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Some properties of the anomaly-free 0(32) superstring theory recently discovered by Green and Schwarz are discussed. 
With proper choice of ground state, the theory leads in four dimensions to an SU(5) theory with any desired number of 
standard generations (and no exotic or mirror fermions). It predicts axions and stable Nielsen-Olesen vortex lines. It can be 
consistently compactified only if certain topological conditions are imposed. 

Introduction. Superstrings [ 1 ], which developed 
from the Ramond-Neveu-Schwarz  spinning string 
theory, seem very promising as a mathematically con- 
sistent approach to quantum gravity which may yield 
a satisfactory unified theory of  all interactions. (The 
search for a "geometrical" foundation of  superstrings 
was briefly discussed in ref. [2].) 

In a stunning development, Green and Schwarz 
have shown [3] that type I superstrings (unoriented 
open and closed strings with N = 1 supersymmetry) 
are anomaly free if and only if the Yang-Mills gauge 
group is 0(32).  It was already known [4] that anom- 
alies cancel for type II superstrings (closed oriented 
strings with N = 2 supersymmetry), but the immediate 
phenomenological prospects of  the new anomaly free 
string theory seem much brighter. The present paper 
will be devoted to a brief study of  some aspects of  
this theory. 

Restrictions on compactification. The theory con- 
tains a second-rank antisymmetric tensor field B~v 
which is crucial in the elegant anomaly cancellation 
mechanism of  ref. [3]. We will use the language o f  
differential forms and not indicate explicitly the in- 
dices of  antisymmetric tensors. The gauge invariant 
field strength of  B is [5,3] 

H = d B  - 6O3y + O~3L , (1) 
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where ¢O3y and ¢O3L are the Yang-Mills and Lorentz 
Chern-Simons three-forms 

CO3v = t r ( A F -  ]A3) ,  W3L = tr(wR - ]603). (2, 3) 

Here A is the gauge field, F the Yang-Mills field 
strength, co the spin connection, and R the Riemann 
tensor. H is invariant under gauge transformations of  
B, B -~- B + dX, and also under gauge and Lorentz trans- 
formations accompanied by shifts in B [5,3]. 

Now, in a topologically non-trivial situation, the 
spin connection, gauge field, and Chern-Simons form 
are not globally well defined. At best we can cover our 
manifold with simple open sets O (i), on each of  which 
these are defined, with suitable relations imposed in 
intersection regions Off) A Off). However, the gauge 
invariant field strength H must be globally defined, 
since (for instance) the energy contains a term H 2. 

To see what this implies, note that 

d H = - t r F  2 + t r R  2 . (4) 

Now, let Q be a closed four-dimensional submanifold 
in space-time. In general fQ t r R  2 and fQ tr F 2 may 
be non-trivial topological invariants, but (4) implies 

f( t rR 2 - t r F 2 )  = f d H =  0 ,  (5) 
Q O 

where the second equality uses Stokes' theorem and 
the fact that H is globally defined. Eq. (4) or (5) 
means that the cohomology class represented by 
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tr R 2 - tr F 2 is zero. It is a restriction on possible 
compactifications of the string theory. As we will see, 
it has a particular significance; it ensures absence of 
anomalies in four dimensions. 

Anomaly cancellation. Suppose that the ten-dimen- 
sional world is of the form M 4 X K, M 4 being four- 
dimensional Minkowski space and K a compact six- 
dimensional manifold. We would like to determine the 
conditions under which the effective four-dimensional 
theory is anomaly free. For simplicity, we will assume 
that the effective four-dimensional gauge group G is a 
subgroup of 0(32) (though we could in a similar spirit 
consider gauge fields that originate as symmetries of 
K) and is a semi-simple group such as SU(5) or O(10). 

Let H be the subgroup of 0(32) that commutes 
with G. Symmetry breaking from 0(32) to G can (in 
the superstring theory) arise only from expectation 
values of components of H gauge fields. Under G X H, 
the adjoint representation of 0(32) has a decomposi- 
tion as ~C i ® L/, where C i and lq are certain G and H 
representations. 

Let n i be the number of left-handed fermion multi- 
plets transforming as C i under G minus the number 
transforming as C-i. If  T is a generic G generator, the G 
anomaly in the C i representation is Trci T 3 (Trci and 
TrLi will refer, respectively, to traces in the C i and L i 
representations of  G and H). The total G anomaly is 
~i ni Trci T 3 , and we wish to investigate the condi- 
tions under which it vanishes. 

The quantity n i equals the index of the Dirac oper- 
ator on K for fermions in the L/representation of K 
[6,7]. According to the index theorem, 

1 f ( T r L i F 3  - ~TrL iFTrR2) ,  (6) 
ni - 6 "(47r) 3 K 

where F is the H field strength. The total anomaly is 
hence 

A -  1 ~ Trci T3 
6 "(4rt) ~ "7" 

× Tr f ( T r L i F 3  - ~TrLiFTrR2 ) . (7) 
K 

Now, think o f F  as a generator of H. Let Trad j and 
Trfund represent traces in the adjoint and fundamental 
representations of  0(32). Then 

Trci T 3 TrLiF3 = Trad j T3F 3 . 
i 

In addition, Trad j T3F 3 can be viewed as the term of 
order a3/~ 3 in ~o Tradj (a T +/3F) 6. 

Now the anomaly cancellation mechanism of ref. 
[3] depends on a peculiar relation in 0(32) group 
theory. One aspect of this is the identity 

~0 Tradj (a T +/3F) 6 

= 1 Trad j ( aT  +/3F) 4 Trfund ( aT  +/3F) 2 , 

for any 0(32) generator a T  + ~F. The term of order 
a3133 is ~-Trad j T3F TrfundF2 (here we use the fact 
that G is semi-simple so Tr TF = Tr TF 3 = 0; otherwise 
we must keep track of more terms, but the eventual 
conclusion is similar). And we may reexpress Trad j T3F 
= Z i Trci T 3 TrLi F. The net effect of  this is that (7) 
equals 

A-1------~-- ~i TrciT3 f TrLiF 
48(47r) 3 K 

× (Trfund F 2 - Tr R2) .  (8) 

Now, we have noted above that the theory in question 
only makes sense if Trfund F 2 - Tr R 2 = - d H ,  with 
some globally defined H. Hence 

f TrLi F (Trfund F 2 - Tr R 2) 
K 

= f ( d  TrLiF)  H =  0 ,  
K 

= -- f ( T r L i  F )  dH 
K 

(9) 

where we have integrated by parts and used the Bianchi 
identity d Tr F = 0. Therefore, the topological condition 
that is needed for the theory to make sense also ensures 
anomaly freedom in four dimensions. 

Models. We will now try to construct realistic mod- 
els by compactification of the string theory. Without 
elementary gauge fields, it is probably impossible [6] 
for a Kaluza-Klein theory to give chiral fermions in 
four dimensions (this has not been completely proved 
for Rarita-Schwinger fields). With elementary gauge 
fields, it is definitely possible to make realistic models. 
For instance, in ref. [6] it was shown that an O(16) 
theory with an irreducible fermion representation in 
ten dimensions can reduce in four dimensions to an 
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O(10) theory with any even number o f  ordinary fami- 
lies (and no antifamilies). Similar models have been 
constructed independently by other authors [8]. We 
will now see that essentially the same construction can 
lead for superstrings to an SU(5) ground state with any 
required number of  ordinary generations (and no mir- 
ror or exotic fermions). 

Some preliminaries will be useful. On any compact 
oriented two-dimensional manifold M, one can define 
a U(1) Dirac monopole gauge field Fur with 

f dr,.v Fur= 2rr. (10) 
M 

If  a spin 1/2 fermion of  charge n interacts with this 
gauge field, there are In l zero modes; they have posi- 
tive or negative chirality for positive or negative n. 

For simplicity, the six manifolds we consider will 
be products M 1 X M 2 X M3, where the M i are compact 
oriented two manifolds (whose topology will not 
matter). On each M i we choose an abelian gauge field 
fur (i) such that 

f dy_,uv f .v(D = 27r6i1 " (11) 

Mi 

If  a fermion of  unit charge interacts with the gauge 
field Fur = Zi ni fur (i), there are In ln2n31 zero modes, 
whose chirality equals the sign of  n ln2n3 . This may be 
deduced by separation of  variables (reducing to the 
two-dimensional case we discussed earlier), or by 
means of  a six-dimensional index theorem. 

We will construct SU(5) models, though we could 
simply aim for SU(3) × SU(2) X U(1). Since SU(5) 
cannot be realized as the isometry group of  a six- 
dimensional manifold, we must regard it as a subgroup 
of  0(32).  

The simplest SU(5) embedding in 0(32)  is the one 
in which the fundamental representation o f  0(32)  
transforms as 5 + 5 singlets. We will consider models 
based on this embedding * 1. With this embedding, the 
complex representations of  SU(5) appearing in the ad- 
joint representation of  0(32)  are 5, 10, and their con- 
jugates. 

,1 I thank C.G. CaUan, J. Harvey, and L. Yaffe for pointing 
out an error in a prior attempt with a different embedding, 
and for helpful comments. 

SU(5) so embedded commutes with a U(1) × 0(22)  
subgroup of  0(32).  Let us denote the U(1) generator 
as P and normalize it so the fundamental 5 and 5 have 
P=-+I .  

Let N10_I-- 0 be the number of  left-handed fermions 
transforming in the 10 of  SU(5) minus the number 
transforming as 1-0; likewise for N 5_3. I f  Tr F 2 _ 
Tr R 2 = - d H ,  then anomalies will cancel and N10_i-- 0 
= - N s _  5. The number o f  generations is N10_i-  0. 

Let the U(1) field strength Fur of P be 

Fur = ~. pifuv(i) , (12) 
l 

where the pi are constants. At first sight it appears that 
Dirac quantization requires the pi to be integers, but 
that is not so. It is required only that the pi be integers 
or half-integers, since Dirac quantization need only be 
satisfied in the adjoint representation of  0(32) (the 
superstring theory has no charges in the fundamental 
representation). 

The 10 appearing in the adjoint representation of  
0(32)  arises from 5 X 5 so it has P = 2 and interacts 
with 2Fur = ~i 2pifuv(i). In view of  our previous 
comments, the number of  generations is N10_ ~ 
= (2pl)(2pZ)(2p 3) = 8plp2p 3. With integers or half 
integers for the pi, any number of  generations can be 
obtained. 

To complete the construction o f  a model, it is neces- 
sary to choose 0(22)  gauge fields such that fB Tr F 2 
= 0, where B is any four-dimensional closed submani- 
fold of  M 1 X M 2 X M 3. (fB Tr R 2 is automatically zero 
for any such submanifold.) The relevant choices of  B 
are M 1 X M2, M 2 X M3, and M 3 X M 1. 

Many possibilities exist. It is adequate to consider 
an abelian configuration. 0(22)  has an eleven-dimen- 
sional abelian subgroup 0(2)  X 0(2)  X ... X 0(2). De- 
note the field strengths as Fur(a), a = 1, ..., 1 I. We 
assume 

3 

F..(") = 22 p"JI..(J), (13) 
1=1 

for some pal. (Dirac quantization requires that for 
each a and],  pal + p] is an integer.) The condition 
that f Tr F 2 = 0 on M i X M] is that 

11 
5pip] + ~ paip4 = 0 ,  (14) 

a=l 
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for each i :~/. It is not difficult to obey these three 
equations for three dozen unknowns. 

One interesting feature of  this model is the exis- 
tence of  unbroken symmetries in 0(32)  commuting 
with SU(5). One such unbroken symmetry is P; there 
may be others, depending on the 0(22)  gauge field (as 
in the abelian case just considered). Let us discuss 
what happens to P. 

The SU(5) 10's have P = 2 and the 5's have P = - 1 .  
Others have P = 0. Therefore, the fermion representa- 
tion in four dimensions has a P-SU(5)-SU(5) triangle 
anomaly. At first sight, this is paradoxical, since SU(5) 
and the P seem to be unbroken gauge symmetries. The 
resolution of  the paradox is that the P gauge meson is 
massive at tree level. This occurs as follows. Let/a, v 
= 0 ..... 3 be space-t ime indices, and let i,/= 4 ..... 9 
be tangent to M 1 X M 2 X M 3. Le tB  be the massless 
tensor field that plays a key role in anomaly cancella- 
tion. If  the lagrangian for B were merely (dB) 2, certain 
components of  B, corresponding to the second Betti 
number o fM 1 X M 2 X M3, would be massless [6]. In- 
stead the lagrangian forB is (dB + p)2, where 1 ~ is the 
Chern-Simons form. Let A~ and F,v be the gauge 
field and field strength of  P. Then (dB + F) 2 has a 
term (a~Bi] + A~Fii)2. Since Fi/ has an expectation 
value in M 1 X M 2 X M3, this reduces in four dimen- 
sions to ( a ,B  + A ,  (F)) 2, when B is the would-be 
massless scalar. This is a typical Higgs-like lagrangian; 
B and A~ combine into a massive vector meson. 

However, this mechanism does not disturb global 
conservation of  P. In fact, the P-SU(5)-SU(5) anomaly 
means that P is a Peccei-Quinn symmetry, so that 
strong CP violation will not arise. But realistic low 
energy breaking of  P is hard to achieve. 

The special case of  our construction in which M1, 
M 2, and M 3 are tori may be tractable in the full- 
fledged string theory. 

Axions. In addition to the model-dependent Peccei-  
Quinn symmetry discussed above, this theory has a 
model independent mechanism for generating an 
axion ,2. Consider the antisymmetric tensor field B,v 
that is crucial in anomaly cancellation. Let us study 
the mode with #, t) = 0 ..... 3 and no dependence on 
compact coordinates. The equation of  motion is 

,2 I thank T. Banks for a question that prompted this obser- 
vation. 

O~H~v a = 0 with H defined in equation (1). If  we de- 
fine YY = ~eUVa#Hua~, this is a~Y v - avY ~ = o, so 
Y~ = M-lauq~ for some ¢ (Mis an unknown mass 
chosen so ¢ is canonically normalized in four dimen- 
sions). 

The "Bianchi identity" dH  = - T r  F 2 + Tr R 2 is 
now equivalent to 

l-q~b = - M - I ( T r  Fuuffuv - Tr Ruu~uv ) . (15) 

This is the standard coupling of  an axion, so this theory 
automatically solves the strong CP problem. 

In many cases (including the SU(5) models above), 
the B Tr F 4 coupling [3] leads in d = 4 to a coupling 
ca#UrBan) Yuv where Yuv = OuYv - OvY~ is the field 
strength of  a U(1) gauge boson Y. In this case (similar- 
ly to our discussion of  P), B is "eaten", becoming the 
longitudinal component of  Y~, and the Y symmetry 
becomes at low energies a global Peccei-Quinn sym- 
metry. 

In a model with several would-be axions, " the"  
axion is the linear combination coupling to Fff. 

Vortex lines. Spontaneously broken gauge theories 
can generate stable vortex lines or strings [9]. The 
existence of  such objects depends on details of  the 
Higgs content. For the 0(32)  superstring, the Higgs 
content is fixed; all charged fields are in the adjoint 
representation. As we will see, the superstring theory 
with almost any realistic assumptions predicts a variety 
of  vortex lines with different masses. 

Choose coordinates so that z is parallel to the hy- 
pothetical vortex line, r is the distance from the vortex 
line, q~ is the azimuthal angle, and X i are coordinates 
for the Kaluza-Klein space K. At large distances from 
the vortex line the gauge field must be a pure gauge, 

A~ ~ g- la~g,  (16) 

where g(¢,  ;~i) is a mapping from S 1 X K into 0(32).  
g must be single-valued in the adjoint representation 
of  0(32)  but not necessarily in other representations. 

Consider first the "four-dimensional" case in which 
g depends on ¢ only. The center of  0(32)  is Z 2 X Z2, 
generated by the 21r rotation ct (which is - 1  in the 
spinor representation) and an element we will call 
which is - 1 in the fundamental representation. If  ct or 

is not in the unbroken subgroup H of  0(32)  then 
mappings g(q~) with g(~b + 270 = ag(¢) or g(¢ + 2~r) = 
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fig(C) will lead to stable vortex lines. It is rather diffi- 
cult to make a realistic model  in which ot and fl are in 
H. For  instance, in SU(5) models (like the one above) 
ot and fl are not in H and there are stable Z 2 × Z 2 vor- 
tex lines. 

There may be other vortex lines coming from con- 
figurations in which g depends non-trivially on the X i. 
The classification of  these is complicated. The simptest 
comes from 1r7(O(32)) ~ Z. Associated with this is an 
integer valued winding number for maps from any 
seven-manifold, such as S 1 X K, into 0(32) .  Maps 
g(~b, X/) with non-zero winding number will  lead to 
vortex lines unless they can be deformed into maps of  
S 1 X K into H. Such a deformation is impossible if  H 
is a group such as SU(3) X U(1) whose seventh Betti 
number is zero. There will therefore be integer valued 
vortex lines. It is conceivable this can be avoided if the 
H embedding in 0(32)  is " twis ted"  in a way that de- 
pends on )t i. 

Parameters. An observation that is not  essentially 
new, but  still worth  mentioning, is that - as befits a 
possible unified theory of  all interactions - the super- 
string theory has no adjustable dimensionless parame- 
ter. The theory seems to have three parameters, f¢, g, 
and a ' ,  o f  dimension (length) 4, (length) 3, and (length) 2 
respectively. But it is known that a relation r ~ g2/a' 
is required for consistency of  the theory,  since a gravi- 
ton pole appears in the same diagram that has two- 
gluon exchange. This seems to leave a dimensionless 
parameter g4/~3. However, the theory contains at 
tree level a massless scalar ~b whose expectat ion value 
is undetermined. It can be seen from the limiting field 
tensor [5] or in string theory terms that  a shift in this 
scalar rescales g and a '  while keeping r and g2/a' fixed. 
So the value ofg4/K 3 labels not  a one-parameter fami- 
ly of  theories but a one-parameter family o f  vacuum 
states. I f  ul t imately a non-trivial potential  for q~ is gen- 
erated, minimizing it will determine g4/r 3. 

I wish to thank J. Schwarz and M. Green for very 
valuable discussions. 

Note added. As explained in ref. [3], the anomaly 
cancellation mechanism of  that  paper works for E 8 
× E 8 as well as 0(32).  (This was noted by  several 
physicists including J. Thierry-Mieg and J. Harvey, 
L. Dixon, and E. Witten.) A consistent theory based 

on E 8 X E 8 is not known at present, but  it is interest- 
ing to discuss how such a theory would compare to 
0(32).  

Low energy physics can be readily embedded in 
E 8 X E 8. For  instance, E 8 has a maximal E 6 X SU(3) 
subgroup. With suitable abelian configurations of  
SU(3) gauge fields on M 1 X M 2 × M3, one can make 
realistic E 6 models. For instance, one can pick the 
diagonal components  of  the SU(3) magnetic field to 
b e f  ( 1 ) + f  (2 )+n  f ( 3 ) . _ f  ( 2 ) . a n d _  f (1) 

~uv (3) ~uv Juv , ~ v  , ,~v 
- n f ,  v . (This violates Tr F = 0, but  one can com- 
pensate for that with suitable gauge field expectat ion 
values in the second E 8 .) This model  has n standard 
E 6 generations (27's). 

An attractive feature of  such E 8 × E 8 models is 
that there is no analogue of  the phenomenologically 
troublesome P symmetry noted above (and hard to 
avoid in 0 (32)  models). But the phenomenologically 
acceptable, model  independent axion mechanism 
noted above for 0(32)  is still present. 

Since E 8 × E 8 is simply connected, the "four 
dimensional" strings of  0 (32)  are absent, but  the 
ones involving higher homotopy  groups may still be 
present. 

Since physics as we know it can be embedded in 
one E8, it is amusing to speculate that there may be 
another low energy world based on the second E 8. 
The two sectors communicate only gravitationally. I f  
the symmetry between the two E 8,s is unbroken,  it 
may be that half the stars in the vicinity of  the sun 
are invisible to us, along with half the mass in the 
galactic disk. 
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