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INTRODUCTION

My original set of lectures on Mechanics was divided into three parts:
Lagrangian Mechanics
Hamiltonian Mechanics
Equivariant Mechanics .
The present text is an order of magnitude expansion of the first part and
is differential geometric in character, the arena being the tangent bundle rather
than the cotangent bhundle., I have covered what I think are the basics. Points
of detail are not swept under the rug but I have made an effort not to get bogged

down in minutiae. Numerous examples have also been included.

ACKNOWLEDGEMENT Many thanks to Judith Clare Salzer for typing the manuscript

with great competence and dispatch.



§1. FLOWS

Let M be a connected C manifold of dimension n. Fix a vector field X on
on M — then the image of a maximal integral curve of X is called a trajectory
of X. The trajectories of X are connected, immersed submanifolds of M. They
form a partition of M and their dimension is either 0 or 1 (the trajectories of

dimension 0 are the points of M where the vector field X vanishes).

A first integral for X is an £ € C (M) :Xf = 0.

[Note: The set of first integrals for X is a subring C;(M) of ¢ (M) .]

1.1 IEMA In order that £ be a first integral for X it is necessary and

sufficient that £ be constant on the trajectories of X.

Recall now that there exists an open subset D(X) < R X M and a differentiable

function de:D(X) + M such that for each x € M, the map t » ¢X(t,x) is the trajectory
of X with ¢X(0,x) = X.
1. Y xXEM,

LX) = {t e R:lt,x) € D(X)}

is an open interval containing the origin and is the damain of the trajectory
which passes through x.
2. YvteER,

Dt(X) = {x € M: (t,x}) € DX)}

is open in M and the map



¢t,‘x - ¢X(t,x)
is a diffecmorphism D _(X) » D_, (X) with inverse ¢_, .
N.B. If (t,x) and (s,q:x(t,x)) are elements of D{X), then (s + t,x) is an
element of D(X) and

G (5003 (£30) = by (s + £,3),

i.e.,

bg © P () = o, , 0O

one calls ¢X the flow of X and X its infinitesimal generator.

[Note: X is said to be camwplete if D(X} = R x M. When this is the case,
each PpsM > M is a diffeanorphism and the assignment

RxM

-+ kex = cpt(x)

(t,x)

is an action of R on M. Therefore ¢, = idy, ¢_, = ¢ -]

1.2 EXAMPLE Take M =R, X = x° & — then D(X) = {(t,%) € R x R:l - tx > 0}

and ¢x(t,x) = l_'-x_tx' thus X is not camplete.

1.3 REMARK Every campactly supported vector field on M is complete.



1.4 LEMVA Suppose that X is a vector field on M -~ then 3 a strictly

positive € function £ on M such that £X is complete.

A one parameter local group of diffecmorphisms of M is a pair (U,¢) subject

to the following assumptions:
1. U is an open subset of R X M containing {0} x M such that v x € M,

(R x {x}) n U is connected.
2. ¢:U+Mis a € map such that $(0,x) = x and
d(s,9(t,x}) = $(s + t,x).
E.g.: The pair (D(X),dJX) determined by a vector field X is a one parameter

local group of diffeamorphisms of M.
In practice, reference to U is ordinarily ocmitted and the one parameter local

group of diffeomorphisms of M is denoted by {dst}.

[Note: One also drops the appelation “local" if U = R x M.]

1.5 LEMMA Suppose that {q;t} is a local one parameter group of diffeomorphisms
of M — then there exists a unique vector field X on M such that

(DOD ,4) > U,9).

[Note: Per {9 }, X is its infinitesimal generator and v £ € C (M),

f(¢t(X)} - £(x)
(Xf) (x) = Llim
t>0

-1




§2. TENSOR ANALYSIS

Let M be a comnected ¢ manifold of dimension n,

e = & Em
p,g=0 9

its tensor algebra.
O = c"on, thon = o vations of c°
[Note: Here, DOCM) =C M), O(M) = 9" (M), the derivations of C (M) (a.k.a.
the vector fields on M), and "Dg M) = Dl (M), the linear forms on D]' M) (viewed as

a module over C (M)} .

2.1 REMARK By definition, Dg(m is the C (M) -module of all C (M)-multilinear
maps

p
DL X +ee x D B x DR x ee x DTOD » CT(W.

Its elements are the tensors of type (p,q).

In what follows, all operations will be defined globally. However, for
computational purposes, it is important to have at hand their local expression
as well, meaning the form they take on a connected open set U ¢ M equipped with

coordinates xl,...,xn, or still, on a chart.

let T € Dg(M) — then locally

3 y
jeeg o8 a@xtecexd,
1 d Bxl Bxp



where
ipeeed
T+ P .
Jl‘..Jq
i i
=r@Ex L,...,ax P, —3-5— -%-) € W)
ax * ax 4

are the components of T.

Under a change of coordinates, the components of T satisfy the tensor

transformation rule:

-'.I..‘
iy Jq
il it 3 3 . .
=8xl s Bxpaxl”. ax 4 Tll lp
I NS AR iyeredg
Ix ax P ooax 0x E

2.2 EXAMPLE The Kronecker tensor is the tensor K of type (1,1) defined by

K(hrx) = ﬁ(X); hence



2,3 EXAMPIE Iet X,Y € Dl(M) — then locally

X = x]' E‘I (Xl = <X,dxl>)
3%

y=v) &, ) = <«,ax3>)
‘axj

IX,Y] = (xiyji —yhdy o,

1 axj

[Note: The bracket

[, 1:0000 x orony > ol
is R-bilinear but not C (M)-bilinear. In fact,

[£X,gY)] = £9X,¥Y] + £(Xg)Y - g{¥Yf)X.]

A type preserving R-linear map

D: (M -+ D(M)

which commtes with contractions is said to be a derivation if v T

1T

5 € P(M),

DT, & T, + T, & DT,

D(T; 8 T ) =DIy 8T, + T 2

The set of all derivations of D(M) forms a Lie algebra over R, the bracket

oparation being defined by

[Dl,Dzl =D, oD, -D

1 ©Dy =DyeD

1.



2.4 REMBRK For any £ € C (M) and any T € D(M), fT = £ @ T, s0 D(fT) =

£(DT) + (DF}T. In particular: D is a derivation of c”(M), hence is represented

on C (M) by a vector field.

2.5 LEMMA Iet D:D(M) -+ D(M) be a derivation — then v T € Dg(M),

1
D[T(A f---;ﬂp,xl,-..,xq)]

- 1 P
= DT (A ... A ,xl,...,xq}

p N
+ T T(ﬂl,...,Dﬂl,...,ﬂp,Xl,...,X)
i=1 g

a
+ £ il

Ap'x ’.C"DX"..O’X )o
=1 J q

(Note: This shows that D is known as soon as it is known on €701, D-(0),

and Dl(M) . But for w € Dl(M) ’

{Dw) (X} = DlwX)] - wdX),

so functions and vector fields suffice.]

2.6 EXAMPLE There is a canonical identification

o, 0t an),

D]]'_(M) < Hom
c M

namelyT-*'f', where



5.

TX(A) = T(A,X).

This said, let D:D(M) -~ D(M) be a derivation —- then

TE Di(M) => DT € Di(M),

thusitmakessensetoformﬁrandmclajmthat

sl

(DT) (X) = DTX - T(DX) .
In fact,

©T) (X) () = (OT) (A, %)

= D[T{A,X)] = T{DA,X) -« T(A,DX).
On the other hand,

(DIX) (A) - TOX) (A)

DITX(A)] - TX(DA) - T(DX) (A)

D[T(A,X)] - T(DA,X) - T(A,DX}.

2.7 THEOREM Suppose given a vector field X and an R-linear map
G:Dl(M) > Dl (M) such that
S(fY) = (XD)Y + £5(¥)
forallfeC (M, Ye Dl (M) -— then there exists a unique derivation

D: (M) ~ D{M)
such that

DIC(M) = X and D|D (M) = 6.



PROOF  Define D on 0 (M) by

(Dw) (Y} = X[w(¥)] - w(6Y)

and extend to all of P(M) via 2.5.



§3. LIE DERIVATIVES

Iet M be a connected C manifold of dimension n.

3.1 IFMRA One may attach to each X € Dl(M) a derivation

Ly D) - D)

called the Lie derivative w.r.t. X. It is characterized by the properties

fo = X£f, LXY = [X,¥].
PROOF In the notation of 2.7, define 8:D(M) » UF(M) by

8(Y) = [X,Y].

s (fY) = [X,£Y]

fIX,¥] + XEB)Y (cf£. 2.3)

]

(XF)Y + £[X,Y]

(XE)Y + £5(¥).

3.2 EXAMPLE ]'.etTEDi(M) — then in the notation of 2.6,

[XrlfY] = ':E[XrY] r

il

(LT Y)

where

sl

’1{T

~

LXT.



X[T(h LI A xlfo.o X )]
r r L r q

(L) (A e MOy e X )

p .
+ o3 T(Ikl,...,LxA]',...,Ap, LreeeiX)
i=1 9

q

1 P
+ 2 T(J"‘l ,o-o’A 'X preay .;o..,X).
=1 1 X7 d

[Note: If w € Dy(M), then

(Lyw) (¥) = Xw(¥) - w(lX,¥]).]

ILocally,
i1 -]
(Lo L 3
i L
! P
Jl-onjq'a
i, ai,«--i
— X l T R . - .
] Jl. ‘Jq
i ...i
+X3, T P N
'Jl a]z "Jq

[Note: From the definitions,



D@ B
Ly s doa
L}_(ch-:i =xiadxa.]

3.3 REMARK The symbol

il...l
(LD Pj -
1

is usually abhreviated to

qd

i ...i
&T l p. - e a 3 e
317 tig

3.4 EXAMPLE Iet K be the Kronecker tensor (cf. 2.2) — then

Lk = 0.
Indeed,
i _ i - a i
’-xKJ‘xa‘Sj,a X8+ X560,
i i
= -X. + X,
0 ¢] r)

3.5 THEOREM Fix an X € D*(M) —-thenvmevgtm,

0| =4 LT
dt "t ,t=t0 to



[Note: The tacit assuption is that D (X) is nonempty, the relation being
0

valid in Dt (X). Accordingly, if X is complete,
(W]

d * *
TE 0T = ¢ LTl

3.6 EXAMPIE Take X camplete -— then

*
¢tX =XV t.
[In fact,
d * _ *
g 0K = O LX
— * —
= ¢t[X,X] = Q.
* *
But ¢0X = :|.de = X.]

Consider now the exterior algebra A*M - then Lx induces a derivation of A*M:

&(aAB):lXa/\B-l-aALXB.

3.7 RAPPEL 1. is the interior product w.r.t. X, so

X
Tyt A*M > AMM

is an antiderivation of degree -1. Explicitly, v o € APM,

1x0t(X1,...,xp_1) = u(X,Xl,...,Xp_l) .



And one has
= _11P
1X(al A az) = 10 Aoy + {-1) oy A 0o
Properties: (1) y o ly = 0; (2) Ty ° 1y + ly °tg = 0: (3) lewy = x + 1%
{4) leg = flx.
We have

.5(=1X°d+d° 1ye

LR s B S

Therefore

3.8 EXAMPLE v f € C (M),

foa= foa + Aaf A 10
[For

fou = 1ﬂ{da + dlfxc.

f1xda + d(flxa)

=f1xda+df/\10;+fdtxa

X



il

f(1xd + d1x)oc + df A 140

fou + df A 1X0L.]

If ¢:N > M is a diffeamorphism, then

i

¢'* L ¢*
a o
T by

6 .
L0 =1 .9 a.
X o X

If &:N > M isacmmpandifxis $-related to Y, then

* *
@an=LY<I>a

* _ *
¢ 1Xa = 1Y€b e

[Mote: Recall that
X € Dl(M) &Y€ Dl(N)

are said to be ¢-related if

de(y ) = VY EY
@(y) Yy

X5 (y)

or, equivalently, if
Y(f o @) = XE o &

for all £ € C (M).]



§4. TANGENT BUNDLES

ILet M be a connected ¢ manifold of dimension n,

TI'M:'].M + M
its tangent bundle - then the sections U-(M) of TM are the vector fields on M.

N.B. Suppose that (U, {xl,...,xn}) is a chart on M — then

({my) _1U, {ql, - ,qn,vl, cer, H

is a chart on ™.

[Note: Here

(i = 1,-..,11).

<
&

And, urder a compatible change of coordinates,

J ]
a—..{=§?‘f 2 agi °
T g 0T ol
p  _ 3 3
Wt Wt a
where
”l=ﬁv3
=>
~1 1
N3,



If f:M > N is a C map, then there is a commtative diagram

T
™ > TN
S
M > N )
£
4.1 EXAMPLE We have
Ty
™ > ™
Tm l l T
'IM > M »
™

1

[Note: Iocal coordinates on the open subset HEM(('!TM) “ly) of T are as

i_ i i_ i i i
follows: q = q O Myyyr VO EV oﬂTM,dq,dv.]

I.etXEDl(‘IM) - then
X:™ > T

a.ndﬂmox=ic1m. Locally,

x=A1§—i-+Bl§—i-.
aq v



4.2 EXAMPIE Consider the one parameter group of diffeomorphisms ¢t:‘IM - ™

defined by q:t(x,xx) = (x,e X ) (Xx € TXM) -~ then its infinitesimal generator

A € DF(TM) is called the dilation vector field on ™. Iocally, b, sends

1 1
(ql,...,qn,vl,...,vn) to (g ,...,qn,etv ,...,etvn), so locally,

i
A=v .

3
I

Denote by T2M the submanifold of TTM consisting of those points whose images

wnderﬁwa!ﬂTnMareomarxithesane—thenPEDl(m) is said to be secord

order provided ITM c TM or still, if Tn o I = id,. Locally, therefore, a

second order T has the form

i3 i?d
v j_+C T

ag av

[Note: To ascertain the transformation rule for the Cl, write

‘-;3.3__'_618_

L} ¥ Ly J ———— ——
gt ag? ot avd 3 av)
- 3 g
=Vj§-"-r'+ (—-—-.—\71"'3‘7. Cl} L



or still,

4.3 REMARK Suppose thatl"eﬁl(m) is second order —- then an integral

curve v of T is a solution to

i . i .
a _ A v _ 1
g& ~Vreage =€

or still, is a solution to

2 i .
a i
g - ct,
dat’

fraom which the term "second order".

Given an X € Dl(M), let {d:t} be the one parameter local group of diffecmorphisms
of M associated with X — then {T¢t} is a one parameter local group of diffecmor-

phisms of ™. Denote its infinitesimal generator by X' (cf. 1.5) - then X' is
called the lift of X toc ™. Iocally, if

X = X' 3—1—,
%

T i ? P d
X = (X]‘ o T ) —_ 4+ v (Xl. o T ) —_— .
M aql P M vt



Example:

3 T 3
=
Bxl aql

[Note: Let s,IM:’I'IM + TM be the canonical involution — then

ﬂmosm=TnM.

So, vX € Dl(M),

I
]
=

Ty © Spy ° X

"
3

3
Q
&

I
=

= 1y

Sop ° TX € Dltm) .
And, in fact,

smoTX=XT.]

4.4 LEMMA VXEDl(M):

{A,X'] = 0.

4.5 ILEWMA I.etX,YE‘Dl(M) —— then

x',Y'1 = [x,¥1".



Given an X € Dl(M) . define a one parameter group of diffeamorphisms ¢y sTM > TH
by
b 0 V)= %,V + £X ) (V€ T M)
and let X’ be its infinitesimal generator {(¢f. 1.5) - then X' is called the

vertical lift of X to ™. Ilocally, if

i 3
X = }(J- —_—F
Bxl

then

v i ]

M BVJ'

Example:

BV ed

axl avl

4.6 ILEMA VXEDl(er
(X1 =-Xx.

4.7 LEMA let X,Y € D' () — then

x7,Y'] = 0.

4.8 LEMMA LetX,Y_EDl(M) -~ then

i, = xvv.



Let ¢:M » M be a diffeamorphism = then T¢:T™ ~ ™ is a diffeamorphism and

there is a comutative diagram

T
™ — ™
M > M
¢

[Note: Classically, T¢ is called a point transformation.]

4.9 IEMMA let ¢:M > M be a diffeanorphism — then for any second order
T € Dl('IM), (T4}, T' is second order.

PROOF In fact,

T, o (T9),T

Try © TT¢ o T © ()

I

T(my o T9) o T o (7))

i

T(p o Ty o T © ('I'cb)_l

o T o (T{]J)—-l

T © Try

li

T¢ o idy, ('1-¢)"1
=1 o (Te) L

=id']}i'



§5. THE VERTICAL MORPHISM

Let M be a connected ¢ manifold of dimension n,
mE > M
a vector bundle — then T is a surjective submersion and the kernel of

Tm:TE = T™

ig called the vertical tangent bundle of E, denoted VE.

5.1 REMARK Take a point p € E and put x = 7(p) —thenthefiberEx='rr-l(x)

is a sutmanifold of E containing p, hence T pEx c TPE and, in fact, TpEx is precisely

the kernel of T'.'TP:TPE - TxM‘ Iet us also note that TEx can be identified with

EXXEx, 80 VE can be identified with E XME, the latter being defined by the

pallback square

Py
E ><M E > B
E > M -

There is a commtative diagram

T

TE ——
ﬂEl

™

| ™

E — M
™



and a pullback square

thus there is an arrow

TE + E me'

5.2 IFMVA The sequence

0~>VE -+ TE ~E xM‘m-»o

is exact.

Now take B = ™ ~- then a vertical vector field is a section of VIM.

Accordingly, to say that X € Dl('m) is vertical amounts to saying that

T‘ITMGX=0

or still,

X(£ o m) =0vEecTm.

Therefore the bracket of two vertical vector fields is again vertical. Locally,

the vertical vector fields on ™ have the form

Bl'a"'_'i' -
v



3.

N.B. vVXE€E Dl(M) ’ X' is vertical but not every vertical vector field is

a vertical lift (e.g., 4).

5.3 ILEMA IfT € Dl('I'M) is second order, then for every X € Ul(M), the
bracket [[,X'] is a vertical vector field.

PROOF It need only be shown that v £ € ¢ (M),

L (fom) = 0.
(r,x" M

But

L (f o 7))
(r,x" M

Lt (£om}) =L (L Af o m))
FXT M XTT' M

I|

L) o my) = L (Ly(E o M),

which reduces matters to the equality

L (Lp(E o m) = Lp((0) o 1.

Working locally, write

i D
X=Xl—l-.
le
Then
R o0(f o m,)
S | M
(X£) ° Ty = (X ° M) —_—

oq



Lp(XE) o mp

. (f o m,)
=vj§(—§t(xlonM) 5.

3q

On the other hand,

T = d 3 ki o 3
X _.(:-(H.W;M)—-1-+v(xrk m) T

aq vt

L L{LpE o mp)

. o{f o m,)

A(E o 1TM)

Mqu aqi

. . O(f o )
+ 0 o my g M

3Vl

)

g’

. s 3{f o m,)
=VJ(X1°TTM)8. iM
s




[Note: For a campletely different proof, see 5.19.]

Bearing in mind that
vm:'IMme,

congsider the exact sequence
0»TM x, ™M 5 TIM 3 ™ x ™ ~ 0
> M'IM—a- - xM >
provided by 5.2 — then

Ty ¢ M T PR

Il
=

pry o Vv

5.4 LEMMA VXE‘D‘l(’IM),uo\JoXEDl(M).

PROOF In fact,

Moy, @ L 2 v oX

=prlo\)°X

il
=
o
=

Put
SX=nevelX (XED]'(‘IM)).



s:p(my > o

is called the vertical morphism.

N.B. It is clear that

scHm _ (0,0t ).
¢ em

Therefore S can also be regarded as an element of Ui('IM) .

5.5 LEMA Sz=0-'=md

Ker S = Im S,

the vertical vector fields on T.

5.6 I1EMMA Locally,

S(Ala—'i-+Bla—-') :'—Ala—'-—.

3t v vt
[Note: If § is thought of as lying in D] (M), then its local expression is

2—‘— & dql.]
1
ov

5.7 LEMMA Y X € Dl(M),



5.8 REMARK LetI‘EDl(m)-—thenFissecorﬁorderiffSI'=_A.

[Note: The set SO(™M) of second order vector fields on ™ is an affine

space whose translation group is the set of vertical vector fields in Dl('].M) .]

The vertical morphism does not respect the structure of Dl (M) as a Lie

algebra. Instead:

5.9 IEMMA V X,Y € Dl(‘ﬁ“ﬂp

[SXISY] = S[SXpY] + S[XrSY] .
PROOF It will be enough to consider the following possibilities.

® Both X & ¥ are vertical lifts.
®»Both X & Y are lifts.

®X is a vertical lift and ¥ is a lift.
Since 8 annihilates vertical vector fields,

A"

sx’ = 0
sy’ = 0,

which settles the first possibility. Turning to the second,

[sx7,8Y'] = [X',¥’] (cf. 5.7)
=0 (cf. 4.7).
And (cf. 4.8)
~ s[sx’,¥'] = six', ¥l =six, Y1V =0
s[x",s¥") = SIx",¥'] = 5[¥,X]" = 0.



Finally,

s[x’,¥'] = s[x,Y1¥ =0

while

s[sx’,Y'] = s[0,¥'] = 0

six’,sy'] = s[x’,¥"] = o.

1

5.10 REMARK Aanalogously, v X € U (M),

SX = S[A,X] + [SX,A).

By definition,

(LxS) (Y) = [X,8Y] - SIX,Y] (cf. 3.2).

Therefore

SoLXS+LxS°S=G.
Proof:

S((Ly8) (V) + (LS) (sY)

= S(IX,S¥] - S[X,Y]) + [X,8%Y] - S[X,SY]

siX,s¥] - S8[X,sY]

= 0.

[Note: Recall that 82 = ( {cf. 5.5).]



Consequently,
(Ls.ms) {¥) = [SX,5Y] - 8[sX,Y]
= S[X,sY] {cf. 5.9)
= S((LXS) (¥))
= - (LXS) (SY)f
i.e.,
— 5 LXS
Ly =
- LKS o S
5.11 IEMA We have
Lﬂs = - 8.

5.12 EXAMPLE For any T € D'(TM) of second order,

S-'—‘—LﬁS

= - LSI'S (cf. 5.8)

"

—SOLI.S=L1.S°S.



10.

5.13 IFMMA VY X € ‘Dl(M),

L 8 =0.
e

5.14 EXAMPIE If X € Dl(M). and T &€ Dl('IM) is second order, then

sixV,m = x".
Indeed,

L s=0 (cf. 5.13)

(x”,ST]

wn

*

e
0

xV,8)  (cf. 5.8)

X' (cf. 4.6).

5.15 LEMMA Fix T € DF(TM) of second order and suppose that X € D (TM)
is vertical — then
“‘]‘S) (X} = X.

PROOF There is no loss of generality in working with a vertical lift:

[r,sx1 - sir,x"3

(L.S) (x")

[r,0] + SIX',T]  (cf. 5.5)

Il

x’ (cE. 5.14).

li
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5.16 LEMMA FixI‘eD]'('m) of second order and suppose that

(_LI.S) X) = X.
Then X is vertical.

PROOF In fact,

SX = S((L:5) (X))

- “'I‘S) (8X}

% 0'

Therefore X € Ker 8, hence X is vertical {(cf. 5.5}.

Write V(IM) for the vertical subspace of U'(TM). Cambining 5.15 and 5.16

then leads to the following important conclusion.

5.17 SCHOLIM IfT € Dl(TM) is second order, then the operator

LpS:0T (M) > D ()

has eigenvalue +1 with V(IM) as eigenspace.

5.18 I=MMA VY X € Dltm),
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5.19 EXAMPLE Ifxe‘Dl(M) and T E‘Dl('IM) is second order, then

six’,11 =0 (cf. 5.3).

0 (cf. 5.18)

7
i

x',sn

]
—
»
-

~

—
Nl

n

x',8]  (cf. 5.8)

]

=0 (cf. 4.4).

5.20 LEMA For any second order T € DL(TM),
2
(LI.S)
is the identity operator.

PROOF In view of 5.17, (LFS)z is the identity on vertical vector fields,
thus it suffices to show that

T

X (Xe€ Ul(M)).

(L%

To begin with,

(LS) XT) = [T,8X") - SIIX']

Il

(r,x"1 + sIx',Tl  (cf. 5.7)

(r,x’1  (cf. 5.19).
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sX' + [T,X'])

sx' + 8[F,x")

N

X - s[x’,rl (cf. 5.7)

=x' - %'  (cf. 5.14)

+

ir,x'] € (™)  (cf. 5.5)

X"+ (LpS) x") € vimn

T T
(L) (X7 + (LS X))

=X + (LpS) X'y  {(cf. 5.15)

U = x.

Maintaining the assmpt:l.on that T € Dl('I!M) is second order, put

v

1 1
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Then
V21"=V1" Vp e Hp =0
2 F ’VI,+H1-|=I0
Hy = H, Hy o V, = 0

And, as has been seen above,

vrol (M) = V(™).

On the other hand, we call HI,D]' (TM) the horizontal subspace of 0% (TM) determined

by T' ard denote it by Hr(m} . Therefore

e = vemy @ Ho (1) .

5.21 EREMARK Since

[

(LI.S) (T) [r,sr] - Sir, T}

[T,4) (cf. 5.8),

it follows that T is horizontal iff [A,T] =T.
[Note: The difference

[4,T} - T

is called the deviation. It is necessarily vertical:

S({a,T} = T) = 8[A,T] - ST

=A-A

Il
=]
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Here
S[A,T] = - S((LFS)(F))
= A {(cf. 5.8).
Locally,
- h
A=vV —
Bvl
r=vla—-i—+cia—-,-
_ og av
=>
. \ 3 .
a1 =vt i ot E oy A,
ov v ov
50
[A, 7] =T
=
iscdd 5 .
V;;f—zc (j=l,...,n).]
GivenXEDl(M);PUt
Xh=Hr.XT,
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3 &7 - ")

5 &+ x,m,

and, by definition, X is the horizontal lift of X to ™. Locally, if

i3
X=X =
axl
and
g v
then
i 3 .h
B = oo ) Enh,
where
3
(§'-1-)h=§—-f+-]2:-—-i- a—r.
9% 3q W ave
5.22 REMARK In general,
Xszv-l—Xh.

To see this, observeﬂxatvaCw(M),

£V = (£ o nM)x"

(E0" = (£ o m)x",
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hut, generically,

()7 2 (£ o 'nM)XT.

[Note: locally, matters are manifest.)

5.23 IBMMA Vv X € ‘Dl(M):

PROOF We have

X = %- sx" + s(x’,T1)

SIX',T1)  (cf. 5.7)

]
o
=
+

Vi X)) (cf. 5.14)

l
[
=
+

5.24 REMARK ILet

o
|

_ 1
S + 3 (LI.(LI.S)) ) V].'"'

Then v X € Dl(M),
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5.25 LEMMA Letx,Ye‘DlLM) — then

sty = x1".
[Note: In general, [X,Y]h # [Xh,Yh] but
stz - )

S[X,Y]h - S[xh,Yh]

x,v1V - s, ¥ (cf. 5.23)

"

x,v1V - 1x,v1’

=0,

x,v1® - oYY e vim .

There is one final point, namely for any diffecworphism ¢:M - M,
(TP}, © S =8 ¢ (T¢),.

Take now a T € SO(TM) — then (T¢),T € SO(M™M) (cf. 4.9), so (cf. 5.8)
A= 8T = S(T¢) T

= (T$),ST = (T¢) ,A.



§6. VERTICAL DIFFERENTIATION

Iet M be a commected ¢ manifold of dimension n,

s:0t(mo + ot ()
the vertical morphism -~ then S operates by duality on A*™M, call it S*, thus

S =f (f € C (™M)

S*a(Xp,.ee X)) = 48Ky e SK) (0 € APy |
[Note: ILocally, '
st(agl) = 0, s*(avl) = aqt.]

N.B. VEEC (MM,

aq IV
=
S* (Af) = -?f-i- aq*.
v

Given X & D (M), define 1,5* by

(IXS*) {a) 1X(S*a) .

6.1 LEMMA We have

IXS*-'—“S*o'L .



PROOF On elements of C”(TM), this is obvious, so let ¢ € APTM (p > 0) —

then

(148%) (@) (%) ove X )

= 1X(S*0’.) (Xl' LN} pr-l)

*
S G(X;le - e 'Xp—l)

]

C!.[SX,SXI, LI ’S}{P_l)

(sta) (lel' “rs !S}{P_l)

= s* (.LSXQ) (Xlr L N 'Xp_l) -
[Note: Therefore

X € Ker 5(= V{IM)) => 1,8* = 0.

In particular:

1,5*% = 0.]

s5.£=0 (fecC (m)

ard for p > 0, put

P
(6500 (X ,...,}&)) = i_E.l a(xl,...,sxi,...,xp).



[Note: ILocally,
i, _ i, _ . i
Gs(dq ) =0, Ss(dv ) = dq .}

N.B. V £ € C (™),

af = & agh + X gt
g v
=>
of i
8. (df) = —=dqg .
[mw: GlObElllY;
Gs(df) = S*(df}.]
6.2 ILEMMA We have
- cSS e 5% = 0
8% o GS = 0.,

6.3 LEMA Y X € DF(mM),

1Xo 65—65°1X=1SX.

PROCF On elements of C (M), this is obvious, so let a € AP p >0 —

(1, (80)) (X rovn s X

p-l)



- {SS(IXOL) ) (Xlr e rxp_l)

(GSU) (X;Xlr P ;Xp_l)

p-1
- _Z (IXOl) (Xlrooorsxir-'orxp_l)

i=l

p-1
- G.(SX;X}_;...,XP_I) + izl G(X,Xl,...,sxi,...,xp_l)

-1

- .2 G(erlroocrsxif""fxp_l)

i=1

I

a(SX;X]_:---r )

= (1sxg)(x ,...,Xp_l).

6.4 ILEMRA We have

68 o La - Lﬂ o §

n
O
.

Define now



[Note: Locally,

i, _ i, _
ds(dq ) =0, ds(dv } = 0.}

N.Bo V f e Cw(lm) ¥

af = % agt + gt
aq v
=>
dsf= (GS od-doe Gs)f
= Gs(df)
of i
= == dq .
Bvl
[Note: Globally,
de = g*{df), ds(df) = - d{s*(df}).]

6.5 LEMMA ds is an antiderivation of A*M of degree 1.
PROOF Write
dg = [6g,d]
and observe that &g is a derivation of A*™M of degree 0 while @ is an antideriva-

tion of A*M of degree 1.

6.6 IFEMMA We have

dods+dsod=0.



PROOF In fact,

dods'l'dsad

=d o ((Ssod—docSS)—l-(fSSod—dOGS)°d

=doﬁsod—doﬁsod

6.7 IBMA v £ ¢ C(T™),
% =
GSdef 0.
PROOF Bearing in mind that the IHS is a 2-form, 1etX,YEUl(’IM) —~= then

(8ds*df) (X,Y)

H

(ds*df) (8X,Y) + (4s*df) (X,SY)

LSX( (S*df) (Y} )

- L {((S*af) (SK)) - (S*df) ([SX,¥])
+ Ly((*af) (57))

= Lo ({8*af) (X)) ~ (8*df) (IX,5Y])



It

Lsx(df(SY))

- L (ags®) - af(sisx, YD)

-+

L (G (%D))

- Loy (GE(SX)) - Af(SIX,SY))

Lsx“s&:f) - Lg [SX,Y]f

- Loyl - Lgix,em1f

1l

((8X) (sY) - S[SX,Y]

- (8Y) (X} - S{X,sY])f

([sX,5Y] - s[sX,Y] - S[X,sYDE

0 {c£. 5.9).

(Note: Recall that % = 0 (cf. 5.5).]

6.8 LEMMR We have



But

af =4a4d..¢f

= dSS*d.‘E

= (as od-4ado Gs)s*df
= §AS*Af  (cf. 6.2)

=0 (cf. 6.7).

And then (cf. 6.6}

2
ds (A} ds (dsdf }
= — dS (ddsf)

— 2
= a{d;f)

6.9 LEMMA We have

*
SOdS

OanddSOS*=S*0d.

Moreoever,



(1& o dS -Mﬂ.S o 1ﬁ)f

= 1&d5f

= 1‘&8*5

=90 {cft. 6.1).
(1& o dS + ds o 1&)df

i

l,ﬁds(df) + ds(&f)
1&(- a(s*(df))) + s*d(L,f))

(- L + dlﬁ) (s*(af)) + Gsd([.&f)

A

- Lﬁﬁs(df) + GSLﬂ(df)

(_65 ° La - Ly ch) {df}

Ss(df) (cf. 6.4).



lo.

6.11 REMARK - The analog of the identity

ly=1xed+deny

per dS is the relation
Loy + [8grlyl = 1y ° dg +dg © 1ye

6.12 KEMARK Iet
T eHum _ (0N(mD,0N(m).
C (M)

Defining&Tintheobvimsway, put

dT=€5T°d—do5T.

dOdT+dT°d=0
but, in general, da = 0. On the other hand, v X € D (M)
byedp=ap° k=9
E.g.: Take T =S, X = A — then

Lf'_\.odS_dS

=d {ef. 5.11)

4 oLa-LAod =d (cf. 6.10).
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[Note: If T is the identity map, then

6T0t =pa f{(a€ APy .

Therefore
Gro = e = déna
= (ptl)da - pdo
= da,
so 4 = d.]

The image S* (A*MM) is called the vector space of horizontal differential

forms on ™. It is ds-stable {(cf. 6.9).

N.B. Vv f &C (DM, dgf is horizontal. In fact, d f = S*(df).

6.13 LEMMAR Suppose that o is horizontal —— then

PROCF Write o = S$*8 — then

o= I&S* =08=0 {cf. 6.1)

)
R
i

SSS*B 08=0 (cf. 6.2).

Iet o € Al'm — then a is horizontal iff locally,
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1 1 i
= ai(q r-uranv :---:Vn)dql-
So, V€ AlM, (nM)*m ‘is horizontal and

dS( (wM) *») = 0.

6.14 LEMVA Iet o € A'TM — then o is horizontal iff a(X) = 0 for all

vertical vector fields X on ™.



§7. THE FIBER DERIVATIVE

Iet M be a connected ¢ manifold of dimension n,
ﬁﬁ:T*l‘l > M

its cotangent bundle -—— then the sections Dl(M) of T*M are the l-forms on M,

i.e., AlM.

N.B. Suppose that (U,{xl,...,xn}) is a chart on M == then

((Tl'ﬁ) —lU.r {qlr o :anplr coe :Pn})

is a chart on T*M.

[Note: Here
—_ ql = Xl o ,n.l.fi
(i = l’ooa’-n).]
]
pP:. = —=
R Bxl

Prz
™ xM T*M > M
Prll 1“151
™ > M .



Then one can identify hA'™ with the sections of pr, thus there is an iscrorphism

a+Fa=pr2oafranhnlmtothevectorspaceoffiberpreservingcmfumtions

™ + T*M:
FOL
™ > T*M
Ter lﬂ;‘d
M M .

[Note: For more details and a generalization, cf. 13.4.]
Locally, if

then

Let 0 be the fundamental 1-form on T*M,

7.1 ILEMMA Vaehf\l'lM:

*Q =
FGE) Ole
[Locally,
i
Q= pidq R
S0
F*(p-dqi) = (p, o F )d(qi o F)
o i o o



Given an £ € C”(IM), the 1-form d f is horizontal: dgf € nAlmM.  put

Ff = Fqg— then F£:™ - T*M is the fiber derivative of f. The correspondence
S

f-»Ffisli.nearande=ngffEIhECm(M): f-g=homw,.

M
Iocally,
af = % aq,
v
thus locally,
q o Ff = g*, pioFf=?-f-lr.
v

[Note: Invariantly, Ff sends TM to 'I'}*{M via the prescription

=4
FE(x,X) (¥) = i £(x,X, + t¥) =0 (XY, €TM.]

7.2 REMARK Ff is fiber preserving but Ff need not be linear on fibers.

[Note: Ff is a diffecmorphism iff Ff is bijective on fibers.]

Bach X € Dl(T*M) . i.e., each section X:T™M > TT*M, induces a fiber preserving

c” function FX:T*M -+~ T, viz. = Tm o X. To agiven H € Cm('I‘*M) , there

Fx

corresponds a vector field XH on T*M characterized by the condition 1, @ = - dH.

%y



Put FH = FXH — then FH:T*M -+ ™ is the fiber derivative of H.

[Note: Locally,

_ O 3 _3H 3
% = 3p.

4 3ql an. api

Therefore, along an integral curve of XH, we have

dg’ _ 0H_

dt Bpi

®;_ o

at i°
o

the equations of Hamilton.)



§8. LAGRANGIANS

Let M be a connected ¢ manifold of dimension n — then a lagrangian is

simply any element L € Coo('IM) . This said, put

mL = deL.

N.B. Fram the definitions,

(FL)*0 = (F, . )*0

= dSL (cf. 7.1).
Accordingly, if @ = d©, then
- —
(FL)*Q = wL.

[Note: Recall that the pair (T*M,) is a symplectic manifold.]

3.1 IFEMMA We have
6SmL = 0.
PROOF In fact,

- 6SLuL = - rSdeSL

dsdde {cf. 6.6)



= dSSSdL (cf. 6.9)

dS(GS °cd~=de 68)1-

i

0 {(cf. 6.8).

Let

Ker wy, {Xe Dl('Il\'I}:txmL = 0},

‘I‘henuiissymplecticiffKermL= 0.

8.2 LEMMA o, is symplectic iff FL is a local diffeomorphism.

PROOF If w is symplectic, then

FL: (mr%) - {T*M, Q)

is a canonical transformation, hence is a local diffeomorphism. And conversely... .

L is said to be nondegenerate if W is symplectic; othexwise, L is said to
be degenerate.

8.3 EXAMPIE Take M = R — then

T Lig,v) =

I
[ie,

_ Li{gw =

|
<



are both degenerate. For

soineithercase,wL=0.

8.4 EXAMPLE let g be a semiriemannian structure on M and take for L the

function

(x,X) > % g, X X)) X €TM.
Then

FL(X,XX) (X'Yx) = gX(XX,Yx) (Yx € TxM) .
I.e.

FL = gv .
thus FL:™ > T*M is a diffeamorphism, so L is nondegenerate (cf. 8.2).
[Note: Suppose that X € Dl(M) is an infinitesimal isawetry of g, i.e.,

Lxg = 0. Working locally, write

L(ql,...,qn,vl,...,vn) =% (gij ° wM)vle.

T. _ i
2XL = (Xagij,a ° TI'M)V v

T4, 3 1T,
+ (gij o T‘-’M) (X v)iv' + (gij o 'ITM)V (X'v')

= o i3
= (xagij,a ’n’M)V W

+ (gij ° TI'M) (vk}(]"k ° TTM)VJ + (gij ° TrM)vl (vzx? 2 ° Ty



= (Xagij,a s TFM)VI'VJ

i3 i3
+ (gkj ° 1TM) (X}fi o ﬁM)vvJ + (gi£ ° TTM) (ij ° 1TM)V v

Il

iy
(Lgys o MPV'V

Therefore

X'L = 0.]

There is a local criterion for nondegeneracy which is useful in practice.

8.5 ILEMMA L is nondegenerate iff for all coordinate systems {ql,...,qn,

1
v 'oto'VI]}'

everywhere.
PROOF On general grounds, W is symplectic iff mIL" is a volume form. Locally,

oL i
=..--.i_dq R

8
L oy

hence locally,

w, = L dgtrdg’ + o dvirag?.

aq v st



But this implies that

W =t n det —?-:-L—F ‘dvln---/\dv“x\dqlz\---,\dq“,
av avJ
trmsmgisavolmrefomiff
det —Bizé—r # 0
v v o

everywhere.

8.6 BEXAMPLE TakeM=13nanddefineL:§2n+£_{by

n i, 2

L(qlr---ranvlyo-GrVn) = 'E]_ 4 "('YZL - V(ql;---;qn);
i=

whereﬂmemiegareconstantsandvecm(gn) — then
[

BleVJ _

so L is nondegenerate iff m z [),...,runn z 0.

Given L, put

E'I.=AL—L.

Then B is the energy function attached to L.

8.7 IEMMRA We have

Ly = dsEL.



PROOF Since BL is horizontal,

1,6

NS 0 (cf. 6.13).

Therefore

1 ﬂwL 1 AdeL

il

(Lﬁ—dﬂl 8

A8y,

= L5

= Lydgh

do)L (cf. 6.10}

@g o Ly - dg

ds(a - 1)L

dSEL.

Tet

D = {X e Dl('IM):lxwL = - dEL}.

Then L is said to admit glcobal dynamics if D is nonampty.

8.8 EXAMPLE Take M =R (cf. 8.3).

*If L(q,V) =g, thenw =0, B =-L(AL=v 3 = ), thus D is empty.



®If Ligq,v) = v, thenw =0, B =0 (AL=v &%= v), thus D, = 7' (&)).

8.9 IEMRA IetXEDL—*thenlxn.i=0.

PROOF One has only to write

L = O = @480 ay
=0+d(—dEL)
= 0.

8.10 REMARK EL is a first integral for any X € DL' Proof: XEL = <X,dEL> =

8.11 IEMMA If L admits global dynamics, then

<Ke.'|'.'LUL:_dEL>=0c

8.12 1LEMMA If L is nondegenerate, then L admits global dynamics: 3 a

{unicue} I‘L € Dl('IM) such that

o, - OB

L

and l"L is second order.

PROOF The existence (and uniqueness) of I is implied by the assumption that




wr is symplectic. As for the claim that I‘L is second order, to begin with

Therefore

But

1
L

Sgtp wp

L

'A%

r. ° S

=821, =1

(cf. 6.3).

S L. ST.

L L

(1 o &, -1 )
r,° % srL“’L

-1 (cf. 8.1).
SFL“’L

dBE (cf. 8.7)
(cilS +d e (5S)EL
85y,

- ‘Ss‘I‘L‘“L

1 »
sl"L“’L

Since W is symplectic, it follows that

S]"L

thus FL is secornd order (cf. 5.8).

[Note: Working locally, write

A,

i3

Bql v

i



Put
W) = W01,
where
W..(L) = _E.Lz':‘. ]
33 avlavj

Then W(L} is invertible (cf. 8.5) and

¢t = mw ™ (- V9.1
’q ijaqk

E.g.: In the setting of 8.6, suppose that m = l,...,mr1 = 1 -~ then L is
nondegenerate and

i3 oV 3
P = Vv — = T T .
L 3 ql Bql 3\71

Here is another illustration. Take M = R, fix nonzero constants m,g,f and

put
m ,2 2
Lg,v) -—f.v + mgf cos qg.
Then
2, L .
5%~m£,ﬁ=~nlg£smq

=2

c= mt% ™} (- mgt sin q

"

—%sinq.
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8.13 IEMMA If T is seocond order, then for any L,

AL = "I‘eL’
PROOF We have
18, = 6, (D)
= dgL(T)
= §*{dL) (T} |
= dL(ST)

dL(A) (cf. 5.8)

=ﬁ]'_,.

8.14 IEMMA If T is second order, then

1y, = - dEL <= LI‘BL = 4L,

PROOF Assume first that LI‘BL = dL —~ then

‘l“deL

= “'I' ~do 1I.)8L

I.PLIJL

= LFeL - dlI.SL

dL. — dAL  (cf. 8.13}
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= d(l -~ AL
= —dE:L.
On the other hand,
iy, = = B
=
“‘I‘ -doe 1F)BL = d(L - AL)

LI.GL - dAL = dL, - dAL  (cf. B.13)

L6 =dL.

SupposethatI‘EUl('IM) is second order — then T is said to admit a

lagrangian L if

"L
or still,
lpy == dEL
[Note: The set of L for which LI'BL = dL is a vector space over R.]

N.B. Locally,
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3L i aL i
L6 = L. (=da + L.{dg™)
L r 3v1 Bvi I
oL i oL i
= [ (—dg” + — dl{g (I'})
T 3vl 3vl

i}

oL i, 9L i
T v avt

L 3L i
0=L08 =-d4dL= (L.(-=) - —ndg
L Favl aql

Lr(a_ll"i") “§%= (i=1'.o.'n}o
o og

Write
T=Vj§_l'+cj——-r
W

and let vy be an integral curve of T so that

a( c'(il(t))) = vj {y(t))

a3 (v ) _ 3
e = I yeey).

d 9L

()
At A Iy (e
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’L |

avtag) 'Y (t)

& @)

5L

a4
e WL S

3L

Bvlaqj

v (v (£))

Y(t)

N A (v (&)

a
Bviavj ‘Y (t)

oL
(——)
Bvl

Lp

vty

I.e.: Along vy, the equations of Lagrange

4 JL oL .
—_— (—-—-_—) ——— I 0 (l= 1,..-;n)
dt vt aql

are satisfied.

8.15 ILFMMA A second order I' always admits a lagrangian.

PROOF LetcoEAlMa.mip.lt

= *,
L 11..(1TM) w.

8L=dSL

= *
dSII‘(TTM) W
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Locally,
w = a..dxi
i
=>
_ i
(my) *w = (a; o mdg
=>
1F(wM)*m = (ai o ‘ITM)Vi
=
o{1.{m ) *w) ,
. '™ i
A in(m,) *w = dg
S T'M EW:L
_ i
= (ai o 'rrM)dq
=
BL = (WM)*w.
But
dL = d1I,(TrM) *w
= (L].. “p e d) (TrM)*w

LI‘ (TrM) *y = 1 1..c'i (1TM) *5

= LI‘BL - 11-.(1TM) *duw
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LI‘BL -dL = 11..(1TM) *duw,

S0, if w is closed, then I, is a lagrangian for T.

8.16 REMARK Fix a second order T' —~ then the proof shows that each closed

1-form on M gives rise t0 a lagrangian for I'. Lagrangians of this type are termed

trivial and there may be no others. For instance, takeM=E_tzan:'lconsider

Pevt2oals
aq oq v v

d 3
r @+ o+ dd .

Then it can be shown that I does net admit a nontrivial lagrangian.

8.17 EXAMPIE Take M = R® and let

o d

L=2 (vh2+ 9D
is a lagrangian for T, necessarily nondegenerate (c¢f. 8.5). Now fix real numbers

a,b,c and let
L = ']2; (awh? + 2c(w'v?) + bH ).

We have

v oV
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= (av’ + ovilagt + (v + ovh)dg?

=>

@ = (advh + cavd) Adgt + (bav? + cdv) Adg’

=>

ooy = - (a.u:'ivl + c&vz)dql(I‘) - (bdv2 + cdvl)dqz(T')

[

= — (av! + evd)avl - (v? + ovh)av®

= - dE .

Accordingly, L is a lagrangian for T which, in view of 8.5, is nondegenerate iff

ab-czzo.

8.18 EXAMPIE Take M = R’ and let

I‘=vl§.._l-|-v2.a_§—qlET—q2§_§'
e aq ov oV
Then
L, =3 (H2+ D% -3 (h? + DD

1 =3 (h%- @dhH -1 adh?- @D

are both nondegenerate lagrangians for T.

[Note: Another possibility is

12

L=vv —qlq2

.]
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8.19 RAPPFL A l~form w € A]'M determines a C function w:T™ - R, viz.
w(x,Xx) = wx(Xx) (Xx S TxM) .
~ ~ ~ WM w
[Note: Forusebelcm,observethat&m=marﬂFw=wo1rM('IM—-—-+M+T*M}.]
8.20 LEMMA Suppose given nondegenerate lagrangians L, L'. Determine

r.,rT

1 = =
L L.(:‘D('IM)perB.lZ——tha‘le-mL.andl"L—I’

Lo iIFf L' =L + o + C, where

w € ﬁlM is closed and C is a constant.

PROOF Assuming that L' = L + & + C, we have
EL‘=AL‘-L'

AML+0+C) - (L+a+C)

AL ~L+ (A - @) ~C

AL -L+ (0 -0 -C

"

EL-C.

Next.,

(FL') *Q

e
1

n

(FL + Fo)*Q

1

(FL + @ o TTM)*Q

=W + wﬁ(w*fz) .
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w* = w*do

= dw*o

= dw {(cf. infra)

= 0.
Consequently, Wy = Uy But
- e aEy,
o = T A

Since E.=E -C it follaws that

1 =1 '
PL‘“L FL.‘“L
or still,
1 = 1 -
rL“‘L PL,“’L

Therefore I‘L = T

e The arqument in the other direction is similar.

N.B. To check that w*0 = @, it suffices to work locally:

9 i
= <—]-_-,w>dx

ax

Il

(pi o w)dx
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|

w*0 = w*(p idql)

(pi o w)d(qi o @)

(pi o WXt o 17;1 ° )

It

(pi ¢ ) ax*

=w.

Given o € A°TM, define S_ja € ogcm by

(SJ a) (X,Y) = a(SX,Y).

8.21 ILmMA v X € DF(m),

L o) = (LS Jo + 5] (La).

Assuming now that L is a nondegenerate lagrangian, we have

Lo Slw) = (L. S) Ju, +81(L )
r,Gduy) = (L 9 Juy r

(LTLS) _IwL {(cf. 8.9).
On the other hand, according to 8.1,

GSwL = (.
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Therefore S_[mL is symmetric, hence the same is true of LF (s mL) or still,
L

Of (L; ) Juy: S0, VXY € otimy,

g ((Lp 8) (00 + ay (4, (Lp ) (D) = 0.

Ard thig leads to the following conclusion.

8.22 IEMMA Vv X,Y € Dl('IM) '

- “’L(VP X,Y) + LuL(X,VF Y} = wL(X,Y)
L L

mL(HT X,Y) + “’L(X'Hr Y) = LuL(X,Y)
L L

V. X,Y) = (X,H. Y).
Y, T i T,

Consecuently,

il
o

- V. X, V. Y) = w (X,H., o V_,Y)
@, T Wy, I I

M X,H.Y) =w (V. o H.X,Y) = 0.
“’LHTL r.? = et T

N.B. X and ¥ are vertical iff

X=V, X
PL
Y=v,. Y
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So, v X, Y € V(TM),
1xmL(.Y) = 0,

which implies that oy is horizontal (cf. 6.14).

§.23 LEMA Given a horizontal l-form q, define X_ € oHem) by ly Uy = o=
o
then Xa. is vertical.

PROOF VvV Y € Dl('m)f

wL(VI'onc'Y) + mL(xa'VI'LY) = mL(Xa,Y)
or still,

w (VI“LXG'Y) + a(VFLY) = W (Xu,Y)

or still,

“’L(Vr Xa,Y) = wL(Xa,Y) (cf. 6.14)

<
4
u

>

I.e.: Xa is vertical.

Therefore the map

X gy,

fram vertical vector fields on ™ to horizontal l-forms on ™ is a linear iso-
morphism.
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A lagrangian L is nondegenerate provided FL is a local diffecmorphism {(cf. 8.2)
but there are important circumstances when FL is actually a diffecmorphism (cf. 8.4).

[Note: Take M = R and let L{q,v) = e’ -- then L is nondegenerate but

E'L:E2 > 52 is not surjective, hence is not a diffeamorphism.]

8.24 LEMM Suppose that FL is a diffeomorphism. Put H = E o (FL) & == then

FH:T*M - ™
is a diffecmorphism and FH = °L) L. One has

L) Ty, = X4
(FH) X, = T.

Furthermore, the trajectories of TL are in a one-to-One correspondence with the
trajectories of XH arnd they coincide when projected to M.
[Note: Explicated,

(FL), [y = TFL o T, o (FL)

TFH © X, o (Fm) L

(FH) , X,

TFLOI'L=XHoFL

TFHOXH=T' o FH.]
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1ocally, FL(q ,...,q ,v poas vn) is given by

i _ i _ 3L
q °m-qrpi°n“‘gv'§°
To calculate H in local coordinates, write
H:ELO (FL)-l
=AM o (FL) Y -1 o (L)L
= &y oy lope 7t
1
o
=(&o(m)%@%w(m))-Lo(mfl
v

=p v o P ~Lo (L)

Abuse the notation and let v&

[H|

R then, since q; =q; ° (FL) ~, we
have

1
H{g ,.. -:qn:p]_: .. -rpn)

i 1 n_1 n
=in -L(q ’.-o'q 'V ,oo.'v)f

the traditional expression.

APPENDIX
The equations of Lagrange

d AL oL .
aE(-—-—-'-) "-"——I'--O (l—l,...,n}

ve o agt
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are tied to the q:L and the v© but there are situations where a change of variable

is advantageous.

If (U,{x,...,x}) is a chart on M, then
( (TfM) -lUr '[qlr “en ranvlr “on rvn})

is a chart on ™. In§4,wetookvltobedxlviewedasafunctiononthefibers,

~

i.e., vi = dx" (cf. 8.19). However, instead of using the dx , we could just as
well work with any other set {al,...,an} of 1-forms on U, say

ol = fijdxj (fij e cw)),

subject to the requirement that

1 n
U A L. AO 20

which forces functional independence of the o> (= (flj o wM)vJ) )
N.BE. Put

=1 _ ~i
v o

Then in classical teminology, the v are velocities and the v are quasivelocities.

Define functions flj e c® W) by

Then the matrices [flj] and [flj] are inverses of one another.

A.l LEMMA We have
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. ] (]
—— (f . T ) —_—
v + M

3 = 3
— = (f .9 T ) —_—
3\7'1 L M v

A.2 EXAMPLE Iocally,

ot
- 3
= (fj © TFM)V (£ i ° -nM) 3";}{
- I
= v =,
v
To minimize confusion, let
g =q.
Then
((my ", G ... @
is a chart on ™.
A.3 LEMA We have
3 ] 3 <j fk £ 3
— = — + (— (£, o m))( o MV e,
7 aqt s & M T ET MY )
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A.4 EXAVPLE Take M = R and suppose that o = ¢dx (¢ > 0). Let F € ¢”(R) —
then

F((_]r‘;) = F(Cirfi’(q)V) ¥

SO
aF oF ] 1 aF
— ==+ = Polv =)
53 a3 ¢ ov
—OF _¢' . 9F
5] " b (vav).

E.g., consider

-— 1,5 2
FiG,v =5 (;‘(’T))
q

i
N

(@2

X1 [%
i

o] -

B>

> @av? 2 0@ o1 )

il

A5 IFMRA We have

3 a ]

[_"""‘t

v vl

]
o
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Now put

i i M Iﬁk
A.6 LEMMA We have
%, , %51 =0
Define functions
Yy € )

- @ sy _2 :
¥i; = @, o my @, o my (a&m (£, o 1 = (£ o m).

A.7 LEMMA We have

N.B. The set

- = 2 3
{X ;...;X r _"'_'_;oaog T
1 N avl E)vn
is a basis for
]_ -—
ot ((mp o

A.8 EXAMPIE Take M = 53 and use spherical coordinates:



Iet
Then
i
£,
{ J]
and
ra
[ J]
Therefore

i

]

r {r > 0)

8 (0 <8 <m

28.

¢ (0 < ¢ < 2m.

»i

|

0 0
r 0
0 r sin ©
0 0
1/r 4]
0 1/r sin 6
3
a&l
13
r 3(32
1 ]
r sing =3 °
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% .R]=-L%, @.R]=-L%, ®.%1=-
Consequently, the nonzero Y]-(- are

1]

2 __ 2 __1
Y12 Yo1 r
3 _ .3 __1
3=~ Y= 7%
3 __.3 __cotb
Y237 Y327 T T

A.9 EXAMPIE Take M = S0(3) and let

q =¢

q2=9

3
g =y

be the local chart corresponding to the 3-1-3 rotation sequence (see the Appendix).

Put
- =1 . .
v =v¢smesmw+vecosw
P =v sin 8 cos | - v, sin ¥
$ 8
P =v cosb+yv.
_ ¢ P
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Then
" sin®siny cosy 0
[fij]= sin 8 cos ¢y - siny 0
_ cos 0 0 1
and
o sin y/sin 9 cos Y/sin 8 0
[fl'j] = cos P - sin 0
- cos & sin Y/sin & - cos 6 cos Y/sin 9 1
Therefore
T %, = (sin y/sin 8) 21+ cos ¢ 25 ~ (cos @ sin y/sin 6)
oq 3g
_— . 3 8 .
X, = (cos ¥/gin §) —= = sin Y —= - (COs & cos Y/sin 6)
2 =1 -2
3q aq
= ]
X, =—=.
3 =3
_ og
Here
[Xl’XJ] Eljkxkf
thus
kK =¢
Yij = %isk°

Suppose that L € Cm('m) is a lagrangian.

[+ R R ¥ Q2
&y
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A.10 LEMA Locally,

oL 1 -
g, = — (f e T )dqj
L avl ] M
PROOF In fact,
BL = dSL
= S*(dL)

]

#(Zragt + Loy

5q v
= L gragh + Lo sravt
g 'av
=L gr(agh + L s
=1
aq v
3L i j
= — S¥(A{(£7, o m,}Vv"))
3vl ] M
=L sx@et. o now + (£l o m)avd)
aot 3 M 3 M
A
3El, oy L set. o my .
= afi $* (—Lg M ad® + —31(_” wIavk)
IV g v
oL '
+ 22 s £ o e
o= (( 3 TFM) )
) P A j
=L (£ o nysr@nd)
e J M
3L i

J
j ° TI‘M) dgq
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_ oL i =5
-g{(ij'lTM)dq.

[Note: Obwiously,

(flj o mPdq = mhia').]

A.11 LEMMA Iocally,

LuL = (fkj ° TTM) 32_1_' dqj

Bq Bv

13 3 L a5t A af)
+-(—;:"'(fk.o'n)-—':"(fk-°1T))“—-dq A g’
2 Bql ] M aq] 1 M 3\_!k

2
+ (fki ] '-'TM) mdvj A
[Note: Write

T oAy = (B, o mymah)

I

il

a3

..j % 0

i ‘a—-f < —?——-r- = _B..I_".... _i =]
: G (fkj e (£ o m) gt A o

ov

1 = i
=5((meOTrM)(fl£°1TM)(§gi- (fkjonM) - (fk o'I'T))) oL

5= o M

=-:25 :E-B-L—kTr*(oc) A?T*(am) ]

n*(a } A n*(am)
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If T € S0(T™M) is second order, then

=i -3 9 =i 3
F=(F. om)V &+t 2,
1M F v
l.e.,
F=\_fj}_{i+(—:ia?.
.avl
Indeed,
- - 3
ST = (€%, o 5 (B, o m)W 2o
1 M 3 M 3vk
=F 2 _
553
= A (cf. A.2).

Assume henceforth that L is nondegenerate. Determine I‘L per 8.12 =~ then I‘L

is second order and along an integral curve y of T, the equations of lagrange

d AL, _3L_
dt Bvl 3 q].

=0 (i=l,...,l’l)
are satisfied or still, passing from velocities to quasivelocities,

d L i % ;
—_— (—_r) -V'Y.. -T=X.L (3 = l;o.-;n)t

A.12 EXAMPIE Take M = 32 and use polar coordinates:

qg =r (r>0

G| (0 < 8 < 2m.

0
il
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Put
\-rl=vl
=2 22
_ =Tr Vv .
Then
- . -
i
£f7.] =
[ j]
and
- 0 -
=
{ J]
Y

In cartesian coordinates, let L be

T2+ @ - visleh
which in polar coordinates is

Ld ' ®d - ve

or, in terms of ql,qz,\-rl,;rz:

1 ,-1,2 1 (V) =1
1 @2 100 _yagh.
2 2 (ql)Z
Write
- -2.2
r=l@h?s L &7
@h?

F==-V' (=-a/dr).
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Then the equations of motion are

d ,aT =ik aT
E(_—_ vylak X1T+F
d -1k 3T
—-—( 5 = V] =XT+0
_dt V 123vk 2
that, when explicated, reduce to
- - -22
{'71= (‘_7113 +F(al)
()
_62_00
Therefore
. -2 2
=i= ™) =1.. 93
I, =X, + (te + F(G@)) 2 .
L * (q1)3 Bvl
'Ibreturntoql=r,q2=6,vl=f,v2——e,mtethat
~ - 6 5
X =w "2y
(ct. A.3).
= 1 9
X, = o e
_ 2T 23
Accordingly,
B _,00.
a0
+(réz+F(r))a—.
ar
_ =3 " _
-r§E+eae+(rB +F(r))~—- 2

ar

rG
r

36
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A.13 EXAMPIE Take M = S0(3) (¢f. A.9). Suppose that locally,

L=3(&h? + A%+ @5,

where the I, are positive constants — then here

d oL, =ik oL _ .
E(T)-VY'_:E_O (3_11213)

v B 39

or, equivalently,

=3
A
<
el
| 4
l...l.
[=¥J
%
]
o
|

But

Therefore

. {(1.-1.)
\-Il 23 ‘72;3

b 3
1 =351

<l
[N ]
I
<l
<

I 172°

[Note: These relations are instances of Euler's equations (see the Appendix).)



§9. SYMMETRIES

Let M be a connected C manifold of dimension n. Given a second order
r e ptem, put
LMY = {x € D (M) :SIX,T] = 0}
[Note: Locally, the elements of DL(TM) have the form

X=Al§-—i+ (raly é"i‘ .]
agq oV

9.1 ILEMMA Define

n: 0N > DL (M)

1TI.(X) =X + S[r,Xx].

Then T is a projection of Dl('IM) onto D%(']M) with kernel V(1M}.

[To check that ni, (X) really is in vll,(m) , write
S[T.(x),T]

s[xX + s(r,X1,T]

Six,r1 + sisir,x1,T]

- s[[r,X],sr1  (cf. 5.9)



S[X,T] + [S[T,X],A]

- S[ir,x],Al (cf. 5.8)

S(x,T1 + [S[T,X],A)

+ 5{A, [1,X1]

si{x,Tr] + s[r,X] (cf. 5.10)

= 0.]

9.2 ILEMRA Define a multiplication

" x o} (m - vll, (™)

£2X = £X + (TE)SX (= ﬂl..(fX)).

Then (M) is a module over C”(T) .
[(Note: So, while D%(m) is not stable under the usual multiplication by
elements of C (M), it is stable under the usual multiplication by elements of

C(;{']M) (the subring of C (™) consisting of the first integrals for I') (cf. §1).]

The elements of D% (M) are called the psexdosymmetries of T', a symmetry of T

being an X € Dl('IM) such that [X,T] = 0.



[Note: Trivially, a symmetry of T is a pseudosymmetry of TI'.]

9.3 EXAMPLE Let X € D'(M) — then

S[X',T1 =0 (cf. 5.19).

Therefore X' € D%('IM), hence X' is a pseudosymmetry of T.

Apointsymetryoffisanxevl(m such that

x',r1 = 0.

So, strictly speaking, a point symmetry is not a symmetry... .

9.4 REMARK Agreeing to call a vector field on ™ projectable if it is

wM—related to a vector field on M, the definitions then imply that the projectable

symmetries of T are precisely the lifts of the point symmetries of T.

9.5 LEMMA Ifxisasylmletryofr'andiffec;'(m), thenxfec‘;.’('xw.'

PROOF For

0= [T,X]f

r{xf) - X(rf)

N

T{Xf).

Suppose now that L is a nondegenerate lagrangian —- then a is symplectic



so for any £ € cm), 3 a unique vector field Xf e 171('IM) such that

1 = gf.
xme

9.6 LEMIRA If f is a first integral for I‘L, then Xf is a symmetry of FL'

PROOE Write

995 1 b Y £ 5 8 s A

== (L, 1, -1
P

o [}
£ FLwL

a1 o {cf. 8.9)

Therefore

9.7 REMARK IfXEDl(TM) is a symmetry of T_, then

tot € Co (M) .
er“t I,



Proof:

L, (1 )
I er“‘L

= - LFL(IXGEL)

- L. )
I‘LLXEL

= {L - L, L)
ix,71 ~ bxbe )EL

- LXLI‘LEL

0 (cf. 8.10).

[Note: It may very well happen that

1,1
er“’L

vanishes identically.]

An infinitesimal symmetry of L is a vector field X € ﬁl(M) such that

L€ c""T (T™) .
X

[Note: It will be shown below that

[xT,r'L] =0 (cf. 9.14).



Accordingly, an infinitesimal symmetry of L is a point symmetry of I‘L.}

9.8 THEOREM (Noether)

is a first integral for L.

PROOFP In fact,

L, (1 TGL)

If X is an infinitesimal symmetry of L, then XL

N

1 g + 1 (L. 6)
[I'LrXTI L XT I‘LL

1 BL + 1 'rdl' (cf. 8.14)

0 X

=XL

=0.

Therefore 1 TBL is a first integral for I'L. But

X

=1 _S*(dn)
xT

= 5% o 1 T(dL) (cf. 6.1}
8X

=8*% o 1 __{dL) (cf. 5.7)
<

= S*(AL(X"))

= dL(x")



= X"L.

9.9 EXAMPIE Take M = R> and let

[ ¥3]

L(qquzrq3rvlfvzav3) = % % (Vl)z - V(q2:q3) .
i=1
put X = 2 then X7 = 2 L= 0. si Vel g
=— ——1,szL— . Since X -——i-,ltfollowsthat
ax g v
L = vt

is a first integral for I‘L (conservation of linear momentum along the
1.

X —axis).

3

9.10 EXAMPIE Take M = R” and let

3 3

L(ql,qz,qa.vl.vz,v3) =% { Z (vl)2 - L (ql)z).
i=l i=1
Putx=xla 2—}:2 al—then
K X
x‘r=q1§_____q2§_l__v231+vla .
g aq v ov
=
XTL = = c_{]'q2 + qzq - v2vl + vlvz
= 0.
But here
v _ 13 29
X =9 "5 -9 1



And this means that

XVL - qlvz _ q2v1

is a first integral for T {conservation of angular momentum around the x3—axis) .

As will became apparent, one need not work exclusively with the lifts to

™ of vector fields on M.

9.11 BEXAMPIE Take M = 1_23 and let
1 23123 123 432
L(qfqrqrvrvrv) =§ I ()
i=1
Put
X= f(vl,vz,v?') lf .
od
Obviously, XL = 0. In addition,
I‘L=vl§'—f+v2 8 2+v3 2 3
oq og oq
=
[X’PL] = 0-

The argument employed in 9.8 then implies that 1xeL is a first integral for I‘L.
But

-
<
I
—
N“'\
2
L
3

g
E,



2

= vlf (vl,v ,v3} .

I.e.: vlf (vl,vz,v3) is a first integral for I‘L. Of course, the lagrangian at

hand represents the free particle, so any function of the velocity had better

be a "“constant of the motion”.

9.12 IEMMA If X is an infinitesimal symuetry of L, then

L 6 =40.
XT L
PROCF We have
L 6 =¢ L.
XT L ers

dSLXTL + dL sL (cf. 6.12)
XT

i

dSO + dOL {cf. 5.18)

= 0_
[Note: Therefore
L = [ _adé
X'rmL < L
=dL _8
<7 L
= 0.]

9.13 IEMMA If X is an infinitesimal symmetry of L, thenXTEL= 0.
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PROOF For
b e gy,
=>
‘rL‘“L‘XT’ = - dg (X')
= - X'E,.

Ty _ T
1I.LwL(X )} = u)L(I'L,X )

_ T
= dGL(FL,X }

_ Ty _ T
= Uy B) 61 = (L 8) () + 6 (I XD

T T
(LI.LBL) X) + BL([I'L,X 1) (cf. 9.12)

aL(x'y + eL([rL,le) (cf. 8.14)

T N |
XL+ 8 ([T XD

.
8, ([T X' 1)

But [rL,le is vertical (cf. 5.3) and 6, is horizontal, hence eL([rL,xT} ) =0

(cf. 6.14).

9.14 IEM® If X is an infinitesimal symmetry of I, then X' is a symmetry



1.

of PL.

PROOF Simply note that

il
_—
r—-
o
=
1
=

! “L

[x7,T) U A A

L (- ) = 1. (L w)
xT d'E"L T'LXTL

~-aL - 1,0 ({(cf. 9.12)
XTEL T

- d(XTEL)

i

0 {cf. 9.13).

9.15 REMARK LetXEUl('B‘I). Assumes

- dLXeL =0
dXEL = (.
Then
[X'FLI = 0.
Proof:

Yo% T Uy o —1p o Loy

b= dBp) = 1p LA,
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A Noether symmetry of I iz a vector field X € Dl(M) such that [ TE}L is
X

= o2 T =
exact (say LXTeL-df,vﬂaerefEC (™)) andXEL-O.

[Note: A Noether symmetry X of I, is necessarily a point symmetry of I'L:

[xT,PL] =0 (cf. 9.15).]

9.16 LEMMA If X is a Noether symmetry of Ty then £ - X'L is a first

integral for I‘L.

PROOF To begin with,

Il
—
C
I

1XTL0L X7 L
= LXTGL - dleGL
=df - d&X'L
= d(f ~ X'1).
Therefore
Iy (£ - X'L) = a(f - X'L) (Tp)

(IXTLL)L) (I'L)
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T
(LEL (X r PL)

= (HL(I'LIXT)

- . w (X1
I'L‘”L

dE (X1)

xTEL

Suppose that X is an infinitesimal symmetry of L — then

LXTBL =0 {cf. 9.12)

1l

0 (cf. 9.13).

XTEL

So X is a Noether symretry of I‘La.ndg.B is a special case of 9.16 (take £ = 0).

9.17 REMARK If X is a point symmetxry of I such that

L 6 =0
X' b
xTEL=0,

then X is an infinitesimal symmetry of L. To see this, start by writing
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L_(1.8) =1 B, + 1, (L )
x' Iy X7, 1) Lo, xTeL
=1 + 1,0
o, T
= 0.
Next
XTEL=0=>XT(M.—L) =0
=> XTAL = X'L.
So
0= LXT(IFLGL)

L TAL (cf. 8.13)
X

XTAL

A Cartan symetry of I is a vector field X € PH (™M) such that L8 is

exact (say LxeL=df,wherefECw('IM)) a.tﬂXEL=0.

[Note: A Cartan symmetry X of Iy, is necessarily a symmetry of Iy

_[X;I‘L] =0 (cf. 9.15).]
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N.B. The lift of a Noether symmetry of I‘L is a Cartan symuetry of I‘L.

In the other direction, the projection of a projectable Cartan symmetry of FL
is a Noether symmetry of Iy, (cf. 9.4).

9.18 EXAMPLE I‘L is a Cartan symmetry of (which, in general, is not

83

projectable). Proof:

-
)
i}

dL (cf. 8.14)

0 (cf. 8.10).

iy

9.19 REMARK 'IheliftofapointsyxrmetryofI'LneednotbeaCartan

symmetry of I‘L (cf. 9.24).

9.20 IFEMBA If X is a Cartan symmetry of I‘L, then £ - {(8X)L is a first

integral for I‘L.

[Argue as in 9.16, observing that

Loy = tdeL

t

IXSL - dlelL

"

af - di S*(dL)

i

af - ds*(dL) (X}
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= d(f - (SX)L).]

Consider the following setup. Suppose 3 £ € C (TM):

"~ Lyf, = af
Then
f - (SX)L

is a first integral for i+ In fact,

I‘L(f - (X)L} = d(f - (SX)L) (T‘L)

Il

( lxwL) (FL)

B

X(AL - L}

X(II.LBL - L) (cf. 8.13)

X1,.6 =T f
I‘LL L

1. L8 =T £
T'LXL I,

=1, df - T.f
I‘L L




Then

N.B. X is a Cartan sy

il

il

17.



9.21 EXAMPLE Here ig a realization of the foregoing procedure.

Iet

hence L is nondegenerate,

Define vector fields X, € D

}(]{:—

_ (K(|q|26kl
where

q*Vv

18.

(h? + @2+ DA

(wh?+ 2+ DY

1/2

1/2

L= (| | } +— (K = 0).
|Cﬂ
BL=vidi
uJL=dviAdq,
2
v K
|
r = ia9 in 3
L s al® ot

(M) (k=1,2,3) by

v - Fat - g s

- /e - Pt v

= qlvl + q2v2 + q3v3.

ki

3

—_

g

k i
v

3

) —r
v

I

Take
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One can check that [Xk,FL] = 0, thusxkisa symmetry of FLwhich is not a lift
of a vector field on M. Set
£ = @IV - (IVI2 + K/lql)qk.

Since

]
&

L}5<6L k

XkL

0l

I'Lfk '

the conclusion is that

2
= (|v|" - I'i/lql)qk - (@)
is a first integral for I‘L.

[Note: This lagrangian is the one that figures in the Kepler problem and

what is being said is that [the so-called Lenz vector is conserved.]

9.22 1M If f is g first integral for I‘L, then Xf ig a Cartan symmetry

of I‘L (cf. 9.6).
PROOF We have

1, d6

o]}
Fh
"
-t
b
e
It

It

( -de 1, )8
fo XfL

foerc. = d(f + B-L(Xf)) .
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KB (1X wL) (I‘L)

1l

af(T; )

9.23 REMARK Given a Cartan symmetry X of T, put

F=f- (X)L.

Then F is a first integral for T, (cf. 9.20) and

1XmL=df=>X=xF.

So far we have worked with a fixed nonsingular lagrangian L. However, as
has been seen in §8 (cf. 8.17 and 8.18), distinct nonsingular lagrangians L ard

L' can give rise to the same dynamics in that

In turn, this leads to differing descriptions of the symmetries and first integrals.

9.24 EXAMPLE Take M R and let
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P=V1§q_I+V22_CF+VB§q—3_qlzvl 2;2_q3§v_3_.
Then

=12 (hH24 A2+ H2- - A - D
and

=1 @h?h A2 - @H2- @D - AP @

are both nondegenerate lagrangians for I':

FL=I'
I‘L.=I'.
Moreover,
- _ 23___ 39

Xl-x 3 x——z-
ox ox

X2—x3al xl'c)3
ox ox
oxt )4

are infinitesimal symmetries of L, thus by 9.8 lead to the first integrals

203 - 2
T

2 - At




for 7. On the other hand,

—

for 1.
[Note: Xi ard Xé are

symmetries of I‘L. Therefoxn

(%

(%

are first integrals for I‘L

is a Cartan symetry of Iy e

22.

Xi=X3§'—l+Xla—j-
ox X
é=x3§-—2+x2§-§
X )8

3vl-qlv3
3 2 23
v -gqgv
12_q2vl

point synmetries of I‘L. {cf. 9.14) or still, are point

e

T. _ 13 13
i)EL—Z(qq + vvT)
I 22 2.3
i)TEL=2(qq + vvTY

(¢f. 9.7) (or directly). But neither (xi)T nor (Xé)T

]




According to 6.12, v X

LXT
But
Therefore
L
p. 8
Consequently,
L
X
And then
L

o dS - ds °
L 8=0
XT
1 ° % =dg
Py = L A
X
=4_L
S XTL
= 9 -
XL
TmL = LXTdeL
=dlL _6
XT L
= d6
XL
= w

23.

(cf. 5.18).



24,

[Note: Our standing assunption is that L is nondegenerate but, in general,

X'L will be degenerate.}

2.25 IEMMA v X EDI(M):

i 6, = 0.
T 1.
(X", 1)
PROCOF Indeed
1 6. = d.L([X',T.1)

%", ] L= %" L
- T
= s*dL([x", T 1)
- T
= dL(SIX',T,])

aL{o) (cf. 5.19)

0.

[Note: This result enables one to simplify the proof of 9.8, there being

no need to appeal to 9.14 to force

1 6. =0
7, L
[I‘L,X ]

gince 9.25 implies that this is automatic.]

9.26 IEMMA vxeDlLM),
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1 =1, W + diE .
{rL,xT]wL 'yt x'L

PROCE First

"

as

t o L

1
(I, X'] ITy/X']

= L O, = d1 !
rx1

= e (ef. 9.25)
1

=Ll L 68 -L .8
I‘LXTL XTFLL

LI' 8 .~ L ;L (cf. 8.14).

LXL X

Next, write

L 4L ax't

ax'n, - aaX't + aaX'L

d(l - AX'L + AAX'L

=-dE _ + aMX'L.

Therefore

eF
i
1
d
£
<+
5
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But
[A,X_T] =0 {cf. 4.4},
SO
Lp - dpx'L
L X'L
;
=1.8 - dX AL
T %'
;
=[.86 -dX 1.0
Iy, x™n oL
Finally
1I‘ © I = 1F L TmL
L X'L L X
=1, L _d46
PL XT L
= 1, dL _8
T L
= (L, =d0o1,})L _8
Iy R 7
= {90 -di, L _B
L x'L I x™ L
=i.6 _ +d( - L _%1,)8
1 x' xhry x Lk
T
=1.6_ -aX'1.9 (ef. 9.25).
FL X?L PL L

(cf. 8.13).
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Now recall that, by definition, I admits the lagrangian X'L provided

which, in view of 9.6, will be the case iff

{xT,rL1 = 0,

I.e.: Iff X is a point symmetry of I‘L.



§10. MECHANICAL SYSTEMS

Iet M be a connected € manifold of dimension n — then an {autonanous)

mechanical system M is a triple (M,T,T), where T € C (IM)} and I is a horizontal

1-form on ™.

One calis

M - the configuration space

™ —— the velocity phase space

n —— the nunber of degrees of freedom.

10.1 REMARK Recall that the horizontal l-forms on ™M are in a one-to-one

correspordence with the fiber preserving c” functions ™ - T*M (cf. §7). In the

context of a mechanical system, either entity is termed an (extermal) force field.

10.2 EXAMPLE Iet L be a lagrangian. Take I = 0 — then the triple (M,L,0)

is a mechanical system.

A mechanical system M is said to be nondegenerate if

ch=ddST

is symplectic.
Suppose that M is nondegenerate — then 3 a unique vector field 1"M € Ul('IM)
such that

IFMmT =d(T - AT) + [ (= - dEI,+ ).



And, as the notation suggests, 1‘M is second order (cf. 8.12) (note that GSIT =0

{cf. 6.13)).

N.B. Working locally, write [ = I{idql ~- then along an integral curve y of

r,,, the equations of Lagrange

d aT aT N
_— (=) = — =TI, (t=1,...,n)
dt 3vl aql i
with forces are satisfied.
10.3 EXAMPLE Take M = R° and

=2 (hH%+ A%+ HD >0

]

1 2 3
~ I,4q™ + Ndg™ + N,dq.
Then the mechanical system (M,T,T) represents the motion of a particle of mass m > 0

in 53 under the influence of a force field 1. Here

13 2 3 33
=V —+v + v
M 1 2 3
od 33 od
I I It
"'EL lr*ag 3‘5"&3 iy
v av o

and the integral curves of Iy are the solutions to

g
dtz

2|

(i=1,2,3).



[Note: In the above, it is understood that ql,qz,q3 are the usual cartesian

coordinates. Matters change if we use spherical coordinates: c“jl =r (r >0,

F=0(0<o<m, & =0 (0<¢<2m, so

ql = Ejl sin q2 cos q3

221 .2 . 23
g° =4 sinq° sin g

=§l cos f:_'{z.
Thus now

r=3@h%+ @2EH% + @2 e Y

Cmoaml w2 s 03
= faq + H,a8° + 0,88,

The tensor transformation rule of §20anthenbeusedt00mtputetheﬁiinterms

of Hi' To illustrate,

1 2
T =2 n @3_ ;3‘1_
3T LR vl

(- & sin §° sin Ei"’ml + (G sin § cos &) I,.]

A nondegenerate mechanical system M = (M,T,II) is said to be conservative

ifavecm:

I=-dVem)(= - nidv)).



In this situation, we have

II.Mu.\I.=d(‘I‘— AT) + T
=d(t - AT) - d(V o wM)
=d(T—V°ﬂM—&T)
= d(L - AL)
=-dEL'

where
L=T_VO1TM.

Thus I has disappeared and

d-—-—(a—L.-‘) ""?-;'I'l'=0 (i=1'.oo’n)o

3ql

But this puts us right back into §8 (with L nondegenerate) (evidently, W = Wy
and I'L = I‘M) .

Typically, T =%g, where g is a semiriemannian structure on M (cf. 8.4),
henhce
AT = 2T (=>ET=AT—T=T}.

10.4 LEMMA Suppose that T is nondegenerate and AT = 2T -— then

Lytp = tpe



PROOF 1In fact,

ATTS

afL AdST)

1l

d(dS o L d. )T (cf. 6.10)

A~ TS

2ddST - ddST

= dds'l‘

= e

10.5 LEMMA Suppose that T is nondegenerate and AT = 2T -- then

{a, FT] = PT'

thus the deviation of I"T vanishes.

PROOF For

1 ={(L, ®t, — 1. © L,)
[a,rT]‘“r S R A Y

LA(- dE‘I') - IPT“’T (cf. 10.4)

—dAEI.+dEI,
d(ET"ﬂ-ET)



i
o,
]

|
3

[:5.,1",1.] = I'T.

Take T = % g. Given a chart (U,{xl,...,xn}) on M, let {Flk,ﬁ} be the

connection coefficients per the metric connection V determined by g.

10.6 LEMMA Iocally,

id i k£ &
P =v k= ((I‘ - )Vv ) —_— .
T Bql ke M ot

[Note: The projection ?TM:'IM + M sets up a one-to-one correspordence between

the (maximal) integral curves of I‘lIl and the (maximal) geodesics of (M,q).]

10.7 REMARK The set S0(™) of second order vector fields on ™ is an affine

space whose translation group is the set of vertical vector fields in ‘Dl (T™)

(cE. 5.8). Choose T as its origin — then I‘T determines a bijection

viz.
r-T - I'T.



Now consider

L=T-V©°n,.

M
Then
EL=ﬂL-L
=A(T-V°TrM) —(T-V°1TM)
=T+V°1TM.

[Note: Here

!
3

f
m
<2
[+]
=y

= gl, (cf. 8.4).

Therefore FL is a diffeamorphism, hence 8.24 is applicable, and

H=%Tog#+Voﬂi§j.]

10.8 LEMMA We have

_ _ v
I‘L = I‘T (grad V) .

[Note: Locally,

ij X



(grad ¥ = (g™ E o m) Lo
ox v

10.9 REMARK Suppose that X € 0°(M) is an infinitesimal isometry of g

such that XV = 0 == then X'L = 0 (cf. 8.4), thus X is an infinitesimal symmetry

of L and so X'L is a first integral for I‘L {cf. 9.8). Explicateq,

X'L:™M > R

is the function g(X,__). Locally,

= Xl o T g—v—-% ((gk{,: ° ﬁM)VkVK)
: k /4
=X oM > ((gka°7f)§—v-r-vi+(gk£°ﬂ)vk-3—v—r)
vt ot

o 1 L k

=X oMy 3 ((g5p © MV + (G © MYV

=X o1 -]:((g..oTr}vj+(g..oTr)vj)
M2 ij M ji M

= Xl o TTM (gij o TTM)VJ.

[Note: For a case in point, consider 9.9.]

10.10 IEMMA Suppose that T € 91('114) is second order. Define HI‘

€ At by



M. = 1w, + 4dT.
Then HI‘ is horizontal.
PROOF Bearing in mind 6.14 (and the fact that Op is horizontal), take

X e Dl (MM} vertical and write

1y (X) =1 I‘de‘l' (X}

(Ll.. -doe 11,)9.1.()()

= (L op) (0 = d1,6,()

I'BT(X) - GT([I‘,X]) - dAT(X) fcf. 8.13)

it

ro - & T(Ir,X1) - asT(x)

- ar{sir,X]) - 2dT(X)

- dT(- X) - 2aT(X) {cf. 5.15)

= - dr({x).

Therefore

HF(X) 3 FUAT(X) + T (X)

It

- ar(X) + arx)

|
o
N



10.

[Note: Locally,
so locally,
Mp = (ggy ° Mo © + (13, o mpvFhraqh.)

N.B. This result implies that one can attach to each second order T a

mondegenerate mechanical system

MI‘ = (M,‘I‘,HP} .
Arnd, of course,
r, =rT.
My
If T.,T., are secord order and if I, = I, , then
1'°2 I‘l I‘z
1 =1 ’
rl‘”T rz‘“T
S0 I‘1 = 1"2.

On the other hand, if o € hf'xl'IM, then 3 a unique vertical Xa:

1XamT =g {cf. 8.23).

Since P'I‘ is secord order {(cf. 8.12) ard

tp, iy = = Ay = -
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it follows that

Uy 4y Wp + AT
o

=1 + 1 + 47
)&:WP n;”T

10.11 SCHOLTUM The map

T‘+III.

sets up a one~to-one correspondence between the set of second order wector fields

on ™ and the set of horizontal 1-forms on TM.

let y:I - ™ be a trajectory of T. Fixt1<t2inI-—thenthemrkdone

by the force field HI‘ during the time interval [tl,tz} is

t
f2
Y

*x
Y Hl...

But

=
n

p = pep AT

=]
~
-
—
g
]

ar(r).

Therefore

Y(tz)
= T -
r Y(tl)

o]

!

Y*Ii
%
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10.12 RBMARK If N, = - d(V, o m) for same V, € c” (M), then
t v(t.,)
2 4 —v e 2
Jrtl Y = Vi © my Y(E)

implying thereby that

T(Y(tl)) + Voo mly(t)) = Tly(ty)) + Vo o mly(t,)).

Put

LF=T-VPOTI'M._

ELT=T+VP0TFM

and, being constant along vy, is a first integral for ' (cf. 1.1), which, in the

present setting, is another way of locking at 8.10 (I‘L =T),
T



8§11, FIBERED MANIFOLDS

Let M be a connected C manifold of dimension n -- then a fibration is a

surjective suhmersion m:E -+ M and the triple (E,M,7) is called a fibered manifold.

E.g.: Vector bundles over M are fibered manifolds.

N.B. A fibration m:E > M is necessarily an open map; thus is quotient
{(being surijective).

If

mE >~ M

r':E' + M'

are fibrations, then a morphism

(F:f) H (E,M,'IT) + (EtrM'rﬂ')
is a pair of ¢~ functions

F:E > E'

f:M > M?
such that 1 « F=f o 7.

[Note: Accordingly, ¥ X € M,

F(r i) e (r) TEE)).]
A morphism

(r,£): (E,M,m) >~ (E'" M, 7")

is an isaomorphism if 3 a morphism



(F',£M):(E' M ,7") > (E,M,n)

such that

F' o F = ldE
f' o £ = idM.
One then says that (E,M,n) and (E',M',71') are isomorphic.

11,1 IEMMA If ¢:N > M is a surjective c” map of constant rank, then ¢ is

a submersion, hence is a fibration.

Suppose that mE - M isg a fibration -- then the rank of W is constant, viz.
rk © = dim M.

80, ¥ X € M, the fiber Ex= Tr—l(_x) is a closed sukmanifold of E with
dimEx=dimE-dimM.

{Note: In general, Ex is not comnected.]

11.2 EXAMPLE TakeE=§2-{(0,O)}, M=R, w=pr, — then 1 is a fibration.

1

Here, n—l(x) (x = 0) is connected but n_l(O) is not connected.

11.3 1LEMMA Suppose that mE - M is a surjective c” map — then 7 is a

fibration iff every point of E is in the image of a local section of w.



11.4 REMARK The set of sections of a fibration m may be empty. For

example, consider

(ng\{o}, §2, L 2]T_s_2\{0})
s

and recall that §2 does not admit a never vanishing vector field.

11.5 1IEMMA If (E,M,7m) is a fibered manifold and if ¢:N -~ M is a c” map,

then there is a pullback square

pr,
NXME — E

pry | I
N ——— M

and (N M E,N,prl) is a fibered manifold.

PROOF It is clear that pry is surjective. To see that it is a submersion,

fix (yo,po) e N XM E and choose a local section o:U + E such that Py € (U} (cf.
11.3) == then r1>(y0) = 'IT(PO) € U. Define T:fbﬂl(U) >N M E by t(y) = (y,c(®(¥)))

to get a local section of pry passing through (yo,po) . Therefore pry is a
fibration (cf. 11.3}.

Suppose that m:E -+~ M is a fibration -~ then the kernel of

Tn:TE -~ ™



is called the vertical tangent bundle of E, dencted VE. What was said at the

beginning of §5 for the special case when E was assumed to be a vector bundle is
applicable in general, thus there is an exact sequence
0+VE->'I'E—>Eme+O {cf. 5.2)

of vector hundles over E.

11.6 EXMPLE Consider TZM, the submanifold of TMM consisting of those

points whose images under T and Ty, are one and the same or still, the fixed

points of the canonical imvolution SpqTIM > TIM. Note that
dim T2M = 3n.

» Let

1r21 = nmszM.

Then 1T21 ig a fibration, thus the triple (’I'ZM,'I‘M,wzl) ig a fibered manifold.

® Tet

1

Then n is a fibration, thus the triple ('I‘2M,M, TTl) is a fibered manifold.

This data then gives rise to exact sequences

91 o "21 Vo1
0> v T2M —+'I'I'2M ——>T2.M><,IMTI‘M+O

] Y1
0> VirM — TrM —-+T2M><Mm+0.



Moreover, there are canonical isomorphisms

i

P m v

2% T — vlzP

™

of vector bundles over T2M. Now put

- 21 .
57 =) e 1y °Vy

T Hyp o1y oV

Then
~ Ker 82t = v¥IrA = m st
_ ker st = v = m 2
and
?h® = 0.

[Note: 'I'ZM is the acceleration phase space, Local coordinates in T2M are

(qi,vi,ai} (i=1,...,n.]

Iet (E,M,n) be a fibered manifold —- then a trivialization of (E,M,m) is a

pair (F,t), where t:E + M x F is a diffeaworphism such that



Schematically:

(Note: The triple (M x F,M,prl) ig a fibered manifold and

(t,idM):(E,M,':T) + (M X F,M,prl)
is an isamorphism.
N.B. A fibered manifold (E,M,n) is said to be trivial if it admits a
trivialization.
Let (E,M,m) be a fibered manifold — then (E,M,m) is said to be locally
trivial if v x € M, 3 a triple (Ux'Fx'tx) , where Ux is a neighborhood of x and
tx:’lT-l (U) > U, xF_is a diffeomorphism such that

L

pry ot = i Ux).

E.g.: Vector bundles over M are locally trivial fibered manifolds.

11.7 IemMA If (E,M,7m) is a locally trivial fibered manifold, then 3 F:

v local trivialization (Ux'F x'tx) (x € M), F. ardl F are diffeamorphic.

N.B. In general, therefore, a fibered manifold is not locally trivial (cf. 11.2).



11.8 EMMA If (E,M,m) is a fibered manifold and if w is proper, then

(E,M, ) is locally trivial.

11.9 EXAMPIE The Hopf map S° ~ S° is the restriction to §° of the arrow

34 > 133 defined by the rule that sends (xl,xz,x3,x4) to

((XI)Z + (x2)2 _ (x3)2 _ (x4)2, 2(x1x4 + x2x3), 2(x2x4 _ xlx3)).

It is a proper fibration, hence is locally trivial (cf. 11.8).



§12. AFFINE BUNDLES

Let M be a connected € manifold of dimension n, m:E -~ M a vector bundle —-

then an affine bundle modeled on (E,M,w) is a pair ((a,M,p),r), where p:A + M is

a fibration and r:A B ~>A is a morphiem of fibered manifolds over ldM such that
¥ X EM,

rK:AX X Ex + AX
is a free and transitive action of the additive group of E, on the set A (thus
Ax is an affine space modelled on Ex) .

[Note: The triple (A *M E,A,prl) ig a fibered manifold (cf. 11.3), hence

so is (A M E,M,p o prl) and the requirement is that the diagram

r
AmE——*A
m | e
A - M
O

commate, i.e., that the diagram

r
AXME—+A

poprlj Jp

M M

——

coamute. ]



12.1 IEMMA The fibered manifold (A,M,p) is locally trivial.

PROOF Bearing in mind that (E,M,m) is locally trivial, fix x € M and choose

(Ux'Fx'tx) accordingly. Without loss of generality, it can be assumed that Ux is
the domain of a local section o of A (¢f. 11.3). Iet a € p_l(Ux) - then there

exists a unique element ¢(a) € o))

a=c{pa) + ¢a.
The correspordence

-1 -1
o] (Ux) > (Ux)

a + ¢(a)

is a diffeomorphiam which can then be postcomposed with t,-

N.B. Every vector bundle (E,M,m} "is" an affine bundle ((E,M,m),+),
+:E XM E->E
being addition in the fibers of m.

12.2 EXAMPLE Consider the fibered manifold (T2M,TM,7°Y) (cf. 11.6) —— then

21

the fibers of % are not vector spaces but they are affine spaces. To make this

precise, introduce the vector bundle
M, VIM > T (T, = nmlv'm) .

Take an x € ™ and let



T ae iy

ve (n) .

a+ve (Trzl) -1 (%)

and the action
L2l -1 -1 21, -1
() 177) k) x (M) T(x) > (777) T(x)
is free ard transitive. Since this can be globalized, it follows that

(v, 770y, x, )
is an affine bundle modelled on

(V'IM,'IM,Trv) .

Let T'(p) stand for the set of sections of (,M,p). E.g.: T{(r°l) = SO(mM)
(cf. 5.8).

12.3 IEMMA Each s € T(p) determines an isomorphism ¢S:A + E of fibered
manifolds over 1dM

go]
2

|

2 —
=



PROOF Given a € A, there exists a unique cps(a) € B

a=s(x) + ¢S(a) (x €M),

12.4 REMARK T'(p) is not empty. This is because: (1) The fibers of p are

contractible and (2} M is a polyhedron, hence is a CW complex.

Affine bundles are the natural setting for the study of fiber derivatives
(the considerations in §7 constitute a special case).
Suppose that
((a,M,0),1)
((A'I'M!p')fr')

are affine bhundles modelled on vector bundles

$:E-+ M

$':E' + M
respectively. Let
LA > A

be a morphism of fibered manifolds over ldM —— then Tt restricts to a morphism

VG:VA ~ VA!

of vector bundles over M and there is a factorization



Here
v, € Hcmh(\m,A Xpr VA'),
thus determines an element
t
s, € sec HcmA(VA,A Xp1 VA ).

C

But

1 = a0 '
VA AXME

. AXME' :AXA,(A' XME').

So we have a diagram

v pr,
VA _._.5.....* AXA' va' —— o ya!
T ]
LN (a xME)

!

Ax, E AxME' —_ A M E'r



fram which an arrow

d

AxME—C»AxME"

that, being a morphism of vector bundles over A, gives rise in turn to an element

Sq € sec chh(A M E,A XM E").

g
And by construction,

HGnA(VA,A x . VA') % Hcrrh(A M E,A M E")

Now identify
HG%(A XM E,A XM E')
with
y:Y XM HG'DM(E,E') .

Then the arrow

Sa

A —2» Hom, (A %, E,A %, E')

pr
= A M HamMm,E') —2, HcmM(E,E')

is a morphism of fibered manifolds over idM, denote it by Fi:



A —-"'-"'Fc HCITM(E;E.)

o | |

M —— M -

Definition: Fg is the fiber derivative of Z.

[Note: Caronically,

HC!IM(E,E') ~ E* QM E'
or still, amitting M,

Hom{E,E') = E* f E'.]

N.B. ¥ X € M,
Cx:‘z\x ” A;c’
Since A and A}'{ are affine spaces, the derivative of [ 3t a point a € A is

a linear map Dcx(ax) :Ex > E}'{ ard, in fact,

DCx(ax) = Fg (ax) .

12.5 REMARK Since
Fr:A > Hom(E,E')
is a morphism of fibered manifolds over idM, it makes sense to iterate the

procedure and form Fkr;. E.g.: Take k = 2 -~ then

Fzr,:A -+ Hom(E,Hom(E,E"))



=~ Hom(E & E,E")

~E*Q@ E* QE',

the fiber hessian of z.

Iet £ € C (a) — then f can be viewed as a morphism
A+MxR

of fibered manifolds over icflM and

Ff:A - Hom(E,M x R)

]

E*.

!

12.6 EXAMPLE Take A =TM, E = ™, thus E* T*M and
Ff:T™M -~ T*M

is the fiber derivative of £ per §7.

In the above, let £ = Ff (and A' = E' = E*} — then

pe

VAZAXME ——-—*AXME*.

VAI* - A E*
(VA)* = ><M

X o~ Bk X *
VE E M E

® A x E* A X (E* x _E¥*),
M - M



Therefore
(VA)* = A M E*
T A X (E* E*).
E* KM
~Ax VE*
E*
)

Call the resulting arrow
(VA)* > VE*
bFf - thenb]_:.f is an isomorphism on fibers (this being the case of prz). On
the other hand, there is a morphism
WFE:VA > (VA)*
of vector burdles over A and from the definitions,
VEE = bFf o WFE,

Schamatically:

12.7 REMARK The fiber hessian F2f is an arrow



10.

A - Hom(E,E*) .

As such, it determines an arrow

AXME+A XME*

that, in fact, is precisely de.

[Note: Explicated, WFf is the composition

g

VA = A X, E == A, E* =z (VA)*.]

M
Consider now
TFE:TA + TE*,

Taking into account the commutative diagram

Ff

A — . E*

I

M M,

we see that

Ker TFf c Ker Tp = VA.

1

Ker TPFf = Ker VFf
or still,

Rer TP

ti

Ker WFE.

12.8 IEMMA Ff is a local diffecmorphism iff WFf is an isamorphism.



ll.

12.9 EXAMPIE Let L € C (TM) be a lagrangian — then
FL:™ > T*M
while
F2L:TM -+ Hom(TM, T*M) .

And, in view of 12.8, L is nondegenerate iff WFL is an iscmorphism (cf. 8.2 and
8.5).

12.10 EXAMPIE Iet L € C (TM} be a lagrangian. Consider its energy EL =
AL = L — then
FE:L:':I‘_M + T*M
and we have

FEL(x,X)_ = FZL(.X,XX) (.x,xx) (XX € TXM) .

[Note: FZL sends

T M to Hcm(TxM,T;"{M) ¢

FZL(x,Xx) M > T,

We shall terminate this section with a definition that could have been made

at the beginning. Thus let
LiA -+ At
beannrphisnoffiberedmnifoldsmferidm——thencissaidtobeanaffme

bundle morphism if 3 a vector bundle morphism




12,

7:E > B'

such that vy X €EM & vV a, S Ax, v e, < Ex,

z lr (a,e)) = xl(c @), (e))
or still,
tla, te) =C (a) +T le).

[Note: Ome calls ¢ the linear part of Z.]



§13. STRUCTURAL FORMALITIES

Let M be a connected C manifold of dimension n, mE + M a fibration. let

d:N +Mbeacmmap-—thena'sectionofEalong @isacmmap g:N > E such that

mTe g= §.

13.1 EXAMPLE Suppose that
({(a,M,p),r)

{(a,Mm,p'),r')
are affine hundles modelled on vector bundles
mE - M
_TmhE' + M

respectively. Ilet

7:A > A'
be a morphism of fibered manifolds over ldM —- then there is a camutative diagram

FZ
A —— Hom(E,E")

& }

which can be read as saying that Ff is a section of Hom(E,E') along p.

13.2 LEMMA The set of sections of E along ¢ can be identified with the



Pr
set of sections of the fibration N x, E 1. N (cf. 11.5).

PROOF Given o, define

Pry
L € sec(N XME = N)

zly) = (y,0o(y}D)

and vice-versa.

13.3 EXAMPIE Take E = ™, N = T™™, ®=1rMandcmsider

pPry
sec (TM M ™ —— T™)

is in a one-to-one correspondence with the set of fiber preserving C functions
™ + TM. On the other hand (cf. §5), there is an exact sequence

0> M x, ™ 5 TIM ¥ ™™ x, ™™ > 0
and the identification

Pry
sec (TM me — TM} > {TM)



is implemented by sending a section ¢ to u ¢ &3

Here

ﬂmoLlO(;:prloC:jd

TTTM°U°C=PI'2°V°U°C=O-

In particular: If ¢ corresponds to id,m:'m - TM, then

per=A,

[Note: The zero map T™ > ™ sends (x,xx) to (x,0).

Pry e veue ¢ is the camposition
A v o U
(X'XX) - ((XrXx} ’ (X’YX)) — ((x,0)} r {x,0))

13.4 EXAMPLE Consider the pullback sguare

Pr,
E X, T —5 M

*
= | |

—_————
E e M

and the canonical injection

And, spelled out,

—2, (x,0).]



E E .
Given
Pry
7 € sec(E XMT*M —= E},
put
= i* .
ac i* o
Then
ﬂE°OLC=TTE°1*°C
=prlo C
=idE.

I.e.: o € A]E. Morecver, &, annihilates the sections of VE. In general, any

o € AlE with this property is termed horizontal (cf. 6.14). The upshot, therefore,

is that the horizontal 1-forms on E can be identified with the sections of

pr ”
E X, TAM L, B or still, with the fiber preserving C functions E + T*M (cf. 13.2).

Specialize ard take E = T*M -- then the horizontal l-form on T*M associated with
idT*M:T*M + T*M is 0 {the fundamental 1-form on T*M).

A vector field along ¢ is a section of ™ along &, i.e., is a c’ map X:N + ™




5.

such that Ty © X = . Write Dl(M;N:‘IJ) for the set of such (thus Dl(M) =

Dl(M;M; idM)) — then Dl (M;N; ¢) is a module over Cm(N) .

13.5 LEMMA If X:M - ™ is a vector field on M, then

Xeoe de Dl(M:Nsé).
PROOF In fact,

1TM°X°®=idM°<I>‘"—"¢>.

13.6 ILEMMA If Y:N -+ TN is a vector field on N, then

™ oY € Dl(M:N:fD).

PROOF There is a cammutative diagram

T
™ —— TM

Each X € Dl(M;N;cb) determines an arrow



D :CT (M) + €7 (W)
via the prescription

DyEl, = df, ) B®)  yEN

with the property that
Dx(flf2) = (fl ° @)Dxfz + (f2 ° @)Dxfl.

E.g.: TakeN='mIandlet¢=1rM—then

‘Dl {M;TM; T‘-’M)

is simply the set of fiber preserving ¢ functions ™ - ™. In particular:
i € Dl(M-'IM-w )
Iy € 0 QHTET)

And in this case the associated arrow

D.. :C (M) +C (T™)

1

sends £ to df (cf. 8.19). Agreeing to write £' in place of df, ¥ X € DF(M),

DE = viti—i—(f o m)) (£ ec ).
g

13.7 EXAMPLE Given a fiber preserving ¢’ function F:T™ > ™, let

v;(m) = (x € pLem iPm, o X =F}  (cf. 13.6).



pro (M) = SO(TM).

ld'IM

121:T2M - TT™M
be the injection -~ then

21
i

5.21 € ‘Dl(’IM;T ) {cf. 11.6},

from which an arrow

D, :C"(my) > (M) .

21
— 21
Dy E=vidsfo wh et g 2y (e cC(m).
a9 oV

13.8 EXAMPIE Iet £ € C (M) — then there is a conmmtative diagram

DZlf

TM > T x R

S B

‘IM —_—— 'IM -
Recalling now that

(12,77 x)



is an affine bundle modelled on

(VvM, ™, 1Tv) {cf. 12.2},

the definitions imply that DZlf is an affine bundle morphism whose linear part

D21f:V'IM > ™ X R

is df |vM.
[Note:

£ e CO(M) => af € At

—> df € cirm)  (cf. 8.19).1

let S,IM:TIM -+ TIM be the canonical involution — then

St € Ul('I!"I:TIM;TTrM) .
Local coordinates in TIM are
(q*,vhagt,avt).
To render matters more transparent, let 611 = dql, v o= avt — then

- i i .1 -1

nm(q Vg, V) = (q",vl)
n (qt ottt = @ hgh



Sﬂd(qlrvl:él:‘}l) = (qlfélrvlr‘.rl)-

E.g.: Let £ € C (M) — then locally,

D' (D'f)
vi.,9 T +1.3 T
=q (e £ o m,) +V =L o m,)
-t ™ . ™
+13 j ]
=G (e Y (EE o) oom )
8ql ™ 3qj M ™

)

i3 ' 5 .
+ v —i((vj o T )(———j(f ° TTM) Torag

v maq

2

«i73, @
qvj( —{f o m Jo m_ )}
aql M M

+ PR (F o Mo T
Bql M ™

Therefore

T,.T I P
D (D) osm-—D(Df).

13.9 IEMMA ILocally,
DS:C {(TM) - C (TM) (s = S‘]I-fl)
is given by

Al g, A -
Dsf.,v(.a_c:{-i.f TﬁM)-'_V(aéifoT“M) (f € C (TM)}.



10.

A 1-form along ¢ is a section of T*M along ¢, i.e., is a c” map o:N - T*M

such that Tfl\“,‘i o o= d. Write Dl(M;N:cb) for the set of such (thus Dl(M) =
Dl (M;M;idM} ~= then Dl (M;N; @) is a module over C (N).
N.B. There is a cancnical pairing
phouN;0) x D, 0Nz 0) - O,
viz.
X,0) + <X,0> (= a(X})),

where

<X, o> g = <X{y).,aly)>.

13.10 EXAMPIE The elements of
Dl {M; T™; TrM)

are the fiber preserving ¢” functions F:TM -+ T*M, They correspond one—to-one
with the elements of hﬂl']M (cf. 13.4), say o > For,'

[Note: Fach o € hﬂl'm gives rise to a ¢’ function 4:T™ - R. Indeed, at

each point (x,XX) € ™ (Xx € TXM) P Oy is the pullback under the tangent map

)

of a unique element }\x € T:;M, thus the prescription is

a(x,xx} = A (X))  (cf. 8.19).

In terms of the pairing

prenmy) x D M) ~ €,



i1.

<idm’Foz> = O

Therefore 4 = 0 iff o annihilates the elements of SO(TM).)

Iet X € Dl(M;N;Q) — then the arrow

Dy:C M +C (W)
can be extended to a degree preserving map

DX:A*M + A*N
such that

DX(OMB) = DxaA¢*8 + <l>*aADXB

Dy © dy = dyg © Dy
where d,, and dN are the exterior derivative operators in M and N.

To accamplish this, we shall appeal to the following standard generality.

13.11 L@ Let X € D (4N;0) ~- then v y, € N, 3 neighborhoods I, of 0

inf_{an:'lvy inN and a ¢ map
0

G:I, x V + M
0 YO

suach that v y € V_ ,
Yo



12.

T G(0,y) = o(y)

Xy) = S 6,y | .

Put

G, = G{t,—},

GtV > M.
t Yo

So, given o € A&'I, {Gtor,} is a one parameter family of elements of Apvy . Morecver,
0

T (Gra(y) - o*aly) (Y EV, )

d L
ry (Gi’f-c: (¥} = lim Y

=0 t-0
exists and is independent of the choice of G. Denote it by Dxa(y) —— then these
local considerations can be reformilated globally and lead to

DX:A*M >~ AN

with the stated properties.

13.12 REMARK Take N =M, ¢ = :I.dM —— then DX is the Lie derivative

H(:ﬂ*M > A*M,

13.13 I1IEMMA Suppose that ¢':N' +~ N is a c map. Let X € Dl(M;N;cb) -— then



13.

Xo d' e Dl(M:N':fIJ e ')

Dy o v = (0")* o Dy

Define
1X:A*M > A*N
by

WE=0 (f¢ o)

and for o € APM,

IXOL‘Y(er *aw rYp_l)

—3 C‘ x y ,(I)I Y] .- @'lf Y r
Where Ylpaoo;Y l € T N.

y

[Note: This is the interior product in the present setting (cf. 3.7).}

13.4 1LEMMA We have

Dy = 1y © gy + g ° 1y

Let us consider in more detail the situation when N = ™ and ¢ = Ty Take

X = mm and write D' in place of D.g - Therefore

D AR > A%TM



14,

and, of course,
DE=£ (Eec”M)).

Given o € A]“M. put

Then v X € DX (M),

T XD =a®T

onT(Xv) = alX) ¢ ..

_ M
Locally,
_ i
6= aidx
=>
T_ 3.0 i _ i
o = VJ(B—-:T(ai° TTM) yYaqo + (ai ° nM)dv .
q
And when o = df (£ € € (M),
T T
(Gf) = dpyf -

N.B. Write i, in place of ia. then

Lo = & (cf. 8.19).

One can also apply the theory to

iy € ot (T 7Ly

leading thereby to
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DZI:A*'IM > A*TzM.

Accordingly (cf. 13.14),

D, = 1 ° + ad 6 Toa.
21 21 dTM TZM 21

1as = t: -
21 121

The differential of Lagrange is, by definition, the map

cCimy > AT

that sends L to 8L, where
oL = D,y8; = (1°1) dL.
[Note: Thanks to 8.13,
8L = 1,,d0 + (1°0) dE,.]
Recall now that the triple
(TZM,M,ﬂl)
is a fibered manifold {(cf. 11.6). Relative to this structure, &I, is horizontal,

hence determines a fiber preserving C” function

FGL:TZM -+ T*M

such that

8L = FgLO (cf. 13.4).

. . P
Agreeing to regard F. as a section of the fibration TZM > T*M —-+T2M
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(cf. 13.2), write

TZM ><de*M

1t

TZM “M (™ M T*M)

i1

TZM M (VM) *

to get an arrow

VB
8L
phy —— — (vEO*

| |

™ ———— TM,

13.15 IEMA vF_ is an affine bundle morphism whose linear part

SL

——. *
VF(SL.V'R‘& -+ (VIM)

is WFL.
13.16 RAPPEL Fix T' € SO(TM) —— then T is said to admit a lagrangian L if
L6y, = @L.
Since I':'™ + TZM, for a given L, it makes sense to form T*SL.

13.17 1IEMMA We have

I'*SL = LI'BL - dL.



17.

PROOF Obviocusly,

* *
re(wehyan) = %l o )AL
= dL.

On the other hand,

D, ,p=T*oD, (cf. 13.13).

21

But

iy o T € ot (o M %Y o T)
or still,

i2l o T € Dl('IM:‘IM:id,I.M) .

Therefore (cf. 13.12)

= L]...
Consequently, ' admits L iff
I*8L = 0.
13.18 REMARK locally,
L= Dy Lo (¥t Lyagh,

vt Rl |



§14. THE EVOLUTION OPERATOR

Letheaconnectedcmnanifoldofdjmensionn-—thenthetheorydeveloped

in §13 provides us with an arrow

D I AT*M > AXTT*M.

In particular: Denoting by E)M the fundamental 1-form on T*M,

DT@M = e;l e abrrom,
doy € A2rrom.

14,1 IFEMMA The pair (TI'*M,dO;&) is a symplectic manifold.

Various systems of local coordinates are going to figure in what follows,

so it's best to draw up a list of them at the beginning.

TMM: Iocal coordinates are

(ql'vl’él’{’l) .

Tr*M: Local ooordinates are
i .i -
(q :Pirq 'pi) *
T*MM: Local coordinates are
i i
(g ,v fpirui.)-

TRTRM: Local coordinates are



i i
CERITE R
The transpose of the injection

ViM - TTM
is the projection

T*TM > (VIM}*.
But

VIM = ™ XM ™

(VIM) * =~ TNIXM_T*M.

Thissaid,derwtebyprmthearm

T*M + (VIM}*

)
=M X, TEM —=s TR

of composition.

14.2 IEMMA There exists a unique diffecmorphism

Yo PT*M > T*TM
such that

Y =g

= &
mk o Y TjM and pr M

™ T*M ©
i.e., such that

TT*M -+ T*IM

e
Tu l

™ —— 1M



and
Y
TT*M — THM
Tepspg l l P
T*M —— T*M
coamte.
PROOF Locally,
- T“ﬁ(qlrpirélréi) = (qlrc.]l)
i i _ i i
_ "ﬁ&(q Al rpirui) = (q A )
and
TR = (ahpy)
T*M Ml RACERES | =i
i i i
_ prT*M(q 'V cpirui) = (ql,ui).
S0 locally,

‘{’(ql:Pirc?{l:E”i) = (qlréllréitpi) .o

Finish "par recollement...".

N.B. In the notation of §13, the relation

% = Tk
ﬂm" ¥ 'I'Tl'M

translates to

TT*M: Tt
Y e Dl(m,TT M,TTI‘M) .



14.3 IEMMA Let @'IM be the furdamental l-form on T*M™ ~- then

* =gl
Y40, = O
PROOF Locally,
i i
Oy = P;dd + p;d4,
vhile

o o s i i
Ro, = VX (pdqT + uav')

Il

(b; » Walg o ¥ + (v o VAW o W)

I

- i el
Baq + pag

N.B. Therefore
¥ (TI'*M,dE]MT) + (T*IM,d0,)
is a canonical transformation.

[Note: ILet S?M = c'lG)M (the fundamental 2-form on T*M) - then

T

Ay

AP Gy

DG By

-
D'dgy,
T

Dy
Q-

m



¥ (TTAM, Q) > (T*TM, Q)

vwhere, of course, RIM = de,m is the fundamental 2-form on T*TM.]

4

Write @ for the diffeomorphism

TT*M - TrPRM
induced by -QM, thus locally,

o7

i o1 . i . i
(q :Pi:q :Pi) (q ;Pi: "Pirq )-

14.4 1EMMA We have

v _
Tiay °© & = Ty
i.e., the diagram
o
PT*M s THT*M
Tipam l i Ty
T*M T*M

canmites.

PROOF Iocally,

@ o & Be) = (g ps)
TrT*Mq N T B

(qi :Pi) .

a4 7Py T30S



[Mote: Therefore

b

2 € Dl(T*M;Tr*M;nT {cf. 813).]

sy

The transpose of the injection

VT*M - TT*M
is the projection

T+T*M ~ (VI*M) *,
But

VT*M = T*M ><M T*M

(VI*M) * = T*M XM ™.
This said, denote by Pry the arrow
THT*M > (VT*M) *
Pry
o T*M XM'IEM — T

of composition.

14.5 ILEMMA We have

i.e., the diagram



camuites.

PROOF Iocally,
- Tnﬁ(ql,pi,c.]l,@i) = (qlfé.{l)

i i, _ i i
prM(q rpi:rits ) = (q (5) .

Consider
4
(Q )*GT*M'
Here, @T*M is the fundamental l-form on T*T*M, thus locally,

i i
Opiy = T390 + s7dpy,

hence
@ )re . = @¥)*@.ag + stap.)
T*M i Py
- - b
=@ ° o¥ ya(q- o %y + (st o sz"")d(pi o Q )
= - éidql + c:]ldpi (= 6;1) .
Therefore

- (- pyaq" + &'dp;)

apiadg” - dc';{la\dpi

1

dyrdq” + dpyadd.

and this implies that




9;; - -aw” } Oy
14.6 REMARK Define
Ayt TT*M > R
by the rule
AM(V) = <‘I"!T§1(V) '“T*M(V) > (V€ TT"M).
ILocally,
AM(qi;piréi,éi) = éipi-
But then
Oy * (Q")*OT*M

- - i oi _ - i 'i
=p;da” + pydg - pydq + qdp;

= Pid‘il + ‘;Ildpi

= a(d@'p,)

agy + @b g

s = 0

T b
oy = =A@’ ) %0,



Iet L € C (TM be a lagrangian —- then

dL:T™ - T*M

-1

YT TR > TT*M,

50 it makes sense to form
KL='{'-10dL,

which will be called the evolution operator attached to L.

14.7 IEMMA We have
Tryg © EKp, = 1dpy-
PROOF For

k = *
T o T1TM {cf. 14.2)

-1
* = Pk
TﬁMOKL T?TM°‘i’ o dL
= g% o 3L
= idpy-
14.8 I1IEMMA We have
T o = FL.

T*M

PROOF First
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T @Y = @ &y
v
dL(ql!Vl) = (qlr l: 'a'£j?r %'j__)-
_ v
Next
¥eTT*M > T*TM
serds
(ql,pi,él,éi) to (ql:élyéitpi)p
thus
¥k o o TR
sends
i i i i
(q 'V :Pi:ui) to (q]',ui;vl.pi).
Finally

Ty © K@)

- 1 3 a
T © ¥ (G v = EE"i“’
o™ av

T*M

_ i 9L i OL
‘—TTT*M(q;—'—'?;V;—“'P)

3‘0’1 aql

]
g
A
5.
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N.B. Therefore

K, € D (T*M;TM;FL) .

14.9 RAPPEL In the formalism of §13, let

XE Dl(M;N;CD) .

Then a curve v:I » N is said to be an integral curve of X provided

cho\.’:XoY:

i-eo'
T
™ — ™
I ~—— N
Y
commites.
[Note:

Y € DI(N:I:Y) .]

Accordingly, in this terminology, a curve y:I -+ TM is an integral curve of

KLif

']'_'FLo*}:I{Loy.

14.10 1EMMA A curve y:I -+ ™ is an integral curve of K iff the equations

of Lagrange are satisfied along Y.
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PROCF Working locally, let y = (qi,vi) (= (qi(t) ,vi(t)) -— then

i" = ( lrvlrc}lr\}l)
and
- 2
Lo v = (g5 &, &, & LR+ ——r——rail' )
v avag) avtovd
i oL i 3L
°Y=(qr_"'"'rvf'_")'
_ KL - aql
Therefore
TFL o Y = KL oy
iff
oo, 1
g =v
and

.j—gi—-r"l‘\}j B?L =&

q - = —
avtag? whavd  aqt

or, restoring t,

i

A E)) -y

at
and
Wt vy agtlver).

14.11 REMARK Suppose that L is nondegenerate — then 14.10 implies that
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a curve y:I » ™ is an integral curve of I iff it is an integral curve of Kp -
Therefore

T'Loy=y

TFLoI'Loy='IFL°y

Since vy is arbitrary, it follows that

TFLoI'L==KL.

Because
1
KI € D7 (T*M; TM; FL) ,

there is an arrow

DKch‘” (T*M) > C (T™).

Locally, v £ € C (T*M),

D&f
.—_vi-a-—{(fom) +§EI %I—)—(foFL),
aq e i



§15. DISTRIBUTIONS-CODISTRIBUTIONS

Iet M be a comected C manifold of dimension n.

e A distribution on M is a subset T of ™ such that ¥ x € M, ZX=ZnTxM

isalinearsubspaoeofoMandwedefinepE:M+§by

pz (x) = dim ):X.

CmecallsEdifferentiableifoEM,VVXEZX, 3 a neighborhood U of x and a

vector field X € DY(U) such that X, = V, and X € I (y € 0).

[Note: A differentiable distribution I is linear if Py is constant. There-

fore the linear distributions are precisely the vector subbundles of T™.]

e A codistribution on M is a subset Z* of T*M such that v x € M, E§=

¥ ﬂ‘I’;{Misalinear subsPaceofT;Mandwedefine pz*:M+gby
Ppx (%) = dim I¥.

One calls r* differentiable if Y X €M, V a € E;, 3 a neighborhood U of x and

—— = *
alforme‘Dl(U) suchthatmx axandwyezy(yem.
[Note: A differentiable codistribution I* is linear if Prx is constant.

Therefore the linear codistributions are precisely the vector subbundles of T*M.]

15.1 REMARK The underlying assumption is that we are working in the c’

category. However, on occasion, it is convenient to work in the ot category,




since there certain results can be significantly strengthened.
[Note: Tacitly, M is paracampact, thus admits an analytic structure which

is unique up to a ¢~ Aiffecmorphism.]

15.2 IEMA If

E'k

are differentiable, then the functions

Py

DE*

are lower semicontinuous.

15.3 EXRMPLE Take M = R and let

I, = span {x ) -g; ‘
where
S0 (x=0)
x{x} =

1 (x=0.

Then Py is not lower semicontinmous, hence I is not differentiable.

Given a differentiable distribution ¥ or a differentiable codistribution I*,



3.

a point x € M is regular if Py OF Opx is constant in a neighborhood of x; other-~
wise x is singular.

15.4 I1EMMA The set of regular points per I or I* is open and dense.

15.5 EXAMPIE The set of regular points need not be connected. E.g.:

Take M = 132 and let
- 3 2
Z(x,y) = span {Bx' Y By}'

Then I is differentiable. Moreover, its set of singular points is the x=-axis
while its set of regular points has two connected camponents, namely the upper
half-plane y > 0 and the lower half-plane y < 0.

15.6 EXYAMPIE Take M = 10,1 and fix €(0 < £ < 1) = then 3 a closed subset

A < M of lebesgue measure € such that M - A is open and dense in M. Choose

£ec”M:E£L(0) = A. Define a differentiable distribution T by

0
‘I = span {£(x) E}'

M - A = set of regqular points of ¥

A = set of singqular points of I.

[Note: Letheamnanptyopensubsetofl}n. Suppoge that I is an analytic

distribution —- then it can be shown that the Lebesque measure of the set of



singular points of I is zero.

* et T be a distribution on M —— then the annihilator Ann ¥ of I is
the codistribution on M specified by
(Ann Z)x = {ax € T;M:ax(vx) =0V v, € Ex}.
®lct ©* be a codistribution on M — then the annihilator Ann I* of I*
is the distribution on M specified by
* = - j—— *
(Ann %) {VXE T Mo (V) =0V € Ex}.
Obviously,
Aann{Ann I) = I, Ann(Ann I*) = I*,
* 1 1 i —-——
N.B. Suppose that IZ(IZ*) is differentiable then Pann Z(DAnn Z*)
is upper semicontinuous (cf. 15.2}, so Ann Z(Ann I*) is not differentiable unless

Z(Z*) is linear.

15.7 EXPMPLE Take M = R® and define a differentiable distribution I by

E(X'y) = gpan {x g—x, 4 -3-37}.
Then
- T, M (x=y=0)
span {dx} (x=0, v=0)
"0 7| pantay) e 0,y =0)
{0} otherwise.




¢ let ¥ be a digtribution on M — then an immersed, connected submanifold

N of M is called an integral manifold of § if TyN= zyvyeN.

* Tet I* be a codistribution on M -- then an immersed, connected sub-

manifold N of M is called an integral manifold of I* if TyN = (Ann E*)Y ¥y €N.

15.8 EXAMPIE Assune that X € Dl(M) never vanighes and let L, = span {Xx}

(x € M) — then the trajectories of X are integral manifolds of I.

A differentiable distribution I on M is integrable if ¥ x € M, there exists

an integral manifold of I containing x.

15.9 THEOREM Suppose that I is integrable —— then v x € M, there exists a
unique integral manifold N of I containing x and which is maximal w.r.t. containment.
[Note: If N and N' are integral manifolds of I such that N N N' = @, then

N n N' is open in N and N' and the differentiable structures induced on N N N'
by those of N and N' are identical. Purthermore, N U N' is an integral manifold

of I in which both N and N' are open. ]

15.10 REMARK The maximal integral manifolds of % form a partition of M,

the foliation Fz of M determined by £ (the N being the leaves of FE) .

15.11 EXAMPLE Suppose that m:E -~ M is a fibration. Consider VE ¢ TE ~- then

VE is a vector subbundle of TE, hence is a linear distribution. In addition, VE is



integrable and the leaves of the associated foliation of E are the connected
components of the E, = n_l(x) x €M,

[Note: An Ehresmann connection for the fibration #:E -+ M is a linear

distribution H < TE such that v e € E,

VE H =T E.
IRERLER

15.12 EXAMPLE ILet o € A'™M be a nonzero closed p—form on M — then the

characterigtic subspace of o at a point x € M is Ker o, where
Rer o= {Vx € Txlevxax = 0},

and the characteristic distribution Ker o of a is the assignment

x + Ker ax.
In general, Xer ¢ is not differentiable. To remedy this, let P{a) be the set of
all locally defined vector fields X on M such that

IXU’ = 0.

Define a distribution Z(a) on M by specifying that Z(a)x is to be the subspace of
Tstpa:medbytheXx(XED(a), X € Dom X} — then I{a) is contained in Ker a.
Moreover, L{a) is differentiable and, in fact, integrable. Recall now that the

rank of O is

rkxou = dim (TXWKer or.x} '
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p = rkxcz < n.
Impose the restriction that x - rkxof. is constant (i.e., that o be of constant

rank) == then in this situation,

Ker o = Z{a).

Therefore Ker ¢ is linear or still, is a vector subbundle of ™. And the fiber
d:i.rnensionofKeraiskifn-k=rkxoc (xeEM.

[Note: TakeM=I_tzandleta=xdx—thenaisclosedand

{0} xR (x = 0)

Rer o) x,y) =

<

(x=0).

Therefore Ker o is not differentiable (cf. 15.2). On the other hand, if X is a
vector field defined on a connected open subset of 1_32, then X € P(a) iff X has the
form g -g-f, g a differentiable function. So Z(0) is generated by %;, hence T ()

is strictly contained in Ker o.)

15.13 REMARK Let L € C {(IM) be a lagrangian. To be in agreement with 15.12,
assmmetlmtmLhasconstantraIﬂc, tImsKermLisavector subbundle of TITM. But
in §8, we put

Rer o = {X € Dl('IM):leL= 0}.



This, of course, is an abuse of notation in that the sections of the bundle are
being denoted by the same symbol as the bundle itself. However, no real confusion

should arise from this practice.

If X is an integrable distribution, then a function f € Cm(M) is a first

integral for I provided the restriction of f to each leaf N € FE is constant.

N.B. There may be no nontrivial first integrals. E.g.: If I has a leaf

which is dense in M, then the only first integrals for I are the constants.

15.14 EXAMPLE Suppose that (M,w) is a symplectic manifold. Given a linear
distribution I, define a linear distribution W'y by
L _ . =
WLy = {Vx € TXM.mX(VX,Xx) OvX € Zx}.
In terms of
wb' :T™M >~ T*M
and its inverse
¥
W iT*M -+ T™,
we have
# _ L
w (Ann Z) = w I,
Assume now that I is integrable and let f be a first integral for I -- then w#df

is a section of w'%. Thus, ¥ .X € sec I,

w(w#df,X) = 1 4 w(X)



af (X)

= Xf
=0,

the last step following from the fact that X is tangent to the leaves of FZ'

15.15 LEMMA If 7 is integrable and if x is a regular point, then 3 a
chart (U, {x%,...,x}) with x € U such that
B =SP311{§‘—I r---rg’jz } (YEU).
b4 NIy x|y
[Note: Here

k = pz(x) (= dim Zx).]

A differentiable distribution I on M is involutive if v pair X,Y of wvector
fieldsdefined onsome open subset U <« M such that v x € U, Xx&Yerx,wealso
have

[¥X,Y] % S EX.

15.16 IEMMA If I is integrable, then I is inwvolutive.

15.17 EXAMPLE Take M = R® and let

_ ] 3
z(x’y) = Span {53? ¢ (x) Tﬁ}'

where ¢ (x) ig a C function which is 0 for x < 0 and > 0 for x > 0 — then I is
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differentiable. And

3 d
G 400 50

= 0" (x) 55

Therefore I is involutive. Still, I is not integrable.

15.18 THEOREM (Frobenius) Suppose that I is linear —- then I is integrable

iff ¥ is involutive.

15.19 IEMMA A linear distribution I is involutive iff sec I is a Lie sub-

algebra of Dl M) .

15.20 EXAMPIE A pregymplectic manifold is a pair (M,w), where w is a closed

2-form of constant rank. Consider Ker w ¢ T™M {cf. 15.12) - then Ker w is linear

and we claim that EKer w is involutive. To see this, let X,Y € sec Ker w == then
g, T Uyx oy Ty o Ll

== gl

- IY“X od+do 1x)w

=0'

[X,Y] € sec Ker w.



ll.

Therefore Ker ¢ is involutive {(cf. 15.19)}, hence integrable {(cf. 15.18).

[Note: The rank of w is necessarily even.]

15.21 THEOREM (Nagano)} An analytic distribution is integrable iff it is

involutive.
15.22 EXAMPLE Take M = R® and let

n ]
E(X;Y) = gpan {x 5;(': Y s'y" .

Then I is imvolutive, thus is integrable (being analytic). As for the foliation

FE' it has 9 leaves, viz.

{(0,0)};
{(x,0):x > 0} - {(0,y):y > 0}
{(x,0):x < 0} | _ {o,y):y < 0} |
{x,v):x > 0,y > 0} ; T {(x,y):x > 0,y < 0}
{(x,v):x < 0,y < 0} _ A,y :x < 0,y > 0},

15.23 IEMMA Suppose that I is linear of fiber dimension k -~ then v x € M,

n=-k

J a neighborhood U of x and linearly independent l-forms wl,...,w on U such that
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1 n-k
= Ker n e-- K e U).
Zy ) y n Ker w v (v )

[Note: Introduce

. {cf. 8.19).

& s R

Then what is being said is that I|U, viewed as a subset of TU, can be characterized

as
&h oy - 0 @PF oy,
Iocally,
i n i .
w = T a .dxj
s

=4
|

. n . .
L= v (at. o mvi.]
e

15.24 REMARK I is involutive on U iff 3 l-forwms elj on U such that

i n-k i \
awr = £ e (A=1,...,n%).
s

[Note: One can go further: EacthUadmitsaneighbor]:nodecUonwhich
3 ¢° functions Clj,fj (i,5 =1,...,nk) such that
n=-k

wht= ¢ chafl.]
s
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-k

If wl, . .,wn are linearly independent l1-forms on M, then the prescription

{x €M)

. ™

5 =Kerwllxﬂ e+ N Rer w’
defines a linear distribution Z on M of fiber dimension k.
[Note: 1If it is a question of a single l-form, then the assumption is that

this 1-form is nowhere vanishing.)

15.25 EXAMPLE Take M = R° and let

w=dx + xydz.

I T S
Z(x,y,z) = Span {'8?' 92 - X ax}'

15.26 REMARK Take M = R and let

wl=dx+ydz

w2=dx+zdy.

1 2

Then w and w~ are not linearly independent. Since

- 1 _ 3 9 _ 9
Kerw—-span{-a—l-,—,gz— Y'é;}

2 _ 3 3 _ .8
Kerw—span{E,g-i; 2-3-}—{‘},

we have
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- 3 3
L(x,0,0) = SPan 5o o)

2,00 = 0 G7) @20

3
Eix,g,00 = an {55y = 0)

= wgd 49 L2
—smn{zax+3Y+y

!o.)

} y =0, 2=0.

QI

E(XrYtz) z

So, along the x-axis oy is not lower semicontimcis, which implies that I is not
differentiable (cf. 15.2).

15.27 IEMMA I is integrable iff

dwlA(wl A vee A mn-k) =0 (i

1;ooo;n_k)o

E.g.: If the issue is that of (n-1) l-forms, then

atr@l A oA™Y =0 (G=1,...,n-1).
Therefore ¥ is integrable.

15.28 EXAMPLE Take M = R° and let

w = Mx + Bdy + Cdz,

where A,B,C are differentiable functions of x,v,z (not a2ll vanishing simultaneocusly) --
then I is integrable iff

0B _ o€, oC _ oA oA _ 9B, _
Atyz ay)+B(3x 32)+C(8y = - O
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+
Thinking of A,B,C as the camponents of a vector field F, the condition thus

amounts to requiring that

s B3
d
=4
H
(=)

E.g.: I 1is integrable if
w = yz(y+z)dx + zx(z+x)dy + xy(x+y)dz

but £ is not integrable if

w = xdy + dz.
3 . Wt
15.29 REMARK Take M = R and work with l1-forms — then it may very
- Zl - ml
well be the case that the distributions per individually are not
_ E:2 _ w2
- L
integrable. Nevertheless, the distribution I per collectively mast be
2
w

integrable (cf. 15.27):

dwra@lawd) =0 (i=1,2).



§16. LAGRANGE MULTTPLIERS

Informally, constraints are conditions imposed on a mechanical system that
restrict access to its configuration space or its velocity phase space.

So, as usual, let M be a comnected ¢’ manifold of dimension n. Fix a

riemannian stnlcturegonMandletT=—§-g-—thenweshallmrkwiththe

mechanical system M = (M,T,II), where Y is horizontal.
[Note: Recall from §10 that the second order vector field I‘M is character-
ized by the property that

n=k

By a system of constraints, one understands a set ml,...,m of linearly

independent 1-forms on M. As will becane apparent, the key point is to first
study the case when k = n-1.

To this end, fix a nowhere vanishing l-form w € A™M — then @ € C(TM) (cf.

8.19) and since mho € hA'TM, 2 a unique vertical X :
1meT = ﬁﬁw {(cf. 8.23).
N.B. Locally, if
w = aidx P

— ] 2
X, = @) (@ o my) I

Here, as in §8,

WD) = W],



where
52T
W-O(T)=_l_-'-'-" (=g-- '.'T)
ij I i3 M
ard we have abbreviated
wery
to
wlm =g e my.
M
16.1 LIEMMA Determine X, € D]' (TM) via the prescription
—_— " _
IX,\w‘I‘ = dw.
w
Then
SX ==X .
o u

PROOF From the definitions, S*(dw) = mhu, hence

S*(1y uy) = s* (dw)
w
2= ﬂﬂw
= 1y Wpe
W

But, on general grounds (see below), ¥V X € Dl('JN},

S (1ogig) + Aty = 0-

Therefore

tgx Uy = = %y uyp)

W W



=2

SXA = -Xw.
TH]

Note: According to 6.3, V X € D~ (TM),

ly © 65-6So ty = gy

tgp = {13 @ 8g = 85 ° tdug

- Gslme (cE. 8.1)

- S*T.xu.\r.]

>
£
]

(X )

(1 o) (%)

W

LQT (Xarxw)

= LoT(XA, - SX )
w w

= L-JT(SXA,XA} .
w W

16.2 REMARK The function waG is never zero ard, in fact, is strictly positive.



4,

For locally,

[
e
n

@) (a0 ) 2 (o o m)v)

v

ij
(g7 o TTM) (aj ° TsM} (ai ° 'nM)

glw,w) © M

"

> 0.

Let E, < T™ be the linear distribution on M determined by w —— then the
assumption ig that E, (= (:3) -1(0)) is the arena for the constrained dynamics.

[Note: The fiber dimension of Ew is n-1 amd Zw does not have the structure

of a tangent bundle.)

Given X € C (M), put

FJ\ = TM + J\Xw.

Then Ty € SO (TM) (X, being vertical).

N.B. Along an interval curve y of Py, we have

a 3T oT .
('—"") _—— = H. + )l.(a.- o T ) (l= l,.-.,n).
dtc vt .aql 1 1 M

16.3 LEMWA There exists a unique ), € C (M) such that

T. @ = 0.
Ao



PROOF If
Pkow = _(I‘M + onw) ()
= rM([, + xoxwél
= 0'
then
I! Fat
Ay = - M et 16.2).

wa

This particular choice of A, is called the Lagrange multiplier: So we pass
fram
M,T,0) to M,T,T,w)
and fram

(M'Tfnfw) to (MITIHIMIAG)"

16.4 1IFMWRA If AO is the Lagrange multiplier, then I, is tangent to Ew.

Ao

[A vector field X € DY (M) is tangent to 5, iff ¥l =0.]
i1]

It is now a definition that the constrained dynamics is given by the restriction

t:)fl"7l to £ .
®

0

Iocally,



where
- I r
(T) ( : v+ 0.).
NI svlagt J
Putc
2 _
lw|“ = glw,w) o Tyge
Then
d(a, o m,) . .
_ 1 i M i Ck
A, = — { : vy o+ | o W JC,;).
0 |wI2 3qj al( MM

And the equations of motion are

i4 i i i3
g =v, v —CM+)\0(WJ' (D) (a; © ).
16.5 EXAMPLE Take M = B> and

g =midx @ daxt + ax’ @ & + & 8 &)

B

=2 wh?+ H2+ D,

where m is a positive constant. Write

I = Hldql + nquz + 1'{3dq3 )



and, in view of 15.28, ):w is not integrable. Since

wT=m(dv1 A dql + dv2 A dq2 + dv3 A dq3)

and
. = 1
11Mw——qdq + dq-,
it follows that
1 23 3
X, =g qa —x+—-
o v
To campute the Lagrange mualtiplier
]-|A
A0=__A£\)..'
Xw
()
note that

Using the fornrmla for I‘M given in 10.3, we have

~ i I
I"Mw=-vlv2—qzﬁ—];+r-ni.
On the other hand,
A 1 ,,272
Xp== g7} +1).
Therefore
1'rwlv2 + qZHl - 1'{3
A. - 22 -
0 @ +1

And finally



I A
»] 1 2
g ! I_E_O_
. II
2 -2
Il A
=3 3 0
q =;n_+_rEo
[Mote: Takem = 1, 1'[1=1'[ =
to §8, put
F=vt, #=F
Then
G.3%.8 .
is a coordinate system adapted to Ew. Here
1 0 o
£ = 0 1 0
[ 31
=Y 0 1 _
while
B! 0 0
=i
f.] = 0 1 0
[ J]
_ Y 0 1 _
aAnd
o7 =vl-§—]?+v282+v3.33
o aq g
-le +v2)i + v -3“ _1_2 3 _

3\73



- Xw=—q28_.I+§...§.
v v
-2 3 -2 2 9
=-q —+ ()" +1) —
2o 0
7
N WA YRS AU,
0 (q2)2+1
Therefore
T'A0=1"M+A0Xm
- oo e =1-2
=\_r]'xl + vzxz + V3X3 - _2v2v 3 3-1
g~ +1 v
So the constrained dynamics is given by
=1-2
=z | =2 vy =23
Ty |2 =le +vX, - — q .]
10} W 1 2 (q2)2+ 1 3\71

16.6 LEMMA We have

wae'r = Mo
PROOF By definition,

1XmmT = Trﬂm.

Now expand the LHS

LLJ

1me,1, = IX dBT

(LX -de IX)BT.
A w

-
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But BT is horizontal while Xm is vertical, hence BT(Xw) =0 (cf. 6.14),

g p = Ly O
) W
16.7 IEMMA We have
LF 6T=dT+II+AO1rﬂw.
A
0
PROOF Write
L. 6, =1L 8
]"7\ T I‘M + J\OXw T
0
=1_.06_+ A 3]
I‘M T OLXw T
= LFMGT + );O-rrgam (cf. 16.6).
Because I‘M is sedond order,
1 BT = AT {cf. 8.13)
M
= 2To
Therefore
L. 6. = {1 od+dos 1, )6
= ‘LI. W + d(2T)
M
=-4ar + Il + 24T

ar + I.

Therefore



But

16.8 IEMMA Suppose

T, (£)

PROOF First

11.

that £ € C; (TM). Define X € o' (m0) by
H

1 = df.
xf‘“"r

[

- )\OWE'&(O (Xf) .

= 1 af
T
A0
=1 1
r. 'x.%r
J\O f
= - 1 1. -
x.'r, Y
£ AO
= 1F7\ dBT
0
= (LPA -d e 1]..?\ )BT
0 0
= Ll.. BT - d(2T (cf. 8.13)
)\0

- *
dar + 0 + AO‘iTMm.



12.
= t, df
Ty
=1 t
Ty xf‘*"r
1 1
Xe rM“‘r
=- 1, (-ar+ M.

£

Therefore

= = - *
T 0(f) le( dr + 0 + lo‘rrMuJ)

1x!‘o’ﬁ‘”

]
I

J\Onﬁm (Xf) .

It is thus a corollary that

0 => fec°lf (™) .
A

'rrb*gn (Xf)

16.9 REMARK Take Il

i

Oandletf=ﬂl,-—thaaal,ec‘; (™M) (cf. 8.10).
T

HerexET=—I‘T ('LI.TQ\T="‘dE,I.) ard from the above

- Aowﬁm(* T‘T)

Ty oEp

0

= J\Ow
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80 E‘I“Zw is a first integral for TA L,

0

Proceeding to the general case, let wl,...,mn-k be a set of linearly inde-

perdent 1-forms on M — then the prescription

.. = Ker wl N .. N Ker wn"k (x € M)
X X X
n-k
defines a linear distribution £ (= N I )} of fiber dimension k. WriteXuin
=l w
place of X , tlms
u
0
= s H = -
Ly Wp = T p=21,...,n-k).
H
civen AL, ... A% € P (), put
FA=1"M+J\U}{“.

16.10 LEMMA The matrix [MuV] ‘defined by

MYV=xaY
" u

is nonsingular (and symwetric).

(In fact,

xu&" = gwM,6) o™ (cf. 16.2).]

M

16.11 LEM@ There exists a unique (n-k)-tuple Xy = (Ags--+/An )

(AE e (™), =1,...,n=k) such that
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I‘hw =0 {(v=1,...,1n=Xk).
-0
PROCF If
A'\) _ A\)

r)_\ow = (T + x‘gxp) (")
= l‘”ﬁv + )LSXH:U\)
= 0,

then

where the matrix [Muv] is the inverse of the matrix [Mu"}.

We shall call ), the Lagrange multiplier. So, by construction, T, is
=0

tangent to % (cf. 16.4) and the agreement is that the constrained dynamics is

given by F}\ z
-0

-

N.B. The equations of motion are ql = vl, 1= CJ'

0+ Ag wtd (m) (a”j o)) .

g = n(@x’ @ ax* + dx® @ dx’) +136x3adx3+x4dx4adx4

r=2(wh2+ vHD +11, oHE+i1, o2
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where m, 13, 14 are positive constants ard, to keep things simple, assume that

I=0. Let

dxl - (R cos x3)dx4

£
1§

R>0).
dx? - (R sin x°)ax?

E
]

Then ml,wz are linearly independent l-forms on M and

201 2 3 4
(", %, %X %)

=spa.n{RcOSX3L+RSinx33 $ 2 ,8 }.
1 2 4 3
ox 9x ax~  ax

So T is actually analytic but it is not involutive, hence is not integrable (cf.

15.18)., Here

by = m@viadgt + aviadg?) + I, (@ rdg’) + I . @ragh).

And
- 13 33
I, === -—0cosq —5
1 mavl 14 3v4
1o R . 309
X, = = e = — 351N g
2 m3v2 I4 sz

These relations and the fact that

vl - (R cos q3)v4

£
1l

v2 - (R sin q3)v4

E
Il

then lead to



1s.

?\3 = - (MR sin q3)v3v4
}\g = (mR cos q3)v3 4.
Therefore
I‘A = lg-——~-+\72 2 2+v3 9 3+V4§_Z
=0 3q g g aq
- (R sin q?’)v3v4 E_l + (R cos q3)v3v4 E_?
v av
fram which:
ul R - -4 bhd *+ 5.
g =- (R sin q3)q3q ¢ qz = (R cos q3)q3q4r
=3 !

a=0q9 =0

or still, subject to the initial corditions qg,vl (i=1,2,3,4),

0
_ g
ql(t) =R—O—sin(v3t+q3) +At+B
3 0 ol t A 1
v
0
v4
2. __ -0 3 3
q (t) = RV3 cos(v0t+q0) +}\2t-l-B2
. 0
and
- 3,.,..3 3
q(t)—-vot+q0
4, . 4 4

Al,Az, l,B2 being constants. But
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ab,al e T (M) (cf. 16.1D),
A
Ao

thus are constant on the trajectories of rl (cf. 1.1). Indeed,

=0

t:‘-l(Q(t) ) = Rvg cos(vgt + qg) + Al - R cos (vgt + qg)vg

=2
and
() ,v(w) = Rvg sin(vgt + qg) +A, - R sin(vgt + qg)vg
- A'Z.
So
Ay =2y =0

if the initial conditions lie in £ = (5 X(0) n @) L(0).
[Note: The mechanical system represented by the preceding data is the vertical

disc of radius R and of uniformly distributed mass m that rolls without slipping

on a horizontal plane (I3 and I4 being the appropriate moments of inertia).]

Suppose again that w € AlM is a nowhere vanishing 1-form —- then in general,

Z, is not integrable.

16.13 RAPPEL Zw is integrable iff the 3-form dwaw vanishes:

dwaw = 0 (cf. 15.27).
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16.14 REMARK An integrating factor for w is a nowhere vanishing ¢ € C (M)

such that d{¢w) = 0. If w admits an integrating factor ¢§, then Ew is integrable.
Proof:

di¢w) = 0 => dpaw + ¢adw = 0

=> ¢gadwaw = 0 => dwaw = 0.

Conversely, the assumption that Zw is integrable implies that locally w admits
an integrating factor ¢ (cf. 15.24), hence locally

b = df (3f) => w = %df.

If w=df (E€C°(M, df, = 0V xEM, then Iy, (= @f) "L(0)) is integrable
(cf. 16.13).

Set
fi=f£10.
Then M is a submanifold of M and, in obvious notation, there is an induced mech-

anical system M= (ﬁ,'f,ﬁ) .

[Note: M is not necessarily comnected but this point causes no difficulties.)

16.15 LEMMA The vector field I, is tangent to ™ and
0

Here is a corollary. Assume that I = 0 — then

P, =T, + AX. .
A T o"‘df

0
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Therefore

[Note: The integral curves of T_ are in a one-to-one correspondence with
T

the geodesics of (M,g) (cf. 10.6). Bear in mind too that an integral curve of

I, that passes through a point of ™ is contained in THM.]
0

16.16 EXAMPLIE TakeM=133 - {0},

mib @ dxt + dx® @ dx® + e 8 dx2) (m > 0)

GO
1k

1.2

() 2

+ (:»cz)2 + ():3)2 - R (R > 0)

'—h
tH

and suppose that Il = 0 - then

— i ~ . .
-2 G
art IV
Y = m ! 2 . . 21
0=" > v| (notation as in 9.21).
_ 2|g|
Therefore
¥ 2 L]
i3 lvl© i3
Ty =V i 5 4 1
0 - gl v
=l
P o=yl 3 |v|:2 id
T 3¢ R vt
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. - 2,
W + J’%“-’—‘—xltt) -0 (i=1,23).

R

In anticipation of the developments to come, we shall shift our point of
view and fix a nondegenerate lagrangian L. Let wl,...,wn_k be a system of

constraints -— then 3 a unique vertical Xu:'

lx u)L = Tr* ]J (u = l,oooyn—k) (Cf. 8.23) .
U

n-k

Give-‘l )ll'.-O'A. e Cm(m)!‘ wt

= M
1")\ T‘L + A Xu.

Then the crux is the validity of 16.10 which, in general, will fail.

[Note: Locally,

-1yke 3! gw

7 -1

X a’= (WL)
e v v

16.17 EXAMPLE Take M = K> and define L:TR - R by

L(ql:qzrqsrverZ:VB)

=2 (wh?+ A2 - @H.
Then L is nondegenerate and
ap, = dviadgt + aviadg® - aviaag’.
Letting

w=dx + &7,
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we have
] 2
X =2 - 2
W 8v2 3V3
Buat
X = ('53—'2'-2—-5) (V2+V3)
w wv® W
=1-1=0.

(Note: L is the "I per the semiriemannian structure

g=dst@ax +dx® @ ax® - &° @ ax>

Call
(Lr {(L'!lr .. r(ﬂn_k})
regular if the matrix
[xua"]

is nonsingular; otherwise, call

(Lr {Ufllr LR rwnﬂk})
irreqular.
N.B, If

L=T"V°T|"
where g is riemannian, then

(L; '[U.ll; LR ,U.)n-k

b

is regular.
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The upshot, therefore, is that in the presence of regularity one can determine
the Lagrange multiplier 250 and proceed as before.

In the irregular situation, matters are not straightforward and there may
be no resolution at all. For sake of argument, let us assume that it is a question

of a single constraint @ and consider the equation of tangency:

[‘Lw + onmm = 0.

If Xw& is never zero, then

b

=

=
EE) i)

o
|
]

and we are in business. Suppose that waﬁ

11

0. If rL(Ia=Oonzw, then the dynamics

is undetermined, i.e., Vv A,

FLu) + Axww = 0.

However, ifxwaEOandI'Lai.‘Ooan,thenVL

on
1 _ A =1
}:w = (I‘Lu;) (0)n Ew

and we are led to the secondary equation of tangency
I T6 + XX T = 0

whose solution is

WX Tyl
0 == A
XwFL
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provided XMI‘L{:‘; is never zero. But this may fail. In that event, if FLFLJ" =0

on Zi as well, then the dynamics is undetermined. Still, it might happen that

~ 1 . s 2 1
I‘LI'Lw,ZOOnZwaniwhentlus:Lsso,onecanpasstozwczw... .

I'Lw

=0,
so the dynamics is undetermined. Now modify L by appending the temm qh)? and

change w to dx* + dx° — then

] ]
X = o - —
w .avl 3v3
=>
xo=Eg-29 @ +v)
av v
=1~1=240.
And
I‘LEI;: (vla—-l—+v282+v333+qli-r) )
9dq od ila| v
1
=q.

Therefore PLG Z 0 on

2 1 2 1 3
Zm = {(qlfq ,q3,v v :V3)= v+ v =0}
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and
Zi = {(qqu21q3rvlfV2;V3) : ql = 0, Vl + V3 = 0},
But
~ 1
XwFLw = qu =0
while
~ 1.1
I‘LI‘LLu = I‘Lq =v,

so the next step in the procedure outlined abhove is to pass to

Ef) = {(qlfqzrq3rvl;vzrv3): ql = 0, V'l =0, V3 = (}.
Since
~ _ l _
XmI"LI'Lw = va =1,

the algorithim stabilizes at Zuzj, the Lagrange multiplier being

1
A2=-_1:Ev_=-ql
0 le

realizes the dynamics on Zi.

By an affine system of constraints we shall uderstand a system of constraints

wl,...,mn_k together with functions ¢1,...,¢n_k €eC (M. Put

ot =gt + oM e My (0 =1,...,nk
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and set
n-k

c=n &M 0.
=1L

Assuming that
(L, fwb, .., 5Y
is regular, 16.11 then implies that there exists a unicque (n-k)-tuple

Ao = Ogreses g™ (08 € €m0, 1= 1,...,nk) such that

Ty " =0 (v=1,...,nk.
20

And again the agreement is that the constrained dynamics is given by r, |c.
~Q

[Note: BAs regards the Lagrange multiplier X

Ay we have

_ v v
I, & =T 0" + xgxu¢

B v ~Y
=T+ Agxuw .
Here
\) —
Xu (¢ o TrM) = 0 !

X, being vertical.]

16.19 REMARK Consider the case when ¢ = w + ¢ — then

And, on C,
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which, in general, is nonzero.

16.20 IFMMA Suppose that

(L, {UJlf “ae f{ﬂn‘k]’)

isregular—ﬂenalmganhtegralcurveyofFA,WMVe

=0
n-k M
%(%)-%: T )‘EEI {i=1,.0.,n).
v 3g- =l v

[This is an immediate consequence of the definitions.)

16.21 EXAMPIE Take

M= &% x J0,2n[ x 10,7[ x ]0,2n[

and define L:T™ > R by

L (ql'qz'q3,q4’q5'v1’v2’v3 Iv4 IVS)

(wh? + A3

S

+%_ ((v3)2 + (v4)2 + (v5)2 + 2v3v5 cos q4)’

wherem > 0, I > 0 ~- then L is nondegenerate (see the Appendix, A.24}.

R>0,90=0,1et

-1 1 3

]

dxt - (R sin x°)dx" + (R sin x° cos x°)dx

2 3

dx? + (R cos x0T + (R sin x° sin x°)dx

e
I

Given
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and
T e
¢2 = - Qoxl.
Put
c=wh™wo n @Ho.
Then

Cl 1 2 3 4 5
(x",x",x",x",%x7)

is an affine subspace of

Ty 23 4 s5M
(x,x ,x",%x,x7)

viz.

span{ (R sin x5)3_l - (R cos XS)B_Z + E-E,

P> 74 ox ax

ox oxX~  O9x
2323 12
+ (- x° e+ ax 2,
o® k|0 32
Since
(Lr{wlrwz]‘)

is regular, the Lagrange multiplier &0 = ()\é,lg) exists, from which F)\ [C.

general grounds,

i M. SRS ¥ IS Iy u
q = agerI @ @y o my

=0

(i = 1,2'3'4'5) -
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Here
all=l,a12=0,a13=Rsinx4caosx5,a14=-Rsinx5,a15=0
2 _ 2 _ 2 _ . 4 . 5 2 _ 5 2 _
_ﬂal—-O,az-l,aa—Rsmx smx,a4-—Rcosx,a5—0
Accordingly,
g =ct+apettaa o my
+Wl3(L) (al3 o TI‘M) +w14(L} (3.14 o nM))
2 2 2 3 2 4 2
+ WP @, o m) + WO a2, o 1) + WD) @7, 0 mY)
_ 1,1 2
—0+J\0(I—n+0+0)+A0(0+0+0)
1
_o
m.
And likewise
2
2 o
q m"

One can also explicate &3,&4,65

but the final formulas are on the complicated
side, hence will be amitted (they will not be necessary in what follows). It

remains to compute Aé,)\g. This can be done mechanistically by feeding the data

into the machine and grinding it ocut. However, to shorten the discussion, we shall
confine our attention just to ¢ and employ an artifice. Consider an integral

curve vy of I‘X lying in C (recall that T

A is, by construction, tangent to C).
=0 20
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- oL _ .3 5 4
3=V + IV cos g

av

L__,
T

v3 + IVS cOS q4) = A

4 o 1 90t 202
& 0

2
LA S g-s. A
av3 08v3

= R sin " O cos ¢° + 32 sin @),

oL 35 . 4
—T=—Ivv sin g

o

[

IV4+IV3V5 sinq4= A —5 * A
v

4

1 3%
0 v

a 2 30°
T 0

= )\é (—RsinqS) + 7\3 (R cos qs).

—BLS = Iv5 + Iv3 cos q4
ov
]
E%: 0
g
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1 2
d 2 3%
+2g =5

3v v

5

L=

d 3 4 1
¢ IV + Iv7 cos q7) = Xy

[%;]

1

= 2
= XO {0) + )\o (0)

= 0.
So
cos q5(I\'74 + Ivy° sin q4)
= 7\]6(- R sin qs cos q5) + ng(cos q5)2
and

. .5
___qj_sm g?:' (Iv3 + Iv5 cos q4)
sin q

= Ag(R sin ° cos ¢°) + RAi(sin @) 2.

Now add these equations to get

ng cos qS(Ix}4 + Iv3v5 sin q4)

sing® d ;3
. 4 dt
sin q

+ IVS cos q4)

+

or still,

1 cos qs + Vv sin q4 cos q5

L=

. 5 4
+ \}3 smng 7+ {rs sin qs ——JZ-COS - v4v5 sin q5) .
sin g sin g



Therefore

on C,

Thus along v,

31.

4
v qu52°_s_gz
sin g
34 . 4 .3 4 5 cos g
= (Vv sing =-v cos ¢ )sin g ———JI
sin g
.3 sin q° .3 4.2 sin q°
A —-—%—v(cosq) ______g_4_
sin g sin g

\’r3

5 sin @ (1 - (cos gH9)
sin g

\}3 sin q4 sin qs.

R)\g = I({r4 cos q5 + v3v5 sin q4 cos q5

+ \}3 sin q4 sin q5 + v3v4 cos c_{4 sin q5 - v4v5 sin q5) .

VZ + (R cos qs)v4 + (R sin q"’i sin qs)v3 - Qoql = 0.

5

{- R sin q5)v4v + (R cos q5)\'r4

+ (R cos q4 sin q5}v3v4 + (R =in ‘q4 cOs qs)v3v5 + (R sin q4 sin q5)\'r

3



And then

Analogously,

[Note:

or still,

32.

=YX}
]

el
T
q.
+
&
<

I
Wi
T
Q
+
e
Q

|
W
n

oM
| H
fun

A corollary is that

ELlC Z cr;\ lc(c)
20

(FAO!C) EC) = PEOEL|C
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In fact,

_ 1A, 242
Ty B = A + Age”  (cf. 16.19)

20

11 | 282
I EfC = Ggu™ + a9 e

2

1 2.1
= (%a° - 222 )|c

= - -lll——z Qg(— vzq2 - vlqll |C
I +mR

= —-H—'I——-—z- Rg (qlvl + q2v2)
I+mR

C.

Turning to the physics that realizes the above setup, consider a hamogeneous
ball of radius R and mass n which rolls without slipping on a horizontal plate

that rotates with constant angular velocity Q * 0 about a vertical axis through

one of its points —— then M = 1_12 x 80(3). Fix a reference frame with origin the
center of rotation of the plate and vertical axis the rotation axis of the plate.

Tet (xl,xz) denote the point of contact of the ball and the plate and let (x3,x4,x5)

be a chart on $0(3) per the 3-1-3 system of Euler angles (see the Appendix)} —— then

L,wl,wz,cbl,q;z are as above (the potential energy corresponding to the gravitational

force is constant, so there is no loss of generality in setting it equal to zero).

Spelled cut in traditional notation, the lagrangian is

I

m '2+§72)+-2-(&:2+é2+i)2+2&>11)0058),

7
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the constraint equations expressing the condition of rolling without slipping are

i
o

:’«:—Résinup+R$sinsooszp+Qoy

y+R&cosy+R¢sin g siny -

|
o
-

Ed
+
o
=2
QQ
il
o)

It is then an elementary matter to determine the motion:

- xw) T = siné qb) oos(% 24t) %(0)

f
to] =~
:OII—'

y(t) - cos(3 Qt)  sin(Z 2,0 7(0)

x(0) = £ 3 3(0)
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Therefore the orbit of the point of contact of the ball is a circle on the plate.]

16.22 REMARK If we take QO = ( in the above, then the constraints are linear

rather than affine. Consider

ci:sinssinw+écos¢

-

q>sinecos¢-ésinxp

$ cos 8 + ¥
It has already been pointed ocut that
d——(q'bcose+1])} =0
dt '

Next, from the preceding analysis,

2 d + . .
RAO=IE(¢smesmw+Bcosw).
But
=0 = 32 =
QO—O_>}\0-0
=>g—(&3sinesinlp+écosw)=0
dc '
Ditto
d—-(&:sj.necosw—ésinw)=0
dt -

The upshot, therefore, is that the ball rolls at constant speed in a straight line
and its body angular velocity Q(t) is constant in time (however, Q(t} is not
necessarily horizeontal since ¢ cos 8 + {j, while constant, is typically nonzero).

Moreover, in this situation, ELIC is a first integral for I‘)t |C.



§17. LIE ALGEBROIDS

Iet mE -+ M be a vector bundle of fiber dimension k.

e Assune: sec E is a Lie algebra with bracket [ , ]E‘

e Assume: p:E -+ ™ 1is a vector bundle morphism over M, i.e.,

fol

E —
d

M o—

Then the triple (E, [ ,]E,p) is called a Lie algebroid over M if v £ € CW(M),

™

|

-

A4 51;52 € gec E,

[Note: p is referred to as the anchor map.]

N.B. The arrow

secE—rsecm(=Dl(M))
s >peo s

is a homomorphism of Lie algehras: Vv $1/8, € Sec E,
po [sy,8,lp = lo o 85,00 8,0,

where the bracket on the RHS is the usual caumitator of vector fields. In fact,

vEeC M, v $15,,85 € sec E,

[[SlrSZ]EffSB]E = f[[sl'SZ]E'S3]E + ((D Q [SlrszlE)f)S3o



On the other hand,

[Isy.8,) prEs; ]

i

- [[SZ'fSB]E'Sl}E'SllE - [[fSBISl]Ersz]E

= = [[52'f53]E'Sl]E + [[SlrfSBJErszlE

Il

+ [f[slrs3]E + ((p o sl)f)s3,32]E

= [sl'f[SZ'SB]E]E + [sl,((p o sz)f)s3]E

N

£s;0 [5,831 1L + ((0 0 ) 6) [8,,8,]

+ ((p o s2)f)[sl,531E + ({p o sl)(p o sz)f)s3

- f[SZ'[sl'SB]E]E - ((p o sz)f)[31,33]E
- ((po Sl)f)[52'5313 - ({p o sz)(p o sl)f)s3
= f([slr [82'331E]E - [32! [51FS3]E]E}

+ ((p s Sl) (D o Sz)f)s3 - ((D e 82) (D °© Sl)f)s3

= f[[sl;szlErS3]E + ([D Q Slrp ° Szlf)33-



Therefore
p o [sl,szlE =[po Sysp © S,1.

17.1 EXAMPIE Every finite dimensional Lie algebra g "is" a Lie algebroid

over a single point.

17.2 EXAMPLE The triple
('IM,[ ] ];idm)
is a Lie algebroid: v £ € C°(M), v X,¥ € 0- (),

X.£Y]) = £IX,¥] + (XL)Y.

[Note: If £ ¢ ™ is an integrable linear distribution, then £ is involutive

(cf. 15.18), hence can be viewed as a Lie algebroid in the obwious way.]

Other examples will be given later on.

17.3 RAPPEL AOE =c () and A'E (p = 1} is the set of multilinear maps

o]
w:sec B X +++ X gec E » C (M)
which are skewsymmetric if p > 1.
[Note: TakeE='I‘M-——thensecE=Dl(M) ard in this context, APE is what

one normally calls APM, thus the symbol APE is not AP (as it is usually urder-

stood) . ]



17.4 LEMMA Suppose that (B,[ , ]E,p) is a Lie algebroid over M. Define

a: 4P > 1P
by
dE‘”(so""‘Sp)
P
= I (-1} (p ° s )m(s re ..,sl,...,s)
i=0
+ T (-1)i+3w([sl,s ]E'SO““'Sl' ceesSe foe ,s)
i< 3
Then

[Note: In the case of a Lie algebra dr dg is the Chevalley-Eilenberg

differential and in the case of a tangent bundle ™, dTM is the exterior derivative.]

N.B. As regards the wedge product,

d (g Awy) = dgw Ay + 1) L Adg Gy € A ]'E w, € ME).

17.5 EXAMPIE Consider the arrow

ne v

T > TTM (cf. 85).




So u o v is a vector bundle morphism over ™. Next, given X,Y € Dl('IM), put
(X, ¥)g = [sX,Y] + [X,5Y] - S[X,Y].

Bquipped with this bracket, D' (TM) is a Lie algebra and v £ € C(TM),
[x,£Y], = £IX,Ylg + ((SX)D)Y.

Therefore the triple

(™™, [ ]Sr]-i ° V)

is a Lie algebroid over ™. And, by definition,
Sy (g - %)

P i A
= i£0 (-1} (SXi)uJ(XO, .. ,Xi, ‘e ,Xp}

+ & (-1) #3

UJ(IX-;X-I 'X ;ooorﬁ-'bto'ﬁo'-.-' )o
i<y 1773750 i 3 %

d‘I'I‘.be = dSuJ {cf. §6).

Iet s € sec E == then the Lie derivative w.r.t. s is the operator

LS:APE ~ 1P

given by
L.e:=1‘sc'd'E+dE° 's*

0

0 E=0, and v £ € C (M),

E.g.: Take p=0 — then N E=C (M), 1A

L =1 G f = (GBS = (Posf=L  f



17.¢ IEMMRA VYV s € sec E,

J['s.odE=dlE:°l's'

Moreover, V s,,S, € sec E,

=1
R L

=1
1 Sy Sy sy [spesylp.

and v Wy s € A*E,

2

Ls(wlnwz) = Lsmllxwz + wlAstz.

Suppose that

&, [, ]E,p) is a Lie algebroid over M

&I, ]E.,p') is a Lie algebroid over M'.

Then a vector bundle morphism

F

E — E'

nl lﬂ-

M — M
£

is said to be a Lie algebroid morphism if v p, v w' € AFET,




(F, £} (A5 w') = qp((F,£)*").

[Note: Forp =z 1,

((F,£) *ml)x(elr oo fep)

=T
£ (%) (Fel,...,Fep) (x €M ard el,...,ep = Ex),
while for p = 0,

(F,E)V¥M' = £' o £ (£ €C M")).]

N.B. If the vector bundle morphism

F

E —-E'

is a Lie algebroid morphism, then the diagram

F

E — E'

I

™ —— ™'
Tf

comutes.

17.7 EXAMPIE If f:M -+ M' is a c function, then there is a vector burdle



morphiam
Tf

™ — ™'

W |

M —— M

bt

which is, in fact, a Lie algebroid morphism.

17.8 EXAMPLE In the notation of the Appendix, the arrows

~ TS0(3) - so(3) T TSO(3) ~ s0(3)

a,x — 8 X . ax —xal

are morphisms of Lie algebroids.

17.9 REMARK Matters simplify if M =M', f = ldM For then the pair (F,idM)

is a Lie algebroid morphism iff

F[sl,SZ]E = [Fsl,FszlE. (sl.,s2 € sec E)

p' o Fs=p o s (s € sec E).

F F!
E 3 El EI N Ell
M - MI M! - M"

£ £!



are Lie algebroid morphisms, then the composition

F|l

E — E"
wl lTl‘" (f" = £' o £, F" = FP' o F}

M — MII

fl!

is a Lie algebroid morphism.
[Note: This justifies the term "Lie algebroid morphism” in that there is

a category whose objects are the Lie algebroids.]

Suppose that (E,[ , ]E,p) is a Lie algebroid over M and let 9:M' > M be a
fibration. Fomm the pullback square

pr,

™' x ¥ _— = _»F

| |

™ — ™

T
and put

E' = ™' X'IM E.

Then the points in E' are the pairs
((-X. f)(;(l) re) (x;{i € TXR-M' e € E)

such that
d<I>x.(X;{.) = ple).
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[Note: It is automatic that

o(x") = m(e).]

17.11 IEMMA E' is a vector bundle over M' (via 7' = gt prl).

PROOF Given x' € M',

@ =B,
is a vector subspace of TX.M' ps E@(x') of dimension
V- Al r
k+n dm(d@x. (TX.M ) + p(Eq)(x,)))

=k +n' -n.

The claim now is that this data gives rise to a Lie algebroid (E',[ , ]E,,p')

over M'. Of course the definition of p' is immediate, viz. take p' = pry. However,

it is not so obviocus just how to define [ , ]E" which requires some preparation.

17.12 RAPPEL Suppose that
F

E ——E'

wl lﬂ-

Mo——— M
f

is a vector bundle morphism. Form the pullback square
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Then there is an arrow

g
E—-—PMXM' E'

and a commmtative diagram

E
“l
M

Denote by * the induced map

secE+secM><M. E*

of C (M) -modules:

s =7 o 8 {s € sec E).

But
c (M) QCW(M') sec B' ~“ sec M XM E*,
where
¢ @s' > ¢S’
and
s'(x) = (x,8'(fX)) (xeM.

So, modulo this identification, given s € sec E, we can write

i

g*s = (cpi 2 si)

or still,

|
o
7]
"

T $.{s! o f}.
FERE e



12.

Consider anew the cammitative diagram

pr,

E' —=— E

There are pullback squares

M'x E — E M'XM'IM s TM

M

| b

Mf— M,
and arrcows

M’ XME+M' XM'IM

1 '
™' — M XM'IM.

Now form the pullback square

™' — M' XM'IM

in the category of vector bundles over M' — then

? = ™' x

M' x  TM™M

M

> ™'x E=

™

M' x E

M

E'.
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Accordingly, the sections s' of E' are pairs (X',0), where

T X' € sec ™™

g' € sec M' E
"M

subject to the coincidence

— Xt
M - TM" - M' ><Mr.[M

0'

M! ,M'ﬁdE -+ M! xM'IM.

N.B. The elements of sec M' *y E can be regarded as the sections of E along

¢ (cf. 13.2), thus we can write
AR THURE Y
i
where ¢J!_ £ Cm(M') and $; € sec E.

Finally, define

[,]E.:secE'xsecE'+secE'

[Si!sé]El
= [(x],00), (%5 ,oR ],

= [(X3, Z ¢! (s, o ®)),(X), £ ¢! (s, o 0.,
1 il 11 11 2 i2 3.2 12 E

= { [xirxé] IW) ’
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W being
S 6! 6! ([s. ,8, ). © )
ied, hih 4H b

E

+ IR )(S: o 8) - I XL(0! ) (s. o B).
i, 171, 7, i 274 L

One can show that [ , ]E' is welldefined. Granted this, it is then easy to

check that E',[ , ]E.,p') is a Lie algebroid over M',

17.13 ILeMMA The vector bundle morphism

Pry

E' —-—FE

Ak

M' ———— M

¢
is a Lie algebroid morphism.

[Note:
P e br,= Tp e Pry

3=l
e
©
o
R

1N
H

TrMo'I'cDoprl

Il

o Pr, '@oﬂM.optrl

= ¢ o w'.]
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An important special case of the foregoing generalities arises when we take

M'=E, ¢ = 7:

Put

and write o in place of pry — then IE is called the prolongation of E and

(e, [ , ]LE'DE) is a Lie algebroid over E:
pr, T
IFE —— E — M
TE T -~ ™ = +~ M

[Note: The fiber dimension of LE is

k+ (k+n -n=2k (cf. 17.11},

k being the fiber dimension of E.]

N.B. The points in LE are the pairs

((e,X),p) (X, € TE,p € E)
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such that
dwe(xe) = p(p)

with ni{e) = n{p).

17.14 EXAMPIE [et E = ™ — then LTM = TIM and the Lie algebroid structure
of the theory is precisely that of 17.2, i.e.,

(T2, [, )oddn) .

Suppose that the vector bundle morphism

F

E—-—E'

nl lﬂ'
M — M
f
is a Lie algebroid morphism. Define

1F:1E - IE'

LF(( (erxe) ;P) ) = ( {FerdFe (Xe) } rF‘p) .

17.15 1IEMMA The vector hundle morphism

LF
LIE —— IE'

g ° Qﬂl jﬂE' ® Pgr
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is a Lie algebroid morphism.

Coming back to

TE s ™,
Tn

call the elements of Ker pr, vertical and denote the set of such by VIE — then
VLE is a vector subbundle of IE and its points have the form

({e,X ) ,0),
where Xe is a vertical vector tangent to E at e.

Given e,p € E with n(e) = w(p), denote by Xz € TeE the vector tangent to
¥

P
the curve e + tp at £t = 0 = then it is clear that

v
((efxe’p)fo) E UIIE.
This said, define

VB %y E * VIE

-V - AT
— (e:P) - ((efxe'p):o)-

Then =° is an isomorphism of vector bundles over E:
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17.16 EXAMPIE Put

AE(e) = Ev(e,e) {e € E).

AE € sec VLE.
[Note:
pE ] AE € gec VE
is the dilation vector field A on E (cf. 4.2). 1In detail: Identify VE with

E XME (cf. 85} =— then A corresponds to the section p » (p,p) of E ><M E.}]

17.17 1I2MMA If S1/8, € sec VLE, then

[s]_,s?_]LE € sec VIE.

We shall now extend the operations

sec ™ + sec TIM T sec ™ > sec TIM
N X+ X, _ X+ X'
to operations
~ sec E +~ sec LE ~ sec E > sec IE
s+sv, s+ g'.

17.18 RAPPEL Every w € AlE: determines a C_ function @:E -+ R.
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[Note: Given f € ¢ (M), put

£7 = d,;f.

£fl(e) = ple)f (e € E).]

LetsesecE-—menits'verticalliftisthesectionsvofmdefmedby

the prescription

s'(e) = 5 (e,s(m(e))) (e € E).

17.19 LEMRA v £ € C (M),

(£s)Y = (f o Ms’ and (pg © s)(f o W) = 0.

17.20 LEMMA V w € AlE,

vA
(pEos)w-1Swo1T.

17.21 RAPPEL Ilet s,IM:’I'IM + T be the canonical involution =— then

v X € DY (™),

X = Spy © TX  (CE. §4).

Fix a peint

((e,X),p) € LE.



20.

L pE(((e.-Xe) Pl = TrE(e,Xe} = e,

I.e.:

((e,Xe) /P € (T.E)e.

17.22 LEMMA Put x = w{e) (= w(p)} — then 3 a unique tangent vector

A T E such that
p € Tp

1. vfecm,
Vp(f o ) = fT(e).

2. Vwef\lE,

s

V= X0 + (@) | (oD

PROOF VpisdetenninedbyitsactiononthefoTrandthe(f)providedthat

the conditions are campatible. First

%Jﬁ)=%gwonﬁb

Vp(f o Mu(p) + (£ o ) (P) (pr)

Il

f%aam)+fmngﬁx

Now compare this with

Vp(fw) Xe(fﬁj) + dE(fm) |x(e,p)-
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=X (£ o male) + (f o (e)xea
+ (d Erw) |x(e,p) + £(x) (dw) Ix(e'P’
= £(x) (erS + (@) |x(e,p))
+ X (£ o mule) + £ (e)a(P - (plp)Hate)

= £(x) (vp&}) + £ (e)alp) .

[Note: Here we have used the fact that Xe(f o) = dﬂe(Xe)f =pmI.]

N.Bl V f e CW(M)'

= o = f' =
dﬂP(Vp)f Vp(f m} = £ (e) ple)f.

17.23 LEMMA Define

sS.:LE > LE
SE( (erxe) P) = ((vap) e).

Sg © Sy = idy and pry e sp =T © ope
[Both points are immediate. Incidentally, Sg is smooth (argue locally (cf.
infra)}.]
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We shall call Sg the canonical involution associated with the Lie algebroid E.

[Note: If E = TM, then S'IM is the canonical involution on ™M (cf. 17.21).]

17.24 REMARK The vector bundle Tn:TE + T can be equipped with a Lie
algebroid structure in which the anchor map is Spy ° TP- Proceeding, one can

pr
then construct a Lie algebroid structure on the vector bundle TE XTME——er.

Ontheotherhand,sEisavectormndlemrphim

g ° PR lprz
E B

that, in fact, is a Lie algebroid morphism.

Iet s € sec E — then
s:M >+ E => Tg:™ -~ TE

=» Ts o p:E > TE.

Abuse the notation and regard Ts ¢ p as an element of

pr,
sec(TE Xere4 E — E).

Put

ST=SE01.SOQa
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Then
T _
Mg °Pg°S STgepgosSgeTsep
=Pr2°TS°D
Therefore

s :E + IE
is a section of 1LE, the lift of s.

[Note: We have

przas =pr2osEoT5op

=7_e 0 o TS op

17.25 IEMRA V £ € C (M),

(Fs) | = (f o Mg + £'s’
(05 © s)(fom = LEom (= ((pos)f) om.

17.26 IEMB v o € AE,
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T _ A
(pEo s lw = st.

17.27 REMARK Viewed as a map s:E - LE,

s = (pE o sT,s a ),
where Pg ° s' € Dl(E) is characterized by its action on the £ ¢ 7 and the 5 To

confirm compatibility, write

Ty ey T "
(DE o 5 ) (fw) = (pE o 5 (£ o Muw)

(P

T ~ o o &N1i
E°S)(fo‘ﬁ‘)w+(f 'n)(pE s w

(Lsf o Tw + (£ o ﬂ)LSw

or

T ~
(pE e 5) (fw)

(L (£w))”

((Lrw) ™ + (E(L )"

(Lsf o Miw + (£ o H)st.

17.28 LEMA v £ c C (M),

(o © 8VE = ((p o 8}E) o m

(og ® sNE = ((0 o 5)f)".
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Letsl,s € sec E — then

2
v Vv _
[syi81ip = 0

v T, v
[s),85]15 = [51:5;5lg

T T - T
[Slrszlm - [slfszlEO
[Note: We have
T Vv = - v T
[s1:851 g (syr8)1g
- _ v
= - [syr8]g
= [sy,85lg-]

17.29 EXAMPIE To run a reality check, let £ € C (M) —— then

T T - T
[Slr(fsz) ]LE = [slrfszlE
T
= (f[slrszlE + ((p o 5,)f)8,)

= (£ o M [8y,8,]p + £115),8,]% + (((p o 56 o Msy + ((0 o sE)'s).
On the other hand,

T T _ T T TV
[sl,(fsz) ]LE = [sl,(f ° ':r)s2 + £ 52]IE



26.

T T T .T V
= [sl,(f ° 1T)82]LE + [sl,f SZILE

sV
2

]

(£ o ms],s5] o+ ((og © S]) (€ © m)sy + £1[s],85) 0 + ((pg o sDE)

(£ o M Is,8,05 + (((p o 5)E) o Mg + £1[s),8,]0 + ((p o s sy

17.30 RAPPEL Iet X ¢ 'Dl(M) — then

- X (cf. 4.6)

n

(2,x"1

(4,X"]

]
o

(cf. 4.4).

20
N.B. v £ €C (M),

(o

andeEAlE,

(DE o AE)E.B = Ww.

17.31 ILEMMA Iet s € sec E — then

i1

-5

v
[AE.s ]LE

I
e

.
_ [AE,S lLE =

PROOF To check the first point, note that [AE,SVIIE is vertical (cf. 17.17),
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hence it suffices to show that
(o © [Ag,s’] )0 = = (o o sV
for all w € hlE. But

(og © [A5s8 1 g}0 = [og o Apypp © 8710

i

(pg © Bg) (pg © 80 = (pg @ 87) (o © AJD

(pg © A (1w o M = (o o s (cf. 17.20)

i

v Y
- (pE e 5 )uw.
Turning to the second point, v £ € Cwﬂﬂ),
T
(pE ° [AE'S ]LE) (f « ™

= (pg o A lpg o s (Eem = (o o8 (o o A (£ o m)

(QE o QE)(LSf ° (cf. 17.25)

and ¥ w € AlE,

T fa
(og © 4G, sT1 )&

0

(o © Bg) (pg © sH& - (pg © s') (pg © AE)EG

- ° ~ _ o T’\
= (pE &E)st (pE s )w (cf. 17.26)
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et S stand for the cawositian of the arrow
IFE —— E XM E
({e,X)),p} + (e,p)

with = — then S is called the vertical morphism:

IE —2 > IE
g ° Pg g ¢ Pg
E E.
[Note: V s € sec E,
- SosT=sV
Sosv=0.]

17.32 1M S° = 0 and

Ker S = Im S,

the vertical subkbandle VIE of IE.

17.33 RAPPEL T € D (M) is second order provided I'TM ¢ TM or still, if

T?TMOI'=id.IM.
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Put

Adm(E) = {((e,xe) P} € LE:e = pl.

Iet T € sec LE — then I is second order provided TE < Adm(E) or still, if

pr2°I'=idE.

17.34 IrEvMA IetT‘Esecl:E—thenI‘issecorxiorderiffSoI‘=AE(cf.
5.8).

PROOF Suppose that T'E < Adm(E) -~ then vV e € E,

T(e) = ((&,X),e)
=>

s(re)) = £'(e,e) = Ajle).

Conversely, if
Ie) = ({e, X },P),

then

s(I'(e)) = £ (e,p)

= (te,x] ),0).

But

Sol= AE

v _ v
((.e,Xe’p) ,0) = ((e.Xere) 0

Aty A

= => a = -
e'p e}e p
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Therefore

I'(e) € 2dm(E).

A Lie algebroid (E,[ , ]E.p) over M can be localized to any nonempty open

subset U <« M, the claim being that the bracket

[, ]E:secExsecE+sacE

induces a Lie algebroid structure on n-l {(U). To see this, it is enough to prove

that if s;,s, € sec E and if s,|U = 0, then [sl,szlEhJ = 0. Thus let x, € U and

0
choose £ € Cm(M):f(xO) =0 & £(MU) =1 — then

[Slfszl (X = [SlrfSZ]E(xo)

= £xg) Io18,1p0g) + (0 = SPD |, 850
= o.
Work now with local coordinates {x%,y*} in 7 T(U) determined by local

coordinates x- (i=1],...,n) in U and a frame ea(a= l,...,k} for E over U —

then from the definitions

- 13 Y
poe = p ———,—and [e 'eS]E CaBeY'
ax
Here
i
3 apB Bpa

= oY
p—~o-—— olc
& a3 B axd Y 0B
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v WV AV
i %y 1% 4 Cup
P =1 + Pe 1 + p\r i
ax ox X

+cteY vty +ctY

BY o ya Bu ocBYu=0'

[Note: 'I‘he;%andthecl are C_ functions on U. Ofoourseanxl,when

B
viewed as a function on ﬁ_]'(U), should really be denoted by x0T ... o]

17.35 EXaMPIE If E =g (cf. 17.1), then p; = 0 and the C;B are the structure

constants of the Lie algebra.

17.36 EXAMPIE If E = T (cf. 17.2), if the x  are the ", and if the y* are

i

i i i _
the . then p. = ,Ck
M P35 = 857 43
[Note: Make the replacements

T MM

™ - TT™.

Then in the notation of the Appendix to §8, the set

v s ] ]
{x Fe*e= ’X r - ' - s =y — }
1 by} 5 Vl an
is a basis for
o' () o).

- = kK =
[Xier] = Yijxk']



32.

17.37 REMARK Iet {e”} be the frame dual to fe,} — then v £ € c ),

_ 9 ia
It =T P
hence
£ ey = &0 m et o my™.
3}{1 s

Starting with the €, put

= a7 Y o, BV W
on em+(C0LB ﬂ)yeaandya——ea

Then {X_,¥} is a frame for LE over .

[Note: Let
_ -1, -1
ULE = (1TE ° DE) {(w —{U}).
Then
~ X € sec(U,. » T EMW)
o LE
Y € sec(U._ + 1 1)
_a IE *
and
Xy = Y,
sy = 0.}

17.38 EXAMPIE locally,

_ .o !
AE—yVaandpEOAE-—y

9
o
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17.39 LEMMA We have

— Y
Exa'xB]I.E = (chB ) 1r))(Y
and
[Xa’yB}LE =0
[Va'VBILE'. = 0.
17.40 ILEMMA We have
- ot 3 -3
(pEo)(a) = (DGOH) 5;1': og ° Va—aya.

N.B. If {x*,v%} is the frame dual to {X,¥ } then

6= (ok o m -g%x‘hzz;ava e ).
X

In particular:

~ = (ol e mx®

52;2
n
<

R

Furthermore

I

L1 B Y
dLExa > (CBYo m X" aX

while

oY =
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Suppose that T € sec LE is second order —— then locally,

r=yx, +CY,

_ i o 3 o 3
pEoI‘-(.paoTr)y —Tgt+tC — -

ax oy

[Note: An integral curve vy of g © I' is a solution to

Suppose that C is a vector subbundle of E -~ then the restriction w{C:C > M

is a fibration. So we can form the pullback square

ard put

to get a Lie alaebroid (LCE,[ . ]LCE'DC) over C.

[Note: Here C plays the role of M' and 7|C plays the role of ¢.]

There 3.5 another pullback square that can be formed, namely
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Put

Then, in general, the vector bundle IC - C is not a Lie algebroid (but it will be

if C is a Lie subalgebroid of E, i.e., if sec C is closed per [ ., ]E).

N.B. IC is a vector sublbuylle of LCE'

17.41 EXaMPLE TakeE=']!Ma.lﬁwiteEinplaceofC—t]‘nenLrE=TEarxi

1Z is a linear distribution on . E.g.: Let wl,...,wn"k be a system of constraints
and
n-k
T=n I (cf. §16),
u:]_ wll
where
2= @ o).
wll
Set
n-k
I* = N Ker ﬁﬁ(wu} .
=1

Then I* is a linear distribution on T and

LL = * n TL.
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Suppose that T € S0(TM), thus

v o, (ﬂlﬁmu) (r) = .

So, if [ is tangent to I, then

I'|Z € sec LI.

APPENDIX

Suppose that

\yl

M M

—— i
W ——
is a morphism of fibered manifolds. Let

(El’[ ’ ]El,pl) be a Lie algebroid over My

(B, [ . ]Ez.opz) be a Lie algebroid over M,

and let
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be a vector bundle morphism such that TY o Py =Py ° F. Form

pr, Pr,
E} ——— El El ——— E

1 2 2

™ — ™, TMQT ™

T¢

and let
| I [ ] ]
F 'El -+ E2

be the arrow that sends
((x'.X}'c.).e) to ((‘P'(x'),dW}'c.(X};.)),F(e))-

Then F' determines a vector bundle morphism

such that TY¥' » pi = pé o F'. Moreover, F' is a Lie algebroid morphisgm iff F
is a Lie algebroid morphism.

[Note: This construction iz "functorial" w.r.t. composition.]



§18. LAGRANGIAN FORMALISM

It is straightforward to exterd the considerations of §8 to an arbitrary
Lie algebroid (E,[ , 14,p) over M, bearing in mind that
T E <+
_ LE +> TIM.
First, we shall agree that a lagrangian is simply any element I, € c(E).
[Note: Local coordinates in E are the xi and the ya, hence it makes sense

to take the partial derivatives of L w.r.t. the x= and the y°.]

18.1 RAPPEL If E = ™, then

GL = dSL
or still,
= *
GL S* (dr)
or still,
= *
O, = S* G -

[Mote: Spelled out,

d,IMHdperA*M

d,m*—rd per AYM,]

N.B. The vertical morphiam S:LE + LE induces a map



sec LE + sec LE,
hence operates by duality on A*LE, thus there is an arrow

S*: AX1E » A*LE,

In particular:
T sex =V s> =
=
_SeY =0 s = O
Given L, put
BL = S*(dLEL).

18.2 I1EMMA Iocally,

[On general grounds,

Given L, put

wp, = drpby -

18.3 1IEMMA Iocally,



oy, = - aoth 5 X
oy oy
i 32L ) Y oL, P B
+ ((p7 oM} ——— == (C'_ o m —)X"aX".
o axlays 2 "ToB ByY

PROOF For

Gpdr = g s)"xs Y AdLEXY

ay

= (p-(];'t o 1) —r—XaAXB 321' VQAXB

ax ByB ByaayB
+ E-L—Y (- 5 (cY o ) X2AxE,
3y

Given L, put
= (p,° AL ~L(ZEL, L -L).
E, B AE. Mg

Then E is the energy function attached to L.

[Note: Locally,

3L
=_Y _L.]
B

18.4 ITEMMA We have

1AE“'L = S*(d B ).



PROOF Locally,

Ay = yaya (cf. 17.38).

Therefore
- B 8,
1, X\o=X(A) =0
A Ag
B B B
v, YW=V () =y,
_e T
Consequently,
1 wL=-—-aéL—B(1 XaAVB—XaM VB)
AE ay oy AE ﬂE
B 8
+ (.2 (1, XOXE = O, XB)
Ag bg
- BZL yBXa.
ay™ay"
On the other hand,
)
s*chEEI)=—E—{;x°‘
3y
3 aL. B
=S (2 y* -
'c)yOL ByB

e y® L 3L
Ay oy




L is said to be nondegenerate if Wy, is symplectic; otherwise, L is said to

be degenerate. The analog of 8.5 is valid: L is nondegenerate iff for all
coordinate systems {x,y"},

det _aarzl’_B ES 0-
ay oy

18.5 EXAMPLE Define a lagrangian L:E + R by

Lie) = %‘ Gle,e) - (Vo mi(e) (e€E),

where G:E x, E > R is a bundle metric on E and V is a C function on M —- then

L is nondegenerate.

let
D = {X € sec LBzt iy = = dIEEL}.

Then L is said to admit global dynamics if DL is nonempty.

18.6 LEMMA IetXEDL-—theanmL=0.
PROOF One has only to write

oy, = iy © G + dpp © uy,

1

0 + ayp(- A



[Note: Recall that

18.7 REMARK LetXEDL—-the.l’l
LEr = el
=7 k'
= Q,
But
Ly, = (pg © XEL.

Therefore EL is a first integral for o X (cf. 8.10).

P

18.8 LEMMA Vv X € sec LE,

's o i T = STOgy)

18.9 LEMMA If L is nondegenerate, then L admits global dynamics: 3 a
(unique) T} € sec LE such that

T T T R
And I‘L is second order.
PROOF The existence (and uniqueness) of I‘L is implied by the assumption that

Wy is symplectic. To establish that I‘L is second order, write



laE“’L =S*(q B ) (cf. 18.4)
== 58*(1 )
FL“’L
=g,y (cf.18.8).
L
But then
§e Ty = 4g

so PL is second order (cf. 17.34).
[Note: 1Ilocally,

_.u o
FL =y Xa + C Va.

And v a,
. 2
(DE o ﬂ)YB —-—'———3 La +cP —-—'"azL 3
XY oy 3y
_ 1 L Y B oL
= (pr o m e - (€, o My®
o St aB BYX
or still,
oL L,
Lo (=) = {p, o I) —
PL Byg E L Bya
i L, Y B 3L
= (p1 o M) —— = (C_ o My ——.
& Bxl a8 ByY

18.10 REMARK Along an integral curve y of p, © PL’ we have



8.

ax- _ i B ay” _
Tl (pgoﬂ)y. —=C
Therefore
4 b,y o et oL &
dt 3 yoz Bxlaya dt ayBBya dt
2
= S_L (pB ) 1T)yB +——aBiECB.
oAy y 9y
I.e.:
d 3L i 3L Y g oL
= {(—) = {p_ e W) — - {C o MY '
dt ayoa o 3x1 oB BYY

which will be termed the equations of Lagrange.]

18.11 EXAMPLE ILet g be a finite dimensional Lie algebra. Fix a basis

eoz for g (o =1,...,k) (k=—-dimg) — then

"
[ea,eB] = CaBeY

and the equations of Lagrange are

4 oL Y B 3L
= () =~Cly —.
at 3yor. B ayY
_ o3
E.g.: Take g = R™ and

- e = (1,0,0)
e2 = (0!’1!0)
e, = (0,0,1).




2.

Then
3
[ ,e,] =e xe = T & e
B a B =1 aBy Y

and in vector notation

4 2L, _ AL,

To illustrate, let

L) = Ly yoy) =3 (neh? + Leh? s nehd,

whereIl>0, 12>0, I3>0-—thentheequationsof1.agrangebecme

Iy - I3y 54
Yy = —=5——7Y%
1

(I, - I,)
+2 3 1° 31
Yy =—=YY
2

(I, - I.)
1 27 12
Y = ——VYY.

So, from the Lie algebroid viewpoint, the "Buler equations" of the Appendix are

instances of the equations of Lagrange.

APPENDIX
Suppose that (E,[ , ]E,p) is a Lie algebroid over M. Let w':E' - Mbe a

vector bundle — then an E-connection on E' is a map

V:gec E X sec E' » sec B'

. 1
(s,8") » VSS
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i, ¢ s'=9vV s8'+v s";
1752 S1 Sy

] L] - L

s~27

[ - t,

4, vs(fs') = ((p ¢ s)f)s' + fvss'.

A.1 REMARK The choice
(Er[ r ]Efp) = (M,[ , ]rid.IM)

leads to the usual notion of a connection in a vector Inmndle.

In what follows, we shall take E' = E and use the term "connection on E".

50 let V be a connection on E — then locally, the connection coefficients

of V are the C functions I'’, on U defined by

oB
= rf
V e r
e, B af® ¥
Accordingly, if
— g =s%
o B -
(%, t° e Ty,
t= tBeB
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_ o B
=8 (({p o ea)t e +te‘vee

)
o P

B

;o B
= sMp, QEI-eB +t
* x

BLY
FOLSeY)

Assume now that G:E X, E ~ R is a bundle metric on E.

A.2 LEMMA ThereexistsamiquecannectionveonEsuchthat

G G
8, - V. 8, = [5,,8,]
312 521 1'72°E

v

= a(° G
(D © Sl) (G(SZISB)) - G(vslszrs3) + GcszrvslSB) -

PROOF VG is determined by the formula

G = -—
2G(Vslsz.s3) = (p o 81)6(82,33) + (0 o 52)6(51'53) {p o s3)G(s1,sz)

+ G(Sl'[s3'82]E) + 6(82,[53,8115) + G([sl,szlE,s3)-

N.B. VG is called the metric cannecticon attached to G.

Iocally,

= o B
G-—Gase R e

and the connection coefficients of VG are given by

rh, = 3 OV, + [v,viel + (8D,



12.

where

oG .
. - _af i u
[Ur BI‘Y] —'_81{1 D.Y + CC‘-BG]-[Y.

A.3 IFMA Put

Lyle) = % Gle,e) (e € E) (cf. 18.5).

Write I‘G in place of I‘L (cf. 18.9) — then locally,
G

=vly — (17 o o B
To ny (Tyg ® MY Y VY (cf. 10.6).

Given V € C (M), its gradient gradV is the section of E characterized by

G(gradGV,s) = dEV(s) (s € sec E).

locally,
gradGV = (GOl BDE E‘ii-} e,-
ox

A.4 IFEMMA Put

Lo,y = :;E Gle,e) — (Vo mM(e) (e €E) (cf. 18.5).

Write T in place of T (cf. 18.9) == then

Lg,v

G,v

_ v
T = FG - (gradGV) {(cf. 10.8).

G,V



§19. CONSTRAINT THEORY
To set the stage, let us recall the following points.

19.1 RAPPEL Suppose given ¢” functions

q}u:']}l > B (l_l = 1,...,11"]() -
Then the ¢" combine to give a map
:TM };{n_k.

Consider the level set <D-l

(0). Assume: VvV p € <I>-l(0), fb*!p has rank n - k —
then @"1(0) is a closed submanifold of TM.

[Note: The assumption is equivalent to demanding that v p € o"1(0), the

l-forms
1 -k
as |p oo, do® lp
are linearly independent or still, that
Aot A - na® ¥ 2o

on @'1(0) .1

19.2 EXAMPLE Take M = R and let ¢(g,v) = v — then 210y = {{g,v):v = 0}
satisfies the above conditions. On the other hand, the alternative descriptions

of the g-axis given by

d{q,v) = v2 or &(q,v) = ./|v|
are not admissible.



19.3 EXAMPLE Take M = R and define o:™M = K* x &? by

@ (ql,qz,q3,q4,vl,v2,v3.v4)

- 1 2

= vlv“1 - v2v3 = det

Then the level set ¢ 1(0) is not a submanifold of .

[Note: Removing the zero section from @-1(0) gives rise to a submanifold
of ™. Physically, it is a question of two point masses A and B forced to move

in a plane with parallel velocities. The lagrangian is
Imwh? e A% + n0hH? + oD

and ¢ represents the constraints on the velocities. Elimination of the zero
section imposges the additional restriction that the velocities cannot be simil-

taneously zero.]

A constraint is a submanifold C « ™ such that m,|C is a fibration. E.g.: C

might be a vector or affine subbundle of M.

In the apprlications, however, one is ordinarily handed ¢ functions
MM > R (u=1,...,nk)
satisfying the conditions of 19.1 and then one takes
c =0,

the data being such that “MIC is a fibration. So, in the sequel, this will be



our standing assumption.

19.4 REMARK Suppose given an affine system of constraints

o' = M+ oMo Ty = 1l...n).

c= ¢t

is a constraint. To see this, work locally -- then the rank of

= el awt
vt o
3 (Dn—k 5 q}n—k

B svt Wt

equals the rank of

-, 1 al -
l L L IR 3 n
an-k an-k
— l - - n —_— E 3

But the rank of the latter is precisely n - k (recall that the set wl, ...,wn_k
is linearly independent).

[Note:



U ~ (oY o m,)
" _ + M

Bm_
vt ot vt
_ B
Bvl
= aui o TTM.]

19.5 LEMMA Given a point (x,VX) € C, 3 an open interval I containing the
origin and a curve y:I - M such that v(0) = Vv, and (y(t),¥(t)) €C (t € I).

PROOF  Since m,|C is a fibration, hence is a submersion, 3 an open set U c M
containing x and a local section X:U -+ C such that X(x) = (x,Vx) . 'This said,

chooseanintegralcurvey:I+MforXsuchthat\'f(0} =anndy(t) €U (e I).

Fix a nondegenerate lagrangian L. Define Xu € ‘Dl('ml) by the requirement that

1quuL = 8% (d@u) (u=1,...,n=Kk).

Then X, is necessarily vertical (cf. 8.23). Given A R e Py, put

=T+ A“Xu.

I

Inpose the condition of tangency

_ A%
O-Fﬁ((b)



- pY Vv
= T @Y + 8% (o).

Call

@, (6%, ..., 85

regular if the matrix
V
X0
! U ]
is nonsingular; otherwise, call

n-k

@, {a%,...,8Fy

irregular.

So, in the reqular situation, one can determine the Lagrange multiplier ?_&0

and the dictum is that the constrained dynemics is given by T, |C.
~0

N.B. Iocally,

- R v
x oY = (W(L) 1)kag¢_k 3%5.
u W v

Therefore

w, (o1,...,8%

)
is regular if
L=T~Vo,

where g is riemannian.

19.6 EXAMPLE Take M = ]?_{3andput

o] = (wWh2+ @A s HHY2

Iet

e
1

=2 (|v}% -ma’ @>0, 9> 0.



Then
m 2 3
F~L=§(|V])+mgq
and
o, = m(dviadgt + aviadg® + dviadgd)
_ 153 23 33
L =v5 —+v + v -g
L 1 — 2
_ % - P
Take
o=1v|"-R (R>0)
Then
S*(dcp)=2vl~§-—-]—_~+2v23—2+2v3§—§-.
e ] g 3d
Def:i.nex(pby
(o]
Then
X¢=%(Vl§-—-i-+v23—2+v3i——-.
Vv v ov

\ = I‘L‘I>
= T =
0 Xq)@
note that
_ 3
I‘L<I>—- 2gv
and
X®=3-lv2.




Therefore
3
l = -
0 2[v|2
So
rko|c= (Ty, + AgXy) IC
=vl§._-i-+vza___+v3.a__3_
aq aq aq
319 .g.3203 3 3
+g—vv —gtRVV —+ (%—g)——:,'.
v v v

19.7 EXAMPLE Take M = R and consider the setup of 19.3 — then

w = rrh(dvl;\dql + avlrdgs) + mB(dV3Adq3 + avinagh
while
s*(d9) = vidg - v3dg® - viaqS + vidgt.
Therefore
A v v v ov
Determine X . per
0
FLCI>
k o e,
0 qufb
Since
. 22 39 4 3
FL-V —1+V —'—'2—+V '——'§+V ‘—4,



it is clear that I‘Lf1>= 0. Thus the upshot is that the motion is the free motion
of the point masses A and B subject to parallel initial welocities.

[Note: Strictly speaking, the analysis is formal since <I>_l(0) is not a
submanifold of TM. However, matters are correct provided we stay away fram the

zero saction. In this connection, observe that

(wHZ+ oh? + 2 (M2 DY

B

Xq)@ =

i

A constraint C is said to be hamogeneous if A is tangent to C.

19.8 I1EMMA C is homogeneous iff
W =
Ad |C =0 (u=1,...,mK)
or still, iff

o 3™
3\71

=0 (]J=l,...,n""k).
C

19.9 EXAMPLE If each ¢" is homogeneous of degree r(i) = 0 in the velocities,
ioEo' if

tatx) = MM x,x) (0=t 1),
pid X
then C is homogeneous. Indeed,

(I’u (qlr “ew rantvl:.-'° :tvn)

1 n

1
= tr('u)@u(q r*'-lanv rese gV )



i oM

v —I=r(u)¢“
W
=>
Tl
vl-g'g’-f =r(u)®“c=0.
v |C

E.g.: The linear distribution I defined by a system of constraints wl, cew ,wn_k

is homogenecus.

19.10 IEMMA Suppose that C is homogeneous — then ELIC is a first integral

for T, |C:
39

00
E lC€ CF;\O'C(C) .

PROOF In fact,

I‘%EL = (I + A]chxu)EL
- AEXuEL
- )
= - AE‘I‘L“’L(Xu}
= - J\EmL(I‘L,Xu)

I

n
)tomL (Xp, ]."L)
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i

u
AO IX].IML ( I‘L)

W n
Ags* (@e¥) (rp)

Uy gH
hgde™ (ST )

Uq 1
rgaet (a)

= 1HagsH

19.11 EXAMPIE In the notation of 19.6,

§ = |v|2 - R (R > 0)
is not homogeneous. Here

EIC %ER p—

(PAOIC) (EL|C) mgv~ = 0.
Suppose now that (E,[ , ]E,D) is a Lie algebroid over M - then in this

context, a constraint is a submanifold C < E such that 7|C is a fibration.

[Note: The constraint is linear if C is a vector subbundle of E.]

N.B. Consider the pullback square
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Put

LCE='I‘C><mE.

(LCE:[ ' ]LCE'DC)

is a Lie algebroid over C, the prolongation of C over E.

[Note: Needless to say, LB = 1E.]

In line with the earlier theory, we shall assume henceforth that 2 ¢ functions

$sE + R (u=1,...,K

guch that

X -1
C= n (@M (0 (cf. 19.1).
U=l

{Note: The fiber dimension of C is

r=dimC -dimM=dim C - n.

=
"

dim E - dim C

I

in+Kk) - (n+r

k—r'
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k the fiber dimension of E (ag in §17). To run a reality check, take E = TV,
thus in this case k = n. On the other hand, the codimension of C < ™ is, by

our notational agreements, n - K... . Therefore
dimC=2n- (n - k)
=n+K
=>
r=n+kl-n=%

K=n - k.]

Fix a nondegenerate lagrangian L. Define Xu € sec IE by the requirement that

1y uy = s*(dLEo”) (U=1,00.,K).
u

19.12 I1IEMMA XU is vertical, i.e.,

XUESE.CVLE.

Iocally,

u
Lok Aty |

Xu = (W(L) o 8

[Note: W(L)_l is the inverse of

W(L) = W (@],

where

5%,

ay“oy

waB(L) = 3 .]



131l

N.B. Locally,

U
s*(d oV = 25
y

19.13 IEMMA 1et s € sec LE. Suppose that

(o ° s =0 (n=1,...,K.

s|C € sec L E.
[Note: Recall that

Pg @ S S Dl(E).}

Given P\l,...,)\K = C°°(E), put

N

=T, + h"xu.
In view of 19.12, to force
F&IC € sec L.E,
it suffices to demand that
(p.o TN =0 (v=1 K)
DE | & = = Lyesay
or still,
(o

Call

@ {ot, ..., 55N

v y v _
E°FL)(D +}\ (ponu)¢ -0 (\)_l'...fK).
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reqular if the matrix
v
X
[(pE o u)@ ]
is nongingular; otherwise, call

(@, {85, ...,05
irrﬁlar.
So, when

(L {8 e e, &)

is regqular, one can find the Lagrange multiplier AO' thence

1“&0|c € sec L E.

N.B. Locally,
(o, o X )0 = (W(L)‘l)“f‘?i‘il-l- (o ° ¥ )o’
e Y o ‘Pg B
9y
i TRINRY
= W) LHob E‘D—aﬂ’g (cf. 17.40).
vy
Therefore
@, (%, ..., &N
is regular if
le_voe
L= 7 G v T,

where G:E xME+1_2:i.sahuxilerretriconEandVisanfunctiononM.

19.14 EXAMPLE Keegp to the assumptions and notation of 18.11. Define
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IR+ R by
- Ie, = I8
I0e2 = 12e2
_ Ie, = Ise,.
Then
1 3

Ly) = 5 <Iy,y> (v ER).
And T‘L is the Buler vector field T'O:I_i3 ~ R, thus

¥ = I, (I xy) (y € B)) (see the Appendix, A.16).

Fix a unit vector U € R°. Let @:R° + R be the function y + <y,U> and take
c=¢t0).
Then
- I, o 0 -
W =| 0 1, 0
0013
=>
x®=151(u)
=
3
x¢¢=%z?¢+%22——2?¢+%§;§¢
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wh?, 02, wh?
Il I2 I3

I

<u, IalU> .

Therefore

I"0<IJ

XqJ@

7\0 (¥) {v)

<on X y,IalU>

I

<y, IB]TD

19.15 REMARK If C is linear and, in addition, is a Lie subalgebroid of E,
then

r, lc € sec 1C
%

I

L|C = PA !C-

-0

19.16 I1EMMA If Pp ° AE is tangent to C, then

(pp ® FAO|C’(EL|C’ =0 (cf. 19.10).

[Note: The tangency assumption is always met by a linear C.]

19.17 EXAMPLE To check the validity of 19.16 in the setting of 19.14,



l?.

note that
(yl 9——1- + yz 9——-2— + y3 g-?) <y, U>
oy Yy Ay
= lel + y2U2 + y3U3
= <y,U> = &(y).

Of course, one can also proceed directly, bearinginmindthathereEL=L,hence

]"LEL = .

On the other hand,



§20. CHAPLYGIN SYSTEMS

Suppose that m:E - M is a fibration (cf. 811) — then an Ehresmann connection

is a linear distribution H < TE such that v e € E,
VEIe ® H, = TE (cf. 15.11).

[Note: Iet k be the fiber dimension of E, thus dim E = n + k. Since
VEIe = Te(En(e)) '

it follows that

dee=meeE-dunVEe
=n+k-k=n.
Therefore
dim H = 2n + k.]

Associated with H are vertical and horizontal projections
- \_r:Dl(E‘.) + sec VE
. h:DYE) > secH

and its curvature is the map

R: DY E) x DY(E) > DL(E)
defined by

R(X,Y)

= [hX,h¥] - hibX,¥) - h(XhY] + hIX,¥].



20.1 IEMA Vv X, Y € Dl(E),

R(hX,hy) = v([hX, hY])
and

R(hX,vY) = 0 = R{vX,hY)

R(VX,v¥) = 0.

Therefore

R{X,¥) = R(hX + vX,h¥Y + v¥)

= R(hX,hY) + R(hX,v¥) + R(vX,hY) + R{VX,V¥)

R(hX,hY)

]

v([bX,hY]) .

20.2 IEMMA H is integrable (or still, involutive (cf. 15.18)) iff R = 0.

PROOF SupposethatR=0--—thenVX,YEDl(E),

[hX,hy] = h[bX,¥] + hiX,h¥] - h(X,Y]
= h([hX,Y} + [X,hY] - [X,¥])
€ sec H.

Therefore H is involutive (cf. 15.19). Conversely,

R(X,¥) = v([hX,h¥))



if H is involutive.

20.3 RAPPEL Because :E -+ M is a fibration, hence a sulwersion, each

point in E admits a neighborhood U on which 3 local coordinates

k
{XI'. - - ’Xn’ylf LI l'y }
such that

() 6y = Y.

Denote by X the horizontal lift of an X € D-(M), thus

xh|e = (Te‘iT|He)_]X|

m{e) "
[Note: Bear in mind that

T {H:H + T™
ig a fiberwise iscmorphigm.]

The distribution H is locally spanned by the vector fields

(E—i-)h=?-——i-—Ag'3—a (1<iz<n),
Ix X oy

where Ag ec (U, i.e.,

H, = span{Cp? Lo, P e ew.
ox e o e

N.B. The set

(2ot
ox Yy

is a basis for DT (U).



20.4 REMARK The A are called the connection components of the Ehresmann

connection H. E.g.: Take E =™ and let I' € $0(M™M) -- then as we have seen in

§5, one may attach to I' an Ehresmann connection H, where

o

i

aJ
1

o

if

O i3d
T'=v S;'{"’C —3 -

W =Agdxl+dya (1<ac<k).

20.5 I1EMMA The l-forms wl,...,wk on U are linearly independent and

H=Kerwl ﬂ...ﬂKerwk (e € U),
e e e

[Note: This is 15.23 in the present setting (the dimension of E is n + k

and the fiber dimension of H is n, so the "n - k" there is n + k - n = k here.]

N.B. Denote the velocity coordinates by vt (i=1,...,n) and T (o=1,...,k}).

Put

6.2

o = A?vl +u®  (a.k.a. %).

'Ihenthetbaocmbi.netogiveamap

®:TE +~ R



and locally,
H =0 1(0).

[Note: To be campletely precise, H|U is a vector sublundle of TU (= TE|U)

and what we are saying is that

1 3

HIU =0 (0).

Also, in the definition of @a, there is an abuse of notation in that

[ 3
Aj° T
has been abbraviated to A(;.}

Write

P 9 o o

R(——r', "-""'-r') =R,. — .

axl ij 1] Bya

20.6 IEMMA We have
. aAg an " Y\ 8 BA?
J ) ax Iy oy

Fix a nondegenerate lagrangian L (per TE, not ™). Working locally, define

a vector field Xa € Dl (TU) by the requirement that

1XwL=1T['§w0’ {fa=1,...,k).
[¢



20.7 1IEAMA 3 one and only one distribution I, on TE which is locally
generated by the Xa.

Since H is a vector subbundle of TE, it can play the role of a constraint
(but H is not necessarily the zero set of a c” function). This said, let us
term the pair (L,H) regular if locally,
L (et ..., D
is regular, i.e., if the matrix
B
[Xada 1

is nonsingular.

20.8 LEMMA Suppose that (L,H) is reqular — then v x € H,

TXHHZLX=0.

PROOF Let XX € TXH N Ele ~- then

= o
X, = i :xo‘xm|x 0% eR

o B - _
i A (Xacb )|X =0 (R=1,...,K



e, = I lE

Then from the above,

TIE|H = TH @ Z(L,H)'

so there are projections P and Q given pointwise by
P:TTE~+~TH
x % X

{x € H).

_ %::TXTE = E(L,,H) ®
The fundamental stipulation is now:

Tip,a = P(rLlﬂ)

represents the constrained dynamics.
[(Note:

I‘L|H € sec (TTE|H)

P(T‘L|H) € sec TH.

I.e.:

P(PL[H) € ‘Dl(H) .1

20.9 REMARK Working locally, define the Lagrange multiplier Ao in the

evident manner and form



1‘50 = T[T + 27X .
Explicating the relation
e i L LY
then gives
FAOI(H|U) = I'(L'H)|(H|U).

Furthermore, along an integral curve y of 1")\ , we have
=0

d oL AR
T N RS N |
v X =1 v
a on, _w _ 5 8P
_ at T 3> 6=l 0 gy
or still,
a4 . aw Ko
& P -1 IOy
oV oK o=1
d aL, oL a
@y L9
dat aua aya 0

To reflect the presence of the comnection, call L H-invariant if v € M &
¥ Xx € TleIr

h i h



Tr(el) =X = 'n(ez) .
[Note: If I, is H-invariant, then

io i o 1

L{x",y v, —Aiv)

is independent of ya. Therefore

B
SL L i o4
Y u y

20.10 EXAMPIE Take E = R x §*, M = R%, and let

ﬂ(xl,xz.e) = (xl.xz) (6 = yl).

Put

(@hHZ+ A + 1% w=ub.

o

L =

Define the Ehresmann connection H by

_ R I U 9
—span{——]—_ sme%, + cos 9 =xt.

H
xt,x2,0) 9% %2 90

Then L is not H-invariant.

If I, is H-invariant, then L induces a lagrangian E e (™M) via the pre-
scription
= h
L(x,X) = L(e, (X)) |e} (m(e) = x).
[Note: Locally,

=, 1 i i oo i i
Lix",v} =L,y ,v, -AQV).]
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20.11 IEMMA Suppose that L is H-invariant -- then (L,H) is regular iff

L is nondegenerate.

PROOF Iet W= W(L)-l (recall that by assumption, L is nondegenerate) — then

Wil B
W=
wd B
and we have
x of = wria%P + wihta 4 w*IaP 4 B
o i79 i J
or still,
~ a 0 — ~ A 0 T
B, _
[Xutb ] = W '
S S R L
where
R
ai = Byr
On the other hand,
321,
Bvlavj
I AR S AN B o B

or still,

BleVJ i BuaavJ

L
X - + A, A,
RPN B M PN
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W(L) = W

W(L) being wt. Cambining these facts with some elementary matrix theory then

leads to the desired conclusion.

Assume henceforth that L is H-inwvariant and (L,H) is regular. Let

Y = G e), v e v ) ut )

be an integral curve for

r, o = T‘(L'H)|(HlU).

Pass to
L(xT (t) ,vl {t))
and consider
d_ (L, _3L_
dat avl 3xl
taken along
Y = M (e, v (e)).
3L _ 9L . oL b '
1. ) TR S ( -a%Y)
at oax o et 3
3aY .
= & L (- J),
ox u %
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BLi=aLi+aLa Bi (_AQLVJ)
av v u” v J
= B_Li_ + -a—I—"a- (- A(il) .
v ou
a L a 3L d 3L )
= (/) = 5 (—=5) + s (— (- 4)))
dt Bvl dt 3VJ. dt u i
AN
de avl axl
d (3L, _9L_
dt avl _axl
a4 5L o 3L, 4 v3 oL
= — (-2 +— = (=-3,) + —
dt auon 1 aua dt i Buu
d oL, oL k o0
e (_'_-) -—— = E l )
dt ,avl axl o=l 0A 1
d 3L oL o
S (2 - oY,
dt Bua E)ya 0
B
L _ L 3 i
aya BuB aya
d BL, _ 3L
dt 3vl Bxl



13.

k k
= 5 A% - 5 %t + L (-
2 o™i 5 o™i "
1
L WP N N
a dt i Qo i
u ou X
B .
. oAL
=QI—'§vJ—;(—A§)
su oY
8}
N - BN A B
auo‘ dt i auoc axl
%-Exj(t)=vj(t) = vd,
a B — ..B _ 1x 8B
80 - t - t :"'VJA..
3L 4 - a0
;]:CI *d?( Ai)
=oL 4  _ a7 B
o & (A ExE)
54 82
=§E__(-E.A;J:‘ d_...xj(t) -ﬁ d.....
e Ot 5y ac
. 3nd . ol
=& -+ VAl
3 ax% I oy
=
a &, i
dt EWJ. Bxl
aa%
=L (-ah 2L
u® ayB

o]
Ai)

vB))
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o o
. 3A° W
A T e
a ax? 1 3y
o
+ L —4
BuC¢ ox
o o o
. A,  9A, AR A,
=&av3( 1- i, af l—AiB——JB—}
su X ax) J 8y 3y
= — E%VJRE‘. (cf. 20.6).
Ju ]

This sets the stage for reduction theory which, however, we are not going to

delve into. Iet's just say: Under certain circumstances, the vector field P(L H)
r

is Tr-projectable onto a second order vector field T € 1)1 (TM) such that

(L, H)

1 w_=-dE_+1’[

7 (LIH) ’
P(L,H) L L

where H(L H) is a horizontal 1-form on ™ given locally by
¥

3L, _j.o . i
- — v°R.,.dq,
3 ij

a potentially ambiguous expression.

20.12 REMARK It can be shown that

1 0.

= T, =
(L, H)

Consequently,

T E
(_L :H) f.
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<Tp,m) 9B

=

= <P - 1_ w_ + I0

(L,H}' T i I L, H)

-(F(L,H

)+ T(LH

)T
T (n,H)

(L, H)

So E_ is a first integral for T
L

(L, H) {(cf. 8.10).

N.B. In the lanquage of §10, the triple M = (M,L It ) is a nondegenerate

(L,H)

mechanical system, being the (external) force field.

L, m

20.13 REMARK If H(L 1) is not identically zero, then I is not closed

(L,H)

(in which case our mechanical system is not conservative}. To see this, let

F(L,H)
and write
_ i _ _ 0L _J.o
Tem = 2399 (a; = S5 SIR% 5y,

ana

Then

g, m) =

LI'H(L,H) = (1 ip ° d+do )H(L,H)



le.

— i i
0= (Lrai)dq + ai(Ll..dq )
i i
= (L[.ai}dq + ai(dLl-,q }
= (L.a }dq:.L + a dvi (I € SO(M))
ri i
=>
a; =0 = H(L,H) = 0.

[Note: If H is integrable, then Il is identically zero (cf. 20.2) (but

(L,H}

the converse is false (cf. 20.15)).]

20.14 EXAMPIE Take E = R, M = R° and let

ﬁ(xl,xz,yl) = (xl.,xz).
Then
Bl 1 2 3 =315’5'“{31”"231" 32}
(x7,x7,¥7) % Jy- X
is an Ehresmmann connection. Here
wl = - x%axt + dyl

W
I
|
W
]
[
I
(=]
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1.1
Ry =0 Ry =1
(cf. 20.6).
N N
Rp=-1, R)H=0

L=32 (wh?+ D%+ whd.

Then L is H-invariant and (L,H) is regqular. To campute H(L "’ note that

AL (v]‘Ri' + v Rlz)dq = =u v dq = - qzvlvqul

31‘2 ( LR% + szzz)dq ulv dq qztvl) quz

_ 212 1 2. 1.2, 2
H(L’H)-qvvdq - g (v)dq”.

In addition,

L

T w@?+neh?+ 6.

But, as has been seen in 16.5,
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S0
13 29 213
T =V —+tVvV —S+gqgvVv
. 1 2 3
{L,H) q g 3
vlvz q2 ]
¥
(qz)2 + 1 Bvl
fram which
T =vla___+v28 _ v]'v2 29
(L, H) S i (@1 vt
To check that
1. QJ_ = - dE_ + I r
it suffices to check that
L 6_=dL + I (cf. 8.14).
T(L,H) L (L/H)
To this end, write
6_=§-I—'i-dql + BLZ d(:‘{2
L v v
Then
L 8_
F'L,H) L
2.2

+ 1)vh) adg®
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+ (@2 + nviaL aqt

T(@,H)

+ L_ vzz\dsq2 + V2AL_ dq2
T (L,H) r (L, H)

= qzvlvqul + ((qz)2 + l)vldvl + vzdvz.
On the other hand,
daL + H(L,H)

P % + (P2 + nviart + v

212.1 2,12,2
\'4

+qVvvdg -gq((v)dg
= qzvlvqul + ((qz) 2 + l)vldvl + vzdvz
=L e_.

r.hH L

[Note: E_ is a first integral for I'(L,H) (cf. 20.12).

L
@ @+ neh?+ @A)

12
P h? - L
(g™ + L)

FUH? + vt

= 2eh2? - Peh A2

Proof:
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Another first integral for T is the function

(L,H)
((qZ)Z + 1)1/2‘71'
Proof:
= 2.2 1721
F(L,H)(((q) + 1) V)
2 12
- vlvz q _ vV qZ((qZ)Z + 1) 1/2

(@A + 0% (A%

= 0.]

20.15 EXAMPLE Take E = S' x g% x RS, M= g' x s and let

w(el,ez,yl,yz) - (91'92).

Then the distribution I figuring in 16.12 is an Ehresmann connection, call it H:

H 1 2.1 2

(67,97, ¥y ,y")
=spa.n{Rcosel§—l+Rsin8132+82, 31}.
ay 3y a9 39
Here
- = (R cos 91)d82+dyl
_ o? = - ® sin 8hae® + ay?
=>
- Ai=0, A§=-Rcosel
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R}_l=0, R112=—Rsin 61, R%1=Rsin 91, R§2=0
(cf. 20.6).
3 R?_]_"‘-'U; Rl22=Roosel, R§l=—RcosE}l, R§2=0
Iet
L =%I1(Vl)2 +;2L_12(v2)2 +% (wh? + %,

where Il’ I2, and m are positive constants —— then L is H-invariant and (L,H) is
reqular. And, from the definitions,

- 1 1,2 2 2.2

L=3 (Il(v) + (R + I,) (v7) 7).
However, in this situation,

H(L,H) = Q.

E.g.: The coefficient of dq’ is the negative of

3L 1 2.1 oL 2 2

= ml &2 ( - R sin 8)) + mi® (V2 (R cos 6%))

(R cos 61)v2 (v2( - R sin 61))

+ m(R sin Eﬁl)v2 (v2 (R cos 61))
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[Note: H is not involutive, hence is not integrable (cf. 15.18).]

A Chaplygin system has two ingredients.

® A principal bundle mE > M with structure group G and a principal
connection H.
® A nondegenerate lagrangian L € C (TE) that is G-invariant for the lifted

action of G on TE and for which (L,H) is reqular.

It is then a fundamental point that this data realizes all the assuwptions
of the preceding setup.
[Note: The dynamics on H can be reconstructed fram the dynamics on T™ via

the horizontal lift operation.]



§21. DEPENDENCE ON TIME

Let M be a connected C” manifold of dimension n. Put

~ ™M=RrxM
gh=Rrxm
| Pueg kT

Then JlM is called the evolution space of a time—dependent (a.k.a. non-autonomous)

mechanical system whose configuration space is M.

21.1 EXAMPLE Consider the motion of a plane pendulum whose length £(t) > 0

is a function of time =-- then
M=g = JM=Rx " xR
and its motion is governed by the differential equation

2
g—%=—%sine—

2dt do
at £ dt 4t

where 6 = 8(t) is the angle made by the pendulum with the vertical and g is the

gravitational acceleration (cf. 21.19}.

Iocal coordinates in JJM are (t,ql,vl) and there is a canonical inclusion

JJ'M - TJOM,



viz.
(trqlrvl) g (tfqlrlrvl) .
. . J2M i i i . .
Iocal coordinates in are (t,q ,v ,a} (cf. 11.6) and there is a canonical
inclusion

J2M+13><T1M,

i i i I T
(t,q ,v ra-l) -+ (trqlrv rvlral)-
Sincel}xTanbeeﬂbeddedinTJlM, it makes sense to write
J2M c TJ]M.

This being the case, let T € U'(JM) — then T is said to be second order provided

l"JlMchM.

21.2 IEMMA Iet T € D]'(J]'M) -— then T is second order iff locally,

i3 i3
—_— —
+ v T C T’

og av

_ 3
I'==
where

ct = Cchit, g, v .

The vertical morphism

s:7t () - oL

and the dilation vector field



A€ Dl('I!-l)

canberegardedaslivinng]M. 2greeing to denote these extensions by the
same symbols, define

Sdt € ‘D}(J:LM)
by
Sdt =858 ~-A@8at.
Then locally,
8 i i
5., = —r8 (dg” - v dt).
dt 3v1
N.B. Viewing Sqp s an element of
Hom .,  (0F @, 0t
'
we have
3 i3 3 ;) 2
s (‘—"")=“V —-"'1-,3 (—'—l-)=-"-—r-,s (""-“r‘}=0.
dat 't ot dt Bql NS at vt
The triple (IM,0%,70) is a fibered manifold, from which
vt c ol (ef. 51D,
2 _
21.3 LEMMA Sdt = 0, hence
Ira Sdt < Ker Sdt'
Moreover,

Im Sdt = sec VlOJlM = UlO(JlM).
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[Note: The containment

Im Sdt < Ker Sdt

is proper.]

21.4 REMARK Tt can be shown that v X,Y € pL(Thm,

[SgXrSqp¥] — Sge[SarXr¥l = Sge [XrSg, Y]

= (1th)sdty - (1Ydt)sdtx (cf. 5.9).

21.5 LEMMA Iet T € DM (I'M) — then T is second order iff ST = 4 and

Sdtl" = 0,

PROOF The necessity is obwious. To see the sufficiency, work locally and

write

_ .3 i3 i2

ST =A=>A =V (1 <1izcn)

I
[

=> T



2l.6 LEMMA LetI'eDl(JlM) -~ then T is second order iff dt(T) = 1 and

21.7 LEMMA Suppose that T € Dl(JlM) is second order —-— then v nlo—vertical X,

Sdt([X,l"]) = X.

An element L € Cw(JlM) is, by definition, a (time—dependent) lagrangian.
This said, put

Q = Sat(dL) + L4t

e
i

dElL .

21.8 LEMMA lLocally,

o = AL (@aqt - viat) + 1at.
Bvl

[{One has only to note that

* - " i, _ i, _al _ A
Sdt(dt) 0, Sdt(dq ) 0, Sat(dv } = dg v dat.]

N.B. On general grounds (cf. 13.4), the horizontal l1-forms o € A]‘J']‘M per
. . 10 1M 0 . -
the fibration 1 :J M » J M are characterized by the property that they annihilate

the sections of VlOJlM. Incally, these are the o € A]'JJM_ that can be written in
the form

o = adt + aidql,



1 1 n
a(t'q ,...,qn,v ,...,V )

4]
il

fu
il

ai (t'q].' LR ;qu'vl' LR f"ll) -

In particular: OL is Trlo—horizontal.

21.9 LEMMA Locally,

oA e I
L= avJ po v L S P ) avna

2 . .
+ aiL - vidtadvd
v v

+ 32L 7 - Ly ataaq’

av at 5q av3 g

Thevefore

32L

_ E\vlavJ .

AEAGVTA ... rdvmdghA ... add.

dtf\f{ = ! det

Motivated by this, call L nondegenerate if dtnsi‘. is a volume form; otherwise,

call L degenerate.

21.10 IEMMRA L is rmondegenerate iff for all coordinate systems
{thll'" fq lv re "!’Vn}!'

- BZL —

8v Bv

det = 0




everywhere (cf. 8.5).

21.]11 EXAMPLE Take M = R and let

L= v2 - %— mz(t)qz.

o

Then L is nondegenerate.
[Note: This lagrangian is that of the time dependent hamwonic oscillator.]

21.12 EXAMPIE Take M = R and let

L= -32'- (vl + tvz)z.

2L

————

det
. vt BV:'_

=det =0:

s0 L is degenerate.

21.13 RAPPEL Suppose that N is a connected (2n+l)-dimensicnal manifold —-

then a cosymplectic structure on N is a pair (n,ﬂ),wherenEAlNisaclosed

l-formon N and € AZN is a closed 2-form on N such that nAQn = (1,

[Note: It follows that the rank of Q is 2n.]

Accordingly, a nondegenerate lagrangian L determines a cosymplectic structure

(dat, ) on a = R x TM.



21.14 IEMMA Suppose that (n,0) is a cosymplectic structure on N —— then

there exists a unique vector field Xn Q € Dl(N):
I

1 Q=0
X

N, 8
1 n~=1.
xThQ

PROOF The arrow

b szlm) > D, (0

that sends X to

18+ nlXin
ig an isomorphism. Put

X o= (bmg)'l(n).r
thus

1Xn,gzg + n(Xn’Q)ﬂ = .

'Ibcheckthatxnghasthestatedproperties,observethat

1 1 2+ n(X_, )nf ) =X ).
me Xn.ﬁ Ny il an n,&

I.e.:

ol
1l
=



The first possibility would imply that

1 2 =n.
X
N,

But then

T]AQnIO

Qhﬂn::o

n,

1

On the other hand,

oag = 0

iy QAQH+Q
Mgt

1 Qhﬂn-i-t

J'\'I.X Qn =

T2Y:

Qnr\Q=0

X X

n.f

{n + 1
XT'I:Q

a contradiction. Therefore

X =1
n( T]'Q)

HT3Y!

Qg™ = 0,
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[Note: xn 9 is called the Reeb vector field attached to (n,0).)

21.15 EXAMPIE Let § be the fundamental 2-form on T*M. Form the product

R x T*M and let 7*:R x T*M -~ T*M be the projection --— then the pair (dt,uw*Q)
is a cosymplectic structure on R x T*M and its Reeb vector field is%-:-.

Given a nondegenerate lagrangian L, set

I = th,szl"
Then
N ‘PL“L =0
1I.Ldt =1

21.16 REMARK Suppose that L:TM > R is a nondegenerate lagrangian. Define

L:J]'b/l+§byL=L°Tr,whereﬁzgxm+mistheprojection——thenLisnon—
degenerate and

R, = - Thy + GEATH(E, ) .

L

Furtharmore,

[Note: Recall that 1I‘L“’L = - dEL and I‘LEL = 0.]
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21.17 LEMMA I‘L is second order.

PROOF To apply 21.2, write

3 i 3 ias
o=t +xt S st
L ot an. ot
Then
l=1.dt = .
1-‘L

As for the xl, use the fact that lp QL= 0 and 21.9 to conclude:
L

S A, )
-—'-i-—.-- —3-—-—"3-.
v iy

But L is nondegenerate, so

Iet
_ 1 n 1 n
v(s) = (t(s), g (s),...,q (8),v (8),...,v (8))
beanintegralwrveofI’L——tI'm

d =

Because of this, we can and will choose the evolution parameter s to be the

"time" t.

[Note: Time reparametrization is thus a form of "gauge fixing".]
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21.18 LEMMA If

V) = (g (), e, ®) V), . P )

is an integral curve of FL' then

L] L] 2 L] L]
d 1 - & d 1 _ AL
FT 9 (t) = v (t}, g‘t“z-q &ty =¢C

and along vy, the equations of Lagrange

a oL, 9L _ .
a-E(—) — = (i=1,...,n)

are in force.

[Manipulation of the relation tp Q‘L = () gives
L

J-Zl'i-+vji{21i—.-+cj ai*r_.__aLi=0 (i=1,...,n.]
ItV vt whav? g

21.19 EXAMPLE Take M = §l and consider the setup of 21l.1. Let

L{t,0,v) = %‘—mﬁzvz +mgl cos 6 (0 =q).

Explicating the equations of Lagrange then leads to the differential equation
stated there.

Given any L € CM(JJ'M) , its energy is the function

EL=&L—L.
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N.B. We have

OL = S*{(dL) - ELdt.

21.20 LEMMA Suppose that L is nondegenerate — then

- - 9L
FLEL" ot °

PROOF For

I, = 11"LdEL

‘rLd‘ 3/5t°L

‘PL(La/at = Yo
= 1I*L“a/atd@L - ‘rLLa/ateL
'r, ta/ot L ', ba/at"L

= =1 1 -1, L Q
8/9t FLQL r "3/t L

== 1, L &)
I'L 3/3t™L
=1 , e -1 1. B
[a/at,rL] L 8/t I‘L L
= - [ 1. O
3/t 1L
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|- *
La/atlI‘L(Sdt(dI‘) + Ldt)
= - La/atlrLsat(dL) - LB/atLII‘Ldt
L
==L 1 dL - —+—
3/3t SdtPL ot
= — -4
= LB/BtIOdL T {cf. 21.5)
-_ 9%
ot °

21.21 REMARK Maintaining the assumption that L is nondegenerate, let y(t)

be an integral curve of T, and consider EL{y(t} —— then

& _d . idL
S= v -
dt dt ot
T id AL, 9L _ 3L dgt _ 3L vt
dt ol dt - at 5 ql dt N1 dt
i@d@, 9L, 3L
at v aql at
=. 3L
=2 (cf. 21.18).

It is not difficult to extend constraint theory to the time~dependent case
but I shall not stop to run through the formalities. However, there is one point
o be made, namely that in general the constraints will depend on time. To

illustrate, consider a particle of mass m moving in the plane and subject to the
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constraint

v'-t¥-c=0 (CeR.

This constraint is affine in the velocities and the l-form

1

w = ag- - tag®

defines a time—dependent vector subbundle of ng = 1_34.

[Note: Refer back to 16.21 but assuwe that the horizontal plate rotates

with nonconstant angular velocity Q(t) =— then the vector field

22 123
- t)x” = + Q{t)x -
Bxl ax

now depends on time, Still, the analysis given there goes through without
essential change.]

There is one final topic that demands consideration, viz. the notion of fiber
' . . [ lM . . . . 10
derivative. So let L € C (M} be an arbitrary lagrangian. Since e is 7 -hor-
izontal, it determines a fiber preserving C function
FL:J]'M > T*JOM

over JOM, i.e., the diagram

~

FL
JlM —_— T*JOM

10 *
il Tl'JOM
D 0
JM ———orn JM

commates.
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Iocally,

FL(t:qlrvl) = (trqlr_ ELr

N.B. If 0 is the fundamental 1-form on T*JOM, then
GL = (FL)*0.
We have
3% = T R x M)
= T*R x T*M
Prg
—— R x T*M,
vhere

pr_ = m*¥ x id .
R B “pmy

The fiber derivative FL of L is then the composition

Ea

prp ° FL.

Therefore

FL:R X TM +~ R x T*M

and there is a commutative diagram

FL
R x T™ ——s R x T*M

idenﬁ

RXT —s RXM.
10
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Locally,

FL(trql:Vl) = (trqlr gl:"i')o
oV

21.22 IFMMA  The pair (dt,Q.L) is a cosymplectic structure on JlM iff FL is

a local diffeomorphism.

The central conclusion of this § is that the time-dependent theory is more
or less parallel to the time-independent theory. But there is one important

difference: If L, and L aremmdegeneratearﬂifQL =QL,thenI'L =T
1 2

1 L,’

2 1 2

the analog of this in the autonamwous setting being false,

21.23 EXAMPIE Take M = R and let

_ P
Ly (@) = 5=

V2
§""'+q.

L, (q,v)

ThenbothLlanszaremndegeneratewith

le
= dvadqg.
However
- 9
T = v —
g o9
I'Lz-—vaq-!-av.



§22. DEGENERATE LAGRANGIANS

Up until now, the focus has been on nondegenerate lagrangians but, for the
applications, it is definitely necessary to consider degenerate lagrangians as
well (a case in point being general relativity, albeit this is an infinite
dimensional setting).

Suppose, therefore, that L € c’(m) is degenerate —— then Wy is no longer

of maximal rank and, in general, is not of constant rank.

22,1 EXAMPIE Take M = R and let

Li{g,v) = v3.
Then
. . 2 .
BZL o1 3L i .
= : dq r\qu + ——— adv adg
“L 3ql‘avj BlevJ
= ovdvadg,

s0 W is not of constant rank.

Henceforth, our standing assumption will be that the rank of W is constant,

thus the pair (’IM,mL) is a presymplectic manifold (cf. 15.20).

N.B. Recall the convention of 15.13: Ker o has two meanings, dictated by

context.

let

DL ={X e Dl('IM)nxmL = - dEL}.



Then in the terminology of §8,LissaidtoadmitglobaldyjnamicsifDLis

nonempty.

22.2 ILEMMA If L admits global dynamics and if 1Xut=-dELisaparticular

solution, then the general sclution has the form X + Z, where Z € Ker w, .

L

While a given lagrangian might not admit global dynamics, there still might

be a subset of ™ on which the relation

P o A

does obtain,

22.3 EXAMPLE Take M = }_23 and let

1 2 3.1 2 3

13

Lg,q9 .9,V ,v,v)=vvVv +%— ((q2)2q3)-

Then
3L i
LIJL-—'—'-i—'—'-j—dq J‘\dqj'i-
¥q v
= aviadg® + aviadg
So
- mi:ﬁ
=> ra.nkmL=4.
of = 0

AndKermLisgeneratedbyg—Eandi—f. Next
av

aq



Ly = Bqul + Bldq3 - A3dv1 - Aldv3
if
x=a -+ -E-’—i- .
oq oV

On the other hand,

2,2
- & = g’ag” + L aq’ - Vvt - viav’.

Therefore
Wiy, * T A
unless c_[q3 = 0, in which case
- — 2,2
al = ot Bl=—ﬂ-——(2)
_A3=v3 __B3=0.
The . 2.3 .
general solution on q°q” = 0 is thus
13 30, (% 23 2 3
VoStV 3+q2 T+A° 5 +B =,
oq e | ov oq v
where A2,32 are arbitrary ¢ functions.

(Note: The condition q2q3 = 0 does not, strictly speaking, define a sub-
manifold of T™.]

Put

Kerva=Keerﬂ ViTM) .



22.4 IFEMA We have
S{Ker mL) c Ker' Wy -

PROOF LetZEKermL-—then

1sz=0.
But
lgglp = = g © S (see the note appended to 16.1).
Therefore
1SzwL=0=>SZEKermL.
And
5z € V(™).
Terminology: L is
T Type I ifS(KermL)=KervuL
Type IT if S(Ker w) ::Ke.rva.
22.5 EXAMPLE TakeM=I_{2andlet
1 2.1 2 1,124
LG g v v =5 el
Then

A N S N S
= — dq Adq + —— dv J"\dq
‘L agtav’ v ava



2 2
= vleq dqzndql + e dvlndql.
So
— oy * 0
=> rankmL= 2.
2 _
_ LT
TodetermineKermL, write
X=Al al+A2 3'2+B13—-—-|-B2
g od v

andsetlxtuLequaltozero,hence

_ 2
Aleq =0=>A1=0

2

l+Bl)eq =0=RB =-AV

x=a% Q- vt 2 23

oq v W

Therefore Rer W is generated by

2nd here

Vi = (£ 2nfe c*&Y}
av

j
"

= S{Ker UJL) ’



meaning that L is Type I. Still, L does not admit global dynamics.

22.6 LEMMA IfLadrrﬁ.tsglobaldynam:i.csandis'IypeI,thenElaI‘eUl(m)

of second order such that

1I,mL=-dEL.
PROOF Choose X € DY (TM) 3
1XwL=—dEL.
Then
lox - A%, T 7 WL 0 S T L)Yy
=dEL°S—dEL°S (cE. 8.7}
=0
=3
sx—aexer"mL
=>
SX - A= 5Y (HYEKeer)
=
v - ¥ T WL
=—dEL_
and

S5(x-Y) =4



I'=X-Y ¢ SO(T™) (cf. 5.8).

22.7 EXAMPLIE Iet g € Dg(M) be symmetric. Assign to each x € M the subspace

"

K, {xx € TxM:gx(Xx,Yx} =0v Y ET xM}.

Then g is said to be a degenerate metric if 3 d > 0 such that v x € M, dimK_=d

and the bilinear form induced by g, on TXIMVKx is positive definite. It has been

shown by Crampin that there exists a linear connection V with zero torsion such

that vg = 0 iff Lg = QforallzeK= U K, {the null distribution attached
XeM :

to g). This condition implies that K is integrable. In fact, if ¥,2 € K, then

for any X,

0= (L) (2,%) = Yg(2,%) - g([¥,2),%) -~ g(z, [¥,X])

g( {YIZ] .rx) Yg (Z:X) = 9’(2; [Y:X])

= 0‘

On the other hand, K may be integrable even when this condition is not satisfied.

For exanple, letM=132andputg=¢(ql)dqzﬁdq2with¢>0—-thenKissparmed

by B/Bql, hence is inteqrable, but [ 19 # 0 unless ¢ is a constant. Take now

/g
for L € Cm(TM) the function

kN
(x,XX) ) gx(Xx,xx) X . € TXM) .

Then it turns out that L is Type I iff K is integrable and when this is so, L

admits global dynamics iff ng= 0V ZEK.



22.8 EXAMPLE Let w € A'M and put L = & (cf. 8.19) — then

6, =
o = g

Furthermore, in suggestive notation,

uJL(X,___) = dw((ﬂM) «Xr_ Do
which implies that

Rer w > V() .
Accordingly, if dw is nondegenerate, then

Ker u = V(™)

and L is Type II. For instance, take M

]
=
A
g
:
&

L{ (ql:qz) ' (Vlrvz)) =

[
8|
Q
<:I-'
1
£
<

let

(@%dq’ - qlagd).

w o=

(11

Then L = ®. Since dw = dqu\dql is nondegenerate, Ker . is generated by 3—1 and

L

d
o

22.9 IFMMA We have

\'
Ker mL=KerFL*.



It remains to consider the time—dependent situation. So suppose that

L € C°(3'M) is degenerate, hence thQE is not a vohume form. Given t € R, let

L

e = L]{t} x ™.

Then in what follows it will be assumed that 3 ¥:0 < r < n (= dim M), where v

t €ER,
rankmL = 2r,
t

Therefore

2r+2 -

ata = o, dtm{"l =0, & 0

2rsrankQL52r+2.

N.B. While convenient, this assumption is certainly not automatic: Take

M = R and consider
2
v

Li{t,q,v) =t 5=

22,10 EXAMPLE Take M = I_{Z and let

L= (vl + tv2)2.

o =

Then L is degenerate (cf. 21.12). We have

32“1—. i3 32Lt i3
= v A AdgY 4+~ dv adg
th Bqlav:' avla

1.1 1

& adg + tdv .r\dq2 + tdv2

gt + t2avPadge.

I
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Sov t,
thasO
2 =>rankth=2.
o, =0

Now use 21.9 to get

o = tav’ndg" + vatadg + tdvindg”

+ tzt:i\.rzm:lq2 + (vl + 2tv2)thdq2

+ (vh o+ taeaavt + avindgt + tvt + v deaave.
Therefore

ZsrankQLs4.

Let C = £ 1(0), where

1 2 1 2 2
£it,at, vt v = v+ el

c={x= (t,ql,qz,vl,vz) :ramk(ﬂL)x = 2}.

Motivated by 21.14 (and subsequent discussion), let

D = X e Dl(JlM):leL = 0, 1xdt = 1}.

Then L is said to admit global dynamics if DL is nonempty.

22.11 LEMMA L admits global dynamics iff QL has constant rank 2r.



11.

This is a consequence of 22.12 and 22.14 infra.

92.12 LEMMA Fix x € JM — then rank(Q ) = 2r iff 3 X_ ETXJJ‘M such that

g (QL)X = 9, 1y (dt)}‘I = 1.
X X

PROOF If r«:ank.(ﬂL)x = 2r, then 3 a linearly independent set
{e]‘,.. .,er,er+2,... ,ezr} < T;JJM
such that

r , \
_ i r+i
(Q.L) X L e Ae .

i=1
But (ciit)x.r\(fzr_')X z 0, thus

+
{(dt)x,el,...,er,er ...« T;Jln

is also linearly independent. Complete it to a basis

{(dt)x'el' - ,er;eﬂl, - 'ezr'fl; - . l|tf211—2r}

for T;chM and pass to the dual basis

{Xx,el, RRPL L LA '92r'f].' eae 'f2n—2r}
for TleM —— then

_ i Y+ | _
@) X)) =1and e (Xx) =e X)) =f¢ (X)) =0

IXX(QL)X =0

(dt)x =1.

X,



12.

Conversely, if X, has the stated properties, then

_ r+l
0= 1y (@0 ()
= (o)t

rank(QL)x = 2r.

22.13 RAPPEL Suppose that N is a connected (2n+l)-dimensional manifold ——

then a precosymplectic structure on N of rank 2r is a pair(n,?), where n € A]'N is

a closed 1-formon N and & € AZN ig a closed 2=-form on N of constant rank 2r such

that n.«Qr = Q.

22.14 1EMMR If (n,R) is a precosymplectic structure on N of rank 2r, then

there exists a vector field X € Dl(N):

"
=
L]

PROOF By a variation on a wellknown theme, each y € N admits a neighborhood

UY with local coordinates {(t.ql;Pi;uS} (l<i=<rlc<s s 2n-2r) such that

Q= dpiAdql, n = dt.
Therefore

1a/ptft = 0

asaeh = L
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Pass fraom this point via a partition of unity... .

[Note: In general, X is far from unicue.)

22.15 EXAMPIE Take M = K> and

Lt,qt, a2, a0 R

let

1.2 2
) =5 oH% - - viedhdhad,

where V:R x 1_13 > R is C == then it is clear that L is degenerate. Moreover,
2 2,
3°L . . 3 . .
we = —i—t-j- dql.-\dqj + : tj dv:l'.f'\dq:|
t g ov v av
- dqzhdq3 + dledql
=>
-2
z 0
mLt
=> rank w, = 4.
Le
3
= 0
Next (cf. 21.9)
q = vidtrav® + dqPadg’ + dviadgh
+ 3‘11- atadg” + Xy arndq® + s ataaq®.
oq 3q g

ra:ﬂc%
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Therefore L admits global dynamics (cf. 22.11), the general solution being

3, L3 w3 LV 3

t 1

X =
3
)b 3 5q° 8t o

2

Here Bz,,B3 are arbitrary " functions on J1133.

22.16 REMARK The lagrangian
L= % (_vl + tv2)2
figuring in 22.10 does not admit global dynamics. However, if matters are
limited to the submanifold C = £ 1(0), then

d 23

'IC=‘[—--V ’
ot Bvl

and the general solution is

0 3 9 3

] 2
X=—~=At =+ A —5 = (Vv + Bt) + B —x ,
ot aql 3q2 ot &VZ

where A,B are ¢* functions on C.

Put

KL=KerdtnKerQL

and then set

=k n 0y .
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22,17 IEMMA We have
AT
Sa (K) < K«

22.18 LEMMA We have

Sdt(Ker Q.L) c Ker QI. N Vlo('IM).

22,18 => 22.17.

XEKL-"-&XEKerQL

o s € Ker o 0 10y,
On the other hand,

* = = =
Sdt(dt) 0 => dt(Im 0.

Sat)

The proof of 22.18 hinges on an auxilliary result.

22.19 IEMMA Y XY e (@M and vV w € D, (M),

{(d{w o Sdt) + wadt) (Sdt )+ (Qlw e t) + wadt) (X,Sth)

S5
= AW(SgX,S,Y) .

PROOF Since Sgt =0 (cf. 21.3),



or still,

1é.

dw e Sdt) (Sth,Y) = Sth(w(Sth)) - w(Sdt[Sth,Y])
d{w ° Sdt) (X,Sth) = - Sth(w(Sth)) - w(SdtIX,Sth])
di{w ° Sdt) (Sth,Y) + diw o sdt) (X,Sth)

1

1l

S X(W(S3)) = S g ¥ (w(Sg%))

- 0(8, [Sg X)) = 6(Sy, [X,55,¥1)

- U.I(S [S XtY])

dtat

= {84 [Xs8 5, Y1)

= (8,4, %,85,) + w((1,A6)Sg ¥ ~ (1, dE)5 4, X)

(wadt) (SthrY)

(wadt) (X, Sth)

= w(X)dt(S4,Y) = w(S5Y) 1,8t

(wadt) (S th,Y) = (S dtx) 1Ydt

{wadt) (X,5 th)

= - w(sth) lxdt

{wndt) (Sth,Y) + {wadt) (X,Sth)

= w((let}Sth -

( 1th) S th) .

{cf. 21.4).
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In 22.19, let w = dL — then

G)L=d[.°5dt+ldt

QL = deL = d{dL o Sdt) + dLadt.,

so, v X,Y € Dl(JlM),

0 (83,%,Y) + @ (X,85,¥) = A(dL) (S4,X,5,Y)

Acoordingly,

X € Ker % => S?.L(X,Sth) =0
=> QL(Sth,Y') = => Sth € Ker QL'

thereby establishing 22.18.

Terminology: L is

. _ WV
Type I if sdt(KL) = KL

. N
Type IT if sdt(KL} # .KL.

22,20 IEMMA If L admits global dynamics and is Type I, then 3 a T € ?71(J1M)
of second order such that

I
o

tpd,
1].dt = ].
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PROCF Choose X € Ul(JlM):

T oS =0
1th=1.
Then
83X =Y € K.
ChooseZEKL:
Sge3 = ¥
and let T = X - 2 — then
Tl T gl - g0y, = 0
e = ade - pde =1
Finally
Sael = Sat® ~ Sat?
=Y -Y
= 0.

Therefore ' is second order (cf. 21.6).

22.21 REMARK The lagrangian introduced in 22.15 admits global dynamics but

there are no second order solutions, thus L is not Type I.
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22.22 LEMMA We have

KerQLﬂVlO(JlM) = Ker FL, = Ker FL,.

APPENDIX

Fix a lagrangian L € ¢ (IM) and put

W) = [y, (0]

Il

T = [T M1,

where

R

T..{(L) = ——s = —— .
ij avlaqj aqlav:[

ILet

X=Aj'3—i—+Bl—a-—I.
aq v

Then in abbreviated notation, the differential equations that govern the relation

Ly, = = dBp
are
TLy W@ | |7 A 7 - —quL -
- WL 0 B - WL



20.

or still,
T TA + WOLB = - dE
. Wny@a-wv) =o.
Therefore
A=v 4+ E(W(L)E =0,
S0
WEIB = - TL) (v + &) = d B
= - T(L)v ~ quL - T{L)}g
=2 - T(L)E.
Here
Z=-=T(L}v - quL

L 5. oL 3oL 3,

[11

toagtew sv o g av) aq”
I T
o v
An integral curve y for
X=(Vl"'§l)§_{+Bla_?f
3q oV

is determined by the differential equations
- . i . i
& = ét(t)) = v y(t)) + ET(v(E))

i .
av ét(t” =B (y(t)).
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But
W(L)B = 5 - T(L)Z
=2
¥2L gl = 3L B%L.vj.{_(a.zL. 0L 43
wiav g aviaq aqtav  avtagd
=3
_Jﬁ_,( gy = &L B%L-(J 53)+(32L - 2Lyl
i ovd agt  aviag? agiav?  aviag]

I A A RS I

Bvlarvj v Bq aq

32L j BZL

—= £
i) 3q aqiavd

g3,

These relations are thus a generalization of the equations of Lagrange (to which
they reduce when £ = 0).

A.1l REMARK It is to be emphasized that this analysis is predicated on the
assumption that L admits global dynamics:

- _ 1
ey = dEL 3Xe?P(m)).

A.2 EXAMPLE Take M = R-and let L{q,v) = g — then
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-0 0
W(L) =
And
U3L=0r EL="'qr

s0 F X: L = = dE:L In addition, the preceding differential equation reduces

A.3 EXAMPLE Take M = R and let L{(q,v) = v —— then

0 0

wiL) = .

u.lL =0, EL = 0,
S0 ¥ X: Ly = - dEL In addition, the preceding differential equation reduces

to "0 = 0",

There are similar results in the time-dependent case but I shall leave their

explication to the reader.



§23. PASSAGE TQ THE COTANGENT BUNDLE

Iet M be a connected C manifold of dimension n. Suppose that L € C (V)

is degenerate.

23.1 ASSUMPTION For some k < n, FL is of constant rank n + k, I = FL{TM)

is a closed submanifold of T*M of dimension n + k, and v ¢ € £, the fiber

(FL} -1(0) is connected.

[Note: Vv o € L,

dim(FL) (o) = dim ™ - dim 3
=2n- (n+k)
=n - k.]
N.B. The matrix
W(L) = [Wi](L)]'
where
2
W, (L) = LlL--r ,
J oV 3VJ

has constant rank k.

[Note: A 2n x 2n matrix of the fomm

is row eguivalent to



For motivation, recall the following standard fact.

23.2 RAPPEL Let M', M" be C manifolds; let £:M' + M" be a C map of
constant rank r — then each point of M' admits a neighborhood U such that £(U)
is an r—dimensional submanifold of M" and the restriction U » £(U) is a submersion

with connected fibers.

Since FL:™ > ¥ is a fibration, the kernel of
TFL:TTM - TZ
determines a vector subbundle v, ™ of TMM (cf. £§11). Viewed as a linear distribution,
VL']M is integrable and the leaves of the associated foliation of ™ are the

®L) 1) (6 €8 (cf. 15.11):

N.B. The fiber dimension of Ker w, is n -k (cf. 22.9).
We claim now that W has constant rank, thus the machinery developed in §22
is applicable. To this end, let § be the fundamental 2-form on T*M and put

=3 7 * 1 -
Qz le (lE.Z + TAM) .

23,3 LIEMMA The rank of Q. is constant and, in fact,

bX




rank Q5 = k + £,
where k < £ < n (k < n).
[Note: The pair (E,QZ) is a presymplectic manifold (cf. 15.20}) and the
fiber dimension of Ker Q5 is

n+ k) - (k + £}

n-£.}

Therefore

rankwL=k+£.

N.B. The fiber dimension of Ker W is

2n-(k+L8)=nh-k)y+ n-42.
23.4 REMARK L is Type I iff
n-k +n-4£ =2n-%,

i-e.’ iff 'E' = k.

23.5 RAPPEL let (V,0)) be a symplectic vector space of dimension 2n. Given
a subspace W c V, its symplectic complement Wl is

{v € V:Q(v,W) = 0}

QAim W + dim W' = 2n.

Demteby%therestrictionofﬂtowxw-—thm

Ker%={wEW:1w$2W=0}=WnWJ',



S0 (W,nw) is a symplectic vector space iff W n wt = {0}.

Given ¢ € I, regard T,L as a subspace of TUT*M ~= then

J- — * —4
(ng) = {Xo € TGT*M.QO(XG,TGZ) 0}.

Following Dirac, I is said to be first class if v o € I,

or second class if v ¢ € I,

1
(T D))" e T X

1l _
T Z N (ng) = {0}.

23.6 LEMMA I is first class iff £ = k.

PROOF To begin with,

But

Therefore £ = k

{n

(n

{n

{n

<=

—k)+dimi=(nh-kK) + n+k) =2n

—k)+d:imTOZ=2n

I
E
il

' 1
dlm(TGE) .
-k + -0 = (n-k +dimT I n (TGE)‘L).

n-k+ n=-2) =2(n - k)
— 1 L
n - k) + d:l.m(TUZ n (TGZ) )
din(T )t = Aim(? 5 n (T 2)Y)
g 8] 8]

NS



23.7 IEMMA T is second class iff £ = n.

[Note: When this is the case, the pair (E'QZ) is a symplectic manifold.]

23.8 REMARK Because k is less than n, I cannot be similtaneocusly first and
second class.

[Note: In general, § is neither but rather is of "mixed type".]

The P € Cm('JM) which are constant on the (FL)-]'(U) are annihilated by the

Xe KervLuL and conversely., Denote by c{(m) the set of such — then C (%) = C (M)
via

f-> (FL)* (= f o FL).

23.9 LEMA Theenerg‘yEL=ﬁL~LliesinCi(m), hence
EL= (FL) *H..,
wl'mareﬂz ECW(E).

PROOF Working locally, take an X € Kervu.\L and write

x=Ala—i-+ Bli-i-.
aq v
Then
2
Al= 0; —a—L—TBJ = (.
v av)
Therefore
XE, = £l A (vt 31'1} 5 gt L_
i]j v v i ov



R [ o L ) -z B L
i3 ) vt v av? i v
_zBlaLi_Zvlsz 3L -y pl 3L

i v i Jj v i vt

[Note: HZ: is the hamiltonian attached to L.]

23.10 OQORRESPONDENCE PRINCIPIE To each XL € Dl(‘ﬂd) such that

DA A

there corresponds an XZ & Dl(Z) such that

with
xIJF|(x,xx) = XZf|FL(x,Xx) (F = (FL)*f).
Conversely, to each X; € ol(z) such that

1 s‘zz=-de

there corresponds an X.L € Dl {(TM) such that
IXLML = - dEL
with

xJ;.Fl (x,X,) = XZf|FL(x,xx) (F = (FL)}*f).



[Note: As a corollary, L admits global dynamics iff HZ admits global
dynamics (in the obvious sense).]

To proceed further, it will be convenient to assume that 3 dnu € C (T*™)
(u=%k+1,...,n such that
L= (@u)"lm)
o
with
Adtbu z 0
H

on k.

[Note: Bear inmind that dimZ =n+k=2n- (n - k).]

23.11 EXAMPLE Take M=R" and let L = 0 - then k = 0 and I consists of

those points
(ql.---.qn,pl:-..,pn) € an
such that
Pi=0 (i=l’oo.'n)'
S0

And here, of course, HE = 0.

23,12 EXAMPIE Take M = B and let

n .
L(ql,cto'qn'vlpoco’vn) = - z % (ql)zc
i=1



Then k = 0 and ¥ is the same as in 23.11 but this time

n '
HZ(ql,..-,qn) = I %(ql)z.
i=1

23.13 EXAMPLE Take M = 132 and let

2
Ligh, v = 3 oh%T .

Then k = 1 and

2
1 2 1 2 1 2 1
FLi{q ,q",v v} = (g ,9 v eq »0)

1 2 4
Z = {(C_{ fq !pllpz) E B :PZ = 0}-

Furthermore
Q. = i%(dp AdQ + dp.adg?) = dp. AdgE
p = ipldpAad P Py
=>ra:ﬂ<ﬂz=2=>£=l.
So L is Type I (cf. 23.4). Finally
2

1 2 .1 2 —q
Hz(q 9 rPl) = ‘2" (Pl) e -
H_ o FLigb,q?, vt vh)

2
= Hp(q,q ,vieT)

2 2
=1 wle? )24

0% ] ol

2
=i (.Vli 2eq

L]



1 2.1 2
=EL(q i VVT).

[Note: L does not admit global dynamics (cf. 22.5), thus 23.10 is not

applicable.]

Any £ € C (T*M) such that

T < f'1(0)

is called a constraint.

[Note: The cDu are called primary constraints.]

N.B. A wvector field X € Dl(T*M) is tangent to I iff X£[X = 0 for all

constraints f.
[Note: v g € %, TGZ consists of those Xc € TGT*M such that Xof = 0 for all

constraints f£.]

23.14 LEMMA Let f be a constraint — then 3 C functions £ such that

f=3 f“@u.
u

PROOF Given a point ¢ € &, choose a coordinate system {¢,¢} valid in a

neighborhood Uy of ¢ having the q:u as its first coordinates. By hypothesis,

£O,) =0

£(o,0) = fg O Eleo,pat

=3 fHs ,
[a)
Lo
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where

n_ 1
fc = fo f,.]-1 (td,p)dt.

To extend this to all of T*M, letUubetrnesetMEretDuanndfixaCmpartitim

of unity {cu,co} subordinate to the open covering

(VU ) v (UuU).
w M o °

Put

d

W f H u
f f¢+2f0:;0.
v a

f=f(E¢ +%C)
TR

I fL + % £
nwo voe ¢

g
T1fHo +1%
U Hog

U

=

H

T f“@u.
u

23.15 RAPFEL: There are two arrows

&bﬁwm+oﬁwm

Q#:Dl(T*M) + D (T

that are mutvally inverse, the hamiltonian vector fields being those elements of
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the form X, = - olaf (£ € C°(T™™M)).

[Note: The explanation for the minus sign is this. If in canonical local

coordinates
af = g(%dqi+%§dpi).
i g Py
then
—Q#df=2(af3 _BfB}‘

i P agt  agt i
Therefore, along an integral curve of Xf, we have

- . i

S i
dt api

5 e

g = omm— = — T

i dt aql

the equations of Hamilton.]

23.161m4APutXu=X (p=k+1,...,n) —— then v ¢ € I, the span of
U

. 1
the Xu g is (TGE) .
[Note: If f is a constraint, then

X

L _ i}
f TeE(TE)y" = U (TUE) .l

o€k
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The issue of whether L admits global dynamics can be shifted to the issue
of whether Hz admits global dynamics {(cf. 23.10). And for the latter there is

a criterion.

23.17 THEOREM The equation

has a solution XE iff 3 an extension H € C (T*M) of Hy with the property that

XH|GETUZVOEZ.

PROOF Under the assumption that such an extension exists, put Xy = XHIZ —
then v X € Dl(Z} .

IXEQE X} = Q(XE,X)

Q(XHfZ,X)

- A(H|3) (X)

1

- dHZ (X) .

Turning to the converse, let H be any extension of H ---thenVcEZ&VXETdZ,

T
QU’(XEIO' - Xch'X)

- dHE|0(X) + dH|G(X)
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So, 3 AP € ¢°(™M) such that on I,

Xp - X, = A“xu (cf. 23.16).
But H + AUCbu is also an exte.nsionofHEandon )

d@H + AH
( :’\‘I’u)

a + (an e + AH
( )cI>u A(dq)u)

a + A (@ )

- Q"(XH) - A“szb(xﬂ)

- M
sz(xH+Axu)

I

Therefore the hamiltonian vector field corresponding to H + A]‘l@u is tangent to I.

23.18 EXAMPLE Take M = R° and let

Lig vt =3 w2 A - v v D) e cm).

Then k = 1 and

1 2.1 2

FL(q,q%, v, v9) 2

I

(ql,q ,vl + vz,vl + v2}

4
L= {(ql,qz,pl,pz) €R Py <Py = 0},

s0 3 one primary constraint, viz.
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1l 2
q>(q g rpl:pz) = Pl - pzt
thus

. 1 2
Qo = 1§ (dplndq + dp,adgT)

il

dplf\dql + dplAdqz .

Consequently, if

x=f~gE-+Alal+A232,
1 oq g
then
1 2 1 2
Ixﬂz=qu + fag© - (A +A)dp1.

'I'hereforeKeer isspamedbyg—l-—@—-z—. Noting that
aq e}

1 2 1 2 1, 2

consider the ecquation

Gy = = diy

= - pldpl - V! (ql + qz)dql -V (ql + qz)dqz.

Then a particular solution is

1 2, 3 d
Xo==-V'{g +q7) =—+p, —
z Py laql
and the general solution is
XE+F("3"“I—§_2')r
o o

where F is same C function.
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[Note: Since £ =k =1, I is first class (cf. 23.6). It is also clear that

HzcanbeexterﬂedtoanHwhosehamiltonianvector fieldXHis tangent to I.]

23.19 RAPPEL The Poisson bracket is the bilinear function

{, }CTrra x CT(T*M) > C (T*M)

defined by the rule

{fig} = X9 (= - ng) = 20X .
Properties:
1. {£,9} =- {g,f};
2. {f;f,.9} = {£,,9}, + £,{f,,g};
3. {f,9,9,} = {£,9;1g, + g;{£,9,};
4. {£,{g,h}} + {g,{h,£}} + {h,{f,9}} = 0;
X{f,g} = [Xf,Xé].

In canonical local coordinates,

i

_p (f dg___39.
{f,q9} (apigz-f E}qlap).

He

Therefore
{qquj} = 0, {Pirpj} = 0, {pi,qj} = Gi]'

[Note: Fix H € Cm(T*M) and consider any ¢” function F(ql,...,qn,pl,..-..,pn)

of the canonical local coordinates — then along an integral curve of pa



dF oF 1 JF

=L (—¢ + — P.)

dt i aql ‘api i
3 (BF oH BF. oH |

0
=
x
H
el

In particular:

{H,qi}, ﬁ)i = {H,pi}.]

23.20 EXAMPLE Suppose that

i, 8. == dH (xZeDl(Z)).

Iet H € CT(T*M) be any extension of H. — then 3 AY € C*(T*M) such that

pX

X H
H+ A
¢IJ

is tangent to ¢ (cf. 23.17). Accordingly on I, VvV constraint f

0=X £
H+ AMs
M

u
+ '
{H+ A r1>lJl £}

H,£} + {Au¢u,f}

i u
{H,£} + {A ,f}cbu + A {@u,f}

{H,£} + A”{@u,f}.
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Iet £ € ¢(T*M) — then £ is said to be first class (w.r.t. I) if Xf is

tangent to I.

23.21 REMARK In this terminology, one can restate 23.17: The eguation

IXEQE = - de

has a solution X iff 3 an extension H € c (T*M) of H, which is first class.

23.22 IEMMA A function £ € € (T*M) is first class iff
for all primary constraints <I>u.
PROCF If f is first class, then X. is tangent to I, so V u, xfcpu(z =0, i.e.,

(£, 3z = o.

To go the other way, take any constraint g and using 23.14, write

U
g=3Lgd.
po M
Then
Xg=I (X.g0 + % g"(X.0).
f £7 7 £y
it u
But
@ulz = 0 and Xffbu]E = 0.
Therefore

ng\Z = 0.
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B.g.: If f is a constraint, then 1‘:‘2 is first class. Proof: v j,

2 -
{£ ,@u} = 2f{f,¢u}

2
f ’ = 0.
{ @u}lz
N.B. I is first class iff each of the primary constraints (I)L1 ig first class

or still, iff v p',p":

{6 ,& }z=90 (cf. 23.16).
u‘. .uﬂ

23.23 EXAMPLE In the setup of 23.20, H is first class provided ¥ is first

class. 'Ibseethis,takef=®u -= then as there,
0

<o
[

u
r + r Z
{H @uo}iz Mey ¢u0}|

{H,¢uo}|2.

Finish by quoting 23.22.

23.24 REMARK It can be shown that a necessary and sufficient condition that
the hamiltonian vector field Xe € Dl(T*M) be the projection through the fiber

derivative FL of a vector field ;{f IS Dl-('IM} is that f be first class.

[Note: fThere is then a commtative diagram
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™ —— TN,
FL

udlere}_{fisuniqueuptoanelarentofKerm(=KerFL*). By means of a

careful analysis, matters can be arranged so that

I

R ((FL)*g) = (FL)*{f,g} (g € C (T*M))

X. X, 1 =X ,
1 E, {fl,fz}

the second point making sense since {fl'fz} is again first class (cf. 23.25).

Iet FZ be the set of functions £ € C (T*M) which are first class.

23.25 LEMMA FE is closed under the formation of the Poisson bracket.

PROOF Let fl'fZ € FE and fix y — then

1l

{fl,®u}|z 0

(cf. 23.22).
{ferD}iE =0

But this simply means that
{fl,éu}

{6500}
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are constraints, thus in view of 23.14
{fl,<I>u} =&

{f2,¢u} = by

vhere ®1,<I>2 are certain C  linear combinations of the primary constraints. Now

write

(18),£,3,8,}2 = {5, (65,8 3|2 - (£,,{£,,0 }}]3

If £ is not first class (=» k < £ (cf. 23.6)}, then it is possible to choose

the primary constraints @u in such a way that

®£ + l'o-.f(pn

are first class,

P

Y 4 opemer®p

then being termed second class primary constraints.

[Note: To arrange this, assume outright that the matrix
[{e .9}

has constant rank £ - k on an open subset U of T*M containing I and redefine the
data (building in 23.27 below).l
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23.26 EXAMPIE Take M = 34 and let

L(qquzrq3 rq4rv1rV2rV3fV4)

2 4
= @+ O+ gV + 3 (@ - 245 - D).
Then
thus k = 0. Since
oL 2 3 3L oL 4 3L
— =q t+qgq, = 0, =9 =0,
sv W s v

there are four primary constraints:

07 Py = d =@ 0 =Py 9=y -G 0, = by
We have
-0 1 1 0
-1 0 0 0
[{o,, 0} = :
-1 0 0 1
0 0 -1 0

S0 <I>l,®2,@3,€1>4 are secord class primary constraints. Next

£

s 1 2 3 4
T lg(dpll\dq + dpz"dq + dPSAdq + dp4"'\dq )

2 .1
dqg~Adq

+ dgondgt + agaag®,
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which is symplectic, hence I is second class. Here

3 4
e rpl!p3)

1 2
Holg 9 g
__1 22 1 2 _1 2
= ftq} +§(pl) 5(93)-
Indeed

1 2 3 4.1 2 3 4
Hy ¢ FL{q,q,9 .9,V ,Vv ,v ,V)

2,2

_ _ 1 3.2 1
= E(CI)

1 2 4 2
tx A +q) -5 @)

= -3 (@h? - 2% - @
= EL(ql:qzrq3:q4:V1:V2;V3;V4) .

AndthemiqueXEGDl(Z)suchthat

1, 2. =-dH
X 5
is
3 43 4 2
X =q §T+q 2“133'q E‘E‘
o g g e |

At this point, it will be necessary to adopt an index convention, say:

k+l=zabz=si
£+1<wvsn.
Then
T X =X ., = X
a ™ e T Ny

X =X r =X -
3} @u X’V <I>v
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Put

{cpk + l‘q)k + 1} {q}k + l'(pfi}

() =

{008, 1} +-n (0,0} |

23.27 LEMMA The matrix [Cab] is skewsymmetric and nonsingular on an open

subset U of T*M containing E.

[Note: Therefore the mmber of second class primary constraints is even.])

For simplicity, it will be assumed in what follows that U = T*M (which is

typically the case in practice) and we shall agree to write [Cab } for the inverse
of [Cab].
Suppose that
<Ker Qz' - dH£> = (.
Then for any extension H ¢ c”(r*M) of Hz,r
{H,(DV}IE =0 (v=£+1,...,n.

Given A® € C (T™M), let

X = {H,@a}cabxb - X+ Auxu.

23.28 LEMMA X is tangent to I.

PROOF The o, are first class, thus it is automatic that ﬂuq)u is tangent
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to I, so we need only consider

{H,cba}cabxb - X
. {H,d>a}CabXb(I>v|E - X0 |z
= {H,¢a}Cab{¢b,¢>v}|E - 0 )z
=0 (cf. 23.22).
o{H,? a}cabxbcba. - X0
= 0,170, - {H,0_,}
= {H0,,} = {He,,!

= 0.

Set
Xy = X|z.
Then the definitions imply that

Therefore Hy admits global dynamics.

23.29 REMARK In general, the equation

IXZQE = - dHE
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need not be solvable on all of I. This sets the stage for an implementation of

the constraint algorithm, the subject of the next §.

The foregoing theory can also be written in the time-dependent case. While

relevant and interesting, T am nevertheless going to amit the details.



§24. THE CONSTRAINT ALGORITHM

let MO be a connected ¢* manifold of dimension ngy- Fix a closed 2Z2-form

wg € AZMO of constant rank which is degenerate in the sense that

- 1 \ =
ig nontrivial.
[Note: The pair (Mo,mo) is a presymplectic manifold (cf. 15.20).]
let oy € A]‘MO be a closed 1-form. Consider the equation

_ 1
1X0w0 = a4 (XO ep (MU)) .

Then a solution, if there is one, is determined only up to an element of Ker Wy

[Note:
'lxou.'lo = OLO
=>
onmo = (IXO e d+dce lxo)wo
= dlxowo
= dao = 0.]

24.1 EXAMPLE To realize this setup, take
— My = i

“0 T "L

g = = By,




where L is a degenerate lagrangian per §22.

24.2 EXAMPLE To realize this setup, take

My = T
wy = Sy
_ ao"—dHZ,

where L is a degenerate lagrangian per §23.

Iet M c MO be a submanifold, i:M ~» MO the inclusion. Write

= M1 in place of U 04M; 1)
(cf. 813).

Dl(MO:M) in place of Dl (MO;M;J‘_)

Then there is a canonical pairing

M ;M) > C ().

1 My

D (M) x D

Ker (w, M) = ix, € Ul(MO;M) : (tuolM) Xy X) =0V XE ot ™M) 1.

Denote by (m0|M)b the map U7 (1) ~ D) (M ;M) which sends X to (w1 (%, .

24.3 IEMA The range of (w0|M)b consists of those o € Dl(MO;M) such that



<Ker(w0|M),0t> = 0.
PROOF The annihilator of
(wy? 0% o)
is comprised of those X, € U (M;M,) with the property that

<Xgs (g |M) (K, —1> = 0 v X € D' (M)
or still,

(0.10|M) (XgX) =0V XE Moy,

Ann((wolwb(vl(m)) = Ker (0, [M)

(mOIM)l’(Dl(M)) = Ann Ann((wolml’ml ()))

=PumKer(w0|M).

Consider again the eguation

Since wg is not surjective, the relation

<Ker wo,oz0> =0

need not be true, s0 let

Ml = {xo € M0:<Ker wo,a0> (xO) = 0}.



We assume that Ml is a submanifold. Put
w; = wylMy, o = oMy
and consider the equation

1, W, = r
;"1 %

b
where now Xl € D]‘(Ml) . If al-is in the range of Wy v the process stops.

let

M, = {xl € Mys<Ker wy 09> (%) = 0}
and continue on, generating thereby a chain of submanifolds

...M2+M1*MO.

If at the kth stage,

<Keruxk,ak>=0

on all oka, the procedure ends since by construction 1x, € D]'(Mk):
T =0,
%k %k

Mk is called the final constraint manifold.

Otherwise,

[Note: Conceivably, M could be empty or discrete, possibilities that we

shall simply ignore.]
On the final constraint submanifold Mk' we have

‘xk‘”k = %
for sane Xk € D]‘(Mk). I.e.:

(o M) (X —) = a5 [M,



this being an equality of elements of Dl(MO;Mk) . Let ]'kMk - My be the inclusion --

thenVXEDl(Mk):

(wy 1) (4. X) = (1Xk(i]°;w0)) (X)

and

(aole) () = (o) (X),
thus

1&(112%) = J'.]tao.

[Note: In general, the set of Xk for which
'l —
kak “%
is strictly contained in the set of Xk for which

txk (J'.’tmo) = i;‘:ao.]

24.4 REMARK If

2 € Dl(Mk) N Ker(wg M),

then, as a functional on Dl(MOSMk):

(wy M) (z,—) =0,



This failure of unigueness is called gauge freedom.]

24.5 EXAMPIE Let M, be the sutmanifold of T*I_t4 determined by the conditions
pl-q4=93=p4=0andtakeforw0 the pullback
4 i
o =
15 16 (_E dpi/\dq)
i=1
1 4 . 2
= dp,adq” + dq Adq",
iO:MO - T*I_{4 the inclusion -- then
rank wy = 4
andKeer is Spa:medbya—3 Letoc0=-dHO,where
oq

2
Hy =3 (o, -+ @D,

and consider the equation

. 1 2 3 4 . .
Using 9,9 .9 .9 /P as cocrdinates on MO' write
4 .
9 io
X, =f + I A —.
L !
Then
— 1, _ 1 .1
1X0 (dpyndg™) = £dq° - A'dp,
ty (dq4ndq2) = A4dq2 - Aqu4
0

—



= - Aldpl + faqt + A4dq2 - alaqt.

£
o
l

Oon the other hand,
dH

I

0= P - qz)dpl + (- Pl)dq2 + g

3

RestrictingthedatatoMl={q = 0} and conparing 1, w, with - dHy, we find that
0

Al=pl-q2,A2=0,A4=pl—q2,f=0, thus
2. 5 9 39
X.=Py ~q) (—+—3 +2a ’
0 T+ 3 =
1 b aq aq

A3be:i.ngundetermi.rm. NowchooseA3=0--then

2, .3 2
X =Py =g} (—x+ }
1 1 EJql ‘E'Z

is tangent to M;, so the algorithm terminates at this point.

Expanding on 23.29, if Hy does not admit global dynamics, then the resolution

is to set the constraint algorithm into motion:

23 Z', E. 2 Z“,... -

Here (cf. 24.2},



In more detail, one supposes that there is a solution valid on same sub-

manifold ' < I which is described by secondary constraints. Such a solution

need not be tangent to I'. One then has to pass to a sukmanifold " c £' where

the solution is tangent to %', I" being described by tertiary constraints. And

so forth... . For a physical system with reasonable dynamics this process
terminates at a submanifold EO < © described by certain constraints and on which

the equation

can be solved {but, of course, it need not be true that 'rrgfl(zo) = M},

To make matters precise, let us suppose that I' is a submanifold of I of
dimension (n + k) + (n-k'), wheren < k' <n + (n + k} (thus the codimension of
wr.t. Tis n+ k) - (n+k + (n-k") =k' - n and the codimension of &'
w.r.t. T*M is 2n - ((n + k) + (n - k")) = k' - k). In addition, we shall impose

a regularity condition, viz. that 3 X; € C (™) (t=n+1,...,k") such that

Z‘i

n

-1
Znn (Q)
TXT
with

L L]

[Note: The X, are called secondary constraints.]

24.6 REMARK Initially,
' = {g € L:<Ker s‘zz,dﬂz> (o) = 0}

and, by construction,



" = {o% € L':<Ker(Q:|2"), dH;[Z'>(c") = O}.

To say that there are no tertiary constraints amounts to saying that ' = 1",

, € DY)

thus the final constraint submanifold is I' itself. 8o, 3 XE

(Qzlz') Ky —) = - dHZIE-',

Elr

this being an equality of elements of 91(2;2'} . Put

— X3 1 - 1
& J.Z,Qz(lz,.z > TI).

EI

1, £

Xpy L = = diy,y,

where Hy, = Hzl):' (obgerve that dH

o = AT = d(ifHy) = i2,80).

24.7 EXAMPLE Take M = 32 and let

L(ql,qz,vl,vz) =% (Vl)z + % (ql) 2q2.
Then
-3 0~
WL} = '
_ 0 0 |
thus k = 1. Because
oL _ .1 8L
;’T" v, -a:?—— o,

there is one primary constraint, viz.

1 2
(e it | :plrpz) = }?2'
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so
T . =
L= {{g.q /Py Py} 1P, = 01,
and
~ 9 = ap 1
r = dpyrdg
1 2_1,122
_Hz—f(Pl) f(q)q.
Given
Xz=f%E-+Al-§—l+A2—?—2€DI(E),
1 3q g
we have
1, Qo =

1
X T ‘xz (dpy Ada )

faql - Aldpl.

]

Accordingly, Ker §i. is spanned by 9 - But
: a?

i2.1 1,122
dHZ=pldpl_qqdq _E(q)dqr

Lt {0 € Ti<Rex QE’dHZ>(U) = 0}

i

{(ql,qz.plrﬂ) =q1 = 0}.

Therefore I' is described by the secondary constraint

1 2 1
x{a ,g rplrpz) =4q.



11.

However A xz, € Dl(Z'):

(szglz-') (Xpyr —) = = aHp[Z'.

z!r
To proceed, it is necessary to impose the tertiary constraint P = 0. To confirm
this, let us determine £" which, by definition, is the set of ¢' € I':

<Ker($'zz|2'-),dH):|E'>(c") = 0.

Let
- X=F§p + al 81+A23—2-E Dl(z:z')
1 oq g
v-el +82 2 ot
_ P1 aq
Then
X € Ker(ﬂz|2')
iff v ¥,
ap g’ (%,¥) = 0
<=
1. _ 1
dp; (X}dg™(¥Y) —~dp, (V)dg™ (X) = 0
<=2
F-0-al=0
E s
al = o.
Since

de"E' = PldP '
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it follows that

9 29
=+ A —, pdp,> = Fp
Bpl .aq2 17*1 1

is zero for all F precisely at those ¢' at which Py = 0. Moreowver the dynamics
on " are trivial. TIndeed,

Y £ = 0 = dH,[5".
a/aqznz’ zl

[Note: Consider the constraints of the preceding example:

P, = 0 - primary
1

q = 0 —— secondary
pl=0---te_rtiary.

{pl,pz} =0, {pl,ql} =1, {pz,ql} = 0.]

APPENDIX

There are physically reasonable lagrangians that lead to constraints beyond
the tertiary level.

Thus let M = R® and put

L=3 (vH%+ DD -3 @dhH? + @ - 1.



13.

Since
— 1 0o o0
W) = 0o 1 o
o 0 0

has constant rank k = 2, it follows that dim £

nt+k=3+2=25, the primary

constraint being Py = 0. Therefore

_ 1 2
QE = dplAdq + dpzAdq .
So, if
3 .
3 3 i?d
X.=f +f, =+ I A -,
LUT10p 200, goy 0 ot
then

- 1 2 1 _ 2
e Op = £,89° + £,d9° - A'dp, - A"dp,.
Acoordjngly,KerQEissparmedbyg—-i. On the other hard,
3q
1,2 2 1 3 .12 2,2
Hp =3 Py +Py) +3q7 (@) + ()" - 1)
23

aH_ = pdp, + pdp, + gwdg’ + a’gag” + 3 (@h? + @d? - vag’.

Zf

{oc € Zi<Ker dHE>(0} = 0}

El’

{(qqu2:q3rpl;}?2) :(ql)2 + (q2)2 =1},

IL.e.: L' is described by the secondary constraint (ql)2 + («;12)2 = 1 and there

1 Q =—dHE'

XE
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where
1329 239 P

3
X, == qq 5—-99q 7=—*+p, —7+P, —5 -
T %, B, LT P22

2

But X. is not tangent to I' unless we impose the tertiary constraint plql +Pd = 0.

b

To see that this agrees with what is predicted by the theory, it is necessary

to consider ", the set of o' € &':

<Ker(QZ|Z'),dHE|Z'>(G') = 0.

et
Toxer v 2ot 3 Al _cola
1opp 7299 o ot ’
Y=Glg—+G2%——+—qZE—T+q1?—§EDl(E')-
_ P1 Py g 5q
Then
XEKer(QZ|E')
iff v ¥,

dp Aagh (X,Y) + dpyrda’ (X,Y) = 0

L=>

- e+l = ol v a2
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Gl and G2 being arbitrary. But

. 131, 23 2
GHy|2' = pydpy + PP, + 997dg” + g A,

¥ s
<X,dHZ|Z >=pF) + PF,
vanishes for all X € Ker(g |£") at those o':

PiFp * PoFp =0
subiect to
- q2F1 + quz = 0.
The condition
i

2
P9 + Py =0

allows only the trivial solution F,=F,= 0, thus the tertiary constraint is

1 2
Pd + Py = 0.

Recall now that

133 233 3 3 oLigegps
N apl sz laql 28q§

and put

> = X[z

Then Xé € Dl(E';Z") but X'E is not tangent to f", thus it will be necessary to
impoge yet another constraint. Consider

3 5 5 3
A +B2_+ci_+pl—e7T 1.
aqt s> Py Py O
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To figure out the conditions oa A,B,C,D which guarantee that this vector is in

TO'“E r let
1 2 1 2
f(q rq rPerZ) = qu + pzq -
Then
- of af
=P, s =P
qu 1 an 2
B _ L, _ 2
_ Bpl 8p2
=2
vE£-(A,B,C,D)
= pyA + P8 + q'C + gD,
Therefore
2 ] It} ]
A + B +C + D eT "
a [ 1]
Bql 3q2 Pl 3p2 o
iff

plA+ sz + qlC + qZD = 0.

In our cage:

13 23
Azpl:B':Pzr C=-gqg,D=-gq,

so the next constraint is
pi + p% -+ AP =0
or still,

P] +P, =4 -
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Additional computation shows that there are no other constraints.

the final constraint sulmanifold E

0
RN R
qul + P2q2 =
hence I, is two dimensional.
We have
T2 E'> i"o

with

X5 € Dl(Z:Z')

« I is described by

1

z

Qevﬁwmn.

S0, if X, = Xé|20, then by construction,

1
X, € D (ZO)

'I.XO(QZ[ZO) == dﬂzlzor

Therefore

this being an equality of elements of Dl(E;ZO) (or D]_(ZO) . provided the data is

pulled back to I).

The integral curves of XO depend on two parameters 6,w and are given by



18.

~ () = coslut + 0)
) = o,
2 .
_ g{t) =sinlut + 6)
- pl(t) = - w» sin{wt + 9)

pz(t) = cos{wt + 8).

N.B. In the situation at hand, there is no gauge freedom, i.e., XO is unique.

To see this, it suffices to note that the pullback of
dp]_/\dql + e:lpz.v\clq2

to Zo is nondegenerate. Thus define a map
£:10,2n[ x R + Zo

by the prescription

cos 6, q2=sin8, q3=w2

Q
1

[}

Py -wSinefpz‘—“mcose.
d(~ w sin 8)Ad cos & + d{w cos 8)ad sin §
= (- sin 8 dw - w cog O AR)A(- sin &)d®

+ (cos & dw — w sin & dd)a{cos 9)ds

(sinzﬂ + coszﬁ)dto/\dﬁ = dwndd.

Turning to the physical interpretation, the above lagrangian is that of a
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particle of unit mass moving on a circle of radius 1 in a two dimensional plane

spanned by q_l,q2 with q3 being the force necessary to make the particle stay on
the circle.



§25. FIRST CLASS SYSTEMS

et (M,) be a symplectic manifold of dimension 2n (M comnected).
Suppose that C < M is a closed connected submanifold. Assune: 3 fbp e CTM)

(pn=1,...,k (k < n)) such that

1

C=nN (cbu) (0}

M
with
o)
fag, =0

Ol'lc.

w, = i%Q (iC:C > M)

and impose the a priori hypothesis that the rank of W is constant, hence that the

pair (C,wc) is a presynmplectic manifold. Therefore Ker Y is integrable (cf. 15.20),

so there is a decomposition

Ci a generic leaf of the associated foliation.
Next, introduce
(o)t < ™|C.

Then € is said to be first class if

(TC)J' c T™.

N.B. Consecuently,

_ 1
Kerwc— (TC) .



In what follows, we shall take C first class.

let f € C (M) — then f is said to be a Dirac cbservable if Xe is tangent

to C.

[Note: As usual, X is the hamiltonian vector field attached to f.}

25.1 REMARK In the context of §23, the Dirac ohservables are precisely

the £ € C(T*M) which are first class (w.r.t. I).

25.2 LEMMA A function £ € € (M) is a Dirac observable iff v y,

{f,q:u}lc = 0.

[The argument used in 23.22 is clearly applicable here as well.)

In particular: Vv u',u",

|
=

{¢u.,®u“}|c =

i

{q).“l l¢u|1} = f]-l L “q)u!

[V

where

f“u.u.. eC (M  (cf. 23.14).

Fix a positive definite quadratic form K and let

_ 1 v
M=5K @ud?\).

C=M"(0).



[Note:

=L g u
W= KA )o, + K (do))

aM|C = 0.]
25.3 IFMMA v £ ec (M,
{£,M}|C = O.
PROOF In fact,
{fM}C = (x2) |C
= @M(X,) |C
= 0.

25.4 LEMMA Iet £ € C (M) — then f is a Dirac observable iff

{fr{frl‘iﬂ'}lc = 0.
PROOF We have

{£, {£,M}}

=1 MY

5 {EAEKe 0 1)
=1 Y
=3 EXE 001

=1 (Y
7 XU, e Yo, + {£,0 )0 )}



1 v
5K ({f,{f,éu}¢v} + {f,{f,év}Qu})

1 _uv :
7K ({f,{f,@u}}cbv + {f,cIv\)}{f,cbu}

+ (£, (£,0, 10, + {£,0 HE,0])

(£, (£} |C

_ Hv
= ({f,¢u}|C)K ({f,@v}IC}.

Therefore

{f,{fM}}c=0
iff

{£,9.}lc=0,....(E,0}c=0
or still,

{f:{f:i:é}}‘c =10

iff £ is a Dirac chservable (cf. 25.2).

Let H & C”(C) — then H is said to adnit global dynamics if 3 X € 7o)
IXHUJC = — dH.
25.5 LEMMA If H admits global dynamics, then H is constant on the C»

hence is a first integral for Ker 0o



PROOF SupposethatXistangentboCi, thus X € (T0)* and

XH

dH (X)

(X)

- IXHLIJC

- U-‘C (XHJX)

I

W (X,XH}

= 0.

In general, the quotient C/Ker W does not carry the structure of a C
manifold. However, let us assume that it does and that the projection

msC + C/Ker W

is a fibration.

N.B. Under these circumstances, one calls C/Ker W the reduced phase space

of the theory.
Write 6 for C/Ker We == then there is a 2-form w. on E: such that
C
., = T*w,_,
c C

To see this, letil,;{zbetm:ovectors tangentto;ieé. Choose a point x in
the leaf ¢y lying over X and let % /X, be two vectors tangent to x:

X = mX,

X2 = X

20



Set

0,1 (% Xp) = ], (% %)
Cx

25.6 IFMRA w. is welldefined,
C

PROOF We have to show that the definition is independent of the choice of

3 and the choice of Xl'XZ’ First, o is constant along a leaf: Vv Z € ('IC)'L,

Lywe = (ibed+de 1)w. = 0.

Second, if

- il = MYy

=,
then

- Y, =X +Z

_ Y2 = X2 + 22,
where Zl’Z2 (= ('I‘C)l. Therefore

wclx(Yl,Yz) = wC[x(xl + Zq.X, + 22}
= wclx(x'l(}(z) -

25.7 IEMMA w. is symplectic.
C



PROOF Supposethatforscxrei:

—_— 0

w~(i0,§) =0vX.
C
wCIX(XO,X) =0V X

Xy € Ker ‘*’c|x

~

o = Xy = 0.

The function H projects to a function ﬁ € Cw(é) (cf. 25.5). Furthermore,

there exists a unicue X_ € Dl(é):
H

X"ME: = - JdH.
H

And finally X is the projection of any Xt
H

1, W. = = dH.

XHC

25.8 EREMARK All Dirac observables project to 6



APPENDIX: KINEMATICS OF THE FREE RIGID BODY

To establish notation, let

T 80(3) = {A € GL(3,R):AA’ = I, det A =1}

s0(3) = {X € g£(3,R):X + X' = 0},

the "7" standing for transpose -- then s0(3) is the Lie algebra of S0(3).

A.l RAPPEL The arrow R° - so(3) that sends

X = (xl,xz,x3)
to
B o - x3 x2 -
X = x3 0 - xl
- x2 xl 0

is an isomorphism of the Lie algebra (133,><) with the Lie algebra (s0(3),[ , 1)s

x xy) =[xyl (xy€R).
It is equivariant in the sense that v A € S50(3),

ax) =aat (xeR).

[Note: Equip s0(3} with the metric derived fram the Killing form, thus



K(,Y) = -2 (X)) (XY € 003)).

Then the arrow X > X is an isametry:

<x,y> = k(&9 (xyE€ 133) .1

The tangent bundle TSO(3) admits two trivializations, viz.
AsTSO(3) » S0(3) % s0(3) (left)

ptTSO(3) + S0(3) x s0(3) {(right).

To explain this, view GL(3,R) as an open subset of §3X3

—— then the tangent space
of GL(3,R) at a given point is naturally isomorphic to g€(3,R). Since S0(3) is
contained in GL(3,R), it follows that the elements of T,50(3) are matrix pairs

(3,X). One then puts
ABR) = 3,8 %)

o(A,X) = AT,

[Note: To check, e.g., that A 1X € so(3), fix a curve t > A(t) such that
A(0) = A, A'(0) = X — then

A(t) 'A(t) = T

A AR + A0 TAR) =0



X'a+aA'Xx=0

@) "

@™’

=-Aa'X

-2l

N.B. The classical terminology is that

a71% is the body angular velocity per X

%L is the spatial angular velocity per X.

It is also traditional to write

~ 2 " body
for a generic angular velocity
- @ __ Spatial
at A, hence
-0 - 3‘23 92 -
- a= o o -got L (91,92,93)
I S
-0 - wz .
— o= w3 o - wl <—> (wl,wz,w3) .
- wz wl 0




Suppose that A:I » SO(3) is a curve —- then its 1lift to TSO(3) is given by

Write

are curves in 1_23.

A.2 EXAMPIE 1If

A(t)

n

2(t)

Qet) = (- B(t) sin ¢(E),

t - (A(L),AL).

QlE) = At) L)

at) = AmAm L.

t + QL)

t -+ wlt)

cos ¢(t) cos 6({t)
cos ¢{t) sin 0(t)

- sin ¢(t)

0
- 60t

- é(t) cos ¢(t)

sin ¢{t) cos 8(t) sin 6({t) ~
sin ¢(t) sin 6(t) - cos 8(t) |,
cos ¢(t) 0 _
o (k) a(t) cos ¢lt)
0 B(t) sin ¢(t) | ,
- 8(t) sin o (t) 0

8(t) cos ¢(£), - $LE)).



[Note: Analogously,

B 0 - 68(f) (t) cos 8(t)
wlt) = 6 (t) 0 $(t) sin 6(t)
= ¢() cos 8(t) - $(£) sin B(t)

w(t) = (- $(t) sin 6(t), ¢(t) cos 8(t), 6(t)).]

A rigid body is a pair (1), where E < R° is compact and p is a finite

[1}

Borel measure on 33 with spt u4 = One calls

WE = S5 au(®)

the mass of the body, its center of mass then being the point

1

{Note: EC is the unique point for which

J(E = Ean(E) = 0.]

A.3 EXAMPLE A particle of magss m is a special case of a rigid body. Thus

3

supposetheparticleissituatedatamintgoeg and take y = md

sptp={&_;0}arxithecenterofmassis

= m L -



The inertia operator of a rigid body (5,u) about a point x
linear map
I, ‘53 N _3
Q
defined by

Ixo(x} = J’E (€ = xg)x(x x (g = Xy )Au(g).

[Note: We have

(g - XO)X(X x (£ = xoi)

= IE - xo‘zx -<f - Xgr¥> (g - XO)-]

A.4 EXAMPLE Keeping to the setup of A.3,
Ixo(x) =mlgy = Xg)x(x x (£ = x4}).

Let (al.,r;t2

OEI_Z3isthe

,a%) be the components Of a = £, - X, — then the matrix of I_ is

0

@32+ (232 L2 L3
o _ a2a1 (a3)2 + (al)2 - aZa3
- a3a1 - a3a2 (él]')2 + (32)2

ard its eigenvalues are

' {m]a|2, m|a|2, 0}.




A.5 IEMA I is symmetric, i.e., V X,,X,,
— Xq 172

<Ix (xl) %> = <xl’Ix (x2)>
0 0
and positive semidefinite, i.e., Vv x,
<Ix0(x) X oz 0.

PROOF First write

<Ix0 (Xl) ,x2>

UL = )% (2 % (& - XO}),x2>du(€)
=S5 <% x (& = %), Xy X (€ = Xp) >du(E)

= [o < (£ = xgdx(x, x (£ = x5))>du(E)

It

Hpe IXO (xz) >,

Thentakexl=

Xy = X to get

<I {x),x>
%0

= f_ <x x (§ - KghsX X (L - x0)>d1.=(£)

2 0.

Therefore the eigenvalues of 1 are real and nonnegative.
0



A.6 IEMa If I, has a zero eigenvalue, then the other two eigenvalues
0

are equal.

[Note: Ix has a zero eigenvalue iff = is contained in a line through xo.]
0

A.7 IEMRA 1If I has two zerc eigenvalues, then = = {xo}.
0

A.8 REMARK If there is no line through x. that contains the support of yu,

0

then I, is an isomorphism.
0

Takexo—-'gca.tﬁwrltelcmplaceofl

=

A9 IEMA vxER,

it

I.60 = S5 £ % (x x ©)du(E)

B (, x & x £

Inthecaseofaparticlegoofrrassm, u=m§. , hence

&0

IC(x) m(ao x (x % EO)) - m(Eo x (x x E;O))

A.10 REMARK Given x defineryx0=£c+C-—then

0!’



IXO(X) =I.00 + uEC X x x Q).

Cl

Io(x) fE £ x{x x E)du(g)

il

IC(X) + u(E) (- &

Cx(xx-—

£

or still,
Io(x) = J5 &> (x x E)du(E)
- nE g, x (x x EC)):
in agreement with A.9.
[Note: Bear in mind that

[glE = EJAN(E) = 0.]

lLet us now consider the description of the free rotation of an isolated
rigid body (5,1 about a fixed point, which we take to be the origin in R, and,

to minimize trivialities, we shall assume that I, is positive definite.

0
Define a lagrangian

LO:T§9_(3) + R

1
LO(A,X) =5 <IOQ,Q>.

[Note: Recall that Q depends on (A,X) via the prescription

alx = ﬁ.]
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Explicated,
Lao,m =20 <€ x (@x 8,00
2 0 2=
=1/ taxelfan@
or still,
%— <IOQ,Q> = % <ICQ,Q>

1 .-
+ f“(-—-)‘(Q % EC'Q x £C>'

N.B. S0(3) operates to the left on TSO(3) and relative to this action, L,

ig invariant.
A.1l REMARK Define an imner product <,>, on 133 by

<xfy>0 = IE <X X F::Y X €>dll(g)-

Transfer it to so(3), viewed as the tangent space tO the identity of 80(3), thence
by left translation to the tangent space at an arbitrary point of 80(3). Call

9 the left invariant riemannian structure resulting thereby — then its "kinetic
energy” is I"O' i.e., in the motation of 8.4,

_1
Ly = 2 9%
Consecuently, L0 is nondegenerate.

[Note: The metric connection Vo associated with 9o is left invariant, thus,
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on general grounds, induces a bilinear map

s0(3} x 80(3) + so(3)

or still, a bllz.near map

(%,¥) -*%(XXY) +%Ial (x X Iy +yxIp.]

A.12 LEMMA We have

372 + (3?2 - gte?
I, =/ - &% &2+ &h?
- 3! - 32

s

- g%

&hH? + 532

au(g).

A.13 EXAMPLE Take for £ a ball of radius R centered at the origin and

suppose that y has a spherically symuetric density:

T 0 0
10= 0 I 0 ’
I I T
where
31 = 2/ o(le]) 1212

Swfg p{xr) r4dr.

au(g) = p{|E[)dE — then
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Therefore

€

il

I= T fg p(r)r4dr.

If the mass distribution is actually homogeneous, i.e.,

then I= —g—mRz, hence the inner product <,>. arising from the choices m = %,

R=1istheusua1j.merproducton33.

I

A.14 EXAMPLE Take for £ a cone with vertex at the origin and of height h
above the E]'Ez-plane (53 = _h(%) (0 <r <R)). Assume that the mass distribution

is hamogeneous, thus p = 31n/1rR2h and the center of mass is at (0,0,%—1}-).

Here, the

off diagonal entries in A.12 are obviously zero, so

Il 0 0
IO = 0 i, 0
0 0 I,

and by an elementary calculation, one finds that

2
_ R 2
12 = (3/5)1’&('&"" + h")

-
i

-
it

(3/10)mR>.

Using A.9, one can then compute the matrix representing Ior which is necessarily
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diagonal:
- J\l 0 0
IC = ] )\2 0 .
B 0 0 )L3 _
In the formila
g X (x X &)

successively insert
x = (1,0,0), (0,1,0), (0;0;1).

Then it follows that

_ 2
=T -2 2, b,
A =1 ~mEh% = 320mE +
3h, 2 2 K
_ X, = I, - m(z—) = (3/20)m{(R" + R
and
B 2
Ay = I3+ (3/10)mR".

Determine T, € D (TSO(3)) per 8.12.

A.15 THEOREM Let

Y(£) = @A®),AR)
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be a curve in TSQ(3}). Put

2 = am) tacw).

Then y(t} is an integral curve of I‘L iff (t) satisfies Fuler's equations, i.e.,
0

iff

Ioﬂ(t) = Ioﬁ(t) x Qt).

A.16 REMARK The projection Ta0(3) :PSO(3) + SO(3) of the integral curves

of I'L are the geodesics of (-@(3),90) (cf. 10.6) and these are what the motion
0

should follow. Define now the Buler vector field I':R> + R by

ToE = I (IE X £) (5 € B).

Then a curve t ~ £(t) is an integral curve of I‘Oiff

E(8) = (Tg)p y)

or still, iff

I () = T E(E) x E(6).

One can thus view A.15 as providing an alternative description of the motion,

which turns out to be more amenable to explicit computation.

Define a function

M:80(3) + 133

IAX) = AIOQ.
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[Note: 1 is called the angular momentum of the system.]

A.17 IEMMA 1T is constant on the trajectories y of I‘L .
0

PROOF Consider the restriction of M to such a y:
t > AT Q).
A0
= A(D) T QL) + A(D TR
- Act)xomt) + A(D) (TR0 x Qb))
= ADAD IR + AR (T0(E) x )

= A) () x T,Q(t)) + At) (T () x QL))

=0’

[Note: Therefore the coamponents of T are first integrals for I‘L (ef. 1.1).
0

Another first integral for I 1is E {cf. 8.10):
Lo 0

ELO(Y(t)) =1, (v (t))

_1
=5 <IOQ(t).9.(t)>

o7

1l
aE -2- {Ioﬂ(t) :Q(t) >
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@ -2 -3c21 - +20°

= (L-x-¢)1 -2+ 20) =0,

the solutions to which are
I ..'—‘.--']4-;lr I = = I. =

An unnormalized eigenvector per I. is (1,1,1), hence lies along the diagonal of

1
the cube. On the other hand, eigenvectors per I, =1, constitute a subspace of
dimension 2 perpendicular to the diagonal.

[Note: Fram the definitions,

_ 4L £ ¢
E;C”(fr‘i'rf)-

Claim: The eigenvalues of IC are

2
mé
=)

{mﬁzm?_z
e &

In fact, thanks to A.9,

(6 = TplEe) — miEy * (£ x )

2
mf
< e

Now let A € {EC}'L -— then

Eo x (A % EQ)
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Bt = Gt

So, applying A.9 once again,

Il

2
I-(4) = I,(A) = (3/4)me™A

(11/12)me3A - (3/4)me3A

2.
mé
"_6_' hc]

Put

. _ 2 2 2

2 2

2 2
1%

i 2.2
L = I70) + 1505 + 1303.

Then 2B and L are first integrals for I‘0 (cf. A.18).

Turning t0 the solutions of the Euler equations, we shall consider three
cases.

Case 1: I, =1

Il
ot

Case 2: I, =1

Case 3: 11<IZ<I3'



20.

The first case is trivial: 3 constants Cl'CZ'C

9 =Cyr 2 =Cyr 3 =C5.

As for the second case, we have

T Lo - (I - I

It
o

1192 - (13 - Il) 9391 =0

and
533 = 0.
So 93 = C3 and matters reduce to
- ﬂl - CQZ =0
522 +Coy =0,
where
o =(I:L - I3)C3 .
L
Eliminating DN gives
o + oy = 0,

the general solution to which is

R

for certain constants K and

Q

2

Ta

K sin(Ct + 1)

And then

K cos(Ct + 1).

3

such that
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N.B. Here
- 2 2 2
- I.C 12
2 1
=I.K +1T
1 3 _Il—IB__
I. I
=I1(K2+ 13 Cz)
(11-13)
and, analogously,
2
I
L=12(K2+ 3 Cz).
1 (1. - 1,)°
1 3
Therefore
2 1
K =—(__"T(L"'21 E)
IlIl I3 3
while
I, -1I
C.'2 = -'-li'—“——;- (2IlE - L).
I.T
13

The third case is more camplicated but doable, the details being a bit messy.
Suffice it to say that explicit solutions can be given in terms of the Jacobi
elliptic functions sn, cn, dn.

[Note: In 33, consider the differential egquations

X =yz
Yy = - xz

z=-k%y (0<k<l).
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Then the triple

t » (sn{t;k}, on(t:k), dn(t;k}))

is the solution to this system subject o the initial condition (0,1,1) (if k = 0,
then sn(t;0) = sin t, cn(t;0) = cos t, dAn(t;0) = 1). To see where this is going,
put
- -1 1 -1
1 =l 1

e B L Bl L Bl

and rewrite the Buler egquations as

W == (e, - cyluyug

uy = {c] - czluyu,

o
L
H

= = o) = eylupuy,

the point of departure... .]

The motion of (2,u) is a geodesic w.r.t. the left invariant riemannian

structure g,. To exploit A.15, fix Aj € S0(3), X; € TAO_SQ_G}. Translate X,

to 50(3) and then to 33 to get QO‘ Iet Q2(t) be the solution of the Euler

equations subject to the initial condition Q,. Pass to Q(t) — then

AE) = A)QL)

is a system of linear differential equations with time deperndent coefficients,
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the so—called reconstruction equation. Solve it for A(t), subject to A(0) = AO'

thus
A(0) = A(0)2,
= &, (A7)
= XO'
armd so
v{t) = (A(D),AL)

is an integral curve of I'L passing through (AO,XO) at t = 0.
0

N.B. This is what happens in principle. What happens in practice is, however,
a different matter, at least if one wants to be completely explicit. Case 3 is

particularly vexsome but Case 1 is simple. For then {I{t} is constant in time:

Qit) = QO v £, hence the solution is

=)
Alt) = Aoe .

A.20 REPPFL Let {e,,e,,e,} be the standard basis for 53 — then {e;,e,,e,}

3
is the standard basis for s0(3).

The manifold S0(3) can be equipped with a number of charts, all derived from
the notion of "Buler angle”, but the subject is potentially confusing due to the

variety of choices that can be made.
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Given ¢,9,), put

c¢=oos¢ c8=cosa clp=cosw
_s¢=sin¢ _se=sin8 _sw=sinw.
Then
1 0 0 -
exp(d)el) = 0 Sy - Sd) ,
B 0 s¢ c¢ _
ce 0 SB
exp(egz) = 0 1 0 .
_ - s\9 0 Cq _
ctp - S‘b 0
_ 0 0 1

A.21 IEMMA The map
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that sends (Y,6,¢) to

A(y,8,0) = e:cp(we3)eacp(ee2)e::p(¢el)
is one-to-one and its image U321 is open.
[Note: The inverse
U32].+] —’IT,TI'[ ><] -Ir'r‘g[xl'"ﬁrﬁ[

can be computed in terms of atan(x,y), the 2-arqument arctangent function.]

Therefore this data defines a chart on S0(3) with local coordinates v,8,¢.
[Note: Local coordinates on TSO(3) will be denoted by 4,6,¢, vw,ve,v¢.]

Given A € Ussy» the entries of the associated triple (y,9,¢) are called its

3=-2-1 Euler angles.

N.B. All told, there are 12 possible rotation sequences, namely:

1~-2-1 2~-1-2 3~-1-3
1-3-~-1 2-3-2 3-2-3
1-2-3 2-3-1 3-1-2
1-3-2 2-1-3 3=-2-1.

A.22 REMARK In the engineering literature, the 3-2-1 rotation sequence

is referred to as yaw-pitch-roll.

The 3-1-3 convention is also a popular choice:
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T A <> ($,0,9)

A = explge,) exp(8e)) exp(ve,)

where

Q< ¢ <2, 0<B <7, Q0 <y < 27,

Consider a curve t - A(t) and pass to Q(t) = A(t) Ja(e). Put
T A = eptley)

a, = exp(e(te))

A, = exp(p(tle,).

"
Then
. -1a
Q(t) = (A¢A9A¢) It (AQJAGAlfJ)
_el-l-10d
= By Ay By (blgg By)BeRy

PO | ¥ d
+ 9A¢(E AG)AIb + ¢1A¢Ae (@ All’))

_tl-l-ld L
= 6By Ry Ry (G5 BBy

~a—l,—-1 .4 =1.d
+ BAw Ae (EB-AB)A]D + wA‘JJ (H‘FAIP)'

A.23 ILEMA We have
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c}bs:i.nesinw+écosw

a{t) = c};sinecosw-ésintp

é:cose+tL .

A.24 EXMMPIE Take for T a uniform ball of mass m and radius R centered

at the origin, hence I = %—mRz (cf. A.13). Iocally, in the 3-1-3 system,
Ly (6,0,4)

=%I((v¢ sin 8 SinllJ+Ve Cos llJ)Z

. . 2 2
+(v¢smecosw-vesmlp) +(v¢cose+vw))
or still,
_1_.2 2 2
L0(¢,9,lp) =3 I(v¢ + vy + Vq; + 2%{{1;«{[J cos 0).
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