PROSPECTS IN UHE **NEUTRINO ASTRONOMY**

Stephanie Wissel Penn State **XXIX International Conference on Neutrinos** June 30

Why Ultra-high-energy (UHE, > PeV) Neutrinos?

Experimental landscape, particular focus on radio instruments

New results from ANITA-4

► Why Ultra-high-energy (UHE, > PeV) Neutrinos?

Experimental landscape, particular focus on radio instruments

New results from ANITA-4

Messenger Particles

Messenger Particles

Neutrinos from charged pion, neutron decay from pp & py interactions

Neutrinos

Messenger Particles

Neutrinos from charged pion, neutron decay from pp & py interactions

Neutrinos

MULTI-MESSENGER ASTROPHYSICS

Cosmic Rays

proton

Gravitational Waves

Gamma Rays

ESA-C.Carreau NASA/GSFC www.particlezoo.net 7

COSMOGENIC NEUTRINOS POINT TO THE HIGHEST ENERGY ACCELERATORS

Even Flavor ratios* expected due to flavor oscillations over Gpc length scales

*Deviations from standard flavor ratios expected from Beyond-Standard-Model scenarios

DIFFUSE UHE NEUTRINOS - COSMOGENIC NEUTRINOS

UHE NEUTRINOS - ASTROPHYSICAL NEUTRINOS

DIFFUSE UHE NEUTRINOS - EXPERIMENTAL CONSTRAINTS

DIFFUSE UHE NEUTRINOS - NEXT GENERATION RADIO DETECTORS

► Why Ultra-high-energy (UHE, >PeV) Neutrinos?

Experimental landscape, particular focus on radio instruments - ice, air, space

New results from ANITA-4

Askaryan emission: radiation from net negative charge excess in showers

1906.01670

Askaryan Radiation

V

11 -

vertex

forward view

E-field polarization

 $oldsymbol{O}$

In-ice Radio Detector Depth

Surface

200 m

2000 m

Doesn't need to be this deep because radio propagates long distances

Askaryan Radiation

Askaryan Radiation

V

T

vertex

In-ice Radio Detector Design Principles

200 m

Surface

2000 m

depth not to scale

Multiple antennas at each station

In-ice Radio Detector Designs

Surface Design ARIANNA

Use larger high gain antennas Precision reconstruction No drilling, Fast deployment Simple cosmic ray veto Tau neutrinos from nearby mountains

Deep Design ARA

200 m depth accesses large ice volume Low anthropogenic noise Phased arrays for low trigger thresholds Modest drilling requirements ~ 1 day/hole

2000 m

Surface

200 m

depth not to scale

ARIANNA : Ross Ice Shelf

ARA : South Pole

Ŧ

Deployed 2012 Deployed 2013 Deployed 2018

RADAR ECHO TELESCOPE

 T576 lab experiments confirm radar bounce off particle showers in dense dielectric HPDE

- Proposed prototype to demonstrate with in-ice CR showers at Taylor Dome
- Targeting PeV to EeV energy scale

RNO-G : Greenland

➤ Scalable to few 100 km²

Autonomous, low power, low cost, efficient & low threshold

► Hybrid Design builds on ARA & ARIANNA:

➤ Surface:

CRs, vetos, reconstruction

Deep Phased Trigger: Effective Volume

100m 📥

See posters #455, 510

10x better sensitivity at EeV scale Building on prototypes & midscale instruments

AIR SHOWER TECHNIQUES

Tau decay → inclined shower

CR

Upgoing tau neutrinos interact with rock

Geomagnetic radio emission

The BEACON Concept

100-1000 stations with ~10 antennas each

Efficient detector due to large area at top of mountain Targeting $v_{\tau} > 100 \text{ PeV}$

See poster #427

BEACON Prototype Array:

4 cross-dipole antennas, 30-80 MHz, phased array trigger + digitizer 500 MSPS, 50 W Goal: RF-only cosmic ray trigger Operating since 2018 at White Mountain Research Station CA

> Similar to Taroge (Antarctica), Trinity (imaging Cherenkov)

See also a PeV tau telescope concept TAMBO (Colca Valley)

The GRAND Concept

200'000 radio antennas over 200'000 km² ~20 hotspots of 10'000 antennas

over favorable sites in China and worldwide

GRAND's staged approach

GRANDProto300

GRAND10k

2021

- 2025
- 300 antennas over 200 km²
- autonomous radio detection of very inclined air-showers
- cosmic rays 10^{16.5-18} eV
- 1.3 M€ (fully funded, China)

- 10⁴ antennas over 10⁴ km²
- 1st GRAND subarray
- discovery of EeV neutrinos for optimistic fluxes
- 13 M€ (mostly China)

203X

NEUTRINOS FROM SPACE : ANITA See poster #552

See poster #486

Constrain the end of the neutrino spectrum by 4-10x

High effective area for transients

Lower threshold by phasing 2x antennas at trigger level

> Planning for flight in 2023

NEUTRINOS FROM SPACE : POEMMA

- Upgoing tau neutrinos detected via Optical Cherenkov from stereo satellites
- Tuned for neutrino transients like binary neutron stars, short gamma ray bursts,...

Expected Number of Neutrinos from **Binary Neutron** Star Mergers

arXiv:1906.07209

See poster #519

expected to detect less than one neutrino.

FIG. 7. Left: Sky plot of the expected number of neutrino events as a function of galactic coordinates for POEMMA in the long-burst scenario of BNS merger, as in the Fang & Metzger model [21], and placing the source at 5 Mpc. Point sources are galaxies from the 2MRS catalog [74]. Middle: Same as at left for IceCube for muon neutrinos. Right: Same as at left for GRAND200k. Areas with grey point sources are regions for which the experiment is

Why Ultra-high-energy (UHE, >PeV) Neutrinos?

Experimental landscape, particular focus on radio instruments

New results from ANITA-4

ANITA-IV COSMIC RAY RESULTS

Remy Prechelt, Hawaii *Poster* #552

Cosmin Deaconu, Chicago Poster #486

Peng Cao, Delaware

Andrew Ludwig, UCLA, Chicago

Peter Gorham, Hawaii

ANITA COSMIC RAY AND COSMIC RAY-LIKE EVENTS

- Geomagnetic radio signal from cosmic rays expected to arrive both directly pointed at the payload and reflected off the ice, predominantly Hpol

ANITA COSMIC RAY AND COSMIC RAY-LIKE EVENTS

> ANITA Anomalous Events: 2 steep, direct CR-like ~0.5 EeV events with polarity inconsistent with their geometry <u>1803.05088, 1603.05218</u>

 $(>3\sigma, A1 \theta_{H} \sim -30^{\circ}, Effective area A_{eff} \sim \mathcal{O}(0.01 \text{ m}^{2}) \text{ at } 0.5 \text{ EeV})$

> Tau neutrinos expected at shallower angles near the horizon ($A_{eff} \sim O(100 - 1000 \text{ m}^2)$) at 0.5 EeV), but difficult to reconcile steep events with the Standard Model & experimental limits

See poster #476, <u>1811.07261</u>

ANITA-4 CR WAVEFORMS

Events classified by 1st Dominant Pole*

► **Reflected:** Down or Down first

► Direct: Up or Up first

*Polarity reconstruction via 4 deconvolution methods using Stokes amplitude to find the peak lobe(s)

2 Direct Events, Near & Above Horizon

ANITA-4 CR WAVEFORMS

Events classified by 1st Dominant Pole*

► **Reflected:** Down or Down first

► Direct: Up or Up first

*Polarity reconstruction via 4 deconvolution methods using Stokes amplitude to find the peak lobe(s)

2 Direct Events, Near & Above Horizon

4 additional events <u>near</u> the horizon, but <u>below</u> it

Expect the same polarity as the reflected events: <u>Down</u>

ANITA-4 AIR SHOWER RESULTS

> 29 on background of 0.37^{+0.27}-0.17 event blinded search for Hpol, impulsive, isolate Remained blind to polarity*

*Polarity reblinded to account for errors in system impulse response used to reconstruct polarity.

Polarity reconstruction in A4 is more complicated than than in earlier flights due to the time-dependent system response imposed by programmable notch filters in the signal chain.

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
ts result from	Results from targeted CR sear		
ed events.	ninary	Steep	Ne Hor
Prell	Angle wrt horizon	> 1°	<
	Total Events	23	
	Total		29

ANITA-4 AIR SHOWER RESULTS

- > 29 on background of 0.37+0.27_-0.17 events result from blinded search for Hpol, impulsive, isolated events. Remained blind to polarity*
- > 4 / 27 near horizon events with inconsistent polarity with significance ~30 Preliminary
- > Systematics in significance estimate include :
 - anthropogenic background per polarity (0.19^{+0.14}-0.09 events)
 - polarity mis-reconstruction (10⁻² for 1 event; 10⁻⁴ others)
 - > pointing error ($\delta\theta = 0.1^\circ$, bias $\pm 0.1^\circ$)
 - radio propagation effects (refraction, ice surface, ray defocusing)
- > No new steep events with inconsistent polarity like in ANITA-1 & ANITA-3

Results from targeted CR search Near Steep Horizon Angle wrt horizon < 1° > 1° Total Events 23

Consistent with Geometry

Reflected (Down)	21	
Direct (Up)	0	

Inconsistent with Geometry

Direct (Up)	0	
-------------	---	--

Indeterminate Polarity

Tatal		20
	2	

See posters #552 (ANITA-4) and #486 (PUEO)

SUMMARY AND OUTLOOK

Exciting Things on the Horizon:

- events near the horizon
- No new steep anomalous events in ANITA-4 dataset
- Followup with PUEO and other experiments will be important

Preliminary While still consistent with backgrounds, ANITA-4 may be observing a new class of

SUMMARY AND OUTLOOK

> Exciting Things on the Horizon:

- events near the horizon
- No new steep anomalous events in ANITA-4 dataset
- Followup with PUEO and other experiments will be important

Radio experiments are maturing

- Experiments preparing for mid-scale sensitivities at least an order of magnitude lower than current state-of-the art
- Several promising proposed experimental designs
- Next gen detectors hold promise to discover UHE neutrinos within 10 years & begin neutrino astronomy in new energy regime

Preliminary While still consistent with backgrounds, ANITA-4 may be observing a new class of

BACKUP SLIDES

In-ice Detectors Sky Coverage

ANITA BLINDED NEUTRINO SEARCH

- Clustering identifies isolated singlet events candidates
- Neutrinos: vertical polarization
- Cosmic rays: horizontal polarization

ANITA-3 Search ANITA PRD 98 022001 2018

ANITA-4 NEUTRINO SEARCH RESULTS

• Two analyses each find 1 candidate event on backgrounds of 0.34 and 0.64

• Set strongest upper limit on isotropic flux above 10^{19.5} eV

ANITA arXiv:1902.04005

POLARITY RECONSTRUCTION

- Polarity reconstructed by deconvolving the response of the ANITA instrument, which disperses and attenuates the signal
- ➤ Average of four deconvolution methods → Polarity measure
- Polarity predominately determinedly the sign of the leading pole, but in practice depends on waveform shape
- In Monte Carlo with different noise realizations, polarity CL at the 1e-4 level, except 19848917 (2e-2)

21 Reflected Cosmic Rays

POINTING RESOLUTION, RECONSTRUCTION & SYSTEMATICS AT THE HORIZON

- > Calibration pulsers in remote location (WAIS Divide) reconstruct known location within $\delta\theta = 0.1^{\circ}$
- Difference between the apparent horizon and the apparent reconstructed position requires refraction correction (+0.1°) and reconstruction of the apparent horizon (+0.1°)
- Systematic bias near the horizon observed with WAIS pulsers, HiCal pulser (on separate payload), and RFI from the South Pole suggest possible bias ±0.1°. Studies ongoing.
- > Horizon buffer in significance tests included due to occultation of reflected rays near the horizon, validated with GPS measurements

WAIS Pointing Difference (HPOL)

SIGNIFICANCE TESTS

Background assumed

Anthropogenic non-inverted + 0.0 above-horizon pointing errors + polarity flips, producing 4 0.1 or more non-inverted belowhorizon events out of 27 0.0

0.1

Horizon

- 0.0
- 0.1

buffer	Pointiary bras	P-value	Normal statistics
	0.0	3.9e-4	3.36
	0.0	1.1e-4	3.69
	-0.1	3.7e-3	2.68
	-0.1	3.9e-4	3.36
	+0.1	1.2e-4	3.67
	+0.1	7.5e-5	3.8

THREE NOTCH EVENTS

- Two three-notch events observed with opposite polarity
 - > 4098827: anomalous near horizon

> 36785931: normal, steep cosmic ray

 Deconvolution complicated by programmable notch filters, each combination of filters requires different system impulse response

ANITA-3 AND **ANITA-4** CR EVENT STATISTICS

- ► A4 had a 20% lower threshold and 50% higher livetime compared with A3, but notch filters at low frequency reduced sensitivity to the steep spectrum of cosmic rays
- A4 trigger and notches biased for flatter spectrum and weaker CR events, closer to the Cherenkov angle
- Results in comparable numbers of cosmic ray events, but more near horizon events

	Total CR Events	Near
ANITA-3	28	
ANITA-4	29	

POEMMA: Transient Cosmic Neutrino Sensitivity: SEE arXiv:1906.07209

Short Bursts:

- 500 s to slew to source after alert
- 1000 s burst duration
- Source celestial location optimal
- Two independent Cher measurements
 - 300 km Satellite Separation
- 20 PE threshold:
- Background rate < 10⁻³/year

Long Bursts:

- Average Sun and moon effects
- 50 km Satellite Separation
- Background rate < 10⁻³/year

POEMMA: ToO sky sensitivity vs Ground Experiments: **SEE** *arXiv:1906.07209*

FIG. 7. Left: Sky plot of the expected number of neutrino events as a function of galactic coordinates for POEMMA in the long-burst scenario of BNS merger, as in the Fang & Metzger model [21], and placing the source at 5 Mpc. Point sources are galaxies from the 2MRS catalog [74]. Middle: Same as at left for IceCube for muon neutrinos. Right: Same as at left for GRAND200k. Areas with grey point sources are regions for which the experiment is expected to detect less than one neutrino.

FIG. 8. Left: Sky plot of the expected number of neutrino events as a function of galactic coordinates for POEMMA in the "best-case" short-burst scenario of an sGRB with moderate EE, as in the KMMK model [16], and placing the source at 40 Mpc. Point sources are galaxies from the 2MRS catalog [74]. Middle: Same as at left for IceCube for muon neutrinos. Right: Same as at left for GRAND200k. Areas with grey point sources are regions for which the experiment is expected to detect less than one neutrino.

