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My original set of lectures on Mechanics was divided in 

Lagrangian -&Q&anics 

Hamiltonian Mech-cs 

Equivariant Mechanics . 

.to three parts: 

The present text is an order of magnitude expansion of the f i r s t  part  and 

is differential geometric in character, the arena being the tangent bundle rather 

than the cotangent bundle. I have covered what I think are the basics. Points 

of deta i l  are not swept under the rug but I have made an effor t  not to get bogged 

down in minutiae. Numerous examples have also been included. 
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9 1 .  FLOWS 

I& M be a connected COO manifold of d-ion n. Fix a vector field X on 

on M -- then the image of a maximal integral curve of X is called a trajectory 

of X. The trajectories of X are connected, imnersed sukananifolds of M. They 

form a partition of M and their dimension is either 0 or 1 (the trajectories of 

dimension 0 are the points of M where the vector field X vanisles) . 
A f i r s t  integral for X is an f E ?(MI :X£ = 0. 

[Note: The set of f irst integrals for X is a subring <(M) of c ~ ( M )  . ] 

1.1 uPlC4A In order that f be a f i r s t  integral for X it is necessary and 

sufficient that f be constant on the trajectories of X. 

Recall now that there exists an open subset D(X) c R - x M arad a differentiable 

function gx:D(X) +- M such that for each x E M, the map t +- $(t,x) is the trajectory 

of X w i t h  $(O,x) = x. 

1. VxEM, 

I ~ ( x )  = { t  E R: - ( t ,~ )  E D(x)) 

is an open interval containing the origin and is the dcmain of the trajectory 

which passes through x. 

2. V t E R ,  

is open in  M and the map 



is a diff e~m~rphisn Dt (X) - D-t (XI w i t h  inverse +-t. 

elerrent of D(X) and 

One cal ls  $ the - flow of X and X its infinitesimal generator. 

[Note: X is said to be c q l e t e  i f  D(X) = R - x M. When this is the case, 

each Ot:M += M is a diffecmrphism and the a s s i g m t  

-1 
is an action of R - on M. Therdore GO = idw $-t = 0t .I 

a then D(X) = {(t,x) E R x R : l  - tx > 01 1.2 EXAMPLE Take M = E, X = x - -- ax - - 

X 
and @X(tfx)  = - tx I  thus x is not ccanplete. 

1.3 FEMARK Every campactly s u p r t e d  vector field on M is ccunplete. 



1.4 LEMMA Suppose that  X is a vector f ie ld  on M -- then 3 a s t r ic t ly  

positive coo function f on M such that £X is ccgoplete. 

A one parameter local group of diffeamrphisms of M is a pair (U,cp) subject 

to the following assumptions: 

1. U is an subset of R x M containing (01 x M such that  t/ x E M, 

(g x 1x1) n U is connected. 

2. $:U + M is a cCamap such that @(O,x) = x and 

E. g . : The pair (D (X) , QX) det ermined by a vector f ield X is a one parameter 

local group of diffecmrphisns of M. 

In practice, reference to U is ordinarily cnnitted and the one parameter local 

group of diffecmrphisns of M is denoted by 

[Note: One also drops the appelation "local" i f  U = R - x M.] 

1.5 LEMMA Suppose that  {cpt) is a local one parameter group of diffecxmrphisns 

of M -- then there exists a unique vector f ield X on M such that  

[Note: Per {cpt}, X is its infinitesimal generator and v f E c ~ ( M )  , 



52. TENSOR ANALYSIS 

Let M be a connected C* manifold of dimension n, 

0 1 1 [Note: H e r e ,  DO (M) = C* (M) , Do (M) = D (M) , the derivations of cm (M) (a. k. a. 

1 the vector f ie lds  on M) , and DO(M) = D (MI , the linear forms on D (M) as 1 1 

a d u l e  wer c ~ ( M )  ) . 

2.1 REMARK By definition, $[M) is the  module of a l l   multilinear 
4 

Its el-ts are the tensors of type (p,q) . 

In what follows, a l l  operations w i l l  be defined globally. However, for  

ccanputational purposes, it is h p r t a n t  t o  have a t  hand their  local expression 

a s  w e l l ,  meaning the form they take on a connected open set U c M equipped with 

1 n coordinates x ,..., x , or  still, on a chart. 

L e t  T E %(M) - then locally 



where 

are the CCBIIponents of T. 

Under a change of coordinates, the ccpnponents of T satisfy the tensor 

transformation rule: 

2.2 EXAMPLE The Kronecker tensor is the tensor K of type (1,l) defined by 

K(A,X) = A(X), hence 

Given f E c ~ ( u )  , write 



[Note: The bracket 

1 
[ . ] :ol(M) x $(M) +- 0 (M) 

is R-bilinear - but not c~(M)-bilinear. In fact, 

A type preserving E-linear map 

which m t e s  with contractions is said to be a derivation i f  V TltT2 E D (M) , 

The set of a l l  derivations of P(M) fonns a Lie algebra over R, - the bracket 

operation being defined by 



2.4 REMWX For any f E cCO(M) and any T E D(M), f T  = f D TI so D(fT) = 

f (DT) + (~f) T. In particular: D is a derivation of c*(M) , hence is represented 

on c_(M) by a vector field. 

2.5 U t  D:V(M) + D(M) be a derivation - then V T E %(M), 

1 
[Note: This shaws that D is known as soon as it is knuwn on cCO(PI), D (M) , 

2.6 EXAMPLE There is a canonical identification 

namely T + ?, -e 



This said, let D:D(M) -t V(M) be a derivation -- then 

A 

thus it makes sense t o  form and we claim that  

A A A 

(JX) (X) = MIX - T(DX). 

In fact,  

(31 the other hand, 

A A A 

= D [TX (A) 1 - TX (DA) - T (Dx) (A) 

2.7 THEOREM Suppose given a vector f ie ld  X and an R - l i n e a r  - map 

1 
for a l l  f E c ~ ( M )  , Y E D (M) -- then there exists a unique derivation 

D:D(M) + D(M) 

such that 



(Do) (Y) = X[w(Y)I  - w(6Y) 

and extend to a l l  of D (M) via 2.5. 



53. L I E  DERlVATl VES 

L e t  M be a connected coo manifold of dimension n. 

1 
3.1 mp@m One my attach to each X E D (M) a derivation 

%:D(M) -t D(M) 

called the Lie derivative w.r.t. X. It is characterized by the properties 

1 1 PROOF In the notation of 2.7, define 6: D (M) -t D (M) by 

Then 

1 
3.2 EXAMPLE L e t  T E (M) -- then in the notation of 2.6, 

where 



[NO*: 1f u E D 1 ( ~ ) ,  then 

Locally, 

[Note: F'rcan the definitions, 



3.3 - The symbol 

is usually abbreviated to 

3.4 EXAMPLE Le t  K be the Kronecker tensor (cf . 2.2) - then 

L$ = 0. 

Irdeed, 



[Note: The tacit asswp?tion is that D (X) is nonempty, the relation being 

valid in D (X) . Accordingly, if X is complete, 

3.6 EXAMPLE Take X ccnnplek -- then 
* 
$tx = x v t. 

[In fact, 

* * 
But e0X = i y  = X.] 

Consider now the exterior algebra A*M - then LX induces a derivation of A*M: 

3.7 RAPPEL lX is the interior product w.r.t. X, so 

lX:A*M -t A*M 

is an antiderivation of degree -1. Explicitly, v a E A'M, 

y(X1,. . . ,]trl) = a(X,X1, . . ,Xpl). 



And one has 

Properties: (1) lX O xX = 0; ( 2 )  xx 0 xY + ly 01 = 0; (3) xx+y = lx + lY: X 

(4)  lfX = fix. 

We have 

L x =  lX 0 d + d  0 lX. 

* 1 0 1  - 1  O L  
[X,Yl = Lx Y Y x- 

Theref ore 

LRca = £9 + df A IXa. 

[For 

L ~ x o ~  = @a + d1f~01 



If @:N + M is a cm map and if X is @-related to Y, then 

[Note: Recall that 

are said to be @-related if 

or, equivalently, if 

Y(f 0 0 )  =x£ 0 cP 



54. TANGENT BUNDLES 

L e t  M be a connected COO manifold of dimension n, 

-rrM:TM -t M 

1 
its tangent bundle -- then the sections D (MI of TM are the vector fields on M. 

1 
N.B. Suppose that (U,{x ,..., xn}) is a chart onM -- then 

is a chart on TM. 

[Note: H e r e  

And, under a ccmpatible change of coordinates, 

where 



If f :M + N is a C* mapI then there is a carmutative diagram 

4.1 EXAMPLE W e  have 

[Note: Local coordinates on the open subset 

1 Let X E 27 (TM) - then 



4.2 EXAMPLE Consider the one parameter p u p  of diffeamphisns @t:?M + m 

defined by Qt (x, Xx) = (x ,eSx) (Xx E TxM) -- then its infinitesimal generator 

A E $(m) is called the dilation vector field on IM. Locally, et sends 

1 n 1 n 1 n t l  t n 
(q ,...,q ,V ,...,V to (q ,...,q ,e v ,..., e v 1, so locally, 

Denote by T% the suhnanifold of TIM consisting of those points whose images 

1 under  IT^ and TvM are one and the same -- then r E V (TM) is said to be second 

order provided PIM c T% or still, i f  TvM 0 r = ih. "ally, therefore, a 

second order r has the form 

[Note: To ascertain the transformtion ru le  for the ci, write 



or still, 

4 . 3  FENARK Suppose tbat  r E vL(W4) is second order - then an integral 

curve y of r is a solution t o  

& i iivi - ci 
d t  = v ,  at- 

or still, is a solution to 

£ram which the t e n n  "second order". 

Given an X E V' (M) , let {Otl be the one parameter local group of dif fe(3k113rphisms 

of M associated with X - then {TO~} is a one parameter local group of diffgnor- 

phi- of TM. Denote its infinitesimal generator by xT (cf. 1.5) -- then xT is 

called the l i f t  of X to TM. Lmally, i f  

then 



Example : 

[Note :  L e t  sm:TIM - TIM be the canonical involution -- then 

And, in fact, 

1 4.4 LEMMA V X E D  (MI, 

1 
4.5 Ll3PVi Let X,Y E V (M) -- then 

lxT,yT1 = [X,Y] T. 



1 Given an X E 0 (M) r define a one parameter group of diffecnmrphism Qt:m + 1M 

and let xV be its infinitesimal generator (cf . 1.5) - then xV is called the 
vertical l i f t  of X to TM. Irxally, i f  

then 

Example : 

1 
4.7 ix3wA L e t  X,Y f v (MI -- then 

v V [X ,Y 1 = 0. 

1 
4.8 G3MA L e t  X,Y € V (MI -- then 



Let @:M -+ M be a d i f f m r p h i s n  -- then T+:TM -t TM is a diffecmrphism and 

there is a camrmtative diagram 

[Note: Classically, TO is called a point transfomtion.] 

4.9 mwm Let @:M -+ -nl be a diff-rphism - then for any second order 

1 r E P (m) , (T@) ,r is second order. 

PRXF In fact, 



55. THE VERTICAL MORPHTSM 

L e t  M be a connected cCO manifold of dimension n, 

IT:E -t M 

a vector bundle -- then n is a surjective su]Jmeraion and the kernel of 

is called the vertical tangent bundle of E, denoted VE. 

-1 5.1 REMAFK Take a point p E E and put x = c(p) - then the fiber E~ = IT (x) 

is a sulrnanifold of E containing p, hence T E c T E and, i n  fact,  T E is precisely 
P X  P PX 

the kernel of TIT :T E + TxM. L e t  us also note tha t  TEx can be identified w i t h  
P P 

E x Ex, so VE can be identified w i t h  E xM E, the l a t t e r  being defined by the 
X 

pullback square 

There is a COBlPrrntative diagram 



and a pullback square 

thus there is an arrm 

5.2 IiEMGl The sequence 

is exact. 

Now take E = 'IN - then a vertical vector field is a section of VTM. 

Accordingly, to say that X E $('Dl) is vertical amounts to  saying that 

TITM 0 X = 0 

or still, 

Therefore the bracket of tclJo vertical vector fields is again vertical. Locally, 

the vertical vector fields on TM have the form 



1 
N .B. v X E (M) , xV is vertical but not every vertical vector f ie ld  is - 

a vertical l i f t  (e.g . , A) . 

1 
5.3  L,J~WA If l' E D (IM) is second order, then for every X E d ( ~ ) ,  the 

bracket [I',xT] is a vertical vector field. 

PROOF It need only be shown that  v f E crn(M), 

L (f 0 IT,) = 0. 
[r,xTi 

But 

which reduces matters to the equality 

Working locally, write 

Then 



On the other hand, 



[Note: For a ccanpletely different proof, see 5.19.1 

Bearing in mind that 

V ? M , T M ~ T M ,  

consider the exact sequence 

provided by 5.2 -- 

P m F  In fact, 



Then 

is called the vertical mrphism. 

N.B. It is clear that 

1 
Therefore S can also be regarded as an element of V1(?TJI). 

Kers=Ims, 

the vertical vector fields on TM. 

1 [me: Tf S is thought of as lying in D1(TM) , then its local wress ion  is 



1 5.8 REM&RK Let r E D ('1M) -- then r is second order i f f  ST = A. 

[Note: The set SO(TM) of second order vector fields on Dl is an affine 

space whose translation group is the se t  of vertical vector fields in D'(?M) .I 

The vertical mrphisn does not respect the structure of vL(TM) as a L i e  

algebra. Instead: 

PROOF It w i l l  be enough to consider the follcwing possibilities. 

Both X & Y are vertical l i f t s .  

~oth X & Y are l i f t s .  

O X  is a vertical l i f t  and Y is a l i f t .  

Since S annihilates vertical vector fields, 

which sett les the first possibility. Turning to the second, 

v v [sxTtsyT1 = [X ,Y I (cf. 5.7) 

= 0 (cf. 4.7 ) .  

And (cf. 4.8) 

I - 
T T V T S[SX ,Y 1 = S [X ,Y I = s[x,ylV = 0 



Finally, 

V T SCX ,Y 1 = S [ X , Y I ~  = 0 

while 

1 
5.10 R3MARU Aanalogously, V X E D (TM) , 

By definition, 

(q) (Y) = [X,SYl - S[X,Y] (cf. 3.2) . 

Theref ore 

Proof : 

[Note: R e c a 1 1 t h a t s 2 = 0  (cf. 5.5).] 



L& = 

5.11 LE2WA We have 

L*S = - S. 

1 5.12 EXAMPLE For any I? E V (TM) of second order, 

s = - LAS 

= - LsrS (cf. 5.8) 



1 1 5.14 EXAMFLE Tf X E D (M) and r E D (TM) is second order, then 

s[xV,r] = xV. 

Indeed, 

:vs = 
(cf. 5.13) 

= x V  (cf. 4.6). 

1 1 5.15 IWMA Fix r E D ('Dl) of second order and suppose that X E D (TM) 

is vertical - then 
(L?) (X) = X. 

PWXlF There is no loss of generality in mrking w i t h  a vertical l i f t :  

= x V  (cf. 5.14). 



1 5.16 LEMMA Fix I' E 2;) (Q4) of second order arad suppose that 

Then X is vertical. 

PXBF In fact,  

Therefore X E Ker S, 

Write V(TM) for 

sx = 0. 

hence X is vertical (cf . 5.5) . 

the vertical subspace of 2;)' (TM) . Ccanbining 5.15 and 5.16 

then leads t o  the folluwing important conclusion. 

5.17 SCHOLIUM ~f I' E (m) is second order, then the operator 

has eigenvalue +1 with V(m) as eigenspce. 



5.19 EXBWLE If X E D l  (M) and I' E 2 (PI) is second order. then 

s[xT,ri = o (CL 5.3). 

Indeed, 

:TS = O 
(cf. 5.18) 

= [xT,b] (cf. 5.8) 

= O  (cf. 4.4). 

5.20 LEkW For any second order J? E $(TM), 

is the identity operator. 

2 
P m F  In  view of 5.17, (LTS) is the identity on vertical vector fields, 

thus it suffices to  show that 

To begin wi th ,  



But 

= xV -  SIX^,^] (cf. 5.7) 

= x V - x V  (cf. 5.14) 

= 0 

Maintaining the assumption t h a t  I' E 27' ( 1 ~ )  is second order, put 

1 1 Vy = - (I + LyS), Hr = 3 I - LrS). 2 



Then 

And, as has been seen above, 

1 1 
On the other hand, we ca l l  HrD (TM) the horizontal subspace of V (?M) determined 

by r a d  d a t e  it by ffr  (IM) . Therefore 

5.21 REWIRK Since 

= [r,Al (cf. 5.8), 

it follows that I' is horizontal i f f  [A,rI = r. 

[Note: The difference 

[ ~ , r i  - r 
is called the deviation, It is necessarily vertical: 

s([n,r]  - r) = s [ ~ , r i  - sr 



H e r e  

s [A.rI = - s( (L~s) (r) 

= ST (cf . 5.12) 

= A  (cf. 5.8). 

Given X E 9 (M) , put 

thus 



and, by definition, $ is the horizontal lift of X to TM. Locally, if 

and 

then 

where 

5.22 REMARK In general, 

xT 72 xV + 9. 

To see this, observe that t/ f E c ~ ( M )  , 



but, generically, 

(5x1 r (f o rM)xT. 

[Note: Locally, matters are manifest.] 

P ~ F  We have 

1 
= - (xV + xV) (cf . 5.14) 2 

5.24 RDlWK L e t  

1 
Jr = S + - ( L  ( L  S))  0 V 

2 r r  r 
1 

T h e n V X E  v (M), 



5.25 L e t  X.Y E $@I) - then 

s[P,yhl = [xtylV. 

[~ote: I n  general, [x,Y] z [?,& but 

s ( [XtYI - I X h , y h l )  

= s[x,ylh - S I X ~ , Y ~ ]  

= [ X , Y I ~ - S [ $ , Y ~ ]  (cf. 5.23) 

There is one final pint, namely for any diffeomorphisn @:M -t M, 

(TW* S = S (T@)*. 

Take n w  a E SO (TM) - then (T@) ,I' E SO (TM) (cf. 4.9) , so (cf . 5.8) 



$6. VERTICAL DIFFERENTIATION 

Let M be a connected coo manifold of dirrrension n, 

the vert icalmrphisn - then S operates by duality on A*TM, c a l l  it S*, thus 

and 

[Note: Locally, 

i i s*(dqi) = 0, S*(dv ) = dq .] 

6.1 We have 

I$* = s* 0 ISX. 



= S*(I a)  (Xl,. . . ,XPl). SX 

[Note: Therefore 

In particular: 

IAS* = 0.1 

Let 

and for p > 0, put 



[Note: Locally, 

i i i 6s(dq ) = 0, 6s(dv ) = dq .I 

N.B. - v f E C ~ ( T M )  , 

af i 6s (df) = --T dq . 
avl 

[No*: Globally, 

6.2 LJ34MA We have 

PI~DOF On e laen t s  of cm(TM) , this is obvious, SO l e t  a E A'TM (p > 0) -- 
then 

(Ix(6,a,) (X1, *-• ,Xpl) 



6.4 LEbMA We have 

6S 0 LA - LA o 6s = SS. 

Define naw 



[Note :  Imally, 

N.B. V f E cm('IM) I 

[Note : Globally, 

dSf = S* (df) , ds (df) = - d (S* (df) ) . ] 

6.5 LEPWi ds is an antiderivation of A*?M of degree 1. 

PROOF Write 

dS = [SSIdl 

and observe that 6S is a derivation of A*TM of degree 0 a l e  d is an antideriva- 

tion of A*'IM of degree 1. 

6.6 UPMA We have 



PROOF In fact, 

d o d S + d S o d  



[Note: -11 -that s2 = o (cf. 5.5) .I  

6.8 LE3MA We have 

PFXIOF ~t suffices to ,show that v f E c r n ( ~ ) ,  



But 

= GSdS*df (cf . 6.2) 

= 0 (cf. 6.7). 

And then (cf. 6.6) 

d; (df) = dS (dSdf) 

= - ds (ddSf) 

2 = d(dSf) 

= 0. 

6.9 LEMMA We have 

S* 0 dS = 0 and dS 0 S* = S* 0 d. 



6.10 LEMMA W e  have 

- 
A 0 ds + ds O IA = 6s 

I ds ' LA - LA ds = 
7 ds' 

PROOF To discuss the f i r s t  r e l a t i o n ,  let f E cOD (TM) -- then 

( I A  0 dS + dS 0 lA)f  

= I d £  A s 

= IAS*f 

= 0 (cf. 6.1). 

And 

= (- LA + dlA) (S* (df) ) + GSd (LA£) 

= - LAGS (df) + GSL* (df) 

= (GS 0 LA - LA 0 GS) (df) 

=Gs(df) (cf. 6.4). 



6.11 FEMAFE The analog of the identity 

4 [ =  I X O d + d 0  IX 

per d is the relation 
S 

6.12 REMMX Let 

Defining in the ofnrious way, plt 

Then 

2 
but, in general, 4 t 0. On the other hard, v X E v1 ('Dl) 

LX04-40 LX=dh~* 

E.g.: Take T = S, X = A - then 

- - d-S (cf. 5.11) 

ds 0 LA - LA o ds = ds (cf . 6. LO) . 



[Note-: If T is the identity map, then 

Therefore 

= da, 

so $ = d.] 

The image S*(A*TM) is called the vector space of horizontal differential 

forms on TM. It is dS-stable (cf. 6.9). 

N.B. V f E cm(TM), dSf is horizontal. In fact, dsf = S*(df). 

6.13 LEMMA Suppose that a is horizontal - then 

PII(XIF Write a = S*P -- then 

1 Let a E A TM -- then a is horizontal iff locally, 



So, V w E A%, (Q) *w is horizontal and 

6.14 LWM?i let a E A% - then a is horizontal iff a (X) = 0 for all 

vertical vector fields X on 1FI. 



97. THE FIBER PERT VATIVE 

L e t  M be a connected C* manifold of dimension n, 

its cotangent bundle - then the sections V1(M) of T W  are the 1-forms on M, 

i.e., ~ k .  
1 N.B. Suppose that  (u, {x , . . . ,xn}) is a chart on M -- then - 

is a chart on TW. 

[Note: H e r e  

Dmote by hAh the vector space of horizontal 1-forms on ?M and consider 

the pullback square 



Then one can identify  AM with the sections of prl, thus *e is an i-rphisn 

a -+ Fa = pr2 0 a frcm ~k to the vector space of fiber preserving cm functions 

[Mote: For mre details and a generalization, cf. 13.4.1 

then 

i - qi 0 F = q , pi 0 F~ - ai. a 

L e t  O be the fundamental 1-form on T*M. 



Given an f E C~(TM) , the 1-form 

Ff = -- then Ff:TM -+ T*M is the 

f -+ Ff is linear and Ff = Fg i f f  3 h 

thus locally, 

dSf is horizontal: 

fiber derivative of 

1 dSf E hrl TM. Put 

f .  The correspondence 

[Note: Invariantly, Ff sends TxM to T:M via the prescription 

7.2 RENARK Ff is fiber preserving but Ff need not be linear on fibers. 

[Note: Ff is a diffeamrphisn i f f  Ff is bijective on fibers.] 

1 Each X E D (TW) , i. e. , each section X:T*M -+ TT*M, induces a fiber preserving 

C* function F :T*M -t ?MI viz . F = TIT; o X. To a given H E C* (T*M) , there 
X X 

corresponds a vector f ield % on TXM characterized by the condition 
= - 

m. 



Put F'H = F - then FH:T*M -t DI is the fiber derivative of H. 
XH 

[Note: Locally, 

Therefore, along an integral curve of S, we have 

the equations of Hamilton.] 



9 8. LAGRANG1 ANS 

Let M be a connected cm manifold of dimension n - then a lagrangian is 

simply any element L E c~(TM). This said, put 

N.B. - Frcsn t3-e definitions, 

=dSL (cf. 7.1). 

Accordingly, i f  R = do, then 

(FL) *Q = w,. 

[Note: Recall that  the pair (T*M, R) is a symplectic manifold. ] 

8.1 LEMMA W e  have 

PROOF In fact ,  



= d 6 d L  s s (cf. 6.9) 

= O  (cf. 6.8). 

Let 

1 
Ker % = {X E O ( Z M ) : I ~ ~  = 01. 

Then % is symplectic i f f  Ker % = 0 . 

8.2 LEMQ % is symplectic i f f  FL is a local diffeamrphisn. 

PROOF If % is ~ l e c t i c ,  thm 

is a canonical transformation, hence is a local diffe0~1w)rphism. And conversely ... . 

L is said to be nondegenerate i f  is symplectic: otherwise, L is said to 

be degenerate. 

8 .3  EXAMPLE Take M =  R -- then - 



are both degenerate. For 

so in either case, = 0. 

F L = g k ,  

thus FL:TM +- T*M is a diffeomorphism, so L is nondegenerate (cf. 8.2). 

1 
[Note: Suppose that X E D (M) is an infinitesimal isopnetry of g, i.e., 

LXg = 0. Working locally, write 

Then 



Therefore 

There is a local criterion for nodegeneracy which is useful in practice. 

1 n 8.5 LEWA L is nodegenerate i ff  for a l l  coordinate systems {q , . . . , q , 
1 n 

v r - - * , v  1, 

everywhere. 

PROOF On general grounds, % is symplectic i f f  $ is a volw form. Locally, 

hence locally, 

z 0 det 

- - 
a 

- nf avj - 



But this implies that 

n 
= 5 n! det 

thus < is a volume form iff 

everywhere. 

8.6 EXAMPLE Take M = Rn and define L : R ~ ~  + R by - - - 

where the mi E R - are constants and V t cm(Rn) - -- then 

so L is nondegenerate iff ml z 0, ..., m z 0. n 

det 

Given L, put 

Then EL is the energy function attached to L. 

- - 
a 2~ 

- aviavj - 

8.7 LEMMA We have 

= l"l * * *  n' 



PF?lXF Since 0 is horizontal ,  
L 

0 (cf. 6.13). 

Therefore 

I de 
In% = A L 

= (LA - d 0 I*) BL 

= LAeL 

= L*dsL 

= (ds 0 LA - ds) L (cf. 6.10) 

Let 

Then L is sa id  to admit global dynamics i f  DL is nonempty. 

8.8 EXAMPIE Take M = R - (cf. 8.3). 



av If  L(q,v) = v ,  then % =  0, EL = 0 (bL = v - = V) , thus DL = $(E2). av 

8.9 LEMMA L & X E D L - - t h e n & % = O .  

PROOF One has only to write 

8.10 REWWZ EL is a f i r s t  integral for any X E DL. Pmof: % = < X , v  = 

- <X,I&> = - %(X,X) = 0. 

8.11 LEkMA If L  admits global dynamics, then 

8.12 LEMMA I f  L is nondegenerate, then L admits global dynamics: 3 a 

1 (unique) TL E  D (IIM) such that  

And rL is second order. 

PROOF The existence (and uniqueness) of rL is implied by the assumption that 



is symplectic. A s  for the claim that rL is second order, t o  begin with 

I 0 6 ~ - 6 ~ 0 1  = I  (cf. 6.3). 
r~ r~ S r ~  

Therefore 

But 

Since w is symplectic, it follows that 
L 

thus rL is second order (cf . 5.8) . 
[Note: Working locally, write 



Put 

where 

w. . (L) = a% 
11 aviavj 

Then w (L) is invert ible  (cf. 8.5) and 

E.g.: In  the se t t ing  of 8.6, suppose that 5 = 1,. ..,m = 1 -- then L is n 

nondegenerate and 

H e r e  is amther i l lus t ra t ion .  Take M = El fix nonzero constants m,g,l and 

Ft 
m 2 2  

L(q,v) = z l  v + ItqL cos q. 

Then 

a% &2 aL -= , C - 
a ~ a v  aq mgl sin q 

=> 

c = (me2) -l (- q t  sin q) 

= - 5 sin q. 



8.13 LEM4A If I" is second order, then for any L, 

PROOF We have 

8.14 LEMA I f  r is second order, then 

PaOF Assure f i r s t  that LreL = dL -- then 



Gn the other hard, 

Suppose that I' E $ (1M) is secod order -- then T is said to admit a 

lagrangian L if 

LreL = d~ 

or still, 

[Note: The set of L for which LFBL = dL is a vector space wer R.] - 

N.B. Locally, 



Write 

and let y be an integral cwve of r so that 

Then 



1.e.: Along y, the equations of Lagrange 

are satisfied. 

8.15 LEMMA A second order I' always admits a lagrangian. 

PItLX3F L e t  w E A ~ M  and put 

L = lr(TrM)*w. 

Then 



But 



So, i f  w is closed, then L is a lagrangian fox r . 

8.16 REMARK Fix a second order I' -- then the proof shows that  each closed 

1-form on M gives rise to a lagrangian for r. Lagrangians of this type are termed 

t r iv ia l  and there may be no others. For instance, 2 take M = R - and consider 

Then it can be shawn that r does not admit a nontrivial lagrangian. 

8.17 EXAMPLE Take M = R~ - and let 

Then 

is a lagrangian for r, necessarily nondegenerate (cf. 8.5). Nuw f i x  real  nunhers 

a,b,c and l e t  

W e  have 



1 2 1 2 1 2  = (av + cv )dq + (bv + cv )dq 

1 2 1 2 1 2  
I r W L  = - (adv + cdv Idq (r) - (Mv + cdv )dq (r) 

Accordingly, L is a lagrangian for r which, in view of 8.5, is nondegenerate i f f  

2 a b - c  t o .  

2 8.18 EXAMPLE Take M = R - and let 

Then 

are both nondegenerate lagrangians for T. 

[Note: Another possibility is 

1 2  1 2  L = v v  - q q . ]  



8.19 RAPFEL A 1-form w E 11% determines a cm function G:?M -+ R, - viz. 

x, x = w X (Xx E TxM) 

n~ u 
[Note: For use below, observe that & = $ a d  F: = w 0 n (TM -4 M -t T*M) . I M 

8.20 LENMA Suppose given nodegenerate lagrangians L, L'. Determine 

rLt rLl E D ~ ( I M )  p r  8.12 -- then % = t, and rL = rL, i f f  L' = L + I; + C, where 

w E A% is closed a d  C is a constant. 

P ~ F  ~~su rn ing  that L' = L + + C, we have 

Next, 



Consequently, t, = t. But 

Since %, = % - C, it follows that 

or  still, 

Therefore rL = rL,. The argunmt in the other direction is similar. 

N.B. To check that w*O = O, it suffices t o  work locally: 



2 0 Given a E A TM, define S J  a E D2 ('Dl) by 

Assuming now that L is a nondegenerate lagrangian, we have 

On the other hand, according to 8.1, 



Therefore S 1% is symnetric, hence 

1 
of (L S) J y,. So, v X,Y E D (TM), 

r~ 

the same is true of L (SJy,)  or still, 
r~ 

((L S) (XI ,Y) + %(XI (L S) (Y)) = 0. 
"L r~ r~ 

And this leads to the following conclusion. 

and 

Consequently, 

N.B. X a d  Y - are vertical iff 



lxqY) = 0, 

which inplies that xxt is horizontal (cf . 6.14) . 

1 8.23 LEFMA Given a horizontal 1-form a, define Xa € ('Dl) by lx = a -- 
a 

then Xa is vertical. 

or still, 

or still, 

wL(Vr-Xa,Y) =uL(Xa,Y) (cf. 6.14) 

1.e.: Xa is vertical. 

Therefore the map 

x +  I f i  

frm vertical vector fields on TM to horizontal 1-forms on TM is a linear iso- 

mrphisn. 



A lagrangian L is nondegenerate provided FL is a local d i f f m r p h i s m  (cf. 8.2) 

but there are important circumstances when FL is actually a diffeamrpkign (cf. 8.4). 

I?L:R2 - + R2 - is not surjective, hence is not a diff-rphisn. ] 

8.24 Suppose that FL is a diffecx-mrphisn. Put H = % o ( F L ) - ~  -- then 

FH:T*M -t TM 

is a dif f-rphim and F'H = (F'L) -I. One has 

Furtherrmre, the trajectories of rL are in a one-to-one correspondence w i t h  the 

trajectories of % and they coincide when projected to M. 

[Note: Explicated, 



1 n 1 n 
Locally, FL(q I...,q ,V ,...,v ) is given by 

To calculate H in local coordinates, write 

Abuse the notation and let vi s vi 0 (E'L) - then, sime qi = qi 0 (EL)-1, we 

have 

the traditional expression. 

APPENVIX 

The equations of Lagrange 



are tied to the qi and the vi but there are situations where a change of variable 

is advantageous. 

I£ (u, {xl.. . . ,xn]) is a chart on MI then 

is a chart on IM. In . took vi to be dxi viewed 

A i i.e., vi = dx (cf. 8.19). HOT~F~VEC, instead of using 

as  a function on the fibers, 

the dxi, we could just as 

n w e l l  work w i t h  any other se t  {a1,.. .,a 1 of 1-forms on U, say 

subject to the requiranent that 

i j 
which forces functional independence of the &i ( Z  (f 0 iiM) v ) . 

j 

N.B. Put 

Then i n  classical termtology, the vi are velocities and the ;i are quasivelocities. 

Define functions P E c ~ ( u )  by 
j 

Then the matrices [ti .] and 18. I are inverses of one another. 
3 3 

A . l  U3lMA We have 



A.2 MAMPLE Locally, 

To minimize confusion, let 

-i i 
q = q .  

Then 

( (vM 

is a chart on TM. 

A.3 LDM4 We have 



E-g., consider 

Then 

- - -  - 2  d 
a F - l  (v) -@(q)-2  as 2 6 

A.5 LEMMA We have 



A.6 LEMMA We have 

Define functions 

A.7 LEMW We have 

N.B. The set 

is a basis for 

3 A.8 EXAMPLE Take M = g and use spherical coordinates: 



L e t  

Then 

and 

Therefore 

- 
0 

0 

r sin 8 - 

- 
0 

0 

l/r sin 8 - 

- - - 1 a - 
'3 r sin 8 

- . 



k Consequently, the nonzero yij are 

3 - cot 8 
Y-32 - - r 

A.9 EXAMPLE Take M = - SO(3) and l e t  

be the local chart corresponding to the 3-1-3 rotation sequence (see the M i x ) .  

Put 

- -I v = v sin 9 sin $ + v0 cos $ 4 

-2 v = v sin 0 cos + - ve sin JI m 



Then 

and 

Therefore 

Here 

thus 

- - 
sin 8 sin $ cos qJ 0 

- cos 8 0 1 - 

- 
sin $/sin 8 cos $/sin 8 

ax 'I) - sin qJ 

- cos 8 sin $/sin 0 - cos 8 cos +/sin 8 1 - I - 

- - 
x, = (sin */sin e)  - a +cosq--- a a ( m s  e sin +/sin 8) - 

a;1 a:2 

k 
'ij = i jk' 

Suppse that L E cm(m) is a lagrangian. 





[ N o t e  : Obviously, 

24-11 LEMMA -ally, 

+ 

[Note :  Write 

Then 



Indeed, 

= A (cf. A.2). 

Assume henceforth that L is nondegenerate. Determine rL per 8.12 -- then TL 

is second order ard  along an integral curve y of TL, the equations of Idgrange 

are satisfied or still, passing £ran velocities to quasivelocities, 

2 
A.12 EXAMPLE Take M = R and use polar coordinates: 



Put 

Then 

and 

In caxtesian coordinates, let L be 

which in polar coordinates is 

-1 -2 -1 -2 
or, in terms of q ,q ,v ,v : 

Write 
- 

T = - ; ( v )  -1 2 +- -  1 G2) 
( ~ 5 ~  



Then the equations of mtion are 

that, when explicated, reduce to 

Therefore 

Accordingly, 



A.13 EX?@PLE Take M = - SO(3) (cf. A.9). Suppose that locally, 

where the Ii are positive constants - then here 

or, equivalently, 

But 

Therefore 

[Note: These relations are instances of Euler's equations (see the Appendix).] 



1. 

59. SYMMETRIES 

L e t  M be a connected cW manifold of dimension n. Given a second order 

[Note: locally, the elepnents of I$(IM) have the form 

1 1 Then nT is a projection of O (ZM) onto DT(TM) w i t h  kernel V ( ? M ) .  

[TO check that nr (x) really is in #, (IM) , write 

s [nT (XI , ri 

= SIX + s[r,xi ,ri 



9.2 LEMMA Define a nrultiplication 

1 Then Or (IM) is a m u l e  wer cW (IM) . 

[Note: So, while $('IN) is not stable under the usual multiplication by 

el-ts of C~(TM), it is stable under the usual multiplication by elements of 

cF(TM) (the subring of c w ( ~  consisting of the first integrals for I') (cf . 01) . I  

1 
The elements of Vr(TM) are called the pseudosyrrmetries of I', a s y r m ~ t r y  of r 

being an X E vL(TM) such that [X,Tl = 0. 



[Note: Trivially, a symnetry of r is a pseudosynanetry of I?. ] 

s[xT,r] = 0 (cf. 5.19). 

Therefore xT E I$ (Dl) , hence xT is a pseudosymnetry of I' . 

A pint syrrmetry of r is an X E @(M) such that 

So, s t r i c t ly  speaking, a pint symnetry is not a symnetry... . 

9.4 REMA;EIK Agreeing to c a l l  a vector f ie ld  on TM projectable i f  it is 

proj related to a vector f ie ld  on M, the definitions then imply that the projectable 

syrmbetries of r are precisely the l i f t s  of the p i n t  symnetries of I?. 

9.5 m 1f X is a symnetxy of r and i f  f E c;(IM), then Xf E C;(IM). 

PIiCXlF For 

o = [r,xif = r(m) - 

Suppose rn that L is a nondegenerate lagrangian -- then % is symplectic 



so for any f E C~(TM) , 3 a unique vector field Xf E I? (IM) such that 

9.6 U%MA If f is a f i r s t  integral for rL, then Xf is a symnetry of TL. 

PROOF W r i t e  

= - Lr lX Y, (cf. 8.9) 
L f 

Therefore 



Proof: 

= 0 ( c f .  8.10). 

[No te :  It may very well happen that 

vanishes identically. I 

1 
An infinitesimal symnetry of L is a vector field X E D (M) such that 

[No te :  It will be shown belaw that 



Accordingly, an infinitesimal symnetry of L is a pint symmetry of TL.] 

9.8 THEOREM (Noether) I£ x is an infinitesimal -try of L, then X ~ L  

is a f i r s t  integral for rL. 

P D F  In fact, 

Therefore I 9 is a f i r s t  integral for TL. But 
xT 

= S * O  I (dL) (cf. 6.1) 
sxT 



3 9.9 EXAMPLE Take M = R and let - 
2 

a put x = - -- T a 
1 then x = -, so X ~ L  = 0. since xV = - a it follows that 

ax aql av 1' 

v 1 
X L = v is a first integral for rL (conservation of linear mmentum along the 

9.10 EXAMPLE Take M = R~ - and let 

1 2 3 1 2 3  3 
i 2  

L(q ,q 14 1v ,v ,v ) =; ( Z (vi12 - L ( q )  ) .  
i=l i=l 

1 a F ' u t X = x  - -  2 a 
2 X -- 1 then 

ax ax 

But here 



And this means that 

3 is a f i r s t  integral for  rL (conservation of angular -turn around the x -axis). 

As w i l l  becane apparent, one need not w r k  exclusively w i t h  the l i f t s  t o  

?M of vector f ie lds  on M. 

3 
9.11 EXAMPLE Take M = R - a d  let 

Put 

Obviously, XL = 0. In addition, 

The argurmt arrployed in 9.8 then implies that lXeL is a f i r s t  integral for rL. 

But 



1 1 2 3  
= V f (v  ,V ,V ) .  

1 1.e.: v f(v1,v2,v3) is a f i r s t  integral far rL. Of course, the lag rang ian  at 

hand represents the free particle, so any func t ion  o f  the velocity had better 

be a "cons tant  of the motion". 

9.12 Ll3MA If X is an i n f i n i t e s i m a l  symnetry of L, then 

PFEOF W e  have 

= d L  L + d L  SL (cf . 6.12) 
S "T T 

A 

= dSO + doL (cf . 5.18) 

[Note: Therefore 

9.13 LJ3MA If X is an infinitesimal syr r~ne t ry  of L, tlw X ~ E ~  = 0. 



PROOF For 

And 

But [ T ~ , X I ]  is vertical (cf .  5.3) a d  BL is hor izonta l .  hence e L ( [ I ' L , ~ ' ~ )  = 0 

(cf . 6.14) . 

9.14 I J W W  If X is an i n f i n i t e s i m a l  symnetry of L, then X I  is a s y r r ~ r a e t r y  



of rL. 

PWX3F Simply note that 

- - - d i T %  - 0 (cf. 9.12) 
L 

= 0 (cf. 9.13). 

Then 

Proof : 



A ~oether synmetry of rL is a vector field X E $ (M) such that L 8 is 
xT 

exact (say L = df, where f E cm(TM)) and X ~ E ~  = 0. 
X 

[Note: A ~oether syrmetry X of r is necessarily a point symnetry of rL: L 

9.16 LEMMA If X is a Noether symnetry of TL, then f - xVL is a first 
integral for rL. 

PRDOF To begin with,  

Therefore 



Suppose that X is an infinitesimal qmmetry of L - then 

I xT%=O (cf. 9.13). 

So X is a N o e t h e r  symnetry of rL and 9.8 is a special  case of 9.16 (take f = 0) .  

9.17 RDRRK If X is a point symcletry of rL such that 

then X is an infinitesimal synmetry of L. To see this, start by writing 



N e x t  

= L aL (cf. 8.13) 
xT 

exact (say heL = df , 

[Note: A Cartan 

1 
of rL is a vector f ie ld  X E D (IM) such that heL is 

where f E cm(T!M) ) and 5 = 0. 

syrrmtetry X of TL is necessarily a symnetry of TL: 

[x,rL] = o (CL 9.15).1 



N.B. The l i f t  of a Noether symnetry of TL is a Cartan symnetry of TL. - 

In the other direction, the projection of a projectable Cartan symnetry of TL 

is a e t h e r  symnetxy of rL (cf. 9.4). 

9.18 EXANPLE rL is a Cartan synmetq of rL (which, i n  general, is not 

projectable) . Proof: 

9.19 The l i f t  of a point synmetry of TL need not be a Cartan 

symmetry of I'L (cf. 9.24). 

9.20 LEMA If x is a Cartan symnetry of TL, then f - (SX)L is a f i r s t  

integral for TL. 

[Argue as i n  9.16, observing that 



Consider the follawind setup. Suppose 3 f E cm(m) : 

Then 

is a f i r s t  integral for rL. In fact, 

= X ( I  8 - L )  (cf. 8.13) 
r~ 



Then 

N.B. - X is a Cartan 

= 0. 

symne of rL' ~ h u s  put 



9.21 EXAMPLE Here i: 

M = R~ - {O} and put - 

a realization of the foregoing procedure. Take 

Let 

Then 

hence L is nondegenerate, 

and 

Define vector f ie lds  $ € 1 

% = -  

2 kj - CKClsl 6 

where 



One can check that [s, rLl 

of a vector field on M. St 

Since 

the conclusion is that 

is a f i r s t  integral £or rL 

[Note: This lagrangii 

what is being said is that 

P m F  We have 

0, thus Xk is a symnetry of TLwhich is not a l i f t  

is the one that figures in the Kepler problan and 

le so-called Lenz vector is conserved.] 

first integral for TL, then Xf is a Cartan qmmstry 



And 

9.23 REMARK Given a 

Then F is a first integral 

So far we have mrked 

has been seen in §8 (cf . 8 
L' can give rise to the sa 

In turn, this leads to dif 

9.24 EXAMPLE Take Pi 

or rL (cf. 9.20) ard 

rith a fixed nonsingular lagrangian L. However, as 

-7 and 8.18), distinct nonsingular lagrangians L and 

! dynamics in that 

rL = rL, . 

zing descriptions of the symnetries and first integrals. 

= R' aii let - 



Then 

and 

are both nondegenerate lag 

are infinitesimal symru3tri 

mgians for r: 

rL = r 

rL, = r. 

s of L, thus by 9.8 lead to the first integrals 



for r. On the other hand, 1 

are inf initesinal symnetrids of L' , thus by 9.8 lead to  the f i r s t  integrals 

for r. I 

[~o te :  X' a d  Xi are pint symnetries of TL, (cf. 9.14) or still, are pint 
1 

are f i r s t  integrals for r (cf . 9.7) (or directly) . But neither (xi) nor (xi) ' 
L 



But 

Therefore 

Consequently, 

And then 



[Note: Our standing assumption is that L is nodegenerate but, in general, 

X ~ L  will be degenerate. 1 

= dL(0) (cf. 5.19) 

[Note: This result enables one to simplify the proof of 9.8, there being 

no need to appeal to 9.14 to force 

since 9.25 implies that this is autcsoatic.1 



P m F  First 

= L  8 - L  +?LC, (cf. 8.14). 
r~ xTL X 

Next, write 

Therefore 



But 

= L  8 -dxT1 0 (cf. 8.13). 
r~ xTL r~ IJ 

Finally 

= L  8 - d x T 1  8 (cf. 9-25). 
r~ xTIJ r~ 



 ow recall that, fly definition, rL *ts the lagrangian xTL provided 

which, in view of 9.6, w i l l  be the case i f f  

1.e.: Iff X is a point symnetry of rL. 



5.10. MECHANICAL SYSTEMS 

Let M be a connected COO manifold of dimmion n - then an (autoncxmus) 

mechanical system M is a t r ip l e  (M,T,ll), where T E cW(nvl) am3 I1 is a horizontal 

1-form on TM. 

One ca l l s  

M -- the configuration space 

TM -- the velocity phase space 

n - the n m h r  of degrees of freedam. 

10.1 REMARK Recall t h a t  the horizontal 1-forms on ?M are i n  a one-to-one 

correspondence w i t h  the fiber preserving COO functions TM -t T*M (cf. 57). In the 

context of a mechanical system, either entity is tenned an (external) force field. 

10.2 EXAMPLE L e t  L be a 1agrangi.cn. Take I7 = 0 -- then the t r ip le  (M,L,O) 

is a mechanical system. 

A mechanical systgn M is said to be nondegenerate i f  

cl+ = ddsT 

is symplectic. 

1 
Suppee that M is nondegenerate -- Men 3 a unique vector f ie ld  rM E O (IM) 

such that 

'rM% = d(T - AT) + E (= - %+ E). 



And, as  the notation suggests, T M i s  secord order (cf. 8.12) (note that 6 li = 0 
S 

(cf. 6.13)). 

i 
N.B. Working locally, write II = Eidq - then along an integral curve y of 

r ~ t  the equations of Lagrange 

w i t h  forces are satisfied. 

10.3 EXAMPLE Take M = 5' and 

Then the mechanical systan (M,T,E) represents the mt ion  of a particle of mass m > 0 

in R' - under the in. luence of a force f ie ld  11. H e r e  

and the integral curves of .TM are the solutions to 



[mte: 131 the m e ,  it is understood that q1,q2,q3 are the usual cartesian 

coordinates. Matters change i f  we use spherical coordinates: q - = r (r > o ) ,  

- - 2 - 3 q1 = ?jl s i n  q cos q 

2 -1 - 2 -3 q = q  s i n q  s i n q  

- 2 I - q3 = ?jl cos q . 

Thus naw 

and 

.., 
The tensor transfomation rule of 52 can then be used t o  compute the IIi i n  terms 

of TIi. To i l lustrate,  

-1 -2 - 3 -1 - 2 - 3 
= (- q sin q s in  q )TI1 + (q s in  q cos q In2.] 

A nodegenerate mechanical systm M = (M,T,TI) is said t o  be conservative 

if 3 v E c ~ ( M ) :  

TI = - d(V (= - r p v ) ) .  



In this situation, we have 

where 

' r f i  = d(T - AT) + E 

= d (T - AT) - d (V 0 nM) 

= d(T - V 0 nM - AT) 

Thus I: has disappeared and 

But this puts us right back into $8 (with L nondegenerate) (evidently, wL = wT 

and TL = rM). 

1 
Typically, T = - g, where g is a s e m i r i d a n  structure on M (cf. 8.4), 2 

hence 

10.4 LEPNA Suppose that T is nondegenerate and AT = 2T -- then 



PRCXlF In  fac t ,  

LA% = L dd T A s 

= d(LAdST) 

= d ( d s  o LA-dS)T (cf. 6.10) 

= 2ddsT - ddST 

= ddsT 

= 9- 

10.5 LFSJlMA Suppose that T is nondegaerate and AT = 2T -- then 

thus the  deviation of rT vanishes. 

PRCXlF For 

(cf. 10.4) 

= - d + + %  

= - &.+ 



[a,rT1 = r,. 

1 1 n i Take T = 2 g. Given a chart (u,{x ,..., x 1)  on M, l e t  {r be the 

connection coefficients per the metric connection V determined by g. 

10.6 UMMA Locally, 

[Note: The projection vM:TM + M sets up a one-to-one correspondence between 

the (maximal) integral curves of TT and the (maximal) geodesics of (MIg) . I  

10.7 FEMARK The set SO(TM) of second order vector fields on TM is an affine 

1 
space whose translation group is the set of vertical vector fields in D (TM) 

(cf. 5.8). Choose rT as its origin -- then rT determines a bijection 

viz . 



Now consider 

Then 

= T + V o  TM. 

[Note: Here 

FL = F(T - V o TM) 

= gt (cf. 8.4). 

Therefore E'L is a diffecgly)rphism, hence 8.24 is applicable, and 

10.8 LEMMa We have 

rL = rT - (grad V) v. 

[No te :  Locally, 

i j a V  a 
graav= (g - ) -  

ax] ax1 



such 

of L 

1 10.9 RDWX Suppose that X E D (M) is an infinitesimal ismtry of g 

that XV = 0 -- then X ~ L  = 0 (cf. 8.4) ,  thus X is an infinitesimal symnetry 

and so X ~ L  is a first integral for TL 

is the function g ( X ,  . Lacally, 

(cf . 9.8 ) . Explicated, 

j = x1 0 % (gij 0 vM)v . 

[Note: For a case in pint, consider 9.9.1 

1 
lo. 10 Suppose that r E D (Dl) is saand order. Define .TIr E A% by 



= 1 u +dT. 'r r T 

Then ITT is horizontal. 

PROOF Bearing in mind 6.14 (and the fact that OT is horizontal), take 

1 
X E D (TM) ver t ica l  and write 

= - dT (- X) - 2dT (X) (cf . 5.15) 

Therefore 

= - dT (X) + dT (X) 



[Note: Locally, 

so locally, 

N.B. This result implies that one can attach to each second order r a 

mndegenerate mdmnical system 

Mr = (MITIilr) - 
MI of course, 

If T1,r2 are second order a d  i f  I: = II , then 
2 

On the other hand, i f  a E hA%, then 3 a unique vertical Xa: 

' x 3  = a 
(cf. 8.23). 

Since I' is second order (cf. 8.12) and T 



it follows that 

10.11 SCHOLIUM The map 

sets up a one-b-one correspondence between the se t  of second order vector fields 

on Dl and the set  of horizontal 1-forms on TM. 

Let y:I  + TM be a trajectory of r. Fix t < t2 i n  I -- then the mrk done 1 - 

by the force field IT during the t i m e  interval [tl,t2] is r 

But 

Therefore 



implying thereby t h a t  

and, being constant along y, is a f i r s t  integral for  r (cf. 1.1), which, in the 

present setting, is another way of looking a t  8.10 (rL = I'). 
r 



511. FIBEREP MANIFOLDS 

L e t  M be a connected coo manifold of dimension n - then a fibration is a 

surjective suhwrsion T:E + M and the triple (E,M,T) is called a fibered manifold. 

E.g.: V e c t o r  buradles wer M are fibered manifolds. 

N.B. - A fibration T:E -t M is necessarily an open map, thus is quotient 

(be ing  s u r j e c t i v e )  . 

- 
Tr:E + N 

- vl:E'  + M1 

are fibrations, then a mrphism 

( F I f )  : (E,MI7r) + (E '~M'  , r t )  

is a pair of C~ functions 

such that T' o F = f 0 T. 

[Note: Accordingly, V x E MI 



such that  

One then says that  (E,M,T) and (E',M',T') are isc~oorphic. 

11.1 LEMMA If  @:N -+ M is a surjective coo mp of constant rank, then @ is 

a suhersion, hence is a fibration. 

Suppose that  r:E + M is a fibration - then the rank of .rr is constant, viz. 

rk  n = dim M. 

-1 So, v x E MI the fiber E = n (x) is a closed suhnanifold of E w i t h  
X 

dimEx=dimE-dimM. 

[Note: In general, Ex is not connected.] 

11.2 MAMPLF: Take E = R~ - - {(0,0)}, M = RI - n = pr -- then r is a fibration. 1 

-1 
w e ,  r (x) (X r 0) is connected but q l ( 0 )  is not connected. 

11.3 LIDMA Suppose that  n:E + M  is a surjective coomap - then r is a 

fibration i f f  every point of E is i n  the image of a local section of r. 



11.4 IiEMARK The set of sections of a fibration IT may be empty. For 

example, consider 

2 and recall that S - does not admit a never vanishing vector field. 

CO 

11.5 LlMW If (E,M, n) is a fibered manifold and if @:N + M is a C map, 

then there is a pullback square 

and (N xM E,N,prl) is a f ibered manifold. 

PROOF It is clear that prl is surjective. To see that it is a suhnersion, 

fix (yO,pO) E N xM E and choose a local section o:U + E such that po E o(U) (cf. 

11.3) -- Men @(yo) = *(p0) E U. Define T:@-'(u) + N  X ~ E  by r(y) = (y,o(@(y))) 

to get a local section of pr passing through (yO,pO) . 1 
Therefore prl is a 

f ibration (cf . 11.3) . 

Suppose that IT:E + M is a fibration - then the kernel of 



is called the vertical tangent bundle of Ef  denoted VE. What was said a t  the 

beginning of 55 for the special case when E was assumed t o  be a vector bundle is 

applicable i n  general, thus thexe is an exact sequence 

0 +VE +TE + E  x M T M +  0 (cf. 5.2) 

of vector b d l e s  wer E. 

11.6 EXAMPLE 

p i n t s  whose images 

Consider T%, the sutmnanifold of TIM consisting of those 

urder n T M a r d  TrM are one and the same or still, the fixed 

p i n t s  of the canonical involution %:TIM + ?TM. N o t e  that  

dim T% = 3n. 

Let 

Then nZ1 is a fibration, thus the t r ip le  ( T k ,  TM,rr21) is a f ibered manifold. 

L e t  

1 
Then n1 is a fibration, thus the t r ip le  (T%,M,~  ) is a fibered manifold. 

This data then gives rise t o  exact sequences 



5. 

Mreover, there are canonical isawrphisns 

of vector bundles over T%. Now put 

Then 

I- K e r  S21 = v2%% = Im s1 

and 

(S21) = 0. 

[Note: T$ is the acceleration phase space. Imal coordinates in T& are 

i i i 
(q ,v ,a ) (i = l,.. . ,n) . I  

Let (E,M,.rr) be a f ibered manifold -- then a trivialization of (E,M,.rr) is a 
pair (F,t), where t:E + M  x F is a diffeamrphisn such that 



Schematically: 

[Note: The t r ip le  (M x F,M.prl) is a fibered manifold and 

is an iscmrphisn. 

N.B. A fibered manifold (E,M,.rr) is said t o  be t r iv i a l  i f  it admits a - 
trivialization. 

L e t  (E,M,n) be a fibered manifold - then (E,M,.rr) is said t o  be locally 

t r iv i a l  i f  v x E M, 3 a t r ip l e  (UxIFxItx) , where Ux is a n e i g b r h d  of x and 

-1 
tx: " (Ux) +- Ux X Fx is a diffeamorphisn such that 

-1 
prl o tx = T 1 T (uX) . 

E.g.: Vector bundles over M are locally t r iv i a l  fibaxd manifolds. 

11.7 LFMMA If (E,M,r) is a locally trivial fibered &fold, then 3 F: 

v local trivialization (UxI FxI tx) (X E M) , Fx ard F are diffecrmrphic. 

N.B. In general, therefore, a fibered manifold is not locally t r iv i a l  (cf. 11.2).  - 



11.8 L8MW If  (E,M,lr) is a fibered manifold and i f  .rr is proper, then 

(E,M, lr) is locally trivial. 

3 
11.9 EXAMPIE The Hopf map s3 - + g2 is the restriction to S - of the arrow 

E4 + R3 defined by the rule that sends (x1,x2 ,x3 ,x4) to  

1 4  2 3  2 4  1 3  + (x2)2 - (x3)2 - (x4)2, 2(x X + X X ) , 2(x x - X X ) I .  

It is a proper fibration, hence is Locally t r ivial  (cf. 11.8). 



L e t  M be a connected C~ manifold of dimension n, IT:E -+ M a vector b u n d l e  -- 
then an affine bundle mode led  on (E,MfVrr) is a pair ( ( A I M , ~ )  ,r), w h e r e  p:A + M is 

a fibration and r:A xM E + A  is a m o r p h i s n  of f iberd manifolds over i% such that 

V x E M ,  

r : A  x E  + A  
X X  X X 

is a free and transitive action of the additive group of E on the s e t A x  ( t h u s  
X 

Ax is an aff ine space mdelled on Ex) . 
[No te :  The triple (A x E ,A,prl) is a f ibered manifold (cf . 11.3)  , hence 

M 

so is (A xM E,M,p 0 prl) and the requirement is that the d i a g r a m  

camnute ,  i.e., that the d i a g r a m  



12 .1  LmPlA The f ibered manifold (A,M, p) is locally tr ivial .  

PWXlF Bearing in mind that (E,M,n) is locally t r ivial ,  f ix  x E M and choose 

(ux,Fx,tx) accordingly. Without loss of generality, it can be assumed that Ux is 

the damin of a local section o of A (cf. 11.3). L e t  a E p-'(Ux) -- then there 

exists a unique element 4 (a) E n-' ( p  (a) ) : 

The correspondence 

is a diffeomrphim which can then be postccmpssed with tx. 

N.B. Every vector bundle (E,M, n) "is" an affine bundle ( (E,M, n) ,+) , 

+:E XM E + E 

being addition in the fibers of n. 

21  
12.2 EXAMPLE Consider the fibered manifold (T%,?M, n ) (cf . 11.6) -- then 

the fibers of n21 are not vector spaces but they are affine spaces. 'Ib make this 

precise, introduce the vector bundle 

Take an x E TM and let 



Then 

21 -1 
a + v E (T ) (x) 

and the action 

21 -1 -1 21  -1 (rVIX: (T (XI x (XI + (.rr 1 (XI 

is free and transitive. Since this can be globalized, it follows that 

( (T% mI T 2 3  , rv) 

is an affine bundle rclodelled on 

(rn, m, nv) 

21 
L e t  r ( p )  stand for the set of sections of (A,M,p). E.g.: r ( n  ) = SO(TM) 

(cf. 5.8). 

12.3 mMMA Each s E T(p )  determines an imrph i sm $s:A + E of fibered 

manifolds aver i%: 



PROOF Given a E Ax, there exists a unique $,(a) E Ex: 

12.4 FEMARK r(p) is not empty. This is because: (1) The fibers of p are 

contractible and (2) M is a polyhedron, hence is a CW canplex. 

Affine bundles are the natural setting for the study of fiber derivatives 

(the considerations in 97 constitute a special case). 

Suppose that 
- 

( (ArMr PI ,r) 

- ( (Ar ,MI P') ,rl) 

are affine bundles modell-ed on vector bundles 

- 
$:E -t M 

- $':E1 -t M 

respectively. Let 

<:A -t A' 

be a mrphisn of fibered manifolds ova i% -- then T< restricts to a mrphisn 

V<:VA -+ VA' 

of vector bundles over M and there is a factorization 



thus determines an element 

s E sec H ~ ( V A , A  xA, VA'). v r 
But 

So we have a diagram 

pr2 A x VA' - VA' A ' A 

1 
A XA, (A' XM E l )  

J. I 
A X #  - A' X M E q I  



£ran which an a r m  

that, being a mrphisn of vector bundles over A, gives rise in turn to an elanent 

sd E sec H y ( A  x E,A xM E'). 
5 

M 

And by construction, 

Now identify 

w i t h  

Then the arruw 

is a mrphisn of fibered manifolds over idM, d a t e  it by Fc: 



Definition: Fz; is the fiber derivative of 5. 

[Note : C a n o n i c a l l y ,  

or still, d t t i n g  MI 

N.B. V x E M, - 

Since Ax and A; are affine spaces, the derivative of Sx a t  a pint ax E Ax is 

a linear map DcX(aX) :EX + E;. And, i n  fact. 

12 .5  REMARK Since 

F5:A + Hm(E,E1)  

is a mrphisn of fibered m i f o l d s  ovex i%, it makes sense to iterate the 

procedure and fo rm $i .  E. g . : Take k = 2 - then 
2 

F <:A -+ Ham(E,Ham(E,E1)) 



the fiber hessian of 5. 

L e t  f E c ~ ( A )  -- then f can be v i m  as a mrphism 

A - t M x R  - 
of fibered manifolds over i% and 

Ff:A -t Hm(E,M x R) = E*. - 

12.6 EXAMPLE Take A = 731, E = 'JIM, thus E* = T*M and 

Ff :TM -t T W  

is the fiber derivative of f per 57. 

In the abwe, let 5 = Ff (and A' = E '  = E*) - then 

%f 
VA =: A X* E .A X* E*. 

B u t  

A X ~ E * ' A x  (E* XM E X ) .  
E* 



Therefore 

A x (E* XM E*) 
E* 

=: A x VE* 
E* 

pr2 
---+ VE*. 

Call the resulting arrow 

(VA) * + VE* 

bFf -- then bFf is an i m r p h i s m  on fibers (this being the case of prZ). On 

the other h a d ,  there is a mrphism 

WF£:VA -+ (VA)* 

of vector bundles aver A and £ram the definitions, 

VFf = bFf 0 WFf. 

(VA) * ---t m*. 
b ~ f  

2 12.7 RFMARK The fiber hessian F f is an arrow 



A -t Ham(E,E*) . 
A s  such, it determines an arrw 

A XM E + A xM E* 

that, in  fact, is precisely dm. 

[Note: Explicated, WFf is the ccarrposition 

Consider nuw 

TFf:TA -t TE*. 

Taking into account the ammutative diagram 

ws see that 

K e r  TFf c K e r  Tp = VA. 

So 

or still, 

K e r  TFf = K e r  VFf 

Ker TFf = K e r  WFf. 

12.8 IBMMA Ff is a local diffecanorphisn i f f  WE'f is an isamrphisn. 



12.9 EXFIMPLE L e t  L E C ~ ( T M )  be a lagrangian -- then 

FL:TM + T*M 

while 

F'L:ZM + H~(TM,T*M)  . 
And, i n  view of 12.8, L is nodegenerate i f f  WF'L is an iscxmrphism (cf. 8.2 and 

8.5). 

12.10 EXA,TLE Let L E cm(TM) be a lagrangian. Consider its energy % = 

a r , - L - - t h e n  

and we have 

W e  shall  terminate this section with a definition that could have been made 

a t  the beginning. Thus let 

be a norphism of fibered d f o l d s  over i%4 -- then < is said to be an affine 

bundle mrphism i f  3 a vector bundle mrphism 



- 
<:E + E' 

such that V x E M & v ax E Ax, V ex E Ex' 

5 x (r x (a x ,e x ) I  = r4(cx(ax) ltx(ex)) 

or still, 

5 x (a x + ex) = cX(aX3 + tx (ex) - 

[Note :  One calls 7 the linear part of 5.1 



3 .  STRUCTURAL FORMALIT1 ES 

Let M be a connected cW manifold of dimension n, .rr:E + M a fibration. Let 

@:N + M be a cW rrap -- then a section of E along @ is a cW map a:N -t E such that 

T o o = @ .  

13.1 EXAMPLE Suppose that 

are affine bundles mdelled on vector bundles 

respectively. Iet 

<:A + A'  

be a mrphisn of f ibxed m i f o l d s  over idM -- then there is a carmutative diagram 

which can be read as saying that Fy is a section of Ham(E,E t )  along p. 

13.2 LEMMA The set of sections of E along @ can be identified with the 



prl set of sections of the fibration N xM E N (cf. 11.5) . 
P m F  Given a, define - 

and vice-versa. 

13.3 EXAMPLE Take E = TM, N = TM, 4, = T~ and consider 

Then 

is in a one-to-one correspondence w i t h  the set of fiber preserving coo functions 

TM + TM. On the other hand (cf. §5), there is an exact sequence 

1-1 
O + I M ~ T M + T r M T I M T M Z M T M + O  

and the identification 

I?rl 
sec (TM XM TM TM) c--, v(m) 



is implemented by sending a section 5 t o  p 0 5: 

Here 

In particular: If 5 corresponds to i%:TM +- TMI then 

[Note: The zero map TM + TM sends (xIXx) to (x, 0) - And, spelled atI 

pr2 0 v 0 5 is the c-ition 

13.4 EXAMPLE Consider the pullback square 

a d  the canonical injection 



Given 

put 

Then 

a E A'E with this 

Mreover, a annihilates the sections of VE. In general, any 
5 

property is termed horizontal (cf . 6.14) . The upshot, therefore, 
is that the horizontal 1-forms on E 

E xM T*M 5 E or still, with the 
Specialize ad take E = T% -- then 

can be identified with the sections of 

fiber preserving coo functions E + T*M (cf . 13.2) . 

the horizontal 1-form on T*M associated with 

i%*M:T*M + T*M is 0 (the fundamental 1-form on T%) . 

A vector field along Q is a section of 734 along Q, i.e., is a coo map X:N + T!M 



1 
such that  liM 0 X = O. Write D (M;N: Q) for the set of such (thus (M) = 

1 0 

1 M i )  - D (M;N: Q) is a rrodule over c (N) . 

13.5 LEMMA If X:M -t TM is a vector f ie ld  on MI then 

PAOOF In fact, 

13.6 M If Y:N -t TN is a vector f ie ld  o n N ,  then 

1 
T@ 0 Y E D (M;N;O). 

PRWF There is a carmutative diagram 

1 
Each X E D (M;N;@) determines an arrcw 



via the prescription 

E.g.: Take N = TT4 and let Q = vM - then 

1 
D (M;rn ;  nM) 

is simply the set of fiber preserving Crn functions TM -t TM. In particular: 

Arad i n  this case the associated arrow 

0 4 1 sends f to df (cf. 8.19). Agreeing to write fT in place of df, V X E D (MI, 

N.B. - Put D' = DiQ - then locally, 

13.7 EXAMPLE Given a fiber preserving COO function F : TM -t TM, let 



L e t  

i 21. - ~ % + m  

be the injection -- then 

from which an a r m  

N.B. Put D21 = D -- then locally, 
i21 

13.8 EXAMPLE L e t  f E c~('I!M) -- then there is a cammtative diagram 

TM T M .  

Recalling ncw that 



is an &fine bundle modelled on 

( r n , T M ,  ITv) (cf . 12.2) , 

the definitions imply that  Dllf is an affine bundle mrphisn whose linear part 

D21f:VTM + TM x R - 

[Note : 

Let sTM:TIT4 -+ TI'M be the canonical involution - then 

thus 

1 
sm E v (m;TI!M;TITM) . 

Local coordinates i n  TI!M are 

-i - i .i i 
To rerder matters more transparent, let q - dq , v = dv - then 



Therefore 

13.9 LEMMA Locally, 

D~:C"(T!M) +C*(TDII) ( s = S  TM 

is given by 

i a -i a D f  = v  (?f 0 Tn ) + v  (-f 0 TnM) (f Ecm(TM)). 
S 

a q  
M a;lA 



A 1-£om along Q is a section of T% along Q, i. e. , is a cm map a:N -+ T*M 

such t h a t  T; 0 a = Q. Write V1(M:N:Q) for  the set of such (thus V1(M) = 

Dl (M;M; i%) -- then Dl (M; N; (3) is a module over cW (N) . 
N.B. There is a canonical pairing 

viz . 

where 

13.10 EXAMPLE The elements of 

are the f iber preserving cW functions F:TM -+ T*M. They correspond one-to-one 

with the elements of M%M (cf . 13.4) , say a -+ Fol 

[Note: Each a E M% gives rise to a cW function &:?M -r g. Id&, a t  

each point (x,Xx) E TM (Xx E TxM) is the pullback under the tangent map 
a(x,xx' 

of a unique element Ax E Tp, thus the prescription is 

x X  A X X x  (cf. 8.19). 

In terms of the pairing 



we have 

h 

&%,Fa> = a. 

Therefore 2 = 0 iff  a annihilates the el-ts of SO (TM) .I 

1 ~;et x E D (M;N;@) - then the a r rw  

can be extended t o  a degree preserving map 

Dx:A*M + A*N 

such that 

DX (anB) = DXan@*B + 0*anDXB 

where & and $ are the exterior derivative operators in M and N. 

To accanplish this, we shall appeal to  the following standard generality. 

13.11 - IJMMA L e t  X E v'(M;N;@) -- then V yo E N, 3 neighborhoads IO of 0 

in R - a d  V in N and a C* map 
Yo 

G : I O x V  + M  
yo 

such that V y E V r 

Yo 



SO, given a E A%# I G p l  is a one parameter 

exists and is independent of the choice of G. Denote it by Dp(y) -- then these 

local considerations can be reformulated globally and lead to 

DX:A*M + AXN 

with the stated properties. 

13.12 RDlARK Take N = M, ch = i% -- then DX is the Lie derivative 

&:A*M + A*M. 

1 
13.13 -- IJ9MA Suppose that ai':Nt + N is a caDmap. L e t  X E 0 (M;N;@) -- then 



and 

Define 

by 

and for a E A'M, 

- a l , ( y )  (X(Y) , Q , ~ ~ ( Y ~ ) ~ . . . ~  

where Yl, ..., Ypl E T N. 
Y 

[~o te :  This is the interior product in the present setting ( c f  . 3 . 7 )  . I 

13.4 LEMMA We have - 
- 

Dx - lx 0 % +  % O IX. 

L e t  us consider i n  mre detail the situation when N = TM and Q =  IT^. Take 

X = i h  and write D~ in place of Di 
Therefore 



and, of course, 

Given a E A&, put 

1 
Then V X E D (MI, 

Locally, 

N.B. - Write i T  i n  place of I ih-- 

6 

I a = a  (cf. 8.19). 
T 

One can also apply the theory to 



Accordingly (cf . 13.14) , 

Here 

The differential of Lagrange is, by definition, the map 

that sends L to &, where 

[Note: Thanks to 8.13, 

21 * 6L = 121deL + ( r  ) %.I 

Recall now that the triple 

1 
('J%M,~ 1 

is a fibered manifold (cf. 11.6). Relative to this structure, 6L is horizontal, 

hence determines a fiber preserving cW function 

F6~: T% -+ T*M 

such that 

&=F* O (cf. 13.4). 6~ 

prl Agreeing to regard Fa as a section of the fibration T% xM T*M T% 



(cf . 13.2) , write 

to get an arrow 

TM TM. 

13.15 IEMMA vFdL is an af f h e  b d l e  mrphism whose linear part 

13.16 RAPPEL F i x  I' E SO(TM) -- then r is said to admit a lagrangian L i f  

LreL = dL. 

Since T:ZM + T'M, for a given L, it makes sense t o  form I'*6L. 

13.17 LEMMA W e  have 



PIEOOF Obviously, 

On the othes hand, 

D. leq 0 r = r* 0 D~~ (cf. 13.13). 

But 

or still, 

Therefore (cf. 13.12) 

Consequently, I' admits L iff 

r * 6 ~  = 0. 



1 4  THE EVOLUTION OPERATOR 

Let M be a connected coo manifold of dinension n -- then the theory developed 

in 513 provides us w i t h  an arrow 

In particular: Denoting by OM the fundamenttal 1-form on T*M, 

14 .1  LEMYA The pair (TT*M,de;) is a symplectic manifold. 

Various systems of local coordinates are going to  figure i n  what follows, 

so it 's best to d r a w  up a list of them a t  the beginning. 

TIIM: m a 1  coordinates are 

IIT*M: Local coordinates are 

T*TM: Lccal coordinates are 

T*T*M: -1 coordinates are 



The transpose of the i n j e c t i o n  

is the projection 

But 

This said, deno te  by the arrow 

14.2 IENJR There exists a unique diffeamrphisn 

such that 

n* o y =  
'1M Tn; and prTW 0 Y = n T*M' 

Le., such that 



and 

and 

So locally, 

i .i . i .i . 
Y(q ,Pi&7 ,pi) = (q r q  .pi'pi) 

Finish "par recollement . . . " . 

N.B. In  the notation of 513, the relation 

translates to 

Y € V1(TM;W*M;Tr&) . 



14.3 LEMMA Let Qm be the fundmtal 1-form on T*TM -- then 

Y*QIM = or;. 
PFUIOF Locally, 

T i . i 
OM = ljidq + pidq , 

while 

N.B. Therefore - 

Y: (TI'*M,~$) + (T*TM,~O~) 

is a canonical transformation, 

[Note: Let % = d% (the furdamental 2-form on T*M) -- then 



where, of course, % = dam is the furfhwntal 2401x1 on T*m. 1 

Write Qb £or the ,iff-rphism 

TT*M -+ T*T*M 

induced by -51, thus locally, 

14.4  LEMMA We have 

i.e., the diagram 



[Note: Therefore 

b 
Q ED1(T*M;TT*M;mT*M) (cf. §13).] 

The transpose of the injection 

VT*M -t Tr*M 

is the projection 

But 

This said, denote by prM the arrw 

14.5 IXTWi W e  have 

i.e., the diagram 

TM- TM 



P m F  Locally, 

Consider 

Here, O is the fundamental 1-form on T*T*M, thus locally, T*M 

hence 

i -i T 
= - + q dpi ( r  oM) . 

Therefore 

i .i - d(- 6idq + q dpi) 

And this implies that 





Let L E cCO(TM) be a lagrangian -- then 
- 

dL:TM + T*TM 

- Y-':T*TM + TT*M# 

so it makes sense to form 

= y-l 0 dLI  

which will be called the evolution operator attached to L. 

14.7 LEMMA We have 

PROOF For 

T* 0 Y = TIT* (cf. 14.2) TM M 

=> 

TT$ 0 % = TT? 0 Y - ~  0 dL 

= IT* 0 dL 
TM 

= ih. 

14.8 LEMMA We have 

T Tw 0 f(L = FL. 

PROOF First 



Next 

sends 

thus 

sends 

Finally 



N.B. Therefore - 

14.9 RAPPEL In the formalism of 913, let 

1 X E V (M;N;@). 

Then a curVe y:I -t N is said to be an integral curve of X pravided 

T @ o y = X O y r  

carmutes. 

[Note : 

I - N  
Y 

Accordingly, in this terminology, a curve y:I -t TM is an integral w e  of 

14.10 IEtWA A curve y:I -+ TM is an integral curve of KL iff the equations 

of Lagrange are satisfied along y. 



Theref ore 

iff 

i i 
q = v  

and 

or, restoring t, 

and 

14.11 lm4ARK Suppose that L is nondegenerate - then 14.10 implies that 



a curve y:I + IM is an integral curve of TL i f f  it is an intqral  curve of . 5, 
Theref ore 

= % o y .  

Since y is arbitrary, it follaws that 

Because 

there is an arrow 



Let M be a connected C* manifold of dimension n. 

* A  distribution on M is a subset E of TM such that V x E M I  Ex = L n TxM 

is a linear subspace of TxM and we define pC:N + R - by 

pC(x) = dim Ex. 

(3-e calls 1 differentiable if V x E M, V Vx E k, 3 a neighborhod U of x and a 
vector field x E U1(u) such that Xx = Vx and Xy E k (y E U). 

[Note: A differentiable distribution I: is linear if pL is constant. There- 

fore the linear distributions are precisely the vector subbundles of TM.1 

A distribution on M is a subset C* of T*M such that V x E M, L C  = 

C* n T*M is a linear subspace of TGM and we define +:M + R by 
X 

One calls C* differentiable if V x E MI V E P ,  3 a neighborhood U of x and 

a 1-form w E D1(U) such that wx = ax and w E L* (y E U) . 
Y Y 

[Note: A differentiable aodistribution C* is linear if pC, is constant. 

Therefore the linear distributions are precisely the vector subbundles of TW.1 

15.1 RENARK The underlying assumption is that we are working in the cm 

category. Hwever, on occasion, it is convenient to mrk in the C~ category, 



since there certain results can be significantly strengthened. 

[Note: Tacitly, M is paracanpact, thus admits an analytic structure which 

is uniqye up to a coo diff~~~~~~)rphisn.] 

are differentiable, then the functions 

are lower semicontinuous. 

15.3 EXAMPLE Take M = R - and let 

where 

Then is not lower sgnicontinuous, hence C is not differentiable. 

Given a differentiable distribution C or a differentiable codistribution C*, 



a point x E M is regular if p or pC, is constant in a neighborhood of x; other- 
C 

wise x is singular. 

15.4 LEMMA The set of regular points per C or C* is open and dense. 

15.5 EXAMPLE The set of regular points need not be connected. E.g.: 

2 Take M = R - and let 

Then C is differentiable. Wreover, its set of singular points is the x-axis 

while its set of regular points has tm connected ccmpnents, namely the upper 

half-plane y > 0 and the lower half-plane y < 0. 

15.6 EXAMPLE Take M = ]0,1[ and fix E(O < E < 1) - then 3 a closed subset 
A c M of Lebesgue measure E such that M - A is open and dense in M. Choose 

f E c~(M) :f-'(0) = A. Define a differentiable distribution Z by 

Ex = Span If (x) e l .  ax 

Then 

I- M - A = set of regular points of C 

A = set of singular points of C. I - 
[Note: Let M be a nonempty open subset of R". - Suppose that 1 is an analytic 

distribution -- then it can be shawn that the Lebesgue measure of the set of 



singular points of C is zero. 

L e t  C be a distribution on M -- then the annihilator Ann C of C is 

the codistribution on M specified by 

Let C* be a codistribution on M -- then the annihilator Ann C* of C* 
is the distribution on M specified by 

(m C*)x = {V~E TxM:a (V ) = 0 V ax E CGl. 
X X 

Obviously, 

Ann(Ann C) = C, Ann(Ann C*) = C*. 

N.B. - Supgnse that C(C*) is differentiable -- then pAnn C(b 

is upper semicontinuous (cf . 15.2) , so Ann C (Ann C*) is not differentiable unless 

C (C*) is linear. 

15.7 EXAMPLE Take M = R' - and define a differentiable distribution C by 

Then 

(x = y = 0) 
(x,Y) r T *  



Let C be a distribution on M - then an hmersed, connected su.kmnifold 

called an integral manifold of C if T N = C V y E N. 
Y Y 

Let C* be a codistribution on M -- then an inmsrsed, connected sub- 

manifold N of M is called an integral manifold of C* if T N = (AM C*) V y E N. 
Y Y 

1 15.8 EXAMPLE Assume that X E D (M) never vanishes and let Ix = span {xx} 

(X E M) -- then the trajectories of X are integral manifolds of C. 

A differentiable distribution C on M is integrable if V x E M, there exists 

an integral manifold of C containing x. 

15.9 THEOREM Suppose that C is integrable -- then V x E M, there exists a 

unique integral mifold N of C containing x and wh ich  is maximal w.r.t. contairrment. 

[Note: If N and N' are integral manifolds of C such that N n N' # PI, then 

N n N' is open in N and N' and the differentiable structures induced on N n N' 

by those of N an3 N' are identical. Furthermre, N u N' is an integral manifold 

of C in wh ich  both N and N' are open. I 

15.10 RE;MARK The maximal integral manifolds of C form a partition of M, 

the foliation FI: of M determined by E (the N being the leaves of FZ) .  

15.11 EXAMPLE Suppose that r:E + M  is a fibration. Consider VE c TE -- then 
VE is a vector subbundle of TE, hence is a linear distribution. In addition, VE is 



integrable and the leaves of the associated foliation of E are the connected 

-1 components of the Ex = IT (x) (x E M) . 
[Note: An Ehresmann connection for the fibration IT:E -t M is a linear 

distribution H c TE such that V e E E, 

15.12 EXAMPLE Let a E A% be a nonzem closed pform on M -- then the 
characteristic subspace of a at a pint x E M is Ker ax, where 

Ker ax = {vx E TxM:1 a = 01, 
vx 

and the characteristic distribution Ker a of a is the assigrnnent 

x -t K e r  ax. 

In general, Ker a is not differentiable. To remedy this, let U(a) be the set of 

all locally defined vector fields X on M such that 

Define a distribution C (a )  on M by specifying that C is to be the subspace of 

T ~ M  spanned by the xx(X E V(a), x E Dam X) -- then C (a) is contained in ~ e r  a. 

Moreover, C(a) is differentiable and, in fact, integrable. Recall n w  that the 

rank of ax is - 



thus 

p r r k a ~ n .  
X 

Impose the restriction that x -t rkxa is constant (i.e.. that a be of constant 

rank) -- then in this situation, 

Ker a =  C(a). 

Therefore Ker a is linear or still, is a vector subbundle of TM. And the fiber 

dimension of K e r  a is k if n - k = rkxa (x E M) . 
2 

[Note: Take M = R - and let a = xdx -- then a is closed and 

Kexa - - I 

Therefore K e r  a is not differentiable (cf. 15.2). On the other hand, if X is a 

CI 

vector field defined on a connected open subset of R ~ ,  - then X E D (a) iff X has the 

a a form g -, g a differentiable function. So C(a) is generated by - hence C(a) 
ay ay' 

is strictly contained in K e r  a.] 

15.13 RENARK Let L E cW(TM) be a lagrangian. To be in agregnent w i t h  15.12, 

assume that % has constant rank, thus K e r  % is a vector subbundle of TIM. But 

in 58, we put 



Tkis, of course, is an abuse of notation in that the sections of the bundle are 

being denoted by the same symbol as the hurdle i tself .  However, no real confusion 

should arise £ran this  practice. 

If C is an integrable distribution, then a 

integral for C provided the restriction of f to  

function f E c ~ ( M )  is a f i r s t  

each leaf N E FC is constant. 

N.B. - There may be no nontrivial f i r s t  integrals. E.g.: If C has a leaf 

which is dense in  M I  then the only f i r s t  integrals for C are the constants. 

15.14 WlMPLE Suppose that (11, w) is a synplectic manifold. Given a linear 

distribution C, define a linear distribution wLC by 

In terms of 

and its inverse 

we have 

Assume now that 

# w :T*M -+ TM, 

# I w (Ann C)  = w C. 

# C is integrable and l e t  f be a f i r s t  integral for C -- then w df 

is a section of wLC. Thus, V X E sec C, 



= df (X) 

the last step following £ran the fact that X is tangent to the leaves of FC. 

15.15 LEMMA If c is integrable and if x is a regular point, then 3 a 

1 chart (u, {x , . . . ,xn}) with x E u such that 

[Note: Here 

A differentiable distribution C on M is involutive if v pair X,Y of vector 

fieldsdefined onscne open subset U c M such that v x E U, Xx & Yx E Ex, E also 

have 

[X,Ylx E Cx. 

15.16 LEMMA If C is intqrable, then C is involutive. 

15.17 EXAMPLE Take M = R2 and let 

- a a C(x,y) - Span {- ;;,(XI -1. aY 

where $(x) is a coo function which is 0 for x 5 0 and > 0 for x > 0 -- then C is 



differentiable. And 

a = cp'(x) - 

Therefore C is involutive. Still, C is rot integrable. 

15.18 T H E O ~  (Frobenius) Suppose that C is linear -- then C is integrable 

iff C is involutive. 

15.19 IJQ@JA A linear distribution C is involutive iff sec C is a ~ i e  sub- 

1 algebra of D (M) . 

15.20 EXAMPLE A presymplectic manifold is a pair (M,w), where w is a closed 

%-form of constant rank. Consider Ker w c TM (cf. 15.12) -- then Ker w is linear 

and we claim that Ker w is involutive. To see this, let X,Y E sec K e r  w -- then 

[X,Y] E sec K e r  w. 



Therefore Ker w is involutive (cf. 15.19), hence integrable (cf. 15.18). 

[Note: The rank of w is necessarily even.] 

15.21 THEOREM (Nagano) 2411 analytic distribution is integrable iff it is 

involutive . 

15.22 EXAMPLE Take M = R~ - and let 

Then B is involutive, thus is integrable (being analytic). As for the foliation 

FC, it has 9 leaves, viz. 

15.23 LEDNA Suppose that C is linear of fiber dimension k -- then V x E M, 

1 n-k 
3 a neighborhood U of x and linearly independent 1-forms w w on U such that 



c =~esw' n - - =  
n-k 

I Y 
n Ker w 

Y I Y 
(Y E U) . 

[Note: Introduce 

(cf. 8-19}. 

Then what is being said is that C Iu, viewed as a subset of TU, can be characterized 

15.24 REMARK C is involutive on U iff 3 1-forms ei on U such that 
j 

n-k 
chi = C 0 2*oj (i = lt...fn-k). 

[Note: One can go further: Each x E U admits a neighborhood Ux c U on which 

3 C" functions ci f j (i, j = 1. . . . , n-k) such that 
j 

n-k i w = b ci,dfj. 1 



1 n-k 
If w r...r~ are linearly independent 1-forms on MI then the prescription 

defines a linear distribution C on M of fiber dimension k. 

[Note: If it is a question of a single l-£om, then the assmption is that 

this l-form is nowhere vanishing. 1 

15.25 EXAMPLE Take M = R~ - and let 

3 
15.26 REMARK Take M = R - and let 

- 
u1 = dx + ydz 

- w2 = dx + zdy. 

1 2 Then w and w are not linearly independent. Since 

- 1 a a a K-0 = s p a n ~ w ~ - y z ~  

2 a a Ker = Span - a 
z 

- 

we have 



So, along the x-axis pz is not lower sdcontinuous, which implies that E is not 

differentiable (cf . 15.2) . 

15.27 C is integrable iff 

i 1 n-k dw ~ ( w  A . A w ) = 0 (i = 1 ,... ,n-k). 

E. g . : If the issue is that of (n-1) l-forms, then 
i 1 n-1 dw ~ ( w  A ... A w ) = 0 (i = 1 ,..., n-1). 

Therefore C is integrable. 

3 15.28 EXAMPLE Take M = R and let 

w = Adx + Bdy + Cdz, 

where A,B,C are differentiable functions of x,y,z (not all vanishing simultaneously) -- 
then C is integrable iff 



3 
Thinking of A,B,C as the ccanponents of a vector field F, the condition thus 

munts to r ap i r ing  that 

3 3 

F curl F = 0. 

E.g.: C is integrable i f  

k t  C i s  not integrable if 

w = xdy + dz. 

- 
3 I 

15.29 REMARK Take M = R and mrk  with 1-forms W - I -- then it m y  very 
CI 

well be the case that the distributions individually are not 

integrable. Nevertheless, the distribution C per 
- 

W collectively must be 

W 
2 

integrable (cf . 15.27) : - 

1 2  
i iuiA(w no ) = o (i = 1,2). 



6 LAGRANGE MULTIPLIERS 

Informally, constraints are conditions imposed on a mechanical system that 

r e s t r i c t  access to its configuration space or its velocity phase space. 

So, a s  usual, let M be a connected cOo manifold of dimension n. Fix a 

1 r i a ~ n n i a n  structure g on PI and l e t  T = 2 g - then we shall  work with the 

m h a n i c a l  system M = (M,T, II) , where I[ is horizontal. 

[Note: Recall f r m  810 that the second order vector f i e ld  TM is character- 

ized by the property t h a t  

1 n-k 
By a system of constraints, one understands a set w ,..., w of linearly 

independent 1-forms on M. A s  w i l l  beccnne apparent, the key point is t o  f i r s t  

study the case when k = n-1. 

A 

TO this erd, f i x  a nowhere vanishing 1-fonn w E A% - then w E cm(TM) (cf. 

8.19) and since rrl;w E M%, 3 a unique vert ical  Xu: 

'x> =IT@ (cf. 8.23). 

N.B. Iccally, i f  

then 

Here, a s  i n  88, 



where 

W . .  (T) = 3% 
1 3  

( = gij O rM) 
avi avj 

and we have abbreviated 

1 
16.1 UW4A Determine X, E V (TM) via the prescription 

W 

Then 

h 

PROOF Fram the definitions, S* (dw) = r$, hence 

1 mt, on general grounds (see helm), V X E 27 (TM), 

Theref ore 



1 
[Note: According to 6.3, V X E D ('IM), 

Consequently, 

A A 

xww = dw (XW) 

16.2 REMARK T h e  function X G is never zero and, i n  fac t ,  is s t r i c t l y  positive. 
W 



For locally, 

L& c ZM be the linear distribution on M detennind by w -- then the 

assqtion is that ( = $1 (0) ) is the arena for the constrained dynamics. 

[Note: The fiher dimasion of Xu is n-1 and xu does not have the structure 

of a tangent bundle. I 

Given X E C~(TM) put 

rX = rM +  AX^. 

Then rX E SO(ZM) (Xu being vertical) . 
N.B. - Along an interval curve y of TX, we have 

16.3 - ~l3W-i There exists a unique ho E cm(m) such that 



then 

This particular choice of ho is called the Lagrange multiplier: So we pass 

£ran 

(M,T,lT) to (X,T,lT,w) 

and fran 

(M,T,lT,w) to (M,T,lT,w, ho) 

16.4 U3Pl& If Xo is the Lagrange multiplier, then is tangent to Zw. 
0 

1 [n vector field X E D (IM) is tangent to Zw iff 2& 

It is now a definition that the constrained dynamics is given by the restriction 

Locally, 



where 

Put 

Then 

And the equations of mt ion  are 

3 16.5 EXAMPLE Take M = R and 

g =m(dxl@ dxl + dx2 B dx2 + iix3 B dx3) 

=> 
3 2 T = m _ ( ( v 1 ) 2 +  2 (v212+ ( v )  ) I  

where m is a positive constant. Write 

Le t  

Then 



and, i n  view of 15.28, C is not integrable. Since 
W 

1 1 2 2 3 
W T =  m(dv A dq + dv A dq + dv3 n dq ) 

and 

it follows that 

To ccmpute the Lagrange multiplier 

note that 

Using the formula for I' given in 10.3, we have M 

On the other hand, 

Therefore 

1 2  2 
mvv + q E  

X = 
1 - n3 

0 
(q2) + 1 

And finally 



[Note: Take m = 1, TI = E2 = IT3 = 0, and, using the notation of the Appendix 1 

to 58, put 

Then 

is a coordinate system adapted t o  Cw. H e r e  

while 

And 



Therefore 

r,o = r~ + AoXw 

So the constrained dynamics is given by 

16.6 We have 

PROOF By definition, 

NOW expand the LHS: 



B u t  OT is horizontal while XW is vertical. hence OT(Xu) = 0 (cf. 6.14). Therefore 

16.7 LIEMMA We have 

PROOF Write 

Because r is second order, M 

Theref ore 



1 
16.8 LEMMA S u p  that f € C~ (TM). Define Xf E D (?M) by 

r~ 
= df. 

Then 

PROOF Firs t  

= L r  BT-d(2T) (cf. 8.13) 

l o  

= d T  + I2 + X0n$ - 2dT (cf. 16.7) 

But 



Therefore 

= - A  IT* (X). o #  f 

It is thus a corollary that 

16.9 Take E = 0 and let f = % -- then % E crn (TM) (cf. 8.10). 
r~ 

H e r e  5 = - 'T "rT9 = - 5) and £ran the above 



so % / zw is a f i r s t  integral 

1 
Proceeding to the general case, let w , . . . Iw"-k be a set of linearly irde 

pendent 1-forms on M -- then the prescription 

n-k 
defines a linear distribzltion G ( = n G ) of fiber dimension k. Write X in 

v=1 w 1-1 1-I 

place of X thus 
W 1-I ' 

Given XI,. . . , x ~ - ~  E c ~ ( ~ M ) ,  put 

16.10 IBNA The matrix [M '1 defined by 
1-I 

is mnsingular (and qmmtric)  . 
[In fact,  

x & V = ~ ( ~ l - I , w v )  0 nM (cf. 16.2).1 
1-I 

1 n-k 
16.11 LEMMA There exists  a unique (n-k) -tuple iO = (A0,  . . . , ho ) 

(A: E C* (TM) , 1 . . , n-k such that 



then 

where the matrix [M"] is the inverse of the matrix [M 'I . 
1.1 

We shall call X o  the Lagrange rmltiplier. So, by construction, r is 
A0 

tangent to C (cf. 16.4) d the agreement is that the constrained dynamics is 

given by Th 
-0 lC=  

i i 'i 
N. - B . The equations of mtion are q = v , v = C; + h > d j  (T) (a" orM) ) . 

2 1 1  
16.12 EXAMPLE Take M = R - x x S_ and 

1 1 2 2 3 3 g = m(dx @ dx + dx B dx ) + Ij dx O dx + I4 dx4 O dx4 



15. 

where m, 13, I4 are positive constants and, to keep things simple, assume that 

E = 0. Let 

- 
3 4 / u1 = dxl - (R cos x )dx 

(R > 0). 
3 4 u2 = dx2 - (R sin x )dx 

Then w1,u2 are lhearly independent 1-forms on M and 

3 a a a a + ~ s i n x  - T + T  -I. = span {R cos x - 
ax 1 ax ax ax 3 

So C is actually analytic but it is not involutive, hence is not integrable (cf. 

15.18). Here 

1 1  2 2 3 3 4 4 % = m(dv ndq + dv ~ d q  ) + 13(dv ndq ) + 14(dv ~ d q  ) .  

And 

1 a R _ - - - -  3 a 
'2 m av2 I~ I - 

sin q - 
av 4 -  

I - 

These relations and the fact that 

- ~1 1 3 4 
w = v - (R cos q )v 

3 4 
- j2 = v2 - (R sin q )v 

then lead to 



- 1 A = -  3 3 4  
0 (mR sin q )v v 

Theref ore 

f r m  which: 

i i o r  still, subject to the i n i t i a l  conlit ions qo,vo (i = 1,2.3.4), 

and 

4 4 
q (t) = vot + q 4 

- 0' 

constants. B U ~  



i1,j2 E C; (TM) (cf . 16.11) , 
A0 

thus are constant on the trajectories of I'A (cf. 1.1). Indeed, 
-0 

and 

A1 -1 ^2 -1 if the initial conditions lie in C = (w ) (0) n (w ) (0). 

[Note: The mechanical system represented by the preceding data is the vertical 

disc of radius R and of uniformly distributed mass m that rolls without slipping 

on a horizontal plane (I3 and I4 being the appropriate mments of inertia).] 

Suppose again that w E ~34 is a nowhere vanishing 1-form -- then in general, 
Cw is not integrable. 

16.13 RAPPEL Zw is integrable iff the 3-form dunu vanishes: 

& ~ w =  0 (cf. 15.27). 



16.14 F?EMAFX An integratinq factor for w is a nowhere vanishing @ E c ~ ( M )  

such that d(@w) = 0. If w admits an integrating factor @, then C is integrable. w 

Proof : 

d(@w) = 0 => d@w + $A& = 0 

Conversely. the assumption that Ew is integrable implies that  locally w admits 

an integrating factor @ (cf. 15.24), hence locally 

A -1 If w = df (f E c ~ ( M ) ,  dfx r 0 V x E M) then Bdf (= (df) (0)) is integrable 

(cf . 16.13) . 
Set  

Then fi is a sukmmifold of M dl in obvious notation, there is an induced mech- 
- - - 

anical system a = (M,T,lT). 

[Note: M is not necessarily connected but th is  point causes no difficulties. I 

16.15 LEMMA Thevector f ie ld  r is tangent to f i a n d  
l o  

H e r e  is a corollary. Assume that  TI = 0 - then 



Therefore 

[Note: The integral curves of r - are  in a one-to-one correspondence w i t h  
T 

the geodesics of (2,;) (cf. 10.6) . Bear  in mind too that an integral curve of 

T, that passes through a point of * is contained in 5 . 1  

EXAMPLE Take M = R~ - - (01, 

- 
1 1 2 2 3 3 

g=m(dx  @ d x  + d x  B d x  + d x  B d x )  ( m > 0 )  

- f = + (x212 + ( d l 2  - R~ ( R >  0) 

and suppose that T: = 0 - then 

m 1 = - -  IvI2 (notationas i n 9 . 2 1 ) .  

Therefore 



In anticipation of the d w e l o ~ t s  to  cane, we shall shif t  our point of 

1 n-k view and f ix a nodegenerate lagrangian L. Let w ,..., w be a system of 

constraints -- then 3 a unique vertical X 
1-1' 

1~y,=7i*' ( p = l  ,... ,n-k) (cf. 8.23). 
1-1 

1 Given A , . . . ,lnWk E cm(TM), pUt  

rA = rL + A ~ X ~ .  - 
Then the crux is the validity of 16.10 which, in general, w i l l  fa i l .  

[Note: Imally, 

3 16.17 EXAMPLE Take M = R and define kTR3 + g by 

Then L is nodegenerate and 



we have 

But 

[Note: L is the "TI' per the smiriemannian structure 

1  2 g = d x l @ d x  + d x  s d x 2 - d x 3 0 d x 3  

3 on R .I - 

Call 

regular i f  the matrix 

is nonsingular; otherwise, call 

irregular. 

N.B. If - 

is regular. 



The upshot, therefore, is that in the presence of regularity one can determine 

the Lagrange multiplier Lo and proceed as  before. 

In the irregular situation, matters are not straightforward and there m y  

be no resolution a t  all. For sake of argument, let us assume that it is a question 

of a single constraint w and consider the equation of tangency: 

I£ x G is never zero, then 
W 

A I\ 

and we are in business. Suppose that XWw 0. I f  TLw = 0 on Cur  then the dynamics 

is undetermined, i.e., V A, 

and we are led to the secondary equation of tangency 

whose solution is 



provided X & is never zero. But this  may fa i l .  In that event, i f  rLrL$ = 0 
w L 

1 on c as w e l l ,  then the dynamics is undetermined. S t i l l ,  it might happen t h a t  
w 

1 2 1 rLrL; $ 0 on Lw and udw th is  is so, one can pass to Lw c Zw ... . 

16.18 MAE4PIE In the setup of 16.17, X$ = 0 a d  

1 1 2  so the dynamics is determined. Now mJdi£y L by a w i n g  the term (q ) and 

change w t o  dxl + dx3 - then 

And 

2 a 3 a 1 a 1 3  r L j =  ( V 1 p + v  T + v  T + q  -+ (V + v )  
aq aq aq av 

1 
= q .  

Therefore rL& 3 0 on 



and 

1 2 3 1 2 3  1 3  2 = {(q ,q ,q ,v ,v ,v 1: q1 = 0, v + v = 01. 
W 

while 

so the next step in the procedure outlined above is to pass to 

Since 
A 1 

xwrLrLW = X,J = 1, 

2 the algorithim stabilizes at Cd the Lagrange multiplier being 

and 

2 realizes the dynamics on CW. 

BY an affine system of constraints we shall urderstand a system of constraints 

ul,. . . together w i t h  functions $',. . . ,$n-k E c~(M) . put 



and set 

n-k 
C = n (m'3-'- (0). 

is regular, 16.11 then implies that there exists a unique (n-k) -tuple 

1 n-k A. = ( A o I  ..., ho ) ( h i  E c~(TM), p = l,...,n-k) such that  

Aml again the agreement is that  the constrained dynamics is given by r 
A0 lC- 

[ ~ o t e :  A s  regards the Lagrange multiplier hot we have 

H e r e  

X being vertical.  ] 
li 

16.19 RENARK Consider the case when Q, = w + @ -- then 

And, on C, 



which, in general, is nonzero. 

16.20 lB@W Suppose that  

is regular -- then a long an integral curve y of r , w e  have 
Lo 

ci aL 
n-k 

- aL - z A: $ (i = l , . . . ,n ) .  
d t  '2) - - - 

aqi ~ = 1  av 

[This is an imnediate  consequence of the d e f i n i t i o n s . ]  

16.21 EXAMPLE Take 

2 
M = g x ]0,2rr[ x ]O,.rr[ x ]0 ,21~[  

and d e f i n e  L:TM -t R - by 

3 5 4 + I  ($)2  + (v4)2 + (v5)2 + 2vv cos q 1, 
2 

where m > 0, I > 0 -- then L is nondegenerate (see the Appendix, A. 24) . Given 

R > 0, QO f 0, let 

I- 
5 4 4 5 3 u1 = dxl - (R sin x )dx + (R s i n  x ms x )dx 

2 5 4 4 5 3 I - u2 = dx + (R c o s  x )dx + (R sin x s i n  x )dx 



and 

Put 

Then 

is an affine subspace of 

viz . 

4 5 a 4 5 a a a - (R s i n x  cos x )-- (R s i n  x s i n x  )-+ -, -1 
ax 1 ax2 ax3 ax5 

Since 

(L. {W1, W2 >) 

1 2  is regular, the Lagrange multiplier - Xo = ( X , h ) exists, fran which I? I C . Gn 0 0 A0 

general grounds, 

..i 
q = ci + A:(WL~(L) (ailj o nM) (i = 1,2,3,4,5). 



Here 

Accordingly, 

And likewise 

..3 "4 ..5 
One can also explicate q ,q ,q but the final Eormulas are on the ccanplicated 

side, hence will be mitt& (they will not be necessary in what  follows). It 

1 2  remains to cclmpvte Ao,Ao. This can be done mechanistically by feeding the data 

into the machine and grinding it out. However, to shorten the discussion, we shall 

confine our attention just to C and employ an artifice. Consider an integral 

curve y of I' lying in C (recall that TI is, by construction, tangent to C). 
A0 -0 



4 1 5 2 5 
= R sin q (Ao m s  q + h sin q ) .  0 

-- - 3 5 aL - Iv v sin q 4 
- aq4 

d 4 3 5 4 l a d  2 a ~ ~  - Iv + Iv v sin q = Xo - 
d t  av 4 + A o 2  

1 5 2  5 
= Xo (- R sin q ) + ho (R m s  q ) . 



3 5 4 cos q 5 ( ~ ~ 4  + IV v sin q ) 

1 5 5 2 5 2 
= ho(- R s i n q  cos q ) + Rho(cos q ) 

and 

sin q5 d 3 5 4 
4 x (Iv + Iv cos q ) 

sin q 

1 5 5 2 5 2 
= h o ( R s i n q  cos q I + RAo(sinq)  . 

Now add these equations t o  get 

2 5 04 4 
Rho = " q (Iv + 1V3V5 sin q ) 

+ sin q5 d 3 5 4 (Iv + Iv cos q ) 
s in  q 

or still, 

4 3 5 4 
Rx2 = I ( v  cos q5 + v v sin q cos q 5 

0 

4 5  5 - 3  s in  q5 + ;5 sin q5 cos q - v v sin q ) .  + v 4 sin q 4 sin q 



But 

3 4 4 c5 + c3 cos q4 - v v sin q = 0 

5 5 cos q 4 
v sin q 

s in  q 4 

3 4 4 -3 4 5 cos q 4 
= ( v v  s i n q  - v  c 0 s q ) s i n q  

s in  q 4 

5 4 2 sin q - 3  sin q5 - $(coS q ) v 
sin q 4 sin q 4 

3 
- - v 5 4 2 

4 sin q (1 - (cos q 1 
sin q 

3 4 5 = v sin q s in  q . 
Therefore 

3 4 3 4 4 4 5 5 + v  s i n q  s i n q 5 + v v  c o s q  s i n q 5 - v v  s i n q ) .  

on c, 

2 5 4 4 5 3 1 v + (R cos q ) V  + (R sin q sin q )v  - Q0q = 0. 

Thus along y, 

5 4 5  5 - 4  
(- R sin q ) v  v + (R cos q ) v  

4 4 4 5 -3 + (R m s  q sin q5) v3v4 + (R s in  q cos q5)v3v5 + (R sin q sin q ) v  



Analogously, 

[Note: A corollary is that 

or still, 



In fact,  

161 T, EL = hou + (cf. 16.19) 
-0 

Turning to the physics that realizes the above setup, consider a hcrmgeneous 

bal l  of radius R and mass m which ro l l s  without slipping on a horizontal plate 

that rotates w i t h  constant angular velocity Ro t 0 about a vert ical  axis through 

2 one of its points -- then M = x - SO(3). Fix a reference frame with origin the 

center of rotation of the plate and vert ical  axis the rotation axis of the plate. 

3 4 5  L e t  (x1,x2) denote the point of contact of the ba l l  Kd the plate and let (x ,x .x ) 

be a chart on - SO(3) per the 3-1-3 systan of Euler angles (see the Appendix) -- then 

~ . a ' , u ~ , @ ~ , @ ~  are as atare (the potential energy corresponding to  the gravitational 

force is constant, so there is no loss of generality in setting it equal to zero). 

Spelled out in traditional notation, the lagrangian is 



the constraint equations expressing the condition of rolling without slipping are 

- .  x - ~ 6 s i n $ + ~ ~ s i n e c o s $ + ~ g y = 0  

- + + R E ~ C O S $ J + R ~ S ~ ~ ~ S ~ ~ I J ~ - R ~ X = O ,  

and 

(see the Appendix, A. 13) , hence 

It is then an elementary matter to determine the mtion: 



Therefore the orbit of the point of contact of the ball is a circle on the plate.] 

16.22 RDGYRK If w e  take Ro = 0  in the above, then the constraints are linear 

rather than aff ine. Consider 

- - 6 sin 8 sin 9 + 6 cos $ 

6 sin 8 cos + - B sin 9 

It has already been pointed out that 

Next, £ran the preceding analysis, 

But 

+ $ I  = o .  

(6 sin 8 sin $ + 6 cos +). 

Ditto 

d - (6  sin 8 cos $ - i) sin $) = 0. d t  

The upshot, therefore, is that the ball rolls a t  constant speed in  a straight line 

and its body angular velocity R (t) is constant in t i m e  (however, R (t) is not 

necessarily horizontal since 6 cos 8 + 4, while constant, is typically nonzero). 

PIJoreOver, in this situation, %I C is a f i r s t  integral for I' I C. ho 



7 LIE ALGEBR07VS 

IRt IT:E -t M be a vector bundle of fiber dimension k. 

Assume: sec E is a Lie algebra with bracket [ , lE. 

Assume: p:E -t TM is a vector bundle mrphim over MI i.e., 

Then the triple (E, [ I 1 EI p) is called a Lie algebroid over M if V f E c~(M) , 

v slIs2 E sec E, 

[Note: p is referred to as the anchor map.] 

N.B. The arrow 

1 sec E -t sec TM (= P (M)) 

is a hamrxrPrphisn of Lie algebras: v slI s2 E sec EI 

P 0 [slfs2IE = [P O SlfP O s21I 

where the bracket on the RHS is the usual camnutator of vector fields. In fact, 

V f E cm(M)r V S1rS2tS3 E Set E, 

[[slI~21EIf~31E = f l[slI~21Et~31E + ((P o [sl~~21E)f)s3. 





Therefore 

17.1 EXAMPLE Wery f in i t e  dimensional L i e  algebra - g "is" a L i e  algehroid 

over a single point. 

17.2 EXAMPLE The t r i p l e  

, 1 , s )  

[Note: If  c c TM is an integrable linear distribution, then C is involutive 

(cf. 15.18), hence can be viewed as  a Lie algebroid in the obvious way.] 

0th- exmnples w i l l  be given la te r  on. 

17.3 RAPPEL A0E = c~(M) and A'E (p 2 1) is the set of multilinear maps 

which are skwsymetric i f  p > 1. 

1 
[Note: Take E = TM -- then sec E = 2) (M) and in this context, PE is what  

one normally ca l l s  A%, thus the syit&ol A ~ E  is - not h P ~  (as it is usually under- 

s-1 . I  



17.4 LEMMA Suppose that (E, [ , 1 E, p) is a L i e  algebroid over M. Define 

Then 

[Note: In the case of a L i e  algebra g, d is the Chwal ley-Ei lenberg  
- s 

differential and in the case of a tangent bundle  TM, is the exterior de r iva t ive . ]  

N.B. As regards the wedge product ,  

17.5 EXAMPLE Consider  the a r m  

U O V  
> TIM (cf. 55). TIM- 

Then 

n o p o v = p r l o v = n  
TM TM' 



Equipped w i t h  this bracket. 'D1(TM) is a L i e  algebra ard v f E cW(TM) , 

Therefore the t r iple  

(rn, 1 , Is,p O v) 

is a Lie algebroid over TM. And, by definition, 

= dsw (cf. 56). 

Let s E sec E -- then the Lie derivative w.r . t .  s is the operator 

L :A% + A ~ E  
S 

given by 

L, = 1 S O % + % O  Is- 

0 0 w 
E.g.: Take p = 0 - then A E = c ~ ( M ) .  tsA E = 0, ard V f E C (MI ,  



17.6 V s E sec EI  

And V a1,u2 E AxE, 

Suppose that 

I- (E,[ , IE,p) is a L i e  algebroid over M 

Then a vector buradle mrphism 

is said to be a L i e  algebroid mrphism if v p, v W '  E A ~ E '  , 



[Note: For p 2 1, 

= w t  (Felt ..., F e )  ( x E I I a n d e l  ,..., e € E x ) ,  
f (x) P P 

while for p = 0, 

N.B. If the vector bundle morphism - 

is a L i e  algebroid morphism, then the diagram 

m - TM' 
T f 

17.7 EXAMPLE If f:M -t MI is a coo function, then there is a vector b d l e  



which is, i n  f a c t ,  a L ie  algebroid morphisn. 

17.8 EXAMPLE I n  the notat ion of the Ap?endixI the arrows 

are mrphisms of L i e  algehroids. 

17.9 REM7U?K Matters simplify i f  M = M ' ,  f = %. For then t h e  pair (FIi%) 

is a L i e  algebroid mrphism i f f  

and 

p t  o F s = p o S  (s  E sec El. 



are L i e  algebroid mrphisms, then the canposition 

is a L i e  algebroid mrphism. 

[Note: This justif ies the t e r m  "Lie algebroid mrpkism" in that  there is 

a category whose objects are the L i e  algehroids.] 

Suppose that (E, [ , IE ,  p) is a L i e  algebroid over M and let @:MI + M be a 

fibration. Form the pullback square 

TM' ----------+ TM 
T@ 

Then the points in E' are the pairs 

such t h a t  



[Note: It is autcKMtic that  

@ ( X I )  = ~ ( e )  .I 

17.11 LlMQ E is a vector bundle over M' (via n ' = nMl 0 prl) . 
PROOF Given x' E M', 

-1 ( R ' J  ( X I )  = E i l  

is a vector subspace of TxIMf x Em(xl)  of dimension 

The claim now is that  this data gives rise t o  a L i e  algebroid ( E  , ] E l , p t )  

over M'. Of course the definition of p'  is imnediate, viz. take p' = prl. However, 

it is not so obvious jus t  how to define [ , I* , ,  which requires sore preparation. 

17.12 RAPPEL Suppose that  

is a vector bundle mrphism. Form the pullback square 



Then there is an arrow 

and a conmutative diagram 

Denote by C* the induced map 

s e c E - t s e c M x  Ev M ' 

<*s = r 0 s (s E sec E) . 
But 

c"(M) B SE E' :: sg: M xMI E', 
c ~ ( M '  ) 

where 

@ B S '  += @S' 

So, mdulo this identification, given s E sec El we can write 

or still, 



Consider anew the ccmutative diagram 

There are pullback squares 

and arrows 

Now form the pullback square 

TM' - M' x TM M 

in the category of vector bundles over M' -- then 



Accordingly, the sections s' of E '  are pairs (X',a), where 

1- X' E sec TM' 

subject to  the coincidence 

N.B. The elements of sec M' x M E  can be regarded as the sections of E along 

Q (cf . 13.2) , thus we can write 

where $1 E c ~ ( M ' )  and si E sec E. 

Finally, define 

[ , IE,:sec E' x sec E' +- sec E' 



W being 

One can shm that [ , I E, is welldefined. Granted this, it is then easy to 

check that ( E l , [  , I E , , p 1 )  is a L i e  algebroid over M'. 

17.13 LEMMA The vector buzadle mrphism 

is a Lie algebroid mrphism. 

[Note: 

p  0 pr2 = T@ 0 prl 



An important special case of the foregoing generalities arises when we take 

pr2 T E x  E-E m 

TE ---------+ TM . 
TIT 

Put 

and write pE in place of prl -- then LE is called the prolongation of E and 

(LE , [ , I LE, pE) is a Lie algebroid wer E : 

[Note: The fiber dimension of LE is 

k being the fiber dimension of E . I 

N.B. - The points in LE are the pairs 



such that 

w i t h  IT (e) = T (p) . 

17.14 EXAMPLE L e t  E = TM -- then LTM = 'ITM and the L i e  algebroid s t r u c t u r e  

of  the theory is precisely that of 17.2, i.e., 

Suppose that the vector bundle mrphism 

is a L i e  a lgebro id  mrphim. Define 

17.15 LEMMA The vector bundle mrphisn 



is a Lie algebroid mrpkisn. 

Coming back to 

cal l  the e l e e n t s  of Ker pr2 vertical and denote the se t  of such by VIE -- then 

VLE is a vector subbundle of LE and its points have the form 

where Xe is a vertical vector tangent to E a t  e. 

Given e,p E E w i t h  n (e) = nip) , denote by X: E TeE the vector tangent to 
IP 

the curve e + t p  a t  t = 0 -- then it is clear that 

This said, define 

E~ is an iscanorphim of vector bundles wer E: 



17.16 EXAMPLE Put 

$(e) = ~ ~ ( e , e )  (e E E ) .  

[Note : 

@E E sec VE 

is the dilation vector field A on E (cf. 4.2). In detail: Identify VE w i t h  

E xM E (cf . 55) -- then A corresponds to the section p + (p, p) of E xM E. 1 

17.17 LEMMA If slrs2 E set VLE, then 

We shall naw extend the operations 

17.18 RAPPEL Every u E A'E determines a cm function G:E + R. - 

- 
sec TM -t sec TIlM 

- X ' xv, 

- 
see TM -+ sec 'ITM 

- X ' xT 

to operations 

- 
sec E + sec LE 

V 
- S'S, 

- 
sec E -t sec LE 

T 
- S'S. 



[ ~ o t e :  Given f E cW (M) t Put 

Then 

Let s E sec E -- then its vertical l i f t  is the section sV of LE defined by 

the prescription 

v 
s (e) = ~ ~ ( e , s ( . r r ( e ) ) )  ( e E E ) .  

17.21 RAPPEL Let sm:TIM + ZTM be the canonical involution -- then 

x T =  S m 0  TX (cf. 14). 

Fix a pint 



Then 

V E T E such that 
P P 

PROOF V is determined by its action on the f o IT and the S provided that 
P 

the conditions are ccanpatible. F i r s t  

NOW compare this with 

fi 

vp(& = xe( fw)  + % ( f w )  Ix(e,p) 



= f (x) (vp;) + f T  (el j (p) . 

[ N o t e :  H e r e  vie have used the fact  that Xe (f 0 TI) = dre (Xe) f = p (p) f .] 

N.B. V f E c~(M), 

17.23 LEDNA Define 

[Both points are immdiate. Incidentally, sE is S I I Y X ) ~ ~  (argue locally (cf. 

in£ ra) ) . ] 



W e  shall ca l l  sE the canonical involution associated w i t h  the Lie algebroid E. 

[NO*: If E = TM, then sm is the canonical involution on TIM (cf. 17.21).] 

17.24 RDlARK The vector bundle T.rr:TE -+ TM can be equipped with a Lie 

algebroid structure i n  which the anchor map is % 0 Tp. Proceeding, one can 

pr2 then construct a L i e  algebroid structure on the vector bundle TE x E - E. TM 

On the other hand, % is a vector bundle mrphisn 

that, in fact, is a ~ i e  algebroid mrphism. 

Le t  s E sec E -- then 

=> T s  0 p:E -+ TE. 

Abuse the notation and regard T s  0 p as an elemnt of 



Then 

Therefore 

is a section of LE, the lift of s. - 
[Note: We have 

= S 0 w.] 

17.25 LEMMA V f E c~(M), 

T (fs) = (f 0 Tr) s + f T ~ V  

and 



17.27 RDRRU ViewxI as a map s T : ~  -+ LE, 

1 
where pE 0 sT E D (E) is characterized by i t s  action on the f 0 n and the k. To 

confirm ccsrp?atibility, write 

A 

' P ~  
0 ST) ( fu)  = (pE 0 sT)((f 0 



Let sl,s2 E sec E -- then 

[ N o t e :  W e  have 

17.29 mLE To run a reality check, let f E c ~ ( M )  -- then 

On the other hand, 



T T T T T T V  T T V  
= (f 0 C) [ s ~ ~ s ~ ] ~  + ( (pE O sl) (f  O T ) ) s Z  + [slfs2]LE + ( (pE O Is2 

T T T V 
2 

1 
17-30 RAPPEL L e t  X E D (14) -- then 

- v [a,x 1 = - xV (cf. 4-61 

- [ A ~ X ~ I  = O (c f .  4 .4) .  

N.B. V f E c~(M) , 

17.31 LEMMA L e t  s E sec E -- then 

PROOF TO check the first point, note that I$, sV] is vertical (6. 17.17) , 



hence it suffices to shcrw that 

and V w E A'E. 



L e t  S stand f o r  the c a t p s i t i o n  of the arrow 

with zV -- then S is ca l l ed  the vextical mrphism: 

S 
LE-LE 

I I 

[Note: V s E sec E, 

I - 
T V  s o s  = s  

2 
17.32 LEMMA S = 0 and 

Ker S = Im S, 

the v e r t i c a l  subbundle VLE of LE. 

1 17.33 RAPPEL I' E D (?M) is second order  provided ITM c T% or still, i f  

TnM 0 r = i h .  



Put 

L e t  I' E sec LE -- then I' is second order provided I3 c Adm(E) or still, i f  

prz o = idE. 

17.34 LJ3PWl L e t  r E sec LE -- then I' is semnd order i f f  S o I' = + (cf. 

PROOF suppose that I'E c -- then V e E E, 

Conversely, i f  

then 



Therefore 

A L i e  algebroid (E,[ , l E , p )  wer M can be localized to any nonempty open 

subset U c MI the claim being that  the bracket 

[ , IE:sec E x sec E + sec E 

induces a Lie algebroid structure on (U) . To see this, it is enough to prove 

that i f  sl,s2 E sec E and i f  sZlu = 0, then [s1,s2lEI~ = 0. Thus let x0 E U and 

i a] -1 Work nm with local coordinates {x ,y in n (U) determined by loc 

i coordinates x (i = 1 ,..., n) in U and a frame e,(a = 1 ,..., k) for E over U -- 
then £ram the definitions 

H e r e  



and 

i [Note: The p i  and the c:~ are coo functions on U. Of course an x , when 

viewed as  a function on IT-'(U) should really bs denoted by xi 0 rr . . . . I  

17.35 EXAMPLE If  E = g (cf. 17.1). then p i  = 0 and the cY are the structure - a B 
constants of the L i e  algebra. 

17.36 EXAMPLE I f  E = TM (cf . 17.2) , i f  the xi are the qi, and i f  the ya are 

i 
the v-, then p i  = 6:, Ck = 0. 11 

[Note: -Make the replacemnts 

- 
M -t m 

- TM+TIM. 

Then in the notation of the Appendix t o  58, the set 

And 



17.37 L e t  {ea} be the frame dual t o  {e,) -- then V f E c~(M) 

hence 

a f i a f~($,y,) = - 0 IT) (pa 0 T ) Y  
ax1 

Starting with the eat put 

BEII {Xu Y,} is a f r am for LE over IT-' (u) . 
[Note :  L e t  

Then 

- -1 
X E sec (Urn -+ IT (IT) ) a 

-1 
Y E sec (Urn -+ n (U) ) . 

- a 

And 

( SY, = 0.1 
- 



17.39 LEMMA We have 

[Xa'XBILE = (c;~ n) x 
Y 

and 

17.40 LEMMA We have 

N.B. If {xa,P} is the frame dual to {Xa,Ya}, then - 

In particular: 

while 



Suppose that I' E sec LE is second order -- then locally, 

and 

[Note: An integral curve y of pE 0 I7 is a solution to  

Suppose that C is a vector suhbundle of E -- then the restriction IT ~C:C + M 

is a fibration. So we can form the pullback square 

to get a Lie algebroid (L?, 1 , I , pC) over C. 
LCE 

[Note: Here C plays the role of M' and IT(C plays the role of @.I 

There is another pullback square that can be formed, namely 



Put 

Then, in general, the vector bundle LC -+ C is not a Lie algebroid (but it will be 

if C is a Lie subalgebroid of E, i.e., if sec C is closed per [ , IE). 

N.B. LC is a vector suhbundle of Ls. 

17.41 EXAMPLE Take E = TM and write 2 in place of C -- then LLE = TTE and 

1 LL is a linear distribution on L . E .g. : Iet w , . . . , unmk be a system of constraints 
and 

n-k 
C =  n TE (cf. §16), 

p=1 W'-' 

where 

Set 
n-k 

1-I E* = n Ker ~;(w ) .  
u=l 

Then C* is a linear distribution on TM and 



Suppose that E SO (TM) , thus 

"1-I v PI (r)  = W . 

So, if r is tangent to C, then 

rlc E sec LC. 

APPENDIX 

Suppose that 

is a mrphism of fibered manifolds. Let 

I- (Elf [ , 1 I P1 ) be a Lie algebroid over M1 
El 

(E2A I 1 1P2 ) be a Lie algebroid aver M2 
E2 

and let 



- be a vector bundle mrphism such that TY 0 pl - p2 0 F. Form 

and let 

be the arm that sends 

Then F ' determines a vector bundle mrphism 

such that TY' 0 p i  = p; 0 F'. ?ibrewer, F' is a L i e  algebroid mrphisn i f f  F 

is a L i e  algebroid mrphism. 

[ N o t e :  This construction is "functorial" w.r . t .  canposition.] 



8 LAGRANGlAM FORMALISM 

It is straightfonmrd t o  extend the considerations of 58 to an arbitrary 

L i e  algebroid (E, [ , I p) over M, har ing  in mind that 

I m--TTM. - 

First, w shall agree that a lagrangian is sinply any elanent L E cm(E) .  

[Note: Lmal coordinates in E are the xi and the yCL, hence it makes sense 

to take the partial derivatives of L w.r . t .  the xi and the ya.] 

18.1 RAPPEL If E = 'IM, then 

or still, 

or still, 

eL = s* (-1 . 
[Note: Spelled out, 

and 

N.B. The vertical mrphisn S:LE + LE induces a map 



sec LE -+ sec LEI 

hence operates by duality on A*LE, thus there is an arrow 

S*:A*LE + h*LE. 

In particular : 

Given L, put 

- aL )p eL - - 
ay" 

[On general grounds, 

Given L, put 



PIiOOF For 

G i v e n  L, put 

Then EL is the energy function attached to  L. 

[Note: Lacally, 

- aL a 
EL - - y - L.] 

aya 

18.4 LEPM~A W e  have 



P r n F  Locally, 

$ = (cf . 17.38) . 
Therefore 

Consequently, 

On the other hand, 



L is said to  be nondegenerate i f  is symplectic; otherwise, L is said to 

be degenerate. The analog of 8.5 is valid: L is nondegenerate i f f  for a l l  

i a coordinate systems {x ,y 1, 

det 

18.5 EXAMPLE Define a lagrangian L:E -+ R - by 

1 
L(e)  =ZG(e,e) - ( V O  n ) ( e )  (eEE), 

where G:E xM E -+ R - is a bundle metric on E and V is a C~ function on M -- then 

L is nondegenerate. 

L e t  

DL = {,x E sec IE:I~U~ = - c$,&}. 

Then L is said to adrnit global dynamics i f  DL is nonempty. 

18.6 LeMMA L e t  X E DL -- then % = 0. 

PROOF One has only t o  write 



[Note: W a l l  that 

But 

Therefore 5 is a first integral for pE 0 X (cf. 8.10). 

18.8 LEMMA V X E sec LE, 

I s xt = - S*(Ifi)' 

18.9 L ~ M A  If L is nondegenerate, then L admits global dynamics: 3 a 

(unique) I'L E sec LF: such that 

And TL is second order. 

PROOF The existence (and uniqueness) of rL is implied by the assmption that 

is symplectic. To establish that TL is second order, write 



xa , t=S*(=)  (cf. 18.4) 

- - 
' s  0 rL% (cf . 18.8) . 

But then 

so I' is second order (cf. 17.34). 
L 

[Note: Locally, 

r~ = yax a + caya. 

And V a ,  

or still, 

18.10 RBQFE Along an integral curve y of pE 0 rL, we have 



Therefore 

which will be tesmed the equations of Lagrange.] 

18.11 EXAMPLE Let g be a finite dimensional Lie algebra. Fix a basis - 
ea for g ( a  = 1 . k )  (k = dim g)  -- then - - 

and the equations of Tagrange are 



Then 

and in vector notation 

To i l lustrate,  let 

where I1 > 0, I* > 0, I3 > 0 - then the equations of Lagrange becare 

So, frcan the L i e  algebroid viewpoint, the "Euler equations" of the Appndix are 

instances of the equations of Lagrange. 

APPENDIX 

Suppose that  (E,[ , IE ,p )  is a L i e  algebroid over M. L e t  .rr':Ef + M be a 

vector bundle -- then an E-connection on E' is a map 

- 
V;sec E x sec E t  -+ sec E' 

(s,slJ +- v s" 
- s 



such that 

A. 1 REMARK The choice 

leads to the usual notion of a connection in a vector bundle. 

In what follaws, we shall take E'  = E and use the term "connection on En. 

So let V be a connection on E -- then locally, the connection coefficients 

of V are the cm functions I':B on U defined by 

Accordingly, if 

then 



Assume now that G:E x M E  -+ R - is a bundle metric on E. 

A.2 LE3Wl There exists a unique connection V" on E such that 

and 

G PWF V is detevmined by the formula 

G N.B. V is called the metric connection attached to G. 

Locally, 

G and the connection coefficients of V are given by 



where 

A.3 LEMMA Put 

Write TG i n  place of I' (cf . 13.9) -- then local ly ,  
L~ 

a B 
r~ = Y Y ~ y  - r 6  o T ) Y  Y Yy (cf. 10.6).  

Given V E c~(M) , its gradient gradGV is the sect ion of E characterized by 

Locally, 

A.4 LENMA Put 

1 
L~ ,V 

(e) =ZG(e,e) - (vo   IT)(^) ( e E E )  (cf.  18.5). 

Write I' in place of I' 
G IV 

(cf . 18.9) -- then 
L~ ,V 

I' = r G -  ( g E l d G ~ ) ~  G,v (cf.  10.8). 



9 CONSTRAZNT THEORY 

To set the stage, let us recall the f o l l a h g  points. 

19.1 RAPPEL Suppose given coo functions 

@':TW + R  - (p = l,...,n-k). 

Then the Q' ccsnbine t o  give a map 

n-k 
Q : T M + R  - . 

Consider the level set (0) . Assume: V p E (0) , @, 1 has rank n - k -- 

then Q-'(o) is a closed suhoanifold of ?M. 

[Note: The asscqtion is equivalent t o  demanding that  V p E @-'(O) , the 

1-forms 

1 n-k 
dQ I p  ,..., dQ ' P 

are linearly independent or still, that  

1 dQ --• A d@n-k . 0 

19.2 EXAMPLE Take M = R - and let Q(q,v) = v -- then Q-'(o) = {(q,v) :v = 01 

satisfies the above conditions. On the other hand, the alternative descriptions 

of the q-axis given by 

2 @(q,v) = v or Q(q,v) = 

are not admissible. 



4 4 4 19.3 EXAMPLE Take M = R - and define Q:TM = R - x R - by 

Then the level set @-l(0) is not a submifold of 1M. 

[Note: Remving the zero section frm @-I(o) gives rise to a suhanifold 

of TM. Physically, it is a question of two point masses A and B forced to mve 

in a plane with parallel velocities. The lagrangian is 

and Q represents the constraints on the velocities. Elimination of the zero 

section imposes the additional restriction that the velocities cannot be simul- 

taneously zero. I 

A constraint is a subanifold C c IM such that Q 1 c is a f ibration. E .g. : C 

might be a vector or affine subbundle of TM. 

In the applications, however, one is ordinarily handed cm functions 

satisfying the conditions of 19.1 and then one takes 

-1 c = Q (O), 

the data being such that nMlc is a fibration. So, in the -ell this will be 



our standing assumption. 

19.4 REMARK Suppose given an &fine system of constraints 

@ " = ; " + + " o  IT ( p = l ,  ..., n-k). 
M 

Then 

c = rn1(0) 

is a constraint. To see this, work locally -- then the rank of 

equals the rank of 

n-k n-k 
- a 1"' a n 

1 
But the rank of the latter is precisely n - k (recall that the set w ,..., w 

n-k 

is linearly independent) . 
[Note : 



19.5 LDlMA Given a point (x,Vx) E C, 3 an open interval I containing the 

origin and a curve y:I + M such that ?(o)  = Vx and y t  t E C (t E I) .  

PIlOOF Since nMIC is a fibration, hence is a suhwsion,  3 an o m  set U c nl 

containing x and a local section X:U + C such that X(x) = (x,Vx). This said, 

chmse an integral curve y:I -r M for X such that  ;(o) = Vx and y ( t )  E U (t E I) .  

Fix a nondegenerate lagrangian L. Define X E O~ (TM) by the requirement that 
1-I 

Ix C"1, = s*(d@') (u  = l,...,n-k). ' 
1 n-k Then X is necessarily vertical (cf. 8.23) . Given X , . . . , A E cm(TM) , put 

1-I 

Impose the condition of tangency 



Call 

regular if the matrix 

is nonsingular; otherwise, call 

irregular. 

So, in the regular situation, one can determine the Lagrange multiplier - A. 

and the dictum is that the constrained dynamics is given by Tx Ic. 
-0 

N.B. - Imally, 

Theref ore 

is regular if 

where g is riemnnian. 

3 
19.6 EXAMPLE Take M = R - and put 

1 2  2 2 3 2 1/2 
IvI = (Cv, + ( v )  + ( v )  1 



Then 

and 

Take 

T h  

Define X by 
Q, 

Then 

To ccanpute the Lagrange multiplier 

note that 

and 



Theref ore 

So 

4 19.7 EXAMPLE Take M = R and consider the setup of 19.3 -- then - 

while 

4 1 1 4  
S* (da) = v dq - v3dq2 - v2dq3 + v dq . 

Theref ore 

Determine hO per 

Since 



it is clear that rL@ = 0. Thus the 

of the point masses A and B subject 

[Note: Str ic t ly  speaking, the 

upshot is that the rnotion is the free motion 

t o  paral lel  initial velocities. 

analysis is form1 since QV1(0) is not a 

sulrnanifold of TM. Haever, matters are correct provided we stay away £ran the 

zero section. In this connection, observe that  

3 2 4 2  1 2 2 -I ( ( v )  + ( v )  ) + -  ((V1l2 + (V 1.1 
l"B 

A constraint C is said to be hcwgeneous i f  A is tangent t o  C. 

19.8 LEMMa C is haanogeneous iff 

1-1 Am I C  = 0 (p  = l,..*,n-k) 

or still, i f f  

19.9 EXAMPLE I f  each is hamgeneous of degree r (1-1) 2 0 in the velocities, 

i.e., i f  

rnP (x, txx) = t r x  ( O s t s l ) ,  

then C is homogeneous. Indeed, 

n 1 n mu($, . . . ,q ,tv , . ,tv 



1 n-k E.g.: The l i nea r  distribution C defined by a system of constraints w ,...,w 

is hcmgeneous. 

19.10 Sup~ose that C is hamogeneous -- then 5 IC is a first integral 

for rX Ic: 
-0 

P m F  In fact, 



19.11 EXAMPLE In the notation of 19.6, 

is not homogeneous. Here 

and 

Suppose now that (E, [ , IE, P) is a L i e  algebroid over M -- then in this 

context, a constraint is a suhnanifold C c E such that -rr IC is a fibration. 

[Note: The constraint is linear i f  C is a vector subbundle of E.] 

N.B. Consider the pullback square 



Put 

is a Lie algebroid over C, the prolongation of C wer E. 

[Note: Needless to say, y = m.] 

In line with the earlier theory, w e  shall assume henceforth that 3 cCO functions 

such that 

[Note: The fiber dimension of C is 

And 



k the fiber dimension of E (as in 517). To run a reali ty check, take E = TM, 

thus in this  case k = n. On the other hand, the codirrrension of C c TM is, by 

our notational agreements, n - k... . Therefore 

Fix a nondegenerate lagrangian L. Define X E sec LE by the requirertlent that  
1-1 

19.12 LEWMA X is vertical, i.e., 
1-1 

x E sec VLE. 
1-1 

==lly, 

[Note: W(L)-l is the inverse of 

where 

w (L) = 
aB 

. I  
ayaa 



N.B. -ally, 

19.13 LD4MA L e t  s E sec LE. Suppose that 

S I C  E sec L$ 

[ N o t e :  Recall that 

P~ s E D ~ ( E ) . ]  

Given A',.. . ,lK E crn(E) ,  put 

view of 19.13, to force 

suffices to demand that 

still, 



regular i f  the matrix 

0 x 1 [ ( $  p 

is nonsingular; otherwise, c a l l  

1 K a,{@ f * * * f @  1) 

irregular. 

so, when 

is regular, one can find the Lagrange multiplier - Xo, thence 

r, lc E sec LF. 
-0 

N.B. Locally, - 

is regular i f  

where G:E x E + R is a bundle metric on E and V is a function on M. 
M - 

19.14 EXAMPIX Keep to the assmptions and notation of 18.11, Define 



Then 

3 3 
And I' is the Euler vector field ro:R += X . thus 

L - - 

3 rOy = I ~ ~ ( I ~ ~  x y) (y E R - ) (see the @ m i x ,  A.16). 

3 Fix a u n i t  vector U E R - . L e t  @ : R ~  - -+ R - be the f u n c t i o n  y + q , U >  and take 

Then 



Therefore 

19.15 FEM?iE% If C is linear and, in addition, is a Lie subalgebroid of E, 

then 

Th I C  E sec LC 
-0 

and 

19.16 ImNA If pE 0 is tangent to C, then 

bc O rX Ic) (%[c)  = 0 (cf. 19.10). 
-0 

[Note: The tangency asswption is always met by a linear C.] 

19.17 EXAMPLE To check the. validity of 19.16 in the setting of 19.14, 



note that 

= <y,u> = @(y).  

Of course, one can also proceed directly, bearing in mind that here % = L, hence 

On the other hand, 

X@L = 0. 



1. 

520. CUAPLYGIN SYSTEMS 

Suppose that IT:E + M is a f ibration (cf . 511) -- then an Ehresmann connection 
is a linear distribution H c TE such that v e E E, 

@ He=TeE (cf. 15.11). 

[Note: Let k be the fiber dimension of E, thus dim E = n + k. Since 

VE = T (E le e n(e1)' 

it follows that 

dim He = dim TeE - dim VE l e 

Therefore 

dim H = 2n + k.] 

Associated with H are vertical and horizontal projections 



1 20.1 LEMMA V X,Y E v (E) , 

and 

Therefore 

20.2 LEbWA H is integrable (or still, involutive (cf . 15.18) ) iff R = 0. 

1 
P m F  Suppose that R = 0 -- then V X,Y E 0 (E) , 

[hX,hY] - - = h[hX,Y] - - + h[X,hY] - - - h[X,Y] 

= h( - [hX,Yl - + [X,&Yl - [XtYI 

E sec H. 

Therefore H is involutive (cf. 15.19). Conversely, 

R(X,Y) = x([F,~I) 

= 0 



if H is involutive. 

20.3 RAPPEL Because RE + M  is a fibration, hence a s ~ r s i o n ,  each 

point in E admits a neighborhood U on which 3 local coordinates 

Denote by $ the horizontal lift of an X E D1(~), thus 

[Note: Bear in mind that 

TTJH:H + m 

is a fiberwise isomrphim.] 

The distribution H is locally spanned by the vector fields 

N.B. The set - 

1 is a basis for D (U) . 



4. 

20.4 REMARK The A: are called the connection CcBClponents of the Ehresmann 

connection H. E.g.: Take 

55, one may attach to  r an 

E = mrl and let i? E SO(TM) -- then as we have seen i n  

Ehresmann connection H, where 

T 

Put 

wa = A:dxi + dya (1 i a i k) .  

20.5 LEMM?4 The 1-f o m  ul, . . . , wk on U are linearly independent and 

[Note: This is 15.23 i n  the present setting (the dimmsion of E is n + k 

and the f iber dimension of H is n, so the "n - k" there is n + k - n = k here.] 

i a 
N.B. Denote the velocity coordinates by v (i = 1, ..., n) and u ( a  = 1, ..., k). 

Put 

Then the Q~ combine t o  give a map 



and locally, 

-1 
H =  @ (0).  

[Note: To be ccanpletely precise, H I u is a vector subbundle of TU ( I TE I U) 
and what we are saying is that 

H I U  = @-'(o). 

Also, in the definition of there is an ahse of notation in that 

has been abbreviated to A:. I 

Write 

20.6 W e  have 

Fix a nordegenerate lagrangian L (per TE, not TM). Working locally, define 

1 a vector f ield Xa E D (TU) by the requirerent that  

a = T*W (a = I,.. . ,k) . 'x) u 



20.7 IEMMR 3 one and only one distribution 5 on TE which is locally - 
generated by the X . 

a 

Since H is a vector suhbundle of TE, it can play the role of a constraint 

(but H is not necessarily the zero set of a C~ function). This said, l e t  us 

term the pair (L,H) regular i f  locally, 

is regular, i.e., i f  the matrix 

20.8 LEMMA Suppose that (L,H) is regular -- then V x E H, 

P ~ F  let xx E ~ ~ 1 3  n L -- then 
LIX 



Put 

Then £ram the above, 

T J q H  = TH @ '(L,H) I 

so there are projections P and Q given pointwise by 

The fundamental stipulation is nm: 

represents the constrained dynamics. 

[Note : 

r L / H  E sec (TI'EIH) 

p(rLIH) E sec TH. 

20.9 REPuIARK Working locally, define the Lagrange multiplier Lo in the 

evident manner and form 



Explicating the relation 

then gives 

F'urthmre, along an integral curve y of I? , we have 
Xo 

or still, 

To reflect the presence of the connection, ca l l  L H-invariant if V x E M & 



where 

n(el) = x = n (e2) . 

[Note: I f  L is H-invariant, then 

i a i a i 
L(x IY rv r -Aiv 

is independent of ya. Therefore 

AB aL - a ~  i a i  - - -  . I  
aya au 

2 1 2 20.10 EXAMPIE Take E = R x S_ , M = R , and let - 

Define the Ehregnann connection H by 

a a 
H 1 2  

a a + c o s e - } .  = spani7 - sin e -, - 
ax ae  ax2 a e 

(x ,x 

Then L is not H-invariant. 

- 
If L is H-invariant, then L induces a lagrangian L E cm(TM) via the pre- 

scription 

[Note: Locally, 

- i i  i a i  a i 
L ( x  ,v ) = L(x ,y ,v , - Aiv ) . I  



20.11 Suppose that L is H-invariant -- then (L,H) is regular i f f  
- 
L is nondegenerate. 

P W F  L e t  W = W(L)-' ( recall  that by a s s ~ t i o n ,  L is nondegenerate) -- then 

or still, 

where 

On the other hand, 

or still, 



W(L) being w-~. w i n i n g  these facts  with saw el-tary matrix theory then 

leads t o  the desired conclusion. 

Assume henceforth that L is H-invariant and (L,H) is regular. L e t  

i 
y (t) = (xi(,) ,P (t) ,v ct, ,ua (t) 

be an integral cuwe for  

Pass t o  

and consider 

taken along 

7 (t) = (xi (t) ,vi (t) ) * 



- 
d a~ a?, - - --  
dt (avi) axi 





- - - -  aL vj,yj (cf . 20.6) . 
aua 

This sets the stage for reduction theory which, however, we are not going t o  

delve into. Let's just say: Under certain circumstances, the vector field r 
(L,H) 

is Tvprojectable onto a second order vector field ? 1 
(L, H) 

E D (PI) such that 

where II 
(Lt HI 

is a horizontal 1-form on aul given locally by 

a potentially ambiguous expression. 

20.12 IiEMARK It can be shown that 

Consequently, 



So E- is a f i r s t  integral for  r 
T (LIH) 

(cf . 8.10) . 

- 
N.B. In the language of 510, the t r i p l e  hi = (M,L,II(LrH) is a nondegenerate 

mechanical system, II 
(L, H) 

being the (external) force field. 

20.13 REPWX If  is not identically zero, then I: 
(L, H) 

is not closed 

(in which case our mechanical system is not conservative). To see this, let 

and write 

Then 

=> 



[Note:  If H is integrable, then II 
(L,H) 

is i d e n t i c a l l y  zero (cf . 20.2) (bu t  

the converse is false (cf. 20.15)) . I  

3 2 20.14 EX?iMPLE Take E = R , M = R - and let 

a 2 a H I  1 2 1 = sP~{-- 
a 

1 + X -=p --+ 
(x IX IY  ) ax ay ax 

is an Ehresmann connect ion.  H e r e  

W = -  2 1 x dx + dyl 



(cf. 20.6). 

L e t  

Then L is H-invariant  and (L,H) is r e g u l a r .  To c ~ n p u t e  TI 
(L, H) 

, note that 

- 
2 1  1 -  ( v y ,  + v R12)dq - - 1 2  1 2 1 2  1 

1 u v d q  = - q v v d q  
au 

a~ 1 1 2 1  2 1 1 2  2 1 2  2 - (v + v %2)dq = u v dq = q (v ) dq 
- au 

2 

I1: 
2 1 2  1 2 1 2  2 = q v v d q  - q  ( v )  d q .  

I n  addition, 

- 2 2 
L = ( ( (q2) + 1) (vl) + (v ) ) . 2 

But, as has been seen in 16.5, 



£ran which 

To check that 

it suffices to check that 

L- 8 = d L + r t  (cf. 8.14). 
r(L,H) 

To this end, write 

2  2  1 1  2 2  
= ((q ) + l)v dq + v dq . 

Then 



On the other hand, 

+ '(L,H) 

2 1 2  2 2 2 1 1  2 2  
= q  (v ) dq + ((q ) + l ) v  dv + v  dv 

2 1 2  1 2 1 2  2 
+ q v v d q  - q  ( v )  dq 

2 1 2  1 2 2 1 1  2 2  
= q v v d q  + ((q ) + 1)vdv + v  dv 

[Note: E - is a first integral for F (L,H) (cf . 20.12) . proof: 
L 



Proof: 

1 1 2  1 1  20.15 FXAMPLE Take E = S x S x R , M = S x S and let - - - - - 

l e 2  1 2 1 2  
( 0  IY IY = ( 0  t e  1 -  

Then the distribution C figuring in 16.12 is an Ehresnann connection, call it H: 

Here 



(cf. 20.6) . 
2 2 1 2  = 0, F$2 = R cos 0 , %1 = - R cos 8 , g 2 = 0  

where Ill I21 and m are positive constants -- then L is H-invariant and (L,H) is 

regular. And, fran the definitions, 

Hmver, in this situation, 

1 
E.g.: The coefficient of dq is the negative of 

1 2 2  1 = m(R cos 0 )v (v ( - R sin 0 1 )  

1 2 2  1 + m(R sin 8 )v (v (R cos 0 1) 



[Note: H is not involutive, hence is not integrable (cf . 15.18) . ] 

A Chaplygin system has tm ingredients. 

A principal bundle .rr:E -+ M w i t h  structure group G and a principal 

connection H. 

A nondegenerate lagrangian L E cm (TE) that is Ginvariant for the l i f ted 

action of G on TE and for which (L,H) is regular. 

It is then a fundamental point that this data realizes a l l  the assumptions 

of the preceding setup. 

[Note: The dynamics on H can be reconstructed £ram the dynamics on ?M via 

the horizontal l i f t  operation.] 



2 DEPENDENCE ON TIME 

Let M be a connected C* manifold of dinension n. Put 

M 

m 

T'M. 

Then J h  is called the evolution space of a time-dependent (a. k. a. non-autonamus) 

~chanical system whose configuration space is M. 

21.1 EXAMPLE Consider the motion of a plane pendulum whose length L(t) > 0 

is a function of time -- then 

and its motion is governed by the differential equation 

where 0 = 8(t) is the angle made by the pendulum with the vertical and g is the 

gravitational acceleration (cf. 21.19). 

i i lacal coordinates in JIM are (t,q ,v ) and there is a canonical inclusion 

0 JIM -r TJ M, 



viz . 

i i i  
Local coordinates in J% are (t ,q ,v ,a ) (cf . 11.6) and there is a canonical 

inclusion 

J'M + 5 x TIM, 

viz . 
i i i  i i i i  

( t rq  ,v ,a + (t,q ,v ,v ,a 1. 

Since R - x TIM can be anbedded in T J ~ .  it makes sense to w r i t e  

J% = T J ~ .  

This being the case, l e t  I' E DL (JIM) - then I' is said to be second order provided 

rJk c J ~ M .  

21.2 LEMMA Let r E ~ ~ ( 5 % )  -- then I? is second order i f f  locally, 

where 

i i i ci = c (t.q ,v ) .  

The vertical morphia 

and the dilation vector field 



can be regarded as living on J%. Agreeing t o  denote these extensions by the 

same symbols, def ine 

+!I Sdt E Dl (J 

by 

= S - A Q d t .  

Then locally, 

- a i i Sdt - - Q (dq - v dt)  . 
avl 

N.B. ViaJingS asanelementof d t  

The triple (JIM, J0M, r r l 0 )  is a f ibered manifold, £ran which 

2 
21.3 LEMMA Sdt = 0, hence 

I m  Sat c Ker Sdt. 



[Note: The containment 

Im Sdt c Ker Sdt 

is proper. 1 

21.4 Rl34AEX It can be shown that v X,Y E V1(&), 

[sdtx,sdtyl - Sdt[SdtX,Yl - Sdt[xISdtYl 

= ( lXdt) SdtY - ( tydt) SdtX (cf . 5.9) . 

21.5 lBM?i  let r E V'(J%) -- then I' is second order iff ST = A and 

S r = o .  dt 

PROOF The necessity is obvious. To see the sufficiency, work locally and 

write 

Then 



21.6 Let I' E lI1 (Jh) -- then r is second order i f f  d t  (I?) = 1 and 

sdtr = 0. 

21.7 LEMMA Suppose that r E b- (J%) is second order -- then v ?'-vertical XI 

An el-t L E c ~ ( J ~ )  is, by definition, a (time-dependent) lagrangian. 

This said, put 

a~ i $ = - (dq - vidt) + ldt. 
avl 

[One has only to note that 

i i i i * (dt) = 0, S&(dq ) = 0, S&(dv ) = dq - v dt.] Sdt 

N.B. On general grounds (cf. 13.4), the 

0 the fibration .lo: J% + J M are characterized 

h o r i z m t a l  1-fo- a E A'& per 

by the property that they annihilate 

the sections of S O J ~ .  Lacally, these are the a E A ~ J %  that can Ix written i n  

the form 

i a = adt + aidq , 



In particular: OL is slo-horizont.al. 

21.9 LEMMA Locally, 

Therefore 
- - 

a 2 ~  1 1 n d t n q  = b! det I 1 d t ~ d v  A . . . hdun~dq A . .. ~ d q  . 
av av 

bbtivated by this, ca l l  L nondegenerate i f  d t n g  is a mime form: otherwise, 

call L degenerate. 

21.10 LEMMA L is nondegenerate i f f  for a l l  coordinate systems 

det 1- -1 1 0 
- av av - 



everywhere (cf. 8.5). 

21.11 EXATWLE Take M = R and let - 

Then L is nondegenerate. 

[Note: This lagrangian is that of the the dependent harmonic oscillaMr.1 

2 21.12 MAMPLE Take M = R - and let 

Then 

so L is degenerate. 

21.13 RAPPEL Suppose that N is a connected (2n+l)-dimensional manifold -- 

then a cosymplectic structure on N is a pair (~,a), where Q E Ah is a closed 

1-form on N and R E A% is a closed 2-form on N such that n ~ ~ n  * 0. 

[Note: It follows that the rank of Q is 2n.l 

det 

Accordingly, a nondegenerate lagrangian L determines a cosymplectic structure 

- - 
a 2~ = det 

- avi avj - t t2 

- 1  t 
- 

= 0, 



21.14 LEMMA Suppose that ( q I R )  is a cosymplectic structure on N -- then 

there exists a unique vector field X E D1 (N) : 
rl I Q 

PROOF The arrw 

that sends X to 

is an isamorphism. Put 

thus 

To check that X has the stated properties, observe that 
r l IQ 



The first possibility wuld  imply that 

I X R = q. 
rl,R 

But then 

On the other hand, 

a contradiction. Therefore 



[Note : 'nfn is called the Reeb vector f ie ld  attached t o  ( n r  R) . ] 

21.15 E3(AMPLE Iet R be the fundamntal 2-form on T*M. Form the product 

R - x T*M and let a*:R x T*M -+ T 9  be the projection -- then the pair (dtfn*S2) - 
a is a cosymplectic structure on R - x T*M and its Reeb vector f ield is - a t  

Given a nondegenerate lagrangian L, set 

Then 

21.16 RFMARK Suppose that  L:TM -t R - is a nondegenerate lagrangian. Define 

- - 
;:J% + R - by L = L 0 a, where n:R - x IM -+ ZM is the projection - then L is non- 

degenerate and 

[Note: R e c a l l  t h a t  I w = - % and rLEL = 0.1 
r~ 



21.17 LJ34lA TL is second order. 

P ~ F  TO apply 21.2, write 

Then 

As  for  the 2, use the fact  that  l r  L$, = 0 and 21.9 to conclude: 
L 

But  L is nondegenerate, so 

L e t  

be an integral curve of TL -- then 

Because of this, we can and w i l l  choose the evolution parameter s t o  be the 

l'time" t. 

[Note: T i m  reparametrization is thus a form of "gauge fixing".] 



is an integral m e  of rL, then 

and along y, the equations of Lagrange 

are i n  force. 

[Manipulation of the relation lr  S$, = 0 gives - 

21.19 EXAMPLE Take M = 5' and consider the setup of 21.1. Let 

Explicating the equations of Lagrange then leads to the differential equation 

stated there. 

Given any L E caD(J%I) its energy is the function 



N.B. We have 

21.20 Suppose that L is nondegenerate - then 

aL rL% = - - a t  

PROOF For 



21.21 REMARK Maintaining the assumption that L is nondegenerate, let y(t) 

be an integral curve of TL and consider 
E~JV(t) 

-- then 

- - - -  aL (cf. 21.18). 
at 

It is not difficult to extend constraint theory to the time-dependent case 

but I shall not stop to run through the formalities. However, there is one point 

to be made, namely that in general the constraints will depend on tim. To 

illustrate, consider a particle of mass m m i n g  in the plane and subject to the 



constraint 

T h i s  constraint is affine in the velocities and the 1-form 

1 
w = dq - tdq 

2 

4 defines a thedependent vector subbundle of m2 = R . - - 
[Note: Refer back to 16.21 but as- that the horizontal plate rotates 

with nonconstant angular velocity Q(t) - then the vector f ie ld  

now depends on the. S t i l l ,  the analysis given there goes through without 

essential change. 1 

There is one f inal  topic that demands consideration, viz. the notion of fiber 

derivative. So let L E ?(JIM) be an arbitrary lagrangian. Since OL is nlO-hor- 

izontal, it determines a f iber preserving coo function 

0 wer J M, i.e., the diagram 



Locally, 

0 N.B. If O is the fundmental 1-form on T*J M, then 

W e  have 

where 

The fiber derivative FL of L is then the ccanpositicm 

Therefore 

and there is a connrutative diagram 



21.22 LEBMA me pair (dt,%) is a cosymplectic structure on J% i f f  FL is 

a local diffeomrphism. 

The central conclusion of this § is that the time-dependent theory is mre 

or less parallel to the time-independent theory. But there is one important 

difference: If L1 and L2 are nondegenerate and i f  % = s2, then I' = r , 
1 L1 L2 

the analog of this in the autonmus setting being false. 

21.23 =LE Take M = R - and l e t  

Then both L1 and L2 are nondegenerate w i t h  

However 



522. DEGENERATE LAGRANGTANS 

until now, the focus has been on nondegenerate lagrangians but, for the 

applications, it is definitely necessary to consider degenerate lagrangians as 

well (a case in point being general relativity, albeit this is an infinite 

dhensional setting) . 
Suppose, therefore, that L E c ~ ( ? M )  is degenerate -- then is no longer 

of mima1 rank and, in general, is not of constant rank. 

22.1 EXAMPLE Take M = R and let 

3 
L(q,v) = v . 

Then 

so yl is not of constant rank. 

Henceforth, our standing assurq?tion will be that the rank of is constant, 

thus the pair (TM,%) is a presymplectic manifold (cf . 15.20) . 
N.B. Recall the convention of 15.13: Ker % has two meanings, dictated by 

context. 



Then in the terminology of 58, L is said to admit global dynamics i f  DL is 

nonempty . 

22.2 LEWA If L arhnits global dynarnics and i f  l X t  = - is a particular 

solution, then the general solution has the form X + 2, where Z E Ker wL. 

While a given lagrangian might not admit global dynamics, there still might 

be a subset of TM on which the relation 

does obtain. 

3 22.3 EXAMPLE Take M = R and l e t  - 

And K e r  is generated by - a and 2- Next 
aq2 av 

2 ' 



On the other hand, 

Therefore 

unless q2q3 = 0, in which case 

general solution on q2q3 = 0 is thus 

2 2 where A ,B are arbitrary coo functions. 

[Note: The condition q2q3 = 0 does not, s t r i c t l y  speaking, define a sub- 

manifold of TM.] 

Put 



22.4 W e  have 

v 
S ( K e r  y,) c K e r  y,. 

P m F  L e t  Z E K e r  % - then 

But 

Therefore 

lSZ%= - lZ% 0 S 
(see the note appended t o 1 6 . 1 ) .  

And 

Terminology: L is 

- v 
Type I i f  S  ( K e r  t) = K e r  9, 

11 if ~ ( ~ e r  y,) t ~2%. 
- 

2 
22.5 EXAMPLE Take M = R - and let 

Then 



To determine Ker t, write 

and set equal to zero, hence 

Therefore K e r  t is generated by 

And here 



meaning that L is Type I. S t i l l ,  L does not admit global dynamics. 

22.6 lmm~ If L admits global dynamics and is Type I, then 3 a I' E D'(TM) 

of second order such that 

IrY, = - dEL. 

1 PROOF Choose X E D (TM) : 

Then 

S - d E L  0 S (cf. 8.7) 

SX - A = SY (3  Y E K e r  wL) 

And 



Then g is said to be a degenerate metric if 3 d 

Assign to each x E M the subspace 

o v yx E T~MI. 

> 0 such that V x E MI dim Kx = d 

and the bilinear form i n d u d  by gx on TXN/KX is positive definite. It has been 

s h m  by Crampin that there exists a linear connection V w i t h  zero torsion such 

that Vg = 0 iff LZg = 0 for all Z E K = U Kx (the null distribution attached 
x E M  

to g). This condition implies that K is integrable. In fact, if YtZ E K, then 

for any X, 

On the other hand, K may be integrable even when this condition is not satisfied. 

2 1 2  2 For example, let M = R - and put g = +(q )dq @ dq with @ > 0 -- then K is spanned 

by a/aql, hence is integrable, but L g z 0 unless @ is a constant. Take nuw 
a/aql 

for L E cW(TM) the function 

Then it turns out that L is Type I iff K is integrable and when this is so, L 

admits global dynamics iff LZg = 0 V Z E K. 



22.8 EXAMPLE ut E nb and put L = & (cf. 8.19) -- u ~ n  

Furthermore, i n  suggestive notation, 

which implies that 

Zuxordingly, i f  dw is nondegenerate, then 

K e r  wL = V ( T M )  

2 and L is Type 11. For instance, take M = R - and consider 

Let  

A 2 1 
Then L = w. Since do = dq fdq is nondegenerate, K e r  oL is generated by - 

22.9 LEMMA W e  have 

~ e r ~ w  = K e r  FL*. 
L 



It remains to consider tbe t*-dependent situation. So suppose that 

L E C ~ ( J % )  is degenerate, hence dtn* is not a volm form. Given t E R, - let 

Lt = L I  {t} x TM. 

Then in what follcws it will be assued that 3 r:O < r < n (= dim M), where V 

rank % = 2r. 
t 

Therefore 

2r 2 rank QL 5 2r + 2. 

N.B. While convenient, this assqtion is certainly not automatic: Take 

M = R - and consider 

22.10 EXAMPLE ~ake M = R2 and let 

Then L is degenerate (cf. 21.12). We have 

2 
i j a2~, 

w = a Lt dq ndq + i j  dvindqj 
Lt aq av avi a j  

1 1  1 2  2 1 2 2  2 = dv ndq + tdv ndq + tdv ndq + t dv ndq . 



Now use 21.9 to get 

2 1  2 1 1 2  % = tdv ndq + v dtndq + tdv ndq 

2 2  2 1 2 + t dv ndq + (v + 2tv ) dtndq 2 

Theref ore 

Then 

mtivated by 21.14 (and subsequent discussion), let 

Then L is said to admit global dynamics if DL is nonempty. 

22.11 UMMA L admits global dynamics iff % has constant rank 2r. 



This is a consequence 

22.12 LEMMA Fix x E 

of 22.12 and 22.14 infra. 

J% -- then rank(%)x = 2r iff 3 xx E T~J%I such that 

PRXlF If rank(%)x = 2r, then 3 a linearly independent set 

such that 

1 r r+l 
{ (dt) e , . . . , e ,e , . . . , eZr} c T*J% 

X 

is also linearly independent. Ccanplete it to a basis 

for T*J~M and pass to the dual basis 
X 

{Xx,elI.. ~ e ~ ~ e ~ + ~ ~ .  . . .e2r,fl,. . . If2n-2r I 

for T JIM -- then 
X 

j (dt), (X,) = 1 and ei (Xx) = er+i (Xx) = f (Xx) = 0 



Conversely, if Xx has the stated properties, then 

22.13 RAPPEL Suppose that N is a connected (2n+l) -dimnsional mifold -- 

then a precosymplectic structure on N of rank 2r is a pair (nIR) , where n E A% is 

a closed 1-form on N and R E A% is a closed 2-form on N of constant rank 2r such 

22.14 LElMMA If (nIR) is a precosymplectic structure on N of rank 2r, then 

1 
there exists a vector field X E Q (N): 

PXDF By a variation on a wellknown theme, each y E N admits a neighborhood 

U w i t h  local mordinates {(t,qi,pi,us~ (1 i i i r,l 2 s I 2n-2) such that 
Y 

i 
R = dpihdg , TI = dt. 

Therefore 



Pass from this point via a partition of unity ... . 
[Note: In general, X is far  f r m  unique.] 

22.15 EXAMPLE Take M = R3 and let 

3 where V:R - x R - -t R - is coo -- then it is clear that  L is degenerate. mreover, 

Next (cf. 21.9) 

+ -  3 av dtndq . 
as3 

rank C$, = 4. 



Therefore L admits global dynamics (cf. 22.11), the general solution being 

2 3 Here B , B are arbitrary cm functions on J%~.  - 

22.16 REMARK The lagrangian 

figuring in 22.10 does not admit global dynamics. Haever, i f  matters are 

limited to the suhnanifold C = fW1 (0) , then 

and the general solution is 

x=-- a ,a+.-- a (V 2 + ~ t )  --T a a a t  + B - 7  
aql as2 av av 

where A,B are cOD functions on C. 

Put 

l$, = K e r  d t  n K e r  % 

and then set 



22.17 LEMMA W e  have 

22.18 LEMMA W e  have 

10 Sdt(Ker i)L) c Ker % Il V (1M). 

N.B. 

For 

On the other hand, 

S?&(dt) = 0 => d t ( B  S ) = 0. d t  

The proof of 22.18 hinges on an auxilliary r e su l t .  

22.19 LENMA V X,Y E V1(Jh) and V w E V1(Jh), 

( d ( w  0 Sdt) + w ~ d t )  (Sdp,Y) + ( d ( w  0 Sdt) + mdt) (X,SdtY) 

= dw(SdtX,S Y). d t  

2 
PROOF Since Sdt = 0 (cf. 21.3), 



B u t  

or still, 

=> 



In 22.19, let w = dL - then 

% = dL 0 Sdt + Ldt 

So, v X,Y E D'(J~M), 

%(sdtX,Y) + t(X,SdtY) = (SdtX,SdtY) 

= 0. 

thereby establishing 22.18. 

22.20 LEMMA If L admits global dynamics and is Type I, then 3 a I. E (A) 
of second order such that 



Then 

SdtZ = Y 

and let r = X - Z -- then 

Finally 

= 0. 

Therefore r is second order (cf . 21.6) . 

22.21 REMARK The lagrangian introduced in 22.15 admits global dynamics but 

there are no second order solutions, thus L is not Type I. 



22.22 LEMMA We have 

10 
A 

K e r  % n V (J%) = Ker FL, = Ker FI*. 

Fix a lagrangian L E C*(TM) and put 

- 

w. . (L) = a 2 ~  
1 7  2Viavj 

T.. (L) = a 2 ~  - a 2 ~  
1 3  - aviaqj a s i a J  ' 

Let 

i a i a  + B  - X = A  - 
aqi a 2  ' 

Then in abbreviated notation, the differential equations that govern the relation 

are 



or still, 

Therefore 

SO 

Here 

=> 

An integral cuwe y for 

i i a a + B  - X =  (v + < )  - 
ag a 2  

is determined by the differential equations 



But 

These relations are thus a generalization of the equations of Lagrange (to which 

they reduce when 5 = 0). 

A.l Rl34AEE It is to be emphasized that this analysis is predicated on the 

assmption that L admits global dynamics: 

A.2 EXAMPLE Take M = R - and let L(q,v) = q -- then 



And 

so jl X: I& = - %. In addition, the preceding differential equation reduces 

to "1 = 0". 

A.3 MAMPLE Take M = R - and let L(q,v) = v - then 

And 

so V X: 
lX% = - %. In addition, the preceding differential equation reduces 

There are similar results in the time-dependent case but I shall leave their 

explication to the reader. 



523. PASSAGE TO T t l E  COTANGENT BUNDLE 

Let M be a connected coo manifold of dimension n. Suppose that L E C~(TM) 

is degenerate. 

23.1 ASSUMPTION For sane k < n, E'L is of constant rank n + k, C = FL(T4) 

is a closed suhnanifold of T*M of dimension n + k, and V  a E C, the fiber 

(FL)-'(o) is connected. 

[Note: V o E C ,  

= 2n - (n + k) 

= n - k.] 

N.B. The matrix - 

where 

W.. (L) = 
17 av i av j f  

has constant rank k. 

[Note: A 2n x 2n matrix of the form 

is raw equivalent to 



For mtivation, recall  the following standard fact.  

23.2 RAPPEL L e t  MI, M" be coo manifolds; let £:MI - M" be a coo map of 

constant rank r -- then each point of M b a d m i t s  a neighborhood U such that f(U) 

is an r-dimensional s ~ f o l d  of It" and the restr ict ion U -t f (U) is a suhwrsion 

w i t h  connected fibers. 

Since FL:TM - C is a fibration, the kernel of 

determines a vector subbundle V p  of TI'M (cf. 9 1 1 ) .  Viewed as a linear distribution, 

VLTM is integrable and the leaves of the associated foliation of IM are the 

(FL)-'((a) (0  E B) (cf. 15.11): 

-1 
TM = 1 ((FL ((a). 

oEC 

N.B. - The fiber dimension of &rVwL is n - k (cf. 22.9). 

W e  claim now that has constant rank, thus the machinery developed in 922 

is applicable. To this end, let L? be the f-tal 2-fom on T*M and put 

L?, = i;L? (i,: e - T%) . 

23.3 IENMA The rank of QZ is constant and, in fact ,  



rank Rz = k + R, 

[No*: The pair ( Z ,  QZ) is a presymplectic manifold (cf . 15.20) and the 

fiber dimension of Ker RL is 

Theref ore 

rank = k + 1. 

N.B. The fiber dinension of Ker is - 

23.4 REMARK L is Type I i f f  

(n - k) + (n - R) = 2(n - k) ,  

i.e., i f f  R = k. 

23.5 RAPPEL Let (VIR) be a symplectic vector space of dinaension 2n. Given 

a subspace W c V, its symplectic camplemnt W' is 

(V E V:R(v,W) = 0) 

and 

dim w + dim W' = 2n. 

Denote by $ the restriction of R t o  W x W -- then 



so (W, s) is a symplectic vector space i f f  W n d = { 0 1 .  

Given o E C ,  regard TOE as a subspace of ToT?M -- then 

Following D i r a c ,  C is said t o  be f i r s t  class i f  v o E 1, 

(ToC)' c TOE 

or second class i f  v o E C ,  

T ~ C  n (T& = 10) .  

23.6 LFJvlMA C is f i r s t  class i f f  R = k. 

PROOF To win with, 

(n - k)  + dim C = (n - k)  + (n + k)  = 2n 

=> 

(n  - k) + dim ToC = 2n 

=> 

I (n - k) = dim(ToE) . 
But 

Therefore R = k 



23.7 LDWA C is second class i f f  R = n. 

[Note : When this is the case, the pair ( Z . RE) is a symplectic manifold. 1 

23.8 REMARK Because k is less than n, C cannot be simultaneously f i r s t  and 

second class. 

[Note: In general, C is neither but rather is of "mixed type".] 

The F E cm(TM) which are constant on the (FL)-'(0) are annihilated by the 

X E K* and conversely. Denote by c('I!M) the set of such -- then cm(Z) :: <(IM) 

via 

f + (FL)*f (= f o FL). 

23.9 LEMMA The energy EL = AL - L lies in ~ ( T M ) ,  hence 

PROOF Working locally, take an X E ~ e r ~ y ,  and w r i t e  

Then 

Theref ore 



[Note: Hz is the himiltmian attached to L.] 

23.10 CORRESPONDENCE PRINCIPLE To each 5 E D1(TM) such that 

1 there corresponds an XC E D (C) such that 

with 

1 Conversely, t o  each XC E D (C) such that 

1 there corresponds an XL E V (TM) such that 

with 



[Note: A s  a corollary, L admits global dynamics i f f  Hz admits global 

dynamics (in the obvious sense) .I 

To proceed further, it w i l l  be convenient to  ass- t h a t  3 @ E c~(T*M) 
1-1 

(1-1 = k + 1, ..., n )  such that 

with 

[ ~ o t e :  Bear in mind that dim C = n + k = 2n - (n - k).] 

23.11 EXAMPLE Take M = gn and l e t  L = 0 -- then k = 0 and C consists of 

those points 

1 n 2n 
(4 , - - . .q  I P ~ I - - - I P  n ) E R - 

such that 

SO 

And here, of course, Hz = 0. 

23.12 EXAMPLE Take M = R~ and l e t  - 



Then k = 0 and C is the same as in 23.11 but this tine 

23.13 EXAMPLE Take M = R~ a d  let - 

Then k = 1 and 

So L is T y p  I (cf. 23.4). Finally 

Indeed 



[Note: L does not admit global dynamics (cf. 22.5), thus 23.10 is not 

applicable. I 

Any f E c ~ ( T ? ~ )  such that  

is called a constraint. 

[Note: The are called primary constraints.] 
1-1 

1 
N.B. A vector f ie ld  X E D (T*M) is tangent t o  C i f f  XflC = 0 for a l l  

constraints f .  

[Note: V o E C, ToC consists of those Xo E ToT*M such that Xof = 0 for a l l  

constraints f.] 

23.14 LEMMA L e t  f ke a constraint -- then 3 coo functions f v  such that  

P m F  Given a point o E 1, choose a coordinate systan {$I,$} valid in  a 

neighborhood Uo of o having the Q as  its f i r s t  coordinates. By hypothesis, 
1-1 



where 

To extend this t o  a l l  of T*M, let U be the set where Q t 0 and fix a coo partition 
1-I lJ 

of unity { cU, c,I subsrdinate to the open owering 

Put 

Then 

23.15 RAPPEL There are tsm arrows 

that are mutually inverse, the hamiltonian vector f i e lds  being those elegnents of 



# the form xf = - n df (f E c ~ ( T * Y ) ) .  

[Note: The explanation for the minus sign is this .  I f  in canonical local 

coordinates 

then 

Therefore, along an integral curve of Xf,  we have 

the equations of Hamilton.] 

23.16 LEMMA PutX = XQ (p = k + 1, ..., n) -- then V o E C ,  the span of 
p l J  

l. 

[Note: If f is a constraint, then 



The issue of whether L admits global dynamics can be shifted to the issue 

of whether Hz admits global dynamics (cf. 23.10). And for the l a t t e r  there is 

a criterion. 

23.17 THEOREM The equation 

has a solution XI i f f  3 an extension H E c ~ ( T * M )  of HI with the property that 

P m F  Under the assmption that  such an extension exists,  put Xz = %/ - 

Turning to the converse, let H be any extensim of Hz -- then V o E C & V X E T2, 

VX& - %(ofX) 

= - ~ H & ( x )  + cw JX) I 
= 0 



SO, 3 hl-I E c~(T*M) such that on C, 

But H + A'@ is also an extension of Hz and on C 
P 

Therefore the hamiltonian vector field corresponding to H + A'@ is tangent to C. 
1-I 

2 
23.18 l3XATPLE Take M = R and let - 

Then k = 1 and 

1 2  4 z = {(q rq ,P~.P~) E I! :P1 - P2 = 01, 

so 3 one primary constraint, viz. 



thus 

Consequently, i f  

then 

1 1 2  
lxQC 

= fdq + fdq2 - (A + A ) dpl. 

a Therefore Ker Q is spanned by 7 - - 
C 

a 2" Notkg that 
aq aq 

consider the equation 

Then a particular solution is 

and the general solution is 

where F is SOIE C~ function. 



[ ~ o t e :  Since l = k = 1, C is f i r s t  class (cf. 23.6). It is also clear that 

Hz can be extended to an H whose hamiltonian vector f ie ld  XH is tangent to C.] 

23.19 RAPPEL The Poisson bracket is the bilinear function 

Theref ore 

a 1 n 
[NO* : Fix H E c~(T*M) and consider any C function F (q , . . . , q , pl, . . .pn) 

of the canonical local coordinates - then along an integral curve of XH, 



I n  par t i cu la r :  

23.20 EXAMPLE Suppose that 

L e t  H E c~(T*M) be any extension of Hz -- then 3 A" c@(T*M) such that 

is tangent to  C (cf. 23.17). ~ c c o r d i n g l y  on C, V cons t ra in t  f 



L& f E c~(T*M) -- then f is said to te f i r s t  class (w.r. t. Z) i f  Xf is 

tangent to C. 

23.21 REMafiK In this term.inology, one can restate 23.17: The equation 

has a solution X i f f  3 an extension H E c~(T*M) of Hz w h i c h  is f i r s t  class. 
C 

23.22 LEMMA A function f E c~(T*M) is f i r s t  class i f f  

{f,mllI 

for a l l  primary constraints Q 
1-1' 

PROOF If  f is f i r s t  class, then Xf is tangent to L,  so V 1-1, X @ I L  = 0, i.e., 
f1-I 

{f,mu1/z = o. 

TO go the other way, take any constraint g and using 23.14, w r i t e  

Then 

But 

Therefore 



2 
E.g.: I f  f is a constraint, then f is f i r s t  class. Proof: V 1-1, 

if2,mU1 = 2 ~ , m ~ 1  

=> 

2 
{f ,@ IIC = 0. 

1-1 

N.B. C is f i r s t  class i f f  each of the primary constraints cP is f i r s t  class - 1-1 

or still, i f f  V 1-1' , 1-1" : 

23.23 EXAMPLE In the setup of 23.20, H is f i r s t  class provided C is f i r s t  

class. To see this, take f = @ -- then a s  there, 
1-Io 

Finish by quoting 23,22. 

23.24 REMARK It can be shown that a necessary and sufficient condition that 

the hamiltonian vector f ie ld  Xf E D1(T*M) be the projection through the fiber 

1 derivative FT, of a vector f ie ld  gf E D ('I'M) is that f be f i r s t  class. 

[Note: There is then a camutative diagram 



*re Zf is unique up to  an elemmt of Ker TFL (= K e r  FL,) . By means of a 

careful analysis, matters can be arranged so that 

(g E cm (T*M) ) 

and 

the second point making sense since {f l,f 2} is again f i r s t  class (cf . 23. 

Let f be the set of functions f E c~(T*M) which are f i r s t  class. 
C 

23.25 LEMMA F is closed under the formation of the Poisson bracket. 
C 

PROOF Let flIf2 E Fz ard f i x  U -- then 

But this simply mans that 



are constraints, thus in view of 23.14 

where @ , Q are certain c0? linear combinations of the primary constraints. Now 
1 2  

write 

If  C is not f k s t  class (=> k < (cf. 23.6) ) , then it is possible to  choose 

the primary constraints @ in such a way that 
1-\ 

are f i r s t  class, 

then being termed second class primary constraints. 

[Note: To arrange this, ass= outright that the m a t r i x  

[ l@,pvH 

has constant rank R - k on an open subset U of T*M containing C and redefine the 

data (building in  23.27 belw) .I 



4 23.26 EXAMPLE Take M = R and let - 

Then 

thus k = 0. Since 

there are four primary constraints: 

2 3 - - 4 
Q1= P1 - q - q I Q2 - P2r Q3 - P3 - q I Q4 = P4. 

W e  have 



which is symplectic, hence C is second class. Here 

Indeed 

A t  this pint, it w i l l  be necessary to  adopt an index convention, say: 

- 
k + l ~ a , b ~ R  

- R + 1 5 u,v I n. 



Put 

23.27 LEWA The matrix [C*] is skewsymnetric and nonsingular on an open 

subset U of T*M containing C. 

[Note: Therefore the nrrmberr of second class primary constraints is even.] 

For simplicity, it will be assunEd in what follows that U = T*M (which is 

ab typically the case in practice) and we shall agree to write [C ] for the inverse 

suppose that 

Then for any extension H E c~(T"M) of Hz, 

{H,mv}I r :=O ( v = t + l ,  ..., n). 

23.28 LE2@lA X is tangent to C. 

PROOF The mu are first class, thus it is autanatic that numu is tangent 



to C, so we need only consider 

Set 

Then the definitions imply that 

Therefore Hz admits global dynamics. 

23.29 REMAIiK In general, the equation 



need not be solvable on a l l  of C. This sets  the stage for an implementation of 

the constraint algorithm, the subject of the next 5. 

The foregoing theory can also be written in the tim-dependent case. While 

relevant and interesting, T am nevertheless going ta canit the details. 



524. THE CONSTRAINT ALGORITHM 

L e t  Mo ke a connected cm manifold of dimension no. Fix a closed 2-form 

wO E fl2PI0 of constant rank which is degenerate in the sense that 

is nontrivial. 

[Note: The pair (MO ,wO) is a presymplectic manifold (cf . 15.20) .I 

Le t  a. E A%$, be a closed 1-form. Consider the equation 

Then a solution, i f  there is one, is determined only up to an e1-t of K e r  wo. 

[Note : 

'xoU0 = a. 

24.1 EXAMPLE To realize this  setup, take 

- 
Mo = TM 

wo = w 
L 

a0 = - dBL' 
- 



where L is a degenerate lagrangian per 922. 

24.2 EXAMPLE To realize this setup, take 

where L is a degenerate lagrangian per 523. 

Let M c Mo be a sutmanifold, i:M +Mo the inclusion. Write 

- V 1 (MO;M) in place of 0 1 (MO:M; I) 

(cf. 513). 

O (M ;M) in place of Vl (MO;M; i) 
- 1 0  

Then there is a canonical pairing 

b 1 
mote by (w0 I M  the map O (M) -t V1 (MO:M) which sends X to (aO IM) (XI-) . 

b 
24.3 m e  range of (wo1M) consists of those a t V1(M0;M) such that 



PROOF The annihilator of 

b 1 
(w0IM) (0 (MI ) 

1 is canprised of those Xo E D (M;MO) w i t h  the property that 

or still, 

1.e. : 

= Ann Ker (wo IM) . 

Consider again equation 

b 
Since w is not surjective, the relation 0 

need not be true, so l e t  



W assme that M1 is a su]soanifold. Put  

and consider the equation 

1 b where now X1 E D (M1) If al is in the range of wl, the process stops. Otherwise, 

let 

M2 = {x, E 5:ae.r ul,q> ( x ~ )  = 01 

and continue on, generating thereby a chain of ~ £ o l d s  

... M2 -f M1 + Mo. 

I£ at the kth stage, 

on all of %, the procedure ends since by construction 3 % E PI(%) : 

% is called the final constraint manifold. 

[Note: Conceivably, % could be empty or discrete, possibilities that we 
shall simply ignore.] 

On the final constraint suhnanifold %, we have 



this being an equality of elarmts of V1(Mo;-T). Let \:% - MO be the inclusion -- 

and 

thus 

[Note: In general, the set of $ for which 

is strictly contained in the set of for which 

1 then, as a functional on V (MO;%) 



This failure of uniqueness is called gauge freedan.] 

4 24.5 MAMPLE LetMo be the sutmanifold of T*R determined by the conditions - 
4 

p1 - q = p3 = p4 = 0 a d  take for uO the pullback 

1 4 2 
= dpllzdq + dq ~ d q  , 

4 i :M -t T*R the inclusion -- then 
0 0 - 

rank uo = 4 

a and Ker wo is Spanned by - 3. Let a = - dHo, where 
%I 

0 

and consider the equation 

1 2 3 4  Using q ,q ,q ,q ,pl as coordinates on M , write 0 

Then 

1 1 1  
(dplndq ) = fdq - A dpl 



1 1 2 4 
'xoW0 

= - A dpl + fdq + ~~d~~ - A dq . 

On the other hand, 

3 Restricting the data to Ml = {q = 0 1 and comparing lX wo w i t h  - dHo, we find that 
0 

1 2 4 2 
A = P ~ - ~ ~ , A  = O , A  = p l - q ,  f = O ,  thus 

3 
A being undetermined. Now choose = 0 -- then 

is tangent to M1, so the algorithm terminates a t  this point. 

Expanding on 23.29, i f  Hz does not admit global dynamics, then the resolution 

is to set the constraint algoritlm into notion: 

C 3 C ' ,  C '  3 C", ... . 



In m r e  detail,  one supposes that there is a solution valid on saw sub- 

manifold C' c C which is described by secondary constraints. Such a solution 

need not be tangent to Cf. One then has t o  pass to a sukmanifold C" c C' where 

the solution is tangent to  C', C" being described by tertiary constraints. And 

so forth... . For a physical system with reasonable dynamics this process 

terminates a t  a suhranifold Lo c C described by certain constraints and on which 

the equation 

can be solved (but, of course, it need not be true that n& ( Co) = M) . 
To make matters precise, l e t  us suppose that C' is a suhanifold of C of 

dimension (n + k) + (n - kt), where n I k' 5 n + (n + k) (thus the codhersion of 

C' w . r . t .  C is (n + k) - ((n + k) + (n - k')) = k1 - n and the codimension of C' 

w.r . t .  T*M is 2n - ((n + k) + (n - kt)) = kt - k). In addition, we shall impose 

a regularity condition, viz. that 3 xT E c~(T*M) (T  = n + 1,. . . ,kt ) such that 

1 

w i t h  

[Note: The x are called secondary constraints.] 
T 

and, by construction, 



To say that  there are no ter t iary  constraints amounts t o  saying that C '  = C", 

1 thus the f inal  constraint sutmanifold is C ' i t s e l f .  So, 3 XL , E V ( E  ' ) : 

( R E I ~ ' )  ( X C l ,  --I = - d H C I C ' ,  

t h i s  being an equality of elements of Dl (E  ; L ' 1 . Put 

= i* R (i :C'  + C ) .  %' C '  C C '  

where Hzl  = ~ ~ 1 6 '  (observe t h a t  dHCt = d(Hg/C') = d ( i t  H ) = ieldHz). 
C 

2 
24.7 EXAMPLE Take Fil = R - and let 

Then 

thus k = 1. Because 

there is one primary constraint, viz. 



And 

Given 

w have 

1 1  = fdq - A dpl. 

a 
Accordingly, K e r  Rz is spanned by - But 

aq2 

hence 

Therefore E l  is described by the secondary constraint 



1 
However 3 XC, t D (C'): 

Tb proceed, it is necessary to impose the tertiary constraint pl = 0. To confirm 

this, let us determine C" which, by definition, is the set of o'  E C': 

Let 

Then 

iff V Y, 

Since 



it follows that 

is zero for a l l F  precisely a t  those o f  a t  which pl = 0. Moreover the dynamics 

on C" are trivial. D-deed, 

[Note: Consider the constraints of the preceding example: 

p2 = O --- primary 

1 q = o - -  secondary 

p1 = O --- tertiary. 

Then 

There are physically reasonable lagrangians that lead to constraints beyond 

the tertiary level. 

3 Thus l e t  M = R an3 put - 
1 2 2  1 3  1 2  2 2  

L = - 2 ( ( A 2  + (v 1 ) - zq ((q ) + (q ) - 1). 



Since 

has constant rank k = 2, it follaws that dim C = n + k = 3 + 2 = 5, the primary 

constraint being p3 = 0. Therefore 

So, i f  

d 
Accordingly, Ker R is spanned by - 

C 
On the other hand, 

aq3 ' 

Thus 

I .e. : Z '  is described by the secondary constraint (ql) + (q2) * = 1 and there 



where 

1 2 
But Xg is not tangent to  L' unless w e  impose the tert iary constraint plq + p2q = 0. 

TO see that this agrees with what is predicted by the theory, it is necessary 

to  consider C", the se t  of 0' E C':  

Let 

Then 

iff V Y, 



Gl and G2 being arbitrary. But 

vanishes fo r  a l l  X E K e r  (a I C 9 a t  those o ' : 
C 

subject to 

The condition 

1 2 
Plq + P2q # 0 

allms only the t r i v i a l  solution F1 = F2 = 0, thus the t e r t i a r y  constraint is 

1 2 
Plq + P2q = 0-  

Recall now that 

and put 

Then X' E D'(C ' ; c") but X' is not tangent to C" , thus it wil l .  be necessary to C C 

-irrrpose y e t  another constraint. Consider 



To figure out the mnditions 9i1 A, B, C, D which guarantee that this vector is i n  

Theref ore 

In our case: 

so the next constraint is 

or s t i l l ,  



Additional axputation shows that there are no other constraints. Therefore 

the final constraint sulrnanifold Z0 c C is described by 

hence ZO is t w o  dimensional. 

W e  have 

with 

So, i f  Xo = X' I Z  then by construction, 
C 0' 

and 

pulled back t o  Co) . 
The integral curves of Xo d e w  on t m  parameters €!,w and are given by 



I p2(t )  = w c o s ( w t + 0 ) .  
- 

N.B. In the situation a t  hand, there is no gauge freedan, i.e., X is unique. 0 

To see this, it suffices to note that the pullback of 

1 2 
dpl"dcE + dp2& 

to 1 is nondegenerate. Thus define a map 
0 

f : l 0 , 2 ~ [  x g +- Co 

by the prescription 

2 3 2 1- $ = cos 0, q = sin 0, q = w 

Then 

d(- w s in  0 ) ~ d  cos 8 + d(w cos 0 ) ~ d  sin 0 

= (- s in  8 dw - w cos 8 d 0 ) ~ ( -  sin 0)d0 

+ (COS 8 &I - w sin 0 dO)~(cos  0Id0 

2 2 = (sin 0 + cos B)chnd8 = dude. 

Turning to the physical interpretation, the above lagrangian is that of a 



particle of unit  mass moving on a c i rc le  of radius 1 in a t.m dimensional plane 

3 spanned by q1,q2 w i t h  q being the force necessary to make the part icle stay on 

the circle. 



525. FIRST CLASS SYSTEMS 

Let (M,Q) be a symplectic manifold of dimension 2n (M connected) . 
Suppse that C c I4 is a closed connected suhnanifold. Ass-: 3 Qll E c~(M) 

(1.1 = 1, ..., k (k < n)) such that 

with 

Put 

and impose the a priori hypothesis that the rank of wC is constant, hence that the 

pair (C,w ) is a presymplectic manifold. Therefore Ker wC is integrable (cf. 15.20). C 

so there is a decmposition 

Ci a generic leaf of the associated foliation. 

Next, introduce 

N.B. - Consequently, 
Ker wC = (?C)L. 



In what followsr Shall take C f i r s t  class, 

L e t  f E c ~ ( M )  -- then f is said to be a Dirac observable i f  Xf is tangent 

[Note: A s  usual, Xf is the hamiltmian vector f ie ld  attached t o  f.] 

25.1 REMARK In the context of $23, the ~ i r a c  observables are precisely 

the f E c ~ ( T % )  which are f i r s t  class (w.r . t. 1) . 

25.2 LEbNA A function f € c ~ ( M )  is a D i r a c  observable i f f  V 1-1, 

i f ,@ IIc = 0. 
1-1 

[The argument used in 23.22 is clearly applicable here as  ~11.1 

In particular: V p ' ,yW,  

{@l-l,fml-l,,}lc = 0 

where 

f 
1-1'1-1" 

€cCO(n) (cf. 23.14). 

Fix a positive definite quadratic form K and let 

1 1-1v F = z K  @ @  
1-1 v a  

Then 



[Note : 

25.4 LEMMA Let f E c~(N) -- then f is a Dirac observable iff 



Therefore 

{f ,{£,I$} I C  = 0 

i f f  

{f,mJc = o ,..., If,m,lIc = o 

or still, 

{ f ,{ f ,g l )p  = 0 

i f f  f is a Dirac observable (cf . 25.2) . 

1 wt H E cW(c) -- then H is said to  admit global dynamics i f  3 tl V (C) : 

25.5 LEMMA If  H admits global dynamics, then H is constant on the Ci, 

hence is a f i r s t  integral for Ker %. 



PROOF Suppose that X is tangent t o  Ci, thus X E (TC) and 

XJ3 = dH (X) 

In general, the quotient C/Ker wC does not carry the structure of a COO 

manifold. However, l e t  us assume that it does and that the projection 

is a fibration. 

N.B. U n d e r  these circu~[u;tances, one cal ls  C/Ker wC the reduced phase space 

of the theory. 

- - 
W r i t e  C for C/Ker wC -- then there is a 2-form u- on C such that 

C 

- -, - - 
To see this, l e t  X1,X2 be two vectors tangent to  x E C. Qloose a pint x in 

- 
the leaf Ci lying over x and l e t  X1,X2 be blo vectors tangent to x: 





.., 
PRIX)F Suppose that for same Xo: 

Then 

* 

The function H projects to a function & E cm(c) (cf. 25.5). Furthermore, 

1 - 
there exists a unique X_ E D (C) : 

H 

And finally X is the projection of any s: 
H 

- 
25.8 F?EMAFX All Dirac observables project to C. 



APPENVIX: KINEMATICS O f  THE FREE RIGID BODY 

To establish mtation, let 

- 
SO(3) = {A E GL(3,R) = I, det A = 1) - - - 

the I' TI' standing for transpose -- then - so (3) is the Lie algebra of SO (3) . - 

3 
A.l RAPPELI; The arrow R -t so(3) that s d s  

is an ismmrphism of the Lie algebra ( R ~ ,  - x )  with the Lie algebra (so - (3) , [ , I ) : 

It is equivariant in the sense that V A E - SO(3), 

[Note : Equip - so (3) with the metric derived £ran the Killing form, thus 



Then the arrow x + f; is an ismetry: 

The tangent bundle TSO(3) - admits t m  trivializations, viz. 

To explain this, view - GL(3.R) - as an open subset of R~~~ - - then the tangent space 

of - GL ( 3  ,R) a t  a given point is naturally i~amr,rphic to - gR ( 3  ,R) - . Since - SO (3)  is 

contained i n  - GL ( 3  ,R) , it follows that the elements of T z ( 3 )  are matrix pairs 

(A,X). One then puts 

[Note: 'IB check, e.g., that A-'X E - s o ( 3 ) ,  fix a curve t -+ A ( t )  such that 

A(0)  = A, A' (0)  = X -- then 



N.B. The classical terminology is that 

1- A-5 is the body angular velocity per X 

I - XA-' is the spatial angular velocity per X. 

It is also traditional to write 

for a generic 

at A, hence 

A 

- 
MY 

- spatial 

angular velocity 



Suppose that A:I -+ S O ( 3 )  is a curve -- then its lift t o  T s O ( ~ )  is given by - - 

Write 

Then 

3 
are curves i n  R - . 

then 



[Note : Analogously, 

I - - ;(t) a s  e (t) - &I sin e (t) o 

A rigid body is a pair E p )  , where E c R~ - is mnpact ad. p is a f in i t e  

3 Bore1 measure on g with spt  p = E. One ca l l s  

the mass - of the body, its center of mass then being the point 

A.3  EXAMPLE A particle of mass m is a special case of a rigid body. Thus 

3 suppose the particle is situated a t  a point c0 E R - and take p = m6 -- then 
50 

spt p = {co} and the center of mass is 



3 The inertia operator of a rigid bdy (8,~) about a p i n t  xo E R is the - 
linear map 

def in& by 

A.4 EXAMPLE Keeping to the setup of A.3, 

1 2 3  L e t  (a ,a ,a ) be the ccmponnts of a = C0 - xo -- then the matrix of Ix is 
0 

and its eigenvalues are 



<=x0 (x1).x2> = 'X 1' I xo (x2)> 

and positive semidefinite, i.e., v x, 

PRCX)F F i r s t  write 

Then take xl = x2 = x to  get 

Therefore the eigenvalues of Ix are real and nonnegative. 
0 



A.6 mQ4A If Ix has a zero eigenvalue, then the other bm eigenvalues 
0 

are equal. 

[Note: IX has a zero eigemmlue i f f  is contained in a line through xo.] 
0 

A. 7 - LEFW4 If  Ix has tka zero eigemmlues, then B = {x0}. 
0 

A.8 RT3WX If there is no line through xo that contains the support of p, 

then Ix is an imrphisn. 
0 

Take x0 = EC and write Ic in place of I . 
E-c 

In the case of a particle go of mass m, p = m6 , hence 
co 

A.10 REMAEX Given xo, define C by xo = + C -- then 



I (XI = IC(x) + 11(8)(C x (x x C ) ) .  
Xo 

E.g.: Take xo = 0 - then C = - k, so 

or still, 

Let us now consider the description of the free rotation of an isolated 

3 
rigid body ( 8 , ~ )  about a fixed point, which we take to  be the origin in R - , ad, 
t o  minimize trivialities, we shall assume that IO is positive definite. 

Define a lagrangian 

LO:TS0(3) - + R - 

by 

[Note: -11 that R depends on (AIX) via the prescription 

A-1X = ;.I 



Explicated, 

or still, 

1 + p(s)<n x Ec,n x 5 3 .  

N.B. - -  SO (3) operates to the l e f t  on TSO(3) and relat ive to this action, Lo - 
is invariant. 

3 A . l l  REMAFX M i n e  an inner product <,>0 on g by 

Transfer it to - so(3), viewed as the tangent space t o  the identity of - S0(3), thence 

by l e f t  translation to the tangent space a t  an arbitrary point of - SO(3). C a l l  

go the l e f t  invariant r i d a n  structure resulting thereby -- then its "kinetic 

ensgy" is Lo, i. e. , in the notation of 8.4, 

Consequently, Lo is nodegenerate. 

[Note: The metric connection Vo associated with go is l e f t  invariant, thus, 



on general graunds, induces a bilinear map 

or still, a bilinear map 

viz . 

A. 1 2  LE~NA W e  have 

A.13 EXAMPLE Take for Z a ball of radius R centered a t  the origin and 

suppose that v has a spherically symnetric density: d~ (6) = p ( 1 5 [)dS -- then 

4 = 8nI; p ( r ) r  dr. 



Thexef ore 

If the mass distribution is actually hgnoge.neous, i.e., 

2 2 5 then I = 5 nB , hence the inner product <, >0 arising frm the choices m = 

3 
R = 1 is the usual inner product on R . 

A.14 EXAMPLE Take for & a cone with vertex at the origin and of height h 

1 2  3 above the 5 5 -plane (5 = h (z) (0 s r I R) ) . Assume that the mass distribution 

2 3h is horogeneous, thus p = 3m/vR h and the center of mss is at (0,O . Here, the 

off diagonal entries in A.12 are obviously zero, so 

and by an elementary calculation, one finds that 

Using A.9, one can then compute the matrix representing IC, which is necessarily 



diagonal : 

In the formula 

and 

A.15 THEOREM Let 



be a m e  in TS0(3). Put - 

Then y (t) is an integral curve of TL i f f  R (t) sat isf ies  Ne r  ' s equations, i . e. , 
0 

i f f  

:TS0 (3) -t SO (3) of the integral curves A.16 R@WX The projection nS0(3) - - 
- 

of TL are the geodesics of (SO - (3) ,go) (cf . 10.6) and these are what the mt ion  
0 

3 should follow. Define nuw the Euler vector f ie ld  To : R ~  - + R by - 

Then a curve t + <(t) is an integral curve of To i f f  

or  still, i f f  

One can thus view A.15 a s  prwiding an alternative description of the mtion,  

which turns out t o  be mre amenable to explici t  computation. 

M i n e  a function 



[Note: II is called the angular mmentum of the systm.] 

A.17 IJ3MA II is constant on the trajectories y of . 
0 

PROOF Considex the restriction of II to such a y: 

[Note: Therefore the cearrponents of II are f i r s t  integrals for r (cf. 1.1). 
Lo 

Another f i r s t  integral for TL is ELo (cf. 8.10): 
0 







the solutions to which are 

An unnormalized eigenvector per I1 is (l,l,l), hence lies along the diagonal of 

the cube. On the oMer hand, eigenvectors per I2 = I3 constitute a subspace of 

dimension 2 perpendicular to the diagonal. 

[Note: Frm the definitions, 

Claim: The eigenvalues of IC are 

In fact, thanks to A.9, 

NOW let A E - then 



So, applying A.9 once again, 

1,W = A - (3/4)ml2~ 

Put 

Then ZE and L are first integrals for TO (cf . A. 18) . 
Turning to the solutions of the Ner equations, we shall consider three 

cases. 

Case 1: I1 = I = I 2 3 -  

Case 2: I1 = I 3: 13. 2 

Case 3: I1 < I2 < 13. 



The first case is t r ivia l :  2 constants CllCZ1C3 such that  

A s  for the second case, we have 

and 

So Q3 = C3 and r r r a t t e r s  reduce to 

where 

Eliminating R2 gives 

the genesal solution to which is 

for certain constants K and r. And then 

R2 = K cos(Ct + r). 



N.B. Here - 

Theref ore 

while 

The third case is m r e  ccmplicated but doable, the details being a bit messy. 

Suffice it to say that explicit solutions can be given in terms of the Jacobi 

elliptic functions sn, cn, dn. 

[Note: In R' - , consider the differential equations 



Then the t r ip le  

is the solution to this system subject to the in i t i a l  condition ( O , 1 , 1 )  ( i f  k = 0, 

then sn(t;O) = sin t, cn(t;O) = cos t, dn(t;O) = 1). To see w h e r e  th i s  is going, 

put 

and rewrite the N e r  equations as 

the point of departure. . . . I 
The mtion of ( 2 ,  p) is a geodesic w.r .  t. the l e f t  invariant riemannian 

structure g lb exploit A.15, f ix  A. E SO(3). Xo E Translate Xo 0' - 

to - so(3) and then t o  

equations subject to  

3 
R - to get ". Let R ( t )  be the solution of the N e r  

r. 

the in i t i a l  condition Go. Pass to R ( t )  - then 

is a system of linear differential equations with time dependent coefficients, 



the so-call& reconstruction equation. Solve it for A ( t ) ,  subject to A(0) = Ao, 

thus 

and so 

is an integral curve of I' passing through (AO ,XO) a t  t = 0. 
Lo 

N.B. This is what happens i n  principle. What happens i n  practice is, haever, 

a d i f f e r en tmt t e r ,  a t  leas t  i f  one wants to be annpletely explicit .  Case 3 is 
A 

particularly vexsom but Case 1 is simple. For then R ( t )  is constant i n  time: 

A A 

Q(t) = " v t, hence the solution is 

A.20 RAPPEL Let {el,e2,e3} be the standard basis for  R" - -- then {elfe2,e3} 

is the standard basis for  - so(3). 

The manifold - SO(3) can be e q u i m  with a number of charts, a l l  derived from 

the notion of "Euler angle", but the subject is potentially confusing due to the 

variety of choices that can be made. 



1- so = sin 

A.21 L8MMA The map 

I - 

- 
C$ = m s  $ 

s+ = sin $. 
- 

- 



is one-to-one and its image U321 is open. 

[Note: The inverse 

IT IT 
U321 +- I - IT,"[ x I - P 2 I x I - n,rr[ 

can be computed in terms of atan(x,y) , the 2-argument arctangent function.] 

Therefore this data defines a chart on - SO(3) with local coordinates $I,%,@. 

[Note: -1 coordinates on TSO(3) - w i l l  be denoted by $,8,@, v ,V ,V 1 
$ e @ -  

Given A E U3211 the entries of the associated triple ($,Or@) are called its 

3-2-1 Euler angles. 

N.B. A11 told, there are 1 2  possible rotation sequences, namely: 

A.22 REMARK In the engineering literature, the 3-2-1 rotation sequence -- 
is referred to as yaw-pitch-roll. 

The 3-1-3 convention is also a popular choice: 



where 

A 

Consider a curve t +- A ( t )  and pass to Q ( t )  = ~ ( t ) - ' i ( t ) .  Put 

A.23 LEMMA W e  have 



1- @ sin 0 sin 'JJ + 0 cos I) -1 

A.24 EXAMPLE Take for Z a uniform ball of mss m and radius R centered 

2 2 at the origin, hence I = mR (cf . A. 13) . Locally, in the 3-1-3 system, 

1 
= - I ( (V sin 9 sin 'JJ + ve cos $) 

2 
2 4 

2 + (v sin cos q - v0 sin $12 + (v cos e + v ) ) 
@ @ 'JJ 

or still, 
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