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Terminology

A finite tensor category [Etingof-Ostrik] A over some
algebraically closed field k is

a linear abelian category A with finite-dimensional morphism
spaces, enough projective objects, finitely many isomorphism
classes of simple objects such that every object has finite
length,
with a monoidal product ⊗ : A⊠A −→ A,
a rigid duality −∨,
and simple unit.

A braiding on a monoidal category is a natural isomorphism
X ⊗ Y −→ Y ⊗ X subject to the hexagon axioms. A braiding
on a finite tensor category is called non-degenerate if the only
objects that trivially double braid with all other objects are
finite direct sums of the monoidal unit.



Terminology

A balancing on a braided monoidal category is a natural
isomorphism θX : X −→ X subject to

θX⊗Y = cY ,X cX ,Y (θX ⊗ θY ) ,

θI = idI .

If in presence of duality we have additionally

θX∨ = θ∨X ,

we call the balancing a ribbon structure.

Modular category: finite ribbon category with non-degenerate
braiding.

Sources for modular categories

Certain Hopf algebras (−→ quantum groups) and vertex operator
algebras (−→ two-dimensional conformal field theory).



Category A−RibGraphs(M) of ribbon graphs in a
three-dimensional manifold M

Let M be an oriented, compact three-dimensional smooth manifold with
boundary. Define the category A−RibGraphs(M) of ProjA-labeled
ribbon graphs in M and replacements in cubes:

Use the Reshetikhin-Turaev graphical calculus to define a functor
A−RibGraphs(M) −→ vect whose colimit we define as skA(M;B) with family
B of projective boundary labels −→ admissible skein module, following
[Costantino-Geer-Patureau-Mirand 23]. Generalization of the classical
construction by Turaev, Kauffman, Przytycki, Hoste, Walker, Masbaum,
Roberts, . . .

picture: arXiv:2409.17047



Skein categories [Walker (ssi), Brown-Häıoun (nonssi)]

Let A be a finite ribbon category. For a surface Σ (always
compact, oriented, possibly with boundary), define the k-linear
admissible skein category skcatA(Σ):

Objects are embedded intervals in the interior of Σ (at least
one in each connected component of Σ) labeled with
projective objects of A.

For two objects B and C , the morphism vector space is
skA(Σ× [0, 1];B∨,C ). Composition is by stacking of
cylinders.

Then we get a functor

skA(M;−) : skcatA(∂
ocM) −→ vect ,

with ∂ocM being the parametrized part of the boundary of M.



Connection to factorization homology

Theorem [Cooke 19 (ssi), Brown-Häıoun 24 (nonssi)]

Let A be a finite ribbon category. For any surface Σ, the skein
category skcatA(Σ), after finite free cocompletion, is equivalent to
the factorization homology

∫
ΣA.

What is factorization homology? [Beilinson-Drinfeld, Lurie,
Ayala-Francis, . . . ; 2000-]

∫
Σ
A =

⊕
⊔nD2↪→Σ

n≥0

A⊠n

/
∼

coefficients: E2-algebra, e.g. braided category

surface

A
A

A



Excision

Theorem

Let A be a finite ribbon category. Suppose that M ′ is obtained by
gluing a compact oriented three-manifold M along two oppositely
oriented copies of a boundary surface Σ. Then for any
X ∈ skcatA(∂

ocM ′) there is an isomorphism∫ P∈skcatA(Σ)

skA(M;X ,P,P∨)
≃−−→ skA(M

′;X )

The core argument is due to Walker; more recent incarnations of this

statement (and its two-dimensional analogue) covering the generality

needed here are in Gunningham-Jordan-Safronov,

Fuchs-Schweigert-Yang, Müller-Schweigert-W.-Yang, Brown-Häıoun,

Runkel-Schweigert-Tham, Müller-W.



Excision

Example: Excision for skein modules and modified traces

With the above excision result in combination with
[Costantino-Geer-Patureau-Mirand 23], we find∫ P∈ProjA

A(I ,P)⊗A(P, I ) ∼= {space of two-sided modified traces}∗ .

In case that A is given by modules over a ribbon Hopf algebra H,
the left hand side is HomH(k,H)⊗H k . This is closely related to
the description of modified traces through (co)integrals of H by
Beliakova-Blanchet-Gainutdinov, Shibata-Shimizu,
Berger-Gainutdinov-Runkel.



Modular functors

Following [Segal 88, Moore-Seiberg 88, Turaev 94, Tillmann 98,
Bakalov-Kirillov 01, . . . ].

X
Y

Σ

Map(Σ) = π0(Diff(Σ)) ; Example: Map(S1 × S1) ∼= SL(2,Z) .

(Σ;X ,Y , . . . ) 7−→ vector space B(Σ;X ,Y , . . . ) ↶ Map(Σ)

for all surfaces, compatible with the gluing of surfaces. The vector space
B(Σ;X ,Y , . . . ) is called space of conformal blocks.

Formal definition using modular operads in the sense of Getzler-Kapranov

A modular functor is a modular algebra over the modular surface operad
(or a certain central extension of it) with values in a symmetric monoidal
bicategory of linear categories.

picture: arXiv:2201.07542



Question: How can we classify genus zero modular functors
aka cyclic framed E2-algebras?

Preliminary observation: The boundary labels form the objects of a
linear category, the circle category, that we denote by A.

(I will present the situation in which A is finitely cocomplete and B(Σ,−)
cocontinuous in the labels. Technically speaking: We work in Rexf .)



Genus zero modular functors

7−→ ⊗ : A⊠A −→ A

monoidal product

7−→ I ∈ A
monoidal unit

7−→ θ : idA =⇒ idA
balancing

Dehn twist
θX⊗Y = cY ,X cX ,Y (θX ⊗ θY )

θI = idI

[Wahl 01, Salvatore-Wahl 03]

plus braiding cX ,Y : X ⊗ Y
∼=−−→ Y ⊗ X



Genus zero modular functors

7−→ ⊗ : A⊠A −→ A

monoidal product

7−→ I ∈ A
monoidal unit

7−→ θ : idA =⇒ idA
balancing

Dehn twist
θX⊗Y = cY ,X cX ,Y (θX ⊗ θY )

θI = idI

[Wahl 01, Salvatore-Wahl 03]

plus braiding cX ,Y : X ⊗ Y
∼=−−→ Y ⊗ X

[Müller-W. 20-22]

D : A ≃−−→ Aopp

HomA(−⊗ Y ,K) ∼= HomA(−,DY )

with K := DI

ribbon Grothendieck-Verdier duality

in the sense of Boyarchenko-Drinfeld

cyclic structure

θDX = DθX

‘ genus zero modular functors = ribbon Grothendieck-Verdier categories’



Ansular functors

Take a surface Σ with n boundary components and choose a handlebody
filling H. If A is a ribbon Grothendieck-Verdier category, then A extends
uniquely to all handlebodies; it gives us a so-called ansular functor.

Theorem [Müller-W. 2022]

Genus zero restriction provides an equivalence between ansular functors
in Rexf and ribbon Grothendieck-Verdier categories.
The ansular functor associated to a ribbon Grothendieck-Verdier category
A sends a handlebody of genus g and n disks embedded in its boundary
labeled with X1, . . . ,Xn to the hom space

Â(H) ∼= A(X1 ⊗ · · · ⊗ Xn ⊗ A⊗g ,K )∗

defined using the canonical end A = ⊗
(∫

X∈A X ⊠ DX
)
(D is the duality

functor of A).

Uses a result of Giansiracusa on the derived modular envelope of framed E2 (a
concept due to Costello).
Far-reaching generalization of Lyubashenko’s construction, can be applied to
very general module categories of vertex operator algebras
[Allen-Lentner-Schweigert-Wood 21].



Generalized skein modules [Brochier-W. 22]

Let A be a ribbon Grothendieck-Verdier category in Rexf .

For a handlebody H with ∂H = Σ (the n embedded disks of
H are converted in boundary components of Σ), consider an
embedding φ : ⊔JD2 −→ Σ. This endows H with m := |J|
more embedded disks in its boundary. We denote this
handlebody by Hφ.

By evaluation of the ansular functor Â associated to A, we
get a 1-morphism

A⊠m Â(Hφ)−−−−−→ A⊠n



H

φ : ⊔JD2 −→ Σ = ∂H

boundary components of Σ /
embedded disks of H

This is natural in φ and hence produces the desired
1-morphism

ΦA(H) :

∫
Σ
A = hocolim

φ:⊔JD2−→Σ
A⊠J −→ A⊠n .

picture: arXiv:2212.11259



How does ΦA(H) :
∫
ΣA −→ A⊠n correspond to a skein module?

Since ΦA(H)(OΣ) ∼= Â(H) [Brochier-W.] for the quantum
structure sheaf OΣ ∈

∫
ΣA of Ben-Zvi-Brochier-Jordan, Â(H) is a

module over the skein algebra

SkAlgA(Σ) := End∫
Σ A(OΣ) .

(Agrees with the classical skein algebras in the semisimple case
[Cooke 19].)



Comparison

Suppose that A is a finite ribbon category and H a
three-dimensional handlebody. Then we can compare two
constructions (on their common domain of definition):

The value Â(H) of the ansular functor for A, as
Map(H)-representation [Müller-W. 22] and module over the
skein algebra through the generalized skein module
ΦA(H) :

∫
ΣA −→ vect [Brochier-W. 22].

(For this construction, A does not need to be rigid.)

The admissible skein module skA(H) of
[Costantino-Geer-Patureau-Mirand 23] as
Map(H)-representation and module over a generally
non-unital skein algebra, but also over the skein algebra
defined via factorization homology [Brown-Häıoun 24].
(For this construction, H does not need to be a handlebody.)



Comparison

Recall that the quadruple dual of a finite tensor category is given by

−∨∨∨∨ ∼= α⊗−⊗ α−1

with the distinguished invertible object α [Etingof-Ostrik-Nikshych 04].
One calls the finite tensor category unimodular if α ∼= I .

Theorem [Müller-W. 24]

For a unimodular finite ribbon category A and any handlebody H,

Â(H) ∼= skA(H)

as Map(H)-representations and skein modules.

This implies that skein modules for three-manifolds have a factorization
homology description through the Φ-maps; more precisely,

skA(M) ∼=
∫ P∈Proj

∫
Σ A

ΦA(H ′;P∨)⊗ ΦA(H;P)

for a Heegaard splitting M = H ′ ∪Σ H of a closed three-manifold M.



Strategy

Prove that both sides form ansular functors: Clear for Â. For
the skein construction, it boils down to excision.

The two ansular functors are equivalent if and only if they are
equivalent in genus zero by the classification in [Müller-W. 22].

It remains to determine the underlying cyclic framed
E2-algebra aka ribbon Grothendieck-Verdier category for the
skein modular functor. Not very surprisingly, it is A as
balanced braided category, but what is the duality? It is
D = α−1 ⊗−. (All possible ribbon Grothendieck-Verdier
dualities relative to the balanced braided structure are given
by twists of the rigid duality by an invertible object in the
balanced Müger center [Müller-W. 22].) This agrees with A
with the rigid duality if and only if A is unimodular!



Motivation / Outlook

Reconcile approaches based on classical skein theory /
factorization homology / modular envelope construction.

Representations of mapping class groups of surfaces.

Logarithmic conformal field theory.

Going beyond rigidity.


