Equivariant bordism and applications in Differential Geometry

Michael Wiemeler

Universität Augsburg

michael.wiemeler@math.uni-augsburg.de

Mathematisches Kolloquium Augsburg, January 2016

< < >> < </>

- Introduction The non-equivariant case
- 2 Equivariant bordism
- Invariant metrics of positive scalar curvature

Outline

2 Equivariant bordism

Invariant metrics of positive scalar curvature

・ロト ・ 同ト ・ ヨト ・ ヨト

Bordism Metrics of positive scalar curvature

Definition

Manifolds

A *n*-dimensional manifold *M* is a second countable Hausdorff space which is locally homeomorphic to \mathbb{R}^n .

Bordism Metrics of positive scalar curvature

Definition

Manifolds

A *n*-dimensional manifold *M* is a second countable Hausdorff space which is locally homeomorphic to \mathbb{R}^n .

• Preimages of regular values of smooth maps $f: \mathbb{R}^{n+m} \to \mathbb{R}^m$ are manifolds.

Bordism Metrics of positive scalar curvature

Manifolds

Definition

A *n*-dimensional manifold *M* is a second countable Hausdorff space which is locally homeomorphic to \mathbb{R}^n .

- Preimages of regular values of smooth maps
 f: ℝ^{n+m} → ℝ^m are manifolds.
- In particular, $S^n = \{(x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1}; \sum_{i=1}^{n+1} x_i^2 = 1\}$ is a manifold.

Bordism Metrics of positive scalar curvature

ヘロア ヘビア ヘビア・

Manifolds

Definition

A *n*-dimensional manifold *M* is a second countable Hausdorff space which is locally homeomorphic to \mathbb{R}^n .

- Preimages of regular values of smooth maps
 f: ℝ^{n+m} → ℝ^m are manifolds.
- In particular, $S^n = \{(x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1}; \sum_{i=1}^{n+1} x_i^2 = 1\}$ is a manifold.
- One can also construct manifolds by patching together open subsets of Rⁿ.

Bordism Metrics of positive scalar curvature

• Goal: Classify manifolds up to some equivalence relation.

・ロト ・ 同ト ・ ヨト ・ ヨト

Bordism Metrics of positive scalar curvature

- Goal: Classify manifolds up to some equivalence relation.
- Classification up to diffeomorphism or homeomorphism to hard or even impossible.

ヘロト ヘアト ヘビト ヘ

Bordism Metrics of positive scalar curvature

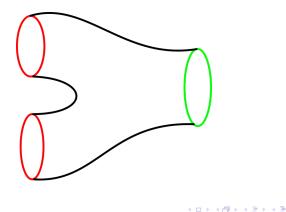
- Goal: Classify manifolds up to some equivalence relation.
- Classification up to diffeomorphism or homeomorphism to hard or even impossible.
- Therefore classification up to bordism.

ヘロト ヘアト ヘビト ヘ

Bordism Metrics of positive scalar curvature

• Two closed *n*-manifolds M_1 , M_2 are called bordant if there is an compact n + 1-manifold W with boundary $\partial W = M_1 \amalg M_2$.

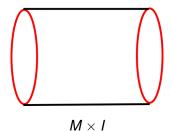
• Two closed *n*-manifolds M_1 , M_2 are called bordant if there is an compact n + 1-manifold W with boundary $\partial W = M_1 \amalg M_2$.



NA Universität Augsburg Institut für Mathematik

Bordism Metrics of positive scalar curvature

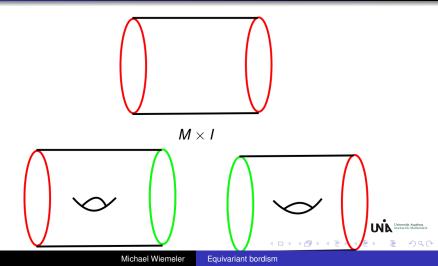
Bordism is an equivalence relation – reflexivity and symmetry



イロン イボン イヨン イヨ

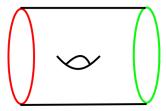
Bordism Metrics of positive scalar curvature

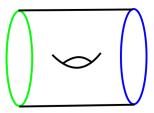
Bordism is an equivalence relation – reflexivity and symmetry



Bordism Metrics of positive scalar curvature

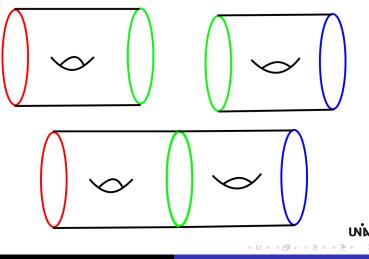
Bordism is an equivalence relation - transitivity





Bordism Metrics of positive scalar curvature

Bordism is an equivalence relation - transitivity



Michael Wiemeler Equivariant bordism

Bordism Metrics of positive scalar curvature

The unoriented bordism ring

The set \mathfrak{N}_\ast of all bordism classes of all manifolds forms a graded ring with:

Bordism Metrics of positive scalar curvature

The unoriented bordism ring

The set \mathfrak{N}_{\ast} of all bordism classes of all manifolds forms a graded ring with:

- addition induced by disjoint union
- multiplication induced by cartesian product
- grading by dimension

Bordism Metrics of positive scalar curvature

The oriented bordism ring

・ロト ・ 同ト ・ ヨト ・ ヨト

• $\Omega^{SO}_* \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^{2i}; i \in \mathbb{N}]$ (Thom 1954)

Bordism Metrics of positive scalar curvature

The oriented bordism ring

- $\Omega^{SO}_* \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^{2i}; i \in \mathbb{N}]$ (Thom 1954)
- All non-trivial torsion elements in Ω^{SO}_{*} are of order two. (Milnor, Averbuh, Wall 1958/1959)

Bordism Metrics of positive scalar curvature

The oriented bordism ring

< 🗇 > < 🖻 >

- $\Omega^{SO}_* \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^{2i}; i \in \mathbb{N}]$ (Thom 1954)
- All non-trivial torsion elements in Ω_*^{SO} are of order two. (Milnor, Averbuh, Wall 1958/1959)
- Ω^{SO}_* is generated by
 - Milnor hypersurfaces
 - Dold manifolds
 - bundles with fibers products of Dold manifolds over toriUNA

Bordism Metrics of positive scalar curvature

Oriented bordism in low dimensions

n	Ω_n^{SO}	generators
0	\mathbb{Z}	{ <i>pt</i> }
1	0	
2	0	
3	0	
4	Z	ℂ P ²
5	ℤ/2	<i>P</i> (1,2)
6	0	
7	0	
8	\mathbb{Z}^2	$\mathbb{C}P^2 imes \mathbb{C}P^2, \mathbb{C}P^4$

ヘロト 人間 とくほとく ほとう

Bordism Metrics of positive scalar curvature

Tea and Coffee

Assume you have a tea cup like this ...

Bordism Metrics of positive scalar curvature

Tea and Coffee

Assume you have a tea cup like this ...

... but you want to drink coffee.

Bordism Metrics of positive scalar curvature

Tea and Coffee

Assume you have a tea cup like this ...

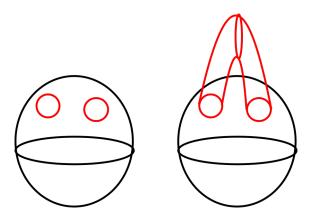
... but you want to drink coffee.

イロト イポト イヨト イヨ

What can you do?

Bordism Metrics of positive scalar curvatur

Surgery



<ロト <回 > < 注 > < 注 > 、

Surgery

Bordism Metrics of positive scalar curvature

More formally, surgery is the following cutting and pasting process:

Bordism Metrics of positive scalar curvature

More formally, surgery is the following cutting and pasting process:

• Let $\Phi: S^k \times D^{n-k} \hookrightarrow N^n$ be an embedding.

Bordism Metrics of positive scalar curvature

More formally, surgery is the following cutting and pasting process:

- Let $\Phi: S^k \times D^{n-k} \hookrightarrow N^n$ be an embedding.
- Cut im (Φ) out of N^n and glue in $D^{k+1} \times S^{n-k-1}$ instead.

Bordism Metrics of positive scalar curvature

More formally, surgery is the following cutting and pasting process:

- Let $\Phi: S^k \times D^{n-k} \hookrightarrow N^n$ be an embedding.
- Cut im (Φ) out of N^n and glue in $D^{k+1} \times S^{n-k-1}$ instead.

Bordism Metrics of positive scalar curvature

Surgery and bordism

Theorem

Two manifolds M and N are bordant if and only if M can be constructed by surgery from N.

Bordism Metrics of positive scalar curvature

Outlook: Topological Quantum Field Theories

• The bordism category \mathcal{B}_n , is the category with objects compact oriented *n*-dimensional manifolds, and morphisms bordisms between these manifolds

イロト イ理ト イヨト イヨト

Bordism Metrics of positive scalar curvature

Outlook: Topological Quantum Field Theories

- The bordism category \mathcal{B}_n , is the category with objects compact oriented *n*-dimensional manifolds, and morphisms bordisms between these manifolds
- A TQFT is a functor $F : \mathcal{B}_n \rightarrow \textit{Vect}$ such that
 - $F(M_1) \cong F(M_2)$ if M_1 and M_2 are orientation preserving diffeomorphic

・ロト ・回ト ・ヨト ・ヨト

Bordism Metrics of positive scalar curvature

Outlook: Topological Quantum Field Theories

- The bordism category \mathcal{B}_n , is the category with objects compact oriented *n*-dimensional manifolds, and morphisms bordisms between these manifolds
- A TQFT is a functor $F : \mathcal{B}_n \rightarrow \textit{Vect}$ such that
 - $F(M_1) \cong F(M_2)$ if M_1 and M_2 are orientation preserving diffeomorphic

- Physically
 - is related to relativistic invariance
 - is induced by the quantum nature of the theory

・ロト ・回ト ・ヨト ・ヨト

Bordism Metrics of positive scalar curvature

・ロット (雪) (き) (き)

Outlook: Topological Quantum Field Theories

- The bordism category \mathcal{B}_n , is the category with objects compact oriented *n*-dimensional manifolds, and morphisms bordisms between these manifolds
- A TQFT is a functor $F : \mathcal{B}_n \rightarrow Vect$ such that
 - $F(M_1) \cong F(M_2)$ if M_1 and M_2 are orientation preserving diffeomorphic
- Physically
 - is related to relativistic invariance
 - Is induced by the quantum nature of the theory
- TQFT's have applications in Seiberg–Witten theory, topological string theory and knot theory.

Bordism Metrics of positive scalar curvature

Scalar curvature

• Let (M, g) be a Riemannian manifold.

・ロト ・ 日本 ・ 日本 ・ 日本

Bordism Metrics of positive scalar curvature

Scalar curvature

- Let (M, g) be a Riemannian manifold.
- The scalar curvature of *M* is a function $scal: M \to \mathbb{R}$

イロト イポト イヨト イヨト

Bordism Metrics of positive scalar curvature

Scalar curvature

- Let (M, g) be a Riemannian manifold.
- The scalar curvature of *M* is a function $scal: M \to \mathbb{R}$
- For small r > 0 and $x \in M$ we have :

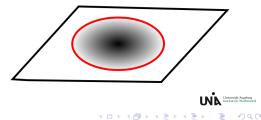
$$vol(B_r(x)) = vol_{euclid}(B_r(0))(1 - \frac{scal(x)}{6(n+2)}r^2 + O(r^4))$$

イロト イポト イヨト イヨト

Bordism Metrics of positive scalar curvature

$$scal(x) = 2$$
, $vol(B_{\pi/2}(x)) = 2\pi$

$$\operatorname{vol}_{euclid}(B_{\pi/2}(0)) = \pi \cdot \pi^2/4$$



Bordism Metrics of positive scalar curvature

What functions are the scalar curvature of a metric on a manifold?

Theorem (Kazdan and Warner 1975)

Let *M* be a manifold with dim $M \ge 3$. Then:

 Every C[∞]-function on M which is somewhere negative is the scalar curvature of some metric on M.

Bordism Metrics of positive scalar curvature

What functions are the scalar curvature of a metric on a manifold?

Theorem (Kazdan and Warner 1975)

Let *M* be a manifold with dim $M \ge 3$. Then:

- Every C[∞]-function on M which is somewhere negative is the scalar curvature of some metric on M.
- Every C[∞]-function on M is the scalar curvature of some metric on M if and only if there is a metric of positive scalar curvature on M.

Bordism Metrics of positive scalar curvature

A basic question

Question

Let M be a closed connected manifold. Does there exist a metric of positive scalar curvature on M?

イロト イ理ト イヨト イヨト

Bordism Metrics of positive scalar curvature

Dimension two

イロト イ理ト イヨト イヨト

Theorem (Gauss-Bonnet)

For a two-dimensional orientable manifold M, we have

$$\int_{M} scal(x) \, dvol = 4\pi \chi(M)$$

UNIX Universität Augsburg Inscisus für Mashematik

Bordism Metrics of positive scalar curvature

Dimension two

Theorem (Gauss-Bonnet)

For a two-dimensional orientable manifold M, we have

$$\int_{M} scal(x) \, dvol = 4\pi \chi(M)$$

• Hence, the only surfaces which admit metrics of positive. scalar curvature are S^2 and $\mathbb{R}P^2$.

Bordism Metrics of positive scalar curvature

Dimension three and four

Theorem (Perelman 2003)

If M is a manifold of dimension three, then M admits a metric of positive scalar curvature if and only if M is diffeomorphic to a connected sum of several copies of $S^1 \times S^2$ and spherical space forms.

Bordism Metrics of positive scalar curvature

Dimension three and four

Theorem (Perelman 2003)

If M is a manifold of dimension three, then M admits a metric of positive scalar curvature if and only if M is diffeomorphic to a connected sum of several copies of $S^1 \times S^2$ and spherical space forms.

• Dimension four is open.

Bordism Metrics of positive scalar curvature

Surgery and positive scalar curvature

Theorem (Gromov and Lawson / Schoen and Yau)

If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M.

Bordism Metrics of positive scalar curvature

Sugsburg

Surgery and positive scalar curvature

Theorem (Gromov and Lawson / Schoen and Yau)

If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M.

Corollary

A manifold M with dim $M \ge 5$ admits a metric of positive scalar curvature, if and only if its class in a certain bordism ring can be represented by a manifold with such a metric.

Bordism Metrics of positive scalar curvature

Bordism classes of manifolds of positive scalar curvature

Lemma

Let Ω_* be a bordism ring and $I \subset \Omega_*$ the set of bordism classes which can be represented by manifolds with positive scalar curvature. Then I is an ideal.

Bordism Metrics of positive scalar curvature

Bordism classes of manifolds of positive scalar curvature

Lemma

Let Ω_* be a bordism ring and $I \subset \Omega_*$ the set of bordism classes which can be represented by manifolds with positive scalar curvature. Then I is an ideal.

• Let *M* be a compact manifold and *N* a compact manifold with metric of positive scalar curvature.

Bordism Metrics of positive scalar curvature

< < >> < <</>

< ∃ > <

Bordism classes of manifolds of positive scalar curvature

Lemma

Let Ω_* be a bordism ring and $I \subset \Omega_*$ the set of bordism classes which can be represented by manifolds with positive scalar curvature. Then I is an ideal.

- Let *M* be a compact manifold and *N* a compact manifold with metric of positive scalar curvature.
- We have: $scal_{M \times N}(x, y) = scal_M(x) + scal_N(y)$.

Bordism Metrics of positive scalar curvature

ヘロト ヘヨト ヘヨト ヘ

Bordism classes of manifolds of positive scalar curvature

Lemma

Let Ω_* be a bordism ring and $I \subset \Omega_*$ the set of bordism classes which can be represented by manifolds with positive scalar curvature. Then I is an ideal.

- Let *M* be a compact manifold and *N* a compact manifold with metric of positive scalar curvature.
- We have: $scal_{M \times N}(x, y) = scal_M(x) + scal_N(y)$.
- By shrinking *N* we get $\mathit{scal}_N \to +\infty$

Bordism Metrics of positive scalar curvature

Theorem (Gromov and Lawson 1980)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M does not admit a spin-structure. Then M admits a metric of positive scalar curvature.

イロト イポト イヨト イヨ

Bordism Metrics of positive scalar curvature

Theorem (Gromov and Lawson 1980)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M does not admit a spin-structure. Then M admits a metric of positive scalar curvature.

• The relevant bordism group for M is Ω_n^{SO} .

イロト イ理ト イヨト イヨト

Bordism Metrics of positive scalar curvature

Theorem (Gromov and Lawson 1980)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M does not admit a spin-structure. Then M admits a metric of positive scalar curvature.

- The relevant bordism group for M is Ω_n^{SO} .
- Ω^{SO} is generated by fiber bundles with fibers manifolds with positive scalar curvature.

イロト 不得 とくほ とくほう

Bordism Metrics of positive scalar curvature

Theorem (Gromov and Lawson 1980)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M does not admit a spin-structure. Then M admits a metric of positive scalar curvature.

- The relevant bordism group for M is Ω_n^{SO} .
- Ω^{SO} is generated by fiber bundles with fibers manifolds with positive scalar curvature.
- The total spaces of these fiber bundles therefore admit metrics of positive scalar curvature.

・ロト ・ 同ト ・ ヨト ・ ヨト

Bordism Metrics of positive scalar curvature

psc-metrics and Spin-structures

If M is spin and admits a metric of positive scalar curvature, then

• the Dirac-operator *D* on *M* is invertible (Lichnerowicz 1963).

イロト イ理ト イヨト イヨト

Bordism Metrics of positive scalar curvature

psc-metrics and Spin-structures

If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator *D* on *M* is invertible (Lichnerowicz 1963).
- Hence its index vanishes.

イロト イ理ト イヨト イヨト

Bordism Metrics of positive scalar curvature

psc-metrics and Spin-structures

If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator *D* on *M* is invertible (Lichnerowicz 1963).
- Hence its index vanishes.
- ind $D = \widehat{A}(M)$ is an invariant of the spin-bordism type of M (Atiyah-Singer 1968).

ヘロト ヘワト ヘビト ヘビト

Bordism Metrics of positive scalar curvature

Main results on spin bordism rings are due to Anderson, Brown, Peterson 1966/1967

• $\Omega^{\mathsf{Spin}}_* \otimes \mathbb{Q} \cong \Omega^{SO}_* \otimes \mathbb{Q}$

イロト イポト イヨト イヨト

Bordism Metrics of positive scalar curvature

Main results on spin bordism rings are due to Anderson, Brown, Peterson 1966/1967

• $\Omega^{\mathsf{Spin}}_* \otimes \mathbb{Q} \cong \Omega^{SO}_* \otimes \mathbb{Q}$

All non-trivial torsion elements in Ω^{Spin}_{*} are of order two

ヘロト ヘワト ヘビト ヘビト

Bordism Metrics of positive scalar curvature

イロト イポト イヨト イヨ

Theorem (Stolz 1992)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M admits a spin structure. Then M admits a metric of positive scalar curvature if and only if $\alpha(M) = 0$.

Bordism Metrics of positive scalar curvature

イロト イポト イヨト イヨ

Theorem (Stolz 1992)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M admits a spin structure. Then M admits a metric of positive scalar curvature if and only if $\alpha(M) = 0$.

• The relevant bordism group for M is Ω_n^{Spin} .

Bordism Metrics of positive scalar curvature

イロト 不得 とくほ とくほう

Theorem (Stolz 1992)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M admits a spin structure. Then M admits a metric of positive scalar curvature if and only if $\alpha(M) = 0$.

- The relevant bordism group for M is Ω_n^{Spin} .
- Stolz shows that ker α is generated by HP²-bundles over spin manifolds.

Bordism Metrics of positive scalar curvature

Theorem (Stolz 1992)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M admits a spin structure. Then M admits a metric of positive scalar curvature if and only if $\alpha(M) = 0$.

- The relevant bordism group for M is Ω_n^{Spin} .
- Stolz shows that ker α is generated by HP²-bundles over spin manifolds.
- As in the non-spin-case these admit psc-metrics.

Bordism Metrics of positive scalar curvature

Outlook: Scalar curvature in General Relativity

• The vacuum Einstein field equation

$${\it Ric}_g - {{\it scal}_g\over 2}g = 0$$

イロト イポト イヨト イヨト

Bordism Metrics of positive scalar curvature

Outlook: Scalar curvature in General Relativity

• The vacuum Einstein field equation

$$Ric_g - rac{scal_g}{2}g = 0$$

is the Euler equation for the variational problem for the total scalar curvature functional

$$g\mapsto \int_M \mathit{scal}_g \mathit{dvol}_g$$

イロト イ理ト イヨト イヨト

Bordism Metrics of positive scalar curvature

イロト イポト イヨト イヨト

Outlook: Scalar curvature in General Relativity

• The vacuum Einstein field equation

$$\textit{Ric}_g - rac{\textit{scal}_g}{2}g + \lambda g = 0$$

is the Euler equation for the variational problem for the total scalar curvature functional

$$g\mapsto \int_M \mathit{scal}_g \mathit{dvol}_g$$

 positive scalar curvature corresponds to positive mass density or positive cosmological constant λ.

Bordism Metrics of positive scalar curvature

Outlook: Scalar curvature in General Relativity

• The vacuum Einstein field equation

$$\textit{Ric}_g - rac{\textit{scal}_g}{2}g + \lambda g = 0$$

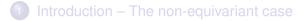
is the Euler equation for the variational problem for the total scalar curvature functional

$$g\mapsto \int_M \mathit{scal}_g \mathit{dvol}_g$$

- positive scalar curvature corresponds to positive mass density or positive cosmological constant λ.
- Beginning in the 1990s, measurements suggest that λ is small but positive.

Generators of equivariant bordism rings

Outline



2 Equivariant bordism

Invariant metrics of positive scalar curvature

・ロト ・ 同ト ・ ヨト ・ ヨト

Generators of equivariant bordism rings

- Let *G* be a compact Lie-group and M_1 and M_2 closed *G*-manifolds. M_1 and M_2 are called *G*-equivariantly bordant if there is a *G*-manifold with boundary *W* such that $\partial W = M_1 \amalg M_2$.
- The set of all equivariant bordism classes $\Omega_*^{SO,G}$ is an algebra over Ω_*^{SO} .

イロト イポト イヨト イヨト

Generators of equivariant bordism rings

Computations of equivariant bordism rings

Theorem (Uchida / Hattori and Taniguchi 1970-1972)

As a module over Ω^{SO}_* , Ω^{SO,S^1}_* is generated by twisted $\mathbb{C}P^n$ -bundles.

ヘロト 人間 とくほとく 閉

Generators of equivariant bordism rings

Computations of equivariant bordism rings

Theorem (Uchida / Hattori and Taniguchi 1970-1972)

As a module over Ω^{SO}_* , Ω^{SO,S^1}_* is generated by twisted $\mathbb{C}P^n$ -bundles.

- Results on the module structure of the unitary S¹-equivariant bordism ring by Kosniowski and Yahia (1982).
- Sinha (2005) gives generators and relations for the semi-free unitary S¹-equivariant bordism ring.

ヘロト ヘアト ヘビト ヘビ

Generators of equivariant bordism rings

Computations of equivariant bordism rings II

Theorem (2015)

As a module over $\Omega^{Spin}_{*}[\frac{1}{2}]$, $\Omega^{Spin,S^{1}}_{*}[\frac{1}{2}]$ is generated by:

- semi-free S¹-manifolds,
- generalized Bott manifolds

・ロト ・ 同ト ・ ヨト ・ ヨト

Generators of equivariant bordism rings

Generalized Bott manifolds

A 2*n*-dimensional manifold is called generalized Bott manifold if there is a sequence of fibration

$$M = N_k \rightarrow N_{k-1} \rightarrow \cdots \rightarrow N_1 \rightarrow N_0 = \{pt\}$$

such that:

 each N_i is the projectivization of a sum of n_i + 1 complex line bundles over N_{i-1}.

イロト イポト イヨト イヨト

Generalized Bott manifolds

A 2*n*-dimensional manifold is called generalized Bott manifold if there is a sequence of fibration

$$M = N_k \rightarrow N_{k-1} \rightarrow \cdots \rightarrow N_1 \rightarrow N_0 = \{pt\}$$

such that:

• each N_i is the projectivization of a sum of $n_i + 1$ complex line bundles over N_{i-1} .

Then we have:

• There is an effective action of a torus *T* of dimension $n = \sum_{i} n_{i}$ on *M*.

Universität Augsburg Institut für Mathematik

ヘロト ヘ戸ト ヘヨト ヘヨト

Generalized Bott manifolds

A 2*n*-dimensional manifold is called generalized Bott manifold if there is a sequence of fibration

$$M = N_k \rightarrow N_{k-1} \rightarrow \cdots \rightarrow N_1 \rightarrow N_0 = \{pt\}$$

such that:

 each N_i is the projectivization of a sum of n_i + 1 complex line bundles over N_{i-1}.

Then we have:

- There is an effective action of a torus *T* of dimension $n = \sum_{i} n_{i}$ on *M*.
- This action is induced by multiplication on the line bundles from above.

ヘロン ヘアン ヘビン ヘビン

Generalized Bott manifolds

A 2*n*-dimensional manifold is called generalized Bott manifold if there is a sequence of fibration

$$M = N_k \rightarrow N_{k-1} \rightarrow \cdots \rightarrow N_1 \rightarrow N_0 = \{pt\}$$

such that:

• each N_i is the projectivization of a sum of $n_i + 1$ complex line bundles over N_{i-1} .

Then we have:

- There is an effective action of a torus *T* of dimension $n = \sum_{i} n_{i}$ on *M*.
- This action is induced by multiplication on the line bundles from above.
- The S¹-action on *M* is given by restriction of the *T*-action to some circle subgroup.

The first existence theorem The second existence theorem Elliptic genera

Outline

2 Equivariant bordism

Invariant metrics of positive scalar curvature

・ロト ・ 同ト ・ ヨト ・ ヨト

The first existence theorem The second existence theorem Elliptic genera

A basic question

Question

Assume that a compact connected Lie group G acts effectively on a closed connected manifold M. Does there exist an G-invariant metric of positive scalar curvature on M?

The first existence theorem The second existence theorem Elliptic genera

First existence theorem

Theorem (2013)

Let *M* be a connected $(G \times S^1)$ -manifold such that codim $M^{S^1} = 2$. Then *M* admits a $(G \times S^1)$ -invariant metric of positive scalar curvature.

・ロト ・ 同ト ・ ヨト ・ ヨト

The first existence theorem The second existence theorem Elliptic genera

From now on assume that M is an S^1 -manifold such that:

- codim *M*^{S¹} ≥ 4
- $\pi_1(M_{max}) = 0$
- All singular strata in *M* are orientable. This is always satisfied if *M* is spin.

イロト イポト イヨト イヨト

The first existence theorem The second existence theorem Elliptic genera

The bordism principle for invariant metrics

Theorem

If dim $M \ge 6$ and M_{max} is not spin, then M admits a normally symmetric metric of positive scalar curvature if and only if its class in $\Omega_{\ge 4,n}^{SO,S^1}$ can be represented by a manifold which admits such a metric.

The first existence theorem The second existence theorem Elliptic genera

The bordism principle for invariant metrics

Theorem

If dim $M \ge 6$ and M_{max} is not spin, then M admits a normally symmetric metric of positive scalar curvature if and only if its class in $\Omega_{\ge 4,n}^{SO,S^1}$ can be represented by a manifold which admits such a metric.

Theorem

If dim $M \ge 6$ and M is spin, then M admits a normally symmetric metric of positive scalar curvature if and only if its class in $\Omega_{\ge 4,n}^{Spin,S^1}$ can be represented by a manifold which admits such a metric.

The first existence theorem The second existence theorem Elliptic genera

Existence results

Theorem (2015)

If dim $M \ge 6$ and

- M_{max} is not spin, or
- M is spin and the S¹-action of odd type,

イロト イポト イヨト イヨ

The first existence theorem The second existence theorem Elliptic genera

Existence results

Theorem (2015)

If dim $M \ge 6$ and

- M_{max} is not spin, or
- *M* is spin and the S¹-action of odd type,

then there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^{ℓ} copies of M admits an invariant metric of positive scalar curvature.

The first existence theorem The second existence theorem Elliptic genera

Existence results

Theorem (2015)

If dim $M \ge 6$ and

- M_{max} is not spin, or
- *M* is spin and the S¹-action of odd type,

then there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^{ℓ} copies of M admits an invariant metric of positive scalar curvature.

- In the first case ℓ can be taken to be 1.
- If the action is semi-free, ℓ can be taken to be 1.

The first existence theorem The second existence theorem Elliptic genera

Existence results II

Theorem (2015)

If dim $M \ge 6$, M is spin and the S^1 -action of even type, then $\widehat{A}_{S^1}(M/S^1) = 0$ if and only if there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^ℓ copies of M admits an invariant metric of positive scalar curvature.

The first existence theorem The second existence theorem Elliptic genera

Existence results II

Theorem (2015)

If dim $M \ge 6$, M is spin and the S^1 -action of even type, then $\widehat{A}_{S^1}(M/S^1) = 0$ if and only if there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^ℓ copies of M admits an invariant metric of positive scalar curvature.

- Â_{S¹}(M/S¹) is a ℤ[¹/₂]-valued equivariant bordism invariant of M.
- For free actions it is the \widehat{A} -genus of the orbit space.
- For semi-free actions it was defined by Lott (2000).

ヘロト ヘアト ヘビト ヘビ

The first existence theorem The second existence theorem Elliptic genera

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let M be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S¹-action. Then $\widehat{A}(M) = 0$.

★ ∃ > ★ ∃

The first existence theorem The second existence theorem Elliptic genera

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let *M* be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S^1 -action. Then $\widehat{A}(M) = 0$.

 The original proof uses the Lefschetz fixed point formula and complex analysis.

The first existence theorem The second existence theorem Elliptic genera

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let *M* be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S^1 -action. Then $\widehat{A}(M) = 0$.

- The original proof uses the Lefschetz fixed point formula and complex analysis.
- From the original proof no relation to positive scalar curvature follows.

イロト イポト イヨト イヨ

The first existence theorem The second existence theorem Elliptic genera

ヘロト ヘアト ヘビト ヘビ

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let *M* be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S¹-action. Then $\widehat{A}(M) = 0$.

- The original proof uses the Lefschetz fixed point formula and complex analysis.
- From the original proof no relation to positive scalar curvature follows.
- Such a relation can be deduced from our existence results for positive scalar curvature metrics on S¹-manifolds.

The first existence theorem The second existence theorem Elliptic genera

★ E > ★ E

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let M be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S¹-action. Then $\widehat{A}(M) = 0$.

The first existence theorem The second existence theorem Elliptic genera

★ E > ★ E

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let M be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S¹-action. Then $\widehat{A}(M) = 0$.

• We may assume that dim M = 4k.

The first existence theorem The second existence theorem Elliptic genera

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let M be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S¹-action. Then $\widehat{A}(M) = 0$.

• We may assume that dim M = 4k. $\Rightarrow \widehat{A}_{S^1}(M/S^1) = 0$.

ヘロト ヘアト ヘビト ヘビ

The first existence theorem The second existence theorem Elliptic genera

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let M be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S¹-action. Then $\widehat{A}(M) = 0$.

- We may assume that dim M = 4k. $\Rightarrow \widehat{A}_{S^1}(M/S^1) = 0$.
- Therefore 2^ℓM is equivariantly spin-bordant to an S¹-manifold N with an invariant metric of positive scalar curvature.

・ロト ・ 同ト ・ ヨト ・ ヨト

The first existence theorem The second existence theorem Elliptic genera

・ロト ・ 同ト ・ ヨト ・ ヨト

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let M be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S¹-action. Then $\widehat{A}(M) = 0$.

- We may assume that dim M = 4k. $\Rightarrow \widehat{A}_{S^1}(M/S^1) = 0$.
- Therefore 2^ℓM is equivariantly spin-bordant to an S¹-manifold N with an invariant metric of positive scalar curvature.

• Hence,
$$2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0$$
.

The first existence theorem The second existence theorem Elliptic genera

ヘロト ヘアト ヘビト ヘビ

\widehat{A} -genus and S^1 -actions

Theorem (Atiyah and Hirzebruch 1970)

Let *M* be a spin-manifold with dim $M \ge 6$ which admits a non-trivial S^1 -action. Then $\widehat{A}(M) = 0$.

- We may assume that dim M = 4k. $\Rightarrow \widehat{A}_{S^1}(M/S^1) = 0$.
- Therefore 2^l M is equivariantly spin-bordant to an S¹-manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0. \Rightarrow \widehat{A}(M) = 0.$

The first existence theorem The second existence theorem Elliptic genera

• Let Λ be a \mathbb{Q} -algebra. A Λ -genus is a ring homomorphism $\varphi : \Omega_*^{SO} \to \Lambda$.

ヘロト ヘワト ヘビト ヘビト

The first existence theorem The second existence theorem Elliptic genera

- Let Λ be a \mathbb{Q} -algebra. A Λ -genus is a ring homomorphism $\varphi : \Omega^{SO}_* \to \Lambda$.
- Examples:
 - The Signature and the \widehat{A} -genus are genera.

・ロト ・ 同ト ・ ヨト ・ ヨト

The first existence theorem The second existence theorem Elliptic genera

Elliptic genera

• A genus φ is called elliptic if there are $\delta, \epsilon \in \Lambda$ such that

$$\sum_{i\geq 0} \frac{\varphi([\mathbb{C}P^{2i}])}{2i+1} u^{2i+1} = \int_0^u \frac{1}{\sqrt{1-2\delta t^2 + \epsilon t^4}} dt$$

イロト イポト イヨト イヨ

The first existence theorem The second existence theorem Elliptic genera

Elliptic genera

• A genus φ is called elliptic if there are $\delta, \epsilon \in \Lambda$ such that

$$\sum_{i\geq 0} \frac{\varphi([\mathbb{C}P^{2i}])}{2i+1} u^{2i+1} = \int_0^u \frac{1}{\sqrt{1-2\delta t^2 + \epsilon t^4}} dt$$

Theorem (Ochanine 1987)

A genus φ is elliptic if and only if $\varphi(E) = 0$ for all total spaces E of fiber bundles with fiber $\mathbb{C}P^{2i+1}$, $i \ge 0$, and simply connected base manifold.

ヘロト ヘアト ヘビト ヘビ

The first existence theorem The second existence theorem Elliptic genera

Equivariant genera

For every Λ -genus $\varphi : \Omega^{SO}_* \to \Lambda$ there exists an S^1 -equivariant version

$$\varphi_{S^1}: \Omega^{SO,S^1}_* \to H^{**}(BS^1; \Lambda) = \Lambda[[u]].$$

イロト 不得 とくほ とくほう

The first existence theorem The second existence theorem Elliptic genera

Equivariant genera

For every Λ -genus $\varphi : \Omega^{SO}_* \to \Lambda$ there exists an S^1 -equivariant version

$$\varphi_{\mathcal{S}^1}: \Omega^{\mathcal{SO},\mathcal{S}^1}_* \to H^{**}(\mathcal{BS}^1; \Lambda) = \Lambda[[u]].$$

Theorem (Bott and Taubes 1989)

A Λ -genus is elliptic if and only if for every spin S^1 -manifold M, the power series $\varphi_{S^1}(M)$ is constant in u.

- We have generators of the S¹-equivariant Spin-bordism ring
- These can be used to prove
 - the rigidity of elliptic genera
 - existence of *S*¹-invariant metrics of positive scalar curvature.

イロト イポト イヨト イヨ

Copyright information

- The photos of mathematicians are taken from the MFO Photo Collection or from Wikipedia.
- The photo of the tea cup is taken from artdentity.de.

イロト イポト イヨト イヨト