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Abstract.

The study of Vassiliev knot invariants arose from Vassiliev’s work on singularity

theory and from the perturbative Chern-Simons theory of Witten. One reason for

studying Vassiliev invariants is that they give topological ways of looking at “quantum”

knot invariants — that is invariants which arise by generalizing the Jones polynomial.

This thesis contains various results on Vassiliev invariants: common themes run-

ning through include their polynomial nature, their functoriality, and the use of Gauß

diagrams. The first chapter examines the functoriality of Vassiliev invariants and de-

scribes how they can be defined on different types of knotty objects such as knots,

framed knots and braids, and how algebraic structure naturally arises. An explicit

form of the relationship between the framed and unframed knot theory is given. Chap-

ter 2 considers the important question of whether a Vassiliev invariant can be näıvely

obtained from a combinatorial object called a weight system. A partial answer to this

is given by showing how “half” of the steps in such a transition can be performed

canonically and explicitly. In Chapter 3 the first two non-trivial invariants for knots,

evaluated on prime knots up to twelve crossing are examined, and some surprising

graphs are obtained by plotting them. A number of results for torus knots are proved,

relating unknotting number and crossing number to the first two Vassiliev invariants.

The second half of the thesis is concerned primarily with Vassiliev invariants of

pure braids and their connection with de Rham homotopy theory. In Chapter 4 a sim-

ple derivation is given showing the relationship between Vassiliev invariants and the

lower central series of the pure braid groups. This is used to obtain closed formulæ for

the actual number of invariants of each type. Chapter 5 is a digression on de Rham

homotopy theory and explains the geometric connections between Chen’s iterated in-

tegrals, higher order Albanese manifolds, and Sullivan’s 1-minimal models. A method

of Chen’s for obtaining integral invariants of elements of the fundamental group from

a 1-minimal model is given, and in Chapter 6 this is used to find Vassiliev invariants of

pure braids at low order: this extends work of M. A. Berger. Finally, a similar method

using currents is employed to obtain a combinatorial formula for a type two invariant

which is independent of winding numbers.
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Introduction.

This introduction contains some comments on the history of Vassiliev invariants, a

look at some themes present in the thesis and a synopsis of the contents.

Historical context.

Pre-Vassiliev. Gauß could arguably be described as the first mathematician to

consider knots and links. As well as being interested in which patterns of over and

undercrossings could occur, he also wrote down the so-called Gauß linking of a two

component link which is now well known in the context of electromagnetic induction.

In [28] he said; “A major task from the boundary of Geometria Situs and Geometria

Magnetudinus would be to count the linking number of two closed or infinite curves.”

There is also a fragment in the library at Göttingen, indicating that he had also con-

sidered braids.

British physicists, notably Kelvin [41] and Tait, hearing of the German work on

knots through Helmholtz and knowing the topological properties of smoke rings, sug-

gested that knotted vortices of æther could give a plausible atomic theory — different

knot types corresponding to different elements. This led Tait [71] to try to classify

knots of small complexity, i.e. up to ten crossings, in fact he managed to classify alter-

nating knots up to that level. The atomic theory faded away and knot theory was left

to the mathematicians.

In the twentieth century, Alexander considered the algebraic topology of knot com-

plements and defined the Alexander polynomial. Conway [20] renormalized this so that

it could be defined purely in terms of knot diagram combinatorics. Meanwhile, Milnor

[55] had generalized the Gauß linking numbers to “higher order” invariants: whereas

the Gauß invariants were related to the abelianization of a group, the Milnor invariants

corresponded to higher nilpotent quotients.

The quantum and Vassiliev approaches. Following the excitement caused by

the discovery of the Jones polynomial in 1984 and also the consternation caused by

the fact that it was only understood in terms of the combinatorics of knot diagrams,

Atiyah challenged Witten to place the Jones polynomial in some topological context.
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2 INTRODUCTION.

This he duly did in the seminal paper [79] relating the Jones polynomial to Chern-

Simons theory. Unfortunately for the mathematical community, the machinery involved

includes the notorious Feynman path integral — this is based on physical intuition

rather than mathematical rigour, and has so far withstood attempts at rigourization.

However, the so-called perturbative approach to the Witten formalism can be put on a

very sound mathematical footing — it is analogous to considering the Taylor expansion

of a function rather than the function itself, or in the case of the Jones polynomial,

substituting q = ex and expanding in powers of x.

Independently, Vassiliev discovered his invariants whilst considering the cohomol-

ogy of the space of knots in R3. He actually obtained a filtration on the space of

knot invariants by looking at a spectral sequence coming from applying duality to the

space of all embeddings of a circle in R3 [74]. Birman and Lin [13] showed that these

invariants could be characterized as ‘finite-type’, i.e. without recourse to the spectral

sequence.

It was whilst working on the perturbative Chern-Simons theory for his thesis under

Witten that Bar-Natan noticed similarities between diagrammatic relations in this

perturbative theory and the Vassiliev theory. Indeed [13] the coefficient of xn in the

expansion of the Jones polynomial mentioned above is a Vassiliev invariant of type n.

This led to the synthesis which became [6]: the main theorem is a construction, due

to Kontsevich [45], of a universal Vassiliev invariant which means that many question

about Vassiliev invariants can be reduced to combinatorial questions. For instance, this

means that the dimension of the space of rational Vassiliev knot invariants of given type

can be calculated by solving some (difficult) combinatorial problem; some low order

values are tabulated in [6].

Since then Vassiliev invariants have been generalized to braids [67], string links

[8], tangles (see e.g. [5]), and other such knotty objects. It can be proved that in a

suitable sense, the Milnor invariants alluded to above are of finite type. Also Vassiliev

invariants have been used [53, 10] to prove that the Alexander-Conway polynomial

can be recovered from the coloured Jones polynomial which is a generalization of the

usual Jones polynomial.

Some themes.

This thesis examines various aspects of the theory of Vassiliev invariants. Here are

some of the recurrent themes.

Vassiliev invariants as polynomials. Vassiliev invariants can be most easily

defined in terms of an analogy with polynomial functions: viz, a vanishing derivative



SOME THEMES. 3

condition. For a knot invariant taking values in some abelian group (e.g. the rational

numbers), a derivative can be defined which measures how the invariant alters under

crossing switches. This derivative is a map from “knots with a double point” to the

abelian group — the double point encoding where the crossing switch is taking place.

Higher derivatives can be defined similarly. A Vassiliev invariant of type n is an in-

variant whose (n + 1)th derivative vanishes identically. This is seen to be analogous

to one way of characterizing polynomials. One theme of this thesis is that “Vassiliev

invariants are like polynomials” is a useful paradigm (this is the theme of [76]).

Results in the literature demonstrating this usefulness include the following: the

results of Dean [22] and Trapp [73] on twist sequences; of Alvarez and Labastida [2] on

torus knots; and of Stanford [66] and Bar-Natan [7] on bounds and algorithms which

are polynomial in crossing number.

In this thesis these are put into other contexts. For instance the twist sequence

result is generalized in Corollary 9 which says that one gets similar results when forming

sequences by satelliting a fixed pattern on a fixed companion and altering the framing.

In Chapter 3 it is seen that when graphing the canonical type two knot invariant (x)

against the canonical type three knot invariant (y) for knots with crossing number

up to twelve, one sees something reminiscent of plotting x3 = y2, agreeing with the

suggestion that x is like a quadratic and y is like a cubic. One other result is that the

the fact that the product of two Vassiliev invariants is Vassiliev can be proved via a

Leibniz theorem analogy, viz the derivatives of the product can be expressed in terms

of the derivatives of the factors.

If a degree n polynomial is differentiated n times a constant function is obtained:

if a type n Vassiliev invariant is differentiated n times then a combinatorial object

called a weight system is obtained. One would like to be able to find an explicit way

of going from weight system to Vassiliev invariant. Chapter 2 proceeds by trying to

do this “integration” näıvely. One problem with this is the “constants of integration”

which come in at each integration step. By analogy with integrating odd and even

polynomials, the natural operation of taking the mirror image of a knot can be utilized

to perform half of the integration steps canonically and explicitly. (I can’t yet see how

to complete this to a full integration from weight system to invariant.)

Functoriality. Vassiliev invariants can be defined for various classes of knotty

objects — braids, string-links, links, framed knots, etc. (see [8, 65]) — in an obvious

manner which is functorial with respect to many maps between the classes: “many

maps” here being things like inclusions, wiring maps, satelliting, forgetful maps etc.
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In [65], Stanford considers functoriality in terms of categories of diagrams and

Reidemeister type moves, but the approach in Chapter 1 here is more in the skein

theoretic vein of Przytycki [60]. It seems to be the right framework for the algebraic

approach for pure braids — as used in Chapters 4–6. The approach is to consider

the module (over some fixed ring) freely generated by the set of knotty objects under

consideration, e.g. the free Z module generated by the set of knots. A filtration is

imposed on this module by considering knotty objects with double points as linear

combinations of genuine knotty objects. Vassiliev invariants are then the invariants

dual to this filtration. Functorial refers to maps respecting these filtrations.

In Chapter 1 the relationship between framed and unframed invariants is described

in this manner, with the framing number being easily identifiable; and the functoriality

of the mirror image map is a key to the half integration of weight systems in Chapter 2.

Gauß diagrams. Gauß diagrams are a way of encoding knot and braid dia-

grams. A Gauß diagram consists of disjoint circles/lines representing the strings of the

knot/link/braid and of arrows connecting points on the strings which meet at crossings

of the diagram. The orientation of an arrow indicates which part of the string is the

over-crossing and the arrows are marked to indicate whether they represent positive

or negative crossings. Gauß diagrams look quite similar to chord diagrams. A Gauß

diagram formula for an invariant is one which is calculates the invariant from the Gauß

diagram of any diagram of the knot/link/braid. For instance the usual combinatorial

formulæ for Gauß linking or for winding numbers can naturally be written as Gauß

diagram formulæ. Polyak and Viro [59] gave Gauß diagram formulæ for the second

and third order knot invariants and for one of the fourth order knot invariants. It is

seen in Chapter 3 that the näıve approach of Chapter 2 leads to formulæ for the second

and third order knot invariants.

Trying to replace one-forms with currents to obtain a combinatorial formula for the

type two pure braid invariant naturally leads to a Gauß diagram formula in Chapter 6.

Use of pure braids. The Vassiliev theory of pure braids is very appealing in

several respects. Pure braid groups have nice classifying spaces. The configuration

space of k ordered, distinct points in the complex plane is a classifying space for the

pure braid group on k strands, i.e. the only non-trivial homotopy group of such a

configuration space is the fundamental group and this is isomorphic to a pure braid

group. Studying the Vassiliev theory of pure braid groups is precisely the same as

looking at the rational/de Rham homotopy theory of the classifying spaces (this was

noted by Kohno [44]) — both are related to the nilpotent quotients of the pure braid

groups. So the Vassiliev invariants for pure braids lie appealingly in the intersection of
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geometry, topology and algebra. As well as this purely aesthetic reason for studying

pure braids, two other aspects motivated my study. These are as follows.

The Kontsevich integral was defined in terms of iterated integrals, as a generaliza-

tion of Chen’s power series connection for the configuration spaces mentioned above;

however, in this case, the points are signed ±1, and signed pairs are allowed to be

spontaneously created, or else mutually annihilate one another. My intention was to

improve my understanding of the Kontsevich integral by looking at the much simpler

braid version of iterated integrals.

In an attempt to generalize winding number as a topological fluid invariant, Berger

[12] was led to writing down an integral formula which I recognised as “the” type two

invariant of pure braids. His derivation would be considered far from rigorous by pure

mathematicians, and he also claimed to derive a combinatorial formula for this. I was

unconvinced by his combinatorial formula and tried to derive one myself.

Synopsis.

Chapter 1 starts by recalling definitions of Hopf algebras. It then goes on to intro-

duce the Vassiliev filtration associated to some class of knotty objects: this is not the

most intuitive way of defining Vassiliev invariants, but it allows the algebraic structure

to be made explicit from the start. Section 3 looks at the well known case of unframed

knots, and introduces chord diagrams and Kontsevich’s Theorem. Section 4 goes into

the case of framed knots and shows that the only difference can be polynomials in the

framing number. This leads to some results on satelliting.

Chapter 2 came from an attempt at proving the Kontsevich Theorem from a näıve

point of view — namely to go from the combinatorial data of a weight system to an

actual knot invariant. The Vassiliev knot-space point of view is reviewed, as is Stan-

ford’s criterion for integrability of an invariant of knots with double points. Then the

mirror image map is used to obtain a combinatorial formula for half of the integration

steps.

The first two non-trivial Vassiliev knot invariants are examined in Chapter 3. The

ideas of Chapter 2 are used to obtain simple bounds on them and used to derive Gauß

diagram formulæ for them, like those of Polyak and Viro. In Section 3 the values of

these invariants on the prime knots up to twelve crossings are plotted, and this reveals

some remarkable patterns. The formulæ of Alvarez and Labastida for the values of

these invariants on torus knots are used to prove some results suggested by the graphs

for the torus knot case, and these two invariants for torus knots are related to the

crossing and unknotting numbers.
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Chapter 4 introduces pure braids together with useful group theoretic and topo-

logical properties. Vassiliev invariants of pure braids are seen as generalizing winding

numbers in the sense that as winding numbers are dual to the abelianization of pure

braid groups, so Vassiliev invariants are dual to higher nilpotent quotients of the pure

braid groups (this is a cleaned up proof of observations of Kohno and Stanford). Finally

these ideas are used to find explicit formulæ for numbers of “independent” invariants.

De Rham homotopy theory is the subject of Chapter 5. Iterated integrals are

introduced and the geometric connection with Sullivan’s 1-minimal models is shown in

terms of “higher order Albaneses”. (This material seems to be known to the experts

[35] but appears not to be explicitly in the literature.) This is used to show how

generators of 1-minimal models give rise to functionals on the fundamental group.

Chapter 6 specializes the theory of Chapter 5 to the case of classifying spaces of the

pure braid groups to answer a question of M. A. Berger [12] on generalizing winding

numbers. Thus a method is given for obtaining integral formulæ for generating sets of

Vassiliev invariants. Low order invariants are tabulated. A combinatorial formula is

obtained for the type two invariant, by replacing smooth 1-forms by currents supported

on hyperplanes.

Appendix A contains some of the calculations from Chapter 6 and Appendix B lists

some some questions and further problems.



CHAPTER 1

Abstract Vassiliev theory.

And should I then presume?
And how should I begin?

— T. S. Eliot, The Love Song of J. Alfred Prufrock.

This chapter presents the abstract structure of Vassiliev theory in a manner dual to

the approach of later chapters. This approach has the advantage of making the Hopf

algebraic structure very explicit. It also provides a clear framework for two results from

my Part III Essay [77].

Section 1 recalls some useful notions concerning bialgebras and Hopf algebras. Sec-

tion 2 defines the Vassiliev bialgebra filtration for any monoid of knotty objects. Sec-

tion 3 looks specifically at the case of knots, and Section 4 considers the extra structure

of framing on knots.

1. Bialgebras and Hopf algebras.

First recall the definitions of a bialgebra. A bialgebra H over a commutative unital

ring R is an associative algebra over R with a unit, ǫ : R → H, and an augmentation

η : H → R, and with a coassociative comultiplication ∆ : H → H ⊗ H which is also a

map of algebras and for which η is a counit.

Typically the comultiplication will be the adjoint of some naturally defined associa-

tive product on the linear dual, H∨ := Hom(H,R). A standard example of a bialgebra

is the monoid algebra RM, of a monoidM: the comultiplication comes from the natural

pointwise product on the dual (which comes from the product on the ring R) and this

comultiplication is given explicitly by the linear map defined on the elements of M by

m 7→m⊗m.

A Hopf algebra is a bialgebra equipped with an antipode S : H → H which is an

anti-automorphism, so S(ab) = S(b)S(a), and satisfies m(S⊗ id)∆ = ǫη =m(id⊗S)∆.

The group algebra RG of a group G is a Hopf algebra as the linear extension of the

inverse of the group is an antipode.

Two important subsets of a bialgebra are the following: the group-like elements

G(H) = {g ∈ H : ∆g = g ⊗ g} — these form a monoid, and a group if H is a Hopf

7



8 1. ABSTRACT VASSILIEV THEORY.

algebra; and the primitive elements P(H) = {x ∈ H : ∆x = 1⊗ x+ x⊗ 1} — these form

a Lie algebra under the commutator product: [x, y] = xy− yx.

There are notions of graded and of filtered bialgebras in which the underlying

modules are Z graded/filtered and all of the maps are of degree zero. A connected

graded bialgebra is one which is trivial in negative gradings and in which the degree

zero part is isomorphic to R as a ring via the augmentation and unit maps.

For modules A,B the twist map τ : A ⊗ B → B ⊗ A is defined via a ⊗ b 7→
(−1)deg(a)deg(b)b ⊗ a where if A and B are not graded then take them to be con-

centrated in degree zero. A bialgebra is commutative if the multiplication m satisfies

m ◦ τ =m and cocommutative if τ ◦ ∆ = ∆.

The structure of graded bialgebras was studied by Milnor and Moore in [54] and

relevant results include the following:

Theorem 1 ([54]). Let H be a connected graded bialgebra.

(i) For R a characteristic zero field, H is generated by its primitive elements if and

only if it is cocommutative.

(ii) For R a characteristic zero field, H is isomorphic to the polynomial algebra gener-

ated by its primitive elements if and only if it is cocommutative and commutative.

(iii) H has an antipode (and so is a Hopf algebra).

In the appendix to [62] Quillen studies the structure of a certain class of filtered bial-

gebras called complete Hopf algebras, however in the following result his hypotheses can

be weakened. One requires the definition of the exponential map, exp x =
∑
∞

i=0 x
i/i!,

on the augmentation ideal, ker η, so characteristic zero and some completeness are

necessary.

Theorem 2 ([62]). The map exp induces a bijection of sets P(H)
∼=−→ G(H) and

the product on G(H) pulls back to a product on P(H) via the Baker-Campbell-Hausdorff

formula.

2. Vassiliev invariants and Hopf algebra structure.

Defining the Vassiliev invariants in the following manner makes the algebraic struc-

ture very explicit but is rather abstract. Consider some monoid K of oriented knotty

objects — e.g. knots with connected sum, links with distant union, braids on a fixed

number of strands with braid composition. Fix a commutative ring R with unity and

division by two.1 Vassiliev theory is concerned with a topologically defined bialgebra

filtration on the monoid algebra RK.

1Not strictly necessary, perhaps.
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One approach to this filtration is via “knotty objects with double points”. A knotty

object in K will be something like an isotopy class of embeddings of a 1-manifold. In

a knotty object with double points, the image of a map of this 1-manifold is allowed

a finite number of transversal self-intersections — these are the double points. Such

an object with double points is to be considered as an element of RK via the formal

resolution of the double points (also known as the Vassiliev skein relation), viz:

�� := − ∈ RK.

This is supposed to be an equation on all sets of three diagrams which are identical

except inside some ball where they look as shown. So a knotty object with n double

points is considered as an alternating sum of 2n “proper” knotty objects. This is

well-defined if the knotty objects with double points are considered up to rigid vertex

isotopy. The filtration F is defined on RK via

FnRK = {R-linear combinations of knotty objects with at least n double points}.

For a reasonable product on K (e.g. those mentioned above) the product of a knotty

object with n double points and a knotty object withm double points is a knotty object

with (n +m) double points, thus the product respects the filtration. Indeed so does

the coproduct. This can be demonstrated in terms of the following Leibniz Theorem,

which I proved in the dual setting in [77].

If a knotty object has n double points, order them and denote it by K
(

�� . . . ��

)

.

Let represent 1/2( + ). Then for I ∈ Cn :=
{

�� ,
}n

let K(I) be the

linear combination of knots obtained from K by replacing the double points by the

corresponding elements of I. Further, let Î ∈ Cn be obtained by replacing each �� in

I by a and vice versa. Then

Theorem 3. The coproduct respects the filtration, as

∆
(

K( �� . . . ��︸ ︷︷ ︸
n

)
)

=
∑

I∈Cn

K(I)⊗ K(̂I),

and this is in Fn(RK⊗ RK).

Proof. This is proved by induction on the number of double points in K. The

case n = 0 is trivial and the inductive step is as follows:

∆
(

K( �� . . . ��︸ ︷︷ ︸
n

)
)

= ∆
(

K( �� . . . ��︸ ︷︷ ︸
n−1

)
)

−∆
(

K( �� . . . ��︸ ︷︷ ︸
n−1

)
)

ind
=
hyp

∑

J∈Cn−1

[

K(J )⊗ K(Ĵ ) − K(J )⊗ K(Ĵ )
]
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=
∑

J∈Cn−1

1
2

[

(

K(J ) − K(J )
)

⊗
(

K(Ĵ ) + K(Ĵ )
)

+
(

K(J ) + K(J )
)

⊗
(

K(Ĵ ) − K(Ĵ )
)

]

=
∑

J∈Cn−1

[

K(J �� )⊗ K(Ĵ ) + K(J )⊗ K(Ĵ �� )
]

=
∑

I∈Cn

K(I)⊗ K(̂I).

The Vassiliev invariants are then defined as follows. An R-valued invariant of K

is said to be Vassiliev of type n if its linear extension to RK vanishes on all knotty

objects with more than n double points. Denote the set of type n invariants by VnRK

and the set of all the Vassiliev invariants,
⋃

VnRK, by VRK, then from the definitions,

VnRK ∼= (RK/Fn+1RK)
∨.

Consider the graded object associated to the filtration:

gr•RK :=
^⊕

i

FiRK/Fi+1RK,

the hat on the sum meaning completion with respect to the grading. This inherits a

bialgebra structure. For the cases of K above with R = Q (or R ⊃ Q ), Kontsevich’s

theorem [6, 45] gives a map Z̃ : QK → A•QK, where A•QK = ^⊕
i≥0AiQK is a

combinatorially defined object — a space of chord diagrams — and Z̃ induces an

isomorphism

gr•QK
∼= A•QK.

Dually this means that VnQK/Vn−1QK ∼= (AnQK)
∨ and that VQK ∼=

⊕

(AiQK)
∨ =

(A•QK)
∨, i.e. the filtration splits.2

Standard problems include the following:

• Prove Kontsevich’s fundamental theorem from an elementary point of view (see

[11] for various proofs and moral objections to them). This is part of the raison

d’être of Chapter 2.

• Understand the structure of the An, e.g. their dimensions, and further algebraic

structure. This is considered for pure braids in Chapter 4.

2However, the splitting is not, a apriori , canonical.
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• Find a way of calculating combinatorial formulæ for the invariants which gener-

ate the algebra V. (This is related to both the above problems.) Chapters 2, 3,

5 and 6 look at this.

• Do Vassiliev invariants distinguish the knotty objects of K?

• How do Vassiliev invariants relate to classical invariants? To other topological

constructions? These are considered in Chapters 3, 4, and 5.

3. The case of knots.

Let Knot be the monoid of oriented knots with connected sum, and let A• be short-

hand for the bialgebra A•QKnot, defined combinatorially in terms of chord diagrams

as follows. A chord diagram of degree n is an oriented circle with n chords with dis-

tinct endpoints marked on it, considered up to orientation preserving diffeomorphisms

of the circle (conventionally these are drawn with the orientation being anti-clockwise).

An element of FnQKnot/Fn+1QKnot can be represented by a linear combination of

knots with n double points. The underlying chord diagram of a knot with n double

points is the chord diagram which indicates the points on the source circle which are

identified at the double points.

E.g.

��
��

����

−→

It is shown in [13] that two knots with n double points have the same underlying

chord diagram if and only if they are related by a sequence of crossing changes; so if two

knots with n double points have the same underlying chord diagram then as elements

of FnQKnot they differ by an element of Fn+1QKnot .

Consider the subspaces 4T and 1T of the vector space of linear combinations of

degree n chord diagrams which are generated respectively by the following kinds of

elements:

• 4T — - + -

• 1T —

where in the 4T the four diagrams an identical set of n − 2 chords are not marked,

their endpoints lying on the dotted arcs; and the 1T generators have n−1 other chords

which do not intersect the pictured chord (called the isolated chord).

If a knot with n double points, K, has underlying chord diagram with an isolated

chord then as an element of QKnot/Fn+1QKnot it can be represented by a knot with
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double points which has a nugatory double point — this is precisely what is shown in

the diagram:

[K] =

[

����

]

=

[

-
]

= 0,

as the resolution of the nugatory double point gives two isotopic knots with double

points (give one half of one of them a full twist). This is not the case when considering

framed knots, as will be mentioned again below.

An explanation of 4T is given in Chapter 2.

Define

An := 〈degree n chord diagrams〉Q /4T,1T.

Then Kontsevich’s Theorem (see [6, 45]) gives a map Z̃ : QKnot → A• inducing

isomorphisms

FnQKnot/Fn+1QKnot
∼=−→ An

which are given by the “underlying chord diagram” maps.

Thus A• inherits the bialgebra structure of QKnot, and it is immediate that these

are as given in [6]. For example, the product is given by “connected sum”, as illustrated

by the following:

�
�
�
�

= = .

Although this seems to be dependent on where the chord diagrams are cut, it is in

fact well-defined modulo the 4T relation [6]. Further, A• is connected graded, so

by Theorem 1 it is actually a Hopf algebra. Perhaps this is related to the fact that

Knot/FnQKnot is actually a group (rather than just a monoid) — see [30, 57].

In fact, in the normalization considered here, the Kontsevich integral, Z̃ : QKnot→
A•, is a map of filtered bialgebras (this being stronger than just descending to a bial-

gebra map on the associated graded objects). This means, for instance that Z̃ is

multiplicative under the connected sum of knots, i.e. Z̃(K#K ′) = Z̃(K).Z̃(K ′), and that

knots get mapped to group-like elements in A•.

As a monoid Knot does not have a lot of structure, it is just a commutative

monoid on a countably infinite set of generators (the prime knots), but the topological

information in the filtration is very rich; this should be compared with the case of pure

braids on k strands, where the algebraic structure is a lot richer, but the Vassiliev

filtration is very easy to understand (see Chapter 4 and on).

QKnot, and hence also A•, is commutative and cocommutative so by Theorem 1,

A• is generated as an algebra by its primitive elements. Further as it is complete,

the exponential function defines a bijection between the primitive elements and the
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group-like elements. Thus

log ◦Z̃ : Knot→ P(A•)

is well defined and additive under connected sum.

Some structure of Knot can be read in A•, for instance the mirror image map,

µ : Knot→ Knot. Defining J : A• → A• on homogeneous elements by x 7→ (−1)deg xx

then µ and J intertwine Z̃; further, as J is an algebra map, µ and J also intertwine

log ◦Z̃. This symmetry is utilized in Chapter 2.

4. The case of framed knots.

A framed knot is a knot equipped with a homotopy class of a non-vanishing section

of its normal bundle: this can be thought of as being a “parallel” copy of the knot

arbitrarily close, or else a framed knot can be thought of as an embedded orientable

ribbon rather than an embedded string. Framed knots will be drawn with the “black-

board framing”, i.e. the parallel copy is pushed off the knot in the plane of the paper,

so

means .

For knots in R3 or S3 (which are what is being considered here), the framing can be

described by the framing number — this is the Gauß linking number of the knot and

a parallel copy “pushed-off” along the framing.

4.1. The framed and unframed Kontsevich integrals. The set of oriented

knots, Knot, can be thought of as sitting inside the set of framed oriented knots, fKnot

— in three-space every knot has a canonical framing, the zero framing. Connected sum

can be defined on framed knots, the underlying unframed knots are connect summed

and the framing numbers are added together. Thus the “assign zero framing” map,

ξ : Knot→ fKnot, is a monoid map and fKnot is just a trivial extension of Knot by

Z. The extra generators for fKnot are the ±1 framed unknots:

fKnot ∼= Knot[ , ] ∼= Knot × Z.

By [65], both the zero framing map, ξ, and the forgetful map U : fKnot → Knot

respect the Vassiliev filtrations. In the Vassiliev theory for framed knots the 1T relation

does not hold — for instance, the resolution of a nugatory double point for a knot with

one double point gives two framed knots with a difference of two in framing number.

So let fA• := A•Q
fKnot := 〈chord diagrams〉Q /4T . There is the natural “quotient by

1T” map UA :
fA• → A•.

Le and Murakami [47] define a framed version of the Kontsevich integral, which is

a bialgebra map fZ̃ : Q fKnot→ fA• (although they really consider a slightly different
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normalization). They show the following behaviour under change of framing:

fZ̃(K# ) = fZ̃(K). exp( /2),

and also that UA ◦ fZ̃ = Z̃◦U. Furthermore, as expected (Z̃ maps the unit to the unit)

the unframed unknot maps to the empty chord diagram.

Definition 1. Define ξA : A• → fA• as follows. For D a chord diagram and S a

subset of its chords, let D\S be the diagram obtained from D by removing the chords

in S. Define

ξA(D) =
∑

chord subsets S

(− )|S|.D\S,

and extend linearly.

E.g.

ξA
( )

= + 3
(

−
)

. + 3
(

−
)2
. +

(

−
)3
.

= − 3 + 2

In [77] I proved the following.

Theorem 4. ξA is a well defined map of Hopf algebras and satisfies UA ◦ ξA =
id.

Corollary 5. There is a Hopf algebra isomorphism fA•
∼= A•[ ], and a vector

space isomorphism P(fA•) ∼= P(A•)⊕ 〈 〉Q , with ξA|P being the natural inclusion.

Define the map w : fKnot→ Z to be the framing number, and the map wA :
fA• →

Q by taking twice the coefficient of .

The precise formalism of the relationship between the framed and unframed cases

given in this next theorem is interestingly absent from the literature — perhaps because

of the penchant for a slightly different normalization which behaves well on links.

Theorem 6. The following diagram of monoids commutes and the vertical lines

are short exact:
Z →֒ Q = Q

w
x

 wA
x

 wA
x



fKnot
fZ̃−→ G(fA•)

log−→ P(fA•)

ξ
x

 ξA
x

 ξA
x



Knot
Z̃−→ G(A•)

log−→ P(A•).
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Proof. The fact that ξA is a coalgebra maps means that it restricts to a map of

primitive elements and to a map of group-like elements. The fact that it is an algebra

map means that it commutes with log and exp.

The commutativity of the top right square is due to the fact that a group-like

element of fA• is of the form

+
w

2
+ terms of degree 2 and greater.

(Remember a group-like element is in the image of exp, and that there is only one

chord diagram of degree zero and one of degree one.)

The exactness of the left and right columns is immediate. The exactness of the

centre column follows from the exactness of the right hand column, the commutativity

of the right-hand side, and the fact that log is an isomorphism.

Consider the map wA ◦ fZ̃ ◦ ξ, by the usual yoga this must be a type one invariant

of unframed knots, and the only such are constant invariants. Looking at the value of
fZ̃ on the zero framed unknot above, it is seen that wA ◦ fZ̃ ◦ ξ must be the zero map.

Further, under the behaviour of connect summing with a nonzero framed unknot as

above, it is seen that wA ◦ fZ̃ is precisely the framing number, w.

Finally it is necessary to show that the bottom left square commutes. From the

last paragraph, fZ̃ ◦ ξ maps into the kernel of wA|G, but ξA|G is an isomorphism onto

the kernel of wA|G with inverse UA, and also U is a left inverse of ξ, so UA ◦ fZ̃ = Z̃◦U
from above gives fZ̃ ◦ ξ = ξA ◦ Z̃.

4.2. Relationship with Vassiliev invariant. The map fZ̃ is not a universal

Vassiliev invariant for framed knots; this fact was observed by Kassel and Turaev [39].

The problem is essentially that the crossing change operation preserves the parity of

framing number.3 Thus, for instance, there is a non-constant type zero invariant which

evaluates to one on knots with odd framing number and evaluates to zero on knots

with even framing number. However, a universal Vassiliev invariant can be defined in

the following way.

Let Q (Z/2) be the group (Hopf) algebra of Z/2, considered graded of degree zero.

Write Z/2 multiplicatively with elements 1 and 1̄. For K a framed knot, let r(K) ∈ Z/2
be the mod 2 reduction of the framing number of K (i.e. even framing maps to 1, odd

framing maps to 1̄). Then define ffZ̃ : Q fKnot→ Q (Z/2)⊗Q fA• by K 7→ r(K)⊗fZ̃(K).
It is easy to see that ffZ̃ is still a bialgebra map. It is also a universal Vassiliev invariant

3In the sense of the next chapter, the space of singular framed knots has two path components.
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in the sense that it induces isomorphisms

FnQ
fKnot/Fn+1Q

fKnot
∼=−→ Q (Z/2)⊗ fAn.

This means that a Vassiliev invariant of framed knots is the sum of an invariant of

knots with even framing number and an invariant of knots with odd framing number,

each of these invariants factoring through fZ̃. Combining this with Theorem 6 one

obtains the following:

Proposition 7. A finite type invariant of framed knots is of the form p(K) +

(−1)w(K)q(K) where p(K) and q(K) are polynomials in finite type invariants of unframed

knots and the framing number, w.

Proof. By the Hopf algebra structure theory, an element of fA• is a polynomial in

and elements of A•. So by the above, the invariant restricted to even framed knots

is some polynomial, x(K), in finite type invariants of unframed knots and the framing

number, w; the restriction to odd framed knots is also such a polynomial, y(K). One

can then just take p(K) = 1
2
(x(K) + y(K)) and q(K) = 1

2
(x(K) − y(K)).

4.3. Satelliting operations. Framed knots have the natural operations of satel-

liting on them. These are well behaved with respect to the Vassiliev theory. First recall

the definition of satelliting. For Q a knot in a solid torus T and K a framed knot, define

SQ(K) to be the (unframed) knot formed by replacing a tubular neighbourhood of K

by the solid torus containing T , the longitude of T being glued in as prescribed by the

framing of K. In this case SQ(K) is called a satellite knot, Q is called the pattern and

K is the companion.

E.g.

K

,

Q⊂T

7−→

SQ(K)

For a fixed pattern Q, the satelliting map SQ :
fKnot→ Knot preserves the Vassiliev

filtration [65, 60]. Dualizing to the invariants, this means that

Proposition 8 ([65, 60]). If v is a type n invariant of unframed knots and Q is

some fixed pattern then v ◦ SQ is a type n invariant of framed knots.

Combining this with Proposition 7 one obtains the following corollary:

Corollary 9. Let Ki denote the knot K equipped with its ith framing, let Q be

some fixed pattern and let v be an invariant of unframed knots of type n. As a function

of i, v ◦SQ(Ki) is of the form p̄(i)+ (−1)iq̄(i) where p̄ and q̄ are polynomials of degree

at most n.
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Note that I don’t know if q̄ is ever non-zero.

Proof. By Propositions 7 and 8, v◦SQ(Ki) is of the form p(Ki)+(−1)
iq(Ki) where

p and q are polynomials in finite type invariants of unframed knots and the framing

number, but the underlying unframed knot is constant and the framing number is i,

thus v ◦ SQ(Ki) is of the required form.

Let Wh be the Whitehead pattern, drawn as

.

The following I believe was observed by X.-S. Lin and was communicated to me by

Matt Greenwood at Knots 95 in Warsaw. The proof is my own.

Theorem 10. The Whitehead satelliting map SWh in general increases the Vas-

siliev filtration by one, i.e. induces maps FnQ
fKnot → Fn+1QKnot for n ≥ 1.

Dualizing, this means that if v is a type n ≥ 1 invariant of unframed knots then v◦SWh
is a type n− 1 invariant.

Proof. Consider the case of a framed knot with just one double point, the general

case is the same but messier to write down. Concentrate on a neighbourhood of the

double point and the place to where the “clasp” gets mapped:

SWh( �� ) = SWh( ) − SWh( )

=
( )

−
( )

=
(

��
)

+
( )

−
(

��
)

−
( )

.

But the two with unlinked clasps are unknots, and hence cancel. Thus

SWh( �� ) =
(

��
)

−
(

��
)
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=
(

���� ��
)

−
(

�
�
�
����

���
���
���

��
)

+
(

����
���
���
���
���

��
��
��
��

��
)

−
(

�
�
�
����
���
���
���

��
��
��
��

��
��
��
�� ��

)

∈ F2QKnot.

In general, a framed knot with n double points will map to an alternating sum of 4n

knots with n+ 1 double points — one at the clasp and one at each of the sites of the

original double points.

Note that when dualizing, the case n = 1 has to be considered separately, but that

type one invariants of unframed knots are just constants, so induce a constant invariant

on framed knots.

The ith twisted double of the unknot, Wh(i), is the Whitehead satellite of the

i-framed unknot. It can be pictured as

i full twists

where i full twists means i positive full twists if i is positive and −i negative full twists

if i is negative.

Corollary 11. If v is a type n invariant of unframed knots, then, as a function

of i, v(Wh(i)) is a polynomial of degree at most n− 1.

Proof. By Theorem 10 and the argument of Corollary 9, v(Wh(i)) is of the form

p̄(i) + (−1)iq̄(i), where p̄ and q̄ are polynomials of degree at most n − 1. But by the

result of Dean [22] and Trapp [73] on twist sequences, v(Wh(i)) is a polynomial in i of

degree at most n, thus q̄ is the zero polynomial.

This will be revisited in Chapter 3.



CHAPTER 2

Half integration for knots.

Why, it’s a looking glass book of course! And if I hold it
up to a glass, the words will all go the right way round again.

— Alice, Through the Looking Glass.

This chapter is concerned with attempting to prove Kontsevich’s Theorem from a näıve

point of view. Section 1 introduces the knot space approach to Vassiliev invariants,

more akin to Vassiliev’s own approach than that of Chapter 1. Section 1.2 presents

Stanford’s results on necessary and sufficient conditions for extending an invariant of

knots with i+ 1 double points to knots with i double points. In Section 2 it is shown

that this can be achieved in a canonical fashion when a certain symmetry is present

— in the integration of a weight system this will happen automatically in at least half

the steps.

1. Introduction to the knot-space view.

1.1. Vassiliev knot-space view. Vassiliev’s original spectral sequence approach

was rather different to the approach of the Chapter 1, and was axiomatized by Birman

and Lin in [13]; it can be described in the following manner. Consider the suitably

topologised space of smooth maps S1 → R3 with at most a finite number of transversal

self-intersections — double points. This space is stratified, the ith stratum consisting

of knots with i double points. So the top stratum is an open dense set consisting of

“proper” knots, the connected components corresponding to the distinct knot types.

These “chambers” are separated by “walls” consisting of knots with a single double

point. A path in one of these chambers corresponds to a continuous deformation of a

knot, and a path which passes transversally through a wall corresponds to pushing one

piece of the knot through another — a so-called crossing change.

As the embeddings are oriented, the walls are co-oriented, a transverse path inter-

sects a wall positively if it corresponds to a negative crossing ( ) becoming a positive

crossing ( ).

A knot invariant, v, taking values in some abelian group G, corresponds to an

assignment of an element of the group to each connected component of the top stra-

tum: this can be extended to knots with a single double point by considering how the

19
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function jumps on a path through knot space passing transversely through the wall

corresponding to the knot with a double point. Symbolically this is written as

v
(

��

)

= v( ) − v( ).

Inductively this can be continued to the higher codimension strata, i.e. v can be ex-

tended to knots with an arbitrary number of double points. Note that this process

leads to invariants of rigid vertex isotopy.

A knot invariant is said to be Vassiliev if it vanishes on all strata of sufficiently

large codimension, and specifically is said to be of type n if it vanishes on all strata

of codimension greater than n (i.e. on knots with more than n double points). This is

easily seen to be the same as the definition given in Chapter 1. It should be noted that

these knots with double points are not the same objects as considered in Chapter 1.

There they were considered as elements of RKnot and so had various relations imposed

on them such as �
�
�
� = 0. Here they are considered as objects with no relations

between them (but the invariants defined on them will turn out to satisfy certain

relations).

This framework has certain conceptual advantages over the abstract defintion given

earlier. The idea of measuring “jumps” in the knot invariant as it passes through

a wall can be thought of as being analogous to differentiating the invariant at that

double point. This leads to the Vassiliev condition being analogous to some vanishing

derivatives condition, i.e “Vassiliev invariants are like polynomials”. In fact this is a

reasonably fruitful paradigm as has been seen in Chapter 1, and as will be seen below

and in Chapter 3.

1.2. Integration and Stanford’s Theorem. Some of the notions of the above

paragraph can be generalized in the following useful definitions.

Definition 2. • A singular isotopy, Φ(t), of knots with n double points is a

path in the union of the nth and (n+1)th strata such that the path only intersects

the (n+1)th stratum transversally and a finite number of times (see Figure 2.1).

The intersections {Φs : 1 ≤ s ≤ r} of the path with the (n+1)th strata are called

the singularities of the singular isotopy and the indices {σs = ±1 : 1 ≤ s ≤ r}

give the signs of the corresponding intersection.

• An invariant of knots with i double points (considered up to rigid vertex isotopy)

will be called an i-invariant.

• If P and Q are respectively an i-invariant and an (i− 1)-invariant which satisfy

P( �� ) = Q( ) −Q( ),
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Figure 2.1. A singular isotopy of knots with two double points, the passage through the walls
corresponding to crossing changes.

then say that P is the derivative of Q, Q is an integral of P and write Q ′ = P.

(So P gives the “jumps” of Q.)

Using this terminology, if Q is an i-invariant for which a derivative exists (a nec-

essary and sufficient condition is given below) and Φ(t) is a singular isotopy of knots

with i double points from k0 to k1, then

Q(k1) −Q(k0) =

r∑

s=1

σsQ
′(Φs).(∗)

Specifically, if the singular isotopy is closed (i.e. k0 = k1) then both sides vanish.

One wants to know which i-invariants come from genuine knot invariants, and

similarly which i-invariants are derivatives of (i− 1)-invariants.

Suppose that P is an i-invariant which is the derivative of some (i − 1)-invariant,

then it must satisfy the following relations.

(i) Topological four term relation (T4T): Consider the closed singular isotopy of

knots with i− 1 double points given by passing the vertical strand shown below

through the others in the indicated manner:

.

Then (∗) gives the T4T relation:

P( ) − P( ) − P( ) + P( ) = 0.

(ii) Topological one term relation (T1T): Similarly consider the closed singular iso-

topy given by

��
��
��
�� .
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Apply (∗) to obtain:

P( ��
��
��
�� ) = 0.

(iii) Differentiability: Here the closed singular isotopy

→ → → →

gives (after reordering)

P( �� ) − P( �� ) = P( �� ) − P( �� ).

Remark 1. • It can be seen that (iii) is the necessary and sufficient condition

alluded to above for P to have a derivative — it is saying that it does not matter

which one of the i+ 1 double points is resolved.

• The above three closed singular isotopies can thought of as loops around respec-

tively the following ‘higher order singularities’: a knot with i − 1 double points

and one triple point; a knot with i double points and one cusp singularity; and

a knot with i+ 1 double points.

In his thesis (see [68]) Stanford proved the following.

Theorem 12. The above three conditions are necessary and sufficient for P to be

the derivative of some (i− 1)-invariant.

In view of this, say that an i-invariant is integrable if it satisfies the above three

conditions.

Unfortunately Stanford’s Theorem is inadequate in the following ways:

• it is non-constructive;

• it says nothing about whether the integral of an integrable invariant is itself

integrable;

• if an invariant P does integrate to an invariant Q, then Q is in general not

unique, if W is a differentiable (i− 1)-invariant with W ′ = 0 then Q+W is also

an integral of P: i.e. one can add on constants of integration.

Below it will be seen that these problems can be overcome in cases displaying a rea-

sonable symmetry.

1.3. Weight systems. A degree i weight system is an integrable i-invariant which

has zero derivative. In particular it follows that the nth derivative of a type n knot

invariant is a degree n weight system. Kontsevich’s Theorem implies that, over Q ,

every weight system comes from a knot invariant in this way. The goal is to try to

show this combinatorially, and possibly prove it for rings other than Q , by integrating

from a weight system to a knot invariant.
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even

even

unique

unique

odd

odd

Figure 2.2. Semi-systematic integration of even and odd polynomials.

A key property of weight systems is that they are invariant under crossing changes.

This is immediate as the derivative measures the jump under crossing changes and here

the derivative vanishes.

2. Half integration.

In view of the problem of integration and the analogy with polynomials, consider

a slight digression:

2.1. Integrating odd and even polynomials. If one wants to integrate from a

constant function on the real line to a degree n polynomial, then one must perform n

integrations and so pick up n constants of integration. It is natural to want to do this

canonically. One way of doing this is to consider odd and even functions, i.e. the ±1
eigenspaces for the involution adjoint to x 7→ −x on the real line (which is the range).

Note that the constants of integration are the constant functions and that these are

even. By a simple direct sum decomposition argument this means that if a function has

an even integral then all of its integrals are even and if a function has an odd integral

then this is the unique odd integral.

Getting back to the integration of a constant function, one proceeds by taking the

unique linear odd function which is its integral. This can then be integrated to a

(non-unique) even function, then to a unique (given the previous choice) odd function.

This continues until n integrations have been performed, ⌈n
2
⌉1 of which will have been

canonical. See Figure 2.2.

2.2. Back to finite type invariants. To apply the above argument it transpires

that the involution on the space of knots with i double points that is relevant is that

of the mirror image: k 7→ k. This decomposes the space of i-invariants into a +1

1The ceiling function ⌈x⌉ returns the least integer greater than or equal to x.
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eigenspace — the even2 invariants, and a −1 eigenspace — the odd invariants. The

following should make apparent the above discussion of polynomials:

Fact 1. (i) [74, Theorem V.5.2] If v is a type n knot invariant then one can find

some invariant, v1, of lower degree so that v+v1 is odd/even as n is respectively

odd/even.

(ii) [23, implicit] A weight system is even.

The first was noted by Vassiliev when he considered the effect of orientation reversal

of R3 on his spectral sequence and the second is clear as there is a singular isotopy from

a projection of a knot with n double points to its mirror image obtained by flipping

each of the crossings in the projection in turn.

In view of the latter, make the following definition which identifies the singularities

in the singular isotopy from a knot projection by switching the crossings in some given

order:

Definition 3. If π is a regular projection of a knot with i double points, C =

{a1, . . . , ar} is an ordering of the crossings in π, and 1 ≤ s ≤ r then define (π,C, s) to

be the knot with i + 1 double points obtained by switching the first s− 1 crossings of

π and replacing the crossing as with a double point.

E.g.

(π,C) =

4

3

2 1

(π,C, 3) =

Note that the index, σs, of the sth singularity, (π,C, s), in the singular isotopy, is minus

the sign, ǫ(as), of the sth crossing, as.

Domergue and Donato [23] gave a simple formula for integrating a type n weight

system to an (n − 1)-invariant; this can be generalized considerably in the following

manner:

Theorem 13. (i) If P is an integrable even i-invariant, then it has a unique

odd integral Q. Further, Q is itself integrable and is given on a projection π of

a knot with i− 1 double points, k, by

Q(k) = 1
2

r∑

s=1

ǫ(as)P ((π,C, s)) ,

for any ordering C.

2Not to be confused with Bar-Natan’s inversion even invariants [6].
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(ii) If Q is an integrable odd i-invariant, then all integrals of Q are even.

Proof. (i) Suppose that P is an integrable even i-invariant then by Stanford’s

Theorem there exists an (i − 1)-invariant, Q̂, which is an integral of P. Let Q be the

odd part of Q̂, so Q(k) = 1
2

(

Q̂(k) − Q̂(k)
)

. Note that, using the overline notation,

means the selected crossing is positive before the mirror image is taken. Q is

differentiable and:

Q ′( �� ) = Q( ) −Q( )

= 1
2

(

Q̂( ) − Q̂( ) − Q̂( ) + Q̂( )
)

= 1
2

(

Q̂( ) − Q̂( ) + Q̂( ) − Q̂( )
)

= 1
2

(

P( �� ) + P( �� )
)

= P( �� ),

as P is even. Thus Q is an odd integral of P. Equivalently, it could be shown (as in

[75]) that the even part of Q̂ is just a weight system.

To see for a projection, π, of a knot with double points, k, that Q is given by the

formula, observe first that as Q is odd it satisfies Q(k) = 1/2
(

Q(k) −Q(k)
)

and the

ordering of the crossings gives a singular isotopy from k to k, then apply (∗).
Finally it is necessary to show that Q satisfies the T4T and T1T relations.

For T4T consider the term in the T4T expression which looks locally like ,

and suppose that C is an ordering of the crossings which has the pictured crossing as

the final crossing. Then

Q

( )

=

[

1
2

r−1∑

s=1

ǫ(as)P

((

, C, s

))]

+ 1
2
P

( )

.

Taking corresponding orderings of the crossings in the other three terms in the T4T

gives similar expressions. On summing them together, the four last terms cancel in

pairs and the four sums together cancel out because P satisfies the T4T.

T1T is straightforward:

Q

(

��
��
��
��

)

= 1
2

∑

s

ǫ(as)P

((

��
��
��
�� , C, s

))

= 0,

as P satisfies T1T.

(ii) Suppose that R is an integral of the odd i-invariant Q, that k is a knot with i− 1

double points, and that Φ is a singular isotopy from k to k. Then Φ is a singular
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isotopy from k to k; (Φ)s = (Φs) are the singularities of Φ; and σs = −σs are the

indices of the singularities. So by (∗),

R(k) − R(k) =
∑

s

σsQ(Φs) =
∑

s

−σsQ
(

(Φs)
)

=
∑

s

σsQ
((

Φ
)

s

)

= R(k) − R(k),

whence R(k) = R(k).

Remark 2. In [75], as well as a sketch of the above proof, a proof was given

which doesn’t require Stanford’s Theorem, and instead utilizes the folk Reidemeister

Theorem for knots with double points which is stated in [40] but has not been proved.

Interestingly, Stanford [66] has since given a proof of his theorem based on the folk

Reidemeister Theorem.

The hope is now to find some method of integrating integrable odd invariants,

though no progress has yet been made, but this would give a proof of a Kontsevich-

type theorem. The best so far is the following:

Corollary 14. If the transition from a degree n weight system to a type n knot

invariant is thought of as n steps of integration (e.g. the completion of an actuality

table — see [13]), then at least half of the steps can be performed canonically.

Proof. A weight system is an even integrable n-invariant, this integrates to a

unique integrable, odd (n − 1) invariant. This integrates, by whatever process, to an

even (n− 2) invariant. The procedure continues until an odd or even knot invariant is

obtained.



CHAPTER 3

On v2 and v3.

‘First the fish must be caught.’
That is easy: a baby, I think, could have caught it.

— The Red Queen, Through the Looking Glass.

This chapter is a mélange of bits and pieces on the first two non-trivial Vassiliev knot

invariants. In Sections 1 and 2 bounds and formulæ for them are determined. Section 3

is concerned with looking at the actual values of v2 and v3 for the knots up to twelve

crossings, from which some interesting graphs are obtained and in Section 4 formulæ of

Alvarez and Labastida for torus knots are considered. Some of the investigations here

were inspired by a weekend reading of [1].

1. Bounds on v2 and v3.

As mentioned at the end of the last chapter, there is some work to be done before

there is a näıve canonical way of going from weight system to knot invariant. However,

at low order, certain tricks and lack of ambiguity can be utilized to obtain genuine

canonical knot invariants from the degree two and degree three weight systems. Recall

that there is one weight system (up to multiplication by a scalar) of degree zero, none

of degree one, one of degree two and one of degree three. This can be translated to one

(up to scaling) even degree two invariant vanishing on the unknot and one odd degree

three invariant. Normalize these so that they take value plus one on the positive trefoil

and denote them respectively v2 and v3. Note that these are additive with respect to

connected sum.

In degree four the space of primitive weight systems is two dimensional: this means

that the space of even, additive, type four invariants is three dimensional, v2 is one

element in this space, but how to pick two other vectors to form a canonical basis is

an interesting problem. Perhaps considering eigenvectors of cabling operations will be

of some use.

The invariant v2 has appeared in various guises previously in knot theory: it is the

coefficient of z2 in the Conway polynomial, is minus one sixth of the second derivative of

the Jones polynomial evaluated at 1 and its reduction modulo two is the Arf invariant.

27
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Also v3 can be identified with a linear combination of the second and third derivatives

of the Jones polynomial evaluated at 1.

Lin and Wang examined v2 (with a different normalization) from a topological

Chern-Simons point of view, and they proved the following:

Theorem 15 ([48]). If a knot K has a projection with c crossings then there is the

bound

|v2(K)| ≤
1

4
c(c− 1).

Following this Bar-Natan [7] proved that if a knot K has crossing number c and v is

a type n invariant then v(K) = O(cn) (see also [66]) but the proof is not conceptually

very enlightening, and gives no estimates on bounds. One can obtain the following

bound:

Theorem 16. For a knot K with crossing number c

|v3(K)| ≤
1

4
c(c− 1)(c− 2).

Proof. Every knot projection can be turned into a projection of the unknot by

a sequence of crossing changes. One way to do this is to pick a base point on the

projection, away from a crossing, and travel around the knot ensuring that the first

time a particular crossing is encountered it is via the underpass (otherwise switch the

crossing). The result is called an ascending diagram and can readily be seen to represent

the unknot. An unknot can be achieved by a sequence which consists of at most c/2

crossing changes — otherwise switch the complementary set of crossings instead. So

there is a singular isotopy from K to the unknot with at most c/2 singularities, hence

v3(K) = v3(K) − v3(unknot) =
l∑

s=1

ǫsv3(K
′
s) l ≤ c/2,

where the K ′
s are the singularities of the crossing switch sequence.

Similarly, by a sequence of crossing changes, every projection of a knot with one

double point, K ′, which has c − 1 crossings can be turned into a projection in which

the double point is nugatory, i.e. in which the two resolutions of the double point give

the same knot: the double point decomposes K ′ into two “lobes” and crossing changes

can be made so that one lobe lies entirely over the other lobe.
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E.g.

��
��
��
��

��
��
��
��
���� 7→

��
��
��
��

��
��
��
��
����

Again this can be done with a sequence involving at most (c − 1)/2 crossing changes.

So, as any invariant vanishes on a knot with a nugatory double point (see Chapter 1

Section 3),

v3(K
′) =

m∑

r=1

ǫrv3(K
′′
r ) m ≤ (c− 1)/2,

where again the K ′′
r are the singularities.

To evaluate v3 on a projection, π ′′, of a knot with two double points one can use

the formula of [23], which is a specialization of Theorem 13: pick some ordering of the

crossings C = (a1, . . . , ac−2) and switch each of them in turn.

v3(K
′′) =

1

2

c−2∑

t=1

ǫ(at)v3((π
′′, C, t)).

Then recall that v3 evaluated on a knot with three double points depends only on the

underlying chord diagram, with v3

( )

= 1, v3

( )

= 2 and v3 vanishing on

all other chord diagrams. This gives from the previous equation |v3(K
′′)| ≤ c− 2; and

working backwards, the required inequality is obtained.

2. Gauß diagram formulæ.

Of course the above proof actually gives an algorithm for calculating v2 and v3 for

a given knot projection — express the knot as a sum of knots with one double point,

then as a sum of knots with two double points. Then either evaluate v2 on these (i.e.

see if the double points are in a crossed configuration) or evaluate v3 on them. In

fact this algorithm can be performed on the Gauß diagram of the knot projection. A

slightly extended definition of Gauß diagram can be given as:

Definition 4. Let π be a regular projection of a knot with double points. The

Gauß diagram, G(π), of π consists of an oriented circle representing the preimage of

the knot and the circle is equipped with two types of chords indicating the points of the

circle that are identified at the double points and crossings of the projection: dotted,

oriented chords marked with a + or a − correspond to crossings, with the marking

indicating the sign of the crossing and the orientation pointing towards that point on

the underpass of the crossing; and solid chords correspond to double points.
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Gauß diagrams can also be based, i.e. have a base point corresponding to a base

point on the knot diagram: the base point will be indicated by the orientation arrow.

E.g.

��
2

4

1

3

←→ +

-

+

2

1

2

3
4

1

4
3

To obtain an algorithm on the Gauß diagrams just run through the algorithm as de-

scribed above. Start with a based knot diagram and the corresponding Gauß diagram,

begin at the base point and switch crossings to achieve an ascending knot diagram. On

the Gauß diagram level this means switching the oriented chords so that they are first

encountered at the arrow head.

-

+
+

- 7→ −
-

+
+ +

-

+

+

Next switch the crossings on the knots with one double point so that the lobe with the

base point lies over the other lobe. Do this on the Gauß diagram level by starting at

the end of the double point (after the base point) and switching the chords so that the

arrow heads of the chords crossing the solid chord are all on the side not containing

the base point.
-

+
+ 7→

-

+

It is then possible to evaluate v2 on these. To evaluate v3 on these proceed as in

Theorem 13, start at the base point and traverse the circle, switching the chords the

first time that they are met. Take half of the resulting sum.

This algorithm can be used to obtain formulæ for v2 and v3. First the notion of an

arrow diagram is required.

Definition 5. Define an arrow diagram to be an oriented circle equipped with

oriented chords with distinct endpoints. A based arrow diagram is an arrow diagram

equipped with a base point on the circle which is distinct from the endpoints of the

chords. (Again, base points will be indicated by the orientation arrow.)

Suppose G is a Gauß diagram and A is an arrow diagram. Let an instance of A in

G be an orientation preserving map A → G which is a diffeomorphism of the circles,

and maps chords to chords; if the arrow diagram is based, then it should also map base

point to base point. (In other words an instance is a sub-diagram of G which looks like

A.) Let the multiplicity of an instance be the product of the markings of the chords in
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the image. Define 〈A,G〉 to be the number of instances (counted with multiplicity) of

A in G. Extend linearly to linear combinations of arrow diagrams.

The following formula was announced, but not proved, in [59] (it can also be

deduced from the Chern-Simons approach to v2 of [48]).

Theorem 17. If K is a knot with projection π which has Gauß diagram G, then

v2(K) =

〈

, G

〉

.

Proof. Think of the possible sub-diagrams of G which would give a chord diagram

of the form after the algorithm. The possibilities are as below (si denotes the

marking of the chords):

s s
1 2 7→ s2

s
1 7→ s1s2 ;

s s
1 2 7→ s2

s2 + s1 1s- 7→ s1s2 − s1s2 = 0;

ss1 2 7→ 0;

ss
1 2 7→ 0.

Similarly there is:

Theorem 18. For a knot K with a projection which has based Gauß diagram G,

v3(K) =

〈

1

2

(

+ + + + −

+ − + 2

)

+ + , G

〉

.

Proof. One proceeds as in the proof of the previous theorem, and laboriously

checks each plausible diagram,

e.g.
s

s2

s3

1 7→ s1
s

s2

1 7→ s1s3 s2 7→ 1

2
s1s2s3 ,

recalling the values of v3 on chord diagrams given at the end of the proof of Theorem 16.
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Crossing number 3 4 5 6 7 8 9 10 11 12

Maximum |v2| 1 1 3 2 6 5 10 9 15 14
Bound on |v2| 1.5 2 5 7.5 11.5 14 18 22.5 27.5 33
Maximum |v3| 1 0 5 1 14 10 30 25 55 49
Bound on |v3| 1.5 6 15 30 57.5 84 126 180 247.5 330

Table 3.1. Comparing actual maxima and minima of |v2| and |v3| with the bounds of Section 1.

Polyak and Viro claimed (but did not prove) a simpler formula for v3 in terms of

unbased diagrams, viz:

v3(K) =

〈

1

2
+ , G

〉

.

I cannot yet prove that this is the same as the above.

Gauß diagram formulæ will return in the pure braids sections.

3. Comparison with actual data.

How sharp are the bounds of Section 1? Stanford has calculated Vassiliev invariants

up to order six for the prime knots up to ten crossings, the programs and data files

of which are available as [64]; and Thistlethwaite has calculated Jones polynomials for

knots up to twelve crossings, these are available from [72]. Here the data for v2 and v3

will be examined more closely (similar analysis of higher order invariants might have

to wait until a canonical splitting of higher order invariants is sorted out). Table 3.1

lists the bounds from Section 1 together with the actual maxima and minima for |v2|

and |v3|.

Looking at the data, one notes that for odd crossing number the maxima are

achieved precisely by the (2, 2b+1) torus knots, and these dominate the 2b+2 crossing

knots as well. Alvarez and Labastida [2] (see Section 4 below) explicitly give, for

crossing number c = 2b+ 1,

v2 (T (2, c)) = (c
2 − 1)/8,

v3 (T (2, c)) = c(c
2 − 1)/24.

One could conjecture that these give bounds on v2 and v3. It might be noted that the

(2, c)-torus knots have maximal unknotting number for knots whose minimal unknot-

ting projection is a minimal crossing projection.1

1The (2, c)-torus knot has crossing number c (see Section 4.4) and unknotting number (c − 1)/2 (see
Section 4.5).
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i −3 −2 −1 0 1 2 3 4

Wh(i) 81 61 41 01 31 52 72 92
v2 (Wh(i)) −3 −2 −1 0 1 2 3 4

v3 (Wh(i)) 3 1 0 0 1 3 6 10

Table 3.2. The values of v2 and v3 on the twisted Whitehead doubles of the unknot. The
knot notation, e.g 31, refers to Alexander-Briggs notation (see [16]).

It is interesting and surprising to plot v2 against v3 for knots up to twelve crossings,

this is done in Figure 3.1. The symmetry in the v2-axis is expected, as this is just the

effect of taking the mirror image of a knot. The fish shape is not expected. This shape

suggests some bound of the form

cubic in v2(K) ≤ (v3(K))2 ≤ another cubic in v2(K).

Such bounds, independent of crossing number do in fact exist for torus knots, as will

be seen below. Although it might be possible to find such cubic bounds depending on

the crossing number, this cannot be the case in general: two reasons for this are as

follows.

Firstly, examine Table 3.2 which gives the values of v2 and v3 on the twisted

Whitehead doubles of the unknot, Wh(i) (see Chapter 1, Section 4). It is not difficult

to prove from the method of Section 1 that v2 (Wh(i)) = i, alternatively this can be

immediately deduced from Corollary 11, and this corollary can be used to deduce that

v3 (Wh(i)) =
1
2
i(i + 1). These then form a sequence of unknotting number one knots

(excepting the unknot), which map into the (v2, v3)-plane as a nice quadratic. This

contradicts any bounds of the above form.

Secondly, for any (a, b) ∈ Z2 one can obtain a prime (alternating) knot with

(v2, v3) equal to (a, b) in the following manner: connect sum suitably many posi-

tive and negative trefoil knots (with (v2, v3) = (1,±1)) and figure eight knots (with

(v2, v3) = (−1, 0)), to obtain a composite knot with (v2, v3) = (a, b), then Stanford

[67] gives a method for constructing a prime knot with the same v2 and v3.

There does appear to be a qualitative difference between the pictures for odd and

even crossing numbers in Figure 3.1. The even crossing number ones seem to be more

concentrated in the ‘body’ of the ‘fish’ and the odd ones more in the ‘tail’. Note that for

each odd crossing number, c, there is the (2, c)-torus knot and the Whitehead double

Wh((c− 1)/2) with a (v2, v3) of ((c− 1)/2, (c2 − 1)/8); and for even crossing number,

c, there is the Whitehead double Wh(1 − c/2) with a (v2, v3) of (1 − c/2, (c − 2)c/8).

Also for up to twelve crossings (and it is conjectured for all knots), the amphicheiral
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Figure 3.2. Plot of v2 against v3 for nine crossing knots (with positive v3 half only), showing
the unknotting number [42]: unknotting number one = circle; two = cross; three = square;
four = diamond.

knots — that is those equivalent to their mirror image, and hence with v3 = 0 — all

have even crossing number.

In Figure 3.2 the unknotting numbers have been appended to the graph for knots

with nine crossings. There does appear to be some correlation, but two things to bear

in mind are the fact that minimal unknotting projections are coinciding with minimal

crossing projections at these low crossing numbers, and that there are a lot more knots

out there. Bounds between the unknotting number and v2 are shown below for torus

knots, but for instance the Whitehead doubles example above shows that there are

unknotting number one knots with arbitrarily large v2 and v3.

4. Torus knots.

4.1. Introduction. Some of the properties of v2 and v3 suggested above can be

proved for the case of torus knots. Recall that a torus knot is a knot that can be

isotoped so that it sits on a standardly embedded 2-torus (see Figure 3.3). For p and q

coprime integers, the (p, q)-torus knot, T(p, q) is the knot which has a representative

which embeds in the torus so that it wraps p times around longitudinally and q times

around meridianally (with the signs of p and q giving the orientation). T(p, q) is the

unknot if and only if p or q is ±1, and for T(p, q) nontrivial, T(p, q) is the same knot

as T(p ′, q ′) if and only if (p ′, q ′) equals one the following (p, q), (q, p), (−p,−q), or

(−q,−p). Further T(p,−q) is the mirror image of T(p, q). See [16].
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Figure 3.3. A (3, 8)-torus knot.

Alvarez and Labastida [2] give formulæ for v2 and v3 evaluated on torus knots as

follows:

v2(T(p, q)) =
1

24
(p2 − 1)(q2 − 1),

v3(T(p, q)) =
1

144
pq(p2 − 1)(q2 − 1).

Note that these have the required properties under the symmetries of p and qmentioned

above, and that these are integer valued on torus knots (i.e. when p and q are coprime).

Also T 7→ (v2(T), v3(T)) is injective for torus knots, that is to say torus knots are

determined by their (v2, v3).

Alvarez and Labastida prove that if v is a Vassiliev invariant coming from one of

the standard polynomials (Jones, HOMFLY, etc.) then v(T(p, q)) is a polynomial in p

and q.2

Remember that most knots are not torus knots.

4.2. Cubic bounds. With the above formulæ it is straightforward to prove bounds,

for torus knots, of the form suggested in the last section.

Proposition 19. If T is a torus knot then

2

3
v2(T)

3 +
1

3
v2(T)

2 ≤ v3(T)2 ≤
8

9
v2(T)

3 +
1

9
v2(T)

2.

Further, the right hand bound is tight in the sense that there exist torus knots with

arbitrarily large v2 and v3 such that equality holds.

2This ought to be true for any Vassiliev invariant but I do not yet know how to prove it.
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Proof. Suppose that T is a (p, q)-torus knot then

v3(T)
2 −

2

3
v2(T)

3 =

(

1

144
pq(p2 − 1)(q2 − 1)

)2

−
2

3

(

1

24
(p2 − 1)(q2 − 1)

)3

=
1

124
(p2 − 1)2(q2 − 1)2[p2 + q2 − 1]

≥ 1

123
(p2 − 1)2(q2 − 1)2 as p2 + q2 ≥ 13

=
1

3
v2(T)

2,

hence the first inequality (with equality only in the case of torus knots).

For the second,

8

9
v2(T)

3 − v3(T)
2 =

8

9

(

1

24
(p2 − 1)(q2 − 1)

)3

−

(

1

144
pq(p2 − 1)(q2 − 1)

)2

=
1

4.27

[

1

24
(p2 − 1)(q2 − 1)

]2 {
4(p2 − 1)(q2 − 1) − 3p2q2

}

=
1

4.27
v2(T)

2
{
(p2 − 4)(q2 − 4) − 12

}

≥ 1

4.27
v2(T)

2{−12} = −
1

9
v2(T)

2,

and note that equality occurs precisely when T is a (2, q)-torus knot.

Although the left hand bound has the correct asymptotic behaviour, for a tight

bound a different form of cubic is required.

Proposition 20. For a torus knot T ,

2

3
v2(T)

3 +
1

3
v2(T)v3(T) ≤ v3(T)2,

and this bound is tight in the sense of the previous proposition.

Proof. Using the notation of the previous proof,

v3(T)
2 −

2

3
v2(T)

3 −
1

3
v2(T)v3(T) =

1

36.242
(p2 − 1)2(q2 − 1)2

(

(p− q)2 − 1
)

≥ 0,

with equality if and only if T is a (p, p+ 1) torus knot.

Given that half the torus knots (those with positive v3) can be thought of as lying in

the region q > p > 0 in the (p, q)-plane, these bounds are not surprising. Graphically

this can be seen in Figure 3.4.
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Figure 3.4. Torus knots in the (v2, v3)-plane: (i) mapping torus knots from the (p, q)-plane
into the region of the (v2, v3)-plane given by Propositions 19 and 20; (ii) torus unknotting
number curves for u = 1, . . . , 9 (see Section 4.3); (iii) torus crossing number curves for c =
3, 5, . . . , 17 (see Section 4.4).

4.3. Torus knots and unknotting number. By Kronheimer and Mrowka’s [46]

positive solution to the Milnor conjecture the following formula is known for the un-

knotting number, u, of torus knots:

u(T(p, q)) =
1

2
(|p|− 1) (|q|− 1) .
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As a consequence, the following easily verifiable relationship is obtained:

Proposition 21. For a torus knot T,

v2(T)
2 +

1

6
u(T)(u(T) − 1)v2(T) = u(T)|v3(T)|,

and given v2(T) and v3(T) then u(T) is the smaller of the two roots.

So for a fixed unknotting number, the torus knots lie on a quadratic in the (v2, v3)-

plane (c.f. the Whitehead knots in Section 4.1). This is pictured in Figure 3.4. The

segments of curves shown were chosen by the following proposition.

Proposition 22. For a torus knot T ,

1

2
u(T)(u(T) + 1) ≥ v2(T) ≥

1

6
u(T)

(

u(T) +
√

8u(T) + 1+ 2
)

,

and both bounds are tight.

Proof. If T is a (p, q)-torus knot, then a minimal amount of manipulation gives

1

2
u(T)(u(T) + 1) − v2(T) =

1

12
(|p|− 1)(|q| − 1)(|p| − 2)(|q| − 2)

≥ 0,

with equality if and only if T is a (2, q)-torus knot.

For the right hand bound, firstly, let a and b be distinct positive integers, then

(a−b)2 ≥ 1, so (a+b)2 ≥ 4ab+1 and thus a+b ≥
√
4ab+ 1, with equality precisely

when a and b differ by one.

Now for T a (p, q)-torus knot,

v2(T) −
1

6
u(T)

(

u(T) +
√

8u(T) + 1+ 2
)

=
1

12
(|p|− 1)(|q| − 1)

{
|p|+ |q|− 2−

√

4(|p|− 1)(|q| − 1) + 1
}

≥ 0,

by putting a = |p|− 1, b = |q| − 1 in the above paragraph. Note that equality occurs

precisely when T is a (p, p+ 1)-torus knot.

Weakening the right hand bound to v2 ≥ 1
6
u(T) (u(T) + 5) and inverting the inequalities

reveals the following corollary.

Corollary 23. For a torus knot T ,
√

1+ 8v2(T) − 1 ≤ 2u(T) ≤
√

24v2(T) + 25− 5,

and the left hand bound is tight (in the sense of Section 4.2).
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4.4. Torus knots and crossing number. By the work of Murasugi [56], a sim-

ilar formula is known for the crossing number, c, of torus knots:

c(T(p, q)) = |q|(|p|− 1), when |p| < |q|.

This leads to the following relation;

Proposition 24. If T is a torus knot, and ρ(T) =
∣

∣

∣

6v3(T)
v2(T)

∣

∣

∣ then

24v2(T)(c(T) − ρ(T))
2 = c(T)

(

(c(T) − ρ(T))2 − 1
)

(2ρ(T) − c(T)) ,

and

c(T) = ρ(T) −
1

2

(

√

(ρ(T) − 1)2 − 24v2(T) +

√

(ρ(T) + 1)2 − 24v2(T)

)

.

Proof. This is easily verified; note that if T is a (p, q)-torus knot then ρ(T) = |pq|

and c(T) − ρ(T) = |q|.

This isn’t as nice a relationship as with the unknotting number: for a fixed crossing

number the relationship is a not particularly nice quartic between v2 and v3. However,

the crossing number curves can still be graphed, as in Figure 3.4 — the length of arc

segments plotted there being determined by the following proposition.

Proposition 25. For a torus knot T ,

1

8

(

c(T)2 − 1
)

≥ v2(T) ≥
1

24
c(T)

(

c(T) + 1+ 2
√

c(T) + 1
)

,

and these bounds are tight (in the sense of Section 4.2).

Proof. Suppose that T is a (p, q)-torus knot with q > p > 0 — this just avoids

excessive modulus signs in the calculation — then for the left hand bound,

1

8

(

c(T)2 − 1
)

− v2(T) =
1

24

{
3
(

[q(p− 1)]2 − 1
)

− (p2 − 1)(q2 − 1)
}

=
1

24

{
2q2p2 − 6q2p+ 4q2 + p2 − 4

}

=
1

24
(p− 2)

{
(2q2 + 1)(p − 1) + 3

}

≥ 0,

and equality occurs precisely when T is a (2, q)-torus knot.
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For the right hand bound,

24v2(T) − c(T)
(

c(T) + 1+ 2
√

c(T) + 1
)

= (p2 − 1)(q2 − 1) − q(p − 1)
(

q(p− 1) + 1+ 2
√

q(p− 1) + 1
)

= (p− 1)
{
2q2 − q − 1− p− 2q

√

qp− q+ 1
}
,

and claim that this is non-negative and is zero precisely when q = p+ 1.

To prove the claim, note

(q− 1)2 = q(q − 1) − q− 1 ≥ qp− q− 1

as q− p− 1 ≥ 0, and so also

(q− 1)2 +
2(q − 1) (q− p− 1)

2q
+

[

q− p− 1

2q

]2

≥ qp− q− 1 > 0,

thus, by taking square roots,

(q− 1) +
q− p− 1

2q
≥
√

qp− q − 1,

from which the claim follows on multiplying through by 2q.

Weakening the right hand bound to v2 ≥ 1
24
c(c+ 5) and inverting, gives

Corollary 26. For a torus knot T

1

24

(

√

25+ 96v2(T) − 5
)

≥ c(T) ≥ 2
√

8v2(T) + 1,

and the right hand bound is tight in the previous sense.
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CHAPTER 4

Vassiliev invariants for pure braids.

Rapunzel, Rapunzel,
Let down your golden hair.

— Trad., Fairy Tale.

In this chapter the Vassiliev invariants of pure braids are related to the algebraic

properties of the pure braid groups; specifically, to the lower central series of the pure

braid groups. This was initially observed by Stanford, but here is used to obtain

dimensions of the spaces of independent finite type invariants.

Section 1 introduces pure braid groups and requisite notions from algebra. Section 2

contains the details of how Vassiliev invariants can be characterized algebraically and

Section 3 uses this algebra to give explicit formulæ for the number of invariants.

1. Preliminaries on pure braid groups.

Begin with some definitions and group theoretic properties of pure braids.

1.1. Pure braids. A convenient way to define the pure braid groups is as follows:

Definition 6. (i) The configuration space, C[k], of k ordered distinct points in

the complex plane, is the space {(z1, . . . , zk) ∈ Ck | zi 6= zj ∀i 6= j}; it will be

taken to have base point (1, 2, . . . , k).

(ii) A pure braid on k strands is a homotopy class of piecewise-smooth based loops in

the configuration space C[k]. (Where a distinction is required, a geometric braid

will mean a specific representative, γ : S1 → C[k], and a topological braid will

mean an equivalence class: the distinction will not generally be made.) These

form a group, Pk, under the usual operation of loop concatenation.

The usual notion of pure braid is recovered when these loops are thought of as

living in R3 ∼= Cz × Rt, the time axis lying vertical. For instance, the following is a

43
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pure braid on four strands:

1

0

time

1 2 3 4

4321

Note that multiplication of braids βγ will mean β followed by γ, i.e. γ on top of β.

Remark 3. (i) The pure braid group, Pk, is the subgroup of the full braid

group, Bk, given as the kernel of the map to the symmetric group which associates

to a braid the permutation induced on the strands.

(ii) Artin [4] gave several equivalent definitions of braid groups, but this one was

introduced by Fox and Neuwirth [27].

Fadell and Neuwirth [24] presented the notion that the configuration space C[k]

fibres over C[k− 1] by “forgetting the last co-ordinate”:

C\{1, 2, . . . , k− 1}→ C[k]→ C[k− 1].

This fibration admits a section:

s : C[k− 1]→ C[k]; (z1, . . . , zk−1) 7→ (z1, . . . , zk−1, max
i=1,... ,k−1

(Re zi) + 1).

Inductively, C[k] sits atop an iterated fibration which has punctured surfaces (i.e.

Eilenberg-MacLane spaces) as fibres, so the homotopy exact sequence implies that

C[k] is an Eilenberg-MacLane space, that is to say, a K(Pk, 1).

Applying the fundamental group functor and writing Fk for the free group on k

generators, one obtains the split exact sequence of groups:

1→ Fk−1 →֒ Pk ⇄ Pk−1 → 1.

Recall the concept of a semi-direct product of groups. Let A be a group which acts

(on the right) on the group B. Define A⋉ B to be the group which has underlying set

A× B and multiplication given by

(a1, b1)(a2, b2) := (a1a2, b
a2
1 b2).

A group G is isomorphic to A⋉ B precisely when there is a split short exact sequence

1→ B →֒ G⇄s A→ 1,
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with the action of A on be given by conjugation: ba = s(a−1)bs(a) (thinking of B as

a normal subgroup of G).

One can then conclude that Pk is a semi-direct product:

Pk = Pk−1 ⋉ Fk−1.(†)

Geometrically, this is Artin’s “combing of the braid” [4], writing the braid as a

product of a braid in which the last strand remains straight and uninvolved in the

braiding (i.e. an element of Pk−1), and one in which the other (k − 1) strands remain

straight while the final strand winds around them (which can be thought of as an

element of Fk−1).

Of course this can be repeated so that the pure braid group Pk is an iterated semi-

direct product of free groups: Pk = (. . . (F1 . . . )⋉ Fk−2)⋉ Fk−1. This is very useful for

deducing algebraic properties of the pure braid groups.

1.2. Useful algebraic properties of the pure braid groups.

1.2.1. Residual nilpotence. Recall the definition of the lower central series of a

group.

Definition 7. If G is a group then the lower central series,

Γ1G ⊲ Γ2G ⊲ . . . ⊲ ΓnG ⊲ . . . ,

is defined inductively via

Γ1G = G, Γn+1G = [ΓnG,G];

where [A,B] denotes the group generated by the commutators [a, b] = aba−1b−1 with

a ∈ A, b ∈ B.

The lower central series is the smallest series of subgroups of G which satisfies

Γ1G = G, [Γ iG, Γ jG] ⊂ Γ i+jG and ΓnG/Γn+1G is abelian, in the sense that if {ΞiG}

is another such series (called a descending central series), then ΞiG ⊲ Γ iG for all i.

Also, the groups of the lower central series are actually characteristic subgroups, i.e.

they are invariant under all automorphisms of the original group, not just the inner

automorphisms.

Nilpotence will play an important role in what follows, so again, recall the defini-

tions:
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Definition 8. A group G is said to be n-stage nilpotent if ΓnG = {1}, i.e. all com-

mutators of length n are trivial; and G is said to be residually nilpotent if
⋂

∞

n=1 Γ
nG =

{1}.

The free group Fk is residually nilpotent (see [49]) and Falk and Randell [26] used

(†) to prove

Theorem 27. Pk is residually nilpotent.

1.2.2. Structure of abelian quotients. The abelian groups ΓnPk/Γ
n+1Pk will be of

interest so the following notation will be adopted:

Notation 1. For a group G and n ∈ {1, 2, . . . }, let G{n} denote the abelian group

ΓnG/Γn+1G, so, e.g. G{1} is the abelianization of G.

Falk and Randell proved the following:

Theorem 28. [25] If G ∼= A ⋉ B and A acts trivially on the abelianization of B

then for all n ≥ 1, G{n} ∼= A{n}⊕ B{n}.

It is straight-forward to see that Pk−1 acts trivially on the abelianization of Fk−1

because each generator of the free group is mapped to a conjugate element by the pure

braid action. It is known [49] that Fk{n} is free abelian of rank 1
n

∑
m|n µ

(

n
m

)

km,

where µ is the Möbius function of number theory (see [36]). Thus Theorem 28 and an

induction gives the structure of the lower central series factor groups of the pure braid

groups:

Corollary 29. Pk{n} is a free abelian group of rank ϕkn, where

ϕkn =
1

n

∑

m|n

µ
( n

m

)

k−1∑

i=1

im.

2. Finite type invariants as generalized winding numbers.

Now switch attention to finite type invariants of pure braids, these can be considered

as generalizations of winding numbers.

2.1. Winding numbers. For a pure braid β, one of the first kind of invariants

that might come to mind is the winding numbers: for i 6= j how many times does the

ith strand wind around the jth strand? This is the (i, j)th winding number wij(β). Of

course this is analogous to Gauß linking of links. As with winding numbers of curves
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in the complex plane, these winding numbers can be calculated from an integral as

follows:

wij(β) =
1

2πi

∫

β

d ln(zi − zj) =
1

2πi

∫

β

dzi − dzj

zi − zj
.

Note that wij = wji.

For example

β = ;

w12(β) = −1

w23(β) = 0

w13(β) = 1

It is well known that these can be calculated from a braid diagram by counting, with

sign, half the number of crossings between the ith and jth strands. This corresponds to

replacing the 1-form 1
2πi
d ln(zi−zj) with a cohomologous current which is supported on

the hyperplane in C[k] given by {z ∈ C[k] | Re zi = Re zj}. This idea of combinatorial

calculation will be returned to in Chapter 6.

In the case of Gauß linking, Maxwell observed in [52] that the so-called Whitehead

link is a non-split two component link with zero linking numbers. Also here: winding

numbers do not serve as complete invariants of pure braids. Similarly winding numbers

do not serve as complete invariants of braids. Observe the pigtail braid:

.

All three winding numbers vanish but the braid is non-trivial. Next, finite type invari-

ants will be shown to generalize winding numbers.

It should be noted here that the cohomology classes of the winding forms ωij :=
1
2πi
d ln(zi − zj) for i 6= j generate the (integral) cohomology of C[k]. The Arnold

algebra A•
k is defined to be the subalgebra of the de Rham complex, Λ•(C[k]), of the

configuration space C[k], generated by these winding forms, and it is a theorem of

Arnold [3] that the inclusion A•
k → Λ•(C[k]) induces an isomorphism on cohomology

and also that the Arnold algebra can be described as the exterior algebra on the winding

forms modulo the Arnold relations: ωij ∧ωjl +ωjl ∧ωli +ωli ∧ωij = 0 for i, j, and

l distinct.

2.2. Algebraicization of the finite type condition. The following algebrai-

cization is implicit in the work of Stanford [67, 65].

Consider finite type invariants for braids as defined in Chapter 1. Recall that a

pure braid invariant v : Pk → R, taking values in the ring R, can be extended to braids
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with double points via the Vassiliev skein relation:

v( �� ) = v( ) − v( ).

and that an invariant is of type n ∈ N if it vanishes on pure braids with more than n

double points.

Definition 9. Let Vnk = {invariants of Pk of type ≤ n}, and let V
n

k = {v ∈
Vnk | v(1) = 0}, where 1 is the trivial braid.

It is straightforward to show that V0k is the set of constant invariants, that V
n

k
∼=

Vnk/V
0
k, and that v ∈ V1k if and only if v is a linear combination of winding numbers.

Singular braids can be formally considered as elements of the group algebra RPk

via the relation

�� = − ∈ RPk.
Consider the augmentation ǫ : RPk → R defined by the linear extension of ǫ(β) = 1 for

all pure braids β, and let JR be the augmentation ideal, i.e.

JR := ker ǫ = 〈p− 1 | p ∈ Pk〉 ⊳ RPk.

Fact 2. Any pure braid can be transformed to the trivial braid by a sequence of

crossing changes.

Thus

JR = 〈(p1 − p2) + (p2 − p3) + . . . + (pj − 1)
| pi, pi+1 ∈ Pk differ by a crossing change (with pj+1 = 1)〉

= 〈(p− q) | p, q differ by a crossing change〉
= 〈singular braids〉.

Fact 3. Any singular pure braid with n double points can be written as the product

of n singular pure braids, each with one double point.

For example,

��

��
��
��
��
��

��
��
��
��

.

Remark 4. This is a fundamental point where the theory diverges from the case

of knots: the statement analogous to Fact 3 for knots is not true.

Fact 3 means that JnR = 〈braids with n double points〉 and this gives a fundamental

identification:
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Theorem 30. There is a canonical isomorphism

Vnk
∼= (RPk/J

n+1
R )∨.

The topological filtration of pure braid invariants has therefore been rewritten as

a purely algebraic filtration. This is the key to the methods that follow. Some more

algebra must be considered.

2.3. Dimension subgroups. For a groupG and R a commutative ring with unity,

a series of characteristic subgroups can be defined in the following manner.

Definition 10. The augmentation ideal, JR, of the group ring RG is defined, as

above, as the kernel of the augmentation map ǫ : RG→ G, and the nth dimension sub-

group ∆nRG is defined as the subgroup associated to the nth power of the augmentation

ideal, viz

∆nRG := G ∩ (1+ JnR).

Then

G = ∆1RG ⊲∆2RG ⊲ . . . ⊲ ∆nRG ⊲ . . . .

This is a descending central series and so ΓnG ⊳∆nRG. Two important cases are R = Z

and R is a characteristic zero field. The canonical unital ring map Z → R induces an

inclusion

∆nZG →֒ ∆nRG.

A group is said to have the dimension subgroup property over R if the dimension

subgroups over R are precisely the lower central subgroups. For instance free groups

have the dimension subgroup property over the integers, but this does does not hold

for groups in general (see [37]).

If R is a characteristic zero field, denote ∆nRG by ∆n0G, this is independent of the

field because of the following result going back to Malcev:

∆n0G = Γ
nG := {x ∈ G | xa ∈ ΓnG for some a ≥ 1},

the isolator (or rational closure) of ΓnG.

From this it is easy to deduce

Theorem 31. If the lower central factor groups, G{n} = ΓnG/Γn+1G, of G are

torsion free then G has the dimension subgroup property over the integers and over any

characteristic zero field.
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Proof. In view of the sequence

ΓnG ⊳ ∆nZG →֒ ∆n0G = Γ
nG,

it suffices to show ΓnG = ΓnG for all n. Suppose not, then there is an x ∈ G and

n,a ≥ 2 such that xa ∈ ΓnG but x /∈ ΓnG. However, for some m < n, x ∈ ΓmG but

x /∈ Γm+1G and xa ∈ ΓnG ⊳ Γm+1G. So [x] 6= 1 ∈ G{m} but [x]a = [xa] = 1 ∈ G{m} thus

contradicting the hypothesis.

Applying this theorem with the Corollary 29, the dimension subgroup property can

be deduced for the pure braid groups:

Corollary 32. For all n, ∆nZPk = ∆
n
0 Pk = Γ

nPk.

Remark 5. Alternatively one could use the result of Sandling [63] which says that

a group which is the semi-direct product of groups having the dimension subgroup

property, itself has the dimension subgroup property. This is applied by the usual

induction on (†).

See [57] for a way of expressing an element of ΓnPk as a linear combination of

braids with (n− 1) double points modulo braids with n double points.

An immediate consequence, via Theorem 30, is

Corollary 33. For β a k strand pure braid, β ∈ Γn+1Pk if and only if v(β) = 0

for all v ∈ Vnk , i.e. if and only if β is indistinguishable from the trivial braid by type n

invariants.

Remark 6. In [67] Stanford obtained the “if” part of the above statement, and

in [65] he noted that Pk has the dimension subgroup property, but failed to put the

two together to obtain the “only if”. In [44] Kohno derived the “if and only if” by

expressing finite type pure braid invariants in terms of de Rham homotopy theory (see

the next chapter) and using the dimension subgroup property. I was able to synthesize

these two approaches into the above simple argument.

3. Counting numbers of invariants.

The purpose of this section is to obtain the number of invariants of each type

for each pure braid group. Because of the algebraic structure of the invariants, it is

necessary only to obtain the invariants which are not expressible as sums of products of

lower order invariants — these are the indecomposable invariants. Further, it is sensible

to look at the number of “new” invariants of each type, i.e. the dimension of Vnk/V
n+1
k .

Then it is possible to consider those which are not induced from pure braid groups on

fewer strands.
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k\n 1 2 3 4 5 6 7 8 9

2 1 1 1 1 1 1 1 1 1

3 3 7 15 31 63 127 255 511 1023

4 6 25 90 301 966 3025 9330 28501 86526

5 10 65 350 1701 7770 34105 145750 611501 2532530

6 15 140 1050 6951 42525 246730 1379400 7508501 40075035

7 21 266 2646 22827 179487 1323652 9321312 63436373 420693273

8 28 462 5880 63987 627396 5715424 49329280 408741333 3281882604

9 36 750 11880 159027 1899612 20912320 216627840 2141764053 20415995028

10 45 1155 22275 359502 5135130 67128490 820784250 9528822303 106175395755

Table 4.1. The dimensions of the spaces of type n invariants modulo type (n− 1) invariants
of the pure braid groups, Pk (included for comparison).

3.1. Numbers of indecomposable invariants. A result of Quillen [61] says

(using the notation of the last section) that
⊕

JnF/J
n+1
F is the universal enveloping

algebra of the Lie algebra
⊕

(ΓnG/Γn+1G⊗ F). Translating that into the language of

pure braids gives (unsurprisingly in view of Corollary 33) the following theorem:

Theorem 34. The dimension of the space of indecomposable type n invariants

modulo type n − 1 invariants is equal to the rank, ϕkn, of the free abelian group

Γn(Pk)/Γ
n+1(Pk).

Recall that these ranks were given in Corollary 29.

Remark 7. There are several ways to derive the above theorem. Kohno [43] wrote

down the following formula which is analogous to the Witt formula for free groups [49]:

∞∏

n=1

(1− tn)ϕ
k
n =

k−1∏

j=1

(1− jt).

The left hand side can be interpreted as the reciprocal of the Poincaré series of a

polynomial algebra with ϕkn generators in degree n, and the right hand side can be

interpreted as the reciprocal of the Poincaré series of the space of non-decreasing chord

diagrams on k strands — non-decreasing chord diagrams were defined in [9] and shown

to give a basis for the space of all chord diagrams modulo 4T. The formulæ for ϕkn
given above can then be recovered from Kohno’s Witt-like formula (as in [49] for free

groups) by taking logarithms, differentiating with respect to t, expanding in powers of

t, comparing coefficients of t, and then using Möbius inversion.

3.2. Reducing by invariants from lower pure braid groups. There are
(

k
l

)

maps from the k-strand pure braid group to the l-strand pure braid group obtained

by picking l strands and “forgetting” the rest, thus each invariant of l-strand braids

induces
(

k
l

)

invariants of Pk. For instance, all type 1 invariants are linear combinations

of winding numbers, and so are induced from P2.
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k\n 1 2 3 4 5 6 7 8 9 10

2 1 0 0 0 0 0 0 0 0 0
3 3 1 2 3 6 9 18 30 56 99
4 6 4 10 21 54 125 330 840 2240 5979
5 10 10 30 81 258 795 2670 9000 31360 110733
6 15 20 70 231 882 3375 13830 57750 248360 1086981
7 21 35 140 546 2436 11110 53820 267540 1368080 7132818
8 28 56 252 1134 5796 30654 171468 987840 5851776 35378658
9 36 84 420 2142 12348 74250 471060 3084480 20764800 142749558
10 45 120 660 3762 24156 162690 1154340 8464500 63811440 491422086

Table 4.2. The dimensions, ϕkn of the spaces of indecomposable type n invariants modulo
type (n− 1) invariants of the pure braid groups Pk — see Theorem 34 and Corollary 29.

k\n 1 2 3 4 5 6 7 8 9 10
2 1 0 0 0 0 0 0 0 0 0
3 0 1 2 3 6 9 18 30 56 99
4 0 0 2 9 30 89 258 720 2016 5583
5 0 0 0 6 48 260 1200 5100 20720 81828
6 0 0 0 0 24 300 2400 15750 92680 510288
7 0 0 0 0 0 120 2160 23940 211680 1643544
8 0 0 0 0 0 0 720 17640 258720 2963520
9 0 0 0 0 0 0 0 5040 161280 3024000
10 0 0 0 0 0 0 0 0 40320 1632960

Table 4.3. The dimensions, ψkn, of the spaces of reduced type n indecomposable invariants
modulo type (n− 1) invariants of the pure braid groups Pk — see Theorem 35.

To see how many genuinely new invariants come from the Pk, one can calculate

the dimension, ψkn, of the space of type n indecomposable invariants of Pk modulo the

type n invariants induced from lower braid groups. Then these dimensions satisfy

ϕln =

l∑

k=1

(

l

k

)

ψkn.

Define sur(m,k) for m > 0, to be the number of surjections from an m element set to

a k element set, with the convention that sur(m,0) = 0.

Theorem 35. The reduced dimensions of type n invariants of Pk are given by

ψkn =
1

n

∑

m|n

µ
( n

m

)

sur(m,k− 1).

Remark 8. For instance, if k > 2 and either n < 2(k − 1) or n is prime, then

ψkn = sur(n, k− 1)/n.
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The key point is the following combinatorial identity:

Lemma 36. For m > 0,

l−1∑

i=1

im =

l∑

j=1

(

l

j

)

sur(m, j − 1).

Proof (of Lemma). The left hand side can be seen as the number of maps from

an m element set to the following set, such that the image is ‘vertical’.

���� ����
����

����
����
����

����
����
����

����

��������

��������
��������

1 2 3 l-1

l-1

The proof proceeds by counting these maps in a different way. So,

l−1∑

i=1

im =

l−1∑

r=1

(number of maps of image size r) =
l−1∑

r=1

l−1∑

k=1

(

k

r

)

sur(m, r)

=

l−1∑

r=1

(

l

r+ 1

)

sur(m, r) by a simple identity

=

l∑

j=1

(

l

j

)

sur(m, j− 1) by relabelling and sur(m,0) = 0.

Proof (of Theorem).

l∑

k=1

(

l

k

)

ψkn = ϕ
l
n =

1

n

∑

m|n

µ
( n

m

)

l−1∑

i=1

im

=
1

n

∑

m|n

µ
( n

m

)

l∑

j=1

(

l

j

)

sur(m, j − 1)

=

l∑

j=1

(

l

j

)





1

n

∑

m|n

µ
( n

m

)

sur(m, j− 1)



 .

The theorem then follows as the matrix
(

(

i
j

)

)

1≤i,j≤l
is invertible — it has inverse

(

(−1)i−j
(

j
i

)

)

1≤i,j≤l
.

Remark 9. If the same sort of reduction is performed with the ranks of the quo-

tients of the lower central series of the free group Fk, then the number obtained is
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1
n

∑
m|n µ

(

n
m

)

sur(m,k), reflecting the philosophy that modulo braiding on fewer than

k strands, Pk looks like Fk−1.

These dimensions are tabulated in Table 4.3. Note that, by [8], the entries along

the leading diagonal of the table correspond to Milnor invariants.



CHAPTER 5

Iterated integrals and minimal models for π1(X)⊗R.

And there’s a mighty judgment coming, but I may be wrong
You see, you hear these funny voices

In the Tower of Song

— Leonard Cohen, Tower of Song.

This chapter presents some of the theory of de Rham homotopy theory of the funda-

mental group. The theme is that of generalizing abelianization via towers of nilpotent

objects.

Section 1 introduces Chen’s iterated integrals. Section 2 demonstrates the use of

currents with these. Section 3 discusses tensoring a finitely generated group with the

reals. Section 4 describes the algebraic idea of Sullivan’s 1-minimal models. Section 5

gives a geometric relation between 1-minimal models and iterated integrals. Section 6

tells how to obtain functions on nilpotent quotients of the fundamental group by using

minimal models. This will be applied to the case of pure braids in the next chapter.

1. Chen’s iterated integrals.

Chen’s method of iterated integrals generalizes the notion of integrating forms over

cycles, and allows access to deeper homotopy information than just the abelianization

of the fundamental group. The filtration induced on the fundamental group in the

case of the configuration space C[k] is precisely the Vassiliev filtration on the pure

braid group, thus iterated integrals give explicit formulæ for finite type pure braid

invariants. Material for this section was harvested from [18, 34, 33].

1.1. Iterated integrals. Let (X, x0) be a pointed smooth manifold, and let LX

be the space of piecewise-smooth based loops on X. For θ a one-form on X, consider

the functional on this loop space given by:

∫
θ : LX→ R; γ 7→

∫

γ

θ.

This is a homotopy functional (that is, it depends only on the class of γ in the fun-

damental group of X) if and only if θ is exact, i.e. dθ = 0. In fact, it is well known

that if this is so, then
∫
γ
θ depends only on the class of γ in the abelianization of the

55
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Figure 5.1. (i) To evaluate
∫
γ
θ the 1-form θ is evaluated on the tangent vector, γ̇(t), to the

curve at each point, γ(t), around the curve. (ii) To evaluate a length n iterated integral, n
ordered tangent vectors around the curve are considered simultaneously.

fundamental group, and
∫
θ depends only on the class of θ in the de Rham cohomology

group H1(Λ•X,d). This corresponds to the composition of the de Rham isomorphism

with the Hurewicz homomorphism:

H1(Λ•X,d) ∼= H1(X,R) ∼=
(

π1(X)/Γ
2
)∨

.

For n one-forms θ1, . . . , θn, Chen defined
∫
θ1 . . . θn, a functional on the loop space,

by ∫

γ

θ1 . . . θn :=

∫
· · ·
∫

0≤t1<...<tn≤1

γ∗θ1(t1)∧ . . . ∧ γ
∗θn(tn).

Call such a functional a basic iterated integral of length n. See Figure 5.1 for a clue to

what is being calculated; see also the discussion of currents below.

An iterated integral will mean an R-linear combination of basic iterated integrals

and constant functionals on LX. The length of an iterated integral is the largest of the

lengths of its summands — constant functionals have zero length.

Chen defined a notion of differentiable space and its associated de Rham complex.

In this setting one can take the exterior derivative of an iterated integral and obtain a

one form on the loop space LX. The exterior derivative is the linear extension of the

following function on basic iterated integrals:

d

∫
θ1 . . . θn = −

n∑

j=1

∫
θ1 . . . dθj . . . θn −

n−1∑

j=1

∫
θ1 . . . (θi ∧ θi+1) . . . θn.

Indeed, an iterated integral, I, is locally constant on the loop space of X (i.e. is a

homotopy functional) precisely when dI = 0. Let In(X) be the space of homotopy

invariant iterated integrals of length n or less (thought of as a subspace of the space of

functionals on π1(X)). The following is Chen’s π1 Theorem:
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Theorem 37. (i) For J ⊳ Rπ1(X) the augmentation ideal of π1(X) defined in

Chapter 4.2, there is a natural isomorphism

In(X) ∼= (Rπ1(X)/J
n+1)∨.

(ii) If A• ⊂ Λ•X is a sub-differential graded algebra, such that the inclusion map

induces an isomorphism on cohomology, then all elements in In(X) can be written

as iterated integrals in forms from A•.

This can be applied immediately to the case of pure braids, X = C[k], with Theo-

rem 30, to obtain

Corollary 38. An invariant of Pk is of type n if and only if it can be written as

a homotopy invariant iterated integral of length less than or equal to n, in the ωij, i.e.

In(C[k]) = V
n
k .

One can then look for finite type invariants by trying to write down homotopy

invariant iterated integrals on the configuration space C[k]. Recall the winding forms

ωij defined in Section 2.2 of the previous chapter. A few homotopy invariant iterated

integrals present themselves immediately:
∫
ωij,

∫
(ωijωlm +ωlmωij),

∫
(ωijωjl +ωjlωil +ωilωij).

These are homotopy invariant because of, respectively, the exactness of the ωij, the

anti-symmetry of ∧, and the Arnold identity. The first is a winding number, the second

is the product of two winding numbers (see below) and the third is the Milnor triple

invariant (modulo products of invariants of type one).1 What should come after these is

not obvious. What is required is a method for generating homotopy invariant iterated

integrals which are indecomposable — that is, not products of lower order invariants.

Minimal models will give a recipe for just this. First, the Hopf algebraic structure of

the space of iterated integrals should be mentioned.

1.2. Hopf algebraic structure and iterated integrals. Explicit formulæ exist

for the operations in the Hopf algebra. The product is given by
∫

γ

θ1 . . . θn .

∫

γ

θn+1 . . . θn+m =
∑

(n,m)-shuffles σ

∫

γ

θσ(1) . . . θσ(n+m)

where an (n,m)-shuffle, σ, is a permutation of {1, . . . , n+m} such that if 1 ≤ a < b ≤ n
and n+ 1 ≤ c < d ≤ n+m then σ(a) < σ(b) and σ(c) < σ(d).

1This follows from later calculations, and the fact that the only type two invariant modulo products
of type one invariants is the Milnor triple invariant — this follows from the dimension counts in the
previous chapter and in [8].
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(i) γ

2l l
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(ii)
β
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1

(iii)

l2
3

o

l1

α

δ

l

Figure 5.2. Paths and lines paths in the twice punctured plane. The co-orientation of each
line is represented by the mark on the line which indicates the positive side of the line.

The coproduct is described via
∫

γβ

θ1 . . . θn =

n∑

i=0

∫

γ

θ1 . . . θi .

∫

β

θi+1 . . . θn.

Finally the antipode comes from
∫

γ−1
θ1 . . . θn = (−1)

n

∫

γ

θn . . . θ1.

Remark 10. From the product formula comes
∫
θ1.
∫
θ2 =

∫
(θ1θ2+θ2θ1), explain-

ing the comment about product of winding numbers above.

2. Currents.

An approach to iterated integrals which has both a more intuitive feel and an

aspect of calculability was presented by Hain in [31]. It uses the idea of currents: the

word current will here used to mean a distribution valued form supported on a sub-

manifold (see also [21]) — this can be thought of as the limit of forms supported in

regions arbitrarily close to the sub-manifold (see also Appendix A Section 4). From

this approach the notion of a non-abelian intersection theory can be developed. These

notions are used later to derive a combinatorial type two invariant of pure braids which

is independent of the winding numbers.

2.1. Hain’s example. One example given by Hain in [31] is the following. Con-

sider the twice punctured plane, with two disjoint, co-oriented half-lines l1 and l2 as in

Figure 5.2(i). Let w1 and w2 be the currents supported respectively on l1 and l2, each

representing the Poincaré dual of the respective line. Suppose γ is a generic based loop

(i.e. intersects l1 and l2 transversely) then the signed intersection number of l1 and γ

can be written as
∫
γ
w1. Indeed if {a1, a2} is the basis of the first homology of the twice

punctured plane with a1 (respectively a2) represented by a loop circling the right (re-

spectively left) puncture, then the homology class of γ is (
∫
γ
w1)a1 + (

∫
γ
w2)a2. Both

w1 and w2 are closed, and so both
∫
γ
w1 and

∫
γ
w2 are homotopy invariants.
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If a curve, β, represents a commutator element in the fundamental group, such as

in Figure 5.2(ii), then both
∫
β
w1 and

∫
β
w2 vanish, as β represents zero in homology.

However, one can consider, for instance, the iterated integral
∫
w1w2. This is a ho-

motopy invariant as d
∫
w1w2 = −

∫
dw1 −

∫
dw2 −

∫
w1 ∧ w2 = −0 − 0 − 0. If the

definition of
∫
β
w1w2 is unpacked, then it is seen that

∫
β
w1w2 counts, with sign, the

number of pairs (t1, t2) with 0 < t1 < t2 < 1 such that β(t1) ∈ l1 and β(t2) ∈ l2. For

the curve β in Figure 5.2(ii) there are three such pairs, but one is counted negative, so∫
β
w1w2 = +1.

Hain describes this as a non-abelian intersection theory; he also describes how the

Hopf algebraic formulæ of the last section can be easily seen to hold if the forms are

all currents supported on disjoint closed hypersurfaces.

2.2. The case of intersecting lines. To look at perturbing Hain’s example so

that the lines intersect, it is necessary to think a little about co-orientation. A co-

orientation of a sub-manifold is an orientation of the normal bundle, i.e. a choice of

non-vanishing section of the top exterior power of the co-normal bundle, this section

considered up to multiplication by a positive function. Of course for a hyper-surface,

a co-orientation is the same as a choice of one side of the hyper-surface being positive

and the other negative.

For K a co-oriented sub-manifold, denote its co-orientation by co(K). Adopt the

following conventions. If K is a sub-manifold with boundary, then denote by in(∂K)

the class (up to scaling by a positive function) of covectors on the boundary which are

positive when evaluated on vectors pointing into K. Let the induced orientation on the

boundary of K be given by co(∂K) = in(∂K)∧co(K). Also [14, pp. 66–69] if K and L are

transverse, co-oriented sub-manifolds then let the induced orientation on the ordered

intersection, (K ∩ L), be given by co(K ∩ L) = co(K) ∧ co(L). With this convention, if

K and L are also closed, with currents wK, wL, and wK∩L having the obvious supports

and representing the obvious Poincaré duals, then wK∩L = wK ∧wL.

Let l ′1 and l ′2 be the intersecting closed half-lines as in Figure 5.2(iii). For i = 1, 2,

let w ′
i be the current2 supported on l ′i which represents the Poincaré dual of l ′i. Note

that
∫
w ′
1w

′
2 is not a homotopy invariant — for instance the two curves, α and δ,

pictured in Figure 5.2(iii) are homotopic, but
∫
α
w ′
1w

′
2 = 0 and

∫
δ
w ′
1w

′
2 = 1 — this

is because d
∫
w ′
1w

′
2 =

∫
w ′
1 ∧ w

′
2 6= 0. However, all is not lost. Now w ′

1 ∧ w
′
2 is

concentrated at l ′1∩ l ′2 , and the co-oriented half-line l ′3 has as its boundary l ′1∩ l ′2 with

2For the reader concerned about the use of currents, in Appendix A Section 4 it is shown how to
construct C∞ forms supported in ǫ-neighbourhoods of l ′1, l

′

2, l
′

3, and ∂l ′3 which do (ǫ-approximately)
the same job as the above currents.
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opposite co-orientation. Let w ′
3 be the current supported on l ′3 such that w ′

3 restricted

to the twice punctured plane minus the boundary of l ′3, represents the Poincaré dual

of l ′3 in this thrice punctured plane. Then dw ′
3 is the 2-current supported on ∂l ′3 which

represents its Poincaré dual, i.e. it equals −w ′
1 ∧w

′
2.

This means that d(
∫
w ′
1w

′
2+
∫
w ′
3) = 0, hence

∫
w ′
1w

′
2+
∫
w ′
3 is a homotopy invari-

ant, and, as one can probably see from Figure 5.2(iii), it is equal to
∫
w1w2 in Hain’s

example above.

This example is very similar to that used to derive a combinatorial pure braid

invariant in Chapter 6.

3. Nilpotent towers and Malcev groups.

This section contains some more algebra necessary for understanding de Rham

homotopy theory. I have used material from [38, 58, 51, 50, 17, 37].

3.1. Malcev groups. Let G be a finitely generated group. Recall from Chapter 5

that {∆i0G}i∈N are the characteristic zero dimension subgroups and that they are com-

pletely characterized by being the rational closure of the corresponding subgroups of

the lower central series {Γ iG}i∈N. The quotients G/∆i0 are torsion-free nilpotent and the

factor groups ∆i0G/∆
i+1
0 G are free abelian. Thus the following is a tower of torsion-free

nilpotent groups built by iterated central extensions.

...

↓
∆30/∆

4
0 −→ G/∆40

↓
∆20/∆

3
0 −→ G/∆30

↓
G/∆20 −→ G/∆20

↓
{1}.

In the case that G is torsion-free nilpotent, ∆i0G = {1} for i sufficiently large, so G

sits on top of a finite such tower. If G is just nilpotent, then ∆i0G eventually stabilizes

to the subgroup of G which consists of all torsion elements.

Each stage in the tower can be embedded co-compactly in a simply-connected

nilpotent Lie group. Of course Zn embeds co-compactly as the obvious lattice in Rn.
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Figure 5.3. The 2-torus as the quotient of R2 by Z2.

If a group H embeds, then a central extension of the form

Zr →֒ G −→ H

↓ ↓
Rr 99K G⊗ R 99K H⊗ R

can be embedded co-compactly. This process can be carried out iteratively up the

tower. Thus a finitely generated torsion-free nilpotent group H embeds co-compactly

in a simply connected nilpotent Lie group H ⊗ R. In fact this is well defined up

to isomorphism. For a general finitely generated group G, the Malcev completion

G→ G⊗ R is defined3 as the limit of the maps G→ G/∆i0 →֒ (G/∆i0)⊗ R.

For a simply connected nilpotent Lie group the exponential map is a diffeomorphism

from the Lie algebra to the Lie group and the group multiplication pulls back to a well

defined product (the Baker-Campbell-Hausdorff formula gives a finite sum as the Lie

algebra is nilpotent). The Lie algebra is similarly built up from a tower of central

extensions corresponding to the Lie group tower. Taking the limit of the tower one

obtains the Malcev Lie algebra, L(G⊗R).
The following maps can thus be constructed:

...
...

...

↓ ↓ ↓
... G/∆30 →֒ (G/∆30)⊗ R

∼=−→ L
(

(G/∆30)⊗ R
)

ր ↓ ↓ ↓
G −→ G/∆20 →֒ (G/∆20)⊗ R

∼=−→ L((G/∆20)⊗ R).
3.2. Lie algebra cohomology. The purpose here is, in the case of a torsion-free

nilpotent Lie algebra, to relate the Lie algebra cohomology to that of the its group and

of a certain compact manifold.

The cohomology of a group H can be defined as the cohomology of any K(H, 1)

(see [15] for group cohomology). For H a finitely generated, torsion free, nilpotent

3This can actually be done functorially [62].
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group, a compact K(H, 1) which is a manifold can be constructed as follows:4 embed H

co-compactly into the simply connected Lie group H⊗R; the quotient space, H⊗R/H,

is the required Eilenberg-MacLane space.

To define Lie algebra cohomology consider the right invariant forms, Λ•(H⊗R)H⊗R,
on H⊗R. By the usual identification of the Lie algebra h with the right invariant vector

fields, the right invariant forms can be identified with the differential graded algebra,

Λ•(h∨), freely generated by the dual of the Lie algebra and with the differential given

by dualizing the bracket.5 The real cohomology of h is defined to be the cohomology

of this differential graded algebra, i.e.

H•(h,R) := H•
(

Λ•
(

h∨
))

.

There is a canonical isomorphism — the push-forward — between the forms, Λ•(H⊗
R)H, on H⊗R invariant under the action of H (which is embedded in H⊗R) and the

de Rham complex, Λ•(H⊗ R/H), of the quotient space.

An important fact [58] is that the inclusion of (H ⊗ R)-invariant forms on H ⊗ R
into the H-invariant forms on H⊗ R,

Λ•(h∨) ∼= Λ•(H⊗ R)H⊗R →֒ Λ•(H⊗ R)H ∼= Λ•(H⊗ R/H),

induces an isomorphism on cohomology, i.e.

H•(h,R) ∼= H•(H,R).

This will be used below.

4. Sullivan’s 1-minimal models.

Another approach to real π1 theory is via Sullivan’s 1-minimal models, which will

be used to calculate pure braid invariants in the next chapter. See [29, 70] for some

further material.

4.1. Definitions. If A• is a differential graded algebra then a 1-minimal model of

A• is a differential graded algebra, M•, freely generated in degree one, with a map of

differential graded algebras

ρ : M• → A•,

4On first reading, the reader is advised to picture H as the abelian group Z2, H ⊗ R as R2 (with Z2

embedded as the obvious lattice) and H⊗R/H as a standard 2-torus (see Figure 5.3); after that perhaps
try to picture the Heisenberg group.
5This notation is potentially confusing, as the exterior algebra, denoted Λ•(V), on the vector space V,
is covariant in V, whereas the de Rham complex, denoted Λ•(X), on the manifold X, is contravariant
in X.
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which induces an isomorphism, H1(M•) ∼= H1(A•), on the first cohomology groups and

induces an injection on the second cohomology groups. Note that the indecomposable

elements of M• can be identified as the homogeneous elements of degree one, M1.

Such a 1-minimal model has a natural structure as an iterated sequence of elemen-

tary extensions, M•(i) = M•(i − 1)⊗Λ•V(i), with V(i) being homogeneous of degree

one and dV(i) ⊂ M1(i − 1) ∧M1(i − 1). So M•(1) = Λ•(kerd1 : M1 → M2). Hence

there is a tower:
M•

↑
...

↑
Λ•V(3) ←− M•(3)

↑
Λ•V(2) ←− M•(2)

↑
M•(1).

M•(i) is called the ith stage of the 1-minimal model.

4.2. Existence and construction. If A• is an augmented differential graded

algebra then a 1-minimal model of A• exists, and the space is unique up to isomorphism

with the map being unique up to a suitable notion of homotopy (see [29]). A minimal

model can be constructed as follows.6

SetM•(1) = {Λ•(H1(A•))|d = 0}, i.e. the free differential graded algebra on the first

cohomology group of A• equipped with trivial differential, then define ρ1 : M
•(1)→ A•

by choosing a set of representatives for H1(A•) and extend to an algebra map.

Continuing inductively, suppose thatM•(i) and ρi : M
•(i)→ A• have been defined.

Let V(i+ 1) := ker{H2ρi : H
2M•(i)→ H2(A•)} then choose a linear map

V(i+ 1)→M2(i)×A1; v 7→ (mv, av)

where mv is a 2-cocycle representing v, i.e. v = [mv] and where ρi(mv) = dav. Define

dv =mv and ρi+1v = av then extend to M•(i+ 1) :=M•(i)⊗Λ•V(i+ 1).

Take ρ : M• → A• to be the direct limit of the ρi : M
•(i)→ A•. By construction it

will have the required cohomological properties.

4.3. 1-minimal model of a manifold. If X is a smooth manifold, then a 1-

minimal model of X means a 1-minimal model of the de Rham complex on X. Of

6This construction is used in Appendix A but can be skipped on first reading.
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course if A• ⊂ Λ•X is a sub-differential graded algebra of the de Rham complex, the

inclusion inducing an isomorphism on cohomology, then a 1-minimal model of A• will

give a 1-minimal model of X.

Sullivan’s π1 theorem [70] is the following:

Theorem 39. IfM• → Λ•X is a 1-minimal model of X then are natural Lie algebra

isomorphisms
(

M1(i)
)∨
∼= L

(

π1(X)/∆
i
0 ⊗ R

)

,

the left hand side having a bracket by dualizing the differential from M•(i).

Dually this is that M•(i) is isomorphic to Λ•(L(π1(X)/∆
i
0 ⊗ R)∨) as a differential

graded algebra, the latter having the differential obtained by dualizing the bracket.

Following Section 3 above, this should be suggestive of a geometric interpretation in

terms of invariant differential forms — this is the subject of the next section.

5. Higher order Albaneses.

The idea of this section is to give a geometric connection between the 1-minimal

model and iterated integrals approaches, and was inspired by [69, 17].

5.1. Classical real analytic Albanese. Let X be a smooth manifold and let

ΠX be the fundamental groupoid of X — that is the groupoid of homotopy7 classes of

piecewise-smooth paths on X. Picking8 a set, {θ1, . . . , θr}, of representative one-forms

for a basis of H1(X,R), integration on X induces a groupoid homomorphism:

I : ΠX→ H1(X,R)∨.

With respect to the dual basis of H1(X,R)∨, the map I is given by

I : [β] 7→
(∫

β

θ1, . . . ,

∫

β

θr

)

.

If x0 is a base point of X, then the fundamental group, π1(X, x0), is a subgroupoid

of the fundamental groupoid, and its image in H1(X,R)∨ is a lattice, P, called the

period lattice.9 A map

Alb : X→ H1(X,R)∨/P,

7Homotopy relative to the endpoints.
8In the context of Hodge theory, this can be done canonically by choosing the harmonic forms.
9It is interesting to note that the map I depends on the choice of {θ1, . . . , θr}, but the period lattice
does not.
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called the Albanese, from X to an r-dimensional torus, is then obtained and, with

respect to the above basis, is given by choosing a path β from x0 to x and setting

Alb(x) =

(∫

β

θ1, . . . ,

∫

β

θr

)

P.

In the case of a complex curve this is a real analytic version of the Jacobian.

The map Alb induces an isomorphism

π1(X, x0)/∆
2
0
∼= π1(H

1(X,R)∨/P).

Note that for a group G, G/∆20 is the abelianization modulo torsion of G.

5.2. Generalizing to higher nilpotency. The classical Albanese above only

detects the torsion-free part of the abelianization of the fundamental group. This can

be generalized, using iterated integrals, to obtain higher order, torsion-free, nilpotent

quotients of the fundamental group.

The iterated integrals defined in Section 1 actually give functionals on the space of

all piecewise-smooth paths on X, not just the loops on X, and an iterated integral gives

a functional on the fundamental groupoid (i.e. is homotopy invariant) precisely when

dI = 0, as in the loop case.

Definition 11. Define G(i) to be the simply connected (i− 1)-stage nilpotent Lie

group (π1(X, x0)/∆
i
0)⊗ R, i.e. the Lie group in which the ith nilpotent quotient of the

fundamental group embeds.

One can then define groupoid maps to the tower of simply connected nilpotent Lie

groups by using homotopy invariant iterated integrals:

...

↓
... G(3)

ր ↓
ΠX −→ G(2).

Chen [17] does this by the Lie transport map and essentially it looks like

Ii : ΠX→ G(i)

[β] 7→
(∫

β

θ1, . . . ,

∫

β

θr, I2,1(β), . . . , I2,r2(β), I3,1(β), . . . , Ii,ri(β)

)

.

where each In,s is a homotopy invariant iterated integral of length n. The multiplication

for the groupoid structure on the right hand side is the one defined in Section 1.2.
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The image of the fundamental group, π1(X, x0) forms a lattice Pi ⊂ G(i) for each

i. Quotienting out by these lattices gives a tower of compact nil-manifolds10 N(i) :=

G(i)/Pi, and well defined maps:

...

↓
... N(3)

ր ↓
X −→ N(2).

The tower induces isomorphisms π1(X, x0)/∆
i
0
∼= π1(N(i)). The maps Albi : X→ N(i)

are the higher order Albaneses.

5.3. A geometric interpretation of the 1-minimal model. Given the tower

of Albaneses above, there are the maps

G(i)

↓ qi
X

Albi−→ N(i),

with qi being the quotient by the period lattice Pi. Again, one can look at the right-

invariant forms on the Lie group G(i), these push forward to forms on the nil-manifold

N(i) and pull back to forms on the original space X. Recalling that right-invariant

forms can be identified with the free differential graded algebra on the the dual, g(i)∨,

of the Lie algebra, g(i), of G(i), one obtains a map

Alb∗
i qi∗ : Λ

•(g(i)∨)→ Λ•(X).

Note that the induced map on H1 is an isomorphism (by the discussion above on Lie

algebra cohomology), and Λ•(g(i)∨) is, by definition, freely generated in degree one.

It then follows from the nilpotency of g(i), that the map Alb∗
i qi∗ is the ith stage of

a 1-minimal model of X and gives a geometric interpretation of Sullivan’s π1 theorem

(Theorem 39).11

6. Iterated integrals from minimal models.

As a partial converse to the geometric construction of a minimal model from iterated

integrals, Chen [19] (following Sullivan [69]) describes how every indecomposable in

10A nil-manifold is a manifold with nilpotent fundamental group and no other non-trivial homotopy
group.
11In fact, [35], one can prove Sullivan’s π1 theorem by this approach.
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the minimal model can be used to detect the relevant homotopy classes via iterated

integrals.

6.1. Geometric version. First consider the geometric minimal model constructed

above. Suppose that α ∈ g(n)∨ then one can form the following composition:

π1(X, x0)։ π1(X, x0)/∆
n
0 →֒ G(n)

log−→ g(n) α−→ R.

The map π1(X, x0) → G(n) is a vector of iterated integrals of length n. As G(n) is

n-stage nilpotent, log is just a polynomial of degree n. The composition is just going

to be an iterated integral of length n, and this will depend linearly on the α chosen,

with the different choices of α detecting all elements of π1(X, x0)/∆
n
0 .

The idea is to be able to associate homotopy invariant iterated integrals to arbitrary

1-minimal models.

6.2. General case. First recall that In(X) is the space of functionals on π1(X)

spanned by homotopy invariant iterated integrals of length n or less, and let I(X) be

the space spanned by all homotopy invariant iterated integrals. The following theorem

can be extricated from [19]:

Theorem 40 (Chen). If ρ : M• → Λ•X is a 1-minimal model for X, and M• is

the algebra obtained by placing all the generators of M• in degree zero, then one can

construct an isomorphism of algebras

ϕ : M• → I(X).

In the terminology of finite type pure braid invariants, this means that every weight

system can be explicitly integrated to a finite type invariant.

The idea is to construct a map from the generators of the nth stage:

ϕn : M
1(n)→ I(X).

To do this it is necessary to know something about the bar construction on a differential

graded algebra. The bar construction, B•(A•), on a differential graded algebra A• is

a differential graded Hopf algebra; the underlying vector space is that underlying the

tensor algebra of A•, but with a different grading. A typical basis element, a1⊗· · ·⊗ar,
of B•(A•) is written as

aaa = [a1|a2| . . . |ar] ∈ B•(A•).

Such an element has grading

degaaa =
r∑

i=1

(degai − 1).
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Define the map J : A• → A• by a 7→ (−1)deg aa and then the differential of the bar

construction is determined by

daaa =
∑

1≤i≤r

(−1)i[Ja1| . . . |Jai−1|dai|ai+1| . . . |ar]

−
∑

1≤i<r

(−1)i[Ja1| . . . |Jai−1|Jai ∧ ai+1|ai+2| . . . |ar].

For the case of the 1-minimal model ρ : M• → Λ•(X), there is a map from elements

of the bar construction which consist of sums of strings of elements of M1 to the space

of iterated integrals, given by

[m1| . . . |mr] 7→
∫
ρ(m1) . . . ρ(mr).

Note that this commutes with the differentials. Thus what is required is a map from

M1 to the cocycles in the bar construction. Chen [19] proves that if m ∈ M1(n) then

[m] can be completed to a cocycle in the bar construction by adding elements of the

form [m1| . . . |mr] with r ≥ 2 and mi ∈ M1(n − 1). This then gives a suitable map

ϕ : M1(n)→ ZB•(M•(n))→ I(X).
The methodology described here is used explicitly in Appendix A to find pure braid

invariants of low order, and the results are collated in the next chapter.



CHAPTER 6

Obtaining explicit pure braid invariants.

It’s monstrous, horrid, shocking,
Beyond the power of thinking,

Not to know, interlocking
Is no mere form of linking.

— James Clerk Maxwell, (Cats) Cradle Song.

In this chapter the abstract de Rham π1 theory of the previous chapter is applied

to the braid theory of Chapter 4 to obtain some concrete formulæ for pure braid

invariants. This is done by building low order minimal models. This solves a problem

of M. A. Berger.

In Section 1 a dictionary translating from the language of the previous chapter to

the language of finite type pure braid invariants is given, and Kohno’s description of

the chord diagram algebra of pure braids is given. Calculations from Appendix A are

summarized in Section 2, giving low order minimal models for P3 and P4, and integral

formulæ for corresponding invariants. Section 3 presents a combinatorial formula for

“the” second order invariant independent of winding numbers.

1. Translating to pure braids.

1.1. Dictionary. Firstly note the dictionary of Table 6.1 which helps translate

the abstract ideas of Chapter 5 to the concrete notions of Vassiliev invariants.

1.2. Kohno’s description of pk. If the Malcev Lie algebra of the pure braid

group of k strands is denoted by Pk → pk, then Kohno [43] gave a description of the

Lie algebra pk. Generators of pk are {Yij}1≤i<j≤k although it is simpler here to take

generators {Yij}1≤i 6=j≤k with the extra relations Yij = Yji. The other relations are:

[Yij, Yrs] = 0, if i, j, r, s are distinct;

[Yij, Yir + Yjr] = 0, if i, j, r are distinct.

The universal enveloping algebra of pk is the so-called algebra of chord diagrams,

and in this the generator Yij is written as a chord diagram on k vertical strands with

69
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Manifold X Configuration space C[k]

Fundamental group π1(X) Pure braid group Pk

Augmentation ideal J ⊳ Rπ1(X) Linear combination of braids with at
least one double point.

(

Rπ1(X)/J
n+1
)∨

Type n invariants Vnk

Space of functionals spanned by homo-
topy invariant iterated integrals, I(X)

Space of finite type invariants

Model A• ⊂ Λ•(X) Arnold algebra generated by winding
forms {ωij}

Malcev Lie algebra π1(X)→ g Universal indecomposable invariant
Pk → pk

ith Malcev Lie algebra, g(i) ith nilpotent quotient of Lie algebra of
chord diagrams, pk(i)

Malcev Lie group π1(X)→ G Universal finite type invariant, (a.k.a.
Kontsevich integral) Pk → U(pk)

Generator, α ∈ M1(n), of minimal
model

Indecomposable weight system of de-
gree n

Table 6.1. A dictionary to translate from the abstract ideas of the previous chapter to the
concrete braid theory. Note that the translation is not precise.

a chord joining the ith and jth strands:

i1 kj

.

Multiplication is by placing diagrams on top of one another as with the braid mul-

tiplication. The relations coming from pk are known as the commutativity and 4T

relations.

So in fact the universal Vassiliev invariant is Pk → U(pk) and elements of the dual

space to U(pk) are weight systems. A standard Hopf algebra result is that the elements

dual to the primitives are the indecomposable in the dual space, so the dual of pk are

indecomposable weight systems. Thus to find a set of generators for the indecomposable

weight systems then, one could dualize pk and find bases for the nilpotent quotients

(the nth nilpotent quotient being the space of weight systems of degree n or less).

To obtain generators for the invariants one should then use these in conjunction with
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n d ρ ϕ

1 α1 ω23
∫
ω23

α2 ω31
∫
ω31

α3 ω12
∫
ω12

2 µ χ1 ∧ χ2 0
∫
Υ2Υ1

3 ι1 µ∧ χ1 0 −
∫
Υ2Υ1Υ1

ι2 µ∧ χ2 0
∫
Υ1Υ2Υ2

4 κ1 ι1 ∧ χ
1 0

∫
Υ2Υ1Υ1Υ1

κ2 ι2 ∧ χ
2 0 −

∫
Υ1Υ2Υ2Υ2

κ3 ι2 ∧ χ
1 + ι1 ∧ χ

2 0 −
∫
Υ1Υ2Υ2Υ1 −

∫
Υ1Υ2Υ1Υ2 −

∫
Υ1Υ1Υ2Υ2

5 λ1 κ1 ∧ χ
1 0 −

∫
Υ2Υ1Υ1Υ1Υ1

λ2 κ2 ∧ χ
2 0

∫
Υ1Υ2Υ2Υ2Υ2

λ ′1 κ1 ∧ χ
2 + κ3 ∧ χ

1 0 −
∫
Υ2Υ1Υ1Υ1Υ2 −

∫
Υ2Υ1Υ1Υ2Υ1

−
∫
Υ2Υ1Υ2Υ1Υ1 −

∫
Υ2Υ2Υ1Υ1Υ1

λ ′2 κ2 ∧ χ
1 + κ3 ∧ χ

2 0
∫
Υ1Υ2Υ2Υ2Υ1 +

∫
Υ1Υ2Υ2Υ1Υ2

+
∫
Υ1Υ2Υ1Υ2Υ2 +

∫
Υ1Υ1Υ2Υ2Υ2

λ ′′1 κ1 ∧ χ
2 + ι1 ∧ µ 0 −

∫
Υ1Υ1Υ2Υ1Υ2 − 2

∫
Υ2Υ1Υ1Υ2Υ2

λ ′′2 κ2 ∧ χ
1 − ι2 ∧ µ 0

∫
Υ2Υ2Υ1Υ2Υ1 + 2

∫
Υ1Υ2Υ2Υ1Υ1

Table 6.2. A 1-minimal model to stage five with associated invariants, for P3. Note the
simplifying definitions χ1 := α1 − α2, χ2 := α1 − α3, Υ1 := ω23 −ω31 and Υ2 := ω23 −ω12.

Chen’s Lie connection Pk → pk. The approach taken here, however, is to build up

minimal models directly for C[k] and use the theory of Chapter 5 to then construct

invariants. An attempt is then made to do this on the level of currents in the hope of

constructing combinatorial invariants.

2. Minimal models and integral formulæ for invariants of low order.

2.1. Three strand braids. The calculations in Appendix A lead to the summary

in Table 6.2 which gives a description of a 1-minimal model for C[3] (or more precisely,

for the Arnold algebra of winding forms) up to the fifth stage. The elements χ1 and χ2

are defined respectively to be α1−α2 and α1−α3 — this is so that the Arnold relation

can be expressed in terms of a simple product: χ1 ∧ χ2 = 0.

So, for instance, one can read off that

M•(2) =
{
Λ•
(

α1, α2, α3, µ
) ∣

∣

∣ dαi = 0, dµ = χ1 ∧ χ2
}
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with the map given as

ρ : M•(3)→ Λ•(C[3]); α1 7→ ω23, α
2 7→ ω31, α

3 7→ ω12, µ 7→ 0.

The one forms Υ1 = ω23 −ω31 and Υ2 = ω23 −ω21 are the images of χ1 and χ2.

The braid invariants associated to the generators of the minimal model are then

α1 7→
∫
ω23, α

2 7→
∫
ω31, α

3 7→
∫
ω12, µ 7→

∫
Υ2Υ1.

These braid invariants are uniquely determined modulo products of lower order.

Note that the numbers of invariants match those in Table 4.3.

Remark 11. The generators given here are far from canonical and are chosen to

simplify the calculations. It can be asked if Hain’s canonical idempotent on the bar

construction [32] will reduce the choices.

2.2. Four strand braids. As shown in Appendix A and Table 4.3, the first two

stages of the minimal model for P4 are generated by elements which are induced by

the “forgetting strings” maps to the two lower braid groups, P2 and P3. Two new

forms of generator occur at stage three however. In Appendix A suitable invariants

corresponding to these generators are given as
∫
ω42(ω41 −ω12)(ω23 −ω34) +

∫
ω42(ω23 −ω34)(ω41 −ω12)

+
∫
ω13(ω34 −ω41)(ω12 −ω23) +

∫
ω13(ω12 −ω23)(ω34 −ω41)

−
∫
(ω23 +ω41)ω12ω34 −

∫
(ω23 +ω41)ω34ω12

−
∫
(ω12 +ω34)ω41ω23 −

∫
(ω12 +ω34)ω23ω41,

and
∫
ω23(ω34 −ω24)(ω31 −ω12) +

∫
ω23(ω31 −ω12)(ω34 −ω24)

+
∫
ω41(ω12 −ω24)(ω31 −ω34) +

∫
ω41(ω31 −ω34)(ω12 −ω24)

+
∫
(ω24 +ω13)ω34ω12 +

∫
(ω24 +ω13)ω12ω34

+
∫
(ω12 +ω34)ω24ω13 +

∫
(ω12 +ω34)ω13ω24.

3. Towards combinatorial formulæ.

The goal is to get combinatorial expressions for a set of generating invariants.

The idea is to try to map the minimal model generators to currents supported on sub-

manifolds of C[k], so that evaluating iterated integrals based on these currents becomes

a combinatorial operation, resulting in Gauß diagram type formulæ. This is achieved

here in the limited case of invariants up to type two — the case of type one invariants

is just the classical combinatorial way of calculating the winding numbers.
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3.1. Beginning with C[3]. To build a 1-minimal model mapping into currents,

first a set of current representatives for a basis of H1(C[3]) must be found. A suitable

set is supported on the following hyperplanes:

H12 =
{
z ∈ C[3]

∣

∣ Re z1 = Re z2, Im z1 < Im z2
}
;

H23 =
{
z ∈ C[3]

∣

∣ Re z2 = Re z3, Im z2 < Im z3
}
;

H13 =
{
z ∈ C[3]

∣

∣ Re z1 = Re z3, Im z1 < Im z3
}
.

These are oriented so that the Poincaré dual of Hij is the cohomology class of the

winding formωij. Then pick the current hij supported on Hij representing the Poincaré

dual. The hyperplanes can be pictured as the following configurations (real axis across

the page, imaginary axis up the page):

•2 •3 •3
•1 •2 •1
H12 H23 H13

;

the third point being allowed to be anywhere in the complex plane. So one can define

a map, ρ ′, from M1 into the 1-currents on C[3] by:

ρ ′(α1) = h23, ρ
′(α2) = h31, ρ

′(α3) = (h12).

The corresponding pure braid invariants are the winding numbers wij(β) =
∫
β
hij.

These hyperplanes where chosen so that this integral can be done combinatorially:

as hij represents the Poincaré dual of the hyperplane Hij,
∫
β
hij is just the signed

intersection number of the braid β (as a loop in C[3]) with Hij — from a braid diagram

of β, this is just the number of times (counted with sign) that strand i passes in front

of strand j. This translates immediately to the Gauß diagram formalism of Chapter 3.

Recall that the Gauß diagram encodes the crossing information in a diagram: the

analogous definition is made here for braids. Then by the above discussion, e.g.

w12(β) =

〈

, Gβ

〉

for Gβ the Gauß diagram of the projection of the braid β, and the notation means

count (with sign) the number of instances of the arrow diagram (on the left) in the

Gauß diagram (on the right).

For example,

w12

( )

=

〈

,
+

+

〉

= +1.
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To get the next level of invariants it is necessary to go to the second stage of the

1-minimal model and this requires examining the kernel of the wedge product. For the

Arnold algebra this is contained in the Arnold relation:

ω12 ∧ω23 +ω23 ∧ω31 +ω31 ∧ω12 = 0.

As the hij are cohomologous to the ωij, on the cohomology level there is the relation:

[h12]∧ [h23] + [h23]∧ [h13] + [h13]∧ [h12] = 0,

i.e. on the form level there is a 1-form k123 such that

h12 ∧ h23 + h23 ∧ h13 + h13 ∧ h12 = dk123.

Translating that into the language of sub-manifolds, one would hope for a hypersurface

K123 ∈ C[3] such that

(H12 ∩H23) ∪ (H23 ∩H13) ∪ (H13 ∩H12) = ∂K123.

The calculation in Appendix A shows that setting

K123 = {z ∈ C[3] | Re z1 = Re z3 ≤ Re z2, Im z1 < Im z3}

with the orientation as for H13, gives the correct boundary. K123 can be pictured as:

•3
•1

•2.

This can be used to construct the second stage of the 1minimal model, ρ ′2 : M
•(2)→

Λ•(X), so

ρ ′(µ) = k123.

A suitable invariant is then given by

w123(β) :=
∫
β
(h12h23 + h23h13 + h13h12 − k123)

To translate
∫
k123 into a Gauß diagram formula it is necessary to encode some addi-

tional information in the Gauß diagram, namely whether the second strand is on the

right when the first strand passes over the third. This can be indicated by placing an

‘r’ on the level of any such arrow on the Gauß diagram. So

w123(β) =

〈

+ + − r , Gβ

〉

.
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Here are two examples. first look at the pigtail braid:

w123

















=

〈

+ + − r , - +

+

-
+

-

〉

= (+1− 1+ 1) + 0+ 0− 0 = 1.

Whereas the next braid has Gauß diagram

+

-

+
+

r ,

hence

w123







 = 0+ 0+ 0− 1 = −1.
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APPENDIX A

Calculations.

Hi ho! Hi ho!
It’s off to work we go.

— Disney, Snow White and the Seven Dwarfs.

This appendix mostly contains calculations for Chapter 6, but also contains a section on

approximating currents with C∞-forms pertinent to Chapter 5 Section 2. In Section 1

a minimal model for the Arnold algebra is constructed up to degree five for the three

strand braid group and up to degree three for the four strand braid group: the former

is 15 dimensional and the latter 21 dimensional. In Section 2 integral are constructed

which give pure braid invariants corresponding to the generators of the minimal models

of Section 1. In Section 3 the co-orientations of some intersections and boundaries of

sub-manifolds of the configuration space C[3] are calculated to prove that the right

choices are made in Chapter 6 Section 3. Finally, in Section 4 the example of Chapter 5

Section 2.2 is done with C∞ forms supported arbitrarily close to the sub-manifolds,

rather than with currents.

1. 1-minimal model for the Arnold algebra.

Recall from Section 4 of Chapter 5 that the 1-minimal model of a manifold X

is constructed inductively, stage by stage, and at stage n consists of a differential

graded algebra, M•(n), freely generated in degree 1, which is equipped with a map of

differential graded algebras ρn : M
•(n)→ Λ•X.

1.1. Three strand pure braids. Begin with the Arnold algebra:

A•
3 = Λ

• (ω12,ω23,ω31) /(ω12 ∧ω23 +ω23 ∧ω31 +ω31 ∧ω12),

this is equipped with the trivial differential and forms a model for the de Rham algebra

of the configuration space C[3].

For the first stage, ρ1 : M
•(1)→ A•

3, of the minimal model take

M•(1) :=
{
Λ
(

α1, α2, α3
)

| d = 0
}
; ρ(α1) = ω23, ρ(α

2) = ω31, ρ(α
3) = ω12.
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To extend this to a second stage, consider

V(1) = ker
{
H2ρ1 : H

2M•(1)→ H2A•
3

}

=
〈

α1 ∧ α2 + α2 ∧ α3 + α3 ∧ α1
〉

=
〈

(α1 − α2)∧ (α1 − α3)
〉

.

Set

χ1 := α1 − α2; χ2 := α1 − α3.

Now a single generator is added to M•(1) to obtain

M•(2) :=
{
M•(1)⊗Λ•(µ) | dµ = χ1 ∧ χ2

}
; ρ2(µ) := 0.

Next to calculate H2M•(2) first calculate the space, Z2M•(2), of cocycles:1

d
(

a3α
1 ∧ α2 + a1α

2 ∧ α3 + a2α
3 ∧ α1 + b1µ∧ α

1 + b2µ∧ α
2 + b3µ∧ α

3
)

= b1α
2 ∧ α3 ∧ α1 + b2α

3 ∧ α1 ∧ α2 + b3α
1 ∧ α2 ∧ α3

= (b1 + b2 + b3)α
1 ∧ α2 ∧ α3.

So

Z2M•(2) =
{
µ∧ (b1α

1 + b2α
2 + b3α

3) + a3α
1 ∧ α2 + a1α

2 ∧ α3
∣

∣

∑
bi = 0

}
.

The co-boundaries, B2M•(2), are calculated via

d(a1α
1 + a2α

2 + a3α
3 + bµ) = bχ1 ∧ χ2.

Thus

H2M•(2) =
{
a3α

1 ∧ α2 + a1α
2 ∧ α3 + a2α

3 ∧ α1 +
∑
i biχ

i ∧ µ
}
/
〈

χ1 ∧ χ2
〉

,

but

ρ2(a3α
1∧α2+a1α

2∧α3+a2α
3∧α1+

∑
i biχ

i ∧ µ) = a3α
1∧α2+a1α

2∧α3+a2α
3∧α1.

So

V(2) := ker(H2ρ2) =
{[
b1µ∧ χ

1 + b2µ∧ χ
2
]}
.

This can then be used to construct:

M•(3) :=
{
M•(2)⊗Λ•(ι1, ι2) | dιi = µ∧ χ

i
}
; ρ3(ιi) := 0.

Further calculations show

V(3) := ker(H2ρ3) =
{[
a1ι1 ∧ χ

1 + a2ι2 ∧ χ
2 + b(ι2 ∧ χ

1 + ι1 ∧ χ
2)
]}

⊂ H2M•(3).

1Latin letters will refer to real numbers, Greek letters will be elements of algebras.
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This leads to defining

M•(4) :=
{
M•(3) ⊗Λ•(κ1, κ2, κ3) | dκ1 = ι1 ∧ χ

1, dκ2 = ι2 ∧ χ
2, dκ3 = ι2 ∧ χ

1 + ι1 ∧ χ
2
}
;

ρ4(κi) := 0.

Additional straightforward but tedious calculations give

V(4) := ker(H2ρ4)

=
{[
a1κ1 ∧ χ

1 + a2κ2 ∧ χ
2 + (b1κ1 ∧ χ

2 − b2κ3 ∧ χ
1 − b3ι1 ∧ µ)

+ (c1κ2 ∧ χ
1 − c2κ3 ∧ χ

2 + c3ι2 ∧ µ)
] ∣

∣

∑
bi =

∑
ci = 0

}

⊂ H2M•(4).

This leads to making the definition:

M•(5) :=
{
M•(4) ⊗Λ•(λ1, λ2, λ

′
1, λ

′
2, λ

′′
1 , λ

′′
1 )
∣

∣

dλ1 = κ1 ∧ χ
1, dλ2 = κ2 ∧ χ

2,

dλ ′1 = κ1 ∧ χ
2 + κ3 ∧ χ

1, dλ ′2 = κ2 ∧ χ
1 + κ3 ∧ χ

2,

dλ ′′1 = κ1 ∧ χ
2 + ι1 ∧ µ, dλ ′′2 = κ2 ∧ χ

1 − ι2 ∧ µ
}
;

ρ5(λi) := 0.

These results are summarized in Table 6.2.

1.2. Four strand pure braids. The first two stages of the minimal model for

P4 are just induced by the “forgetting strings” maps to the two lower braid groups, P2

and P3, so take

M•(2) :=
{
Λ•
(

α12, α13, α41, α23, α24, α34, µ1, µ2, µ3, µ4
)

| dxij = 0;

dµi = αjl ∧ αlm + αlm ∧ αmj + αmj ∧ αjm (where (i, j, l,m) is

the standard cyclic ordering of (1, 2, 3, 4))
}
;

ρ2(α
ij) := ωij, ρ2(µ

i) := 0.

In degree three there are similarly ιi1 and ιi2 (for i = 1, 2, 3, 4) induced in the same

way, but there are two more generators required, as the elements in M2(2) of the form

a
(

µ1 ∧ α12 − µ2 ∧ α12 + µ3 ∧ α34 − µ4 ∧ α34
)

+ b
(

µ1 ∧ α13 − µ2 ∧ α24 + µ3 ∧ α13 − µ4 ∧ α24
)

+ c
(

µ1 ∧ α14 − µ2 ∧ α23 + µ3 ∧ α23 − µ4 ∧ α14
)

,
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where a+ b+ c = 0, are co-cycles. So take the two generators to be ν1 and ν2 with

dν1 := µ
1 ∧ (α41 − α12) + µ2 ∧ (α12 − α23) + µ3 ∧ (α23 − α34) + µ4 ∧ (α34 − α41),

dν2 := µ
1 ∧ (α31 − α12) + µ2 ∧ (α12 − α24) + µ3 ∧ (α13 − α34) + µ4 ∧ (α34 − α42),

ρ3(ν1) := 0 ρ3(ν2) := 0.

2. Integrals for invariants.

Here the method from Section 5 of Chapter 5 is used to obtain invariants from the

generators of the minimal model. Recall that, by Chen, for α a generator in the nth

stage of the 1-minimal model there exists a (not necessarily unique) 1-cocycle, ϕ̂(α),

in the bar construction of the form [α] +
∑
i[θi,1| . . . |θi,ri ] such that ri ≥ 2 for each i

and each θi,j is in M1(n − 1). The image, ϕ(α) := ρn ◦ ϕ̂(α), of this cocycle in the

space of iterated integrals is the required invariant corresponding to α.

Recall that in the bar construction, for θ1, . . . , θi of degree one the differential of

[θ1| . . . |θi] is given by

d[θ1| . . . |θi] = −

i∑

r=1

[θ1| . . . |dθr| . . . |θi] −

i−1∑

r=1

[θ1| . . . |θr ∧ θr+1| . . . |θi].

2.1. Three strands, stage two. The above formula means that

−d[µ] = [dµ] = [χ1 ∧ χ2] = −[χ2 ∧ χ1] = d[χ2|χ1],

(as dχi = 0). Thus setting

ϕ̂(µ) := [µ] + [χ2|χ1]

gives a cocycle in the bar construction, and hence

ϕ(µ) =
∫
Υ2Υ1

is a suitable homotopy invariant iterated integral.

2.2. Three strands, stage three. Working similarly, see that

−d[ι1] = [dι1] = [µ∧ χ
1] = −d[µ|χ1] − [dµ|χ1] = −d[µ|χ1] − [χ1 ∧ χ2|χ1]

= −d[µ|χ1] + [χ2 ∧ χ1|χ1] = −d[µ|χ1] − d[χ2|χ1|χ1]

and so take

ϕ̂(ι1) := [ι1] − [µ|χ
1] − [χ2|χ1|χ1],

which gives

ϕ(ι1) = −
∫
Υ2Υ1Υ1.
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An analogous calculation leads to setting

ϕ(ι2) =
∫
Υ1Υ2Υ2.

2.3. Three strands, stage four. One can verify

−d[κ1] = d
{
−[ι1|χ

1] + [µ|χ1|χ1] + [χ2|χ1|χ1|χ1]
}
,

so set

ϕ̂(κ1) := [κ1] − [ι1|χ
1] + [µ|χ1|χ1] + [χ2|χ1|χ1|χ1],

hence

ϕ(κ1) =
∫
Υ2Υ1Υ1Υ1.

Similarly one is lead to setting

ϕ(κ2) := −
∫
Υ1Υ2Υ2Υ2.

Also, as

−d[κ3] = d
{
−[ι2|χ

1] − [ι1|χ
2] + [µ|χ2|χ1] + [µ|χ1|χ2]

− [χ1|χ2|χ2|χ1] − [χ1|χ2|χ1|χ2] − [χ1|χ1|χ2|χ2]
}
,

set

ϕ(κ3) := −
∫
Υ1Υ2Υ2Υ1 −

∫
Υ1Υ2Υ1Υ2 −

∫
Υ1Υ1Υ2Υ2.

2.4. Three strands, stage five. By the same calculation as for κ1 and κ2 one

can set

ϕ(λ1) := −
∫
Υ2Υ1Υ1Υ1Υ1; ϕ(λ2) :=

∫
Υ1Υ2Υ2Υ2Υ2.

Now,

−d[λ ′1] = d
{
−[κ1|χ

2] − [κ3|χ
1] + [ι1|χ

1|χ2] + [ι2|χ
1|χ1] + [ι1|χ

2|χ1]

− [µ|χ1 |χ1|χ2] − [µ|χ2|χ1|χ1] − [µ|χ1|χ2|χ1]

− [χ2|χ1|χ1|χ1|χ2] − [χ2|χ1|χ1|χ2|χ1] − [χ2|χ1|χ2|χ1|χ1] − [χ2|χ2|χ1|χ1|χ1]
}
.

So take

ϕ(λ ′1) := −
∫
Υ2Υ1Υ1Υ1Υ2 −

∫
Υ2Υ1Υ1Υ2Υ1 −

∫
Υ2Υ1Υ2Υ1Υ1 −

∫
Υ2Υ2Υ1Υ1Υ1,

and similarly

ϕ(λ ′2) :=
∫
Υ1Υ2Υ2Υ2Υ1 +

∫
Υ1Υ2Υ2Υ1Υ2 +

∫
Υ1Υ2Υ1Υ2Υ2 +

∫
Υ1Υ1Υ2Υ2Υ2.
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It can be verified that

−d[λ ′′1 ] := d
{
−[κ1|χ

2] − [ι1|µ] + [ι1|χ
1|χ2] − [χ1|µ|µ] + [χ1|µ|χ1|χ2]

+ [χ1|χ1|χ2|µ] + [χ1|χ1|µ|χ2] − [χ1|χ1|χ2|χ1|χ2] − 2[χ1|χ1|χ1|χ2|χ2]
}
.

So one sets

ϕ(λ ′′1 ) := −
∫
Υ1Υ1Υ2Υ1Υ2 − 2

∫
Υ1Υ1Υ1Υ2Υ2,

and likewise

ϕ(λ ′′2 ) :=
∫
Υ2Υ2Υ1Υ2Υ1 + 2

∫
Υ2Υ2Υ2Υ1Υ1.

2.5. Four strands, stage three. An easy calculation gives that

−d[ν1] = d
{
− [µ1|(α41 − α12)] − [µ2|(α12 − α23)]

− [µ3|(α23 − α34)] − [µ4|(α34 − α41)]

+ [α42|(α41 − α12)|(α23 − α34)] + [α42|(α23 − α34)|(α41 − α12)]

+ [α13|(α34 − α41)|(α12 − α23)] + [α13|(α12 − α23)|(α34 − α41)]

− [(α23 + α41)|α12|α34] − [(α23 + α41)|α34|α12]

− [(α12 + α34)|α41|α23] − [(α12 + α34)|α23|α41]
}
.

So a suitable invariant is

ϕ(ν1) :=
∫
ω42(ω41 −ω12)(ω23 −ω34) +

∫
ω42(ω23 −ω34)(ω41 −ω12)

+
∫
ω13(ω34 −ω41)(ω12 −ω23) +

∫
ω13(ω12 −ω23)(ω34 −ω41)

−
∫
(ω23 +ω41)ω12ω34 −

∫
(ω23 +ω41)ω34ω12

−
∫
(ω12 +ω34)ω41ω23 −

∫
(ω12 +ω34)ω23ω41.

Similarly set

ϕ(ν2) :=
∫
ω23(ω34 −ω24)(ω31 −ω12) +

∫
ω23(ω31 −ω12)(ω34 −ω24)

+
∫
ω41(ω12 −ω24)(ω31 −ω34) +

∫
ω41(ω31 −ω34)(ω12 −ω24)

+
∫
(ω24 +ω13)ω34ω12 +

∫
(ω24 +ω13)ω12ω34

+
∫
(ω12 +ω34)ω24ω13 +

∫
(ω12 +ω34)ω13ω24.

3. Co-oriented intersections in C[3].

In this section, some co-oriented intersections and boundaries are calculated for

certain sub-manifolds of the configuration space C[3]. Consider the configuration space
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C[3] to be a subspace of R6 via the obvious embedding

(z1, z2, z3) 7→ (x1, y1, x2, y2, x3, y3),

with zj = xj + iyj. Equip R6 with its standard metric.

Take the tangent space at each point of R6 to have basis {∂xi , ∂yi | i = 1, 2, 3}, and

the cotangent space at each point to have dual basis {dxi, dyi | i = 1, 2, 3}.

The subspace Hij = {z ∈ C[3] | Re z1 = Re z2, Im zi < Im zj} has tangent space at

each point z given by

TzHij = {
∑3
r=1(ar∂xr + br∂yr) | ai = aj; ar, br ∈ R}

(i.e. the ith and jth points move equal amounts in the real direction). With the standard

metric on R6, the normal space to Hij can be identified with

NzHij = {a(∂xi − ∂xj) | a ∈ R},

which may be pictured as

←•j
•i→

The co-normal space at each point z ∈ Hij can be identified with

N∗
z
Hij = 〈dxi, dxj〉/(dxi + dxj = 0).

This is one dimensional. To make a positive crossing correspond to a positive transver-

sal intersection of Hij, take the positive co-orientation of Hij to be the class of dxi−dxj.

Now consider the space Hijl = {z ∈ C[3] | Re z1 = Re z2 = Re z3, Im zi < Im zj < xl},

pictured as

•l
•j
•i.

The tangent space at each point z ∈ Hijl is given by

TzHijl = {
∑3
r=1(ar∂xr + br∂yr) | a1 = a2 = a3}

(so all three points move sideways by the same amount).

The normal space is

NzHijl = {a1∂x1 + a2∂x2 + a3∂x3 | a1 + a2 + a3 = 0},

so the co-normal space can be taken to be

N∗
z
Hijl = 〈dx1, dx2, dx3〉/(dx1 + dx2 + dx3 = 0).
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A co-orientation of Hijl is a class of section of Λ2NHijl; for the sake of calculation,

make the arbitrary choice that the positive co-orientation of Hijl corresponds to the

class of dx1 ∧ dx2.

All the machinery is now in place to examine (H12∩H23)∪(H23∩H13)∪(H13∩H12).
The manifold underlying H12 ∩H23 is H123 — pictorially:

•2
•1

∩ •3
•2
=

•3
•2
•1
.

To calculate the co-orientation on this:

co(H12 ∩H23) = co(H12)∧ co(H23) = (dx1 − dx2)∧ (dx2 − dx3)

= (dx1 − dx2)∧ (2dx2 + dx1) = 3dx1 ∧ dx2

(recalling that −dx3 = dx1 + dx2 in Λ∗NHijl). This is a positive orientation.

For H23 ∩H13, the underlying submanifold is seen via

H23 ∩H13 =
•3
•2

∩ •3
•1
=

•3
•2
•1

∪
•3
•1
•2
= H123 ∪H213.

Calculate the co-orientation:

co(H23 ∩H13) = co(H23)∧ co(H13) = (dx2 − dx3)∧ (dx1 − dx3) = −3dx1 ∧ dx2,

i.e. the co-orientation is negative.

Similarly,

H13 ∩H12 =
•3
•1

∩ •2
•1
=

•3
•2
•1

∪
•2
•3
•1
= H123 ∪H132,

and

co(H13 ∩H12) = co(H13)∧ co(H12) = (dx1 − dx3)∧ (dx1 − dx2) = −3dx1 ∧ dx2,

so this is also negative.

Putting this all together gives

(H12 ∩H23) ∪ (H23 ∩H13) ∪ (H13 ∩H12) = +H123 ∪−(H123 ∪H213) ∪−(H123 ∪H132)

= −(H123 ∪H213 ∪H132) =
•3
•2
•1

∪
•3
•1
•2

∪
•2
•3
•1
.
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This looks plausibly like it might be the boundary of

K123 =
•3
•1

•2.

It is necessary to check the co-orientations of

∂K123 =

•2
•3
•1

∪
•3
•2
•1

∪
•3
•1
•2
.

Recall the formula co(∂K) = in(∂K) ∧ co(K), where in(∂K) corresponds to the inward

pointing normal of the boundary. K123 is ‘half’ of H13 (the other half being the part

with the second point of the left of the first and third points) and has the same tangent

space and co-orientation, so

co(∂K123) = (dx2)∧ (dx1 − dx3) = −2dx1 ∧ dx2,

i.e. the co-orientation is negative. Thus it has been shown that

(H12 ∩H23) ∪ (H23 ∩H13) ∪ (H13 ∩H12) = ∂K123
as oriented submanifolds, as required.

4. Poincaré duals via C∞ forms supported on ǫ-neighbourhoods.

The intention of this section is to show how the currents used in Section 2 of

Chapter 5 can be represented by C∞ forms supported within an ǫ-neighbourhood of

the corresponding sub-manifolds.

l1

1ll2

N ε/2

l3

Figure A.1. Lines and ǫ-neighbourhoods in the twice punctured plane.

Consider Figure A.1. Let PP be the twice punctured plane, with the punctures at

(±1, 0). Fix 0 < ǫ≪ 1. Let Nǫ/2l
′
1 be a tubular neighbourhood of l ′1 which is mostly

of radius ǫ/2, but which tapers in to the puncture. There is the oriented “projection

to the fibre” map π : Nǫ/2l
′
1 7→ I, where I is the interval (−1, 1). Let ξ ∈ Λ1(I, ∂I) be
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a representative of the generator of H1(I, ∂I), define the closed one-form η1 ∈ Λ1(PP)
to be π∗ξ on Nǫ/2l

′
1 and zero elsewhere. This represents the Thom class of the normal

bundle and hence the Poincaré dual of l ′1. Similarly define η2 for l ′2. Then η1 ∧ η2

represents the Poincaré dual of l ′1∩l ′2 (with the induced orientation), and it is supported

within an ǫ-neighbourhood of l ′1 ∩ l ′2.
Define η3 ∈ Λ1(PP) by

η3(x, y) := −

∫y

y ′=0

η1 ∧ η2(x, y
′).

Then η3 is supported in an ǫ-neighbourhood of l ′3. Also dη3 = −η1 ∧ η2 and thus

d(
∫
η1η2 +

∫
η3) = −

∫
η1 ∧ η2 −

∫
dη3 = 0. So the iterated integral

∫
η1η2 +

∫
η3 is a

homotopy invariant. Further, if N is an ǫ-neighbourhood of l ′1∩ l ′2 then η3|(PP\N) rep-

resents the Poincaré dual of l ′3\N in PP\N, and it is supported in an ǫ-neighbourhood

of l ′3\N, and dη3 is Poincaré dual to ∂l ′3.



APPENDIX B

Problems and further questions.

Listen pal, you can’t just waltz in here, use my toaster
and spout universal truths without qualification!

— Hal Hartley, Surviving Desire.

Here, some possible questions are listed chapter-by-chapter.

1. Abstract Vassiliev theory.

Problem 1.1. Is there any torsion? In other words, is all of the information in the

rational invariants?

2. Half integration for knots.

Problem 2.1. Is division by two necessary in the half integration, or can it be

done over the integers?

Problem 2.2. Does a similar integration method exist for the even steps? Can

it be seen in terms of some symmetry or other preservation of functoriality such as

cabling or the Hopf algebra structure?

3. On v2 and v3.

Problem 3.1. Can one find e.g. a canonical basis for the space of type four, even,

additive invariants? Can canonical bases be found for higher order invariants? The

spaces of weight systems/chord diagrams split as direct sums of eigenspaces of cabling

operations; can this be done similarly for the invariants?

Problem 3.2. Are the bounds for v2 and v3 of Section 1 tight? Data suggests that

the bounds given for the (2, c)-torus knots are best — are they?

Problem 3.3. Does the fish pattern persist in the graphs of knots with higher

crossing number?

Problem 3.4. Is there some qualitative distinction between knots with odd and

even crossing number which explains the perceived difference in the fish?

87
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Problem 3.5. Is there any relationship with unknotting number, e.g. are there

knots of arbitrary unknotting number with (v2, v3) = (0, 0)?

Problem 3.6. If v is a type n invariant, is v(T(p, q)) a polynomial in p and q of

degree n in each? Alvarez and Labastida proved this only up to degree six.

Problem 3.7. Can the cubic bounds between v2 and v3 for torus knots be extended

to positive knots and negative knots? It is easy, for example, to get the linear bound

2v3 ≥ v2 ≥ 1 for non-trivial positive knots using the Gauß diagram formulæ.

Problem 3.8. For a knot K with (6|v3(K)| − |v2(K)|)
2 ≥ 24v2(K)

3, let ρ(K) =

6|v3(k)/v2(K)| and then define the pseudo-unknotting number, ũ(K), and the pseudo-

uncrossing number, c̃(K), by

ũ(K) := 1
2

(

1+ ρ(K) −

√

(1+ ρ(K))2 − 24v2(K)

)

;

c̃(K) := ρ− 1
2

(

√

(1+ ρ(K))2 − 24v2(K) +

√

(1− ρ(K))2 − 24v2(K)

)

.

For torus knots, the pseudo-unknotting and pseudo-crossing numbers coincide with the

usual unknotting and crossing numbers. Do they have any meaning for other knots?

Does the necessary bound for K have any topological interpretation?

As an example, consider the Whitehead knots Wh(i), for i > 0 these all have

unknotting number equal to one; in this case ũ(Wh(1)) = 1, and ũ(Wh(i)) → 2 as

i→∞.

4. Vassiliev invariants for pure braids.

Problem 4.1. Can Theorem 34 (which describes the numbers of invariants) be

proved by considering chord diagrams?

Problem 4.2. The symmetric group acts on the space of chord diagrams; can this

be seen on the braid level?

6. Obtaining explicit pure braid invariants.

Problem 6.1. Write a computer program to generate the nth stage of the minimal

model of Pk, and to produce a corresponding set of generating invariants.

Problem 6.2. Find higher combinatorial formulæ.
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