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Sketches:
Outline with References∗

Charles Wells

8 December 1993

1 Introduction

1.1 Purpose

This document is an outline of the theory of
sketches with pointers to the literature. An
extensive bibliography is given. Some cover-
age is given to related areas such as algebraic
theories, categorial model theory and catego-
rial logic as well. An appendix beginning on
page 14 provides definitions of some of the
less standard terms used in the paper, but the
reader is expected to be familiar with the basic
ideas of category theory. A rough machine gen-
erated index begins on page 27.

I would have liked to explain the main ideas
of all the papers referred to herein, but I am
not familiar enough with some of them to do
that. It seemed more useful to be inclusive,
even if many papers were mentioned without
comment. One consequence of this is that the
discussions in this document often go into more
detail about the papers published in North
America than about those published elsewhere.

The DVI file for this article is available by
anonymous FTP from ftp.cwru.edu in the

directory math/wells. The BibTEX source for
the bibliography is in a file in the same direc-
tory called sketch.bib.

1.1.1 Addendum 8 December 1993
This version of this document contains a num-
ber of additions and corrections pointed out by
M. Barr, C. Lair and P. Agéron and some I dis-
covered myself. I do not intend to produce fur-
ther revisions of this document. I understand
that another, much more extensive document
concerning sketches is in preparation, and I
expect that the forthcoming text by Adámek
and Rosičky[1994] will have a useful guide to
the literature on categorical logic.

I will post any corrections anyone sends me
in a file available by FTP in the directory men-
tioned above.

1.2 Terminology

This outline uses the terminology for sketches
given in [Barr and Wells, 1990], Chapters 4, 7,
9 and 10. It is quite different from the usage
of the French school beginning with Charles

∗Copyright c©1998 by Charles Wells. This document may be freely redistributed or quoted from for
noncommercial purposes, provided it is not changed.
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Ehresmann [1968b], the inventor of sketches.
The French usage is explained wherever there

is a difference, but the terminology from [Barr
and Wells, 1990] is the one used in discussions.

2 Sketches

In this section, sketches in the standard sense
are defined. Generalizations are discussed in
Section 9. An excellent short outline of sketch
theory using North American terminology may
be found in [Makkai and Paré, 1990], Chap-
ter 3. More details are in [Barr and Wells,
1985] and [Barr and Wells, 1990]. The best
source for the French version is by Coppey and
Lair [1984], [1988].

2.1 Sketches

2.1.1 Definition

A sketch S consists of a graph GS, a set DS of
diagrams in GS, a set LS of cones in GS and a
set CS of cocones in GS.

Graphs, cones, cocones and other tech-
nical terms are defined in the Appendix,
page 14. The phrase “distinguished diagram
of S” means a diagram in DS, and analogously
for cones and cocones.

2.1.2 Variations in terminology
The French replace the sets GS and DS with a
compositive graph MS. The cones and cocones
must be commutative cones and cocones in
MS. These approaches are clearly equivalent.

Some North American variations: Barr and
Wells [1985] add a function that specifies which
arrows must become identities in a model.
This was abandoned in [Barr and Wells, 1990]
because one can force an arrow u to be an iden-
tity by including the diagram

R
u

•

Makkai and Paré [1990] use “commutativity
conditions” — pairs of paths in the graph with
common source and target — instead of dia-
grams.

Many authors take the compositive graph
to be simply a category. This is in fact not a
restriction (Section 5).

2.2 Morphisms of sketches

If S and S′ are sketches, a graph homomorph-
ism f :GS −→ GS′ is a morphism of sketches
if it takes each diagram of S to a diagram of
S′, each cone of S to a cone of S′, and each
cocone of S to a cocone of S′. This produces
the category Sk of sketches.

Each small category C has an underlying
sketch whose graph is the underlying graph
of C, whose diagrams are all the commutative
diagrams in C, whose cones are all the limit
cones in C and whose cocones are all the limit
cocones in C.

2.3 Models of sketches

Let S be a sketch and C a category. M :S −→ C
is a model of S in C if M is a sketch morphism
from S to the underlying sketch of C. If M and
M ′ are two models of S in C, µ : M −→ M ′ is a
homomorphism of models if µ is a natural
transformation from M to M ′.

This produces a category of models of
the sketch S in C, using vertical composition
of natural transformations as the composition.
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This category is denoted ModC(S). The cat-
egory of models of S in the category of sets
is denoted Mod(S), and normally the phrase
“model of S” without qualification means a
model in the category of sets.

A model of a sketch in the category of
sets associates a set with each node of the
graph of the sketch, so that the nodes of the
graph specify the sorts of the structure. The
arrows correspond to mappings between sets
that are values of the sorts, so they specify
the operations of the structure. The cones
and cocones formally specify constructed sorts.
For example, a discrete cone whose diagram
has n nodes specifies a set of n-tuples, with the
ith entry drawn from the value of the ith node
in the diagram. General limit diagrams spec-
ify equationally defined subsorts, and colimit
diagrams specify quotient structures (coequal-
izers), free products (coproducts), and amal-
gamated products (pushouts).

2.4 Remarks

Sketches were invented by Ehresmann to pro-
vide a mathematical way to specify a species

of mathematical structure. For example, there
is a sketch for groups; its models “are” groups
and the homomorphisms between its models
are exactly the group homomorphisms. There
is a clear analogy with the way a path in a
topological space is defined as a continuous
map from a closed interval to the space. (And a
loop is a map from the unit circle, and so on.)
Of course, the traditional techniques of first
order logic provide another way of specifying
structures, and so does the method of signa-
tures and equations used in universal algebra.
More about this in Section 6.

Sketches show their superiority (in my
opinion) particularly when you want to deal
with multisorted structures, and when you
want to deal with models in categories other
than sets.

There is a second point of view concerning
sketches, that a sketch is a presentation of a
category in the usual sense of “presentation”.
This is discussed in Section 5.

3 Kinds of sketches

3.1 A listing of types

By restricting the kinds of cones and cocones
that occur, we obtain a hierarchy of types of
sketches. I list them from the most primitive
to the most complex (the listing is not quite a
total order).

3.1.1 A trivial sketch consists of a graph
only, with no diagrams, cones or cocones. For
example, the category of sets and functions is
the category of models of the trivial sketch with

one node and no arrows, and the category of
graphs is equivalent to the category of models
of the trivial sketch whose graph is

g1 g0
-source
-

target

3.1.2 A linear or elementary sketch
(the latter is the French name) may have dia-
grams, but has no cones or cocones. The cat-
egory of reflexive graphs is given by such a
sketch [Barr and Wells, 1990], [Coppey and
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Lair, 1988], Leçon 6. Models of linear sketches
are algebraic structures whose operations are
all unary.

3.1.3 A linear sketch with constants
has no cocones and cones only over the empty
diagram. Thus they allow one to specify unary
operations and also specific elements (nullary
operations) in a model. See [Barr and Wells,
1990], Section 4.7.

3.1.4 A finite product sketch, or FP
sketch, has no cocones and all the cones are
based on finite discrete diagrams. These corre-
spond in expressive power to (multisorted, in
general) universal algebras given by (finite) sig-
natures and equations, so their models include
well known algebraic structures such as semi-
groups, groups and rings. They do not include
fields. See 6.2.1 below.

3.1.5 A finite discrete sketch has only
discrete cones and cocones. It is usually
required that the models of a finite discrete
sketch (and a finite sum sketch – see 3.1.7)
be in a category with finite disjoint sums
(see [Barr and Wells, 1990], page 219, or any
book on topos theory). This is discussed in in
Section 5.3. The category of fields is the cate-
gory of models of a finite discrete sketch.

3.1.6 A finite limit or FL sketch has no
cocones and all the cones are based on finite
diagrams. These correspond up to equivalence
to essentially algebraic structures as defined
by Freyd [1972]. See the discussion by Makkai
and Paré [1990], page 2 (bottom). Finite limit
sketches can sketch all structures expressible
by Horn theories, and more [Barr, 1989]. Finite
limit sketches are called “left exact” sketches
in [Barr and Wells, 1985]. Cartmell [1986]
provides a different (and illuminating) point
of view concerning finite limit sketches, and
Reichel [1987] develops an equivalent method-

ology in the style of universal algebra.

3.1.7 A finite sum sketch or FS sketch
has finite cones and finite discrete cocones.

3.1.8 A projective sketch has any kind
of cone but no cocones.

3.1.9 A regular sketch has any kind of
cone, and cocones that allow one to require an
arrow to be an epimorphism in a model. In
the literature, models are generally required to
be in regular categories (why this is done is
discussed in Section 5.3). Note: The French
school uses the phrase “regular sketch” for a
sketch in which no node is the vertex of more
than one cone.

3.1.10 A coherent sketch has finite
cones and finite cocones that are either discrete
or “regular epi specifications” (see [Makkai and
Paré, 1990], page 42). The definition in terms
of sieves in [Barr and Wells, 1985], page 294,
is equivalent.

3.1.11 A geometric sketch has finite
cones and arbitrary cocones. The arbitrary
cocones can be replaced by arbitrary discrete
cocones and arbitrary sieves, since sieves can
be expressed in terms of coequalizers of paral-
lel sets of arrows and those and sums generate
all colimits. See 5.3 and 7.

3.1.12 A mixed sketch is the French
name for any sketch.

3.2 Notation for the French School

The main focus of Ehresmann, Guitart, Lair,
Coppey and others of the French school has
been on properties of projective sketches and
mixed sketches. In their modern papers, they
use a systematic notation: //S// denotes a
mixed sketch. Its underlying projective sketch
is /S/, its underlying compositive graph is S,
and its underlying oriented graph is S.
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4 Examples and applications of sketches

4.1 Algebraic structures

Many examples of sketches of algebraic struc-
tures (groups, rings, fields, M -sets, . . . ) are
given by Coppey and Lair [1988], Leçon 6.
Some algebraic structures are sketched by Barr
and Wells [1985] and [1990].

There are two ways of thinking of algebraic
structures. I will illustrate them using semi-
groups as an example.

1. A semigroup is a set S together with a
function that takes each ordered pair of
elements of S to an element of S, such
that . . . .

2. A semigroup consists of a function m :
S × S −→ S such that . . . .

Many mathematicians would say these are
exactly the same, since S × S is the set of
ordered pairs of elements of S. To a categorist,
S ×S is the product of S with itself, so its ele-
ments can be represented as ordered pairs of
elements of S, but in fact S × S is determined
only by what you specify its first and second
coordinate functions to be together with the
universal property of products. For this rea-
son, the category of models of a sketch for semi-
groups is equivalent but not isomorphic to the
category of semigroups in sense (1) above. This
is discussed in more detail in [Barr and Wells,
1990], pages 170–172.

4.2 Sketches for categories

The sketch for categories is given in detail
in [Barr and Wells, 1990], Section 9.1.4 and
in [Coppey and Lair, 1988], page 64. This
was first done by Ehresmann [1966], [1968a]
and [1968b]

Many types of categories with extra struc-
ture are essentially algebraic and can be

sketched by an FL sketch (finite limit cones
only). These include categories with various
types of canonically-chosen limits and colim-
its, cartesian closed categories, toposes, and
others. Constructions of this kind are given in
[Lair, 1970], [Burroni, 1970a], [Burroni, 1970b],
[Conduche, 1973], [Lair, 1975a], [Lair, 1977b],
[Lair, 1979], [Burroni, 1981], [McDonald and
Stone, 1984], [Barr and Wells, 1985], [Even
and Agéron, 1987], [Coppey and Lair, 1985],
[Coppey and Lair, 1988], and [Wells, 1990]. I
have not seen many of these papers and so will
not try to summarize their contents and rela-
tionships. A general framework for sketching
structured categories is given by Lair [1987b],
and a very different one with many examples
by Makkai [1993a].

Barr and Wells [1992] indicate how to use
regular sketches to sketch categories with lim-
its and functors that preserve them but not
necessarily on the nose.

A sketch for 2-categories is given in [Power
and Wells, 1992]. I have been informed that
sketches for 2-categories and double categories
can be constructed using the monoidal closed
structure on the category of sketches given
in [Lair, 1975b].

4.3 Sketching sketches

Sketches and the morphisms between them
can themselves be sketched using FL sketches.
These are are discussed in [Burroni, 1970a],
[Lair, 1974], [Coppey and Lair, 1984], Leçon 4
and in [Lair, 1987a].

4.4 Sketches in computer science

Gray [1989] describes a systematic and general
approach to algebraic semantics using sketches.
See also [Gray, 1987] and [Gray, 1990]. Duval
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and Reynaud [1994a], [1994b] introduce a
systematic methodology for computing using
sketches. In particular, they use finite sum
sketches to compute in fields of arbitrary char-
acteristic. See also [Duval and Sénéchaud,
1994]. Sketches and context-free grammars
are discussed in [Wells and Barr, 1988] and
(without actually mentioning sketches) [Wal-
ters, 1988] Examples of mathematical struc-
tures used in computer science also occur in
the following papers, not all of which actually
use sketches although they easily could have. I
have not seen some of these papers. [Guitart,
1986], [Guitart, 1988], [Wells and Barr, 1988],
[Lellahi, 1989], [MacDonald and Stone, 1990],
[Cockett, 1990], [Gray, 1991a] and [Barr and
Wells, 1990], Chapters 7, 9 and 10.

There is a large literature concerning alge-

braic specification of data structures and com-
puter languages. Most of the constructions
in that literature can be translated directly
into the construction of finite product sketches.
Ehrig and Mahr [1985] is a fundamental text
in the field. Also, the book by Reichel [1987]
develops an alternative formulation of finite
limit theories, with many examples drawn from
computer science. Other surveys and basic
papers are [Goguen et al., 1978], [Dybjer,
1986], [Manes and Arbib, 1986], [Wagner et
al., 1985] and [Goguen, 1990]. [Barr and Wells,
1990] has an extensive list of references in this
area, updated in [Barr and Wells, 1993b].

Permvall [1991] provides a large bibliogra-
phy of literature concerning sketches in com-
puter science. They are not all included in this
summary.

5 The Theory of a sketch

5.1 Doctrines

Let E be a type of sketch, determined by what
sorts of cones and cocones are allowed in the
sketch. Thus E could be any of the types listed
in Section 3, and many others. Correspond-
ing to each type E there is a type of category,
required to have all limits, respectively colim-
its, of the type of cones, respectively cocones,
allowed by E. Likewise, there is a type of func-
tor, required to preserve that type of limits or
colimits.

For example, corresponding to finite prod-
uct sketches are categories that have all
finite products and functors that preserve
finite products. Corresponding to projective

sketches are categories with all small limits and
functors that preserve small limits. Given a
type E, we will refer to E-sketches, E-categories
and E-functors. Following Lawvere, we will
refer to E as a doctrine.1

5.2 The categorial theory of a sketch

Using the preceding notation, for any doctrine
E, every E-sketch S has an E-theory, which is
an E-category ThE(S) together with a sketch
morphism HM : S −→ ThE(S) with the fol-
lowing property: For every E-category C and
every model M : S −→ C there is an E-functor
ThE(M) : ThE(S) −→ C, unique up to natural

1A doctrine can be a type of category requiring other structure besides limits and colimits – precisely, any
type of category definable essentially algebraically over the category of categories.
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isomorphism, for which

S ThE(S)-HM

M

@
@

@
@@R

C
?

ThE(M)

(1)

commutes. This determines ThE(S) up to
equivalence of categories. The morphism HM

is a model of S in ThE(S) called the generic
E-model of S.

As a consequence of the definition,
HM induces a natural equivalence between
ModC(S) and the category of E-functors from
ThE(S) to C; the equivalence takes a model M
to the functor ThE(M) shown in Diagram 1.

An analogous construction holds for E cat-
egories with designated E-limits and functors
that preserve them on the nose; then the corre-
sponding theory functor is a left adjoint to the
underlying functor and the underlying functor
is monadic [Agéron, 1991]. It is useful to call
the theory in this sense the strict theory and
the theory in the sense of the preceding para-
graph the loose theory (following the French
usage).

5.3 Construction of theories of sketches

The strict theory was first constructed
in [Ehresmann, 1968b] and the loose theory
(they called it the type) in citebastehres. Barr
and Wells [1985] give a proof using the Yoneda
Lemma that FL sketches generate FL theo-
ries. Another embedding construction pro-
duces the theory for many types of sketches
with cocones[Barr and Wells, 1985], Chapter 8.
In both cases, one gets an E-embedding of
the theory in a topos for free. This topos is

called the classifying topos2 of the sketch,
and explains why geometric sketches have been
studied specially among all sketches, and why,
in much of the literature, sketches with cocones
are required to have models in categories hav-
ing some of the properties of toposes (for exam-
ple, disjoint sums).

The unadorned phrase “generic model of S”
usually refers to the model of S in its classifying
topos.

Other constructions for special kinds of
sketches are given in [Peake and Peters, 1972],
[Kelly, 1982b] and [Barr and Wells, 1993a].
The last paper is based on a direct (not induc-
tive and not by embedding) construction of the
free category with limits generated by a cate-
gory.

The (strict) E-theory of a sketch (for arbi-
trary E) is the initial algebra for the finite limit
sketch of E-categories with constants added
describing the sketch [Wells, 1990].

5.3.1 Note concerning toposes A
topos is a category in which roughly speak-
ing one can pretend the objects are sets and
the arrows are functions, except that one must
restrict the rules of inference in one’s rea-
soning. Intuitionistic or constructive reason-
ing, defined precisely, is always appropriate
in a topos. You may be able to use more
powerful tools in particular toposes, such as
the law of the excluded middle (in a Boolean
topos) or the existence of only two truth val-
ues. Topos theory and its logic is expounded
in [Johnstone, 1977], [Barr and Wells, 1985],
[Mac Lane and Moerdijk, 1992], and [McLarty,
1992], among others. A brief but illuminating
discussion of toposes is given in the review of

2If you know some topology, you will eventually notice that the arrow HM goes backward compared to the
corresponding arrow for classifying spaces, so that the name “classifying topos” seems to be a false analogy.
This is because in this case HM is the left adjoint of a geometric morphism that does indeed go from the the
category C in which the models live to the classifying topos.
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[Bell, 1988] by McLarty [1990]. Another useful
discussion is given by Phoa [1993].

The word “topos” has two meanings. The
first is the meaning originally given it by
Grothendieck — a category of sheaves over a
site. The second is a structure determined by

axioms due to Lawvere and Tierney that they
called an “elementary topos”. Every Grothen-
dieck topos is an elementary topos, but not
conversely. I am using the word topos to
mean elementary topos, but be warned: many
authors use it to mean Grothendieck topos.

6 Categories as theories

6.1 Specification of mathematical
structures

Mathematicians historically have created
mathematical structures to be approximations
of physical phenomena, extracting the salient
properties of physical behavior and making
them precise.

6.1.1 Mathematical logic Classical
mathematical logic has done something simi-
lar: One creates formal mathematical objects
(language, term, formula, rule of inference)
that are special types of strings of symbols and
sets thereof. These objects are precise math-
ematical constructions that extract and make
formal certain properties of the statements and
deductions that occur in mathematical theo-
rems and proofs. Let’s call this string-based
syntax.

6.1.2 Signatures and Equations In
universal algebra, one specifies structures using
tuple-based syntax — signatures and equa-
tions. This formalism has been extended to
essentially algebraic theories by Reichel [1987].
Of course, universal algebraists also use classi-
cal first order logic.

6.1.3 Categorial theories A third
approach is that of regarding an E-category
(for a particular doctrine E) as a E-theory,
often called a categorial theory3 or cate-
gorical theory. Such phrases mean that the
category is being thought of as analogous to a
logical theory. In this setting, the semantics
is given by an E-functor to some E-category C.
Of course, every E-theory C is the theory of an
E-sketch, namely the underlying E sketch of C.

A categorial theory has the advantage of
being independent of any particular presenta-
tion, in much the same way that linear trans-
formations have the advantage of being coor-
dinate-free as compared to matrices.

The idea of categories as theories is dis-
cussed in the context of computer science by
Fourman and Vickers [1986].

6.2 Background

The notion of category as theory and sketch as
presentation of the theory originated in three
streams of thought.

6.2.1 Algebraic theories In the
1960’s, Lawvere [1963], [1968] introduced the
idea that a category should be used to specify
one-sorted algebraic structures such as groups

3In this paper, I use “categorial theory” because to logicians the phrase “categorical theory” means a
theory with only one model up to isomorphism. On the other hand, “categorial” is confusing to linguists.
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and rings. He called the category the alge-
braic theory of the type of structure; it is
a category in which every object is a sum
(coproduct) of a single object that corresponds
to the underlying set of the algebra. The
semantics is given by a contravariant func-
tor that takes sums to products. Other early
papers in this field are [Linton, 1966], [Linton,
1969b], and [Linton, 1969a].

An algebraic theory is equivalent to the
opposite category of the theory of a finite prod-
uct sketch for the same type of structure4.

Manes [1975] treats algebraic theories and
their relation with monads (see Section 7.2) in
detail. They are also treated by Pareigis [1970].

Models in toposes are treated by Johnstone
and Wraith [1978] and by Rosebrugh [1980].
Blackwell, Kelly and Power [1989] provide an
important generalization.

6.2.2 Classifying toposes The con-
cept of classifying topos is another example of

a categorial theory, although in the early days
it was thought of as the analog of a classifying
space more than as a theory (see Section 5.3
above). Tierney [1976] clearly had in mind the
construction of what I would call the classify-
ing topos of a sketch, but I am not familiar
with the early history of the relation between
toposes, sketches and logic (see Section 7.5
below for more references in this area), and
there may be earlier references to this idea.

6.2.3 Sketches The third strand is the
introduction of sketches based on what are
now called compositive graphs by Ehres-
mann [1968b], [1972]. He and his students
developed the subject extensively, but I think
it is fair to say that for the most part they stud-
ied sketches and their models directly and did
not focus on the passage to the corresponding
categorial theories.

7 Properties of model categories

7.1 Properties of model categories

Categories of models of particular doctrines of
sketches (or of categories in the role of the-
ories) have specific properties that have been
studied in some detail. As one would expect
the more one can specify in a sketch, the less
nice is the category of models. I will mention
two examples here. More detail is in [Barr and
Wells, 1985], page 297 (that list omits to men-
tion that all geometric theories have filtered
colimits computed sortwise). The major paper

[Guitart and Lair, 1980] also contains a lot of
information about the properties of model cat-
egories for special kinds of sketches.

7.1.1 The category of models of a linear
sketch is a topos. (Two particular such toposes
are discussed in [Lawvere, 1989].)

7.1.2 The category of models of a finite
product sketch has limits and filtered colimits
computed “sortwise”, is regular and has effec-
tive equivalence relations. These statements
imply that the category of models is a variety.

4For some authors, an algebraic theory is the opposite category of what Lawvere called an algebraic theory,
in which case it is equivalent to the finite product sketch. Note that finite product sketches in general sketch
multisorted structures.
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A limit or colimit constructed “sortwise”
means that the underlying set functor(s) (there
is one for each node of the graph of the sketch)
preserve the limit or the colimit. The fact that
the product of two groups is defined on the
product of their underlying sets is an instance
of sortwise construction. The free product of
two groups is not defined on the direct sum
of their underlying sets — and the direct sum
is a colimit but not a filtered colimit. On the
other hand, a coequalizer is a filtered colimit,
and indeed one constructs quotient groups on
the quotient of the underlying set.

Johnstone [1985], [1990], has given condi-
tions on an algebraic theory for its category of
models (the variety it generates) to be respec-
tively a topos or a cartesian closed category.

Agéron [1992] gives sufficient conditions on
a class S of sketches for the following category
to be cartesian closed: Its objects are all cate-
gories Mod(S) with S in S, and its arrows are
all functors preserving sufficiently filtered col-
imits.

7.2 Connections with monads

A functor U : C −→ D that has a left
adjoint determines two categories, its category
of Eilenberg-Moore algebras and its cat-
egory of Kleisli algebras. U is monadic
or tripleable if C is equivalent to its cate-
gory of Eilenberg-Moore algebras. Remark-
ably, monadic functors U : C −→ Set are up to
equivalence just the underlying functors from
categories of algebraic structures defined by
signatures (possibly with boundedly infinitary
operations) and equations.

When U is monadic, the operations and
equations of the signature can be recovered
from the natural endomorphisms of the under-
lying functors [Linton, 1969b], and the Kleisli
algebras turn out to be the free algebras. In
fact, Lawvere’s algebraic theory is the opposite

of the category of Kleisli algebras of the monad
determined by the functor. See [Mac Lane,
1971], [Manes, 1975], and [Barr and Wells,
1985] for introductions to the subject of mon-
ads.

Algebraic structures in enriched categories
(properly defined) are also monadic (propertly
defined!) [Kelly and Power, 1991].

There are many theorems stating that some
kind of categories with structure are monadic
over Cat or over some category of sketches
or graphs. See [Lair, 1975a], [Lair, 1979],
[McDonald and Stone, 1984], [Coppey and
Lair, 1985], [Agéron, 1991] (not all of which
I have seen).

7.3 Characterization of model cate-
gories

Gabriel and Ulmer [1971] give a complete char-
acterization of those categories that are ModS
for a finite limit sketch S. [Ulmer, 1971] is a
summary of that result in English.

Lair [1981] characterized sketchable cat-
egories (those that are equivalent to ModS
for some sketch S) (see also [Mouen, 1984].)
This result was rediscovered and elaborated by
Makkai and Paré [1990], who called such cat-
egories accessible categories. I recommend
the review by Gray [1991b].

Guitart and Lair [1980] showed that
axiomatizable categories are the same as
sketchable categories. The definition of
“axiomatizable” involves “satisfying” certain
cones in a specific sense (the cones correspond
to cocones of the sketch). This is also a char-
acterization of sketchable categories, though I
think it is fair to say that it is not a categorial
characterization.

If I understand it correctly, [Day and
Street, 1990] can be interpreted as a kind of
characterization of sketchable categories.
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Barr [1986] has some results of a similar
nature of this form: for certain E and E′, if the
category of models of an E sketch has certain
properties of the category of models of an E′

sketch (where E′ is more restrictive), then it is
in fact (equivalent to) the category of models
of an E′ sketch.

7.4 Initial algebras and locally free dia-
grams

7.4.1 Initial algebras for FL sketches
Let S be a finite limit sketch. The cate-
gory Mod(S) of its models in the category of
sets has an initial model or initial alge-
bra, a model M with the property that there
is exactly one homomorphism from M to any
model. This follows from the work of Gabriel
and Ulmer [1971]. (That work actually implies
the existence of initial algebras for any projec-
tive sketch whose cones are over diagrams with
bounded cardinality.)

7.4.2 Free algebras When S is a finite
limit sketch, Mod(S) has an underlying func-
tor to SetG0 , where G0 is the set of nodes of
the graph of S. This functor has a left adjoint
F , which means that if X is any G0-indexed
family of sets, then F (X ) is a free algebra on
X . This actually follows from the existence of
initial algebras for finite limit sketches, as fol-
lows: For each set Xg in X (where g is a node
of G), adjoin one new constant of type g for
each element x ∈ Xg. The resulting sketch is
still a finite limit sketch, and its initial model
is the desired free algebra.

Such free algebras can be constructed
inductively from the ground up, Herbrand
style. (See [Ehresmann, 1969], [Kelly, 1980].
This construction, for finite product sketches
(although they don’t explicitly use sketches),
has been used extensively to model data types
in computing. See [Goguen et al., 1978]

and [Meseguer and Goguen, 1985].
When the sketch has cocones, initial alge-

bras need not exist. If the cocones are all dis-
crete, we have the case of a localizable cat-
egory [Diers, 1977]. Then each component of
the category of models has an initial algebra;
for fields, these are the prime fields. These
are constructed inductively in [Wells and Barr,
1988]. The construction there includes the con-
struction of the initial algebra for a finite limit
theory as a special case.

In the general case, instead of a free alge-
bra, one has a locally free diagram, which in
most important cases is small (but not neces-
sarily unique). This is developed by Guitart
and Lair [1980] (see also [Guitart and Lair,
1981] and [Guitart and Lair, 1982a]). A Galois
group is an example of a locally free diagram
[Lair, 1983].

7.5 Logic

There is a considerable literature that works
out precise string-based languages and rules of
inference that correspond in expressive power
to certain specific types of categorial theories.
Starting at the bottom, equational logic is the
logic of finite product theories. Note that in
the general categorial treatment, one allows
some sorts of a multisorted theory to be empty
in a model, which complicates the logic. The
treatment of equational logic in [Goguen and
Meseguer, 1985] illustrates this admirably.

Coste [1976] and McLarty [1986] provide
a language and rules of inference for finite
limit theories (see also [Keane, 1975]), and
McLarty [1989] does the same for regular the-
ories.

[Makkai and Reyes, 1977] is the classic
source for the translation between geometric
theories and first order string-based logic. This
work is updated by Pitts [1989], which I rec-
ommend for its succinct technical introduction
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to the ideas. See also [Reyes, 1977] and [Paré,
1989].

The texts by Johnstone [1977], Lambek and
Scott [1986] (which also develops the connec-
tion between cartesian closed categories and
the typed λ-calculus), McLarty [1992], and
Mac Lane and Moerdijk [1992] all describe the
internal language of a topos. Other papers
worth looking at in this area are [Boileau and
Joyal, 1981], [Bunge, 1984], [Osius, 1975b],
[Osius, 1975a], [Poigné, 1986a], [Fourman,
1977] and [Vickers, 1993]. Bell [1988] develops
topos theory completely in terms of its lan-
guage. Lawvere [1975] discusses some of the
early history of the subject.

In a somewhat subtle sense, sketches are
equivalent in expressive power to first order
logic [Guitart and Lair, 1982b], [Makkai and
Paré, 1990]. The subtlety may be seen by
considering the category of connected graphs,
which is sketchable by a finite sketch, but con-

nected graphs cannot be specified in first order
logic limited to finite formulas and terms (I
don’t have a reference to this). Finite sketches
that contain formal coequalizers may require
infinitary disjunctions to express the corre-
sponding structure in first order logic. In the
case of connected graphs, that a graph is con-
nected is expressed by the requirement that
the formal coequalizer of the source and tar-
get maps must be the formal terminator.

Another subtlety: The preceding discussion
concerns the question of expressing the struc-
ture sketched by a sketch using a first order
theory in such a way that a model of the first
order theory is an example of the structure.
Of course, you can incorporate all of Zermelo-
Fränkel set theory in the logical theory and
express the structure as an element of a model
of the logical theory, but that is a different mat-
ter.

8 Categories of sketches

8.1 Properties of categories of sketches

The information in this subsection was pro-
vided in part by C. Lair and P. Agéron.

The category of sketches is studied in [Lair,
1975b], [Gray, 1989] and [Lair, 1988]. In
the first paper, it is shown that the cate-
gory of sketches is sketchable by a projective
sketch, from which it follows that it is com-
plete and cocomplete. He also shows that
it is monoidally closed; applications of this
are given in [Lair, 1977a] and [Agéron, 1992].
[Gray, 1989] gives several explicit constructions
in the category of sketches, in particular show-
ing that it is cartesian closed.

8.2 Institutions

Sketches form an institution [Goguen and
Burstall, 1986]. This is a formalization of the
idea that morphisms of sketches (equivalently,
a morphism of theories) induce a morphism
of the model categories going the other way.
It is spelled out in [Barr and Wells, 1990],
Section 10.3. In connection with this, one
can ask whether, for a particular type of the-
ory, a morphism of theories that induces an
equivalence on the category of models must
be an equivalence of theories (conceptual com-
pleteness). The answer is yes for pretoposes
[Makkai and Reyes, 1977], Chapter 8, (see
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also [Pitts, 1989]) Some form of Morita the-
ory can also explain when categories of mod-
els are equivalent (but in this case without
necessarily being induced by a morphism of
theories); for this, see [Freyd, 1966], [Lind-
ner, 1974], [Elkins and Zilber, 1976], [Fisher-

Palmquist and Palmquist, 1973], [Borceux and
Vitale, 1991] and [McKenzie, 1992].

Lair [1979] gives precise conditions on
a morphism of sketches for it to induce a
monadic functor (see Section 7.2) between
model categories.

9 Generalizations of the concept of sketch

The idea that sketches can be sketched using
an FL sketch (see subsection 4.3) is the basis
of a generalization of the concept of sketch
in [Wells, 1990], developed for 2-sketches in
[Power and Wells, 1992]. [Barr and Wells,
1992] contains other examples of their use.
Because of the relationship between sketches
and first order logic (see 7.5), these generaliza-
tions are appropriately referred to as higher-

order sketches. One can conceive of a whole
hierarchy of orders of sketches; this is the idea
of both [Lair, 1987b] and [Makkai, 1993a] (see
also [Makkai, 1993b]). Kelly [1982a] gener-
alizes the concept of sketch to enriched cate-
gories, beginning on page 218. See also [Kelly,
1982c]. Obtu lowicz [1992] describes a type of
sketch that is intended to generate an infinite
graph rather than a category.

10 Omissions

In preparation for this report, I have gradu-
ally become aware that the paper [Guitart and
Lair, 1980] is of major importance and should
be more widely known. It has not influenced
this report as much as it should have because
I have so far gained only a partial understand-
ing of its contents. Similar comments could
probably be made about [Isbell, 1972], but I
understand it even less.

The following papers clearly should be
included, but I either don’t have them or
have not become familiar enough with them
to say anything. [Adámek and Rosičky, 1991],
[Agéron, 1989], [Andréka and Németi, 1979],
[Bénabou, 1972], [Bastiani, 1973], [Coppey,
1972], [Coppey, 1990], [Foltz and Lair, 1972],
[Foltz et al., 1980], [Henry, 1982], [Johnson and
Walters, 1992], [Lair, 1971].
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Appendix: Some definitions

We define graphs, diagrams, cones and cocones
in detail because the terminology is not stan-
dard.

11.1 Graphs

11.1.1 Definition

A graph G consists of two sets G0 and
G1 and two functions source :G1 −→ G0 and
target :G1 −→ G0.

The elements of G0 are called the nodes
or vertices of G and the elements of G1 are
the arrows of G. If an arrow a has source x
and target y we write a : x −→ y. A graph is
conventionally drawn using dots or labels for
the nodes, and an arrow going from node x to
node y for each element a of G1 with source x
and target y.

11.1.2 Definition

A homomorphism of graphs f :G −→ H is a
pair of functions f0:G0 −→ H0 and f1:G1 −→ H1

for which these diagrams commute:

G0 H0
-

f0

G1 H1
-f1

?

source

?

source

G0 H0
-

f0

G1 H1
-f1

?

target

?

target

(Commutative diagrams are defined for-
mally in Section 11.4 below. This one means
that source ◦f1 = f0◦ source and target ◦f1 =
f0◦ target.) The subscripts 0 and 1 are nor-
mally omitted when mentioning graph homo-
morphisms, in the same way they are for func-
tors.

Every category has an underlying graph
whose nodes are the objects of the category
and whose arrows are the arrows of the cate-
gory with the same source and target.
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11.1.3 Definition

Let f, f ′ : G −→ C be graph homomorphisms
to a category C. A natural transformation
φ : f −→ f ′ is a family of arrows φx : f(x) −→
f ′(x) indexed by the nodes of G with the prop-
erty that for every arrow u : x −→ x′ of C the
following diagram commutes:

f(x′) f ′(x′)-
φx′

f(x) f ′(x)-φx

?

f(u)
?

f ′(u)

This is just like the definition of natu-
ral transformation for functors between cate-
gories, which in any case makes no use of the
composition in the domain of the functors.

A path of length n from x to y in a graph G
is a sequence 〈f1, f2, . . . , fn〉 of arrows with the
property that the target of fj−1 is the source
of fj for j = 2, . . . , n, source(f1) = x and
target(fn) = y. If p = 〈f1, f2, . . . , fn〉 is a path
from x to y, we write p : x −→ y. For each node
x, there is one empty path 〈〉 : x −→ x.

We extend the definition of homomorphism
F :G −→ H of graphs to paths in G by mapping
F over the nodes in the path:

F 〈f1, f2, . . . , fn〉 = 〈F (f1), F (f2), . . . , F (fn)〉
The nodes of G and the paths form a cat-

egory, the free category generated by the
graph G, with the empty paths as identity
arrows and composition by concatenation. See
[Barr and Wells, 1990], Sections 2.1 and 2.6,
for the details.

The set of paths of length n in G is denoted
Gn. In particular, a path of length 2 is a pair
〈f, g〉 of arrows such that the source of g is the
target of f . Such a pair is called a compos-
able pair.

11.2 Reflexive graphs

11.2.1 Definition

A reflexive graph is a graph with additional
structure, namely a function loop : G0 −→ G1

satisfying the equations

G0 G1
-loop

G0

@
@

@
@@R

G0

?

source

G0 G1
-loop

G0

@
@

@
@@R

G0

?

target

(In this text, I follow the categorial custom of
using the name of an object also as the name
of its identity arrow.) The arrows of the form
loop(x) for some node x are called the distin-
guished loops.

A homomorphism of reflexive graphs
is a homomorphism of graphs that takes dis-
tinguished loops to distinguished loops.

The underlying reflexive graph of a cate-
gory is the underlying graph with the identity
arrows as the distinguished loops.

11.3 Compositive graphs

The French school bases its definition of sketch
on the concept of a compositive graph or
multiplicative graph: A compositive graph
G is a reflexive graph with a partially defined
binary operation κ : CG −→ G satisfying the
laws CG–1 through CG–3 below. If 〈f, g〉 is
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a composable pair and κ(f, g) is defined, we
write g◦f for κ(f, g) (note the reversal).5

CG.1 CG is a subset of G2.

CG.2 For all arrows f , f ◦idsource(f) and
idtarget(f)◦f are both defined and equal
to f .

CG.3 If g◦f is defined, source(g◦f) =
source(f) and target(g◦f) = target(g).

Associativity is not required. A category is a
compositive graph G for which CG = G2 and
the composition is associative. See [Coppey
and Lair, 1984], Leçon 2 for details. (Their
“oriented graph” is our reflexive graph.) See
Section 3.2 for notation concerning these ideas.

A functor between compositive graphs is
defined just like functors between categories.
In all cases, if F is a functor and g◦f is
defined, then F (g)◦F (f) is defined and equal
to F (g◦f).

11.4 Diagrams

If I and G are graphs, a graph homomorphism
d : I −→ G is a diagram in G. In this case, I
is the shape graph of the diagram. If I is a
graph, C is a category, and d is a diagram in
the underlying graph of C, we will write it as
d : I −→ C.

By convention, a diagram is drawn in such
a way that its shape graph can be recovered
(except for the actual names of the nodes and
arrows) from the way it is drawn by replacing
each node of the drawn graph by a different
label (whether two nodes as drawn have the
same label or not) and similarly for arrows.
For example, the shape graphs corresponding

to these two diagrams

G H-f

h

@
@

@
@@R

G
?

g
G H

-f
�

g

R

h

(2)
are these two graphs respectively:

i j-a

b

@
@

@
@@R

k
?

c u v
-a

�
c

R

b

The diagrams in (2) are not the same!
A diagram d:I −→ C in a category C is com-

mutative if for all pairs of paths p, q : x −→ y
in the shape graph I between the same two
nodes, d(p) and d(q) have the same compos-
ites in C. For example, if the left diagram
in (2) commutes, then g◦f = h, whereas if the
right diagram commutes, then g◦f = h = idG

and f ◦g = idH . (The point is that there is an
empty path from G to G and another one from
H to H.)

The concept of commutative diagram
requires composition; it makes sense in a com-
positive graph but not in a graph in general.

In much of the categorial literature, a dia-
gram d:I −→ C is defined to be a functor from a
category (most commonly a small category) I
to C. A graph-based diagram can be converted
to an equivalent category-based one by basing
it on the free category generated by the graph.
Conversely, a functor defined on a category I is
a diagram based on the underlying graph of I.
But be careful: there are in general diagrams
based on the underlying graph of I that are

5Many computer scientists write f ; g in this case, a notation that has certain advantages. Many French
authors use g◦f but draw the horizontal arrows in their diagrams from right to left so that the composite
matches the path indicated by the arrows.
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not functors from I, because there is no way
to enforce the preservation of composition.

11.5 Cones

11.5.1 Definition

If d : I −→ G is a diagram in a graph G, then a
cone p :v −→ d consists of an object v of C and
a set of arrows pk : v −→ d(k) indexed by the
nodes of I. If d : I −→ C is a diagram in a cate-
gory C, the cone p : v −→ d is commutative if
for all arrows u : k −→ k′ in I,

v d(k)-pk

pk′
@

@
@

@@R
d(k′)

?

d(u)

commutes.

The diagram d is called the base diagram
of the cone and the arrows pk are the projec-
tions or sometimes elements of the cone.

Note that the concept of commutative cone
does not make sense for a cone in a graph,
although it does for a cone in a compositive
graph. For most authors, a cone in a compos-

itive graph (hence in a category) is commuta-
tive by definition.

The base diagram of a cone in a category
is not required to be commutative.

If the shape graph of the base diagram has
only identity arrows, the cone is discrete.

A cocone in C based on a diagram d : I −→
C consists of an object v of C and arrows
ik : d(k) −→ v indexed by the objects of I. It is
commutative if for all u : k −→ k′ in I,

v d(k)� ik

ik′

@
@

@
@@I

d(k′)
?

d(u)

commute.
[Barr and Wells, 1990] has an extensive dis-

cussion of limits and colimits using the ter-
minology introduced here. Mac Lane [1971]
is an excellent source for limits and colimits
defined in terms of functors based on small
categories, with many mathematical examples.
Poigné [1986b] introduces limits and colimits in
the context of computer science.
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non-algébricité. Diagrammes, 13, 1985. (5,
10)

[Coppey and Lair, 1988] L. Coppey and C. Lair.
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[Guitart, 1986] René Guitart. On the geometry
of computations (I). Cahiers de Topologie et
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Christian Lair. Existence de diagrammes
localement libres 2. Diagrammes, 7, 1982.
(11)

[Guitart and Lair, 1982b] René Guitart and
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