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I am going to try today to explain the minimum that any physicist
might want to know about string theory.

I will try to explain
answers to a couple of basic questions. How does string theory
generalize standard quantum field theory? And why does string
theory force us to unify General Relativity with the other forces of
nature, while standard quantum field theory makes it so difficult to
incorporate General Relativity? Why are there no ultraviolet
divergences? And what happens to Einstein’s conception of
spacetime?

I thought that explaining these matters is possibly suitable for a
session devoted to the centennial of General Relativity.
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Anyone who has studied physics is familiar with the fact that while
physics – like history – does not precisely repeat itself, it does
rhyme, with similar structures at different scales of lengths and
energies.

We will begin today with one of those rhymes – an
analogy between the problem of quantum gravity and the theory of
a single particle.
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Even though we do not really understand it, quantum gravity is
supposed to be some sort of theory in which, at least from a
macroscopic point of view, we average, in a quantum mechanical
sense, over all possible spacetime geometries.

(We do not know to
what extent this description is valid microscopically.) The
averaging is done, in the simplest case, with a weight factor
exp(−I ) (I will write this in Euclidean signature) where I is the
Einstein-Hilbert action

I =
1

16πG

∫
d4x
√
g(R + Λ),

with R being the curvature scalar and Λ the cosmological constant.
We could add matter fields, but we don’t seem to have to.
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Let us try to make a theory like this in spacetime dimension 1,
rather than 4.

There are not many options for a 1-manifold.

In contrast to the 4d case, there
is no Riemann curvature tensor in 1 dimension so there is no close
analog of the Einstein-Hilbert action.
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Even there is no
∫ √

gR to add to the action, we can still make a
nontrivial theory of “quantum gravity,” that is a fluctuating metric
tensor, coupled to matter.

Let us take the matter to consist of
some scalar fields Xi , i = 1, . . . ,D. The most obvious action is

I =

∫
dt
√
g

(
1

2

D∑
i=1

g tt

(
dXi

dt

)2

− 1

2
m2

)

where g = (gtt) is a 1× 1 metric tensor and I have written m2/2
instead of Λ.
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If we introduce the “canonical momentum”

Pi =
dXi

dt

then the “Einstein field equation” is just∑
i

P2
i + m2 = 0.

In other words, the wavefunction Ψ(X ) should obey the
corresponding differential equation(

−
∑
i

∂2

∂X 2
i

+ m2

)
Ψ(X ) = 0.



This is a familiar equation – the relativistic Klein-Gordon equation
in D dimensions – but in Euclidean signature.

If we want to give
this fact a sensible physical interpretation, we should reverse the
sign of the action for one of the scalar fields Xi so that the action
becomes

I =

∫
dt
√
g
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1

2
g tt

(
−
(
dX0

dt
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+
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(
dXi
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Now the equation obeyed by the wavefunction is a Klein-Gordon
equation in Lorentz signature:(
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So we have found an exactly soluble theory of quantum gravity in
one dimension that describes a spin 0 particle of mass m
propagating in D-dimensional Minkowski spacetime.

Actually, we
can replace Minkowski spacetime by any D-dimensional spacetime
M with a Lorentz (or Euclidean) signature metric GIJ , the action
being then

I =

∫
dt
√
g

(
1

2

D∑
i=1

g ttGIJ
dX I

dt

dX J

dt
−m2

)
.

The equation obeyed by the wavefunction is now a Klein-Gordon
equation on M:(

−G IJ D

DX I

D

DX J
+ m2

)
Ψ(X ) = 0.

This is the massive Klein-Gordon equation in curved spacetime.
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Just to make things more familiar, let us go back to the case of
flat spacetime, and I will abbreviate G IJPIPJ as P2. (To avoid
keeping track of some factors of i , I will also write formulas in
Euclidean signature.)

Let us calculate the amplitude for a particle
to start at a point x in spacetime and end at another point y .

Part of the process of evaluating
the path integral in a quantum gravity theory is to integrate over
the metric on the one-manifold, modulo diffeomorphisms. But up
to diffeomorphism, this one-manifold has only one invariant, the
total length τ , which we will interpret as the elapsed proper time.
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For a given τ , we can take the 1-metric to be just gtt = 1 where
0 ≤ t ≤ τ . (As a minor shortcut, I will take Euclidean signature on
the 1-manifold.)

Now on this 1-manifold, we have to integrate
over all paths X (t) that start at x at t = 0 and end at y at t = τ .
This is the basic Feynman integral of quantum mechanics with the
Hamiltonian being H = P2 + m2, and according to Feynman, the
result is the matrix element of exp(−τH):

G (x , y ; τ) =

∫
dDp

(2π)D
e iP·(y−x) exp(−τ(P2 + m2)).

But we have to remember to do the “gravitational” part of the
path integral, which in the present context means to integrate over
τ .
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Thus the complete path integral for our problem – integrating over
all metrics gtt(t) and all paths X (t) with the given endpoints,
modulo diffeomorphisms – gives

G (x , y) =

∫ ∞
0

dτG (x , y ; τ) =

∫
dDp

(2π)D
e ip·(y−x) 1

p2 + m2
.

This is the standard Feynman propagator in Euclidean signature,
and an analogous derivation in Lorentz signature (for both the
spacetime M and the particle worldline) gives the correct Lorentz
signature Feynman propagator, with the iε.



So we have interpreted a free particle in D-dimensional spacetime
in terms of 1-dimensional quantum gravity.

How can we include
interactions? There is actually a perfectly natural way to do this.
There are not a lot of smooth 1-manifolds, but there is a large
supply of singular 1-manifolds in the form of graphs.

Our “quantum
gravity” action makes sense on such a graph. We just take the
same action that we used before, summed over all of the line
segments that make up the graph.
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Now to do the quantum gravity path integral, we have to integrate
over all metrics on the graph, up to diffeomorphism.

The only
invariants are the total lengths or “proper times” of each of the
segments:

(I did
not label all of them.)
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The natural amplitude to compute is one in which we hold fixed the
positions x1, . . . , x4 of the external particles and integrate over all
the τ ’s and over the paths the particle follow on the line segments.



To integrate over the paths, we just observe that if we specify the
positions y1, . . . , y4 at all the vertices (and therefore on each end
of each line segment)

then the
computation we have to do on each line segment is the same as
before and gives the Feynman propagator. Integrating over the yi
will just impose momentum conservation at vertices, and we arrive
at Feynman’s recipe to compute the amplitude attached to a
graph: a Feynman propagator for each line, and an integration
over all momenta subject to momentum conservation.
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We have arrived at one of nature’s rhymes: if we imitate in one
dimension what we would expect to do in D = 4 dimensions to
describe quantum gravity, we arrive at something that is certainly
important in physics, namely ordinary quantum field theory in a
possibly curved spacetime.

In the example that I gave, the
“ordinary quantum field theory” is scalar φ3 theory, because of the
particular matter system we started with and assuming we take the
graphs to have cubic vertices. Quartic vertices (for instance) would
give φ4 theory, and a different matter system would give fields of
different spins. So many or maybe all QFT’s in D dimensions can
be derived in this sense from quantum gravity in 1 dimension.
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There is actually a much more perfect rhyme if we repeat this in
two dimensions, that is for a string instead of a particle.

One thing
we immediately run into is that a two-manifold Σ can be curved

So
the integral over 2d metrics promises to not be trivial at all.
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This is related to the fact that a 2d metric in general is a 2× 2
symmetric matrix constructed from 3 functions

gij =

(
g11 g12

g21 g22

)
, g21 = g12

but a diffeomorphism

σi → σi + hi (σ), i = 1, 2

(where σi are coordinates on the “worldsheet”) can only remove
two functions.
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metric gij on Σ locally trivial (locally equivalent to δij), as we had
in the quantum-mechanical case.
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Some very pretty 19th century mathematics now comes into play

It turns out that, just as in the 1d case, the metric gij can be
parametrized by finitely many parameters. Two big differences:
The parameters are now complex rather than real, and their range
is restricted in a way that allows no possibility for an ultraviolet
divergence.
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To underscore how a two-manifold is understood as a
generalization of a Feynman graph, I’ve drawn alongside each other
the one-loop diagrams for 2→ 2 scattering in the 1d or 2d case:



Now I come to a deeper rhyme: We used 1d quantum gravity to
describe quantum field theory in a possibly curved spacetime, but
not to describe quantum gravity in spacetime.

The reason that we
did not get quantum gravity in spacetime is that there is no
correspondence between operators and states in quantum
mechanics. We considered the 1d quantum mechanics

I =

∫
dt
√
g

(
1

2
g ttGIJ

dX I

dt

dX J

dt
− 1

2
m2

)
.

The external states in a Feynman diagram were just the states in
this quantum mechanics. A deformation of the spacetime metric is
represented by an operator in this quantum mechanics, namely
O = 1

2g
ttδGIJ∂tX

I∂tX
J . It does not correspond to a state in the

quantum mechanics.



Now I come to a deeper rhyme: We used 1d quantum gravity to
describe quantum field theory in a possibly curved spacetime, but
not to describe quantum gravity in spacetime. The reason that we
did not get quantum gravity in spacetime is that there is no
correspondence between operators and states in quantum
mechanics.

We considered the 1d quantum mechanics

I =

∫
dt
√
g

(
1

2
g ttGIJ

dX I

dt

dX J

dt
− 1

2
m2

)
.

The external states in a Feynman diagram were just the states in
this quantum mechanics. A deformation of the spacetime metric is
represented by an operator in this quantum mechanics, namely
O = 1

2g
ttδGIJ∂tX

I∂tX
J . It does not correspond to a state in the

quantum mechanics.



Now I come to a deeper rhyme: We used 1d quantum gravity to
describe quantum field theory in a possibly curved spacetime, but
not to describe quantum gravity in spacetime. The reason that we
did not get quantum gravity in spacetime is that there is no
correspondence between operators and states in quantum
mechanics. We considered the 1d quantum mechanics

I =

∫
dt
√
g

(
1

2
g ttGIJ

dX I

dt

dX J

dt
− 1

2
m2

)
.

The external states in a Feynman diagram were just the states in
this quantum mechanics. A deformation of the spacetime metric is
represented by an operator in this quantum mechanics, namely
O = 1

2g
ttδGIJ∂tX

I∂tX
J . It does not correspond to a state in the

quantum mechanics.



Now I come to a deeper rhyme: We used 1d quantum gravity to
describe quantum field theory in a possibly curved spacetime, but
not to describe quantum gravity in spacetime. The reason that we
did not get quantum gravity in spacetime is that there is no
correspondence between operators and states in quantum
mechanics. We considered the 1d quantum mechanics

I =

∫
dt
√
g

(
1

2
g ttGIJ

dX I

dt

dX J

dt
− 1

2
m2

)
.

The external states in a Feynman diagram were just the states in
this quantum mechanics.

A deformation of the spacetime metric is
represented by an operator in this quantum mechanics, namely
O = 1

2g
ttδGIJ∂tX

I∂tX
J . It does not correspond to a state in the

quantum mechanics.



Now I come to a deeper rhyme: We used 1d quantum gravity to
describe quantum field theory in a possibly curved spacetime, but
not to describe quantum gravity in spacetime. The reason that we
did not get quantum gravity in spacetime is that there is no
correspondence between operators and states in quantum
mechanics. We considered the 1d quantum mechanics

I =

∫
dt
√
g

(
1

2
g ttGIJ

dX I

dt

dX J

dt
− 1

2
m2

)
.

The external states in a Feynman diagram were just the states in
this quantum mechanics. A deformation of the spacetime metric is
represented by an operator in this quantum mechanics, namely
O = 1

2g
ttδGIJ∂tX

I∂tX
J .

It does not correspond to a state in the
quantum mechanics.



Now I come to a deeper rhyme: We used 1d quantum gravity to
describe quantum field theory in a possibly curved spacetime, but
not to describe quantum gravity in spacetime. The reason that we
did not get quantum gravity in spacetime is that there is no
correspondence between operators and states in quantum
mechanics. We considered the 1d quantum mechanics

I =

∫
dt
√
g

(
1

2
g ttGIJ

dX I

dt

dX J

dt
− 1

2
m2

)
.

The external states in a Feynman diagram were just the states in
this quantum mechanics. A deformation of the spacetime metric is
represented by an operator in this quantum mechanics, namely
O = 1

2g
ttδGIJ∂tX

I∂tX
J . It does not correspond to a state in the

quantum mechanics.



Operators in quantum mechanics do not correspond to states, and
that is why the 1d theory did not describe quantum gravity in
spacetime.

In fact, the 1d theory as I presented it led to φ3 theory
in spacetime rather than quantum gravity. An operator O such as
the one describing a fluctuation δG in the spacetime metric appears
on an internal line in the Feynman diagram, not an external line:

(To calculate the effects of a perturbation, we insert
∫
dt
√
g O,

integrating over the position on the graph where the operator O is
inserted. I just drew one possible insertion point.)
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But in conformal field theory, there is an operator-state
correspondence, which actually is important in statistical
mechanics.

And hence the operator

O = g ijδGIJ∂iX
I∂jX

J

that represents a fluctuation in the spacetime metric automatically
represents a state in the quantum mechanics. Therefore the theory
describes quantum gravity in spacetime.
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relation between two pictures that are conformally equivalent:
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The basic idea can be seen if we write the metric of a plane in
polar coordinates:

ds2 = dr2 + r2dφ2.

We think of inserting an operator at the point r = 0.

Now remove
this point, and make a conformal transformation, multiplying ds2

by 1/r2. This gives

(ds ′)2 =
1

r2
dr2 + dφ2

In terms of u = log r , −∞ < u <∞, this is now

(ds ′)2 = du2 + dφ2,

which describes a cylinder.
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The next step is to explain why this type of theory does not have
ultraviolet divergences.

First of all, where do ultraviolet
divergences come from in field theory? They come from the case
that all the proper time variables in a loop go to zero:

So in the example
shown, ultraviolet divergences can occur for τ1, τ2, τ3, τ4 going
simultaneously to 0.
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It is true that, as I said, a Riemann surface can be described by
parameters that roughly mirror the proper time parameters in a
Feynman graph:

But there is one very important difference, which is the reason
there are no ultraviolet divergences in string theory. The proper
time variables τi of a Feynman graph cover the whole range
0 ≤ τi ≤ ∞. By contrast, the corresponding Riemann surface
parameters τ̂i are bounded away from 0. Given a Feynman
diagram, one can make a corresponding Riemann surface, but only
if the proper time variables τi are not too small.
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Instead of giving a general explanation of this, I will just explain
how it works in the case of the 1-loop cosmological constant.

The
Feynman diagram is this one, with a single proper time parameter
τ :

The resulting expression for the 1-loop cosmological constant is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

where H is the particle Hamiltonian. This diverges at τ = 0,
because of the momentum integration that is part of the trace.



Instead of giving a general explanation of this, I will just explain
how it works in the case of the 1-loop cosmological constant. The
Feynman diagram is this one, with a single proper time parameter
τ :

The resulting expression for the 1-loop cosmological constant is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

where H is the particle Hamiltonian. This diverges at τ = 0,
because of the momentum integration that is part of the trace.



Instead of giving a general explanation of this, I will just explain
how it works in the case of the 1-loop cosmological constant. The
Feynman diagram is this one, with a single proper time parameter
τ :

The resulting expression for the 1-loop cosmological constant is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

where H is the particle Hamiltonian. This diverges at τ = 0,
because of the momentum integration that is part of the trace.



Instead of giving a general explanation of this, I will just explain
how it works in the case of the 1-loop cosmological constant. The
Feynman diagram is this one, with a single proper time parameter
τ :

The resulting expression for the 1-loop cosmological constant is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

where H is the particle Hamiltonian.

This diverges at τ = 0,
because of the momentum integration that is part of the trace.



Instead of giving a general explanation of this, I will just explain
how it works in the case of the 1-loop cosmological constant. The
Feynman diagram is this one, with a single proper time parameter
τ :

The resulting expression for the 1-loop cosmological constant is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

where H is the particle Hamiltonian. This diverges at τ = 0,
because of the momentum integration that is part of the trace.



Going to string theory means replacing the classical one-loop
diagram



Going to string theory means replacing the classical one-loop
diagram with its stringy counterpart, which is a torus

.



19th century mathematicians showed that every torus is
conformally equivalent to a parallelogram in the plane with
opposite sides identified
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But to explain the idea without extraneous details, I will consider
only rectangles instead of parallelograms:



Let us label the height and base of the rectangle as s and t:
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Now only the ratio

u =
t

s
is conformally-invariant.

Also, since it is arbitrary what is the
“height” and what is the “base” of the rectangle, we are free to
exchange

s ↔ t

which means

u ↔ 1

u
.

So we can restrict to t ≥ s, so that the range of u is

1 ≤ u <∞.
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The proper time parameter τ of the particle corresponds to u in
string theory,

and the key difference is just that 0 ≤ τ <∞ but
1 ≤ u <∞. So the 1-loop cosmological constant in field theory is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

but (in the approximation of considering only rectangles and not
parallelograms) the 1-loop cosmological constant in string theory is

Γ1 =
1

2

∫ ∞
1

du

u
Tr exp(−τH).

There is no ultraviolet divergence, because the lower limit on the
integral is 1 instead of 0.



The proper time parameter τ of the particle corresponds to u in
string theory, and the key difference is just that 0 ≤ τ <∞ but
1 ≤ u <∞.

So the 1-loop cosmological constant in field theory is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

but (in the approximation of considering only rectangles and not
parallelograms) the 1-loop cosmological constant in string theory is

Γ1 =
1

2

∫ ∞
1

du

u
Tr exp(−τH).

There is no ultraviolet divergence, because the lower limit on the
integral is 1 instead of 0.



The proper time parameter τ of the particle corresponds to u in
string theory, and the key difference is just that 0 ≤ τ <∞ but
1 ≤ u <∞. So the 1-loop cosmological constant in field theory is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

but (in the approximation of considering only rectangles and not
parallelograms) the 1-loop cosmological constant in string theory is

Γ1 =
1

2

∫ ∞
1

du

u
Tr exp(−τH).

There is no ultraviolet divergence, because the lower limit on the
integral is 1 instead of 0.



The proper time parameter τ of the particle corresponds to u in
string theory, and the key difference is just that 0 ≤ τ <∞ but
1 ≤ u <∞. So the 1-loop cosmological constant in field theory is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

but (in the approximation of considering only rectangles and not
parallelograms)

the 1-loop cosmological constant in string theory is

Γ1 =
1

2

∫ ∞
1

du

u
Tr exp(−τH).

There is no ultraviolet divergence, because the lower limit on the
integral is 1 instead of 0.



The proper time parameter τ of the particle corresponds to u in
string theory, and the key difference is just that 0 ≤ τ <∞ but
1 ≤ u <∞. So the 1-loop cosmological constant in field theory is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

but (in the approximation of considering only rectangles and not
parallelograms) the 1-loop cosmological constant in string theory is

Γ1 =
1

2

∫ ∞
1

du

u
Tr exp(−τH).

There is no ultraviolet divergence, because the lower limit on the
integral is 1 instead of 0.



The proper time parameter τ of the particle corresponds to u in
string theory, and the key difference is just that 0 ≤ τ <∞ but
1 ≤ u <∞. So the 1-loop cosmological constant in field theory is

Γ1 =
1

2

∫ ∞
0

dτ

τ
Tr exp(−τH)

but (in the approximation of considering only rectangles and not
parallelograms) the 1-loop cosmological constant in string theory is

Γ1 =
1

2

∫ ∞
1

du

u
Tr exp(−τH).

There is no ultraviolet divergence, because the lower limit on the
integral is 1 instead of 0.



I have explained a special case, but this is a general story.

The
stringy formulas generalize the field theory formulas, but without
the region that can give ultraviolet divergences in field theory. The
infrared region (τ →∞ or u →∞) lines up properly between field
theory and string theory and this is why a string theory can imitate
field theory in its predictions for the behavior at low energies or
long times and distances.
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I want to use the remaining time to explain, at least partly, in what
sense spacetime “emerges” from something deeper if string theory
is correct.

Let us focus on the following fact: The spacetime M with its
metric tensor GIJ(X ) was encoded as the data that enabled us to
define a 2d conformal field theory that we used in this construction.
Moreover, that is the only way that spacetime entered the story.
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We could have used in this construction a different 2d conformal
field theory (subject to a few general rules that we’ll omit).

Now if
GIJ(X ) is slowly varying (the radius of curvature is everywhere
large) the Lagrangian that we used to describe the 2d conformal
field theory is weakly coupled and illuminating. This is the
situation in which string theory matches to ordinary physics that
we are familiar with. We may say that in this situation, the theory
has a semiclassical interpretation in terms of strings in spacetime
(and this will reduce at low energies to an interpretation in terms
of particles and fields in spacetime).
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Many other nonclassical things can happen.

It can happen that
from a classical point of view, the spacetime develops a singularity,
but actually the 2d conformal field theory remains perfectly good,
meaning that the physical situation in string theory is perfectly
sensible.
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theory.

In general a string theory comes with no particular
spacetime interpretation, but such an interpretation can emerge in
a suitable limit, somewhat as classical mechanics sometimes arises
as a limit of quantum mechanics.
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This is not a complete explanation of the sense in which, in the
context of string theory, spacetime emerges from something
deeper.

A completely different side of the story involves quantum
mechanics and the duality between gauge theory and gravity.
However, what I have described is certainly one important piece of
the puzzle, and one piece that is relatively well understood. It is at
least a partial insight about how spacetime as conceived by
Einstein can emerge from something deeper, and thus I hope this
topic has been suitable as part of a session devoted to the
centennial of General Relativity.
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