom{X,—)

preserves limits (being a right adjoint).

5.4 IEMMA Suppose that C is left closed — then vV 2 € Ob ¢, the cofunctor

Thom(—,2) converts colimits to limits.

PROOF Let I be a small category, A:I -~ C a diagram for which colim, A,

exists =- then v Y € Ob C,
mr(Y,]hau(coli.mI &i,Z))

=~ Mor(Yy @ oolimI Ai,Z)

11

Nbr(coliml (Y 8 ai),z)




i

1J.1'nl Mor(Y @ ﬂi,Z)

Hi

li.rnI Ivbr(Y,lhanmi,Z))

3

Mor(Y,limI Hﬂn(&i;Z))
ll'm(colimI &i,Z) = lil'l’lI llm(ﬁi,?,).

ILet C be a monoidal category. GivenXEObg,anobjectVXEObgissaid

to be a left dual of X if 3 morphisms

eX:VX 2 X >e

nx:e + X8 VX

and commtative diagrams

L—-l T]XQld .
>e®8X —— (X2 X) 2X

-

X@e<«— X@ ('X2X).
R id@ex

5 <

-1 \
R id 8 n
>VX@e——mX—> X @ (XQVX)

B

e X< (X2 x) 8 "X
L EXQid




N.B. When C is strict, these diagrams reduce to the relations
(idX R e.) o {n, Bidy) = j'dx

(e, & id ) o (i 2n,) =1id, .
X VX dvX nx VX

5.5 ILEMMA Suppose that 'X is a left dual of X — then the functor — & X

is a right adjoint for the functor — @& X and the functor YX @ — is a left

adjoint for the functor X 8 —.

In brief: Vv ¥,z € 0b C,
Mor(Y & X,2) =~ Mor(Y,Z 8 'X)

Mor('X 8 Y,2) = Mor(Y,X & 7).

PROOF It will be enough to show that — @ 'X is a right adjoint for — @ X,
the proof that X @ ~— is a left adjoint for X @ — being similar. So let
F=—8@xXx

{cf. 2.6)

G=-—@ 'x

ard to simplify the writing, take C strict. Define
u e Nat(idC,G o F)

Vv € Nat(F o G,idc)



by
- qubbr(W,WﬂXQVX)
My = 1 8 ny
vy € Mor (W @ VX 8 X,W)
_ \)W = idw =] EX
Consider
(VF) o (Fu).
Thus
(OVF) o (Fu))yg = (WF)y o (Fu)y.
and
~ Fu € Nat(F,FGF)
(W)
(Fu)W.FW + FGFW
or still,
idW @ M %] :'u:'lx
(Fl) W @ X SWRX® 'XeX.
= VF ¢ Nat(FGF,F}
(v}
(\)F)W:E‘GFW -+ W
or still,

idwﬁ idxﬁsx

(\JF)W:W@XQVXBX s Wa X




Therefore

(vF)w o (Fu)Wr € Mor(Wwe X,Wa X)
is the composition

(idwﬁidxﬁex) o (i%anxﬁidx)

(idW ° idw) 2 ((iﬂX 2] EX) o (nX 2 idx))
id.w ® idX

=y ex

Adpy

(idF)W.

il

(VF) o (Fu)

-+

The verification that

Gv) o (uG) = id,

is analogous.

5.6 LEMMA A left dual of X, if it exists, is unique up to isomorphism.

PROCF Suppose that

are two left duals of X — then the fimctors



—_— ﬁ V){z
are naturally isomorphic (both being right adjoints for — @ X}, so VW € Gb C,

Voo . v
We Xl~Wﬁ X2.

Now specialize and take W = e to get

X
i
N

[Note: Explicated,

v v
> XIQ(XQ Xz)

A
v v
>(X1QX)9X2

el @ id

X A
———ea'y

L

>VX

2-}



5.7 REMARK Suppose that (Vx,sx,nx) is a left dual of X. let ¢:VX > VX'

be an isomorphism and put

E;( = E:X o (¢_l @2 ldx)

Ny = {id, & ¢) o Ny

Then the triple (VX',E;{,F};{) is a left dual of X.

[Consider first the case when C is strict, thus, e.q.,

(id, @ €f) o (n} @ id)

id, @ (g, o (67 @id)) o ((id, 8 ¢) ° n) @ id,

idg @ g, 0 id, @ (¢'1@idx) ° (id, @ ¢) ® id, ° n, @ id,.
(id, @ ¢) @ id, = id, @ (¢ @ id))

idxg(ep"laidx) o (id, @ ¢) @ id

id, @ (¢-lﬁidx) o id 2 (¢ & id))

id @ (07 @1id) o (¢ @ id)
iy 844,

& X

=id
Xe X&X



idXQE}'Kon}.{ﬁidX

= (idxﬁex) ° (nxﬁidx) =idx.
In general, the claim is that idx equals
. . -1 . . -1
RO(ldXﬁex)OA O(nxﬁldX)OL
or still,
. = -1 , . -1
R°1dXQ (exo (¢ Qldx)) oA T o ((1dxﬂ¢) onx} a:_dxoL

or still,

Roid @c, o id, ® (b7 @ 14) oat o (id, @ ¢) QidxonxﬁidxoL_l.
Al:xe'xex-xe (X' 2x.

So, to complete the verification, one has only to show that the composition

. (id @ ¢) @ id .
Xg X)aXx > X8 X')YeXx

A—l

>xXx@ ('x' 8%

iae ™t e id) ,
>XQ ({(X&8X)

is

xe ') ex >xe (X2 x.

However, due to the naturality of the asscociativity constraint, there is a
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commitative diagram

a1
Xe'xex —  sxe('xex)
(idﬁtp)ﬁidl Jid@(cpﬁid)
(xX@ 'X') 8 X — »X@ (‘X' 2x.
a1

d®@ (6@id)) T=ide (o~ @ id).]

A monoidal category C is said to be left autoncmous if each object in C

admits a left dual.

N.B. Suppose that C is left autonomous. Given f € Mor (X,Y), define

YE e Mor (Y, V%) by

v
> YR e

id.ﬁnX

Y@ (X & ¥X)

W

‘vex) a'x

W

(id @ £) @ id

> ('vay) & 'x

eYQid
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Then the assignment

defines a cofunctor C + C.

[Note: The specific form of 'f depends on the choices of "X and 'Y.]

5.8 REMARK If C is left autoncmous and if X,Y € Ob C, then (X 8 Y) is
. . W V.
isomorphic to Y @ X.

[We have

Mor("(X B Y) @ W,Z) = Mor(W, (X @ Y) 8 2)

i

Mor{w,Xx & (Y & 7))

i

Mor('X @ W,Y & 2Z)
~Mor ('Y @ ("X & W),2)

Mor((“y @ YX) & W,2)

3]

ey =Yy e Yx.)

n

5.9 LEMMA Suppose that C is left autonomous — then C is left closed.

PROOF In fact, VX € Ob C,

1han(X,—) = — 2 'X.

One can also introduce the notion of a right dual X' of X, where this time
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EX:XQXV-*e
nx:e+xvﬁx

subject to the obwious commtativity conditions. Here the functor — ® x’ is a
left adjoint for the functor — @ X and the functor X' @ —isa right adjoint
for the functor X & —.
[Note: If X admits a left dual 'X and a right dual X', then in general 'X
and X' are not isomorphic. On the other hand, it is true that
(‘%Y 2 x = &),
E.g.:

Mor(Y 8 (‘'X)V,2) ~ Mor(Y,Z2 @ 'X) = Mor(Y @ X,7)

=>

The definition of “right autonomous" is clear and we shall term C autonomous

if it is both left and right autonomous.

5.10 IEMMA Suppose that C is right autonamous — then C is right closed.

PROOF In fact, v X € Ob C,

rhom(X,—) = X' & — .

5.11 REMARK If C is autonomous, then — 8 — preserves colimits in both

variables.
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Suppose that F:C + C' is a monoidal functor. Assume: x' is a right dual
of X — then FX' is a right dual of FX. Proof: Consider the arrows

I11

Fex g_l

>F(XQX") > Fe > af

FX 8" FX

2 Fny =1

e' —> Fe > F(X' 8 X) ———> FX @' FX.

[Note: Assume that C, €' are right autonamous — then there is an isomorphism
tlx:FX\'r > (FR} 7,

namely the camposition

> ((FX)" @' FX) @' FX’

> (FX)' @' (FX &' FX')

ide=
— . e rxex)

id & Fe v
> (FX) 8&' Fe

idecT

> (FX) /' e’

and the diagram
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idQAX

> FX &' (FX) '

N

FX &' FX

121
{7}

FX@X) — 5 e

commtes. ]

N.B. One can, of course, work equally well with left duals,

5.12 LEMMA Let
(F, 2,5}
(G,5,0)
be monoidal functors and let a:F -+ G be a monoidal natural transformation. Assume:
The source C of F and G is autonamous — then o is a monoidal natural iscmorphism,
PROCF The claim is that v X € b C,
C(X:FX + X

is an isomorphism. From the above, Fx’ (GXV) is a right dual of FX (GX) or still,

FX (GX) is a left dual of FX' (GX'). This said, form

o V:F}{\'r -+ GXV
X

and consider

V(on V) GX ~+ FX,
X
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(Note: Accordingly, if C is autonomous, then the metacateqgory [(_:‘,g']8 is

a groupoid.]

Suppose that C is symmetric monoidal and left autonamous — then C is right
autonomous, hence c is autonomous. Proof: Given X € Ob C, take x' =YX and

define morphisms

xex se

e >X @X

T . o n,.
vx"x

X,

5.13 EXaMPLE FIVECT, is autonomous. In fact, FIWEC'I'] is symmetric monoidal,

so it suffices to set up a left duality. Thus given X, let ¥X be its dual and define

et X R X >k

EX(?\;X) = A(x).
n the other hand, there is a canonical isomorphism

$:Ham(X,X) > Hom{k, X 8 X)

and we let

Ny = cb(idx).



lGC

[Note: An object X in %{ admits a left dual iff it is finite dimensional.]

5.14 EXAMPLE The full subcategory of @( whose objects are finitely

generated projective is autonamous (cf. 5.2).
Assume still that C is symmetric monoidal and left autoncmous.

5.15 IEMMA There is a monoidal natural isomorphism

At

xe ('xa ')

> (X@ 'X) 8 " 'x

T8 id
'xex) & ''x

v

£ & id v

Vv

N.B. Iet




17.

be the arrow constructed above — then

But here X' = “X, so

[Note: To make sense of this, recall that

X is a left dual of X\'r

{cf, 5.12).

YYY is a left dual of '’ (x").



86. TWISTS

Let C be symretric monoidal and left autonomous —— then a twist Q0 is a

moneidal natural isomorphism of the identity functor idC such that v X € Cb C,

{%( & idvx) ° My = (idx ! SEVX) ® Nye

[Note: Tacitly, idC is taken to be strict (£ = id, E = id), thus from the
definitions
9XQY'__S&aﬂl'andge=lde']
To consolidate the terminology, a symmetric monoidal € which is left autono-

mous and has a twist Q will be referred to as a ribbon category.

N.B. The choice { = id, is permissible, in which case C is said to be even.

Tt was pointed ocut near the end of §5 that an even ribbon category is right
autonomous. This fact is true in general. Proof: Given X € Cb C, take X =%
and define morphisms

Xex +e

e+xVﬁX



6.1 LA In the presence of a twist Q,

X = ('%.

PROOF Consider the composition

gl
X s X@e
& n
Qx VX v VoV
>X @ (X8 (X))
A
> xe'x e ('n
T f id
X,'x
> (xex 8 ('x)
r—:xald -
>e R (X)
L
>V(VX).
E.g.:
A v

e = e@e:veﬁv(ve) :V(Veﬁe) :V(Ve)“ e,

6.2 IFMMA 1In the presence of a twist &, the left and right dual of every

morphism f:X + Y agree: Ve = g,

et C be a ribbon category. Given £ € Mor(X,X), define the trace of f by



tr (£) =, 0 T o aid o {(f@id ) o n,.
X X X,VX s-EX VX VX X
[Note:

tr (f) € Mor(e,e) (= M(C)).]

6.3 IEMMA We have

v
1. trx(f) = trvx( £);

2. trx(g o f) = trY{f o g) (f£:X > Y, g:¥ -+ X);

3. tr (£, @ £,) = tr_ (£) tr, (£,}).
xl@xz 1 2 X, 1 XZ 2

dim X = trx(ldx) ’
the dimension of X.
So, on the basis of 6.3,

dim X

dim X
and

dim X @ ¥) (dim X) (dim Y).

N.B. Take Q = id — then the categorical dimension of X is the arrow

T V. £
Ny x,'x X

S X@ X — s Vxex

) e.

6.4 EXAMPIE Consider FDVEC, {(viewed as an ewven ribbon category {(cf. 5.13}) —

then the trace of £:X + X is the composition



nx f@:l.dVX TXVX EX
r
SXR'X— s xe'x_ s Vyex

k > K.

Therefore the abstract definition of trx(f} is the usual one. In particular:

dim X = (dj.m]E X)lls'

E.g.:

dim k" = nl ,

the distinction between n € N and nlk being potentially essential if k has non-

zero characteristic.

6.5 REMARK While evident, it is important to keep in mind that the defin-
itions of trace and dimension depend on all the underlying assumpticons, viz. that

our monoidal € is symmetric, left autonamous, and has a twist Q.

Suppose that C, C' are ribbon categories with respective twists @, Q' —

then a symmetric monoidal functor F:C > C' is twist preserving if v X € Cb C,

FQ, = Q.

6.6 LEMMA If F:C -+ C' is twist preserving, then v £ € Mor(X,X), the diagram

£
e' — > Fe
£r,., (FE) l 1 Fer, (£)
e'! ——— -~ ¥e
£

camiites.



Matters are invariably simpler if C is a strict ribbon category, which will

be the underlying supposition in 6.7 - 6.9 below.

6.7 IFMMA The arrows

are mutually inverse iscmorphisms.

PROOF Take X = e in the relation

(idxﬂex) o (r]x@idx) =:i.dX

to see that

o) o le e d) = (e o) 0 (6T on)  (cE. 1.4)



6.8 LEMMA vV s € M(Q),

I
o

tre(S)

PROOF In fact,

1
4]

tre{s) °T oﬂeﬁidv O(Sﬁidvlon

e e
e, ¢ e e

=g t’J.d\‘r °J.dv O(Sﬁldv]"ﬂ

e
= e e €

s ¢ (s & 1dve} ° Ty

(ide [+ ee) (s R 1de 2] ldve) (J.de 2] ne)

s 8 (se ° ne)

=s@:|.c‘ie

= S.

[Note: Therefore

dim e

tre(ide) = ide.]

6.9 LEMWMA VY X € (b g,

PROOF The compositions




are equal, thus the compositions

idﬁnx id@ﬂxﬁid

¥ = "X Qe — 5 Vxexe'x > 'XRXA X

J.dﬁnx

id@iae
X="X8e — > 'x@xX8'X

v X

>'xpxe 'x

are equal. Postcompose with ey 8 id, - then the first line gives V%{, while
X
the second line is

E ﬁid\‘r °ldv @idxﬁﬂv Oid\', @ n

X X X X x =
or still,

e, & 1id e id /0 o id @& n

X vx x@x 'x vx X
or still,

{(id @882 ) e (e, R 1id ) o id 8n
A X Vy Ve X

or still,

6.10 REMARK Let C be a ribbon category — then this structure can be

transferred to Cotrt That the symetry T passes to a symmetry Totr of (_jstrwas
noted already in 4.6. As for the left duality, a generic element of gstr is a
finite sequence (X ,...,Xn) and

V(xlr--"rxnj = {Vxnr---rvxl]r

where € and n are defined in the obwvious way. It is also clear that the twist



an C can be brought over to a twist on gstr‘ Accordingly, v:C —» gs a

tr 18
symetric monoidal equivalence which is twist preserving, i.e., y:C - (—:str is
a ribbon equivalence.



§7. *-CATEGORIES

Iet Kk be a commtative ring —— then a category C is k-enriched if v X,Y € Ob C,

Mor (X,Y} is a k-module and if the composition of morphisms is k-bilinear. A

functor F between k-enriched categories is k-linear if the induced maps

Mor (X,Y) -+ Mor (FX,FY)
are homomorphisms of k-modules.
[Note: If C is k-enriched and monoidal, then C x C is k-enriched and the
functor 8:C x C » C is assumed to be k-bilinear.]

N.B. An object X in a k-enriched category C is irreducible if Mor(X,X) = ]Sldx

7.1 EXAMPIE Suppose that C is Z-enriched and monoidal. Put

k = M(C).

Then k is a unital commutative ring (cf. 1.4} and C is k-enriched as a monoidal
category (cf. 1.5).

[Note: Suppose in addition that C is a ribbom category —— then v X € Cb C,
trxzbbr(x,x) +k

is k-linear and v X,Y € Ob C, the map
T Mor(X,Y) @k Mor (Y,X) ~ k

| fﬁg+trx(g°f)

is k-bilinear.]



A x—category is a pair (C,*}, where C is a category enriched over the fieid
of complex numbers and

*1C > C

is an involutive, identity on objects, positive cofunctor. Spelled out:

¥ X,Y € Cb C, Mor(X,Y) is a comlex vector space, composition

Mor(X,Y} x Mor({Y,Z} - Mor(X,Zz)
is complex bilinear,
*:Mor (X,Y) -+ Mor(Y,X)
subject to

(zf + wg)* = zf* + wg*

f** = f
_ (g e £}* = £* o g*,
Finally, the requirement that * be positive means:
f* o £=0=>f = 0.

[Note: v X € Cb C, we have

13

idx o id)"{’
idgr e idg
(idx o id}’é)*
= iax*

id}(']

]

]



N.B. A monoidal *-category is a *-category which is menoidal with

(fRg)*=f* 8 g*
for all £,q.

Note: A symmetric monoidal *-category is a monoidal *-category such that

v X,Y € b C,
Ty XRY>Yex

is unitary (see below).]

7.2 EXAMPLE FDHILIB is a symmetric monoidal *~category.

[Note: For the record, FDHILB is a construct. As such, it is amestic and
transportable, thus there is no loss of generality in assuming that its monoidal

structure is strict {(cf. 3.12).]

7.3 REMARK Iet A be a complex *-algebra -~ then the involution is positive

ifA* o A=0=>A=0 (A c A. To illustrate, take A=M2(C) and consider the

involutions
_ — - _
a a l a
11 12 11 a1
*
% 1 = =
_ % G2 R ¥ %2
_ % _ -
211 212 ) 412
+*
al- =
3 422 4 a1




Then *; is positive but % is not positive since

*

0 1 |2 0 1 0 0

I

0 0 0 0 0 0 .

[Note: It is wellknown that if A is finite dimensional and if the involution

is positive, then A is a semisimple algebra, hence "is" a multimatrix algebra.]

Iet £:X » Y be a morphism in a #—category C ~- then f is an isametry if

f*of=idxandfisunitaryifbothfandf*areiscmetries.

Tet F be a C-linear functor between *—categories -- then F is *-preserving

if v £, F(£*) = (FE)*.
N.B. Suppose that F is a x-preserving monoidal functor between monoidal

x-categories —- then F is unitary if the isomorphisms £:e' » Fe and

= . '
“X,Y'Fx & FY +F(X 8 Y)

are unitary.

Let p:X +~ X be a morphism in a *—category C —— then p is a projection if
p=p*andpep=p.

[Note: If g:Y » X is an isometry, then g o g*:X + X is a projection.]

Iet C be a *—category and let X,¥Y € b C — then X is a subobject of Y if
3 an isometry f € Mor(X,Y).

Definition: C has subobjects if for any Y € Ob C and any projection

q € Mor(¥,Y), 3 X € Ob C and an iscmetry £ € Mor(X,Y) such that £ o £* = q.

Definition: C has direct sums if for all X,Y € b C, 3 Z € Ob C and isametries

f € Mor(X,2), g € Mr(Y,Z) suwch that £ ¢ £f* + g o g* = idz.



5.

E.g.: FDHILB has subobjects and direct sums.

7.4 RAPPEL A category C is essentially small if C is equivalent to a small

category.

Suppose that C is a *—category which is essentially small — then C is
semisirple if the following conditions are met:

ss,: ¥ XY€EOC,

1

dim Mor(X,Y} < «,

S§5,: C has subobjects and direct sums.
3¢ C has a zero object.

N.B. A monoidal s—category is semisimple if it is semisimple as a »-category

and if in addition, e is irreducible.

7.5 EXAMPLE FDHIIB is a semisimple strict momoidal s—category (cf. 7.2).

7.6 LEMMA Suppose that C is a semisimple x—category -- then every nonzero
object in C is a finite direct sum of irreducible objects.

[vX€ob(g Mr{X,X) is a finite dimensional complex *-algebra and the
involution *:Mor{X,X) -+ Mor(X,X) is positive {cf. 7.3).]

[Note: Conventionally, zero objects are not irreducible. ]

Therefore a semisinple *-category is abelian.
Given a semisimple *—category C, denote its set of isamorphism classes of

irreducible cbjects by I, and let X:ie Ic} be a set of representatives -- then



iz g = Ivbr(Xi,Xj) = {0}
and v X € b C, 3 a finite number of i such that
Mor (X, ,X) # {0},

thereby defining IX S Ig.

7.7 BREMARK Vv i€ IX' M:)r(xi,}{) is a finite dimensicnal Hilbert space with

inner product

<G, P> idx_ = ¢* o Y.
1

7.8 LEMMA Iet C, C' be semisimple #—categories and suppose that F:C - C'
is (-linear -- then F is faithful if FX is nonzero for every irreducible X.
PROOF Consider an f€ Mor(X,Y):Ff = 0, the claim being that f = 0. Fix

orthocnormal bases

Siyc e M:)r(xj_,X) k=1,...,4mn M::r(Xi,X))

t., € Mor(¥.,Y) (£ =1,...,dim Mor(Y.,Y
by (J ) (J 1)
such that
¥ 8., o8% =1
L Sik ° ik T M
I ., o t¥, = id_.
e jL j& dy
Write

f=idY°foidX



z t

* o o . o *
f42 j£°tj£ f Sie © ik

L ¢, t,, e 8% (3 c.,., €L0).
Mﬂcﬂlﬁ ik ikt

Then for indices m,1,v,

= *
0 F(tmv} o Ff o F(Smu)

I
4
2.

. F(t* o t., e 8% o g )
MM i) 1L ik il

=7 C F{<t_ ,t_,> i °o<sg ,,8 >1id )
vp Skt F o7t dxm ik * Syt dxm

v F(idxm)

Butbyassmption,id}.,x # 0, thus the ¢ vvanish,sofwo.
m

7.9 1BMA Iet C, C' be semisimple *—categories and suppose that F:C + C'
is C-linear and faithful —- then F is full iff (a) X € Ob C irreducible =>
FX € Ob C' irreducible and (b) X,Y € Ob C irreducible and nonisomorphic =>

FX,FY € Ob C' irreducible and nonisamorphic.



§8. NATURAL TRANSFORMATIONS

ILet C, C' be *-categories and let F:C + C' be a spreserving functor.

8.1 IEMMA Nat(F,F) is a unital *-algebra under the following operations:

(ac + bB)y = aoy + by
(0 o By = ay © By
(a*} g = (o) *

Iy = gy

[To check the *—condition, observe that v f € Mor(X,Y),

Ff o (a*)y, = Ff ° (O’x)*

(FE*)* o (ap)*

il

(o, o FE¥)*

(FE* o g )*

0

() * o (PEX)*

It

(CI’.*)Y o Ff.]

8.2 EXAMPLE Take C' = FDHILB, put NatF = Nat(¥,F}, and let Rep. 4 Nat:F

be the category whose objects are the finite dimensional *-representations of



NatF and whose morphisms are the intertwining operators. Define a *-preserving

functor
$:C - mpf 3 NatF
as feollows:

()4

(n, FX) (X €0b Q)

¢f = FE (f MorX,Y)).

Here
1TX(0¢) = Ogr
thus the diagram
ﬂX(a}
FX > X
Ff l Ff
FY ~ FY
TrY(ot)

cammites, so Ff is an intertwining operator.
[Note: If

U:Repfd Nat F + FDHILB

is the forgetful functor, i.e., U(n,H) = H, then U o % = F.]

8.3 THEOREM Iet C, C' be x—categories and let F:C + C' be a *—preserving

functor. Assume: C is semisimple -- then there is an isomorphism

¥

F:Nat(F,F) > 1T Ivbr(FXi,FXi)

1€I§.

of imital *-algebras.



PROOF The definition of lPF is the obwious one:

T o -
iEIC 0txi

Yo {a)

Yo ig injective:

ay =0vieI,=>q =0vXecoC.
i =

To see this, choosz the s., € M:)r(Xi,X) as in the proof of 7.8 —— then

ik
Oy = oy o Fidy
= ¥ o F(s,, o 8% )
1k % ik ¢ Sik
=3 o F(s.,) o Fis* },
ik % ik ik
But the diagram
%,
1
in > in
F(sik) [ F(sik)
FX - > FX
e

cormultes, hence

‘PF is surjective:

v {o; € Mor(FX; ,FX,):i € Ig}, 3 a € Nat(F,F):¥ (o) = 'il_efI g
c



Thus define o, € Mor (FX,FX) by

Oy = Z F(Si_k) ° o © F(s:’l?k)

and define o, € Mor (FY,FY) by

O T 2

Then V £ € Mor(X,Y),
Ff o ax
Accordingly, the diagram
Ff

ik

Fit. ° . Flt* ).
2, Fleyg) o oy o Fitg,)
= ;zk F(f o Sik) ° a; ° F(s]?_k)
= iijz F{tj£ o t§£ o f o Si_k) ° Oy o F(S;k)
= 1}2.;:,3 F(ti,E o (ti?, o f o Sik)) °a, ° F(S:?Lk)
=i]E£F[ti£) OF(t;.':aofoSik) oOf.iOF(S;-"J{)
= _ﬂii F(tii) ° ai ° F(tiﬂ o f o S:i.k) ° F(s;k)
= iki:j£ F(tjlﬂ) o Otj o F(t§£ o £ o Sik o S;_k)
=7 ¥PF{t. .o P(t¥, o £
}6 (}e) o 0'«:] ( J'e- )
= aY o Ff.
ox
FX > FX
l lFf
FY ~ FY

Sy



comm tes, meaning that o € Nat(F,F). 2And, by construction, Oy = 0, SO
i
¥ {a} = ‘[T o .
F i€, 1

[Note: The iscmorphism ‘PF depends on the choice of the xi.]

8.4 EXAMPIE Take C' = C and let F = idc (the identity functor) —— then

Nat(id,id) = T C.
= - J.EIC

8.5 EXAMPIE Suppose that C is a semisimple monoidal x—category —- then

C % C is a semisinple *-category with

IQ < g = Ig X Ig.
and
X. 8xX. = & Nk
1 37 xer :ijk'
c
where
N];j = dim I“br(Xk,Xi L+ Xj} ’
0

Mor(Xi L] Xj,}(i 2 Xj] = 8 M (€.

This said, let

Nat(®,8) = Mor(®(X. ,X.), & (X, ,X.
at(®,2) irEEIC r@%;,X), 8 (X,X)



il

T  Mor(X, 2 X.,X, & X.)
:'leIc i3y

(C).

1

M
1,3 kel By

Suppose that C is a semisimple *-category, let F:C - FUHILB be *-preserving
and put

AF= ® B(in)
iEIg

which, of course, can be embedded in

B(FX.) (= Nat(F,F)).

Needless to say, AF is a x—algebra, wnital iff IC is finite. The projections
pi:AF + B(in) are finite dimensional irreducible *-representations. Morecover,
any finite dimensional nondegenerate s-representation of AF is a direct sum of

finite dimensional irreducible *-representations and every finite dimensional

irreducible *-representation is unitarily equivalent to a P -
Define now a *—preserving functor
9:C + Repes Ag

as in 8.2 —— then 9 is an equivalence of categories iff F is faithful. In fact,

since ¢ and ¥ agree on morphisms, it is clear that

® faithful <=> F faithful.



Assume therefore that F is faithful., From the definitions, Ty
i

=P {or still,
Voo €A, og T P; ()}, which is a finite dimensional irreducible *-representation
1

of AF Given an irreducible X € Ob C, 3 i € IC and an iscomorphism ¢i:xi + X,
Since the diagram

pi(a)

FXi —t> FXi

Fo; Fo;
™ — = FX
TTX(Ot)

COMMRLEES, Ty,

is also a finite dimensional irreducible x-representation of AF
If i = j, then

Mor(pirpj} = {0},
so if X,Y € Ob C are irreducible and nonzero, then

Mor (T, m,) = {0},
Because ¢ is faithful (and RePry AF is a semisimple *-category), the foregoing

considerations inply that ¢ is full (cf. 7.9). Finally, ¢ has a representative image.
Indeed, as mentioned above, every finite dimensional irreducible *-representation

of AF is unitarily equivalent to a ;-

Te recapitulate:

8.6 THEOREM Iet C be a semisimple *—category and let F:C - FDHILB be a
*=-preserving functor. Put

AF = @ B{FX.)
ieT *
c



and define
:C > Repeg Ap
by
T &= (n,FX) (X € 0bQ)
of = Ff (f € Mor(X,Y)).

Then & is an equivalence of categories iff F is faithful.

Let C be a semisimple strict monoidal *-category.

Definition: 2n embedding functor (for C) is a faithful wnitary functor

F:C - FDHILB.

[Note: Recall from §7 that in this context, "wnitary” means that F is a

*-preserving monoidal functor for which the iscmorphisms £:e + Fe and

B yFK@FY > F(XRY)

are unitary (e = standard unit in FDHIIB, € = strict ronoidal structure in FDHILB

(cf. 7.5)).1

8.7 1IEMMA There is an isomorphism

TF:Nat(F,F) -+ ]1‘ B(FX;)
i€1,

of unital #~algebras (cf. 8.3).

8.8 LEMMA The map

eF:Nat(F,F) + Mor(Fe,Fe) = C



that sends
o = {ax} to Oy

is a unital *~homomorphism.

8.9 SCHOLIIM The map

that sends

is a mital *—homomorphism.

Ist

g = EFIAF.

Then £ 15 a unital *»-homoworphiam, the counit.

8.10 ILEMMA There is an isomorphism

lI’F o a:NE;H:.(F o R,F o Q) —s W B(FXi) & c B(F‘Xj) '
1,3€IC
of unital »-algebras.
PROCOF 1In fact,
Nat(F o &,F o &)
= T BF(X; @ X5))  (cf. 8.3)

i,jEIg

it

i ]
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B(FX.} &. B(FX.}.
i:qﬂc i’ TC 3

8.11 LEMMA The map
AF:Nat(F,F} +~ Nat(F « 8,F ¢ Q)
that sends
o= {ayt o {ag o !
is a unital *-homomorphiam.

8.12 SCHOLITM The map

a1 BGFX) +~ T BEX,) 2. BFX.)
AFiexc i, b ¢ ]

that sends

. -1
Tbo‘PFog aFo‘PF {T)

is a wmital s~homomorphism.

Iet
A= Bp|Ag.
Then A is a unital *=homomorphism, the coproduct.
Iet
- TT1=AF > B(H))
Ty tAn > BH,)

be nondegenerate *-representations of AF on finite dimensional Hilbert spaces



11.

(the zero representation ig a possibility) ~- then we can form

™ e wngF gc AF - B(Hl) QC B(Hz) poo B(Hl 2 Hz) .
Since

AF ac AF = i,G;EICB(FKi) QC B(E'Xj) '

it follows that T, R, admits a wmique extension to a unital *~homomorphism
T @y [ BEX) 8 BFX) > B 8 Hy).
1,31
¢
This being 8o, put

8 T, o A.

X Ty =T R,

M
Then Ty X T, is a nondegenerate *-representation of AF on the finite dimensional

Hilbert space f; 8 H,.
8.13 IEMMA The data (x,g,...) is a monoidal structure on @fd AF

Therefore Rep.- s AF is a semisimple monoidal *—category (the counit ¢ is the

irreducible unit).

8.14 THEOREM Let C be a semisimple strict monoidal #*—category and let

F:C - FDHILB



1z,

be an embedding functor., Put

AE‘ = & B(FXi)

iery
and define

9:C > Repeq Ap
by

X = (1, FX) (X €O0bC

of = Ff (£ € Mor(X,Y)).

Then ¢ is a monoidal equivalence,
PROOF By hypothesis, F is faithful, hence ¢ is an equivalence of categories
(cf. 8.6). So, in view of 2.8, it suffices to show that ¢ is monoidal. There

are two points, First

de = (ﬂe,Fe}
and ¥ o € AF' the diagram
e (d)
C > C
g |
Fe —— > Fe
'ne(a)

commites, i.e., £ intertwines € and Ty Next, given X,¥ € Ob C, consider

P x ¢y = (‘TTKXTI

g FX 8 FY)

P(XRY) = (n

<@ v F(X 2 Y)).

B X @FY > FX@Y)



13,

is an interiwining operator: V a € AF,

= ° (TFX X TFY) (o} = Ty @ Y (o) o %,y

X,Y

The interchange G:AF BC AE‘ > AE‘ QC AF {c{ec 2 B) = B 8 o) is a nondegenerate
*»=homomorphism, thus has a wnique extension to an involutive *-automorphism

o: || BEX.) ®. BEX,) » T[] B(FX,) 8. B(FX.).
L¥r, ¢ g, BT
Iet

AP

Qf
2
g

0
>

'IhenAFissaidbobecocorrmtativeif&

8.15 IEMMA Suppose that AF is cocaommtative —- then

(71 +H;)
v € O Bepey Aps
()
the diagram
.
H. H
1772
Hy @ H, > H, @ Hy
1Tl x 1T2 { 'IT2 X 'ITl
Hy @ H, > Hy @ H
H L H
1772

commites.
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PROOF AbbreviatETH H to T 2andnotethat
I 112 lr

vTe ] B(FX;) 2. B(ij),

1,3@19
we have
th =) 'rrz)U(T) = T2,l iﬂz & TTl) (T)Tl,Z‘
50, v o € AF'

Ty, 2tm X ) (e

™1 20Ty 8 ) (@)

Tl’2 ('lT_.L & 1r2) (aop(u))

i

Ty oMy 8T ((8())

= 71,272,118 M) (BENT ,

{'JT2 ] wl) (r‘_\.(c:))'rl'2

It

(Tr2 X TTl) (a)Tl,Z'

Thus, if AF is cocomutative, then Rep. 4 AF is a semisimple symmetric monoidal
*-Ccategory.

8.16 REMARK Assume further that the category C is symetric and that the

embedding fimctor

F:C -+ FDHILB



15.

is symmetric monoidal -— then AF is cocamutative and 9:C ~ Repfd AF is a symmetric

moncidal equivalence,



§9. CONJUGATES

Suppose that C is a strict monoidal *-category which is left autcnomous.

put X' = YX —- then

ex:"x X e

v
*re > X X.
EX ] &

And
(idx ] sx) 0 (nX 2 idx) = idx

(e, B :i.d\‘f ) o (id\'r 2 T]X) = idv

X X X X

(ng @ id,) o (id, @ ef} = id,

(id , @ n¥) o (e*x & id ) = id .
~ x" X X < x

T.e.: The left duality (Vx,ex,nx) automatically leads w a right duality

A"
X, n;i.« €§) .



Now assume in addition that C is symmetric (hence that the Tg y are wmiitary)

then the left duality (Vx,a

x'”x) gives rise to another right duality, viz.
(XV,EXOT v r T Onx).
X,'X X, X

9.1 COCHERENCY HYPOTHESIS Vv X € Ob C,

= T 2 N
B's X,VX X

[Note: The asymmetry is only apparent. For

X X X,X
s € [+] T—l
X VX'X
=€, °T -]
L x,Yx
In the presence of 9.1, let
X="% (=x")
= F
Iy = &
r,=T. or,
X" gy "X




thus
rye > Xex
_ Ex:e +X QX
and
- (}T:,r;,fx) is a left duality
(i,f;{,rx) is a right duality.
Therefore

(id, @ r§) ° {EX ® id,) =

(r*@id ) o (id_ @r,)
).4 % % X

=]

(E;; @ id)) o (id, @ ry)

(id_® r*) o (r, & id ) =
~ 3 X X %
The relations
Tod e e (Exﬁ idy) =

(id_@rf) o (r,@id ) = i

X X

are called the conjugate equations, the triple

N.B. The conjugate equations imply that

(f;; 2 idxl e (idx 2 ry)

(r*@id ) o (ia_ B r)
X 2 z X

i

idy

id

|

id .

be]|

(}_(,rx,fx) being a conjugate for X.

idy

id .

|



Having made these points, matters can be turned around. So start with a

syretric strict monoidal *—category C —— then C has conjugates if one can assign

to each X € Ob C an object X and a morphism

rX:e+}_{ﬁX

such that the triple (X, ,EX) satisfies the conjugate equations (here, of course,

Fx

rx= T_ o rX).

9.2 REMARK If C has conjugates, then C is left autonamous (consider (i,r;‘(,fx))

and right autonamous {(consider (}?,E)’E,rx) }. Moreover, the coherency hypothesis is

3 - *} kX — 7
in forece: (rx) Tor while

9.3 IEMMA Suppose that € has conjugates.
e Under the identification
Mor(X € Y,Z) = Mor(Y,X @ 2),

the arrows

f+ld)_{@f°rxﬂldy

~ g»fﬁ@idz ° idxﬁg
are mutually inverse,
e Under the identification

Mor(Y @ X,2) = Mor(Y,2 @ X),



f+f@id_eoid @r,
X

g—ridzﬁr;zog@idx

are mutually inverse,

E.g.: VXe€0ObC

Mor (X,X) = Mor(e,X & X).

9.4 ILEMMA TIf

(X, xy Typ)
~ (X', 1y, Tp)
are canjugates for X, then
rkgid o id @ r! € Mor(X,X')
X i nr X
X X
is unitary.
PROOF Put

c
]

rk@id o id @ r!
X 2 3 X

- . —* 1 2
{ ldi-(' @rxorxﬁldi...).

Then the claim is that

U o U* = id

)—{t
U* o U= id .
X



And for this, it will be enough to consider U ¢ U*, So write

UoUx=x¥@id_ o id_ @z} o U*

X X

=r;‘{@ld>_z' ° (id}_{QE}'{oU*Qide)

=r§91d§'ou*@E}'<

=rf@id_ o (U* @ id o id_ @ ry)

X' X R X' X'
=r§@1di'

o (ry*@id o id @I, @id )

X X X8X
°1d}_{'ﬁf')'{

=r§®id}_{'

o (rg*@id_oid_ @r ®id _ edid _
X X' X QX XeX
°1d}_{'9§;{

=r§@idi'

o {rj*@id ®id o id @r,@id _
X XaX X XeX
° id Qf;{

=r;ﬁid_ or)'{*ﬁid_ﬁid
Xt X Xe X



oid_ @r @id _ eid @1y
x X & X' X'

[l

. * o vk o i
id, 2 (g 8 1d_'} ° re* @ id

X XexeXx
o id afxaid o id 95:’;{
X Xxax X

i

& * i
T @rxﬂld_

X 2
cid_ er, @2id _ oid_er)
X' XaxX X'
=rp*@id_ e id_ @ryeid
X' X'ex X!
cid er,eid _ °id ery
X’ Xex X!
=ry* @ id
X 2
° {id_ @r{@id oid er eid _)
X'ax X' X' XaXx
id @r}
[+ 21 X
= r'* @ id
X i|

o (id @ (id,Rr*) @id ¢ id @ (r, & id,)) @ id )
}‘E! ldX X )'_(1 3"{: X dX )-{I

e id @& r!
@ £



°o (id_ o id_ @ ((id @r¥ ®@id_ o (r, @ id,) @ id_)
Xt X dx X X X dx ﬁl

o (id_ @ ((id, @r¥) o (ry @ id))) @ id_ ° id_
X! Xt X'

1% 3 o (3 : : o 1 !
ro* & id_ (1d_‘ 2 id @ ld_') id @ Ty

X X! % % X

=re*eid e id_ °id 8 rg
X! Xte X X! X!
=r!'*@id oid @r!
X ig i' X
= id -
)'Zl

[Note: Evidently,

r'=(U@idX} ° Iy

r}'{= {idxﬁU) ° rx.]

Conjugates are therefore determined up to "unitary equivalence".

Put

szrﬁgidx"iding,X"rxﬁidX'



e € Mor (X,X)
is unitary and it can be verified by computation that the assignment X -+ Qx

defines a twist Q. This fact, however, is a trivial consequence of the following
result.

9.5 IEMMA V X € Ob C,
PROCF We have
(r;;a idx) ° (idX R rX) = ldx
On the other hand, there is a comwtative diagram

T

e,X
X=e@f X > XRe=X
rxﬁldx 1dxﬁrx
Xgxex >X@XQX,
T—
XexXx
80
- ) .
(rxﬂldx) o (1dxﬁrx)
=r* & i o T or, &
% @ Tex,x = %
=r*@id, o7 2id o id 7 o r, & id,.
X dX )-(,X dX % XX X ldX
and
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Il
o
[+]
=3
*
o]
t—l.
bé:.
[+]
-
'
B
’_l
>él

[Note: Therefore, in the temminolegy of §6, C is an even ribbon category.]

9.6 REMARK v f € Mor{X,X), the diagram

T—-
— x’X -
XX > X2 X
id ef f e id_
X X
Xex = >X8X
XX
camutes. Therefore
- i -
rxofﬁld_orx
X
= (7 "r)*cfﬁi_o(T o r,)
gx X T xx X
=rfe T o f@id o7 ° Ty
X, X X X,X
e * o5 g
ry ld_aforx.
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Maintaining the supposition that C has conjugates, recall that C is left

autonomous with left duality {i,r;{,fx) (cf. 9.2), thus by definition the cate-

gorical dimension of X is the arrow

— T _ *
Tx XX X
e > X 8 X > X 828X > e {cf. §6).
But
r. = T o r _,
X X,X X

s0 the categorical dimension of X is the composition

r* e T o T o r
X X, X X,X X

!

r}’z °ry € Mor (e,e)

dim X.

[Note: Since = id, v £ € Mor (X,X),

tr, (f) = r* o 7T ° @id o {(fRid ) o r
X X X,}_( Qx % 3 X
=rferT _cid _°e(ERid) o T_  eorxy
X, X XX X X, X
=rkoT _o(f@id) eT_ o°r
X 3% T xx £
wr}’ioid}_{@forx (cf. 9.6).]

N.B. dim X does not depend on the choice of a conjugate for ¥. Indeed, if
U:X > X' is unitary, then

(U R id) o r* o ((UEidy) o 1y

=r§°U*ﬁidxoUﬁidxorX
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X
;r*oid o T
X XgX X
= %

rxorx.

9.7 IEMMA TIf

(i,rx,fx) is a conjugate for X

(Y,rY,EY) is a conjugate for Y,

(Y @ X,r r

XY xey

is a conjugate for X @ Y, where

n

r

<Ry 1d_ﬁrxﬁldY°rY

Y

Hi
|

XQY—ldXﬁrYﬁldiorx.

[The proof that
Udy gv@Tg gy @ Oxgy®idgoy) =id gy

(id Rr: ) o (

NY: @ id ) = id
Tax X2Y

T
xey Tex Fax

will be left to the reader but we shall provide the verification that

T =T °or

X8y YaX,XQY xey
Thus write
T °or
TekXxey X2Y
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= T_ — o '['“ _ L o (Cf. 4.3).

xxevyeY¥ T,Xexey %Y
Then

T or
f,ieaxay *9°%

= id 8T o T °or
Teax T,y ¥,Xex X*8°Y

= id /T o T oid Qr 8 i o r
Xex Y,¥ ¥Xex ¥ X %y
= id_ 7 o ({r,Rid_eoT_ ) Rid, ¢ x
X@x Y,Y X" % Fe % ° Ty
= id RT_ °or,®id °ry
Teax ¥,¥ Tey

= id @1 or, @id °oid 8 r
Tex %,x X Tey e Y

= id R 1 e id_ B r, oIy
Tex Y,¥ Tex

= id & T or, or, =id Rr, *r,.
Tex ¥y <Y X Tax <Y X

Therefore

T ° r

Taxxey X8Y

= T o id Qr, or
gxevey %ex ¢ X

=T e id @& i ®r, or
IXRYRY % Vg @ Ty © Ty
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=1dX9rY®1}_{°rX=rXQY.]

For all X,Y € Ob C, the map

Mor (X,Y) + Mor(Y,X)
that sends £ to 'f is a linear bijection.
N.B. Here, as will be recalled from §5,

YE=ri@id_cid @feid_ o id_ T,

X Y X Y
Now put
£ = (YB)%,
thus
f'=id_RTkoid @f*Rid_or, @ id_
Y Y X X
and
+ [P
f € Mor(X,Y).
Properties:
1. id) = id s
X

2. (£ = (07,

3. (foq)t=f og.

9.8 ILEMMA Given f € Mor{X,Y), we have

+ i = 1 *
£ Q:deorxwldiﬂf orY.
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PROCF Start with the IHS and write

+ .
faldxorx
= (id_Qr*ocid @f*@id_ or,@id ) @id, o r
T X ¥ g Y% % ° Tx

it

+ “* L] * - - - - »
(1d§ﬁrxold§af Eldioryﬁld}_{) @(1dxo1dxo1dxl ° Ty

It

id erfeid - id e f*e@id @id °r, @id_ @ id, °r,.

Y Y X X
r, 2 id_ @ id, o r,
X
=r,. % id o id ® r
Y }-{QX [ X
= id Rr, or, @id
Teay * ¥ e

i

id £ id, & r_, ¢ r.
7 dY X

id§ﬂf*ﬁldigidx°1d§ﬁldYer°rY

=id_@iq 8T, cid @f*Rid o

T.
¥ T ¥

f+Qid.x°rx

= i e ; ; ; o 4 *
1d§ﬁrxﬂldx°ld§@ldxﬂrx 1d§ﬂf ° Iy,

= 4 b 3 ; *
1d§a (rxﬁldxoa.dXQrXOf) ° I,
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id§ﬁidX0f*orY

id_® f*¥ o r_.

g

9,9 REMARK Suppose that T € Mor(X,Y) satisfies the equation

. — 3 «
'I‘ﬁ:.dxorx id 8 f* o r..

3 Y
Then
T= £,
Proof:
+ . - . . .
£ =ld_9r§°ld_ﬁf*ﬁld_°ryﬁld_
Y ¥ X X
=1id_@rf o id_®@ £* o r, @ id_ o id_
Y Y X X
=id_@rf e T@®id, o r, @id_.
Y X
On the other hand,
T="T e id_

X

=Toid @r* cr @ id
X X X X

TRid o id_@r* o r, @ id_
e 3 X X X

id erfoeTeid _or,®id

Y XeX X

id_grkeToid @id_ °r @ id_

Y X X

id erteoTRid, °cr, @id_ o id
¥ % % x X X
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=id§95§o'1‘@idxorxﬂid}_{.

[Note: It is tws a corollary that if
id @ £* o r,, = Q,
v Y
thenf+=0,so

(£ =0 => (F)** =0 => f =0 => £ = 0.]

9.10 SCHOLIIM f' is the unique element of Mor (X,¥) such that
ffeid or,=id @f* o r

dX X 3 Y*

[Note: 'f is the unique element of Mor(¥,X) such that

. v - _ . -

J.dYﬁ f°rY"led}-(°rx’

80 f+ is the unigque element of Mor (X,Y) such that

F* ; t oo Tw * :
rYOJ.dYQf rXOf ﬂ:l.di.]

9.11 IEMMA Suppose that

F:C - FDHILB

is symretric and wnitary. Given X € Ob C, put

— - -1
Y, = (E_ ) o Fr, 9 £
FX %X X
r.. =T °or .
7T gy X

Then the triple (Ei,rFx,r ) is a conjugate for FX.
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PROCOF What we know is that

(id, @ r¥) o (EX 2 id,) = id,
(id @x* o (r, 2id ) = id ,
g X X % e

hence
F(id, @ r}) ° F(Ex @ id) = id,

F(id @ r¥*) o F(r, @ id )
g X X7y

i

ig

=)

and what we want to prove is that
(Adpy 8 ry) © (Fpy 8 ddgy) = idgy

(1d @ rx.) o (r,2id ) =id

<)

I ¢ FX
The ILHS of the first of these is the camposition
idg, @ £t o Fr¥ o =_
X,X
° 1 ° (5_ )-loFrxogﬁlde,
FX,FX X,X
F being unitary. Write
o = -1 o 5
T (£ ) Fry © & 8 1y

= oo @ ddgy © ddpy © ddpy © ddgy
, -1 .
=7 _ @id_ o (s ) @id_cFr @id_o° £®@id_.
%y ° o dpy © Fry 8 1dmy Urx

E'xf r
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Taking into account the commtative diagrams

e =efFX FX
a@idml
Fe @ FX > Fle 8 X)
“e,X
e, %
Fe & FX ' > Fle @ X)
Frxgldm{l F(r, & id,)
F(X @ X) 8 FX >FX2X8aX),
“igx,x

we have
Fry @ idgy © £ 8 1dpy

-1

= (H ) T e Fl(r,R1id)) o = e £ @ i
R e

-1 . .
= (8 ) o F(r, ® id)) o J.d]:.rJ
X @ X,X x %

This leaves

T @idg e (B )Th@dd o (5 )™ o Flry, @ id) o id.

FX,FX X,X X ® X,X

A
b'dH 1
>
'_I.
£
I

P(T o r £ id))
2x X dy

P(T @ id )} o FP(r, @ id ).
}?,X dx X dX
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Since F is symmetric, there is a commitative diagram

- top -
FX @ FX @ FX > F(X 8 X & X)
T_ 21 F(r_ &id)
FX,FX dFXI Z,X %
FX 8 FX @ FX >F(XeXex.
bttm
Here "top" is the composition
= 2 i
FX 8 FX 8 FX > F(X 2 X) @ FX
X 8 X,X _
> F(X 2 X & X)
and "bttm" is the camposition
g 2 i
] xx 2 ]
FX 8 FX @ FX > F(X & X) 8 FX
X R XX _
>F(X@XaX.
Therefore
g o I 2 i e T 81
XxeXX XX Orx FX,FX %
=F(7_ @1id) o Z E el
z,X % Tex,x XX %
=2
T gidg o (B id, © (2] )~
FX,FX Z,X Xe XX
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_ yLor(r. @ id)
X,% X 8 X,X %X

i
Gl
1R
;f_‘
L+
i

!

T @id ¢ (E_ g id,, ° (2 )_1°F(rxﬁidx}°id}_x
FX g

X X @& X,X

-1 . -]

) o P(T_ Bidx)OF(rxﬁidx)Oide

X,X X ® X,X X,X

I
—~
1l
=

]
[

=@ J)leid, o @ _)orE eid) o id,.

X, X X8 XX

Analogously,

= id, o Flid, @r}) o T _ o id, QE_ .
S0, in suwmary,
(dpy @ rf) © (5py @ 1dpy)
=ide°F(idX@r§)
o E oid ®E o (E ) @i o (5 )
oy 2% 0 G T8y e

X,X QX , X,X X 8 X,X

-]

F(Ex ] ldx) o id.E.xr

thus to finish, it need only be shown that

2 ° id., 8 =
X,XRX X,

-1

oz )Trgid o (2 _ )

X XX X8 XX

:id — -
FX2X8X)

This, however, follows from the commutative diagram
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FX 8 FX @ FX FX @ FX 8 FX
Ex,igidm , “rx 2 :}'{,x
FXxe X eFX FX @ F(X 8 X)
Exex,x \ 4 Ex,isx

FIX® X & X) FIX2X8X).

9.12 REMARK We have

- _ -1 -
r_,, = (E ) e Fr, o L.
FX X, % X
In fact, the RHS equals
- -1
(= ) o F71 o FJ:'X o &
X, X X,x
and there is a camwtative diagram
_ XX _
FX 8 FX > F(X 2 X)
T _ F1_
FX,FX %,x
FX @ FX > F(X 2 X).



§10. TANNAKIAN CATEGORIES

Iet C be a symmetric strict monoidal *—category which is essentially small —

then C is said to be tannakian if the following conditions are met:
T;: vVXYelb(,

dim Mor{X,Y) < o,

: C has subobjects, direct sums, and conjugates.
T3: C has a zero abject,

T,: e is irreducible.

10.1 REMARK A tannskian category is necessarily semisimple, hence is abelian.

10.2 FXAMPLE Let CPIGRP be the category whose objects are the compact
Bausdorff topological groups (in brief, the "compact groups") and whose morphisms
are the continuous homomorphisms. Given an object G in this category, let Rep G
be the category whose objects are the finite dimensional continuous wnitary repre-
sentations of G and whose morphisms are the intertwining operators —— then Rep G
is tannakian (define r and T by

rA=7\jE.eiﬁei

(AecC (=e)),

rl=7\j2-lei®ei

where {ei} c H is an orthonormal basis for the representation space and {éi} < H is



its conjugate). In particular: FDHIIB is tannakian (take G = {%}).
[Note: The construct Rep G is ammestic and transportable, so we can and will

assume that its monoidal structure is strict (cf. 3.12).1]

10.3 RAPPEL 2an additive functor F:A » B between abelian categories A and

B is exact if it preserves finite limits and finite colimits.

Accordingly, since a tannakian category is not only abelian but also autonomous,

¥ X € Ob ¢, the functors
— 8 X, thom(X,—)
X @ —, rhom(X,—)

are exact.
If C is tannakian, then e is irreducible and
dim:0b C + Mor(e,e)
has the following properties.

1. dim X = dim X.

2, dim{X @ Y) (dim X) (dim Y).

dim X + dim Y.

3. dim(XeY)
4, dime=1, dim 0 = 0.

10.4 IEMMA Ifxisnotazeroobject,tlmd:i:nx(=r§orx)21.

PROOF First, from the positivity of the involution, dim X > 0. But X @ X

contains e as a direct summand, thus

(d.i.mX)221=>dimX2l.



Note: IfdimX=1, thonX@Xze = X 2 X.]

Given X = 0 in Ob C, define

rgf:gn > At
as in 4.5.

N.B. ]TXn is a homomorphism from Sn to the wnitary group of Mor(X,X).

Put
" X_.
Symo—lde
B e,
X _ .
_Altoalde,
argd for n € N, put
Symx=~]~'7): ™ (a)
n n.g€5 n
n
X _1 X
Bt == I (sgn o) (o).
n nl iyl
oeg
_ n
Then
sy
are
n

are projections.



10.5 IEMMA We have

X
(a1t))

Ty

1
n!

(dim X} (dim X - 1)...(dim X -~ n + 1}.
PROOF The key preliminary is the observation that
_ gas #o
trxm(ﬂff(o)) = (@im )",
where #o is the mumber of cycles into which o decamposes, thus

@) = (sgn o) (d@im %) .

5|

Ty

T
crE.;fsn
But for every complex mumber z,

L (sqn 0)z' = z(z = 1)...(z - n + 1).

g E.Sn

10.6 THEOREM V¥ nonzerc X in 0b C,

dim X € N.
. x&i . X .
PROOF Iet An(x) be the subcbject of corresponding to Altn. Fix an
. X - X
isometry f:An(X) > such that £ o £% = Altn ~— then

X
(ALt )

Ty

tr  (f o £%)

X&l

= trAn(X) (£* o £) (cf. 6.3)



- tr. (4 )
a_ ) M x)

dimAn(X) 21 (cf. 10.4).

On the other hand, thanks to 10.5,

X
(A1)

o

is negative for some n € N unless dim X € N,

10.7 IEMMA 1et d = dim X —- then

dl

. _ X _ -
dlmAd(X) = trxﬁdAltd = = ],

=

The isomorphism class of Ad (X) is called the determinant of X (written det (X}).
Properties:
1, det(X) = det(X);

2, det(X ®Y) = det(X) @ det(¥Y);

e

3. det(X ® X} = e.




§11. FIBER FUNCTORS

Let C be a tannakian category -~ then a symmetric embedding functor

¥:C - FDHILB

is called a fiber functor.

E.g.: Take C = Rep G {cf. 10.2) — then the forgetful functor
U:Rep G > FDHIIB
is a fiber functor.

N.B. It is a nontrivial result that every tannakian category admits a fiber

functor {proof omitted).

11.1 EREMARK Let

F:C -+ FDHILB
be a fiber functor. Congider

Ao = ® B(FX,),
¥ ier, %

viewed as a subset of Nat(F,¥) ——- then the coinverse is the map S:A}. > A}. defined
by
Sla)y = Fd, @r¥) o id @ a}_{ 8 id. ° F(r, @ id),
matters being slightly imprecise in that the identification
FXRXRX) = FXQFX R FX
has been suppressed. It is not difficult to see that the equation defining S(OL)X

is independent of the choice (Ei,rx_,EX) of a conjugate for X and vV £ € Mor(X,Y),



the diagram
S(Ot)X
FX > FX
F£ Ff
FY > FY
S(a)Y

commites. Algebraically, S is linear and antimultiplicative. Moreover,

SO*OS°*=1dAF,
hence S is invertible.

[Note: There are various relations among A,e,S which, however, need not be
detailed. Still, despite appearances, in general (AF,L\,E,S) is not a Hopf
*—-glgebra but rather in the jargon of the trade is a "cocaommitative discrete

algebraic guantum group”.]

Write £T(C) for the full subcategory of

(c,ForrLs) ® 7

whose objects are the fiber functors —- then ff(C) is a groupoid (cf. 5.12).

11.2 THEOREM ff(C) is a transitive groupoid, i.e., if ;Fl,Fz are fiber

functors, then ?1,172 are isamorphic.

Definition: Given fiber fimctors Fl Fyy a unitary monoidal natural trans-

formation aiFy > F, is a monoidal natural transformation such that v X € 0b G,



&X:Fl}( -+ J"'2X
is unitary.
Write ££*(C) for the category whose objects are the fiber functors and

whose norphisms are the unitary monoidal natural transformations —— then ££*(C)

is a subcategory of ff(C).

11.3 THEORFM ff*{C) is a transitive groupoid, i.e., if Fl,}’z are fiber

functors, then :Fl,Fz are unitarily iscmorphic.

Obwiously,
11.3 => 11.2.
As for the proof of 11.3, there will be three steps.

Step 1: Construct a commitative unital #*-algebra A(Fl,}'z) whose dual space
is in a one-to-one correspondence with the natural transformations Fl + F.,, to wit:
Nat (F,,F,) <—> A(J-'l,Fz)*.
Step 2: Under this bijection, prove that the monoidal natural transformations
correspond to the nonzero multiplicative linear functionals on A(Fl,}'z) and the

mitary monoidal natural transformations correspond to the *-preserving multi-

plicative linear functionals on A(Fl,?z) .
Step 3: Establish that A(Fl,Fz) admits a C*-norm, thus is a pre-C*-algebra.
Therefore, since the structure space A(A(F ,F,)) of the C*—completion
X(;Fl,fz) of A(Fy.F,) is not empty, it follows that Mor(F,,f,) is also not empty,

from which 11.3.



[Note: Here, of course, Mor is camputed in FE*(C}).)

To fix notation, bear in mind that there are iscmorphisms

1 - 1
& e > Fle “X,Y'le g le + ?l(X 2 Y)
2.0 + Foe 2 FXQFY +F.(X@7Y)
_ e ¥ ' By, yiFX @ F )Y » Fy

subject to the conpatibility conditions emumerated in §2.

let AO(Fl,J-'z} be the complex vector space

® Mor (F X, F1X) -
X€EOC

Given X € Ob C and ¢ € I\dor(?zx,FlX) ; Write [X,cp]o for the element of AO(‘Fl,FZ)
that is ¢ at X and is zero elsewhere -— then Ao(Fl,FZ) is simply the comwlex
linear span of the [X,cp]o. Define a product in AO(F]_,:Fz) by stipulating that

[Xr[b]o ¢ [er]o = [Xa& Y:u]or

where u is the composition

-2 -1
(“X,Y)
3:2 X2y > 72)( 2 FZY
¢y
> F.X 8 F.Y
21
> Fl(x 2 Y.

11.4 IEMA AO(J’l,Fz) is associative,



11.5 IFVMA AO(F]_,FZ) is wnital.
PROCF Iet

_ 1 2. -1
lAG = [erE ° (g) ]0-

Then lA is the unit. E.g.: Consider
0

(%,01, + [e,8" o )71y = [Kulg,

the claim being that the composite

=2 )-l
X,e
FX=F,(XQe) > F X 8 Fe
sa e 7Y
> FlX 2 }'le
=1
“X,e

> Fl(X Re)= FlX

reduces to ¢ itself. 1To see this, recall that the camposition

iay x @ € L
1 “X,e

FX=FXg@e >FlX@Fle———> Fi(XRe) = FX

is the identity morphiam of :FlX and the composition

. 1
i 2 £ v
dy2X ,e

FX=FX@e > FX@Fe — > Fo(X@e) = FX

is the identity morphism of J-'ZX. Now write

-1 1 2,-1 =2 =1
e ® 08 (E 0 (£ o (5 )

Cia s 1,-1 1, 2,71, . 2, .
TGy o iy @ (EDT e 48 (6 0 ()T o idy L B E o idy



-1

. . . -1 1 2, -1 2 .
1d},lxo(1d?lxo¢o1d}_2xg(g ) o (£ o (£7) o £7) o;._d}_zx

il

idrlx ° ¢ 81id, ° idrzx N id}‘lx "o idrzx = ¢

let IO(Fl,fZ) be the complex linear span of the

[x'a ° sz]O - [Y’flf © a]of
where

f € Mr{X,¥), a € Mr (FZY,J-'lx).
Then 10(71,72) is an ideal in Ao(fl,Fz).
Denote by A(Fl,}'z) the quotient algebra
let
be the projection, and put

[Xr¢] = pr[xrd)]oo

11.6 EXAMPLE Iet f:X » X be an isomorphism -~ then

[X,4] = [X,Fyf o J‘—'lf_l o ¢

= -1 o

11.7 EAMPLE Let

b € Mor (F,y (X 8 X),F{ X & X)),



v *
X & X,J-'lrx ° Flrx o ]

= *
[e,J’]_rK o & o Fzr‘.:].
Note: We also hawve

X & X'Fl(rx ) r;i) o 0}

= [X@X,0 0 }’z(rX o r}"&)].]

11.8 REMARK Every A € A(:Fl,}’z) can be written as [X,¢] for a suitable

choice of X and ¢. Thus suppose that A= [ [Xi,cj)i] s, put X =@ Xi, and choose
i i

isometries Vi:xi + X such that E Vs o v*l = 1dx — then

EN
= *
a; = 65 © Fvk € Mor(F,X,F X,)
=
A=EF [Xif¢i]
1
= % [X.,$. ° id ]
i 11 TR
na *
jz_; {Xir¢i e Fz(vi ° Vi)]
= o *
= I [X;,a; @ F,v]

1" 1 1

]
1

[X:Flvi ° a.l

1



n

k [X,Fiv; o @5 ° Fovf

(X, LFpvy o 05 © Fpvil

[X,41,
where

P = f }'lvi ° d’i ° szf € rbr(sz,FlX) .
11.9 LEMMA A(Fl,f-'z) is commutative.
PROOF let

lx,dal0 (¢:F2X - J'-']_X)

¥4l (§:F,¥ > Fy¥)

be elements of AO(Fl,FZ) ~ then

X,dlg + [Y0]p= XRY,E oo p@b o (5 )70

!

(n the other hand,

[V, 0] - [X,6], = [Y@X,Ex _ o p @6 o (E2 )
0 0 Y, X -Y,X

and there is a comutative diagram

;
F ¥, F X
F,¥ @ FoX > FXQFY
L b2y
FY 8 FiX > FIX @ FY




Thus
'::l ':.'2 -1
_.Y'x ° lp g ¢ ° (HYPX)
-1 2
= x° 7 oY T ° (2
Y,X FlX,FlY FZY,J’zx Y, X
But there are also commitative diagrams
21
X,Y
J"lX e J’lY > Fl(x e Y)
TP X, FoY \ FiTx,y
FiY 8 F X > F (Y @ X)
=1
“¥,X
and
=2
Y, X
J-'ZY 2 3’2X > Fz (Y & X)
T F.T
FzY,sz 2°¥Y,X
FX RFY > F,(X @ Y).
-2
“X,Y
Thus
=F.T s ot o¢gwo(=2 y Lo For, .



10.

a=Ey°¢Rye (5:2{,3()‘1 Fa'y,x
Then
feMriXeY,YsX
and
a € Mor(F,(Y 2 X),F (X 8 V).
Moreover
¥yly - X915 = [¥Y @ X,F e al,.
Meanwhile
Falv,x ° Fax,y
= F0y,x ° x,¥
=Fldy g y)
=% xewn’
50
[X,91, « Y, %], = [X @& Y,a o F fl.
Therefore

[Xr¢]0 * [er]O - [erlo - [Xr¢]0 c IO(Fl'Fz)

=

And this implies that A(T-l,j’z) is commitative.



ll.

Given [X,¢],, choose a conjugate (i,rx,fxy for X and let
* = (¥ &
[Xr(blo [qu]]of

where ¢ is the composition

i _ taid .
3’2 =§1$_§F2 >2Fleg}'2
Flrx 8 id _ _
>F XX 8FK
=2 )t e id
X,X _ _
> FXQFXRFX
id @ ¢* @ id _ _
>FX@FXe
id @ 8% _
X, X _ -
» I-'lx ] TZ(X 2 X)
s Tk
id @ Fzrx _
> ?lX e er
id @ g%yt - _
FlX8e=FX

N.B. We have

8 ytgia _eorr,eid _oclgid
%,% 7 R 7% 7R
=@t e, et pia _
%X F X
=r f id _ {cf. 9.10)
X T E R
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and
id _e@EH T edd _@Foid g _
5 7 X FXTOXX
=id @) to F Ik o %
F.R X X
l r
=id _ @ rk (cf. 9.11).
FIX F X
Therefore
¢=3id @rt_oid @¢*@id eor,  ®id .
= 25 x _ s " Trx 2 =
7% 2 F X F X 1 F X
[Note: By definition, ¢ € MOr(F,X,F,X), so Yo € ¥or (F,X,7,%), where, as in
§5;
Yo=ep 4 @id _oid _@o@id _oid _@ng,
1 F X 7, X F,% F X 2
or still,
V’ —
= *
M BT S T BT L A
2 1 2 1
Therefore
5= ("pr*.]

Replacing o‘&,rx,?:x) by (}?‘,r}'{,f}‘() and using 9.4, one finds that
Er iy - [¥f Tt
Therefore the image of [X,¢)]8 in A(Fl,f'z) is independent. of the choice of a

conjugate for X.




13.

11,10 LeEMVB IO(Fl,Fz) ig »—invariant.
Consequently, *=A0(F1'F2) - AO (3’1,3-'2) induces a map *:A(Fl,}'z) - A(Fl,?'z) .
11.11 IEMMA A(J—'l,Fz) is a *-algebra.

Surmmary: A(Fl,}'z) is a commtative wunital x-algebra.

Accordingly, to carplete Step 1, it remains to constxuct an isomorphism

between A(Fl,?'z)* and Nat(?l,Fz) .
On general grounds,
AVF L F)* = T] Mor(F X,F,X)*.
0172 XEQh ¢ 2771
But the pairing
Pbr(F2X,FlX) X l\br(FlX,?zx) + C
that sends ¢ x ¥ to (¢ o ) is nondegenerate, thus

AF Fa*= T Mor(F.X,F.X).
oY 172 Xeoh ¢ 14772

On the other hand, Nat(Fl,Fz) consists of those elements

€ [ Mor(FX,FX
Xe0b C

such that v £ € Mor (X,Y),

F2f°QX=Q-YQFlff

and the dual of A(Fl,F2) is the subspace of AO(Fl,J-'z)* comprised of those elements

that vanish identically an IO(}']_,FZ) . To characterize the latter, take an



14,

o € TT bbr(FlX,J’-'zX)
XECb C

and suppose that v A € IO(F}_,J”z) '

<A,o> =0
or still,
<[X,a o sz]O - [Y,Flf o a]o,oP =0
for all
f e Mor{X,¥), ac Mor(J"zY,}'lX) .
Ive’

trj,lx(a o sz o cr.x) = trFlY(Flf o g o uY).

From the nondegeneracy of the trace, it then follows that
sz ° Oy = Ay © Flf,
implying thereby that

a € Nat(?l,sz .

11.12 IEMMA Under the bijection

the monoidal natural transformations correspond to the nonzero multiplicative

linear functicnals on A{T-l,}-'z) .
PROOF To say that a linear functional on A(J-'l,FZ) corresponding to an
® € Nat (Fl,}‘z) is multiplicative amounts to saying that

<[xr¢] . [lep] 10>
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= <[Xr¢] F1s <[Yf¢'] Ple g

for all

[X,61, (¥, 9] € A(F},Fy).

Since < —,0> is null on IO(Fl,FZ), it suffices t work upstairs, hence explicated

we have
trfl(x R Y) (E)lc,Y coBY e E?{,Y)dl ° % gy
"t x (o ot g o oy)
= tr,,lx gFlY((¢ ° o) 8 e ay))
S Hrxery@ @V e ooy
Therefore

N W B
ey Xy TXENC Vxy

the condition that o be monoidal.

[Note: Tacitly,

<l, ,a> =1
AO
or still,
<le,h o (E) M0 = 1
or still,
1 2.-1 _
tr;le(E s (E£7) ° ae) =1,

fram which the comutativity of the diagram
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11.13 IFMMA Under the bijection

Nat(]:lrj:z) <—> A(Fl:}rz}*r
the wmitary monoidal natural transformations correspond to the *-preserving non-
zero multiplicative linear functionals on A(J—'l ,Fz) .

PROOF Giwven [X,¢] € A(J’l,}'z), the claim is that

<[X,9]*,0> = <[X,¢] 0> (= <[X,$],0>* ...)
, _ -1
iff (1;& = oy -
From the definitions,

<[X,p},0> = tr}-lx(fb @ U‘x)

TRAT /@ = trg 1 (0% © of).

In the other direction,

<[X,¢]*,0> = <[X,$],0>

tr _(5 o )
FlX X

]
M
*

—oid g(aoa)or‘_
FX X X
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=rt °id. 8 (Boa)oT, .
FiX F X % F X
But
It o ¢*Qa_or
FoX g FX
=r* o ¢*Rid o i Qo or
FoX T ORR Fx 8% TR x
=r¥x o i Q4 o i a or (cf. 9.10)
FiX dle drlx z  FX
=T} _oi 8 (6 coa) or, .
Fx ° %x S 2
T.e.:
tr _(boa)=TE o0 ¢*Ra o T, ..
FIR g X g X
Proceeding, write
rk,od*Qa or
FZX - R F]_X

o (g o ogt oo Ba ot ) o Ep

~1 -

= prk * ;
rfzxoax@a}_{*:ax o ¢ gld_or}.x.
We then claim that
rx o Ra_=r}
}72){ DIX— 3 F. X
implying thereby that

- -1
tr (¢ o a) = tr, ° $¥)
F R z F XX

which, when combined with the initial cbservation, renders the contention of the



lemma manifest.

1s8.

From the commutative diagram

1
fi
?lng'l > Fl(X@X)
2 o 0
X = X | xeX
F X 8 F X ” > F,iXx 2 %)
_x,i
we see that
o, 8a_= (2 __loa _OEl_
X o X XeXx X
and from the commtative diagram
a —
. XeX _
J’l(XQX) >F2(XQX)
T %
Firg For%
Fle > er
o
e
we see that
F.r* o o =q_ ©° F.rk,
27X X@e 3 e 1™X
Recalling now that
- - 1 ~] = 1
Tr = (E ¢ F.r o E
J’lX % 1X
{cf. 9.12)
- 2 - 2
r = (E ° F,r, o ¢
:sz X, 2°X
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we have
r* ° 8 o
FoX Oy Z
=(E2)_1°sz§°: °(52._)100L _OElm
X X, XeX X
= e ea o
X/ X 1 494
=@ oo o FEre
XX
= &h ™ e FEr e st
X, X
_ ]-,_.'* ,
}'lX
as claimed.

The results embodied in 11.12 and 11.13 finish Step 2 of the program, which
leaves Step 3 to be dealt with.

Put

= & Mr{F X.,F.X.).
AJ-'l,J'-'z ier 27177174

1)

11.14 1EwR The linear map

‘{:A:F '}_.2 - A(Fl,f"z)

t+hat sends

b € Mor(F X, FiX.)

to [Xi,q;i] is an isomorphism of vector spaces.
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PROCF Fwvery A € A(J—'l,}‘z) is an [X,¢] {(cf. 11.8) and every [X,¢] is a sum
of elements [Xi,q;i] with Xy irreducible. Therefore Y is surjective. That Y is
injective is a consequence of the fact that

iz9=> M:)r(Xi,Xj) = {0}.

Ai = Y {Mor (FZXi:FlXi)).
Then there is a direct sum decomposition

A(F,,F.) = @& A,.
172 jer,. 1

13

Define a linear functional

w:A(J’ld’z) +~ C

by taking ittobezeroonf-‘\i ifidoesnotcorresgnndtoebutcmAe, let

wile,8]) = N1 o g o 2 € C.

11.15 IEMMA V A = 0, w(A*a) > 0.
PROOF Write

A=1I [X,9.],
i 1" 1

where the Xi are irreducible and distinct — then

iz3= w([xi,¢i]* . [Xj,cpj]) = 0.
In fact,

M:Jr(.e,xi <) xj) ~ IVbr(Xi,Xj} = {0} (cf. 9.3),
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S0 e is not a subobiject of ii ij. One can therefore assume that A = [X,¢] 2 0

with X irreducible. Recall now that
* = Qim X = n_i
rx o ry dim n}[lde (n}‘r € N).

This said, let

_ X X
px_ nx .
*x =
’Ihenpx pxand
rx°r§ rx"r;é
P, ® Py = a
X X Ny ny

=1ro'dor*
Ex A% ° Tx

I.e.:
Py € Mor(X @ X,X @ X)
is a projection. Write

Arp = [X,¢]* - [X,¢]

= [X,$] - [X,9]
- XexE oFe¢° (2 )7
X, X X,x
= Iigx,}'l(px) o Z- e 4@ ¢ o fEE )7
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+ [:T(ﬁX.Fl(idw Py) © Ef °©o g2 ¢ o (5_2_ !
Xex X,X X, X
= X @ X,F {p) o E- o g@¢ e (3 )7
X,X X, X

1 -1 - -2 =l
=—lefrte G2 o p@¢ e (55 )" oFr] (cf. 11.7)
ng ULX o Tgx X,x 2X

1 1,-1 -1 = -2 -1 2 1 2,-1
=" ((£7) TeFr¥oe (E e ¢d@¢o (B2 ) 7) e Fr, e E%[e L o (%) 7]
ng 1Ix %,x %, X 2°X

=1 o T & & o 1, 2,-1

..q(r;;lx ¢ R rrzx)[e,ﬁ (£7) 71

1 . 1 2, -1
=—(rf, ,eoid _8Q (o 9¢*) or, e, ¢ (£7) 7]

"k MY FRT FiX

1 1 2, -1

=— (9* o §) [E;E ° (E,» Y 1.

Ry

where
d=1d _R4¢* o r_ .
FiX Fix
Then

* o P22 > g,
when viewed as a constant, is nonnegative. But ¢ # 0 => ¢ 2 0. Proof: ¢ is

the unique element of Mor (Fz)_(,}'l}—() such that

- . .
g J.d.sz o IFZX :.dF - R ¢* o r}.lx (cf. 9.10),
1

So¢=0=>$=0

= (V¢)*=0=> (V¢)**=Om> ¢.—:0=>¢.=0-
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[Note: To justify the equation

$@por,  =1d _@ (¢ o ¢¥) °ox,
sz le le
write
$Q¢=3id _2¢° ¢ Qid, ..
. % x
Then
$@¢or, ,=id Q¢ 8 °or
T Yk © Ty x
=id Q¢ cid Q¢*F o r
= = = = FoX
le FlX 1
=id _oid _Q (o ¢*) e
FX FX Fx

=id & (¢ o §*) o r. ..l
F.% FiX
Given A,B € A(J’lffz) , let

<A,B> = p(A*B).

Then < , > equips A(Fl,:Fz) with the structure of a pre-Hilbert space w.r.t.
which the left multiplication operators

are continuous. Denoting by H(Fl,}'z) the Hilbert space completion of A(Fl,}'z),
it thus follows that A(FI,FZ) admits a faithful *-representation

hence A(Fl,l’z) admits a C*norm as claimed in Step 3.



§12, THE INTRINSIC GROUP

1et C be a tannakian category and suppose that
F:C - FDHILB

is a fiber functor — then its intrinsic group G’._. is the group of wmitary monoidal

natural transformations o:F -~ F, i.e., in the notation of 611,

G:F = Mor (F,F),

where Mor (F,F) is camputed in ££*(C).

50
G}. < XTEJ;b c U(FX) r
U{FX) the campact group of unitary operators FX - FX. 2and G:F is closed if
TT U(rFx)
Xeob C

is equipped with the product topology, thus GF is a compact group.

N.B. Define

ﬂx:G;, »> U{FX)
by TTX(O‘.) = oy = then

(ﬂx.?X) € Ob Rep GJ'-”

12.1 LEMMA 3 a faithful symmetric monoidal #-preserving functor

®:§+@G?suchﬂ1atUo¢=F,‘mere

UsRep GF + FDHILB

is the forgetful functor.



PROOF Define ¢ on objects by

X = (n,,FX)

and on morphisms £:X » Y by of = Ff (cf. 8.2) and take for £, E the corresponding
entities per F. To see that this makes sense for E say, one must check that
:X,Y is a morphism in Rep G}., viz.:

v ° (1yla) &8 myla)) = my o yla) o g,y

But this is obvious since the diagram

%,y
FX 8 FY > F{X @ Y)
“x@ayl l“xay
FX 8 FY > FIX @ Y)
X, Y

commutes. That ¢ is symmetric is equally clear.

More is true: ¢ is an equivalence of categories. Because ¢ is faithful, it

remaing to establish that ¢ is full and has a representative image (details below).

12.2 REMARK The category Repf 3 AJ_. is a semisimple symmetric monoidal

*—~category which can be shown to have conjugates, thus RePey A’_. is "almost"

tannakian. Specializing 8.14, it was pointed ocut in 8.16 that the "¢" defined

there is a symmetric moncidal equivalence C + RepE a A}.. Denote now by Repf a G}.

the category whose objects are the finite dimensional continucus representations



of GJ: and whose morphisms are the intertwining operators — then the inclusion

functor
2P Gp > RePeq G

is an equivalence. On the other hand, there is a canonical functor
ReDrg Ap = Repeq Gy

and it too is an equivalence (a nontrivial fact).

12.3 LEMMA If X € Ob C is irreducible, then the complex linear span of

the ‘ITX(OE,) o € G;) is dense in B{FX).

12.4 IEMMA If X,Y € Ob € are irreducible and nonisomorphic, then the camplex

linear span of the TTXfOL) ® 'er(OL) (a € GF) is dense in B{FX) ® B(FY).

12,5 REMARK If Xjr-e. X, are distinct elements of I, then the complex

Cf

linear span of the

Trxl(a} ORI ﬂxn(cx) (o € Gf)
is dense in

B(f%;) & --- ® B(FXn)-

To prove that ¢ is full, we shall appeal to 7.9.
(a) X irreducible => ®X irreducible. TIn fact, thanks to 12.3, the only

T £ B{F¥) that intertwine the Trx(o«,) {a € GF} are the scalar multiples of the identity.

(b} X,Y irreducible and nonisomorphic => ¢X,8Y irreducible and nonisamorphic.



For suppose that T:FX > FY intertwines my and 7y, thus Tr, (o) = T ()T (o € GF) .

But then Tu = vT for all u € B{FX), v € B(FY) {cf. 12.4). Now take u=0, v=1
to conclude that T = 0, hence §X,9Y are nonisamorphic.
The final claim is that ¢ has a representative image. To see this, consider

the map

defined by the rule

Then Yr is injective.

12.6 LEMMA Y is surjective.

PROOF The camplex linear span of the matrix elements of the Ty as i ranges

1

over IC is a unital *-subalgebra of C(GF) which separates the points of GF' thus

is dense in C{G}.) . Accordingly, there can be no irreducible cobject in Rep G}.

which is not wmitarily equivalent to a T for some 1, soO Y is surjective.
i

Therefore Vg is bijective and ¢ has a representative image.

12.7 REMARK Suppose that

F

1:C ~ FDHILB

Fzzg -+ FDHILB

are fiber functors —— then as objects of If*(C),F,,F, are isomorphic (cf. 11.3),



S0 G}_. 'G:F are igsamorphic (in the category CPTIGRP).
1 °2

let G be a carmpact group — then the forgetful functor
U:Rep G » FDHILB
is a fiber functor. Define a map I‘:G+GUbysexadingc € G to the string

{mw(g): (m,H ) € Ob Rep GI.

That this is meaningful follows upon noting that if
(my  H_ )
1 Ty

€ 0h Rep G,

('”'2 t H,n,z )

v TE mr((“l'ﬁwl) , (ﬂZ'Hﬂz))

there is a commutative diagram

4 (9)
H1T > H-rr
1l 1
T T
> '
T m
2 _n_2 () 2

thus the string

{r(o):(m,H ) € b Rep G}

defines an element



where techmically

a{0) (w,Hﬂ) = m{a).

12,8 IEMA T is a continuous injective homomorphism.

[This is immediate from the definitions.]

In fact, I is surjective, hence G and G, are iscomoyphic.
{If T were not surjective, replace G by I'G and think of G as a proper closed

subgroup of G, - then there would be an irreducible representation of Gy that

contains a nonzero vector invariant under G but not under GU' This, however, is
impossible:

Yu''Rep 6 7 "Rep G,

is bijective.]

12.9 THEOREM Up to isomorphism in CPIGRP, G is the "intrinsic group” of
Rep G.
[If
F:Rep G - FDHILB

is a fiker functor, then GF = Gy {cf. 12.7).]

12.10 REMARK Compact groups G,G' are said to be isocategorical if Rep G,

Rep G' are equivalent as monoidal categories. In general, this does not mean
that Rep G,Rep G' are equivalent as symmetric monoidal categories and G,G' may

very well be isocategorical but not iscmoxphic.



§13. CLASSICAL THEORY

A character of a commitative unital C*-algebra A is a nonzero homomorphism

weA »~ C of algebras. The set of all characters of A is called the structure space

of A and is denoted by A(A).

N.B. We have
AA) =@ (A= {0})

AfA) = 8 (A= {0}).

13.1 LEMMA Iet w € A(A) — then w is necessarily bounded. In fact,

Hm[[ = l=m(lA).

N.B. The elements of A(A) are the pure states of A, hence, in particular,

are s~homomorphisms: V A € A,

Given A € A, define
A:B(A) » C
by
;;(w) = w(A).
BEquip A(A) with the initial topology determined by the A, i.e., equip A(A) with
the relativised weak* topology.

13.2 ImiA AfA) is a compact Hausdorff space.



If X is a compact Hausdorff space, then C(X) equipped with the supremum norm

[1£]] = sup [£(x) |
REX

and involution
f*(x) = F(x)
is a commutative unital C*-algebra. Moreover, Vv x € X, the Dirac measure

:Sx € A(C()) and the arrow

X + A(C(X))

x> 9
X

is a homeomorphism.

13.3 IFEMMA A € C{A(A)) and the arrow

A + C{A(A))

~

A~ A

is a imital x—isomorphism.

N.B. If A= {0}, then A(A) = @ and there is exactly one map #§ - C, namely
the empty function (§ = § x C), which we shall take to be O.

Notation: Let CPTSP be the category whose objects are the campact Hausdorff
spaces and whose morphisms are the continuous functions.

Notation: Iet CCMINC*ALG be the category whose objects are the commitative
uital C*-algebras and whose morphisms are the unital *-homomorphisms.

Iet X and Y be compact Hausdorff spaces. Suppose that $:X - Y is a continwous
function — then ¢ induces a wnital *-homomorphism

$p*:C{Y) + C(X),



viz. ¢*(f) = £ o ¢. Therefore the association that sends X to C(X) defines a
cofunctor

C:CPTSP + COMUNC*ALG.

Iet A and B be commitative unital C*-algebras. Suppose that ¢:A -+ B is a

mital *-homomo ism — then ¢ induces a continucus function

@*:Q(B) > ﬁ(A)r
viz. d*{w) = w ¢ ¢. Therefore the association that sends A to A{A) defines a
cofunctor

A:COMUNC*ALG ~ CPTSP.

13.4 THREOREM The category CPTSP is coequivalent to the category COMUNC*AIG.

PROOF Define

EX:X > A{C(X))

by the rule Ex(x) = Gx — then £, is a homecmorphism and there is a commutative

X
diagram
Ex
X > A(C(X))
. l i -
Y — > A{C(Y)) .
:Y
Define

by the rule EA(A) = A — then EA is a unital *-isomorphism and there is a commtative



diagram
A
. —— .} ¥ Y .8 D
& J' l Dhk
B > C(A(B)}.
°B
Therefore
T id=z Ao
id = C = A

The category CPTSP has finite products with final object {%x}. Therefore the
category COMUNC*ALG has finite coproducts with initial object C. To explicate

the latter, invoke the nuclearity of the objects of COMUNC*RIG, thus

call it A @ B — then
AJ_|_5=AgB
and there are arrows

A+ AQB T B>ARB

A~>ARl, B~>1,@B.

13.5 EXAMPIE We have

c({*}) = C and C(X x Y)

u

C(X) & C(¥)

A(C) = {*x} and A(A R B)

114

A(A) x A(B).



13.6 EREMARK Let A be a commtative unital C*~-algebra — then the algebraic
tensor product A @ A can be viewed as an involutive subalgebra of A 8 A. Another
point is this: Since A 8 A is the coproduct, there is a canonical arrow

m

ARA >A with m(A ® B) = AB, i.e., the restriction of mto A 2 A is the
miltiplication in A,
[Note: If Al,AZ,B are commitative unital C*-algebras and if

@l:Al >+ B
_ @2:42 -+ B

are wnital *-homomorphisms, then the diagram

Al > Al ® AZ < Az
& l l o,
B
admits a mique filler
% 8 ¢2:Al R Az + B
such that
(0, 8 0,) () @A) = ¢, (A)O,(A) (A €A, Ay EA).]

13.7 RAPPEL 1Ilet C be a category with finite products and final object T —

then a group object in C consists of an object G and morphisms

wexGg+G, MiT G, 1:G~+G

such that the following diagrams commite:



uxidG
G xXG X G > G X G
G > G > G,
u
:Lden n><:|.dG
GxT > G X G T x G — G X G
- | R E
G G, G G,
L} t
G > T G > T
(1dG.1) l ln {1,1dG) l ln
GxXG@—m8 G, GxXG —— G.
M &

There are obviocus definitions of internal group hamomorphism G + G', composition
of intemal group homomorphisms G » G', G' »~ G'', and the identity internal grouwp

homomorphism idG:G + G. Accordingly, there is a category GRP(C) whose objects are

the group objects in C and whose morphisms are the internal group homomorphisms.
[Note: If instead C is a category with finite coproducts and initial object
I, then we put

cocre(c) = Gre(c )T

and call the objects the cogroup objects in C and the morphisms the internal co-

group homomorphisms. ]

13.8 EXAMPIE Take C = SET — then

GRP (SET) = GRP.




13.9 ILFMMA Ve have

GRP {CPTSP) = CPIGRP.

13.10 REMARK The forgetful functor

CPTGRP - SET

has a left ad pint. Proof: Given a set X, equip it with the discrete topology,

form the associated free topological group Fgr {X), and consider its Bohr compact-

ification.

A commutative Hopf C*-glgebra is commitative unital C*~algebra H together

with unital *-homomorphisms

AMH>H®H, e:zH>(, S:H~H

for which the following diagrams commite:

A
H >H®H
L\l lingﬁ
HQH >HRHRH,
5@ id,
H H H
Al [ml ﬂl lmz
HeH >HeC, HQH > C @ H,



(idH,S) € (S,idH)

H2H«< H, H&2Hc< H.

[Note: Such an H is not necessarily a Hopf algebra (in general, A takes
values in H @ H rather than H & H).]

N.B. Consider, e.q., (idH,S) -— then in terms of the coproduct diagram

>H&8H ¢«——H,

(id,S):H @ H ~ H

is characterized by the condition that

:ﬁ;;

(idH,S)nin1
_ (id,,S) ° in, = S,
n the other hand, there is an arrow
id; @S:HsH>HRH

characterized by the condition that

- idHaSo:i.nl

i1
5
EEJ

(cf. 13.6).

it
E-

idHQSo:in2

2nd

mo id @S = (iq,s).



mOidHQSoinl=moinloidH=idH°idH=idH

m e ingSOin2=moin2oS=idHos=S.

Denote by COMHOPFC*ALG the category whose objects are the commutative Hopf

C*-algebras and whose morphisns £:H +~ H' are the unital *homomorphisms such that

fRf e A=A o f, e=¢" 0o f, fos5=35" of,

13.11 LEMMA We have

COGRP (COMUNC*ALG) = COMHOPFC*ALG.

Iet G be a compact group — then the group operations in G induce operations
A, £, 8 in C{G) w.r.t. which C(G) acquires the structure of a conmmtative Hopf
C*-algebra. And the association that sends G to C(G) defines a cofunctor

C:CPTGRP + COMHOPFC*ALG.

Let H be a comutative Hopf C*-algebra -— then the cogroup operations in H
induce operations u, n, 1 in A(H) w.r.t. which A(H) acquires the structure of a
compact group. BAnd the association that sends H to A(H) defines a cofunctor

A:COMHOPFC*ALG » CPTGRP.

13.12 THEOREM The category CPTGRP is coequivalent to the category

COMHOPFC*AIG (cf. 13.4).

13.13 RAPPEL Given a compact qroup G, let A{G) be its set of representative
functions -- then A(G) is a unital sx—subalgebra of C(G) and when endowed with the




10,

restrictions of 4, €, S forms a commutative Hopf *-algebra.

[Note: Recall that A(G) is dense in C(G).]

* Iet A{A(G)) be the set of nonzero multiplicative linear functicnals
on A(G).

* Iet A*(A(G)) be the set of »-preserving nonzero multiplicative linear

functionals on A(G).
Then
A*(A{G)) = AAG))
and the containment is proper in general.
BEquip A(A(G)) {(and hence A*(A(G))) with the topology of pointwise convergence

and introduce the following operations:

. _ o Ae fi4 e o

{1) (ml-mz) = (wl gmz) Ay {31) lA(G) =¢g; {d1i) w "= w e S,
Then A{A(G)) is 2 group containing A*(A(G)) as a subgroup {(in this connection,
note that A{(f*) = A(£)* and S{£f*) = S(f)*).

13.14 ILEMMA A*(A(G)) is a compact group.

13.15 THECOREM Define

ev:G >+ A*(A(G))

evic) = (SG (6U(f) = f{o}).

Then ev is an isomorphism in CPTGRP.




11.

Iet

U:Rep G - FDHILB

be the forgetful functor.

12.16 LEMMA The arrow
o:A(U, 1) - A(G)
that sends [Hﬁ,d,‘a] (¢:H1T - HTT) to the representative fimction
o + tr{m{a)¢) o € @)
is a linear bijecticn.
[Note: 'This can be sharpened in that A(U,U) carries a cancnical Hopf algebra

structure which is preserved by p, i.e., p ig an isomorphisn of Hopf algebras.]
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