A NON-ELEMENTARY PROOF OF THE SNAKE LEMMA

JONATHAN WISE

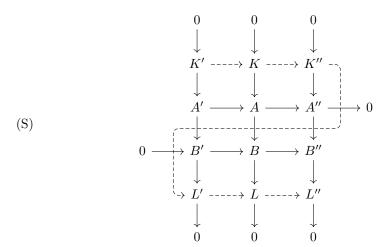
ABSTRACT. Every student of homological algebra has proved the snake lemma. Well, every student of homological algebra has at least proved the snake lemma in the category of R-modules and then mumbled something about the Freyd–Mitchell Embedding Theorem.

Okay, every student of homological algebra has at least made all of the constructions in a proof of the snake lemma in the category of R-modules, done some of the tedious verifications, and then gotten tired and done something else.

We will give a proof that is valid in any abelian category and avoids all of the unpleasant verifications. We also give a proof of Bergman's salamander lemma.

1. The snake Lemma

The snake lemma is best stated with a picture:



Theorem 1. In any abelian category, any diagram (S) of solid lines with exact rows and columns can be completed by dashed arrows making the sequence of dashed arrows exact.

Date: May 22, 2023.

2. Abelian categories

Among the many axiomatizations of an abelian category, we will use the following one:

Definition 1. A category \mathscr{C} is abelian if it possesses the following properties:

AB0 finite products and finite coproducts exist and coincide;

AB1 all morphisms have kernels and cokernels;

AB2 images and coimages coincide.

The precise meaning of **AB0** is that, for any finite set I and any family of objects A_i indexed by i, the canonical map $\coprod_{i \in I} A_i \to \prod_{i \in I} A_i$, induced by the identity maps on all A_i , is an isomorphism.

The axioms **AB1** and **AB2** were given by Grothendieck [Gro57, §1.4]. Grothendieck used a stronger assumption than **AB0**, but the conjunction of the axioms yields the same notion of an abelian category.

2.1. The additive structure on morphisms. By itself, AB0 implies that the set $\operatorname{Hom}(A,B)$ has the structure of a commutative monoid with unit for any A and B in $\mathscr C$. First we'll construct the zero element of $\operatorname{Hom}(A,B)$. Let $0\in\mathscr C$ denote the empty product, which by AB0 is also the empty coproduct. The empty product is the final object of the category, so there is a unique morphism $A\to 0$; likewise, the empty coproduct is an initial object, so there is a unique morphism $0\to B$. Composing these gives a morphism $0\to B$ that is also denoted 0.

Note first that there is a canonical identification

(1)
$$\operatorname{Hom}(A \sqcup B, C \times D) \simeq \operatorname{Hom}(A, C) \times \operatorname{Hom}(A, D) \times \operatorname{Hom}(B, C) \times \operatorname{Hom}(B, D)$$

from the universal properties of product and coproduct. We therefore write elements of $\operatorname{Hom}(A \sqcup B, C \times D)$ as 2×2 matrices. In particular, there is a map

$$\begin{pmatrix} \mathrm{id} & 0 \\ 0 & \mathrm{id} \end{pmatrix} : A \sqcup A \to A \times A.$$

Since products and coproducts coincide, this map is always an isomorphism.

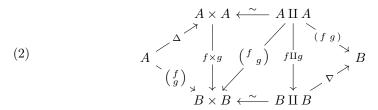
We can now construct an addition law on $\operatorname{Hom}(A, B)$. Consider a pair of maps $f, g: A \to B$. These induce a map $(f, g): A \to B \times B$. We obtain

$$A \xrightarrow{\left(\begin{matrix} f \\ g \end{matrix}\right)} B \times B \xleftarrow{\sim} B \coprod B \xrightarrow{\nabla} B.$$

The sum could also have been constructed as the composition

$$A \xrightarrow{\Delta} A \times A \xleftarrow{\sim} A \coprod A \xrightarrow{(f \ g)} B.$$

Fortunately, diagram (2) is commutative so these definitions agree!



We leave it as an exercise to verify that the addition law is commutative (use the automorphism $A \times A \simeq A \times A$ exchanging the factors) and associative (use the isomorphism $A \times (A \times A) \simeq (A \times A) \times A$).

We will employ the following standard notation for cokernels and nonstandard notation for kernels:

$$B/A = \operatorname{coker}(A \to B)$$

 $B: A = \ker(A \to B)$

Lemma 1. In an abelian category \mathscr{C} , a morphism with trivial kernel and cokernel is an isomorphism.

Proof. Consider $f:A\to B$ with trivial kernel and cokernel. Then we can factor f as

$$A \to \operatorname{coim} f \xrightarrow{\sim} \operatorname{im} f \to B.$$

But coim
$$f = A/\ker(f) = A/0 = A$$
 and im $f = (B : \operatorname{coker}(f)) = (B : 0) = B$.

From now on, we will write products and coproducts with the same symbol: \oplus . Assuming **AB1**, we can construct differences in $\operatorname{Hom}(A,B)$. Let $i:K\to A\oplus A$ be the kernel of $\nabla:A\oplus A\to A$. Composing with the two projections $p_1,p_2:A\oplus A\to A$ gives two maps $p_1i,p_2i:K\to A$.

Lemma 2. The maps p_1i and p_2i are isomorphisms and $p_1i+p_2i=0$ in Hom(K,A).

Proof. Let's consider the cokernel:

$$\operatorname{coker}(p_1 i) = A/p_1 i K = A \oplus A/(0 \oplus A + i K) = A/(\nabla(0 \oplus A)) = A/A = 0$$

Now let's consider the kernel:

$$\ker(p_1 i) \subset \ker(p_1) \cap \ker(\nabla).$$

But $\ker(p_1) = 0 \oplus A$ and ∇ restricts to the isomorphism $0 \oplus A \simeq A$ on $0 \oplus A$. Therefore $\ker(p_1) \cap \ker(\nabla) = 0$.

Thus p_1i has zero kernel and zero cokernel. By Lemma 1, it must be an isomorphism. The proof for p_2i is similar and is omitted.

Now, we compute $p_1i + p_2i$. By definition,

$$p_1i + p_2i = \nabla (p_1i \quad p_2i) = \nabla i = 0,$$

as desired. \Box

Now, $p_1 i \circ (p_2 i)^{-1}$ gives a map $A \to A$ called -id. As $p_1 i + p_2 i = 0$, it follows that id $+ (-id) = (p_1 i + p_2 i) \circ (p_2 i)^{-1} = 0$. Composing with -id allows us to define $-f \in \text{Hom}(A, B)$ for any B. Thus Hom(A, B) has the structure of an abelian group.

2.2. Exact sequences.

Lemma 3. Suppose that $X \xrightarrow{f} Y \xrightarrow{g} Z$ are morphisms in an abelian category and gf = 0. Then the natural map $(Z:Y)/X \to Z:(Y/X)$ is an isomorphism.

Proof. We may identify
$$(Z:Y)/X$$
 with $coim(D:C\to C/X)$ and $Z:(Y/X)$ with $im(D:C\to C/X)$.

In the situation of the lemma, the notation Z:Y/X is unambiguous, so we omit the parentheses in the future.

Definition 2. A sequence of morphisms

$$A \xrightarrow{f} B \xrightarrow{g} C$$

in an abelian category is said to be exact if any of the following equivalent conditions hold:

- (i) im(f) = ker(g)
- (ii) $\operatorname{coker}(f) = \operatorname{im}(g)$
- (iii) gf = 0 and C : B/A = 0

Lemma 4. Suppose that

$$(3) A \to B \to C \to D \to E$$

is an exact sequence in an abelian category and $X \to B$ is any morphism. Then the sequence

$$(4) A \to B/X \to C/X \to D \to E$$

is also exact.

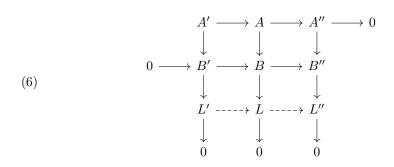
Proof. The exactness of (3) gives an isomorphism $B/A \to D : C$. Dividing both sides by X gives an isomorphism $(B/X)/A \to D : C/X$, which proves the exactness of (4) at B/X and C/X. For exactness at D, we observe that E : D/(C/X) = E : D/C = 0.

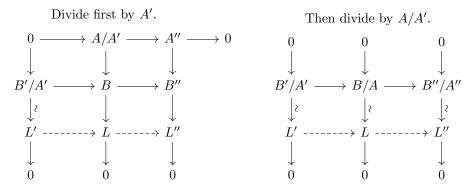
3. Proof of the snake Lemma

The proof proceeds by updating the diagram by taking a series of quotients and kernels. Let's begin with the sequence

$$(5) L' \to L \to L'',$$

which is easier to construct. Begin with the diagram





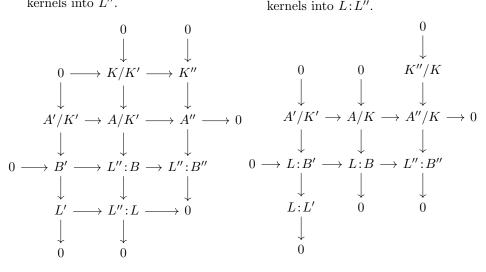
This gives the exact sequence (5). A similar argument using kernels instead of cokernels gives the exact sequence

$$(7) K' \to K \to K''$$

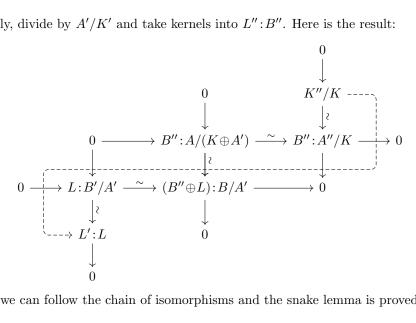
If we fill these arrows into diagram (S), we see that the only thing left to do is produce a map $K'' \to L'$ and show that it induces an isomorphism $K''/K \simeq L:L'$.

First take quotients by K' and kernels into L''.

Now divide by K/K' and take kernels into L:L''.



Finally, divide by A'/K' and take kernels into L'':B''. Here is the result:



Now we can follow the chain of isomorphisms and the snake lemma is proved!

4. The salamander Lemma

Theorem 2. Let K be an object of an abelian category, equipped with a morphism $d: K \to K$ such that $d^3 = 0$. Then the following sequence is exact:

(8)
$$\frac{\ker d^2}{\operatorname{im} d} \xrightarrow{\frac{\operatorname{ker} d}{\operatorname{im} d^2}}$$

The morphism $\frac{\ker d}{\operatorname{im} d^2} \to \frac{\ker d^2}{\operatorname{im} d}$ is induced by the inclusions $\ker d \subset \ker d^2$ and $\operatorname{im} d^2 \subset \operatorname{im} d$.

Proof. It is equivalent to show that the map

$$\frac{\ker d^2}{\operatorname{im} d} / \frac{\ker d}{\operatorname{im} d^2} \xrightarrow{\quad d\quad} \frac{\ker d^2}{\operatorname{im} d} : \frac{\ker d}{\operatorname{im} d^2}$$

is an isomorphism. We can identify this with

(9)
$$\frac{\ker d^2}{\operatorname{im} d + \ker d} \xrightarrow{d} \frac{\ker d \cap \operatorname{im} d}{\operatorname{im} d^2}$$

Under the map

$$d: \ker d^2 \to \ker d \cap \operatorname{im} d$$

we have $d^{-1}(\operatorname{im} d^2) = \operatorname{im} d + \ker d$ and $d(\ker d^2) = \ker d \cap \operatorname{im} d$. Thus (9) is an isomorphism.

The Salamander Lemma concerns a double complex and is due to Bergman [Ber]. We will follow the presentation of [Ger]. Consider a position in a double complex:

$$\begin{array}{c|c}
 & b \\
 & A \xrightarrow{d} \\
 & e \xrightarrow{f}
\end{array}$$

One introduces notation:

$$=A = \frac{\ker d}{\operatorname{im} c}$$

$$A^{\parallel} = \frac{\ker e}{\operatorname{im} b}$$

$$\Box A = \frac{\ker d \cap \ker e}{\operatorname{im} a}$$

$$A_{\square} = \frac{\ker f}{\operatorname{im} b + \operatorname{im} c}$$

Theorem 3 (Salamander Lemma). In a double complex containing (10), the sequence (11) is exact.

$$\begin{array}{ccc}
 & \downarrow^{r} \\
 & \stackrel{\alpha}{\longrightarrow} A \\
 & \downarrow^{\beta} \\
 & \stackrel{s}{\longrightarrow} B \xrightarrow{\gamma} C \xrightarrow{t} \\
 & \downarrow^{\delta} \\
 & D \xrightarrow{\epsilon} \\
 & \downarrow^{u}
\end{array}$$
(10)

$$(11) A_{\square} \to_{=} B \to B_{\square} \to^{\square} C \to_{=} C \to^{\square} D$$

First proof. Nothing will be changed in the sequence (11) if we replace diagram (10) with

$$\begin{array}{c} \stackrel{\alpha}{\longrightarrow} \operatorname{coker}(r) \\ \downarrow^{\beta} \\ \operatorname{coker}(s) \stackrel{\gamma}{\longrightarrow} \ker(t) \\ \downarrow^{\delta} \\ \ker(u) \stackrel{\epsilon}{\longrightarrow} \end{array}$$

We can therefore assume r=s=t=u=0 without any loss of generality. We can rearrange the diagram linearly:

$$\cdots \xrightarrow{\alpha} A \xrightarrow{\beta} B \xrightarrow{\gamma} C \xrightarrow{\delta} D \xrightarrow{\epsilon} \cdots$$

Let K be the direct sum of all the entries, with 'differential' $d: K \to K$. Note that $d^3 = 0$ so we can apply Theorem 2 to get an exact sequence:

$$\frac{\ker\gamma\beta}{\operatorname{im}\alpha}\xrightarrow{\beta}\frac{\ker\gamma}{\operatorname{im}\beta\alpha}\to\frac{\ker\delta\gamma}{\operatorname{im}\beta}\xrightarrow{\gamma}\frac{\ker\delta}{\operatorname{im}\gamma\beta}\to\frac{\ker\epsilon\delta}{\operatorname{im}\gamma}\xrightarrow{\delta}\frac{\ker\epsilon}{\operatorname{im}\delta\gamma}$$

This is exactly the sequence we require.

Second proof. We can also prove the Salamander lemma as a corollary of the snake lemma. In Diagram (10), we can make the following replacements without changing

the sequence (11):

$$A \rightsquigarrow A/\operatorname{im}(r) + \operatorname{im}(\alpha)$$

$$B \rightsquigarrow B/\operatorname{im}(s)$$

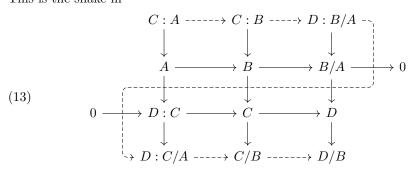
$$C \rightsquigarrow \ker(t)$$

$$D \rightsquigarrow \ker(\epsilon) \cap \ker(u)$$

Then the sequence (11) becomes

$$(12) C: A \to C: B \to D: B/A \to D: C/A \to C/B \to D/B$$

This is the snake in



References

[Ber] George M. Bergman. On diagram-chasing in double complexes. URL https://sbseminar.files.wordpress.com/2007/11/diagramchasingbergman.pdf.

[Ger] Anton Geraschenko. The salamander lemma. URL https://sbseminar.wordpress.com/ 2007/11/13/anton-geraschenko-the-salamander-lemma/.

[Gro57] Alexander Grothendieck. Sur quelques points d'algèbre homologique. Tohoku Math. J. (2), 9:119–221, 1957. doi:10.2748/tmj/1178244839.