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The Wightman Axioms To minimize the technicalities, I'll start

with the simplest case.

[Note: We assume throughout that c¢=1 and KH=1.]

Data:
(1) A separable Hilbert space ¢ ;

(2) A unitary representation U of 61 on ¢ ;

(3) A G’I - invariant dense linear subspace o2 < o¥ ;
(4) A G’f - equivariant linear map & : Af(j{l) —> End O ;
(5) A @I - invariant unit vector QO €} .

Remark: The action of G’I-on End of) is by conjugation, so the

equivariance requirement on (¢ is that ¥V £ € *fﬂﬁf)'

L
_1 _
UOAa) QOUAE) T = @E, ),
where
£ (x) = £( N tix-a)).
A.a
[Note: By definition, ((A,a)-£)(x) = £((A,a) *-x) =

f((AT, - Nlayex) = s(AIx -ATla) = g A (x-a)) .1

This data is said to constitute a neutral scalar guantum field

theory (QFT)if the following assumptions are satisfied.

Wl: The support of the spectral measure E associated with the

restriction of U to R4 ﬁsi;} » R4 is positive, i.e., spt E is contained
g Wy ————

. . -— _ 2_2 2

in the closed forward light cone V_ {( = i(pOKﬁ)' 90;30, P =py <P '20} ).

[Note: By Stone, 71 four commuting selfadjoint operators EA‘ such

that U(I,a) = exp(V¥Y-1 (agPy —ayP; -a,P, -a;3P,y)) Y a, thus



2.

' Y-T(a,p, -a-p) -
{x,U(1,a)y 7= [ e 070 e d(X:EpY} erY’EH-
4
R

One calls P0 the hamiltonian and P=(P1,P2,P3) the momentum. It follows

from Wl that PO is a positive operator. The same is true of

2 2

MY = pg - (pi + P, + Pg), so it makes sense to form M = (Mz)l/zr

the mass.]

L . . . : .
W2: The space of 6’+ - invariants in 3{ is 1-dimensional.

[Note: Therefore 510 (the vacuum)is unique up to phase. 1In

this connection, observe that W2 is implied by the condition:
dim ixé P :U(I,a)x=x VYa } =1, For suppose that x&&(’ has the stated
property -- then so does U(A,0)x (since U(I,a) U(N,0)x = U(A ,0)
U(I,l\"la)x = U(A ,0)x). But the only one dimensional unitary
representation of £ I is the identity representation, hence U{ A,a)x =
U(I,a) U{AN,0)x = x.)

wi: Ve €. 4@ b,

d3 < _D.O_I..n_&_&(f)*

and
@ 1= @d.
[Note: Therefore ( (the field map) sends the real valued elements
of ;J(Ef) to symmetric operators on g . Incidentally, it is tempting
to conjecture that for real £, &i(f) is essentially selfadjoint but

this turns out to ke false.]

Wa: ¥ x,y €0, the assignment

£ —r {x, W)y D

is continuous.



{Note: Otherwise said, {x, «w(?)y ) is a tempered distribution.
Wt

From this, one can deduce that YV x € o@ . the map

A®H — ¥
£ — @ (f)x
is continucus.]

W5: The set of all finite linear combinations (€. )--- @(f )S2
— A% 1 o, n 0

is dense in }f .

{Note: 1Interpret the empty product as the identity so as to
include §20. By the way, it can be shown {Reeh-Schlieder) that for
any nonempty open set C;C:if, the set of all finite linear combinations

@ (fl)...gg(fn)ﬂo ig densge in}?, where now spt fj _ g Y .l
Ww6: If the supports of f,q9 € 4}(53) are spacelike separated, then

[fﬁpf), K (g)1=0.

[Note: This is a crucial assumption. Roughly speaking, the
idea is that measurements of field components at points which are
separated by a spacelike interval are independent, i.e., neither can
effect the result of the other. To account for a "fundamental length"
one could weaken W6 to [ Q(f), & (g)1=0 if (x-y)2< -4% (x espt £,

y €spt g). However, nothing is gained in so doing: The condition
actually implies W6! So, to essentially weaken W6, the commutator
must be allowed to be different from zero at spacelike distances.]

Here is a final point. By definition, the field map has for its
domain the Schwartz space onv§4. Can one instead define it directly

4

on R°? In other words, does'a a function &5;34-—3 End¢f3 such that

@ (£)

|

J‘ f{x)w(x)dx? We shall show later that the answer is "no".
4 Vg
R

e,



Example The free relativistic particle of spin zero and mass
m7” 0 carries the structure of a neutral scalar QFT. To see this,
one first has to specify the data, i.e., items (l)-(5).

(m)

Recall that 3 an irreducible unitary representation U of

4+ 2
G 4 on L (Xm,ﬁm) , where

= 4, 2 _ .2 _ = 2
Xm_ {Peva'v p0>0, P = po VE"E"‘m ]!

and
2 2.1/2
f({m™ + )
fd/ux = J’ ._—_J;E_l_ﬁﬂ) dp dp dp R
£ m 5 (m2 + lpiz)l 1772773
m R hiad
w
Here
{m) V-1 (agp, - 2-p) -1
(U (A,a)E)(p) = e R 3 O ANI < T
Moreover
U(m)(I,a) = EEE('Y—l'(aOPO - alPl —a2P2 —a3P3)),
50

(2,£) () = Vrlaipl® £(p) & (,€) (p) = By £(p).

Notation: Given f € afg54), put

~ . ¥-1{pyxy = P %)
fip) = — e £{x)d=x
(2 V) 4
R

. 4 2
and define a map Em: Af&g\}—ﬂb'L (XmﬂAAm) by
~
Ef= Va2 £ |x.
m m

Ad(l): Take:&n:&(the symmetric Fock space over L2(th/am},



i.e., let
2
H = azs (L (Xm’/Mm))'

Ad{2): To specify U, it suffices to note that ¥V (A\,a) € (63 * ’

U(m)(/\,a) = U(m)(l\,a)®-”®U(m)(A,a) {(n factors)

is a unitary operator on L (X ,/«m)n s {(conventionally the identity
if n=0). The elements of L (X ’/“m)n g are, of course, the square
integrable functions on me(---)(Xm (n factors) which are symmetric

under permutation of their arguments, the inner product being

: n
{f, gy = 5 .o S. f(xl,...,xn) g(xl,...,xn) 1;T d/“m .

Xm Xm

{m)
U (@) E) (Ryreenh X))

n
- exp( V1 > Canxy Y £ Nl A0
5=1

d(3): Take for &9the subspace of algebraic tensors, i.e., let

L =0y
Ad (4

b ]

): Define the field map by

@ (£) = . (B Ref) + V-T B, (E Imf),

m
where @S is the Segal field operator. It is easy to check @I—equi-

variance. Thus suppose that f is real -- then

TTw™ (A2 @ (8 TT™ (A,an™t

= TTw™ (ALa0) Be o TT'™ (Aan™



(U(m)

§s
P_(E £ )

S m h,a

(N,2)E £)

= &gm(fj\,a)'

Ad(5): Take for (), the vacuum 11,0,...%.

We now have to verify assumptions W1-W6.
Ad Wl: From the definitions,

Y -1 (aop0 - g*p)

< £, p(m (I,a)f > = J e - lf(p))2 e (P).
X

m

But a is a @ I—invariant measure on R4 with support in ch:V+, hence

Vs

2
a<£,E £ =@ anm_(p).
P m
This settles the case n=1. The general case is similar but compu-

tationally more involved.

Ad W2: Trivially, ja()_o is G’f -invariant. On the other hand,

no nonzero vector in L2(thﬁam) is C?tfinvariant (U(m) ig irreducible).
f L . - . T . .

In addition, no nonzero vector in L2(X AN is § -invariant.

: m m'n,s +

To see this, let us assume that

Urtxm) (I,a)f=f Ya.

n
Given (xl,...,xn) exmx cee X X (n factors), Ja: exp( V-1 jél (a,yj.)) -1

is not zero for all (yl,...,yn) in some neighborhood of (xl,...,xn},
hence £=0 a.e. on this neighborhocod. Therefore f is locally 0 a.e.,
so £ is 0 a.e.

Ad W3: Suppose first that f is real. Since Eﬁs of anvthing is
symmetric,

L < Dom

g (8>




and
* =
@ (B)x] D =@ (D).
Next, write f=Re f <+ wa Im f -- then
* = - *
& (f) ( B (ERe £) + V-1 B (E Im £))
and a@ is contained in the domain of the operator on the right. Finally,
*
@ (H* 1D

= P Re £)* D - V-T P (e Im £)* |

P (E Re £) + V-1 7§S(Em(—_;_m £))

K (6).

Ad W4: Suppose that fk —7 £ in ,yP(R4), with £ realV k -- then

. 2 >
— E;\f in L (Xm'/“m)' hence v Y& o@ ,

k

PN
Em fk

T EEIY 7 B(E Y,
so Ve LD,
dr @uifP ¥y — (P e Oy .
ad W5: Modulo the fact that the range of Em is dense in LZ(Xm,/Am),

this is just a restatement of a property of EES.

Ad W6: Assuming that the supports of f and g are spacelike

separated, it suffices to establish that
[ﬁm(f)'v(‘fm(g”=o'
But when £ and g are real,
[gm(f). &gm(g)] = [ §S(Emf)’ §S(Emg)]

= V-1'1in <Ef, E9>



where

-.—._

Tr f (f(p)g(p) - f(p)gtp)) dan, (P)
X
m
}' 1 O (x-y) £(x)gly)dxdy,
YV -1
vfi4 24
_ ~Y-T(pya,-p-a)
[}H“a) - __E_llj‘ .J (e 0 O“A»h
2(277)
X
m V—l'(po 0P a)
- )Q/Am(P)-

It will be shown below that

hence

spt N <=V, uV_,

| ) ,
O =) A0 =(xgmyg) S - Z(x, -y, )7 2 0.

On the other hand,

s0

xespt £
- 2 2
=y (%gmy) " - Z(x -y )7 <0,

A
yespt g

j’ J. [%n(x-y) f(x)g(y)dxdy=0.

Observation: VY f € Afggf),

¢ ((D?+nde =0 ( 0% 2

[In fact,



/\ A
(0% + o)) = -(pg - p'p - m)E(R)

i

= E_ (1% +n’)f) = 0.]
Remark: Lsnlis the unique distribution satisfying the equation

2 2 _
(3 +m) D=0

with Cauchy data

A_(0,x)=0, 2 A_(t,%) = Sx).
- 2t ™ le=0 .

It can be expressed in terms of Bessel functions. One has

AN _(=x) = - A _(x)

m m
4
and Y /\Eo(+,
O AX) = O (x).
) v}
For a spacelike x, 1 A€ 4-+: NAx = -x, thus
Lo (x) =B (Ax) = b _(-x) = - L (x),
which implies that
spt A_CV, UV_ .

In what follows, the neutral scalar QFT constructed above will

be referred to as the free QFT of mass m>0.

Let us now consider this setup from the traditional point of

view.

Working in %FS(L2£§3)), let Aa be the dense linear subspace

o



consisting of those strings ¥ = {'?’, V&,... } such that ‘¥n ew%P(R3n)
Y n and \]—’n=0 (n > 0).

3 a(p)
Given pevfi , define operators { ™ on o@ by
bt o
e

(}3) "t})
V¥ n+l 1Pn+l ag,xl,...,xn)

i

(alp) ¥ ), (Ryrenerx))

n
A8
Z Sp-xy) Y, (XyseneaXypennry)

1
¥n 3=1 ‘

(gﬂ(‘g)lv Yy Byseearx))

[Note: The physical interpretation is that a(p) and ﬁ(p)

annihilate and create particles of rest mass m, momentum p, and energy

2 2
E =V + .
o m !Pl 1

Properties:
(1) a(p)* = c(p}) & c(p)* = al(p);
(2} [a{p), al(q)] = 0 & [e(p), c(q)] = 0;
W e, o — A
(3) [alp), c(@] = S(p-q)-I.
Remark: The number operator N is given by the expression
3
‘[ el )a(\g)d P-
J§3
E.g.: Suppose that ‘P(xl,xz) = ‘P{xz,xl) ~— then N Y = Z‘P . On the
other hand,

j c(p) (a(p) YY) (xl,xz)d3p
R3

N

LY 1 { .3
—— Jlp-x,) (a(PM ¥ ) (x,) + — S(p-x%,) (alp)V¥ ) (x )}d p
3{\’ 2‘ [ l i e q 2 '\/2| . 2 T e l

gw‘——-—\

- 3—;—_,; §(p=xy) [VZ Y(p,x,)1a%
R



1 3
+ J; v Sp-x,) [V2' W(E,xl)]dp

X

Yixg oxy) + Wiy ,x))

= 2 1P(X1'X2)'
a(f)
Given f €'4f(R3), define operators < ™ on dj by
-~ S(E) A

a(f) alp) £(p) a’p
W, 3 ) Ly

1
f g Sy

clf) = s £(p) a’p.

3

R o

) S,

Remark: These definitions are formally consistent with the usual

agreements. Thus

(@(E) ¥ ) (xy,eennx)) = s

= Y n+l [ 4’n+l(p,xl,...,xn) f p)d3p

and

M

n .
1 3
S z Ua S(B"Xj’f(f’)dp]q’n-l(xl““"‘j'“

R

e

s

n
_ 1
- = T RGO W e Ry ex)

1 X



Note too that

[a{f),clg)] = 5 g [Efp),E(q)]f(p)g(q)ddeBq
B r

- j f §tp-a) £ (p) g (91 a’pa’q

= <f,g>-I.

The free Klein-Gordon field of mass m> 0 at time t=0 is the

oparator
V 1 Xep -V-1 x- d3
P (x) = —-———7— — i a(p) + e XP c{p)) —= P ’
&f
where
-
M%EE) = \/mz + ijz .
Its conjugate is the operator
V-1 V-1 x-p -V-1 x- ~(p)
Ma® =37z | o =R a@ ve 7T AT e =
v§3

Properties:

1) Zaw* - Fye ¢ Tuoo* = T 005

Yo [V | | R,

(2) [P 6, F (V] =08 TT (x), TT (1 = 0;

mm M
(3) [@ 2 Tl = Y-T S(ﬁ—g)-z.

[Note: To check the third property, it is necessary to examine



10.

Q
+ +
L Ch
aw ...n.“\m
R ".v‘
W_ §
PG
2 o
1
e
nlllll-J...JRw

or still,

CE Gy
0f o
B o
LAY oy
o >y

Z
-1

Aty

V=T x
- v —]_ M}E.P +

e
-2

or still,

ﬁw
oy 2
29 v
o o
o >
B ﬂm
—
0 "
| Qi
£y %5
®¥ wH
—~
& ,
) o
R e B 24 ™M

or still,

or still,

or still,



11.

as claimed.]

In general, the free Klein-Gordon field of mass m >0 at time t

is the operator

1 =~ V-T' (m(p)t - x-p)
Tolex = —p j e =TT aw
(27)
\53
V-1(m(p)t - x-p) a3
+ e - - ‘S}p)] - 15 .

V 2 m(p)
[Note: The exponentials

+ V-1 (A (p)t -\3_{:};_))

e

are solutions to the Klein-Gordon equation, i.e.,
2 2 i"v-l - e
(T1° + %) e = 0.]
To calculate

{E?In(ttf)’ 3?

it is convenient to introduce

, . — + V=T x-p . + V-l'/«(\g)t 5
A_'_ (t,x;m™) = - - 3 e - d P
- s 2{(2T) A (p)
R3

the integrals being Fourier transforms of tempered distributions.

Since

- ¥-1 (tp, - x.p)
N L

(v 3
22) VT (tpy - xp)
e

e,

XN - Yam (p)



12,

v-T J’ o -1 (am(p)t - x-p)
=2 — e W e e

2(27)°
R3 v-_l
[P, -1 (/“‘\(P)t - X'p) 3
- a b T - ) -—-——R—d
»~ (p)
it follows that
2 2
b-\m(truf} = A+ (t'\i;m ) + A__ (tfﬁ?m ).
0f course,
2
N (E,xm7) = - £l+_(~t.~x;m }.
- W,
LEMMA We have
R LR
] r — l - [ ] - [ ]
[P, o (e,x)] = = Dplemttoxexn.

[The verification is straightforward symbhol pushing.]

The assignment f —> Jf, where

(g (p) = ELHR)P)

v Vou(p)’
e
defines an isometric isomorphism
2 2,.3
LY (X rpa) = LT(RT)

which by functoriality extends to an isometric isomorphism

fr—

T i om0 = Tt ).

For short, call it J (rather than T1J).




13.

Everything can then be transferred over to R3. In particular:
Ay

1

a(Jf) Ja(f)J
AN -y 2
(f €L (X ypq)) -

1

C(IE) = Jc(£)T

Now write

1 -¥-1 (_/M(p)x0 - X+p)
§ (x} = 372 [ e A bl a (o)
v- m (2T ) v
ff
+ e - v e(p)) — B
Y 244(p)
Claim: Y £ € /(f(jjé‘):
\'EP. m(f) = j f(x)&g m(X)dx,
éf
where
I |
Q@ (x) =3 ggln(x)J.
Thus take f real -- then
j f(X)é!m(x)dx
5}
= Y2 5t (a2 o” ¥ HimipiEy xR a’p
Y 2 (27 ) J
3 24 s (p)
R
- T VT ap)x, -x-p) 3
4+ Y2n -l ¢ (p) (—my e T S exyan) 2B g
Y72 W (277) V A (p)

4 o



14,

d3p) J

(It x )7

M
= _lgjL J—l { a(p) f(~(p),.p}
Y2’ e V.o (p)
3 [,
R
. I~
+ _@ J_l ( c(p) £~ (R) )
V2 haslhe A (p)
33_3
= Y28 51 a(p) Jf(p) a’p) J
V7 2 Il
\53
y Y20 57 clp) JE(p) a’p) 3
VT T
jf
= V2w -1 _,.» Tn -1
I T a(JE X )T + J
V 2 - m v2.
- %? (57 a(oE )3 + 371 (3 _£)a]
= 1. {a(E f) + c(E_£)]
\f—i" N, m P | ||
= P, (B D)
= Q@ ().

0f course, we could have worked from the beginning on Xm.

1

1

:ﬁ m(x) =

take £ real -- then

(27)

X

-+

- V-—f <prx>
373 j [ e

"’ V-1 <{p,x)
e

where now a(p) & &(p) are defined directly on Xm.

Indeed,

(p)

a
VA

ﬁ(p}] d/um(p) '

To confirm this,



j‘ f(x)\iﬂm(x)dx

~E4
) = -1 <Prx>
27T 1
= ( a(p) ( e f(x)dx) & (p)
v j‘ w2y ? J M
4
X, R
1 V-1 {pP.,x)
+ c(p) —— ( e f(x)dx) d o (p) )
(2T)
X r?
m w—
Vi 2
= { a(p) £(p) 4 (p)
vz S /m
X
m
P
f c@) £(p) dm_(p) )
X
=20 ae |k o+ etf Jx)
rz—l - m [ m
=L a(E £) + c(E £))
v_l
= 3§ (E_£)
= Q& (f).

Remark: The definition of the pointwise creation operator

utilizes the & -function on Xm:

d (p-a) = py S(p-q).

St M,



16.

To check this, simply note that

j £(p) & (p—q)d/««m(p)

X
m

3
J' £( (D) D) A (p) § (p-q) 3P

R3 .

-

"

f{A(g) ,q)

flq).




Correlation Functions We shall continue to work with a fixed

neutral scalar QFT.
n m
Rappel (Schwartz Kernel Theorem}: Let B: %F(R ) X {f(R } —> C
W Wana Wirw
be a separately continuous bilinear functional -~ then there is a

m

unique tempered distribution T on‘53+ such that

B(frg) = <Trf Xg >

for all £ € q}’(\g‘“), g € m()(&l;ﬂ)_
[Note: Here

(£ xg)(xy,renen,x 1)

n+m

= f(xl,...,xn)g(x ).

- & & X
n+l’ “n+m

Therefore, ¥ n 11,'3! tempered distribution'bfn on\Efn such that
U, (£ %eee xE ) = <Ko, @ED) - QE) 20>

One calls bJ# the ngh correlation function of the theory.

[Note: Another name forlbfn is the n-point function. Conventionally,

w0=1.1

Since

(QorQglE, V247

(Lo, BEALR) WA, Q>

<uth,a ™t Qg DHUA2T >
= <QO, WYKo,

it follows that'LJn is 63:‘—invariant:

(Aa)- W =W, V(A



In particular, using symbolic notation, Y a,

145n(x1+a....,xn+a) =?&fn(xl,...,xn).

This means thatla a tempered distribution Wn on\Bfn"4 such that

-X_).

1¢Sn(x1,...,xn) = WXy =Xy, ey X =X

I.e.: V £ € ,Jt?(ﬁqn)r
<W ., £) = L LW rE gy > ax,
R

where
Eay (Sqreeer T pp)
= f£(x,x- ?lrx_ El_ Ezrt-orx- }l_"'-gn_l)o

[Note: W is J:I -invariant: V A EJI,

Wn(/\ -gl,..-: N ?n_l) = Wn(?lf--orEnﬂl)']

~ —_ —
LEMMA The support of W_ is contained in V, X .+« XV, (n-1 factors).
A n + +

[Note: I have chosen the plus sign in the definition of Fourier
transform. It is not difficult to see that

A
WS [ (Pyreeeipy)

=(2T‘? & ( %_p)‘{l\ (py /P, +p P 4Patecetp. ).
2 P37 PP TR BrTRD n-1’"

Remark: In general, if T is a tempered distribution onlgfn_4
Fal — —— -
with spt T C:V+><-~-X‘V+ (n-1 factors), then T§é0 =£?spt Tﬁgfn 4.



Taking T=W,, it follows that there are just two possibilities:

_ _oin-4
(1) W, = 0; (2) spt Wn_& .

Much is known about the correlation functions but I shall omit
the specifics here (it is a chapter in the theory of several complex
variables). One consequence of these investigations is the following

central result.

THEOREM For all (% (X )€ R4n,
A n

et

1;000

Tafn(xl,...,xn) ='UJn(-xn,...,exl).

Notation: Given f € xf)(ﬁl), let
- . _ n
TN £(x) = F(-x) (XG\E{A).

Write

M=
|

= Q(£)) -0 Q(E)

B = \f:g(gl)-“ &g(gm)
and
A' = é&(TTfl)... £§‘TTfn)

B' = @ (Tgy)--- @(T7g,) -

s

LEMMA We have
N ey

{BCL,A82,> = (A'QO,B'QO> .

[This is a formal consequence of the theorem. E.g.:



< ui@ g QHQ >
= <QO: Qig)* v(.g‘(f)_(')_0>
=<£2,, @@ «H >
- j W, (v, x)g(y) £ (x)dydx.

On the other hand,

CQUTTH g, TMHLL >

sz {x,y}E£(-x)g(-y)} dxdy

It

jwz (-x,-y) £(x)gly) dxdy

Jlez(y,x) £(x)g(y) dxdy.]

Define now an operator () by the prescription
® Wiy Qa2 g = Q(TiEp - QATEH g

Then ® is well defined. To see this, suppose that A EZO = B §20,

the claim being that A'C2, = B'(2,. But
{n )y -B'Q02,, 200, -B'C(2,>
=<2 2, A QQ>-<A Q2 B>
-(B'Q 4 A >+ (B 1, B (2,4



{nQly, 282, ~<BS2,, a02,
_-{AQ_O, BQ0>+<BQ0, BL2 4>
==
Al Q_Oz B‘QO.

The upshot is that &) extends to a norm preserving map 34'“”’3{

which leaves the vacuum invariant with

© (x+ty) = OQx + @y

@ (cx) = ¢ Bx

D@n® = ¢mb.

This conclusion is the PCT theorem for a neutral scalar QFT.

Remark: As regards the relation

Qa6 ®7' - ¢mh,
I feel it necessary to injeqt a proviso. While formally true on a
dense subspace of Ja, why does it hold on all ofct?? The experts pass
in silence on this issue. Have they forgotten that the field operators

are unbounded, hence discontinuous?



Cluster Property The assignment

4 ahxx fawh —> ¥

(£1reee £ 0= @(E) - Q£ )2

is a separately continuous multilinearaﬁ-wﬁlued function, thus:a a

continuous map Eﬁn: afggfn}-4>3£ such that

(R e XX £, > = QUEN - Q(E) 2

=
wn =(Qor @n:) .

SUBLEMMA Suppose that a is spacelike -~ then in the weak
NN s

operator topology,

lim U1, Aa) = Py o
N—> +00

where P — is the orthogonal projection of Honto C 520.
0 W

[Note: This is a nontrivial assertion. It amounts to saying

that VX,YGHr

<x,U(I, naly > ~— <x,g10><§10,y> as N\— +

which, of course, is obvious only if either x or y is equal to flo.
However, the verification is straightforward in the special case of
a free QFT of mass m >0. Thus take a=(0,0,0,1) (there is no essential

loss of generality
K¥¥XX in so doing) -- then from the definitions,



<£,u'™ (1, aa)g> = o VTP T mr s (o)
' ’ g Plg(p)dm (p
X
™
= j e JE(p) Jg(p) dp,dp,dp,
&
which tends to 0 as A—' + o0 (Riemann~Lebesgue lemma). The extension
to functions on Xm)(~--XiXm is clear. One way to handle the general

case is to use the fact that 4 (x, (lAPgl )Epy’) is absoclutely
0

continuous w.r.t. Lebesque measure, hence with a=(0,0,0,1),

g - V~]l ?\P3
e

<%,U(I, naly v = d<'x,Epy>
ﬁfl
- V=T %p, d<x,(l—PQ0)EpY> .
=<X'PQY>+J e 7 d’p
0 4 dp
R

—5< x%,P Q0y> =<x,§70 > <§20,y> as A-> +20,]

LEMMA Suppose that a is spacelike -- then
T ]
lim s n(xl""'xj' xj+1+-ﬁa1...,xn+ Aa)l
HN—r + o0

=Uj(xl’...’xj)wn—j (xj+l;t-¢'xn).
[Unraveled, the assertion is that

lim Qg B4 U, 22) B _5(9) Ly >
A2 + o0

= <wjrf > < wn_jrg > -



Reeh-Schlieder This is the assertion that for any nonempty

open set O Cvgq, the set /(fo of all finite linear combinations

W (fl)-o- W(fn)QO is dense inH , where now spt 1‘:‘j C@ Y 5.

S

Thanks to the cyclicity of the wvacuum, it suffices to prove that
+ i
xed oy = xedf ", (=10},
o R
Fix n> 1 -- then, as has been noted earlier, 3 a continuous map
§ : ;J(R4n) - M such that
n Wiee
<§n,flx ven X fn> = QUE ) - @£ ) QO,
thus 9! tempered distribution an % on\ﬁfn such that
wn,x (fy X oo X£)) = < x, ﬁn(flx e an)>
Using the spectrum condition and the identity

< xp Q(xy) s QUxy ) Qixpta)--- QUx +a) L2 >

=%, Q) Qlg U(T,a8) Qix) e @x )80 >,

one can check that the support of the Fourier transform

N
wn’x (Plr---rpn)
1 n
T | ROV 2 <oy g @02 > ey
R4n

ig contained in the intersection of the sets

4 - —
ipe\g n: pk+pk+l+“'+pn€ V_ } (k=l'..-'n).



On the other hand, the map
—> --Xl

xzv—a X7y

X — X l"-X

n n- n
4an + in . . .
is a diffeomorphism R —y R, s0 3! tempered distribution Wn % ©On
ey r
R4n such that
A
wn,x @ #’=‘hjn,x f
i.e.,
Wo,x TFprXp™%gemcaX, 17%))
= wn'x (Xl,xzf...,xn).
And:
I —_ —
spt W 'xCV_‘_xfux V+ {n factors).
E.g.: Take n=3 -- then
A

qﬂrn,x (P1'P2'P3’

= "l(PlXI+P2X2+p3X3)1&f (%X, ,X,,%,)dx,dx.,dx
(211 n,x 1772773 1772773
‘\ﬂ‘
= exp Y-~1 ('(P1+P2+P3) (-x ) (92+p3) (xl-xz)
(21'}
R12
Whens

_p3(X2-X3))Wn x(-xl,xl—xz,xz-x3)dxldx2dx3.

!

Fal
anx (- (Pl+PZ+P3) r '(P2+P3) ¥ _p3) .

]



A
Assuming that W

n,x ‘d1:9p:93)#0, put

q1= “(pl+92+93)

9= ~(Pytr3)
qq= ~Py-
Then
A
W, (Byspyrpy)#0
Pp+P,*Py € V_
= P,+P; € v_
Py € V_
=7 dy/9,:93 € V.
Proceeding,
spt W_ #‘Bfn

if C)is proper, as we suppose, But this implies that

which finishes the proof.



the
Buclidean QFT Starting from hforrelation functions 1d£ of a

neutral scalar QFT, one can use analytic continuation and Laplace

transform technigques to produce a certain collection of real analytic

functions G? on RA;  the Schwinger functions.

Notation: (1) Let
4n _ 4n . g
R 2 -{(xl,...,xn)eﬁ : xi#xj (1_;6]}}

and denote by QV(R ) the subspace of JP(R ) consisting of those f
which, together with their derivatives, vanish on each hyperplane

xi-xj=0 (i#5).

{2) Let

4n _ in | o ... 0
R =g xD€RM o<k <o 0 }

and denote by sP(R } the subspace of 4f(R ) consisting of those f
4n

Re¢ -

A given Schwinger function Qg defines an element of AP (R #) in

whose support is contalned in R

the sense that the functional defined by the integral

jG‘n(xl,... %) £lx,...x) atf

is absolutely convergent for all £ € aP(R #) and thé assignment

£ —> j@n(xl,...,xn) £(xy,..0,x) af

is continuous.



os1 VfGJ{R#).

<G t>= <G, 8t >,

where

OF ((xg 13} reeey (k2% D) = E£0(=%] X ) seen, (=x0,% ).
0s2 VY £E€ q}’(R 2
<(§'n’f> = <@n' f/\,a)

where (A ,a) € sC(4) ) R4 and
f/\,a(xl""'xn) = f(}\_l(xl-a),..., /\ (x —a))
4 4
0S3 Let £,€C, f, 6200(‘5')),..., £, € f (&%) - then

T <G T x5y > 20

0s4 erzf(R 2)

(G €£>=<XG fo6> (GeEs).
2? 4n o0, R4m
os5 VY £ € (R )nc (R )andVgGZP(R D NclER™,
1m0, fxTg)> = <G £ DG 9>,
t—> +00

where

0
T g ((x,x ), ..,(xg,ém)) - g((xg«t,ﬁl),...,(xm—t,:cvm)).



Remark: OS stands for Osterwalder-Schrader. Their reconstruction
theorem reverses the procedure, viz. they show that if you start with
distributions G§'n satisfying 0S1-085, then these distributions

are in fact real analytic functions on\gfg and are the Schwinger

functions associated with an essentially unigque neutral scalar QFT,

[Note: This is not quite true in that the regquirement

(g;lEE QP'(R4;) has to be reinforced. Unfortunately, this auxiliary
v

condition is wvirtually impossible to check in practice.]

Example: Consider the free QFT of mass m>0 == then

. V—l'(p,x-y
(S (x,v) = ——1———53— y e g a*p
(2T)




The Kallen-Lehmann Representation A distribution T on rR" is
(VN

said to be of positive type if

CT*E,E > =<T, TIE+£ > 20 Vfc-cg" @M.

[Note: Symbolically,

<P, TTE+f >

j ( T3 £+6) (x) T(x)dx

Rn
= f ( j’ f(y) TIf(x-y)dy) T(x)dx
R® R

fly)f(y-x)dy}) T(x)dx

Il
L"-‘\

§m

!
$m, ey

S £f(x) £(y) T(x-y)dxdy.)
Rn

B et

THEOREM (Bochner-Schwartz) Suppose that T is of positive type--
A et

N . s
then T= s« , where s is a tempered positive measure.

LEMMA Let s be a tempered J:T —invariant measure on R? with
LN Y,

+
support in'G; -- then 3 a tempered measure fon [0,+o0[ such that
V £ € L&Y,
v
)
I £f dm=m( $0Y)E(0) + 5 ( J £dau YA p (m).
R 0 X

m



Returning to our neutral scalar QFT, consider Wy Thus from

the definitions,

S ]. f£(x) £(y) W2(X-Y)dde

R4 R4
= <102,Exf > .
And:
<1452;E;<f >

il

<O, @) 9B >

1l

{RB)* 2y, RIEHL D

Q) 24, QO >

Wae@ 0?2 o.

This shows that W2 is of positive type, hence by Bochner-Schwartz,

'S F ol
4 a tempered positive measure A« : Wy = =$>W2 = =, . But the

A —
support of W2 is contained in V,+ SO an application of the lemma gives

~ A ~ O}
(Wy £> = Wy (30T )E(0) + j ( I £340,)d P (m)

0 Xm

or still,



o v
+J ( f Fdm ) P (m)

0 X
m

which is the Kallen-Lehman representation for WZ‘ Here

v - V-1 (poxo—p-x)
f(p) w = f(x)dx,
(21’

w..

so by formal manipulation,

A .
W, €5 =w,( Lo}y —2 j £ (x)dx
rd
+ 4T J £(x) W,(x)dx,
\34
where
(6.4
Wo(x) = | 2= A, (x;md)ap (m)
2 . m + 7
0
and
Y1 - ¥Y-1 (p,%,-pP- X)
&+(x;m2) = —_13, f [ =] 0 0 m(p).
2(27T1)
X
m

A
It remains to explicate Wz( {0} ). Por this, note first that

(A ; is translation invariant, hence ] a constant K:

< wl,f> = K j £ (x)dx.

R4

N



LEMMA We have
b e W

Fa
Wy f0}) = m2ixlZ

[Given £ €& Af(R4), let

F(a)

(@ L g,uir,-a) @) 24> .
Then‘

F(a)

(wz*f*ﬂ'f') (a),
hence

N N

F= 2Tt 1EP ;?2.

On the other hand,

: -V-1 <ar?\> .
“134
30 .
2 Y
F= QM °xa<@ )2y, B, (2>
=y
A 2 _
F= (2T) xa(\g&(f)Qo, E o @) 2% .

The mass of d < ((f) (lo, E, g (£) Q0> at the origin is

QU CQgr BgalfY Q2> -

But since the vacuum is unique,
By @(£) €24 = <, Eq (£) 2 4> €2

={Q,, @B Q ,>Q,



L, Eog(f)ﬂo>

Cae) T 1,25 - <y, () Q2 >

1{Qqy @02 >17

=|<Ul,f>|2
= ki . S £(x)dx - ‘[ £ (x)dx
jf 134
N
=cem? - 15oml? - {x |2
.. N 2 2
One can then eliminate f and conclude that Wz( {0} y = (2Th) '|K\ o]

Definition: The mass spectrum of a neutral scalar QFT is the

support of f , the mass then being the infimum of its mass spectrum
with 0 removed.
Example: Consider the free QFT of mass m>0 -- then P = Sm‘
[Note: Take f,g real. Using definitions only, one finds that

in this case

W, (£xg) = f j —-l-:i-A+(x—y:m2)f(X)g(Y)dxdy-]
g &

We have mentioned earlier that it ig impossible to define the

field map directly on\ﬁf {subject, of course, to the assumptions).

In brief, here is why.



(1) We have
W,y =<, @0 @i QY o> = W, (x-y)
=

Wy (x) =<2, R @(0) €2 D> .

(2) We have

Q@ix) = U(I,x) @(0)U(T,%) "
=7
W, (x) =<Q-0; L(0)Uu(I,-x) &5(0).‘:7- 0>
(3) We have
-¥-1 <er>
W, (x) = e daa(p),
=

where s is a tempered J:q\—invariant measure.
+
{(4) We have

W, (0) = m &Y ¢ +o0

rm=m0y) §,

W, (x) = W,(0) = m( 0} ).

{5) We have

QX (2o = K010 .
(6) We have

U(A,a) (R0)S2 ) = U(A,a) QOVU(A,a) Q2

= ¥a) {2,



= 55(0)00 Y (A,a)

c 2

@) €2 o (30

=>

I

Qx) 2y = CQye

But this can't happen if the vacuum is to be cyclic.



Spin_and Statistics Recall the statement of W6: If the supports

of £,9 € gggf) are spacelike separated, then
Q) Qg - @g) Q(e) = 0.
This is the way it has to be: It is impossible to have
L(£) ®(g) + Q(g) Q) =0
4 » L3
for all £f,q E‘Jygal with spacelike separated supports.
The proof goes as follows. Agreeing to use symbolic notation,

A
‘3 & + —invariant tempered distributions F and G on‘Ef such that
Flxmy) = <S1g, ®(x) @(y) €2 o> =<y, @ly) @(x){2 >

Glx-y) = <Q ), Q)X (y) 2> +<{Q;, Qy) XKL > .

Because F is odd,

2 <0 DF(T) = 0.
Here the argument is exactly the same as that employed earlier for

N e On the other hand,
W, (x-y) =<{L,, @(x) @ly) C2,>
1
=3 (Fi(x~-v) + G(x-v}).
But anticommutativity means

(x-v)2 < 0 =>G(x-y) = 0,

hence

32<0 —:bwz(“s') = 0.



. 4 —
In particular: Ispt W2 75"13“ __)Wz = 0

—
0= U, x> =1l @OQ 1% Veefeh,

which contradicts the cyclicity of QO'



Irreducibility of the Field Operators Suppose given a neutral

scalar QFT with the property that the space of»ﬁi-invariants is one

dimensional (recall that this condition impliegs W2) -- then the

ff(f) {f G_Q?ng)) are an irreducible set. By this we mean that

every bounded linear operator A for which

<xA@Bly>=<Q(E)sx,ay > Vx,y€0 & Vi e A @h

is necessarily a constant multiple of the identity.

As a preliminary, note that the function

J~ . V-f(aopo-a‘p)

a—y <{x,U(I,aly > = - d(X;EpY>

R4

L an¥]
is a bounded continuous function of a, thus defines a tempered

distribution T .
X, Y

r

~ —
LEMMA The support of T is contained in V.
LY Y] = X +

r

[Take any f whose support is contained in the complement of

V+ -- then

A A
<Tx..Y'f>=*/Tx,y"f >

’ A
= j <x,U(I,a)y > f(a)da

iy
V-l(aOPO:E'P)A
= ( e ™ f(a)da) d<K;EpY b
&f éﬁ



= (2m)? E(PIA <k, By ) = 0
R4
Wium,
A
= spt T v

TR,y +°

[Note: Here, of course, we have used the fact that the supvort

of d(x,Epy) is contained in TI-_I_.]

Suppose now that A is a bounded linear operator with the stated

property.

Claim: J ?\:A.C2O =‘Z(]0. To see this, observe first that
<Q4.a QUT,a)-£,) ---&((I,a)-fn)ﬂo>

={QUT,a) €)% - @UT,a) )% 20, 202>

<ax 2,,U(1,2) Q(€) ~-- @£ ) 2y >

= Q£ D* o R(£)*C2,,U(I,-a)AC2 > .

According to the lemma, the support of the Fourier transform of the
LHS is 3;, while the support of the Fourier transform of the RHS is
;;. Therefore the support of the Fourier transform of either side
is the origin, hence is a finite linear combination of derivatives
of the Dirac delta. But then, by Fourier inversion, ocur function

must be a polynomial in a, thus is a constant in a (being bounded).

So: \/ a,
CQUE) --- QUED Q2 4, U(I,-a)A 2,0

= @) - R(E) $2,002,>



I

U(I,a)a QO = AQO Y a

—t—

A, = %Q_O (3 2.

Accordingly, Y% x Eoo '
<x,AQE) - @£ )2, >
=< QUE* «o (£ * 2,8 20 >
= SQUED* - WEN*%, AQ, >

(A= A QU£;) -+ GUE)) Qo =0

——ptt

A= ATI.



The Borchers 2lgebra Set theoretically, this is

_ 4 B8 ..
A -c@ddh 045 ® :

. . . - . 4n
Equip ng.th the direct sum topology per the injections ;J)(v& }—>
;7(? -- then gybecomes a separable LCTVS.

(1)4? admits a continuous involution *.

(Let f= {fn} e,xP and put

=2l

where

* =
fn(xl,...,xn) fn(xn,...,xl).

(2} xP admits a continuous multiplication x .

[Let f= ifn} & g= {gn} Gj and define f x g by

n
(f xg)n - 2 fk(xl’ooo’xk) gn“‘k (Xk+1'.o-'xn)o]
k=0

[Note: Multiplication is continuous in each variable separately

and is jointly continuous as a bilinear map

N N 2N
4
@ S ® feth— D JE
n=0 n=0 n=0
for N< +o0 but not for N=+ 03.]
S0: RF is a graded topological *-algebra with unit I=(1,0,...)
. O , .
on wh1ch.6’+ operates in the evident way.
(Note: Explicitly,

(A,a)- (x £+ fg) = X ((A,a)-£) + LA ,a)-9)
(N, (£EXqg) = (A,a)-£X{(A,a)-g
({Nn,a)-£)* = (A,a)-f*, (A,a)I = I.]



Let LS :,{f - £ be a linear functional -- then

LS is positive if LS (E* X £)> 0

Vief .
LS is hermitian if W£*)= U(f)

LEMMA L§ positive = U§ hermitian.
A e WO

LEMMA LJ positive =>

PUS(E* xa) 12 &2 WS(E*x £) LS (a* x a) .

—

Definition: A state on XP is a positive linear functional LJ
such that W (I)=1.
Example: Fix a neutral scalar QFT -- then the correlation

functions LS n ©f the theory determine a state ) on)P .

————— et i e

THEOREM Every positive linear functional on QP ig continuous.
s i}

- [Note: It iz therefore automatic that the correlation functions

w n of a neutral scalar QFT are tempered.]

Given a ¢ I—invariant state w  put

N $£: W(E* x£)=0 }.

Then NLS is a G’I-invariant left ideal in Q:P As such, it is a closed

subspace ( UYbeing continuous).

[Note: Observe that

fFEN
us => W (g x £)=0.
g€



Indeed,

0 £ lhf(gxf)\ = | W (q**xf)l

z YUStg xg*)y YW(E* x£) = 0.1

The prescription

IE1, 191> = W (£* xq)
is an inner product on the quotient o@ = .:J?/Nw. . Let o¢ be the

corresponding completion -~ then a@is a dense linear subspace of 3‘? .
The fqllowing properties obtain.
(1) M is a separable Hilbert space.
(2) The action of 63_?: on ;zfpasses to the quotient to define

an action of @I on :g]?/l\]uj : (A)a)-[f]:[(/\,a)-f}. Since

{IAa)- [£], (A,a)-[g]>

Hl

W Aa)-£)* X (AN ,a)-q)

"

WS ((A,a)-£* X(A,a)-q)

W ((A,a) (F*xg))

= W (£* x )

Ifl.[g1,
the action extends by continuity to a unitary representation U of (?I

on ¥¢.

. . . T, .
(3) From its very construction, 08 -l B—Q is dense and G’+—1nvar1ant.

(4} Define a linear map « :_J—-) Endo@ by Q(f)[gl={fxg] =-- then
e ——— A,

QUA@ ) [g] = [(A,a) £xg]

= [(A,a)- (£ X(A,a) Tg)]



U(A,a) £ x (A ,a) " tqg]

U(A,a) & (B)U(A,a) tigl,
thus EQis Q?j;equivariant.
(5) Put C)0=[1] --= then §10 € Ais a G?f;invariant unit vector.

Conclusion: All the data lying behind a neutral scalar QFT
is in place but there is no guarantee that assumptions W1-W6 are

satisfied.

[Note: To get the field map, restrict to 3?&54)‘4> xf . Obviously,

on the basis of the construction itself, we have
W L X x£ ) =<2, \gg(fl)---g(fn)Q()).]
Claim: W3 holds. To see this, take f£,g,h qu and computes:

{Q£){g],[n] > = [£xgql,h])

]

LS ((EXg)*xh)

Wig* X £* xh)

|

{ [gl,[£*x h] >

I

{ lgl, QEH MY .
Therefore

0 © pom @(£) *
LY

and
QO*] O = arn .

It remains only to specialize to £ & zf(R4}, ohserving that in this
W,

case f*=f.



Claim: W4 holds. This boils down to two things: (i)QAf is a
gstate, hence is positive, hence is continuous; (ii) X : )?;‘Af_:>2p

is separately continuous. Therefore the assignment
£ —r <lg), Y(£)[h]
=g}, (£X hl >

= W (g*x £xh)
is continuous.
Claim: W5 holds. From the definitions, )= {v({(f} £L,:£ GQPE

(since «(f) QO=[f><I]=[f1). On the other hand, if £,,...,f, € QP (R4),
Wy Wy
n
then ‘&g(fl)'” S_‘i’(fn) Q0=[fl>< vee X fn] and H ;J’ ("13:1} is densze in
1
in
xp(& ).

T
Suppose that le, Ldz are C?+-invariant states «~ then the same

is true of

A, >0
MWL+ A, W, (A+FA,=1, )y
By 0
thus the set of 6’+-invariant states is convex., Its extreme points

4 .
are the pure C?+-invar1ant states,

THEOREM LSis pure iff the space of T  -invariants in ¥ is l-dimen-
R L +

sional, i.e., iff W2 holds.

Fix now a pure C?+—invariant state hj -- then the issue which has
yet to be resolved is: When do W1l and Wé hold?

(Isp) The spectrum ideal Isp is the left ideal consisting of




those £ € if such that £,=0 and ¥Ynzi,
A
fn(pl:o--fpn)"o
n —
if jék P;EV, V k, 1€k £n.

(I ) The locality ideal Iloc is the ideal generated by elements

loc

of the form

fn(xl,...,xj,xj+l,...,xn)
=g(xl,...,xj,xj+l,...,xn) —g(xl,...,xj+1,xj,...,xn),
Ca s 2
where g(xl,...,xn)-o if (xj xj+l) > 0.

T, . . . .
Definition: A pure 6)+-1nvar1ant state hf is said to satisfy the

Wightman condition if

<N

Example: The correlation functions 'Ljn of a neutral scalar

4

OFT determine a pure 6’+—invariant state hfon,J7which satisfies the

Wightman condition.

LEMMA Suppose that W satisfies the Wightman condition ~~ then
Wl and Wé hold.
[The verifications are straightforward. To illustrate, let's

check W6. Thus suppose that the supports of £,g éﬂqp&ﬁf) are sgpacelike

separated -- then
0 ram, weml )] 2

= W((EX gxh-gx £ Xh)* x (£X gX h-g x £ xh))




WSEX g-gx £} xh)* X ({£X g=g X £} X h))

= 0,

since fX g-gx f€ Iloc'] :

e

Consequently, to every pure 6)I~invariant state W satisfying
the Wightman condition there is associated a neutral scalar QFT.
Moreover, any other neutral scalar QFT with these correlation functions
is unitérily equivalent to this one,

Example (Greenberg): Let'L50=l, le=0 and define W, by

(Wz,f)(g) = J- J‘ f(x)g(Y)Wz(x-y)dxdy,

R4 R4

s e
where

o0
1 2
W,{x}) = 5- S-S AN (x;m”)d P (m),
2 WF:I' + P
0

and ¢ is a tempered measure on [0,+90[. For n)2, let2A5n=0 if n is

odd but-if n is even, let
KW X XE >

=72 <Uu 23 XEi > e LW, £y XEy S

the sum being over all partitions of n into n/2 disjoint pairs with

iy iy (k=l,...,n).

E.g.:

WS arEp X E, X E5X £, >
= S Wy x £y Y (U 9r B3 X Ey D
+ KUy 8) 253 > LWy B x5y >



+ <w2,fle4 PR PYEFES FON
. . .
It can then be shown that LJ = 3L} nS is a pure @ L-invariant state

which satisfies the Wightman condition.

Example {Haag): Suppose given a neutral scalar QFT such that

]4j0=1, 1di=0, and

<U21f><q> = j f(X)g(y)Wz(x-y)dxdy,
R4 “f
where

1

V-1

Then this neutral scalar QFT "is" the free QFT of mass m >0,

W, (x-y) = £, (x-yim®) (m>0).

[The idea is to show that the correlation functions Ljn(n ~>2)

are the same as those of the free QFT of mass m> 0.]



Extension of the Assumptions The Wightman axioms can be

formulated more generally.

Data:

(1) A finite dimensional vector space U and a separable
Hilbert space B'Q H

~4
(2} A representation T of J:+ on.lrand a unitary representation
)
U of @+ onb—Q :
—~ ¢ i ] i
{(3) A.ﬁ?+—1nvar1ant dense linear subspace &9<: }? ;
b
(4) o Q i-equivariant linear map (¢ : A’P(R4: U)— End o@;
LV oy ——
g
(5) A G) t—invariant unit vector (2 0 € o(f) .

L
Remark: The action of O’f on Enc’loo is by conjugation, so the

equivariance requirement on V(_g is that V£ € .-J)(\B:q; U ).

UA, L OTA, ™ = Qeex ),
where
- LA W_l
f)‘\"a(x) = THAYE(A ~(x-a))
and

VoA -~
TN =A™ T
[Note: The rationale for the introduction of the contragredient
is this. Let d=dim UJ -~ then f < ifl,...,fdi and V&?G‘? {31,...,&?(11 .
thus

(£

I

jZ\‘g‘gj(fj)

It

35 5- fj(x){jj(x)dx.
| R4 b

e,



Therefore
~ ~ -1
U(A ra) QIEIT(A ,a) =$(£K'a)
—
Z_ j fi(x)U(K,a)qi(x)U(?\J,a)_ldx
1 “wfm,
&
= ZJ f (fx'a}j(x)v(gj(x)dx
4
R
ey
Ve ~_1
= - S 2 THAY ;) £ (N (x-a)) Q@ 5 toax
3 4 1
R
e W o —~
= Z j £, (x) Z“(A)ji Vng.(/\x+a))dx
i 3 ) _
‘54
==y

U(A,2) &, (UIA &)

N__ g
= 2 TN l}i‘ QR . (N\x+a),
3 J ]

which is the traditional transformation law for W{(x)<> {&gl(x),
S,
IRTNEN IS

Observation:

\,(\'E(f)* = (j f(x)&g(x)dx)*
R4

= J f(x)g*(x)dx
4

Ko

f (x) 8*(x)dx.

is
&l
*
il
§ m




This data is said to constitute a vector guantum field theory

(QFT) of type Tl if the following assumptions are satisfied.

=

1l: Same as in the neutral scalar case.

:+ Same as in the neutral scalar case.

18 18 |

: Same as in the neutral scalar case except that now no a priori

connection between &£(f) and its adijoint Si(f)* is assumed.

Wi: Same as in the neutral scalar case.

W5: The set of all finite linear combinations Al°°°An§21V

= * i i
where Ai \‘:g(fi) or v(.&(gi) , is dense J.n}Q .

The statement of the final assumption, viz. that there is a

normal connection between spin and statistics, is a little involved.

Definition: Let D be a finite multiple of some finite dimensional

ot

irreducible representation of £\+ -- then there are two possibilities:
D(-TI) = I (call D integral}
D(-I) =

k

=T (call D half-integral).

W6: Decompose T as a direct sum @® Dk, where Dk is a finite

-t

multiple of some finite dimensional irreducible representation of J~+ '

S0 U=@ Uk' Given
k

4
£ = {g} (£, € L& U
g = {g;} (9, € £ @& U

whose supports are spacelike separated,

QUE) Klgg ) - Qlay ) @ (£))

Tt

QIEH* Qlgg ) ~Q(gy ) @ (£ )% = 0



if either Dk or DX {(or both) are integral but

wif,) « (qg ) + 3£(gﬂ ) Q(f) =0
Kiga* \(:g(gx ) + vtg(qx )« (fk)* =0
if Dk and D/\’ are half-integral.
Remark: The finite dimensional irreducible representations of
:(:’I are parameterized by pairs (u,v), where u,v € 2 0,1/2,1,...i :

p(@ev) (W) _p(@,0) T _p(0,v)  pu,v)_p a5, oo g

p{Wriv) L1y = (-1)2(utv)g (u,v)

r S0 D is integral iff u+v Eﬁ. Moreover

D(u'V) is real, i.e., equivalent to its complex conjugate, iff u=v
(for DM V) _pVey - gina11y, aim DR V)= (2ul) (2v+41).

Example: Let T be the one dimensional identity representation

of f: {in which case the term "vector" is replaced by. "scalar") -~
then a neutral scalar QFT is a scalar QFT of type Tt with the additional
property that the field map sends the real valued elements of ,\-_‘P(‘Bf)

to symmetric operators. Consider now two free QFTs of mass m >0,

Call the field maps VLE% and realize the data on 3= }?+®}?_
(M2 =F P, a)h. Taking D=L0% @07, 2=02F @< .

U=0U0"®U”, and

-¥-1<p x>
1 1 ' + -
U (x} = Jﬁ [e a (pI@I
m V2 21/t e
X
m
V_.1I<'P'x> +

+e I ®\;:_‘ (p) 1d e (p)



S0
(D) = = @EH®T + Qe (E D)

if £ is real, one can check that all the requirements for a scalar

QFT of type T are satisfied {generally referred to as a charged scalar

J [ @, (£), @ (9)]
=0

\[vgm(f)*,g-m(g)*]

OFT). Here

and for f,g real,

[u (f), (g)*]
( j' j — Ds {x- y)f(x}g(y)dxdy> (I+®I").

[Note: Writing

}('i-

108 7D

5+

o
o

0 m,s,

we have (in obvious notation)

_ )
H - @ }Q(n,m) .

n,m=0

On B{(n,m)' the number operator N is given by

NY = (n+m)y

and the charge operator Q is given by

oy

(n-m) ¥



Both are selfadjoint and have a purely discrete spectrum. In

particular: There is a decomposition
o)
= @&

}'Q -_wg'?q'

where )?q is the g-charge sector, i.e., the eigenspace of Q corresponding

to the eigenvalue g. Physically, }(+ represents the space of particles
and }Q— represents the space of antiparticles (of a given typel}.

E.g.: The electrically charged 11 mesons TT+ and 7§ or the electrically

neutral K0 meson and its electrically neutral antipvarticle Ko, which

carry opposite hypercharge: Y=1 for the K0 and Y=-1 for the EO. ]

Remark: The symmetric Fock space associated with

2 + 2 -
Lo X rn ) @L (X 1)
is isomorphic to §{ and

+ - + - *
3m®1 +I®3m_$m+8m'

This setting also carries with it a Borchers algebra. Thus let

D be a finite multiple of some finite dimensional irreducible rep-

o

resentation of J:+ and put d=dim D. Set

2
Ay =codEch ofd )@

W

and equip 7‘?D with the direct sum topology per the injections

n
4?(R4n:cd ) —r «P ~-— then JP becomes a separable LCTVS,
Vi e D D
(1) kf p admits a continuous involution *.

[Let f= {fn} € 4P p and put



£* ={f;1,,

where

<
* —3
fn(xl,...,xn) s fn(xn,...,xl).

Here r acts on fn=(fi : (llf"”ln) € %l,...,d} o by

- " & l
1’ “n

reversing the order of the indexes.

(2) ;JZD admits a continuous multiplication x .

{Let f= i\fn} & g= Sign} € RyD and define £ X g by
n
(Exg), = 2 £,@9, !
k=0
Suppose given a vector QFT of type D -- then the correlation

functions 'Lfn of the theory determine a state [} on fo and what

has been said earlier in the scalar case extends with but minor changes

to the vector case.




Higher Spin The free relativistic particle of spin s> 0 and

mass m > 0 carries the structure of a vector QFT of type D(S)zn(s'o),
To see this, one first has to specify the data, i.e., items (1l)-(5}.

Notation: As usual,
LaioLY (K=o
et >6T «na—- (A

(1) Assign to each p€ Xrn the boost Ap < o(':_ /\p(m,0,0,0):p.

Note that /\ D — /\P, where

—_ . Potmtps, P ¥Y-1 b,

N p =
V 2m(90+m) pl+ -1 sz P0+m-p3

is positive.

{2) Assign to each PEX the Wigner rotation W(/\,p)e §2(2):

WA ,p) = (/\p)_l;‘\{/\x_lp |
Thus
~ - ~ e~
W{A,ADP) = (AKP) AN
—
WAL AR ™= (AT Ay




where q=(p0,*p).
[Employing the usual notation, let

LT P RS

Then
—~ _ Cm+p
2m(p0+m)
~2 _ 1
f\p = m £
On the other hand,
-1
q p
A T\m :
Therefore
~ 2 o~ 2
= I.
ﬁ‘P f\q

This shows in particular that 7<g and ;<§ commate, thus the same

s N
is true of their square roots, i.e., f\p and ;\q, which in turn implies
- S~ B
that the product }\p}\q is positive. Since

N2 o2 2
Np Ng = (hphg -

the assertion follows by taking the square root of I.]

[Note: The disbeliever can multiply out the matrices.]

Put

2 2 28+l
L (Xm,/um;s) =L (Xm,/¢m;C _ ).

L el

2 ,
S0, the elements £f€L (xm'/Am;S) are strings



{ fip,6): 6=8,8-1,...,~s+l,~-5s }
with

j lf.e) | 2 am (o) < + 00 .
X
m

. . 3 . L : ; (r, s) G *
This said, 1 an irreducible unitary representation U of +

2 .
on L (Xm'/*m;s)' viz.

w™es) (X a)E) (p, &)

Y -1 <alp> ®

=e S nif,é WA E(NR D, 7).
T=-8
Turning now to guantum field theory, one has to start by
specifying the Hilbert space, which we shall do by taking fox‘){'the

symmetric Fock space over LZ(Xm,/Am;s) if s is integral or the

antisymmetric Fock space over LZ(Xm,/*m;s) if s is half-integral.
Modulo the definition of the field map, the other ingredients are
obvious. As for the field map, what follows are the preliminaries
that lead to its definition. I shall concentrate on the symmetric

case, the antisymmetric case being analogous.

An element 4/6\}Q is a string qf= {}po,xyl,...}, where

Yo = YnlPrroqioorivg o)
is symmetric w.r.t. permutations of pairs:



a{p,6)
Given (p,og ), define operators wa by

5(9,6‘)

(Sv(pr 6—) \Y )n (plr 61?"';pnr 6_11)

n
jzl 8(p—pj) I Yoy (Ppe 613 9Py S35 0P 6 ) -

A

Properties:

(1) alp, e)* =clp,¢) & clp,6)* = alp, ¢ )

(2) [&(9:6‘),3(%1:)] 0 & [\S\(p,s‘),‘g(qrt)] = 0;

3 ’ r r T - e
(3) lalp,6),cla,TI] = §(g p)S.CO_ I

[Note: Let us check the third property. Thus
(i(Pr 6‘)&(%"6 ) \Y )n (Plr G.li"‘?pnr G-I'l)
= \n+l (@ TIY )4y (PG iPyr Gyiv iR 6 y)

1 cee,
= Vn+l ( S(q_P) ‘5 s A\}/n(plr 6_13 iPpr rn)

1 n 5
+ jz=l (q—pj) ) e

VY n+l

On the other hand,

j L]!n(P:G':“‘?Pjr Gj;”.;pn' 6-11))

Z 5(q-Pj) fj <

n
j=1 =

-



n /\"\
R S s o SRS ST S ot BT ) S SN o a
_v—-ljgi S(qp)g <\/_1LP(P6—, !3!' Jr rnrﬁ_n)>
Therefore
(E\(pyﬁ‘)&(q;'c)'-l’ - clg, T)alp,6) Y, Py, 6 qicerip . 6,)
= olg-p) 6T.o‘ L]fn(pl,s'l;---:pn, G‘n),

from which the claim.]

a(f)}
Given f, define operators { by
c(f)

a(f) = Z j 2@ 6)£(Prg ) du, (B)

c{f) = > j c(p, ¢ )1E(p, ¢)dm (D).
hie §=-s YX ™

Remark: These definitions are formally consistent with the

usual agreements. Thus

(a(E) Y ) Py, 6qi-""iP s 6 )

Vn+lz.( 1‘}’m_l(p 6Py G 1P, 0 JE(p, ¢ )dm (p)

and
(C(E) Y, (By, &y ip,, 6,)
=1 = i [j §p-p ) E(p,67) da_(0)] §
Y & j=1 " 3



Y -

= = jz=l %—f(pjlﬁ-) 560— .L}/n'-l(pl'gl'.‘.;pj'G-J;'..; nrﬁ'n)
1 n

Ry ]2=1 ElPyr 675) Wne1(Pyr 6377 " iP5r 6 57777 iP,r 6 y)

Note too that

2 (£) ,c ()]

[ Z j alp, 6 ) E(p, 6 )dum (P), %f clq, T )g(a, T )dm (@]
m m

=ZS j [a(p,6),c(q, TYIE(pP, 6)alq, T)da (PYde (qQ)
“r Xm Xm 2 P w\q L P gilgq /“m b — g

%TJ‘X ‘[X S(g-p) Sts‘ o Vglg, T)da (p)da (q)
! m “m

M

£(p,s)g(P,T) & o o (P)
= ZJ £(p,6 )P, &) A (D)
Z ), P,6)g(p, 6 )danp (P

= <f,g>-I.
On general grounds, for any unitary operator U on Lz(xmnAnm?S)r

(TTwa(e) (TTu) ™t

a (Uf)

1

(TTOC(H) (TIW) 7 = c(uf).

[Note: In the sequel, we shall omit the cav pi from the notation.]

Specialize to

v=0'"%(x,0.



Then

<™ (X, 0)£)

z J C(P:G’)(U(m's)(x,O)f)(p,o-)d/um(p)
c X
m

Z S clp,6) 2 D(S_)_ (W(K.p))f(}'\'lp,t)dﬂm(p)
G Xm A - 6T

> 5 C(KPro') 2 p(s) (W(K:KP))f(p;T)dﬂm(P)
s VX 7 Tt ©o°T

= ZJ C(Xp,"n:) Z D(S)O_ (W(K;KP))f(Prﬁ‘)dﬁm(P)
T v ™
m

=§ij

(s)

c(/\prT }D
- [}

WA, AP E, ¢ ) (p).

r[M

But

o™ (X, 0cmu™ s (X007t

- 2 o™ Roge e 0™ R 0 e 0 ram 0,
o /X - -
m

so by comparison, it follows that

ymss) R.0cp, s yumes) (X 0y~1

= 7 c(Ap.TIDS (N, Ke))
T = o« o

or, as is preferable,
o Y ")
T o8 (R, Apc(Ap, T).
< Lo -
Analogously,

o™ (R ,0ap, ¢ yomes) (X gyt



8‘

D(s;)
6"

rlM

(w{ /'\v,;\'p) )3(/‘(9, 1)

These transformation rules can be put into a more convenient

form. Thus, since

08! WA, Ap))

is unitary, we have

'S (A, Ap)) =0 WK, A ™hH
T T
=p'S) (A HTtxrTL

0T P N AKP)'

Therefore

u™ S (X, 0am, 1v™ (N0

- (s} 2y =lew=1 P
= % D> AR AKP)_i(Ap, ).

On general grounds, J a unitary 2s+l by 2s+l matrix C such that

A/ RESU(2),

p'8 () = 08 (rycL.
Indeed,
_ 4\ S+o
Cog = 71 S < (-¢)

[Note: Since the entries of C are real, CT-=C_1

-1

Consequently,

p8 )T = cp'®) (7L,



Taking these facts into account then allows us to write

v (X, 00cp, 010 (X, 007
~ (8) (& y=ly-1n _ -1 ~
- Z {op® (RDTTRTIR xp0¢ by SRR D).

which is structurally similar to its counterpart for al(p, s).
Wy

Bearing in mind that

1::1(5)((}?.']?)_l TR

AN Ap

=i >y Lypls)  X-Lypls) (X
= D UR) TIDTUATID T (A L)

introduce now

(s} -
Klpre) = 2 D2 (A ale, T)

- (s) ~ yo—1 -
_\g{(p,c) = ZC {D (/\p)C }d_t.g(p.t).

[Note: It is a fact that D(S)(7<p) is selfadjoint, hence

5 (s) (R, = 5 (s) (KP)T E

LEMMA We have

N e

vt (X, 0 e, o)™ (X, 007
= D(:_)_ (AN & Rpy T
< v e

and

u™S) (X, 0) ¥, oru™ S (X,007?

_ (s) , v-1 ~
-Z_C_DO,T(/\ ) ¥ (Aps T) -



10.

[To establish the first of these relations, consider

Z o (A, yoms) (X, 0atp, TIU ™S (X, 007
[
_ (s) (s) =l~-1% Y
2 D (AL) EP D_CP (ALK A/\p)i(/\p’f’))
Next
(8) [ x y=la-l
D2, (AP X R )
{s) ~ . =1,.(s) pis) e
= ({A.) T)D (
2 ?. o R T0p (RTRTL (R
But
Z o' (AP, (R 5
T v o i

or still,

(s) =] N J
D :
z et (A& (Keo ph)

(S) -x.o_l ~
D ‘ r
2 o (AT X (Res )
as desired.]

To specify the field map @ (m,s)’ it suffices to specify its
Wan r

components (¢ (g=s,s5-1,...,-s+l,-s) and verify that they possess the
Ve T

; (m,s) ,
transformation property per U (A,a).



11.

Definition: Let

1 1 : —V~l<p,x>
G (x) = fe X (p,o)
X

m

y -1 (prx>
e

+ i, o) ldm (p).

LEMMA We have
LY A a P RS

ot (X0 @ _cau™s (~,0) L

s

- Z; D‘jl: (N @ (Ax).

[This lemma is a trivial consequence of the preceding lemma. ]

It remains to incorporate the translations. To this end, note that

1 _ T V-1'<a,p)

. U(m:S) (I’a)i(pfg-)utmrs) (I,a)“ &(Pro—)
- v—l (a:p
U(m;S) (I,a)&(p,O‘JU(m'S) (I,z) 1 = e >\S\(P:G’)
-¥-1 (arp}
oS (1 8y (o, o )u™ S ()7t = e KLpro)
_ Y-1 {a,p
68 (1,0) ¥ (g, ) 0™ (1,0)7) = >;§ (B, &) .
LEMMA We have
Y A VN
y(ms) (I,a)gﬁ(x)utm’S) (1,a)7" = L _(x+a).

[In fact,

S te™ VT <pox> gmes) (1,2)  (p, )0 ™) (1,207
X
m



12,

VT (ms) (1 Ly (o) gy mes) (1,a) "M1dm_(p)

G )

= S [e- 'l"l <Prx+a> O( (P

X
m

e ¥-1 <P,x+a‘) ¥ (p, O')Id/-lm(P) ,

which is tantamount to the assertion.]

Since
pmes) (X oy = plmeS) (g ayp™es) (X gy,

it follows that

u™S) (X ,a) gatx)u‘mfs’ (Rt

ulmes) (g, a)( > D (AL « (Kx)) y{mes) (g o)~t

Z D‘;IC (A Lo ™s) (14 qt(Xx)U‘m'S’(I,a)‘l

b -~
= 2 b8 (AL (Ax+a),
< T -T.
thereby exhibiting the transformation property per U(m's)(/\,a).

Remark: The field components obey the Klein-Gordon equation

2 2
+ = 0
( 3 n%) @
but that's the extent of it.
[Note: As Weinberg puts it "any field eguation except the

Klein-Gordon equation is nothing but a confession that the field

contains superfluous components,"]



13,

Let f <& {fd_g be an element of &F(R4;C23+1} and assume that

e

the fa' are real. Put

(2) ~ A
A ' = ¥2 D £
ePro) = ¥2T Z_C <o N i P

_ \ (s) > . .-1 PN
Celprg) = VIW Z { o (Kpety oo

Tg

Definition: Let

Qg () = 2= (alAg) + c(Cp)).

(s V2

LEMMA We have
AV AV N

@ gy (E) =_§ L (£,

\nn-(m's

where
\-(C?o-(fo- ) = 5 fo‘ (x) \'ng_(x)dX-
jf
[The integral

5 fo_(x)v(gd_(x)dx

_en j o (B, ) ——s j o VIR ¢ myamidn(p)
o m
X

¥2' - (2 7T) .
R
m e

+ jh’(p,o-) 5 j e VIR 2> s (myamiam, (p))

m R

Wy,



or still,

27 ¢ oL (s eI E  (p)dan (D)
ﬁ o e Pro 'y p /"‘mp

X

m

Fa%

J‘X(P;o')fo_(md//\m(p))
X
113

or still,

217 (s) , N D
( 5 > alp, ‘C)Do__c (/\D)fo_ (p)d s (p)
X

{(s) , 7~ ,A-1i o
+ j- Z‘c ﬁ(P'T){D (/\p)C go“c fo_(p}dﬂm(p)).
X
m

On the other hand,

(;a_\(Af) +&.(Af))

3l

(52

* 27 5 ﬁ(prf)cf(pff)dﬂm(P))
5
X

-~ ~
= 20 (5 j 2o Z o8 (A )HE e
vZT =
Xm
(s) ~4 -1 Fa¥
+ Z clp. &) 4 D (A )cC £ (p)da_(p))
X
m
V21 A
f_c(p)d/.«m(p)

(s} [~
= . D'®
= (% J %3(9 @) D (AL
X
m
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LG

(s) A
+Z‘C f %\i(.prﬁ) {D (/\ Yoo }__ f_E(p)d/tAm(_p))
X

- 20 (> S 2. alp, 'C)D(S) (7\'9) e (Plda_ ()
= T
X

m

— (s) (% o1 A
% e, T) 3D ACTH ] E (m)d e (p))

+
aM
e

J £ 0'(X) \ff F(x)dx.
R4

Therefore

(@ )(f)=§3¢(_fd_).

v (m,s

Remark: The field map kq(m &)’ .XP(R c25+l),_§ Endof) is

obviously linear. That it is also C?l\—equivariant follows from the

transformation property of the ¢, per U(m's)(f\,a).
b

There remains the task of verifying Wl-W6. Of these, only W5
and W6 require proof, and I shall deal only with W6, leaving W5 on
the backburner,

The symmetric and antisymmetric cases can be dealt with simul-

taneously if we adopt the convention that

[A,B]+ = AB + BA.
[Note:
[A:B]_ = - [BrA]*
while
[A,B]+ = [B,A]+ .1
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LEMMA We have
N A,

[ Qo (x), _go_.(x‘)]t=0
unless ¢' = -6 and in this case,
(@ _(x) U G ) Al N S
S P t 0 F o m .

[Dropping the constants, it suffices to consider the sum of

5 y o Y1 o.x> V-1 (p'

ED Lk p,e ), Y B 6], (D) a0

j 5 o VI <px) ~V-1'<p",x"> [d (pro ) X(P'r ") ], A (PYAan (PT).
X

From the definitions,
[, a), 3", 6",

- (S) > (S) -~ -1 ] '
—éngo__c (Ap) g_D (API)C }G'f'[ﬁ(p't)’\i(p't )]i_

= (S) -~ (S) ry -1 Lo
% % DG__C (Ap) D (Apc™ ] Lo oo §o'-p) § .

ZD (/\ ){D(S)(/\D.)C S(p'-p).

} G'e
Integrating w.r.t. p', the first term thus becomes

- ¥-1'<{p,x-x"' {(s) , (s) , -1
'[ e be % Do_( (/\p){n (;\P)C } e da, (p) .

X
m

Next

[E(Prﬁ");&f(?'; O")]_'_
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-3 T
¢ T

(s) =~ -1 (S) N ' '
P Rpe™ Y 0@ (Rl T ae, T,

- (s} X yp-1 (s) ~ ot
- Z L Ry 0@ LRyt steet) e
= {(s) , >~ y~—11p (S) ; _!

%{D (R}, PGt (Rpoix Ste-ph)

Integrating w.r.t. p, the second term thus becomes

s'p

¥ Y-I'<p', x-x' (8) % ool ~ :
—j e VL <p"/x-x >%{DS (Api)c }O_F DT (A )da (2"

X
m

or still,

Y-1{p,x-x" (s) , ~ , -1 (8) ~ .
ts e % %{D (NIC Y oo Darp (AQasy ().

X
m

We are therefore left with

S [ e-V—l {p,x-x'> Z D(s) (}‘\* ){D(S)(K )C—l}

e Ll P p o'p
X
m
L VAT <p,x- -1 5 ()
* Cprx=xty Z{ (R S Dot (A} & (@)
or still,
- VT (p,x-x' ((s) ~ (), % -1 T)
j’ [e D (Ap)ﬁn (A e § -
X
T

VAR et ' ~ -1 ~ T

or still,
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- V-1 {p,x-x"> ( (s) o~ (s) , >, T
j e 'S (A e (A ).

X
m

V-1<p,x-x' ( (s) , -1_(s), o~ 7T
+ e > {p (;\p)c D (/\p) )o_d..ld/-tm(P)-

Here we have used the fact that C"lzc-r'zﬁ'(c_l)T'=c. It is also

true that

So

" & integral = cl=c
$ half-integral =ct - -c.

In this connection, recall that when s is integral, it is a question

of the commutator

[ @ (0, @a(xD]_

e e,

and when s is half-integral, it is a question of the anticommutator

@ (), @i xD, .

We are therefore left with

(s) .7 (s} , ¥ T
g(n (N e S AT

X
m

x fe = YL ®@rxmxy _ VoTKpoxox > a0 (),

It remains to explicate

(s) , 7 (sy , % , V¥
(D (/\p)CD (/\p) )ch'
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To this end, we shall use the fact that

(s) ;% T _ ~pis) 2, .-l
D (/\P) CD (Aq)c .

Accordingly,

(s) , ¥ (s),w T
D (I\P)CD (/\p).

o

o (s) o (s) -1
=D (Ap}ccn (I\q)c

2s

- (s) % {s) .~ -1
= (-1} D (AP)D (/\q)c

2s

- (- (8) /N N o1
= (-1) D (/\p}\q)c

= (-1)2% p®) ()t
= (~-1)2% ¢ o (-1)28c7
=
( D(s)(;YP)CD(S)(;rp)T') R
= 1% Ty _
= D © Lo
G R CE DL . S,
This shows that there is no contribution unless g'=-~ ¢, in which
case we are left with
(*1)25 (_l)s—ﬁ' = - (=1)5"F |

-+

Reintroducing the constants then leads at once to the assertion.]

e
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Remark: As a reality check, take s=0 -- then the only possibility
for 0 is 4 =0, hence

[@A(x),conlx')] = —— (x~x"'),
ottt g - By

which agrees with our earlier conclusions since @ 0= L
N,

LEMMA We have
R
[@ _(x), @qo (x)*], = ) A (xax)
. o + .0 m ‘
where 35;) is a differential operator in the X

5!

[Dropping the constants, it suffices to consider the sum of

S S e ¥ -1 {p,x) e -1 <ptx"y [ﬁ(PrG")rﬁ*(p" 0")]+ dﬂm(p)dﬂm(P')

X *m

and
5 S e V-1 <pixy - V-T <p'\x' [ZR.o), IR 6], da (Pl (P).

Xm Xm

From the definitions,
[\E‘((Pr G’)fﬁ*(Pt; G_‘)]_'_

- (8) (X yp(s) ~ -
- ZTZ DL (AP T oo (AL [ale,T) ety Thl,

{s)

{s) 'l N f e
(RD'3h g (R S ®'-p) & oo

L

b

D

(]
M

Tl
-t:i
= %D(:; (KP)D(S) .(Kp.) § (p'-p).

P
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Integrating w.r.t. p', the first term thus becomes

- ¥Y-I'{p,x~x*> (s) o (s) -~
3’ e % DW (A)D po-'“\p)d/“m(p’
X

m
- - V=1'<p,x-x'> (s) p , (8) %
| —_S e o (R0 SR N dag).

X
m

Next

[ (p,a ), 3*p'r '},

]

(s) X vl (s}, 7~ -1 _ D
z Z, PRy DR oY et aet, o

T t

- (s} = -1
=z £ PP RpeT

¢ (8), ~ -1 + , |
< T {D (’\p')c § ' T S(p_p ) 6_"5"1.:'

o

]

{ ~ -1 ( N - 1
ZhP Ry Rt L E S

o
Integrating w.r.t. p, the second term thus becomes

V—l'(p‘,x—x') (s) , -1z (s) & -1 '
j e %{D (A, 0c }G‘P o (R e }o_.f)dmm(p )
X

i+

m
Y -1 <{p,x-x"
+ ’ (s) X yo-1 (s} 'R a1
= I j e >(G) (AQC )%DS(APN V) o g 1A (P)
X
m
Vo1 (p,x-x'> ~
_ o+ ! (s} ~~ (s} /N
= j e (DT LAD A D)) o g darg (R)
X

Here we have used the fact that D(s)(;rp) is selfadjoint. We are

therefqre left with
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S (D‘S’(/\ )n‘s’(/\

X
m

p 6‘6”

-¥-1 <{p,x-x'> V-1<p,x-x">

X [e + e 1d 4 (P) .
It remains to explicate
(s) % {(s) , A _
(D (pr U&Q’rr"
But this is not difficult:

{(s) ¥ (8) o~
(D (AP)D (Ap))u‘d"

Z (s)
T 'oo-pk )p "”p r
a5’ 1 2s kl k25
where the sum is over all kl"“'kZS (=0,1,2,3). If s is integral,

then we use the minus sign and

—'Y:i1<p,x~x'> 'V:i1<p,x-x')

P, -°-P e -e 1d s (p)
5 k1 k2s m
X
™
j‘ - V-I'<p,x-x'y V-I'<p,xx
= D D [e - 1d (P):
ky  TKpg "
X

while if s is half-integral, then we use the plus sign and

~ V-T'<p,x-x"> V=1 <p,x-x'>

Py P le + e lda (p)
S Ky Koo “m
X
m
5 - V-T<p,x-x'> V-T'<p,x-x">
=D, ++-D fe -e Jda_(p).
kl k2S _ m
Xm

Of course, the point is that the minus sign does appear in the end,

which in turn leads to the introduction of Lxm and, finally, to the
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contention of the lemma.]

Remark: The following simple formalities have been employed.

- V-1'¢p.x V-1 <p,x
1y ¥Y-T ddTo le ? e ’)

-U-l r W ]
= V-1 (- V-1"pjle <px>—('1/3'p0)e P,

-V-1'¢p.xS V-1'<p,x>
+ e 1

= lpy e Po

and

'V—:T<P:X>
e 4+

Y-1<p,x>
0 Py © !

V-1 E%E [p

2. ‘V‘_1I<Prx> 2 \[_"T<Prx>}

= [py e - Py ©

-VT'<p,x> Y-1<p,x>
le ~e 1

)
l
I
L]
I
D
e
1]
i
i
1
|—I
T
®

and

d d
0 (k) (g
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- ¥-1<p,x>
0 A o

ﬁ(p,x)
e 1

- V-1'<p,x> \/H(P,x%

= [pop/u\ € - POPI“\ e

(4) (-vi? )(_ﬁ d )[e'ﬁ@rx) _eV:T<p,x>]

..V’-_l—'<p,x>+ ﬁ(p,x>]
e

P,

Y 1 4
= - ¥Y=1 dx/u‘ [pue

- ﬁ{p,x')
€ -p, P

v An U

V-1 {p,x>
e ].

Example: Take s=1/2 -~ then D(l/z) (KP)D(I/Z) (xp) = x

=
e

2
P

1
m

P+ Y-1'P, Py ~ Py
Therefore

[ & ), @i (x)*]

'V_:f<p,x-x'> V'T(p,x—x'>
[e +e

i
g1+

—
g

9

O[

1d 4 (p)
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Example: Take s=1 -- then D(l) (?\JP)D(I) (KP) = D(l) (K ;2))

= -1—2 m® + 2p-S(2p-S+p.)1,
vie e w (0
m e,
where
0 1 0 0 -V1 0
1 11
sy = {5 |1 0 1], s, = §\Ci" 0 -Yaal ],
0 1 0 0 V1 0
1 0 0
Sy = |0 0 0 ,
0 0 -1

SO one can compute

[ @ (x), @ o (x)]_
explicitly in this situation too.

Remark: It is easy to allow for antiparticles (proceed as in

the spin zero case).

(s)_p(s,0)

Instead of working with D , we could just as well have

worked with'B(S)=D(0'S), realized as

Recall here that

One can then introduce another 2s+l1 component field ég(m s) with the
F
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=(m, s)

property that if U is the associated irreducible unitary

representation of & 4+ then

o™ (X & _@T™ S (N,a7?

— ~S — ~r
-Z 39 (ATH I (Rwva).

The (s,0) field (e

v (M, s) and the (0,s) field éf(m,s) can now be

combined into a single 2(2s+1l) component field

2

v (M, 8)

L (m,s) '

where, needless to say,
‘n = D(S)@ B.(S)

but there is a difficulty in that the vacuum is no longer unigue up
to phase (the underlying Hilbert space is a direct sum, not a tensor
product).

Remark: Taking s=1/2, one can produce from the preceding the
Dirac field. However, I shall omit this and give a different con-

struction later on.



Massless Particles The free relativistic particle of spin s> 0

carries
and mass zero oxwexx the structure of a vector QFT. Its type depends

on the helicity A= +s.
Rappel: In nature, 3 two kinds of massless particles.

I: There are those which exist in the helicity states t 7 .

E.g.: The photon (A=+1) and the graviton { A=42).

II: There are those which exist in a single helicity state

A but admit an antiparticle existing in the single helicity state - X .

E.g.: The neutrino ( A=-1/2) and the antineutrino { A=1/2).
Notation: As usual,
LrIodd (Ron
Ft-0] ((N,a) =¥ (A,a)).
(1) Assign to each peX, the boost A, € { T ¢+ A,(1,0,0,1)=p.

Thus A‘p is the result of sending (1,0,0,1) to (ip}.0,0,ip}|) followed

A A
by the rotation R(p) (in the plane containing p and the z-axis) which

M
takes the z-axis into p=p/|pj-

(2) Assign to each pé& XO the Wigner angle @(7’( P& {0,271 1[.

Thus
(NOTEYR X w_y €E,
P A 'p
where
e V-1IO z
0 e~ V-I® -

so it is a matter of picking off the angle in the decomposition of



~ -1

(p\p) ~R into its diagonal and off-diagonal components.

Alp

Fact: Given né€?2, 3 an irreducible unitary representation " of
i,

gt 2 .
& 4 on LU(X . mg), viz.

(U™ (K ,a)£) (p)

= a V-l (a:P> e ¥ -1 n@(/\ :P)f(X"‘lp).

Turning now to guantum field theory, one has to start by specifying
the Hilbert space, which we shall do by taking for}re the symmetric

Fock space over LZ(XO,AO) if s is integral or the antisymmetric Fock
space over Lz(XO'”*o) if 8 is half-integral.

[Note: Here, of course, the underlying unitary representation of

G’I on ¥ is derived from ™
There are various possibilities for T . Before getting into this,
introduce operators
f:(Pr A
&(pr )

satisfying the usual conditions ( A being merely a label in this

context). Obviously,

o * (N, 0ep, a0 A (K, 0071

_ — -~ =1 ~ o~ e
-gri)(\‘ 127\@((I\Ap) AAXP))E(AP:?\)

and



*™ (AL 0ate, MU (R, 07
= exp(V-T 22 @ (R R naKe,a)

Definition: If our particle is left-handed, i.e., if A =-s, put

Yy (x) = L 13/2 5 - VT <(p,x>

X,

(s) N
X
D o (Aplalpr A)d g (p)

but if our particle is right-handed, i.e., if A =s, put

+ (x) = 1 1 J 'e-V——l'<p,x>

L R,6 V2 2m3?

Xg

(s)

XD (AQale, n)dag ().

[Note: As usual, ¢ ranges over s,s-1,..., -s+l,-s.]

LEMMA We have
e

MR wT @etA AT
ML,
~
= = o8 (KL ¢+ (A
T ot L, T
and
1

A0t MR 0T
W R,6

T o T




p (s}
Remark: In the massive case, 11 —(s) was automatically
D
glm,s)
embedded in the theory through the very definition of —(m,s) °
U r
pis)
This is not true here: Ti = —(s) has been introduced solely to
D

get the transformation property of the fields. Our choice is the

simplest but one could equally well have worked with

[lEft} (S + ']2-—]‘ %)f (s + l'l)'oo'
. 1 1
[rlght} ( 5; s + j) ¥ (l, s + 1) Fuouoa -

To continue, it is necessary to differentiate between possibilities
I and II. 1In what follows, I shall concentrate on I {the discussion
of II entails the introduction of antiparticles).

Definition: Assuming that we are working with particles of type I,

put
- _ 1 1 V-1"<{p,x>
(x) = e
Yi s V2 m3/? j
X
0
xp's (A Ye{p,- A)d i, (p)
o N Pt 0
and
- 1 1 V-1'<{p,x>
(x} = e
R V3 (2n)3/2y
X9
X D'%) (A )ep,- A)d g (p) -
o piatEr e 0
[Note: The lemma also applies to these fields (with UZSN replaced
=2 A

by U ).]



Remark: It is a fact that

p(s) (s)

P - A a
. (l\p) Do-p\ (R(p))(lﬁl)
(s) (s) (A=ts).
Diva A Y (R(p)) (iph
On the other hand,
+ (s) AN § -3 A
D (R() =D 7 (R(D)).
Therefore
+ p—
‘L|/
v er- “-\er"
&
v N
R,o0 ™ R,o

actually involve rotations only.
To take advantage of this circumstance, we shall modify our

definitions slightly:

y" o o= 2 : f 21ph® o™ VT <R

Tr.e V2 (21 )32

X5

(s) A

X D o (R{(p))alp, A)dmg(p),

, 1 1 s -Y-1<{p,x>
¥ = 2iph® e ‘
™ R,6 V2! (21‘I)3/2 J -

X

x pls) (R({:\))g(p, A)d g (P)

oA
and
- _ 1 1 s _ V-1 <(p,x>
(x) = (21p) ™ e
}le'o_ V2 (2n)372j =
X0

X D(S) (R(S) Je(p,— A )dMO(P) '
6- W



- ! 1 s V-1 <p.,x>
(%) = (2ipl)” e
:fR,o“ vV 2 (211)3/2 j v

X0

(s) N
XD ' (R(P)c(p, - A)daa, (P).

[Note: Bear in mind that, despite appearances, the formulas for

o, )
Y
= Lo Yoo
&
w + -
¥ y
A R,O' e R;O—

are not identical. 1Indeed, when the particle is left-handed A= -s
but when the particle is right-handed, A =s.]

The next step is to combine

'q; ¥ & -

w L,6 v L,o
yt sy T

e~ Rfd‘ Ao Rfo_ r

which necessitates the introduction of tensor products.

Convention: Assume henceforth that s is integral.

[Note: When s is half-integral, certain technical modifications
in the overall setup have to be made but the final conclusions are
similar.]

The Hilbert space Bf is the same for any A . However, to emphasize

. , . 4 . 2Hx
the underlying unitary representation of 6’+, write }f) when U is
2A ., . X
is operating. This done, pass to

Hop @ ¥y » call it f , then let D= 0, @D _, , (1= QA®Q-9\'

operating and}(_yx when U~

=022 @ 72 A , and



$Hed
il
I-€
e +
a
3
[
>
-+
)
»
&
i€

L,s

—— + =
TR,G‘ —Zero_@*I_?\ +I?\®1¥R,o— :

LEMMA We have
R VL L T W

Accordingly, it suffices to consider in detail just the iEI,a‘
ey r
and their adjoints. The definition of the field map proceeds along

the usual lines so I'll omit it. For the record, though, note that

VAT, ) U(R,07

= v (X,0 2R, 0T® 1

A

wr
Yo, 00T A

-20 X - ~2A (X ogy-l
+1, @UTEAR,0 YD 0 UTEAR,0)

(s) ,~-1, ., + ~
%DG‘I(A )\HIL'_C(Ax)@I_A

(s) -1 = N
+ I;\Ga 2% D a't( AT lflb.t { AX)
= TP N RN @I, + 1, @y, ¢ (A
(g)y ,w-1 ~
20 A E i, N9
Since

6(1,a) T p o OUT T = F

it follows that

(x+a
, o ).

UiA,a) T L, & (X)U(N ,a) "t



= Z o2 RN gy, Reva.

Remark: The field components obey the Klein-Gordon equation

2
i 3§L,a‘ (x) = 0.

In addition, it can be shown that

(s (<2)- S SAVAN ?E]; (%) = 0.

at
There remains the task of verifying Wl-Wé6. Of these, only W5
and W6 require proof but, as in the massive case, I'll omit W5 and

focus on Wo.

LEMMA We have
R en Pty

St

[y, o 0 Fy,, o xD1 = 0.

[On the basis of the definitions, this is immediate.]

LEMMA We have
R N Vi

(s)

1y %7 = |
IEL,J(X)’EL,J'(X) ] 36_1 v D\ g (x=xT),
where Biﬁ) , is a differential operator in the X 0 0
)
[1t suffices to consider the sum of
v- - L] 1

j f 2lphSip'H® L<pixy o V-1 <ptx"y

2(21')

x D= (R(P))D(S) (R(E*)) [alp, A),(p'r M) I@I_, dany (P)Amg(p')

A D w~ - A



and

f [ 2lph3lp' s e VT Gpoxy - V2T <ot x'y
2(2Tl) P P !
X

0 X

(s) )

LRENDE (REDNT ., @Lep-2) a0 = M) 1dmy(B)dmg(0*) -

Employing the commutation relations
Clate,A),gpt, Ad] = S(p'-PIT
[ep,= A ralp’ =01 = Slp-p')T_,

reduces the sum to

1 2s ( ) (s) A
— 2iph (R(p))D (R(pP))

X

(e~ V7T Prxx> o VeI Koo' 4 4 (),

the 17\69 I_'\ having been dropped from the notation. But the factor
7

{s)
Da_a

is a sum of terms of the form

(s)

(21p]) %% ®RENDE, (R(E))  (A=-s)

Cx.eeek,  Px " Py

1 2s 1l 2s ,

{s)

where kl""'kZS range over 0,1,2,3, Defining ‘a‘r' o

, in the obvious

way then leads to the assertion.]




The Dirac Equation Working in b& = L2(R3;C4), the evolution
Vi

equation of this theory has the form

VoI K %'Q_ Yit,x) = B Y (t,x),
t - -

where
Y tex)

: ’ P

Yit,x) = : €c’
and

H=-V-1Hcx-Y +pmcz,
Nty

a 4% 4 matrix differential operator -- the Dirac operator. By con-

struction, & is a triple (dl, o o o<3) of hermitian 4 X 4 matrices

while f is a hermitian 4 X 4 matrix, subject to the relations

0

o(io(j oKy =2 Sijx

Kif *PA; =0

There are various choices which realize these conditions. For example,

one can take

o
O]
=
[

Here, as usual,

¢_<01 “o—\/——f 6__(10
1 10)"6-2_\/-_1—I o)' 3 o-1>'



thus

m02 I - VCI‘ﬁ c <§.V

-V-1H Céf‘v - m02 T .

Assume henceforth that c=1 and H=1.

LEMMA H is essentially selfadjoint on Af(RB;Cq) and selfadjoint
T Wy W WA e

1,2

on W (ﬁf:gf). Its spectrum is purely absolutely continuous and is

given by
6(H) = ]-00,-m] U [m,+ cO[.
[Note: Recall that in general Wk'pgg?agf) stands for the Sobolev

- space consisting of thoseigf—valued 1P-functions whose distributional

derivatives of order < k are also Lp.]

The domain of H is "configuration space”. Under Fourier trans-
formation, H is sent to "momentum space”, where as a multiplication

operator it assumes the form

m ‘E:-‘p
hi{p) = .
‘M' &-p  -m

e

For each p, this is a hermitian 4 ¥4 matrix with eigenvalues
oy

Ay () A5 (p)
™ = M(p) & e = - M (p).
N (E’-) A N4 (31 v

Here, as earlier,

1
s (P) =-\fh2 + | p]z .



The unitary operator which diagonalizes h(E) is then

u(p) = mEMEVI + 02D
~ YV 2mp) (m-l-M(\g))‘

In fact,
u(p)h(plu(e) ™t = pa(p),
S0

W = uePT
converts H into an operator of multiplication by the diagonal matrix
WEW ™ (p) = Paip).
Remark: The trangformation

_ -1
Upy = (FT) o LS

is called the Foldy-Wouthuysen transformation. One has
V- A +m2 0
0 - VY- +m2

where V-A +m2 is the inverse Fourier transform of multiplication by

-1
U Upy

A (D).

In the Hilbert space ZGLZKE?;E%), the two upper components of a
wavefunction have positive energy while the two lower components have

negative energy. Accordingly, we define the subspace of positive energy

}Q pos C}Q as the subspace spanned by the

-1
Yoss = W 3 +pIWY  (yed )



and we define the subspace of negative energy '}( C:}Q as the

neg
subspace spanned by the

Yneg -:-ufl FI-HWY  ye¥).

Obviously,

H = }epos ®}Qneg ’

the associated orthogonal projections being
p__=ut % (I+ 6]
-11
P oo =W " 5 (I-FHU .

But these projections do not determine superselection rules. This is
because 3 observables which do not commute with Ppos & Pneg {see below).

[Note: H is a positive operator on,}fpos and a negative operator
on Mneg'l

Remark: The standard position operator is‘ff(xl,xz,x3) {i.e.,

multiplication by X;, an cbservable if there ever was one). But&a

mixes up the positive and negative energy states in a very complex
manner (this effect is the origin of the Zitterbewegung). There is,

however, another position operator that 1eaves;}€pos and }Qneg invariant,

viz. the Newton~-Wigner position operator:

x S

Eww = Upw XU

FW*

Still, it too has its problems.

Let -

Ut = expl[- V-1 Ht]



and write

W x) = (U W) = Y (x).

: 3 4
LEMMA Suppose that \Féuqf(R iC7) -- then

Yit,x) = 5 K(t,x-y) V¥ (y)a@y (£#0),

R3

Sy,

where

K(t,x) = (-—?—-&(-V - Y7 f’:m) LN (t,x).

Remark: As we know,

el <tixl = O (E,x) = 0.

So, for fixed t >0, bm(t,x) is supported by {\.}f:lﬁl ﬁ]t\ﬁ.

Consequently, if at time t=0 the support of ¥ is contained inside

a sphere of radius r, then Wyt must vanish outside of
iﬁ:‘a&\{:ri + Ylv)i~|3&\{-_t}
C ixsixjer+e .

Since for us c=1, this can be interpreted as saying that Y propagates

at most with the speed of light.

THEOREM {Hegerfeldt) Fix a Hilbert space }f. Suppose that H
is selfadjoint and positive and A is positive -- then for any unit

vector Y €3 , either

- V-THt - ¥Y-Tut
e Y, he Y ) #0



for almost all t and the set of such t is open and dense or

- Y-1Ht - V=Tt
{ e Y, Re Y =0 Vt.

N4

Remark: This theorem can be used to prove that if W #0 is in

}epos
¥ reg

, then the support of Yis all ofv§3.

Return now to the Dirac equation:

yor oY - 1w, oY Lo ¥ ro, 2% .
dt Y -1 1 ’Dxl 2 ’ax 'ax3 Hpmy

Multiply through by @and put B’G=(5 ’ }fi= e Xi (i=1,2,3) (= ¥ .=
} —- then we have

2
+ ¥ + 3
3t 1 ?xl 3

2 Exz Dx

¥ -m¥ =0
3

or still,

D . _ =
V=1' ( };Ob—t+3 Y)Y -my =0.

[Note: If we had worked instead with

then the Dirac equation would be



. D~ ~
'\/:3(2[0-3—— I VY -my =0.]
t
LEMMA If Y'satisfies the Dirac equation, then Y/ satisfies the
A VW
Klein-Gordon eguation.

[In fact,

(m+V—l'('B'OBl+E'V))(m—VE( Yo oot XU D)
t t

= (1% + m®) 1.



The Dirac Field This field does not involve an irreducible

o~

unitary representation of C?: but rather a unitary representation

ot

of (?1

+ with two irreducible components.

Agreeing to view a function f:R4<-0.§f as a column vector,

T
£ :ﬁf —ﬁ\gf is then a row vector. By definition, the adjoint f
+ -_
of £ is £ = f T Bb, where
0 I
HO= 1)
I 0
80
i _— e e
£ = (fy,f,,f PEy) e

[Note: This *XO is not the ”KO of the previous section.)

Denote now by JK(m,1/2) the Hilbert space consisting of those

measurable functions f:Xm‘—9\gg for which the integral

=1 L

<£,£) = j e7 () ¥ (p)£(p)dm_(P)

X
m

is finite, Here

Y(p) =Ygy + ¥p = Fypy + Z Y, P

RN ./"‘\MM

and, as earlier,

Remark: ¥V p €X . ¥, ¥(p) is positive definite, hence <£,£ 20

and f=0 iff <f,£f) =0. This is seen as follows. Let



PP I *gp

P=py, I-5D-
Then

tr(p) = py

det(p) = pg - IPI”

sO0 p is positive definite if pexm. On the other hand,
’E—; =g (q=(p0:-\£{))r

thus “f; is also positive definite if PEX . Using this notation, we have

g A@) =py T+ 2%, B,
...pOI'I-/‘A ) p/.&
Ty
P 0
0 P

Therefore, Y pG.Xm, 'a’o Y (p) is positive definitive. Consequently,

\d rpe er

f+(P) J{p)f(p)

-7
f (p) %’0 Y(p)fip)

<E(p), ¥, F@IE(R) D> 20.

[Note: It is also easy to check that <f,g)=<g,f). Thus let

<a,v>= ETB’OV (u,vé&‘f) .



Then

{u,vy = <v,u)

and

{¥plu,v> { "E(p)u)-r XOV

TTY® T ¥y

ET Ji(p)* YoV
=3 ¥oPo - ;XAPM)XOV

AT AN

Ul Yo WPy = X Yo Fa. ¥oPu )V

—T
U ¥Ryt Z WY

I

ar Vol ¥ipIV)

= <u, YPIvy.

Therefore

£ (p) ¥(p)glp)an, (p)

Fa¥

H

o]

~

"
=1 Ly
binc] T,

=4

< £, ¥PIgPD dar, ()

]
=
e

=)

[
g

<¥(pYE(R) ,9(pP) > daa (P
<{g(p): Y(PIE(PR) > dac (P)

o (6) ¥p)E(BIAA (P)

I
1L

1l
gl
Ne——ﬁawh——-\atxﬂ—-ﬁ

=)

= <g,f ) .]



~%
Fact: ¥V m>0, 3 a unitary representation W(m,l/Z) of 6’+ on
3Q {m,1/2). Explicitly:

w ™2 (X ey (p)

- ¥ -1 <arp N ~ -1
where
_ w(1/2,0) (0,1/2)
Dyj2,172 =D 777 @D '
i.e.,
A0
01/2’1/2(/\) = .
0 (N"Ly»
In this connection, recail that
— 0o -1 | 0 1
A = (AL .
1 0 -1 0

[Note: To check unitarity, we shall use the relations

'v_l St

Dy 12.1/2 (A) ?1’(1:)131/%1/2 (A" = X (Ap)

~ . I |
Dys2,172 (NI* ¥4 = ¥ Prsz,172 N
Thus

(/2 (K Laye, w2 (R oaye >

ot 1- kY4
-z @™/ (XLa8) @) ¥Ew™Y2 (X, a)f@ram ()

X
m
1 € (Alpp (A)* ¥, 3(P)D (M E(Apram ()
“m PIP1/2,172 o ¢'P'P1/2,1/2 PI A P
X
m



B 1 —_T ~al =] g N—l
X
™
—T . oty e
= r% S £ (N 3‘9) }'0 JIAN 1p)f(/\ lp)d/um(P)
X
™m
) I O
== £ (p) Yy FPIE(IAM  (P)
X
™
=1 ey £(p)d
== P) ¥ (p)£(p)dAe (p)
X
™
= {f, £y .]

<¥%This representation is not irreducible since there is an orthogonal

decomposition

om,1/2) = K(m,1/2,+) @ H(m,1/2,-)
into two invariant subspaces on which(S'i does act irreducibly:
W(ml‘l/z) — U(mll/2l+) @ U(mrl/zr-).

The orthogonal projections

P 3 (m,1/2) —>3f (m,1/2,+)

4 l'l'l= }Q(mrl/z)'—‘> a"e(mrl/zu-)

are
P-+ - m+ ¥
m 2m
- _ m-
Pnl" 2m .

Here it is understood that § stands for multiplication by ¥(p), an

operation which defines a selfadjoint operator having a discrete



spectrum with two eigenvalues +m:

., ¥
V£ = Inf (£ € 9 (m,1/2,+)).

[Note: Under Fourier transformation,
a »
V-1 '(30——; -2V

goes over to multiplication by ¥ {p), thus the elements of ¥ (m,1/2,+)
are solutions to the Dirac equation.]

Remark: on §{(m,1/2,+), the inner product is

+, T

<£hq" (£7) " (p) ?r(p)g+(p)d/um(p)

1
m

HT (®) mg* (eI (p)

I
8|
e W R
2 =,

S (f Ht (p)g (Prd (p).

X
T

Similar comments apply to af(m,l/2,-) except that the inner product
has a minus sign in front of \{
X

[Note: Take £F = g+ and consider

T et

or still,
CE R, Yot ) D

To see what this really is, unravel the relation 3(p)f+(p)=mf+(p) to get

I Pt o) = mt(p) = Z Y b, £ e



<£%(py, XOPOfJ’(P))
+ + + +
=m {E£P,EEY -<£®m, T yp £@®> .
7 < Y Pu

The matrices Xl, ¥,+ Y5 are skew hermitian, hence
+ +
< £ (p), ,«ZABMPMf (P

=< ;?; AR CORE AN SN

+ +
- £ £
< ;yﬂ P £ R/

+ +
<E£(p), E_wﬂ R, (@ >,
so
+ +
£ ’
<E (p) z ¥ P E @)D
is pure imaginary. Since the other expressions are real, we can divide

by Po to obtain

CEEL Y Y = L) .
0

Therefore

CeH ety = m S () £ (p) >

da (p).]
Py "

X
m

Remark: Define vector bundles B(m,1/2,+) by

% (p,v): P me,ve&“: Y (p)v=+mv }

with projection

(p,v}) —> p.



+

The square integrable sections of B{m,1/2,+) are those £ : Xm-—hvgf
such that
+ +
0 j e (p) £ (p) Y dm (D) 42D,
Pg
X
m

i.e., the elements of BQ(m,l/2,j). This means that we are dealing
with a certain system of imprimitivity which, on general grounds,

is equivalent to the one associated with the representation of the
stability group SU(2}) of the fiber at (m,0,0,0). On the other hand,
U(m:l/Z)

arises from the system of imprimitivity implicit in the method

1/2.

of the "little group" per D Claim:

To prove this, it need only be shown that the two representations of

SU(2) are equivalent.
St

{(+) In the relation

_ 4
XOPOV +§ “JM P/“V—V (Ve\E_ ),

feed in (m,0,0,0) to get '30v=v, i.e.,

v" v!
= =
V‘ , v!l

Therefore the fiber at (m,0,0,0) in B{m,1/2,+) is the subspace of



u
all vectors in C4 of the form (uEECz). But
Ve a Vo

¥ AN € su(2),

. A 0
Prya,172iN =L Ry

(%)
oK),

thus the action on the fiber at (m,0,0,0) is

(u) ~ 1
—> D (A)
a 1/2,1/2 ('u )

]
i
>0 >0
£ £
———

1/2

D (K)u ’

which is equivalent to the usual action of sU(2) on‘g?, i.e., to D1/2.

(-} This time X0v= ~v, 50 the fiber at (m,0,0,0) in
n
B{m,1/2,-} is the subspace of all vectors in\gf of the form <’ )
-1

(uev(;.‘vz_) and one can proceed as above.

Put

c=V-1 )1’0'3’2.

. T - .
Then C is real, C = C 1. -C, and 02 = -I. Explicitly:

(g, 0 ) (0 -1
C = = ).
o &~ (& 1 o)
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In addition:

cyoc'l—-yo
c ¥, ct= ¥,
c?{zc'1=—2(2

-1

Definition: The charge conjugation on b{(m,l/Z) is the arrow

f — fC' where

fC = C{(f ) ’
loe.'
e Ty, T
fo = C(E &)
_ T & 3
=C JofE=C Yyt
Observation: (f£.)., = £. In fact,

c'C

(fgdg = € ¥y ¢

=CY¥yC I,k

VoY Yoo VT ¥ ¥y ¥

1l

(VD2 (¥03, %) £
(V-2 (-3 pn% s

(-1) ¥2 ¢

1l

(=1) (-1) £

= f.
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LEMMA The charge conjugation is antiunitary:
N

{fer9c)=<£.9) -
[The RHS eguals

T et
fln' S £ (P ¥y ¥ glp) dm (p).

X
m

As for the LHS, it equals

.I_

2o @re g an .
X
m

But
t ot

fc = (C Xof)
= (€Y, YTy,
= ©¥,0) ¥,

=£7 @y ¥,

=£1 ¥, ¢ ¥,

= £7 ¥, TNy,
We must therefore examine

1 T -1 —
AR R PRt P T NER AT P

X
m

the claim being that -



cT ¥, ¥ C Yy = A

= YoPo * 1Py ~ ¥Pp + ¥ 3P3-

But

1 cH Y ¥y €Yy =¥y

-1 )

-1 -1
= C Xoc-c B’lc-a’o
=~ ¥ 817 ¥

=-(HOBlUO)=Xl:

-1
(3) Y ¥, CYy

il

c“l'xo C-C_lh’z c- Yo
=¥ " Y2 "
= ’80‘62 XO == Xz?

(4) C_lxoxa Cd¥y

-1 -1
c B’OC-C X3 C-XO

=_¥0 .33 .XO

I

- (XO X3 Xo) = 3’3'

This establishes the c¢laim, from which the lemma.]
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LEMMA The charge conjugation is quasgiintertwining:
M e,

wWE (R g = w2 (R a0

[Evaluated at p, the RHS is

c\'oe 01/2'1/2(A)f(/\ p)

1/2(RIE(A T p)

and the LHS is

-YI<a,p) X ~-1_
e Dy 3,1/2(RIC ¥y E(AT p).

The issue is therefore the equality of

D1/2,1/2(/\)C30

and
c’do Dl/z'l/z(x).
But
C 131/2'1/2(K)C'l = Dl/z,l/z(—;‘-l)T
or still,
c™L D1/2,1/2(7\)C = 91/2,1/2(7\_1’1- '

C_l being -C. Write

Dy s2,172{ANICE,

1

-] o
C¥g ¥ C D1/2,1/2“\)C ¥q
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~ =1, T

By definition,
AN 0
Dyrs2,172 ) —_y
0 (A ") *
=7 . (A HT 0
—~ T _
2,120 )0 = =
0 N
= A 0
< -1,T _
¥9 Pij2,12N ) ¥ g = 1T
0 (A ™) .
It remains only to note that
—_ Ao
D {(AN) = .1
1/2,1/2 —
o (A l)T

Remark: The experts claim that w{™1/2) ommutes with the

charge conjugation but, as we have seen above, the experts are wrong.

To run a reality check, take A= I -- then W(m'l/Z)(I,a) is multiplication

by the character “)Ga:p —_ e V-1 (a,p) . Can it be that 'X/afc=('x,af)c?

Well,

Xfe = (X B

a

(X flo = ((X B o) = X, £.
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On the other hand,

(%afede = € ¥ Xafe

hence

X_f = X_E£,

a a
an impossibility.

Another point is this: The charge conjugation sends b—Q (m,l/2,-i-)

to B{(nhl/Z,-). For suppose that ¥ (p)f=mf -- then ('U(p)f)c=mfc.
And:

(BRI,

C?‘o ¥ip) £

C ¥yl APy + ¥ Py ~ Y Py *+ ¥ 3Pl E

C Aol YgPg + ¥1Py =¥ Py + ¥3P31(CH ) 7 CHGf

CIol ¥gPg + ¥1Py ~ P, +3393WEI ct fe

-1
C 1%gPg ~ ¥1Py +¥Pp ~WaP3l C 7 £,

= [ - ¥oPg ~¥1P) ~ ¥oPp = ¥3P3l £
= - B’(p)fc

Ylp) £, = -mf.



16.

Remark: The charge conjugation is antiunitary, guasi intertwining,

and sends ¥ (m,1/2,+) to ¥ (m,1/2,-). The restriction of w(™1/2) 5

H (m,1/2,+) is U(m'l/2’+):: U(m,l/Z)‘ Define now a unitary repre-

V — —t
sentation U™ 1/2:7) ¢ Grt_on o (m,1/2,=) by
v )
/220 (KLaye) (p)
_ - V-T'a,p> Nye( Al
v _ the _
Then U(m,1/2, ) can be identified withp?ontragredient to U(m'l/z’ )
] » 2 (mfl/z) 5 ]
or still, with the contragredient to U . In this connection,
—_ v
it is necessary to keep in mind that Dl/2 = 01/2:: Dl/2 and recall
the rules
v =
U=70
LxUL .
Let T be the restriction of the charge conjugation to 3 {m,1/2,+) -- then
v (m,1/2) (m,1/2)
| OT =TOU™' '

which is in agreement with the general fact that a unitary representation
is always related to its contragredient by an antiunitary intertwining
operator.

We shall now associate with the foregoing a vector QFT of type

Dl/2 1/2° taking for&{ the antisymmetric Pock space over ¢f (m,1/2), i.e.,
¥ .

= D W m,1/2)).

In this situation, an element V¥ € ¥ is a string 4’=_{lyo,\¥l,...k ,
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where

. 1 _
Yo = Ya®rroqrepir Py o ien) (6=t 3, e;=4)
is antisymmetric w.r.t. permutation of triples

(plr o_i'ei) <7 (Pj: G'j:ej} .

Proceeding per usual, one can then attach to a given (p, s ,e)

&(P: o re)
clp, o ,e).

(1) alp, ,e)* = c(p, 6,e) & c(p, o,e)* = a(p, ¢ .,e);:
ey e e, e,

operators

Properties:

(2) alp,s,e), alp',6', e} =0s{clp, o.e), clp', o' e} =0;

(3) Lil‘(pr{s—re)r E(p'fﬁ—'re')} = 8(P'—P) 5 55 (Sele .

Definition: Let

- V=T (P:’C)N {p)

Sy

_ VT
X m1s2y ¥ T 37 e
X

m

+ o V-1<p,x>

where
~ (p) = fi al{p,6 ,+t)ulp, )
T G_W
wip) = Z clpic,m)vip,6).

o

Here, ul(p, ¢ ) is the standard plane wave scolution to the momentum

space Dirac equation:

Tplulp,s) = mulp, 6 ),
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and v(p, ¢) = ulp, 6‘)C.
H h .
[Note Thus 3&(m,l/2) as four components Eik ]
It is a trivial consequence of the definitions that

X (), X  (x") = (.
X0 Xy txn }

As for
{&k(x)r;&kl(x')*} r

it will be more convenient to discuss

{%\k(}c)’%k'(x')*} ;

where
Xm1/2) ® =X, 172) ®* Y,
VT T
= __E7_m3 % S [e 1 <p'x>,M(P)
(27) hte
X
" VT 5
+ e V71 <p’x>£(p) 1dpm_ (P)
and
.‘.
Q(p) = Zg(p.o"ﬁ) uip, o)
(+n
+
'L'(p)-l. = z a(pr G ) V(P: O') .
GW\
Fact:
U ¥ (p) +m
T ulp o)y ulp, o). = (T
pu Kk
Zvip, &) v(p,cr)Jr = ((rl-m
p k k 2m Kk !
LEMMA We have
B
1
X, (%), Xy (x") = (V=12 +m) ., — O _(x-x"),
{v_k >k } kk \[:T m
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where

2 =Y =% - Y = -

0 “axg & “m 2x.

[It suffices to consider the sum of

m g Xe-\/-‘f<p,x>eﬁ<P'=X'>{@<p>

1.
rma(p')y ¢ d {p)d (p')
23 LN k} /m A1

X X
m m

and

.I.
ke Y)Y A (PYaA (P1).

T [ Xeﬁ<p'x>e-m<p"x'>{v<9)
i T

n *n

From the definitions,

1.
PASHPNIOME

1—
= Z Z u{p, G")k u(p’, G"}kl {a(PrO‘:"'):C(P't G"r"')}
o ¢ e -

1-
= g_ ulp, o)y wle' oty S(PTR) I

Qi

-l.
= Z‘J(pfd‘)k U(P'; O")kl S(P."‘P).
o

Integrating w.r.t. p', the first term thus becomes

- Y=T ! t
s S e T<prx-x') Z ulp, o)y ulp, o )yr da (P)
(2) <

X
m

_ . m J o V-I<p,x-x"> (l(p)ﬂn)
2m

da._(p}.
(27)° Kk ' m
X
m
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Next

_ t
LY@y v

.i.
Z 7 v, ey VB, g )y {eBie ), 2R, &)Y

L3 5'“‘

' l.‘- J
% 50,_. vip, o)y VIR's ')y Slp-p') &

Z.vipro), vip', cr')l. Slp-p') .
=

Integrating w.r.t. p, the second term thus becomes

—x! T
x=x'7 Z VP, o)y VP o)y da(p")
p

m j V-1 <p',
3 e
{2 711)

' X

m
_ . m V-1 <p,x-x") ¥ (p)-m )
= e —— da (P).
(21 )3 S ( 2m k' "

Xm

We are théerefore left with

m j‘ (o= V-1 <p,x-x") ¥ (p)+m
(27)3 2m

*n

kk'

. e.q:l {p.x=x"> _¥(p)-m \) ] d/“m(p)'
2m

k!
But
S e~ ﬁ(PrX—X'> E(P)dﬂm(P)

X
m

ey '
= “’"'l, B 5 e_ Y-1 <p:x*x > d/‘u\m(p)

X
m
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and

S‘ e V-1 {p,x-x") ¥ (P)d/*“m(P)

X
m

= V=192 j -e V=T’ {p,x-x'> aa, (P,

X
m

so what remains is

(YT24m),,, XY 1 g (0)

_l._3 S [e- V:I' <p,X-X' > -a vV -1 (pr
2{2r1i)

X
m

= (VT 1
= (V-179 ) g =S

= &m(x—x') .

Hence the assertion.]

To complete the picture, one has to write down the field map
(which is easy) and check that it has the required properties (which

is also easy).

LEMMA We have

e

‘a -—
V¥ oo T XV X ) T P w170

[This is because

V-1 9 S e” VTEP) ( (prap, (p)

X
m

= S e~ YL <prx) T alp, o+ Y ulp, o )da (p)
o

X
Im
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= m g e~ V-1 <PrX>,M(p)d,Mm(p)
X
m
and
V-T2 5 e VI <PxY Lipran (p)

X
m

= S ~e V=T <psxy 2 clprg =) ¥PIVIP, o)A (P)

-
Xm

-n | VTR a0
X

m



Krein Spaces These are pairs (M ,T), where }{ is a separable

Hilbert space and T: 3 —> 3 is a unitary involution: p2=1.
[Note: Let ¥, = ix€¥ :Tx = +x § - then ¥ = 3¢, @M _ ana
the operators

_1
P, = Z(I+T)

are the orthogonal projections onto 3?+ . In the supersymmetric

context, T is called a grading operator.]

Put
{Hi¥yp = KTYY (XY €¥).
Definition: A densely defined linear automorphism U: o9 — o0
is said to be T-unitary if
Uk, 0y Sy = <X,y > Vx,¥v€0 .

[Note: In general, U is unbounded. However, U does admit

¢losure. To see this, take x € o@ p yerO ty=Tz (2 EaO } == then

(UXIY> ’ <UK:TZ>

{Ux,z >'I'

(x,U_lz) T
= (x, vty ,
go U* exists, TU_lTCU*, and THOC Domu*. In particular: Domu* is

dense, hence U admits closure. Therefore U is bounded if 0= 3¢

(closed graph theorem).]

Example: Take }-?:Lz(xo,/s.\ogvgfl)' and define T by the prescription



-f0 (#=0)
(Tf)/K

£. #m=1,2,3).

Then T is a unitary involution. Here

<E.97q = - S £5(0) gy (p)d e (p)
+Z S P 9 Py (P)
or still,
{t,g), = S s £.Pl-g . g (Prday(p).
X

0

0
Define now a representation U of & _ on }{ by

(UIA,a)f)  (p) = e V=1<arp) & N sts (N 1o

Then

{UlLA2)E,U(ANa)g)

- g E (UEA2)E) (P} (=g ) (UIAa)G),, (P A (P)
X0
= Z - -].
I %/\ (A P)(g )%A»t 9. (A PIAa(p)
%o
- j :;T fc_(m(;U Ag CI N ) I PIasg D)
X g ’
0
%‘I s (P) (-9 g (Plaag(p)
X



= < f,q9 >T'

which shows that the U( A ,a) are T-unitary.

[Note: The symmetric Fock space over Lz{XO”“O?Ef) is again a

Krein space. On the finite particle subspaces, a given U(A ,0)

is bounded but this bound depends on n and, e.g., for boosts, tends

to +oCas n—> + 0.



1.

States According to our original definition, a state on;d’is a
positive linear functional US such that US(I)=1. We shall now weaken
this.

Definition: A state on-ﬂyis a linear functionalld which is
continuous and hermitian normalized by‘bj(1)=1.

[Note: Recall that a positive linear functional is automatically
continuous and hermitian.]

Suppose given a state LS on,;? . Put

Nm ={g: WIExg)=0 V¥ féxp} .
Then N?ﬂ is a closed left ideal in'ﬂ7.

The prescription

Cf],lg1D =W (f*xxq)
is a
--- geparately continuous
--- nondegenerate
-—-= gesquilinear
-=- hermitian
form on the quotientof) = :';F/N_w .
Define now a linear map“(.g : ,J’ -7 _E_ng,o by @ (f)[gl=[£x g] and
let Q=11 -- then O={ @12 o: fef } ana €2 [, QD =1.

LEMMA The arrow f —%>§£(f) is a representation of;y by linear

N,

operators on ) such that

C & (f)lgl,[h]°D = C[g],ff(f*) [h120 .

Remark: If WSis (?t—invariant, then G’t can be represented on



L) by writing
(A ,a)-[£f] = (A ,a)-£].

This action respects T ,7} , i.e.,

C(n,a)-[£f], (A,a)-[g]l2 = CI[£],[g]1 D .

Hilbert spaces make their appearance in the theory through the
following assumption,

HSSC: 4 a continuous Hilbert seminorm P anaf such that

U
: * L f .
| WE*x ) | £ p o )P4 ()
[Note: A Hilbert seminorm is a seminorm that is derived from
an inner product.]

Remark: Obviously, p S (g)=0 =>ge Ny but conceivably, 3 ge NLJ :

p_us(g)#o. To circumvent this difficulty, introduce a new seminorm

on ﬂ?by

p'
W

p"UJ (£) = J_-_Ll_lf& Pw(f-l-g).
gc A

Then ker p' = N and one can check that p' K6 is a continuous Hilbert
— 1§ [A) u

seminorm on.zfsuch that

P T ]
WS (£*x gy | 2 p s 1P (9

Accordingly, there is no loss of generality in supposing that ker p =

W

NIJ , hence that the associated inner product ,)Ld is positive

definite on ).

LEMMA If 3 a sequence of continuous Hilbert seminorms p_ on
A, n



qf&Efn) such that
l LS n+m(f1¥1 Xgm) ] < pn(fn)pm(gm)
for all £ € 4Pg5fn), I € of ("™, then the HSSC obtains.
[Let
(£,9Y = 2 (n+1) 2 ¢ £09,> o

n

Then

bW erxgl = | = w52 x9) |

L T U o (EEx 9 |

n+m' n
n,m

é E pn(fn)pm(gm)

n,m

(3 o) (3 o)

1 1
c { 7 (+l)p (£ ) ) (Z (m+l)p_ (g )} -
= (’n NNt 1) m R (mel)

e(% 02 gy e ) (£ & )1/2

n (n+l)

1/2 1/2
2 2 1
X ( ‘% (m+1)}” p (g ) ) (% )

(m+1) 2

£ cV<eey Yiagy .

Maintaining the assumption that the HSSC is in force, let ¢ be

the completion ofoOper the inner product <, > LS associated with



pm -= then the form C ,D : AL x S| —;7\{(\1 extends by continuity to

a form C, D : 3¢ x ¢ —'—‘>\§_. As such, €, is sesquilinear and

hermitian (but possibly degenerate). Thanks to the Riesz representation
theorem, J a bounded linear operator T: 3{ —> ¥ characterized by

the relation

Cx,yD = <Tx,y>m (x,yeé-q ).

Observation: T is selfadjoint.

[In fact,

< Tx,,y).LLs = C %,y

=Cy,x2D

= <TY'X>LJ = (x,Ty')w .

Remark: Matters can always be arranged so as to ensure that T

is one-to-one. Thus let Py be the orthogonal projection ¥ —
L
pY's p = (ker T) . Since C ,D 1is nondegenerate on o@,o@ﬁ}-cg T= {0} '
—
= 2

X — PTx

hence the arrow of restriction

has a trivial kernel (PTx=0 = (l—PT)x=x =N X €ker T). The whole

setup can then be transferred to PTg@ — ol P (PT,{-) is dense in }?T) .
By construction, T lMT is one-to-one {(x € ¥ T and Tx=0 =) x € }-Q; =
x=0) (of course T, being selfadjoint, does leave ,)J{’T invariant).

Finally, ¥ %,y€ 3¢ 5,

Cx, v =X Tx,y)w



and now (C, D : }(T % H T —->va is nondegenerate.

To summarize, under HSSC,o@ is a pre=-Hilbert space with com-
pletion §¢ . In addition, 3 an injective bounded selfadjoint operator

r: 30 — M  such that

C x,vy2D = <TX'Y>M ¥V x,ve sl .

Example: Consider the field operators ég(f):

C L (f)lgl,[h]1 D = Clgl, K(£*) [R]D

- .
<T@ gl  [h] >, ¢ = <{Tlgl, @(E*) [h] Y ¢

r TQ@(E*) [h .
Clgl, TQ(EX) [h] >

Therefore Tff(f) has an adjoint and

i

(T @(£))* 10 T Q(£*).

Definition: § satisfies the Krein condition if under HSSC, T is

surjective (hence invertible).

[Note: T 1 is symmetric (hence ™1 is bounded). Thus write

-1
x = Ta {T %X,y = <{a,Th) _
-- then ~1 W W and T L is symmetric.]

vy = Tb {x,T y)u = (Ta,b)w

Remark: In the presence of the Krein condition, suppose given

. < ! > 1 _ < Tler> 1

two inner products on ¥¥ such that C x,yD = _
<1y g {TR%:Y) 5
-tz

Then the norms determine the same topology on H . Indeed,

-1



. -1
<X X Dy = <X'T2T2 x>,

Cx,TglxD

_ -1
= (%X, T T,7% ) 4

Hoxil, < Hrmti-iixly

and vice-versa.

LEMMA Assuming that the Krein condition is in force, 3 an
T e

equivalent inner product on o¢ in which T2=I.

[Since | T| (= Y77 ) is strictly positive (T is invertible), the
prescription
{#,¥vy) =<(x, |r] Y>LJ

is an inner product on H . It remains only to note that

C X,y = <Ter>w

1

=<x,TlTi™" (ITiy) >w

=%, sgn Ty,

where as usual, sgn T = TiT)™ (of course {sgn 'I')2 = T2°IT|—2 = T2-T-2=I}.]

We shall assume henceforth that T2=I. The pair (3 ,T) is

therefore a Krein space. Accordingly, let us write < ,> in place

of (,§mand<,>TinplaceofC’,'_‘).



Example: Suppose that Ikiis G’t—invariant. Put U(A ,a){f] =
(A,a)-[f] -- then

{u(Aa)[£], U(A,a)Igl ) o = <If], [9] > o

i.e., the U(A ,a) are T=-unitary.

[Note: Bear in mind that the U(A ,a) are unbounded in general.]

There are certain circumstances under which the Krein condition

arises naturally. Thus let :ay~4>,d7 be an automorphism with the

following properties:
(1) W (A (A (E)))*xg) = LS(E* % g);
(2) W (ot (£)* x£) 20;
(3) W) * xg) = W(E* xex(qg)).
Then
(Eig¥y =W R(£)* x 9)
is an inner product on x? ; SO
o () = W(ae)* xg)/2
is a Hilbert seminorm th?With NLJ C ker P (gENw<=>w(fxg) =0

Veief =2UW(ekig)* xg) = 0 =>p_, (g) = 0).

And:

P US (o (E) %% g) | 2 £ LS () * x£) W (X () * x @)

=>
| Weex % g 2

= WS ((a (& (£)))* x9) j 2

ZUS (X (AR(E)))* xex(£)) W ( X(g)* x g)



TSHE* X X () LS (X () * x g)

WA (E)Y* x £) LS ( x{g)* xg)

2 2

Py (8 B,

This shows that the HSSC holds if in addition pd. is continuous, as

we suppose. Here, ker p“.= NLJ y 80 there is no need to

Denote still by < , >o« the positive definite inner

da associated with palr‘bq the corresponding completion.

LEMMA ¢ admits the structure of a Krein space with
Ly

Ty = 2.
[Define T: ) — o by T(fl = [X(£)] ~- then T is

and Tz[f] = [ (A{f))})] = [f]. It is easy to check that

<Tl£], (91>, =<, Tl9l>

and

Finally, T is continuous. In fact,

= 2 _ —_
(£,1—>0 => g I} o = Watig)* x£) —7 0
=
2 ,
Hrie 1] 5 = WX RE DI * X X{(£))
*
= Wie, xe(£))

= WS oL(E D * xE ) —> 0.]

e

t L]
pass to pl

product on

Tol) =3 and

welldefined

Example: Work with the Borchers algebra )P 4 generated by



g

v - ¥-1 <p,x~y)
w x,y}) = - —— J e d d (p).
An LA 2(2.‘.')3 A4 P

X4

Define a state WJ on ,tf’ 4 as follows:

AL
4

]

wz(fxg) = > J’
/L«.)‘Ll R4

Y f (X)gv (Y)WMv(x,y)dxdy,
R

w2n(flx.“ Xon)

n
k k

i,5 k=1

where the sum is over all partitions of {1,... ,2nS into n disjoint

pairs {1l,jl) pesat (ln'Jn) with 1k<jk. Recall now the unitary

. . 2 4 2 4 .
involution T:L (XO,AO:\E) — L (XO,MO:E ) given by

(Tf) =
P

fM (Mm=1,2,3).

Let o be the extension of T |,¥(§f;§f) to all of ,J? 4 -~ then X is

an automorphism. Moreover, o(zzl,

~

W, (et * x £) =§ 27 j | £,..0) 1% amq(e) 20,

Xs



10,

and
Wt kif)*xg) = LY, (£* xx ().

Therefore all the assumptions are satisfied.

[Note: The Ljn are the correlation functions of free QED in
the Feynman gauge.]

In the case of gauge theories, not all the Wightman axioms are
satisfied. Basically there is a conflict between locality (= micro-
causality) and positivity. Examination of specific cases reveals
that it is best to keep locality but jettison positivity.

It is not difficult to isolate the essential ingredients. Thus
return to our state'LJ , assume that it is G’t-invariant, and impose
the Krein conditioﬁ. Locality is then achieved by supposing that

1,6 © NLd.. The other assumption ig the spectral property, viz. that

Fal — -_—
the support of Wn ig contained in V+x +++ XV, (n-1 factors). Here
Wn is the tempered distribution on‘Efn_4 with

l&fn(xl,...,xn) = Wn(xl—xz,...,xn_l—xn).

[Note: The uniqueness of the vacuum is not part of the setup.

For example, it might happen that T commutes with the U(I,a), yet

T $2o £ 0L



The Gupta-Bleuler Construction As we have seen, the pair

2 4 "fo (an=0)
(L"(Xp,m0:;C),T) is a Krein space., Here (Tf) =
f (pa=1,2,3)
A
and
<£/9Yp=- S £ (PIgg(P) Ay (P)
g

* 2 j £ (Pg, (P)dug ().
- X

0

: Ve . 2 2. 2. 2 .
LEMMA Fix a p€ R in the light cone : Py = P + P, + P3 (p0>-0).

Suppose that {p,a>) = 0 -- then <a,a) < 0.

[Since { Aa, Aa) = (a,a) (A€ d T_) , We can assume without

loss of generality that p=(1,0,0,1), hence 0 = ¢(p,a) = ag - ag

_— 2 2 :
=) {a,ay = ag - aj] - a, - a3y = -ay; - ag £0.1

It follows from the lemma that

Y p £ (p) =0 a.e.
An, A

=
KE £ 20.
The £ which satisfy this auxiliary condition constitute a closed
subspace GB of LZ(XO,/AOagf). Denote by GBO the closed subspace of
GB made up of those £ for which (f,f'}T = (0 == then the completion

of the quotient GB_/GB0 ig a Hilbert space that in the Gupta-Bleuler



formalism describes the one-photon states.

To generalize these considerations, take for &f the symmetric
Fock space over LZ(XO,/«OKE?) and extend T to }Qin the obviocus way =--
then the pair { M ,T) is a Krein space. Our objective now will be

to construct a quantum field A= {A}Mk which transforms according to

Wty

the standard representation of J:I on C4, i.e.,
-1 -1
U alh (AN, = A Ax+a).
(Aca)a  (x)UCA,a) g (N B (Axsa)

Physically,\&'is a gauge for the free electric-magnetic field but
we are no longer dealing with a QFT in the sense of Wightman. Instead,
it is the more general framework of the preceding section that is

relevant.
An element € ¥ is a string ¥ = {WO' Ypree- k , where
VY, = YaPprmqiceripyimy)

is symmetric w.r.t. permutations of pairs:
(.pj_rjv\i) H (Pj :/Mj) -

a(p, m)
Given (p,m )}, define operators < ™ by

&(p yAx)

gi(val)xy Yo (PrrAgis 3P ra,)
= ¥n+l kl'ln.l_]_ (P:MFplerF"’?pnrMn)

(E(pr/b\) .q’ )n (Pl;MlF"’?Pn;Mn)
n

- - L _ U AP
'\/-E' :é;_l 6(P Pj) g/“\/‘-‘\j \Fn-—l .(Pl:er :Pj:/.‘«j: tpnrMn)-



Remark: The fact that the metric tensor figures in the definition
of the creation operator serves to shift the focus to ¢ ,% . Thus

let T stand for the adjoint per <',“)T -=- then
clp,pma} = a(P:,M) =T a(p,r)*T.
-, Y, N,

On the other hand,

[a(pr/‘&)r 3(qu)] =0

[c(pr/u\)r &(qu)] =0

and
latp,a)r cla, v )] = &(g-p) (-g )-I,
e kool AR L
as to be expected.
al(f)
Given f, define operators b by
c(f)

a(f) = > S a(Pra) £(Pra)d g (P)
S, A N,

Xy
c(f) = Z j C(p.M)f(Pm«)d,mg(p).
e A ",

X0

Then

[a(f) ,c(9)] = <f,g>T'I.

It has been noted earlier that there is a representation U of G’I

on L2(X0,fu0;c4) by T-unitary operators:

V—f(a,p)
(U(A,a)E) (p) = e zZ A
[+

(AN 1p).

£
Y A



Extend U to a representation of 6’I\on o¢ (but omit the cap pi from

the notation) =-- theh the U{A ,0) are, in general, unbounded.
From the definitions,
-1 -1
UCA,0C(P, m)UIN,0) ~ = 2 (N clAp, v).
by L ar

Here, it is necessary to bear in mind that I\_l = G PF-G and use the
relation

Sip N S (np-q).

Therefore {gince U(I\;O)T = U(/\,O)-l)
-1 -1
UCA0alpm)TIA0" = Z (AT alAp,v).

pefinition: Let

1 1 - VCI'(p,x>
Malae Y2 (2m)

‘g(pm«)

X9

V-1 <p,x>
e

+ f(p'”*‘)]df"‘o(p)‘

Properties:
(1) <A, (), ¥ygp=<PA (VD>

(2) TA _(XT = - z g LBy X

3) 2% (x) = o.
A

LEMMA We have
R W Y

-1 _ -1
UCAaA (VA ,a) T = Z AN, B, (Axta).

A e e e,

LEMMA We have

(A G, B, () =g - ?-le, O, x-y) .



Remark: It is not difficult to check that

(€2 (0B, () QQgdg

]

WMU {x,v)

It J -Y-1<{p,x~y)>
HE o —— e
2(27)°
X5

The auxiliary condition introduced at the beginning for the

elements of L2(X0,/A0;C4) can be extended to the elements of

— 2 - 4
W= F, wxgaamgicth.
Using it, one can define as before closed subspaces ‘}?GB and ){(ﬁa
of 3¢ , the completion of the gquotient }{GB/ }QGB then being the
' 0

physical Hilbert space Mph‘

While it is not true that the\ﬁ/ﬂ(x) leave .}?GB invariant, the

formal combination

f\ﬂv(x) = _3,‘“_3}1,(3() - ?)U}_}’M (x)
does. 'Therefore\E ='»E/vul is a quantum field, the free electric-

magnetic field. It transforms according to the rule

-1 _ -1
UCA,a)F (®U(A,a) " = (N

o T

) (A7) F { Ax+a}.

A G T w oT

Moreover, the field components satisfy the (free) Maxwell equations

a2 F + 9. F + 2 = 0

AL
;BAF = 0..

s



[Note: The second relation is not an operator identity on

'}QGB! Rather, it holds only in the weak sense, i.e.,

Zo P FTVMY Ym0 Vi Y€ R



Nuclear Spaces Let X be a Hausdorff LCTVS. Suppose that {pd {

is a directed collection of defining seminorms, i.e., A ;V@ ,El ¥ o

P, < PK
. Put-qx = ker P, v X = X/Nu .
P, &P
b ]

Assume: The Py are Hilbert seminorms.

Definition: X is nuclear if Ve« 3 (3: < £ f and fo{ X, —> X

is Hilbert-Schmidt.

Example: 3?(&?) is nuclear, as is its dualafl(ag).

Notation: If X and Y are nuclear, then XégY is their completed
tensor product (hence is universal w.r.t. continuous bilinear maps
or still, is universal w.r.t. separately continuous bilinear maps).

Fact: X,Y nuclear => XébY nuclear.

Example: of (R) @ JE x f @™ and J”(gf) ® ,X'(im)g

A?u§:+m) {(Schwartz kernel theorem).

Henceforth we shall assume that X is a nuclear Frechet space

equipped with a continuocus involution =,

Definition: The Borchers algebra U{X attached to X is

o

@(énx).

¢
[Note: Therefore Dtx is a nuclear LF-space.]

Let {J be a Hausdorff LCTVS, < ,D a form onTJ'which we take
to be
-=-- geparately continuous
--- nondegenerate
--— gesquilinear

--= hermitian.



Definition: A representation of ()[x on lfis a homomorphism

Ti: Oly, —7 End U such that
Cvy, Ti@)vy,D = C 1 (@%) vy, vy D
and feor which the arrow
(a,v) —> Tila)v

is separately continuous.

T Uy
[Note: Representations of UTX on U
2

are equivalent

oA

if  a form preserving topological isomorphism W: U . —> 1S, that
1 2

intertwines 111 & 112.]
Definition: A state on Oix is a linear functional.bj which is

continuous and hermitian normalized by LJXI)=1.

Suppose given a state (Jdon UIX. Put

NbJ={y: LMHxy)=0 ¥V x ¢ ()"(x}.

Then N. is a closed left ideal in (Ttx.

W

The quotient

OOX =0-(X/NLJ

is nuclear and the prescription

Cx],y1D = W(ix*y)

is a form on J3}<;mssessing the properties enumerated above.



One can then represent O‘(x on £ 4 in the obvious way:
Tix) [yl=Ixy]. and, with Q =(1], D= g M Q2 gix e 01 .

[Note: The relation

US (x) =CCLy, MICL (D

connects US and 7. ]

Remark: The arrow

state —>” representation

is called the GNS construction,.




The Bongaarts Construction The homogeneous Maxwell eguation

a9, F + 9

o Frp v Fou 2, F =0

P Ap

is equivalent to the existence of functions %~‘ from which the quu

can be obtained by differentiation:

F/“,= MAU—DVAM.
The field iF;wJ/} does not determine the potential EA/AS uniquely
but rather only up to a gauge transformation. In our setting, the
gituation is sgimilar. Thus roughly speaking, each QFT for the field

tensor, say i_BQF, CZF”FQ%JJE , gives rise to a set of triples
{'}QA, QA'AMX , any one such being termed a gauge for {}(F, QF'

F However, G{F and B{A are different spaces, so the formula

/UL)J% >

F =90, A -7

A By v Ak‘ makes no sense as an operator relation. This
issue (and others) can be clarified by invoking the theory of Borchers
algebras and their states.

Let XF be the subspace of 4?(R4;C4GDC4) consisting of those £
WAL Y e

whose components £Y are antisymmetric -- then XF is a nuclear
Frébhet space and we shall write UiFF DIX . Denote by Xg the linear
F

A
subspace of X_ whose elements are those f such that £ Y = af,LF P

F
A p . . . . 0
(Y antisymmetric and rapidly decreasing). Let IF be the closed
A
*-ideal generated by Xg in DtF, that is, in each GQnXF, form the

closed linear span of the tensor products
WX, @--- @ X
F F F

0
XF®XF® @xF



and then take their direct sum.
Definition: An F-theory is a positive state in 01 _ which

annihilates Ig.
Let l*SF be an F-theory -- then by definition
Wox) =0 Yxerl
¥ F*
Moreover, via the GNS construction, IJ'F determines a nuclear space
o8} p (which is also a pre-Hilbert space), a cyclic unit vector CE.F,
and a map Qg O'LF — End °@F

[Note: At the moment, we do not require that 1*IF possess any

additional property like, e.g., (¥ ,~invariance.]

-+

Let X, be the space AF(R4?C4) —- then X, is a nuclear Freéchet
space and we shall write (TLAf Otx . Denote by Xg the linear subsgpace

A

of X, whose elements are those f such that £ =9, quAl) ( \Y‘A‘U

antisymmetric and rapidly decreasing). Let ()Lgh be the closed sub-

algebra of UlA generated by Xg.

Definition: An A-theory is a state in Cﬂ,i.
Let ]AJA be an A-theory -- then, via the GNS construction, Q&fA

determines a nuclear space a c¢yclic unit vector quy and a

Af
na : —y End J3,.
p\&gAO‘(A End o8,

[Note: No positivity requirement has been imposed on ?AJA, thus

the pair (‘ﬁﬁA,czj,:D } is not necessarily a pre-Hilbert space.]

FPact: We have

a
Xp {f: ?QMva =0t

%0
A

Il
o
rh
ol
(2]
[}
<>
tmyd



Define now a continuous linear map d:XF-—> XA by the prescription

AALS
£ —> 23U5M”

V4
POINCARE LEMMA The kernel of d is X0
VW\MNN WA AN

P and the image of d is Xg.

Extend d to a continucus *-homomorphism Gﬁd:Cﬂ F‘_# O{A, hence

0 A
@y=D (7).
0

. 0 . . ph
LEMMA The kernel of’@bd_ls I, and the image of Gﬂd is UiA..

The transpose ()é sends Oti to Ol%. ITts kernel is the annihilator

of 01ph and its image is the annihilator of 19.
A F

Let W p be an F-theory —- then the fiber
(@ HTHLY)
is not empty. Suppose, therefore, that
We =03 )= W, 0@y
Question: What can be said about ZJdA?

First of all, f A is necessarily normalized:

WA =W, 0 @ (D)

W (1) = 1.
Next, LJ F is pogitive, hence hermitian. While LJ§ A need not be

hermitian, one can get around this by considering instead



%i { LSA(X) + LJA(X*) 1.
In fact,

CCOMAO*O®d

n

cC o LSJ&"GD:3° *
=cco W po *
-_-(ASF,

The situation as regards positivity 1is not so simple: There is no

1
guarantee that LJ'A can be chosen positive (ditto for‘(?.+—invariance).

In what follows, it will be assumed that IJ'A is hermitian, thus

is an A-theory. We then have
Wr—>310p QF'}SF}

Wa 7 1Dar 2argal -
Definition: The triple {9{}) X QA'&’AIK is a gauge for

{Dr Qprupl-
[Note: It is also said that an A-theory in the fiber (@) é)_l(lJ g
is a gauge for U§ gl
Put

D Eh =53A(X)QA: xe()tghj -

LEMMA The assignment

fa(@dX)QAF\'gF(X)QF (x € 0L )



defines a linear isometric map W fromoﬁgh onto "OF such that -
w<2,=CQy .
[To check that W is well defined, one has to show that
“« A @2, =0= @ (x)02, =o0.
To see this, note first that Vx,yé O"(F,
ch(x)QF.gF(y)QF‘.‘D
= *
U (x*y)
= *
U, o © 4(x*y)

= W, (@ 4% B 4(y)

Wo(® (0% @ 5(¥))

C‘}fA(@dX)QA'SA(@dY)QBD .

So
LAl ®gx)C2, =0

C&?F(X)QF'&SF(Y)QF 2 =0 V yeE Ol

thus, by nondegeneracy,
\,(.'.?F(X)QF = 0.

That W is isometric is, of course, obvious.]

While the lemma implies that o@gh is an inner product space,

there may still be elements x € a@ih of zero length: C x,x 2D = 0,



But Cx,xD =0 => CwWx,Wx D =0 =>x €ker W. Consequently, the

quotient o@ih/ker W (-:\-:,ﬁF) is a pre-~Hilbert space.

Observation: Let x € o@gh == then Cx,x™2 =0 iff Tx,yvy> =0

Vyeoﬁgh .

[Apply the Schwartz inequality

lexyo)l £ Vexxo Vevyo

to get the nontrivial implication.]

In practice, it is sometimes possible to choose UA:

ph_
A : °® Al
Since C , D is nondegenerate, C X,Xx 2 =0 <O x=0 =>ker W=0 —=>
OO AN "@F' Therefore, in this situation, one can realize the field

operators (¢, and &F on the same pre-Hilbert space. Accordingly,

V £E€xg,

F(f) -[ f*Y (x) F (x)dx
A, A LS

r?

A"

I

A(4dE)

j- 279, £Y (x)B Ixrax

R4

o
L £V (A (x)dx

R

h

+ j U O£ MXIA (x)dx
4 bt A

r?

A



ey,
'al;f (xh&/uﬁx)dx

il
m —

4

+ ‘Y D £ vM(x)ﬁu(x)dx
kS

- _ AL
= S f (x)Dv&/$de

R4

e,

- W AN
5 £ (x) ’a# vzé v {x)dx

R4

b

_ AnS
—5 £V ([, A, (8- 9,3 (x)]dx

vgé
=)
F oL@ =23 2 (-3 2 (0.
iNote: The Coulomb ( = radiation) gauge for the free electric-

magnetic field is an example of this setup. But there is a price to

be paid: The relation

-1 _ -1
U(AL0B (U, = Z (N A (AR)

fails to hold.]



The Free Electric-Magnetic Field In the previous section, we

introduced the nuclear space X_ and its associated Borchers algebra

P
Ol p- We shall now consider a particular F-theory A p and its

collection of gauges l¢fA:

LSF ='on@d'

[Note: Recall that I*SA is necessarily an A~theory, i.e., is

a state on ‘lef Therefore l*SA is continuous, hermitian, and LJA(I)=1.]

Notationally, it will be convenient to use superscripts rather

than subscripts, i.e., replace 'uJF, IAJA by LJF, ‘UJA.

electric
Definition: The 2-point function of the free sXegri¥-magnetic

field is
w F (%4 ,%,)
AR VT My Uy 1772
111 9210 1 2
= £ £ 2 2 ( - g _ 1 .
M gy ey oy T1T2 e B0
Explanations:
I
(1) EA*L’ = 0 unless ¢, T is a permutation of .., and is

then equal to x 1 according to the sign of the permutation.

3 . 2 - ‘o o4 _,,0 .1 .2 3
(2) ’36 /72 xS (6=0,1,2,3 & j=1,2) (xjg\% = % (xj’xj'xj'xj))'
(3) A _ (a;0) = ————-;]”7 J e V-1<{p,a’ d (P}
+ 2(27) |
X9

Remark: Accordingly, Y fl,f_ze'XF,

<LJF,f1 xfy >



_QAau - VCE‘(p,xl X,y
WA&x,(Xl’XZ) - ETE:??j e dﬂ&o(p).
%o
Then
F
Mlul?ﬂzuz
1 2 1 2
) ‘a’“l Oy Tuiv, T Pmg v, Tugag
1 2 1l 2
"0 1 a4*‘““:2 Wf’“lb’z MY 1 0 Uzw"*r‘“‘z
Remark: While W/nx; is not unique, any other possibility has
the form
RN I BHE WP NI D/ CEN Y
where

(1) (2)
$0 s $i2
are tempered.

To complete the definition of UJT, let

Wo =1 W, . =0

ALV P i Mene1 Yoned

and

(xl,.,.,x2n)



F
=2 (kg %y ) oo
/'-"\Jlll:’l! 32 ]2 :]1 32
WS im‘ . Py woa (xj %5 ).
Jon-1Y3an-1""3on " 3o 201 “2n

Here the sum is over all permutations jl""'jZn of 1,...,2n with

J1 €33< < dgpy and 33 <Jgeeevdpn 1<z

F .
LEMMA U5  is an F-theory.
[That ?JJF annihilates Ig is more or less implicit in the defin-
itions {details omitted). Let's check positivity. For this, it

suffices to loock at ZA]g. Passing to FPourier transforms, we have
QUS5 By X £
251 x5 5
AA‘].)J]. /\Mzu
£

2
-plp ,, £ a .
S Don pongl vy T2 (-p)p v, f2 (P)daaqg (p)
X

= - 8T

* A
Now replace fl by fl { = fl) to get:

F *
W, £ XE, >

3
- P j k
=8N J %=1 Mjk(p) cl’l(p) 4>2(p)d,~\0(p),
X
0
where
$3 (p) = P g{” (p)
Mo
$5) =p £3Y (p)



and

_ _p) 2 2

The matrix Mjk is obviously hermitian and using the fact that

pg =|p \2, one can check that it is idempotent, hence positive.]

Definition: The free electric-magnetic field F = {F } is the
Ve AN
QFT determined by W T,
This field has all the usual properties, e.g., locality. It

transforms according to the rule

-1 _ -1 ~1
U(ARE | GOU(AR) T = 2 N N L F L (Axta)

and the Maxwell equations

F + F + 9@ _F =0
AAVF —
> 9, F =0

obtain. Finally,

F
'Lkg Mlvl;oco;MnUn (xl;o..'xn)

= {QQ,F Gep)ooB o xg) QQp >

AV n¥n

Remark: There have been many investigations of the gauges LJA

associated with IAEF.- One important point is the fact that if ‘QIA
is J:‘i—invariant, then the form < ,2D cannot be positive, i.e., the

pair ( oOA. &, ) is not a pre-Hilbert space.



