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Preface

This pamphlet is based on the manuscript for a summer school in Suez, Egypt, in
April 1997. Part I describes some elementary mathematics, similar to the manuscript
that was distributed to the school participants in advance of the school. It is in-
tended to remind the readers of selected mathematical concepts. Part II contains
the material that was covered in my six lectures and three exercise sessions at the
school. A carefully prepared Index is included for quick references.
In the analytical description of crystallographic symmetry, group theory is an in-
strument of utmost importance. Regrettably, there was no time to introduce group
theory during the school. The group-theoretical aspects of crystallography could
only be mentioned occasionally but not treated systematically. Therefore, also in
this pamphlet emphasis was put onto matrix methods. These are considered to be
more basic from the point of view of applications. The group–theoretical methods
can lead to a deeper insight into the crystallographic concepts and their relation-
ships later.
I very much enjoyed the interest of the participants and the stimulating discussions
with them and the other lecturers. The results of these discussions are taken into
account in this manuscript. I should like to thank in particular the chair of the
school, Karimat El–Sayed, as well as Farid Ahmed for their advice before, and
Jenny Glusker and Farid Ahmed for improving the final version of this article.
Brian McMahon has helped me with his technical expertise.
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List of symbols

r,x,a,b, c,ai vectors
x, y, z, xi, ri, wi point coordinates, vector coefficients or coefficients of the

translation part of a mapping
x, r, w column of point coordinates, of vector coefficients or of

the translation part of a mapping
X̃, x̃, x̃i image point, its column of coordinates and its coordinates
x′, x′i column of coordinates and coordinates in a new coordinate

system
A, I, W mappings
A,W, I (3 × 3) matrices
Aik, Bik, Wik matrix coefficients
(A, a), (W, w) matrix–column pairs

(a)
T

row of basis vectors

(a)
T
, (b)

T
, (r)

T
row of vector coefficients

A
T

transposed matrix
G, Gik fundamental matrix and its coefficients
a, b, c lattice parameters
α, β, γ or αj angles between the basis vectors

Φ angle between two vectors (bond angle)
det(. . .) determinant of a matrix
G, H, I, P , R, S groups
W, x, x̃, r, t augmented matrix and columns

The International Tables for Crystallography, Vol. A (1983), 5th edition (2002),
will be abbreviated ‘IT A’.
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Part I.

Points, vectors and matrices

1 Points and vectors

In this chapter, points and vectors are introduced. In spite of their strong rela-
tions, the difference between these concepts is emphasized. The distinction be-
tween them is sometimes not easy because both items are mostly described in the
same way, namely by columns of coefficients. Indeed, it is often not necessary
to know the real meaning of such columns, and they can be treated in the same
way independently of their nature. Sometimes, however, their behaviour is differ-
ent and their distinction is necessary for a real understanding of the description of
crystallographic objects and to avoid mistakes.

1.1 Points and their coordinates

A mathematical model of the space in which we live is thepoint space. Its ele-
ments are points. Objects in point space may be single points; finite sets of points,
e.g.the centres of the atoms of a molecule; infinite discontinuous point sets,e.g.
the centres of the atoms of an ideal (infinitely extended and periodic) crystal pat-
tern; continuous point sets like straight lines, curves, planes, curved surfaces, to
mention just a few which play a role in crystallography.
In the following we restrict our considerations to the 3-dimensional space. The
transfer to the plane should be obvious. One can even extend the whole concept to
n–dimensional space with arbitrary dimensionn.
In order to describe the objects in point space analytically, one introduces acoor-
dinate system. To achieve this, one selects some point as theorigin O. Then one
chooses three straight lines running through the origin and not lying in a plane.
They are called thecoordinate axesa, b andc or a1, a2 anda3. On each of these
lines a point different fromO is chosen marking the unit on that axis:A on a, B
on b andC on c. An arbitrary pointP is then described by its coordinatesx, y, z
or x1, x2, x3, see Fig. 1.1.1:
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c

oX

O b B

P

Z

C

Y

a

A

o

o

Fig. 1.1.1 PointP in a coordinate sys-
tem {O, a, b, c}. The end pointsA, B
andC of the arrows determine the dif-
ferent unit lengths on the linesa, b and
c, respectively. The coordinate points
areX◦, Y◦ andZ◦; the coordinates of
P are
x = (OX◦)/(OA),
y = (OY◦)/(OB) and
z = (OZ◦)/(OC).

Definition (D 1.1.1) Theparallel coordinates x, y andz or x1, x2 andx3 of an
arbitrary pointP are defined in the following way:

1. The originO is the point with the coordinates 0, 0, 0.

2. One constructs the three planes through the pointP which are parallel to
the pairs of axesb and c, c anda, anda and b, respectively. These three
planes intersect the coordinate axesa, b andc in the pointsX◦, Y◦ andZ◦,
respectively.

3. The fractions of the lengths(OX◦)/(OA) = x on the axisa,
(OY◦)/(OB) = y on b and(OZ◦)/(OC) = z on c are the coordinates of
the pointP.

In this way one assigns uniquely to each point a triplet of coordinates andvice
versa. In crystallography the coordinates are written usually in a column which is
designated by a boldface–italics lower-case letter,e. g.,

P : x =


 x

y
z


 =


 x1

x2

x3


 .

Definition (D 1.1.2) The set of all columns of three real numbers represents all
points of the point space and is called theaffine space.

The affine space is not yet a good model for our physical space. In reality one can
measure distances and angles which is possible in the affine space only after the
introduction of ascalar product, see Sections 1.5 and 1.6. Such a space with a
scalar product is the fundament of the following considerations.

Definition (D 1.1.3) An affine space, for which a scalar product is defined, is
called aEuclidean space.

The coordinates of a pointP depend on the position ofP in space as well as on
the coordinate system. The coordinates of a fixed pointP are changed by another
choice of the coordinate axes but also by another choice of the origin. Therefore,
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the comparison of two points by their columns of coordinates is only possible if
the coordinate system is the same to which these points are referred. Two points
are equal if and only if their columns of coordinates agree in all coordinates when
referred to the same coordinate system. If points are referred to different coordinate
systems and if the relations between these coordinate systems are known then one
can recalculate the coordinates of the points by acoordinate transformationin
order to refer them to thesamecoordinate system, see Subsection 5.3.3. Only after
this transformation a comparison of the coordinates is meaningful.

1.2 Special coordinate systems: Cartesian coordinates

There are different types of coordinate systems. Coordinate systems with straight
lines as axes as introduced in Section 1.1 are calledparallel coordinates. In physics
polar coordinates in the plane and cylindrical or spherical coordinates in the space
are used frequently depending on the kind of problems.
In general those coordinates are chosen in which the solution of the given problem
is expected to cause the least difficulties. We shall consider mainly parallel coordi-
nates. Such coordinate systems are of utmost importance for crystallography due
to the periodicity of the crystals. In this section a special system with parallel coor-
dinates will be defined which is used frequently in physics, also in crystal physics
and in mathematics. It is applied in Section 1.6. In crystallography, mostly special
crystallographic coordinate systems are used.

Definition (D 1.2.1) A coordinate system with three coordinate axes perpendicular
to each other and lengthsOA = OB = OC = 1 is called aCartesian coordinate
system.

Referring the points to a Cartesian coordinate system simplifies many formulae,
e. g.for the determination of distances between points and of angles between lines,
and thus makes such calculations particularly easy,cf.Sections 1.6 and 2.6. On the
other hand, the description of the symmetry of crystals, in particular of the trans-
lational symmetry (also in reciprocal space) becomes quite involved when using
Cartesian coordinates. With the exception of crystal physics, the disadvantages
of Cartesian coordinates outweigh their advantages when dealing with crystallo-
graphic problems.

1.3 Vectors

Vectors are objects which are encountered everywhere in crystallography: as dis-
tance vectors between atoms, as basis vectors of the coordinate system, as trans-
lation vectors of a crystal lattice, as vectors of the reciprocal lattice,etc.They are
elements of the vector space which is studied by linear algebra and is an abstract
space. However, vectors can be interpreted easily visually, see Fig. 1.3.1:
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X

O

Y

Fig. 1.3.1 Vector(
−→
XY ) from point X to

point Y. The vector represented by an ar-
row depends only on the relative but not on
the absolute sites of the points. The four
parallel arrows represent thesamevector.

For each pair of pointsX andY one can draw the arrow
−→
XY from X to Y. The

arrow
−→
XY is a representation of the vectorr , as is any arrow of the direction and

length ofr , see Fig. 1.3.1. The set of all vectors forms thevector space. The vector

space has no origin but instead there is thezero vectoror o vector(
−→
XX) which is

obtained by connecting any pointX with itself. The vectorr has alengthwhich is
designed by|r| = r, wherer is a non–negative real number. This number is also
called theabsolute valueof the vector. A formula for the calculation ofr can be
found in Sections 1.6 and 2.6.
For such vectors some simple rules hold which can be visualized,e. g.by a drawing
in the plane:

1. If λ is a real number then the vectorλ r = rλ is defined as the vector parallel
to r and with length|λ r| = λ |r| = λ r.

In particular,(1/r) r = r◦ is a vector of length 1. Such a vector is called a
unit vector. Further1 r = r; 0 r = o is the zero–vector with length 0. It is
the only vector with no direction.(−1) r = −r is that vector which has the
same length asr , |r| = |−r|, but opposite direction.

2. For successive multiplication with the real numbersλ andµ, the relation
µ (λ r) = (µ λ) r holds.

3. For two real numbers,λ andµ, (λ + µ) r = λ r + µ r holds.

4. For two vectors,r ands, λ (r + s) = λ r + λ s holds.

5. For two vectors,r ands, r+ s = s+ r holds. This is called thecommutative
law of vector addition, see Fig. 1.3.2 which is also called theparallelogram
of forces. In particular,r + (−r) = r− r = o.

6. For any three vectors,r , s andt, theassociative lawof vector addition, see
Fig. 1.3.3,

(r + s) + t = r + (s+ t) = r + s+ t holds.
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P

Q

r+
s =

 s+
r

R

r

S

r

s

s

Fig. 1.3.2 Visualization of the com-
mutative law of vector addition:
r + s = s+ r .

P

s

T

s+t

t

S

R

r

r+
s

r+
s+

t

Fig. 1.3.3 Visualization of the asso-
ciativity of vector addition:
(r + s) + t = r + (s+ t).

Definition (D 1.3.1) A set ofn vectorsr1, r2, . . . ,rn is calledlinearly independent
if the equation

λ1 r1 + λ2 r2 + . . . + λn rn = 0 (1.3.1)

can only be fulfilled ifλ1 = λ2 = . . . = λn = 0. Otherwise, the vectors are called
linearly dependent.

In the plane any three vectorsr1, r2 andr3 are linearly dependent because coeffi-
cientsλi can always be found such thatλi not all zero and

λ1 r1 + λ2 r2 + λ3 r3 = 0 holds.

Definition (D 1.3.2) The maximal number of linearly independent vectors in a
vector space is called thedimensionof the space.

As is well known, the dimension of the plane is 2, of the space is 3. Any 4 vec-
tors in space are linearly dependent. Thus, if there are three linearly independent
vectorsr1, r2 and r3, then any other vectorr can be represented in the form
r = λ1 r1 + λ2 r2 + λ3 r3.

Such a representation is widely used, it will be considered in the next section.

1.4 Vector coefficients

We start this section with a definition.

Definition (D 1.4.1) A set of three linearly independent vectorsr1, r2 andr3 in
space is called abasisof the vector space. Any vectorr of the vector space can be
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written in the formr = λ1 r1 + λ2 r2 + λ3 r3. The vectorsr1, r2 andr3 are called
basis vectors; the vectorr is called alinear combinationof r1, r2 andr3. The real
numbersλ1, λ2 andλ3 are called thecoefficientsof r with respect to the basisr1,
r2, r3. In crystallography the two basis vectors for the plane are mostly calleda
andb or a1 anda2 and the three basis vectors of the space area, b andc or a1, a2

anda3.

The vector
−→
XY = r connects the pointsX andY , see Fig. 1.3.1. In Section 1.1

the coordinatesx, y andz of a pointP have been introduced, see Fig. 1.1.1. We

now replace the section(OA) on the coordinate axisa by the vector
−→
OA = a,

(OB) on b by
−→
OB = b, and(OC) on c by

−→
OC = c. If X andY are given by

their columns of coordinates with respect to these coordinate axes, then the vector

(
−→
XY ) is determined by the column of the three coordinate differences between the

pointsX andY . These differences are thevector coefficientsof r :

r =


 y1 − x1

y2 − x2

y3 − x3


 , where x =


 x1

x2

x3


 andy =


 y1

y2

y3


 . (1.4.1)

As the point coordinates, the vector coefficients are written in a column. It is not
always obvious whether a column of three numbers represents a point by its coor-
dinates or a vector by its coefficients. One often calls this column itself a ‘vector’.
However, this terminology should be avoided. In crystallography both, points and
vectors are considered. Therefore, a careful distinction between both items is nec-
essary.

An essential difference between the behaviour of vectors and points is provided by
the changes in their coefficients and coordinates if another originO′ in point space
is chosen:

Let O′ be the new,O the old origin, ando′ the column of coordinates ofO′

with respect to the old coordinate system:o′ =


 o′1

o′2
o′3


.

Thenx =


 x1

x2

x3


 andy =


 y1

y2

y3


 , the coordinates ofX andY in the old

coordinate system, are replaced by the columnsx′ =


 x′

1

x′
2

x′
3


 andy′ =


 y′

1

y′
2

y′
3




of the coordinates in the new coordinate system, see Fig. 1.4.1.

Fromx = o′ + x′ follows x1 = o′1 + x′
1 andx′

1 = x1 − o′1, etc.Therefore, the
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coordinates of the points change if one chooses a new origin.

However, the coefficients of the vector(
−→
XY ) do not change because of

y′
1 − x′

1 = y1 − o′1 − (x1 − o′1) = y1 − x1, etc.
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..................

..................
..................

..................
...................

..................
............................. ..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.
........
................

o′

O
...........

...........
...........

...........
...........

...........
...........

...........
........ ........................

r

y

Y

x

O′

y′

x′ X

Fig. 1.4.1 The coordinates of the
pointsX andY with respect to the
old origin O are x and y, with re-
spect to the new originO′ arex′ and
y′. From the diagram one reads the
equationso′ + x′ = x and
o′ + y′ = y.

The rules 1., 2. and 5. of Section 1.3 (the others are then obvious) are expressed
by:

1. The vectorx is multiplied with a real numberλ

λ x = λ


 x1

x2

x3


 =


 λx1

λx2

λx3


 .

2. For successive multiplication ofx with λ andµ

µ(λ x) = µ


 λx1

λx2

λx3


 =


 µλx1

µλx2

µλx3


 .

5. The sumz = x + y of two vectors is calculated by their columnsx andy

z =


z1

z2

z3


 = x + y =


x1

x2

x3


 +


y1

y2

y3


 =


x1 + y1

x2 + y2

x3 + y3


 =


y1 + x1

y2 + x2

y3 + x3


 .

1.5 The scalar product and special bases

In order to express the angle between two vectors thescalar productis now intro-
duced. In this way also the bases can be characterized by their lattice parameters.

Definition (D 1.5.1) The scalar product (x , y) between two vectorsx andy is
defined by (x , y) = |x| |y| cos (x, y).
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For the scalar product the following rules hold:

1. (x , y) = (y , x) Commutative law

2. ((x + y) , z) = (x , z) + (y , z) Distributive law

3. (λx , y) = λ (x , y) = (x , λy).


 (1.5.1)

Special cases.

(i) Because ofcos 90◦ = 0 the scalar product is zero if its vectors are perpen-
dicular to each other. Therefore, a scalar product may be zero even if none
of the vectors is theo vector.

(ii) If x = y, then because ofcos 0◦ = 1 the scalar product is the square of the
absolute value ofx: (x, x) = |x|2.

Two types of special bases shall be considered in this section.

The first one is the basis underlying the Cartesian coordinate system, see Section
1.2. It has the property that the scalar products between different basis vectors are
always zero:(ai , ak) = 0 for i, k = 1, 2, 3, i 6= k, because the basis vectors are
perpendicular to each other. In addition,|ai| = 1 for anyi because the basis vectors
have unit length. Such a basis is called anorthonormal basis. An orthonormal basis
allows simple calculations of distances and bonding angles, see the next section.

The other bases are those which are mostly used in crystallography. Real crystals in
the physical space may be idealized bycrystal patternswhich are 3–dimensional
periodic sets of points representing,e. g., the centres of the atoms of the crystal.
Because of the periodicity of the crystal pattern there aretranslationswhich map
the crystal pattern onto itself (often expressed by ‘the crystal pattern is left invari-
ant under the translation’). We consider these translations. If each of successive
translations leaves the crystal pattern invariant, then so does that translation which
results from the combination of the successive translations.
To each translation there belongs atranslation vector. To the resulting translation
belongs that vector which is the sum of the vectors of the performed successive
translations. This means that for any set of translation vectors, all their integer
linear combinations are translation vectors of symmetry translations of the crystal
pattern as well.
Due to the finite size of the atoms the symmetry translations of a crystal pat-
tern cannot be arbitrarily short, there must be a minimum length (of a fewÅ).
We choose threeshortesttranslation vectorsa1, a2 anda3 which do not lie in a
plane,i.e. which are linearly independent. Then any integer linear combination
v = v1a1 + v2a2 + v3a3, v1, v2, v3 integer, ofa1, a2 anda3 is a translation vector
of a symmetry translation as well. One can show that no other translation vector
may belong to a symmetry translation.
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Definition (D 1.5.2) The set of all translation vectors belonging to symmetry
translations of a crystal pattern is called thevector latticeof the crystal pattern
(and of the real crystal). Its vectors are calledlattice vectors. A basis of three lin-
early independent lattice vectors is called alattice basis. If all lattice vectors are
integerlinear combinations of the basis vectors, then the basis is called aprimitive
lattice basisor aprimitive basis.

Fig. 1.5.1 Finite part of
a planar ‘crystal structure’
(left) with the correspond-
ing vector lattice (right). The
dots mark the end points of
the vectors.

Several bases are drawn in the right part of Fig. 1.5.1. Four of them are primitive,
among them the one which consists of the two shortest linearly independent lattice
vectors (lower left corner). The upper right basis is not primitive.

a’

a

b’

b

Fig. 1.5.2 c-centred lattice
(net) in the plane with con-
ventionala, b and primitive
a’, b’ bases.

Remarks.

1. If the vectorsa1, a2 anda3 or a, b andc form a lattice basis, then any integer
linear combination of the basis vectors is a lattice vector as well. However,
there may be other vectors withrational non-integercoefficients which are
also lattice vectors. In this case crystallographers speak of acentred lattice
although not the lattice is centred but only the basis is chosen such that the
lattice appears to be centred.

Example, see Fig. 1.5.2. The lattice typec in the plane with conventional
basisa, b consists of all vectorsv = n1a + n2b and v = (n1 + 1/2)a +
(n2 + 1/2)b, n1, n2 integer. This basis is a lattice basis but not a primitive
one.

The basisa’ = a/2 –b/2, b’ = a/2 + b/2 would be a primitive basis. Referred
to this basis all lattice vectors have integer coefficients.

2. For any lattice a primitive basis may be chosen (for each lattice in the plane
or in the space there even exists an infinite number of primitive bases). The
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basis chosen in IT A for the description of a lattice is called theconven-
tional basis. If the conventional basis is primitive, then also thelattice is
called primitive. For other reasons, the conventional basis is frequently
non–primitive such that the lattice appears to be centred. The conventional
centrings arec in the plane andC, A, B, I, For R in the space.

3. In higher dimensions (dimensionn > 3) the condition that the basis vectors
are shortest is no longer sufficient to guarantee a primitive basis.

Let ai be a basis. Then one can form the scalar products (ai , ak) between the basis
vectors,i, k = 1, 2, 3. Because (ai ,ak) = (ak ,ai), there are only six different scalar
products.

Definition (D 1.5.3) The quantities

a1 = |a1| = +
√

(a1 , a1), a2 = |a2| = +
√

(a2 , a2),

a3 = |a3| = +
√

(a3 , a3),

α1 = arccos (|a2|−1|a3|−1(a2 , a3)), α2 = arccos (|a3|−1|a1|−1(a3 , a1)),

and α3 = arccos (|a1|−1|a2|−1(a1 , a2))

are called thelattice parametersof the lattice.

The lengths of the basis vectors are mostly measured inÅ (1 Å= 10−10 m), some-
times in pm (1 pm = 10−12 m) or nm (1 nm = 10−9 m). The lattice parameters of a
crystal are given by its translations, more exactly, by the translation vectors of the
crystal pattern, they cannot be chosen arbitrarily. They may be further restricted
by the symmetry of the crystal.
Normally the conventional crystallographic bases are chosen when describing a
crystal structure. Referred to them the lattice of a crystal pattern may be primitive
or centred. If it is advantageous in exceptional cases to describe the crystal with
respect to another basis then this choice should be carefully stated in order to avoid
misunderstandings.

1.6 Distances and angles

When considering crystal structures, idealized as crystal patterns, frequently the
values of distances between the atoms (bond lengths) and of the angles between
atomic bonds (bonding angles) are wanted. These quantities cannot be calculated
from the coordinates of the points (centres of the atoms) directly. Distances and
angles are independent of the choice of the origin but the point coordinates depend
on the origin choice, see Section 1.4. Therefore, bond distances and angles can
only be calculated using the vectors (distance vectors) between the points partici-
pating in the bonding. In this section the necessary formulae for such calculations
will be derived.
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We assume the crystal structure to be given by the coordinates of the atoms (better:
of their centres) in a conventional coordinate system. Then the vectors between the
points can be calculated by the differences of the point coordinates.

Let
−→
XY = r = r1 a1 + r2 a2 + r3 a3 be the vector from pointX to pointY ,

ri = yi − xi, see equation 1.4.1. The scalar product(r , r) of r with itself is the
square of the lengthr of r . Thus

r2 = (r , r) = ((r1a1 + r2a2 + r3a3) , (r1a1 + r2a2 + r3a3)).

Because of the rules for scalar products in equation (1.5.1), this can be written

r2 = (r1a1 , r1a1) + (r2a2 , r2a2) + (r3a3 , r3a3) +
2 (r2a2 , r3a3) + 2 (r3a3 , r1a1) + 2 (r1a1 , r2a2).

It follows for the distance between the pointsX andY

r2 = r2
1 a2

1 + r2
2 a2

2 + r2
3 a2

3 + 2 r2 r3 a2 a3 cosα1 +
+ 2 r3 r1 a3 a1 cosα2 + 2 r1 r2 a1 a2 cosα3. (1.6.1)

Using this equation, bond distances can be calculated if the coefficients of the bond
vector and the lattice parameters of the crystal are known.

The general formula (1.6.1) becomes much simpler for the higher symmetric crys-
tal systems. For example, referred to an orthonormal basis, equation (1.6.1) is re-
duced to

r2 = r2
1 + r2

2 + r2
3 . (1.6.2)
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Using theΣ sign and abbreviating(ai , ak) = Gik = ai ak cosαj (j is defined
for i 6= k: thenk 6= j 6= i), the formula 1.6.1 can be written

r2 =
3∑

i,k=1

Gik ri rk, see also Subsection 2.6.2. (1.6.3)

S r

XΦ

t
Y

Fig. 1.6.1 The bonding angleΦ be-
tween the bond vectors−→
SX = r and

−→
SY = t.

The (bonding) angleΦ between the (bond) vectors
−→
SX = r and

−→
SY = t is calcu-

lated using the equation

(r , t) = |r| |t| cosΦ = r t cosΦ, see Fig.1.6.1.

One obtains

r t cosΦ = r1 t1 a2
1 + r2 t2 a2

2 + r3 t3 a2
3 + (r2 t3 + r3 t2) a2 a3 cosα1+

+ (r3 t1 + r1 t3) a1 a3 cosα2 + (r1 t2 + r2 t1) a1 a2 cosα3. (1.6.4)

Again one can use the coefficientsGik to obtain, see also Subsection 2.6.2,

cosΦ =
( 3∑
i,k=1

Gik ri rk

)−1/2 ( 3∑
i,k=1

Gik ti tk
)−1/2

3∑
i,k=1

Gik ri tk. (1.6.5)

For orthonormal bases, equation (1.6.4) is reduced to

r t cosΦ = r1 t1 + r2 t2 + r3 t3, (1.6.6)

and equation 1.6.5 is replaced by

cosΦ =
r1t1 + r2t2 + r3t3

r t
. (1.6.7)
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2 Matrices and determinants

The second chapter deals with matrices and determinants which are essential for
the analytical description of crystallographic symmetry. Matrices are mathemat-
ical tools which may simplify involved calculations considerably and may make
complex formulae transparent. One can introduce them in an abstract way as a for-
malism and then apply them to many calculations in crystallography. However, it
seems to be better first to justify their introduction. Determinants are used for the
calculation of the volume,e. g.of a unit cell from the lattice parameters, or in the
process of inverting a matrix.

2.1 Mappings and symmetry operations

In crystallography, mapping an object of point space,e. g.the atomic centres of a
molecule or a crystal pattern, is one of the most basic procedures. Most crystal-
lographic mappings are rather special. Nevertheless, the term ‘mapping’ will be
introduced first in a more general way. What is a mapping of,e. g., a set of points ?

Definition (D 2.1.1) Amappingof a setA into a setB is a relation such that for
each elementa ∈ A there is a unique elementb ∈ B which is assigned toa. The
elementb is called theimageof a.

r

r

...........
............
..............
...............
............
..............
.............
...............
...................

................................
...............................................................................

...............................................................................................

r.......................................
............................................

...............................................................................................................................................................................................................................

X̃1

X

X̃2

Fig. 2.1.1 The relation of the pointX to
the pointsX̃1 andX̃2 is not a mapping be-
cause the image point is not uniquely de-
fined (there are two image points).

1

3
2

4

5

Fig. 2.1.2 The five regions of the setA
(the triangle) are mapped onto the five
separated regions of the setB. No point
of A is mapped onto more than one im-
age point. Region 2 is mapped on a line,
the points of the line are the images of
more than one point ofA. Such a map-
ping is called aprojection.

The mapping which is displayed in Fig. 2.1.2 is rather complicated and can hardly
be described analytically. The mappings which are mainly used in crystallography
are much simpler: In general they map closed regions onto closed regions. Al-
though distances between points or angles between lines may be changed, parallel
lines of the original figure are always parallel also in the image. Such mappings are
calledaffine mappings. An affine mapping will in general distort an object,e. g.
by a shearing action or by an (isotropic or anisotropic) shrinking, see Fig. 2.1.3.
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For example, in the space a cube may be distorted by an affine mapping into an
arbitrary parallelepiped but not into an octahedron or tetrahedron.

Fig. 2.1.3 In anaffine mappingparallel
lines of the original figure (the rectan-
gular triangle) are mapped onto parallel
lines of the image (the nearly isoscale
triangle). Lengths and angles may be
distorted but relations of lengths on the
same line are preserved.

If an affine mapping leaves all distances and thus all angles invariant, it is called
isometric mapping, isometry, motionor rigid motion. We shall use the name ‘isom-
etry’. An isometry does not distort but moves the undistorted object through the
point space. However, it may change the orientation of an object,e. g. transfer a
right glove into an (otherwise identical) left one. Different types of isometries are
distinguished: In the space these are translations, rotations, inversions, reflections,
and the more complicated roto-inversions, screw rotations and glide reflections.

2

1
Fig. 2.1.4 An isometry leaves all distances
and angles invariant. An ‘isometry of the first
kind’, preserving the counter–clockwise se-
quence of the edges ‘short–middle–long’ of
the triangle is displayed in the upper mapping.
An ‘isometry of the second kind’, changing
the counter–clockwise sequence of the edges
of the triangle to a clockwise one is seen in the
lower mapping.

Fig. 2.1.5 A parallel shift of the triangle is
called atranslation. Translations are spe-
cial isometries. They play a distinguished
role in crystallography.

One of the outstanding concepts in crystallography is ‘symmetry’. An object has
symmetry if there are isometries which map the object onto itself such that the
mapped object cannot be distinguished from the object in the original state. The
isometries which map the object onto itself are calledsymmetry operations of this
object. Thesymmetryof the object is the set of all its symmetry operations. If the
object is a crystal pattern, representing a real crystal, its symmetry operations are
calledcrystallographic symmetry operations.
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Fig. 2.1.6 The equilateral triangle
allows six symmetry operations: ro-
tations by120◦ and240◦ around its
centre, reflections through the three
thick lines intersecting the centre,
and the identity operation, see Sec-
tion 3.2.

2.2 Motivation

Any isometry may be the symmetry operation of some object,e. g.of the whole
space, because it maps the whole space onto itself. However, if the object is a
crystal pattern, due to its periodicity not every rotation, roto-inversion,etc.can be
a symmetry operation of this pattern. There are certain restrictions which are well
known and which are taught in the elementary courses of crystallography.
How can these symmetry operations be described analytically ? Having chosen a
coordinate system with a basis and an origin, each point of space can be repre-
sented by its column of coordinates. A mapping is then described by the instruc-
tion, in which way the coordinates̃x of the image pointX̃ can be obtained from
the coordinatesx of the original pointX:

x̃1 = f1(x1, x2, x3), x̃2 = f2(x1, x2, x3), x̃3 = f3(x1, x2, x3).

The functionsf1, f2 andf3 are not restricted for an arbitrary mapping. However,
for an affine mapping the functionsfi are very simple: An affine mapping
X −→ X̃ is always represented in the form

x̃1 = A11x1 + A12x2 + A13x3 + a1

x̃2 = A21x1 + A22x2 + A23x3 + a2 .
x̃3 = A31x1 + A32x2 + A33x3 + a3

(2.2.1)

A second mapping which brings the pointX̃ −→ ˜̃X is then represented by

˜̃x1 = B11x̃1 + B12x̃2 + B13x̃3 + b1

˜̃x2 = B21x̃1 + B22x̃2 + B23x̃3 + b2

˜̃x3 = B31x̃1 + B32x̃2 + B33x̃3 + b3

, or (2.2.2)
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˜̃x1=B11(A11x1 + A12x2 + A13x3 + a1) + B12(A21x1 + A22x2 + A23x3 + a2)
+ B13(A31x1 + A32x2 + A33x3 + a3) + b1;

˜̃x2=B21(A11x1 + A12x2 + A13x3 + a1) + B22(A21x1 + A22x2 + A23x3 + a2)
+ B23(A31x1 + A32x2 + A33x3 + a3) + b2;

˜̃x3=B31(A11x1 + A12x2 + A13x3 + a1) + B32(A21x1 + A22x2 + A23x3 + a2)
+ B33(A31x1 + A32x2 + A33x3 + a3) + b3.

(2.2.3)
The equations (2.2.3) may be rearranged in the following way:

˜̃x1 = (B11A11 + B12A21 + B13A31)x1 + (B11A12 + B12A22 + B13A32)x2

+ (B11A13 + B12A23 + B13A33)x3 + B11a1 + B12a2 + B13a3 + b1;
˜̃x2 = (B21A11 + B22A21 + B23A31)x1 + (B21A12 + B22A22 + B23A32)x2

+ (B21A13 + B22A23 + B23A33)x3 + B21a1 + B22a2 + B23a3 + b2;
˜̃x3 = (B31A11 + B32A21 + B33A31)x1 + (B31A12 + B32A22 + B33A32)x2

+ (B31A13 + B32A23 + B33A33)x3 + B31a1 + B32a2 + B33a3 + b3.
(2.2.4)

Although straightforward, one will agree that this is not a comfortable way to
describe and solve the problem of combining mappings. Matrix formalism does
nothing else than to formalize what is being done in equations (2.2.1) to (2.2.4),
and to describe this procedure in a kind of shorthand notation, called thematrix
notation:

Equation (2.2.1) is writtenx̃ = Ax + a; (2.2.5)
Equation (2.2.2) is written˜̃x = Bx̃ + b; (2.2.6)
Equation (2.2.3) is written˜̃x = B(Ax + a) + b; (2.2.7)
Equation (2.2.4) is written˜̃x = BAx + Ba + b. (2.2.8)

The matrix notation for mappings will be dealt with in more detail in Sections 4.1
and 4.2. In the next section the matrix formalism will be introduced.
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2.3 The matrix formalism

Definition (D 2.3.1) A rectangular array of real numbers inm rows andn columns
is called areal (m × n) matrix A:

A =




A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn


 .

The left index, running from 1 tom, is called therow index, the right index, running
from 1 to n, is thecolumn indexof the matrix. If the elements of the matrix are
rational numbers, the matrix is called arational matrix; if the elements are integers
it is called aninteger matrix.

Definition (D 2.3.2) An(n × n) matrix is called asquare matrix,
an(m × 1) matrix acolumn matrixor just acolumn, and
a (1 × n) matrix arow matrixor, for short, arow.
The index ‘1’ for column and row matrices is often omitted.

Definition (D 2.3.3) LetA be an(m × n) matrix. The(n × m) matrix which is
obtained fromA = (Aik) by exchanging rows and columns,i. e. the matrix (Aki),
is called thetransposed matrixAT.

Example. IfA =
(

1 0 1̄
2 4 3̄

)
, thenAT =


 1 2

0 4
1̄ 3̄


.

(Crystallographers frequently write negative numbers−z as z̄, e. g. for MILLER

indices or elements of matrices).

Remark. In crystallography point coordinates or vector coefficients are written as
columns. In order to distinguish columns from rows (the MILLER indices,e. g., are
written as rows), rows are regarded as transposed columns and are thus marked by
(..)T.

General matrices, including square matrices, will be designated by boldface-italics
upper case lettersA, B, W, . . . ;
columns by boldface-italics lower case lettersa, b, . . . and
rows by (a)T, (b)T, . . . , see also p. 4, List of symbols.

A square matrixA is calledsymmetricif AT = A, i. e. if Aik = Aki holds for any
pair i, k.
A symmetric matrix is called adiagonal matrixif Aik = 0 for i 6= k.
A diagonal matrix with all elementsAii = 1 is called theunit matrix I .
A matrix consisting of zeroes only,i. e. Aik = 0 for any pairi, k is called the
O–matrix.
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We shall need only the special combinationsm, n = 3, 3 ‘square matrix’;m, n =
3, 1 ‘column matrix’ or ‘column’ , andm, n = 1, 3 ‘row matrix’ or ‘row’. How-
ever, the formalism does not depend on the sizes ofm andn. Therefore, and be-
cause of other applications, formulae are displayed for generalm andn. For ex-
ample, in the Least–Squares procedures of X-ray crystal–structure determination
huge (m × n) matrices are handled.

2.4 Rules for matrix calculations

Matrices can be multiplied with a number or can be added, subtracted and multi-
plied with each other. These operations obey the following rules:

Definition (D 2.4.1) An(m×n) matrixA is multiplied with a (real) numberλ by
multiplying each element withλ:

A =




A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn


 −→ λA =




λA11 λA12 . . . λA1n

λA21 λA22 . . . λA2n

...
...

. . .
...

λAm1 λAm2 . . . λAmn


.

Definition (D 2.4.2) LetAik andBik be the general elements of the matrices
A andB. Moreover,A andB must be of the same size,i. e. must have the same
number of rows and of columns. Then the sum and the differenceA±B is defined
by

C = A ± B =




A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn


 ±




B11 B12 . . . B1n

B21 B22 . . . B2n

...
...

. . .
...

Bm1 Bm2 . . . Bmn


 =

=




A11 ± B11 A12 ± B12 . . . A1n ± B1n

A21 ± B21 A22 ± B22 . . . A2n ± B2n

...
...

. . .
...

Am1 ± Bm1 Am2 ± Bm2 . . . Amn ± Bmn


 ,

i. e. the elementCik of C is equal to the sum or difference of the elementsAik and
Bik of A andB for any pair ofi, k: Cik = Aik ± Bik.

The definition of matrix multiplication looks more complicated at first sight but
it corresponds exactly to what is written in full in the formulae (2.2.1) to (2.2.4)
of Section 2.2. The multiplication of two matrices is defined only if the number
n(lema) of columns of theleft matrix is the same as the numberm(rima) of rows
of therightmatrix. The numbersm(lema) of rows of theleft matrix andn(rima)

of columns of therightmatrix are free.
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We first define the product of a matrixA with a columna:

Definition (D 2.4.3) The multiplication of an (m × n) matrix A with an (n × 1)
columna is only possible if the numbern of columns of the matrix is the same
as the length of the columna. The result is the matrix productd = A a which is a
column of lengthm. Thei-th elementdi of d is

di = Ai1 a1 + Ai2 a2 + . . . + Aik ak + . . . + Ain an =
n∑

j=1

Aij aj. (2.4.1)

For i = 1, 2, 3 andn = 3 this is the same procedure as in equations (2.2.1) and
(2.2.2), where the coefficientsxk in equation (2.2.1) and̃xk in equation (2.2.2) are
replaced byak here, and the left sides(x̃i and ˜̃xi) are replaced bydi. The termsai

andbi of equations (2.2.1) and (2.2.2) are not represented in equation (2.4.1).
Written as a matrix equation this is




d1

d2

...
di

...
dm




=




A11 A12 . . . A1k . . . A1n

A21 A22 . . . A2k . . . A2n

...
...

. . .
...

...
Ai1 Ai2 . . . Aik . . . Ain

...
...

...
...

. . .
...

Am1 Am2 . . . Amk . . . Amn







a1

a2

...
ak

...
an




.

In an analogous way one defines the multiplication of a row matrix with a general
matrix.

Definition (D 2.4.4) The multiplication of a(1 × m) row aT, with an (m × n)
matrixA is only possible if the lengthm, i. e. the number of ‘columns’, of the row
is the same as the numberm of rows of the matrix. The result is the matrix product
dT = aT A which is a row of lengthn. Thei-th elementdi of dT is

di = a1 A1i + a2 A2i + . . . + ak Aki + . . . + am Ami.

Written as a matrix equation this is

(d1 d2 . . . di . . . dn) = (a1 a2 . . . ak . . . am)




A11 A12 . . .A1i . . .A1n

A21 A22 . . .A2i . . .A2n

...
...

. . .
...

...
Ak1Ak2 . . .Aki . . .Akn

...
...

...
.. .

...
Am1Am2. . .Ami. . .Amn




.
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The multiplication of two matrices (both neither row nor column) is the combina-
tion of the already defined multiplications of a matrix with a column (matrix on
the left, column on the right side) or of a row with a matrix (row on the left, matrix
on the right side). Remember: The number of columns of the left matrix must be
the same as the number of rows of the right matrix.

Definition (D 2.4.5) Thematrix productC = A B, or


C11 C12 . . . C1k . . . C1n

C21 C22 . . . C2k . . . C2n

...
...

. . .
...

...
Ci1 Ci2 . . . Cik . . . Cin

...
...

...
. . .

...
Cm1 Cm2 . . . Cmk . . . Cmn




=

=




A11 A12 . . . A1j . . . A1r

A21 A22 . . . A2j . . . A2r

...
...

. . .
...

...
Ai1 Ai2 . . . Aij . . . Air

...
...

...
. . .

...
Am1 Am2 . . . Amj . . . Amr







B11 B12 . . . B1k . . . B1n

B21 B22 . . . B2k . . . B2n

...
...

. . .
...

...
Bj1 Bj2 . . . Bjk . . . Bjn

...
...

...
. . .

...
Br1 Br2 . . . Brk . . . Brn




is defined byCik = Ai 1 B1k + Ai 2 B2k + . . . + Ai j Bjk + . . . + Ai r Brk.

Examples.

If A =


 0 1 0

0 0 1
1 0 0


 andB =


 0 1 0

1 0 0
0 0 1


,

thenC = A B =


 0 1 0

0 0 1
1 0 0





 0 1 0

1 0 0
0 0 1


 =


 1 0 0

0 0 1
0 1 0


. On the

other hand,D = B A =


 0 1 0

1 0 0
0 0 1





 0 1 0

0 0 1
1 0 0


 =


 0 0 1

0 1 0
1 0 0


.

Obviously,C6=D, i. e. matrix multiplication isnot always commutative. However,
it is associative, e. g., (A B) D = A (B D), as the reader may verify by performing
the indicated multiplications. One may also verify that matrix multiplication is
distributive, i. e.
(A + B) C = A C + B C.

In ‘indices notation’ (whereA is an(m×r) matrix,B an(r×n) matrix) the matrix
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product is

Cik =
r∑

j=1

Aij Bjk, i = 1, . . . , m; k = 1, . . . , n. (2.4.2)

Remarks.

1. The matrixA has the same numberr of columns asB has rows; the number
m of rows is ‘inherited’ fromA to C, the numbern of columns fromB to C.

2. A comparison with equation (2.2.4) shows that exactly the same construc-
tion occurs in the matrix product when describing consecutive mappings by
matrix–column pairs. Also the product of the matrixB with the columna
will be recognized. It is for this reason that the matrix formalism has been
introduced. Affine mappings (also isometries and crystallographic symme-
try operations) in point space are described bymatrix–column pairs, see
Sections 2.2 and 4.1.

3. The ‘power notation’ is used in the same way for the matrix product of a
square matrix with itself as for numbers:A A = A2; A A A = A3, etc.

4. Using the formulae of this section one confirms equations (2.2.5) to (2.2.8).

2.5 Determinants

Matrices are frequently used when investigating the solutions of systems of linear
equations. Decisive for the solubility and the possible number of solutions of such
a system is a number, called thedeterminantdet(A) or |A| of A, which can be
calculated for any(n × n) square matrixA. In this section determinants are intro-
duced and some of their laws are stated. Determinants are used to invert matrices
and to calculate the volume of a unit cell in Subsections 2.6.1 and 2.6.3.
The theory of determinants is well developed and can be treated in a very general
way. We only need determinants of (2× 2) and (3× 3) matrices and will discuss
only these.

Definition (D 2.5.1)

Let A =
(

A11 A12

A21 A22

)
andB =


 B11 B12 B13

B21 B22 B23

B31 B32 B33


 be a

(2× 2) and a (3× 3) matrix. Then their determinants are designated by

det(A) =
∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ anddet(B) =

∣∣∣∣∣∣
B11 B12 B13

B21 B22 B23

B31 B32 B33

∣∣∣∣∣∣ and are defined by

the equations
det(A) = A11 A22 − A12 A21 and (2.5.1)
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det(B) = B11 B22 B33 + B12 B23 B31 + B13 B21 B32−
−B11 B23 B32 − B12 B21 B33 − B13 B22 B31.

(2.5.2)

Let D be a square matrix. Ifdet(D) 6= 0 then the matrixD is calledregular, if
det(D) = 0, thenD is calledsingular. Here only regular matrices are considered.
The matrixW of an isometryW is regular because alwaysdet(W) = ±1. In
particular,det(I ) = +1 holds.

Remark. The determinantdet(A) is equal to the fractioñV /V , whereV is the vol-
ume of an original object and̃V the volume of this object mapped by the affine
mappingA. Isometries do not change distances, therefore they do not change vol-
umes anddet(W) = ±1 holds.

The following rules hold for determinants of(n × n) matricesA. The columns of
A will be designated for these rules byAk, k = 1, . . . , n.

1. det(AT) = det(A); the determinant of a matrix is the same as that of the
transposed matrix. Because of this rule the following rules, although formu-
lated only for columns, also hold if formulated for rows.

2. If one column ofdet(A) is a multiple of another column,Ak = λAj , then
det(A) = 0. This implies thatdet(A) = 0 if two columns ofA are equal.

3. If a columnAk is the sum of two columnsBk andCk, Ak = Bk + Ck, then
det(A) = det(B) + det(C), whereB is the matrix which has all columns of
A except thatAk is replaced byBk, andC is the matrix with all columns of
A except thatAk is replaced byCk.

4. Exchange of two columns,Aj −→ Ak andAk −→ Aj of a determinant
changes its sign.

5. Adding to a column a multiple of another column does not change the value
of the determinant:
|A1 A2 . . . Ai . . . Ak . . . An| = |A1 A2 . . . (Ai + λ Ak) . . . Ak . . . An|.

6. Multiplication of all elements of a column with a numberλ results in the
λ-fold value of the determinant:

|A1 A2 . . . λAi . . . Ak . . . An| = λ|A1 A2 . . . Ai . . . Ak . . . An|.
7. det(A B) = det(A) det(B), i. e. the determinant of a matrix product is equal

to the product of the determinants of the matrices.

8. det(A−1) = (det(A))−1, for A−1 see Subsection 2.6.1.

Among these rules there are three procedures which do not change the value of the
determinant:

(i) transposition;
(ii) an even number of exchanges of columns (or rows correspondingly), be-

cause
an odd number of exchanges changes the sign of the determinant; and

(iii) adding to a column a multiple of another column (or rows correspondingly).
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Examples to the rules; calculation of the determinants according to equation (2.5.2).

1. A =
1 1 3
2 2 2
3 2 3

= −4; A
T

=
1 2 3
1 2 2
3 2 3

= −4.

2. A =
1 2 A
1 2 B
3 6 C

= 2C + 6B + 6A − 6B − 2C − 6A = 0.

3. A =
1 1 3
2 2 2
3 2 3

= −4; B =
1 1 3
2 2 0
3 2 2

= −6; C =
1 1 0
2 2 2
3 2 1

= +2;

−4 = −6 + 2.

4. A =
1 1 3
2 2 2
3 2 3

= −4; B =
1 3 1
2 2 2
3 3 2

= +4.

5. A =
1 1 3
2 2 2
3 2 3

=
1 + 1 1 3
2 + 2 2 2
3 + 2 2 3

=
2 1 3
4 2 2
5 2 3

= −4.

6. A =
1 1 3
2 2 2
3 2 3

= −4;
1 1 λ 3
2 2 λ 2
3 2 λ 3

= (−4)λ = −4 λ.

7. A =
1 1 3
2 2 2
3 2 3

= −4; B =
1̄ 0 4
1 2 1
0 1 3

= −1; (−4) (−1) = +4

is the product of the determinants.

The determinant of the productA B is
0 5 14
0 6 16
1̄ 7 23

= +4.

8. |A| =
1 1 3
2 2 2
3 2 3

= −4; |A−1| =
−1/2 −3/4 1

0 3/2 1̄
1/2 −1/4 0

= −1/4.

2.6 Applications

Only a few applications can be dealt with here:

1. The inversion of a matrix;
2. Another formula for calculating the distance between points or the angle

between lines (bindings);
3. A formula for the volume of the unit cell of a crystal.
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2.6.1 Inversion of a matrix

The inversion of a square matrixA is a task which occurs everywhere in matrix
calculations. Here we restrict the considerations to the inversion of (2× 2) and
(3 × 3) matrices. In Least-Squares refiments the inversion of huge matrices was a
serious problem before the computers and programs were sufficiently developed.

Definition (D 2.6.1) A matrixC which fulfills the conditionC A = I for a given
matrixA, is calledthe inverse matrixor the inverseA−1 of A.

The matrixA−1 exists if and only ifdet (A) 6= 0. In the following we assumeC to
exist. If C A = I then alsoA C = I holds,i. e. there is exactly one inverse matrix
of A. There are two possibilities to calculate the inverse matrix of a given matrix.
The first one is particularly simple but not always applicable. The other may be
rather tedious but always works.

Definition (D 2.6.2) A matrixA is calledorthogonal if A−1 = AT.

The name comes from the fact that the matrix part of any isometry is an orthogo-
nal matrix if referred to an orthonormal basis. In crystallography most matrices of
the crystallographic symmetry operations are orthogonal if referred to the conven-
tional basis.

Procedure: One forms the transposed matrixAT from the given matrixA and tests
if it obeys the equationA AT = I . If it does then the inverseA−1 = AT is found.
If not one has to go the general way.

There are several general methods to invert a matrix. Here we use a formula based
on determinants. It is not restricted to dimensions 2 or 3.
Let A = (Aik) be the matrix to be inverted,det(A) its determinant, andA−1

= ((A−1)ik) be the inverted matrix which is to be determined. The coefficient
(A−1)ik is determined from the equation

(A−1)ik = (det(A))−1 (−1)i+k Bki, (2.6.1)

whereBki is that determinant which is obtained fromdet(A) by canceling thek-th
row andi-th column. Ifdet(A) is a(2 × 2) determinant, thenBki is a number; if
det(A) is a (3 × 3) determinant, thenBki is a(2 × 2) determinant. In general, if
det(A) is an(n× n) determinant, thenBki is an ((n− 1)× (n− 1)) determinant.

Note that in this equation the indices ofBki areexchangedwith respect to the
element(A−1)ik which is to be determined.

Example. Calculate the inverse matrix ofA =


 1 2 0

1̄ 0 3
2 1̄ 0


 .

One determinesdet(A) = 2 ·3 ·2−1 ·3 ·(−1) = 15 and obtains for the coefficients
of A−1
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(A−1)11 = (−1)2
∣∣∣∣ 0 3

1̄ 0

∣∣∣∣ /15 = 1/5; (A−1)12 = (−1)3
∣∣∣∣ 2 0

1̄ 0

∣∣∣∣ /15 = 0;

(A−1)13 = (−1)4
∣∣∣∣ 2 0

0 3

∣∣∣∣ /15 = 2/5; (A−1)21 = (−1)3
∣∣∣∣ 1̄ 3

2 0

∣∣∣∣ /15 = 2/5;

(A−1)22 = (−1)4
∣∣∣∣ 1 0

2 0

∣∣∣∣ /15 = 0; (A−1)23 = (−1)5
∣∣∣∣ 1 0

1̄ 3

∣∣∣∣ /15 = −1/5;

(A−1)31 = (−1)4
∣∣∣∣ 1̄ 0

2 1̄

∣∣∣∣ /15 = 1/15; (A−1)32 = (−1)5
∣∣∣∣ 1 2

2 1̄

∣∣∣∣ /15 = 1/3;

(A−1)33 = (−1)6
∣∣∣∣ 1 2

1̄ 0

∣∣∣∣ /15 = 2/15.

With these coefficients one findsA−1 =


 1/5 0 2/5

2/5 0 −1/5
1/15 1/3 2/15




and verifies thatA A−1 = A−1 A = I holds.

2.6.2 Distances and angles

In Section 1.6 formulae for the distance between points (by calculating the
length of a vector) and the angle between bindings (vectors) have been derived.
The scalar products of the basis vectors have been designated byGik, i, k = 1, 2, 3.
They form the

fundamental matrix of the coordinate basisG =


 G11 G12 G13

G21 G22 G23

G31 G32 G33


 .

Because ofGik = Gki, G is a symmetric matrix.
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In the formulae of Section 1.6 one may replace the ‘index formalism’ by the ‘ma-
trix formalism’. Using matrix multiplication with rows and columns,

one obtains the formula for the distancer2 = rT G r, with

G =


 a2

1 a1 a2 cos γ a1 a3 cosβ
a1 a2 cos γ a2

2 a2 a3 cosα
a1 a3 cosβ a2 a3 cosα a2

3


 . (2.6.2)

This is the same as equation (1.6.3) but expressed in another way. Such ‘matrix
formulae’ are useful in general calculations when changing the basis, when de-
scribing the relation between crystal lattice and reciprocal lattice,etc. However,
for the actual calculation of distances, angles,etc. as well as for computer pro-
grams, the ‘index formulae’ of Section 1.6 are more appropriate.

For orthonormal bases, because ofG = I equation (2.6.2) becomes very simple:

r2 = rT r. (2.6.3)

The formula for the angleΦ between the vectors (
−→
SX) = r and (

−→
SY ) = t

is r t cosΦ = rT G t, see Fig. 1.6.1, or

cosΦ = (rT G r)−1/2 (tT G t)−1/2 rT G t. (2.6.4)

2.6.3 The volume of the unit cell

The volumeV of the unit cell of a crystal structure,i. e. the body containing all
points with coordinates0 ≤ x1, x2, x3 < 1, can be calculated by the formula

det(G) = V 2. (2.6.5)

In the general case one obtains

V 2 =

∣∣∣∣∣∣
G11 G12 G13

G21 G22 G23

G31 G32 G33

∣∣∣∣∣∣ =

= a2 b2 c2 (1 − cos2 α − cos2 β − cos2 γ + 2 cosα cosβ cos γ). (2.6.6)

The formula (2.6.6) becomes simpler depending on the crystallographic symmetry,
i. e.on the crystal system.
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Part II.

Crystallographic applications

The mathematical tools which have been developed in the first two chapters of
Part I will have useful applications here in Part II; since crystallographic studies
require both analytical treatment as well as geometric visualization. Geometric
models, perspective drawings, or projections of frames of symmetry, of crystal
structures and of complicated molecules are very instructive. However, often mod-
els are difficult to build, perspective drawings become confusing, and projections
suffer from loss of information. In addition, distances and angles may be distorted,
and it is sometimes not easy to see the important geometric relations.
Analytical methods,e. g.the matrix formalism, provide instruments which are of-
ten only slightly dependent on or even independent of the complexity of the sub-
ject. In many cases they can be applied using computers. Moreover, there are in-
ternal tests which enable the user to check the results of the calculations for inner
consistency. Such methods are indispensable in particular in crystal–structure de-
termination and evaluation. Only very simple crystal structures can be considered
without them.
Crystallographic symmetry and its applications have been investigated and de-
veloped by mineralogists, mathematicians, physicists and chemists from different
countries over several centuries. The result is the beautiful and still rapidly grow-
ing tree of contemporary crystallography. However, it is not necessary to know the
whole of this field of knowledge in order to apply and to take advantage of it. The
crystallographic tools necessary for the exploration of matter and for solid state
research can be taken from the volumes of theInternational Tables for Crystallog-
raphyseries. Symmetry is described in Vol. A of this series. By the manuscript on
hand, the reader shall be enabled to use and exploit the contents of that volume A,
abbreviated IT A in this manuscript.

3 Crystallographic symmetry

In this chapter crystallographic symmetry will be outlined in a descriptive way. The
general concept of isometries is treated in Section 3.1. The restrictions imposed
on crystallographic symmetry operations are dealt with in Sections 3.2 for point–
group operations and 3.3 for space–group operations. The chapter is continued
with Section 3.4 on crystallographic groups and concluded by Section 3.5 where
the non–analytical description of crystallographic symmetry in IT A is dealt with.
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3.1 Isometries

An isometryW, see also Section 2.1,

1. maps each pointP of the point space onto exactly one image pointP̃ :
P̃ = W P ;

2. is a mapping of the point space onto itself which leaves all distances and
thus all angles invariant.

There are different types of isometries which will be characterized in this section.
For this characterization the notion of fixed points is essential.

Definition (D 3.1.1) LetW be an isometry andP a point of space. ThenP is
called afixed pointof the isometryW if it is mapped onto itself(another term:
is left invariant) by W, i. e. if the image pointP̃ is equal to the original pointP :
P̃ = W P = P .

The isometries are classified by their fixed points, and the fixed points are of-
ten used to characterize the isometries in visual geometric terms, see the follow-
ing types of isometries. Besides the ‘proper’ fixed points there are further objects
which are not fixed or left invariant pointwise but only as a whole. Lines and planes
of this kind are of great interest in crystallography, see the following examples.

Kinds of isometries.

The kinds 1. to 4. of isometries in the following list preserve the so–called ‘hand-
edness’ of the objects: if a right (left) glove is mapped by one of these isometries,
then the image is also a right (left) glove of equal size and shape. Such isometries
are also calledisometries of the first kindor proper isometries. The kinds 5. to 8.
change the ‘handedness’: the image of a right glove is a left one, of a left glove is a
right one. These kinds of isometries are often calledisometries of the second kind
or improper isometries.

1. Identity I. The identity mapping maps each point onto itself, each point of
space is a fixed point. All lines and planes of the space are left invariant as
well.

2. Translation T. By a translation each point of the point space is shifted in
the same direction by the same amount, such that thetranslation vectorr
from each original pointP to its image point̃P is independent of the point
P. There is no proper fixed point. Nevertheless, each lineL parallel tor is
mapped onto itself as a whole, as is each plane which containsL. [The iden-
tity mapping may be considered as a special translation withr = o, whereo
is the zero vector of length zero, see Section 1.3. Except if it is mentioned
explicitly, the term ‘translation’ is used for proper translations only,i. e. for
translations withr 6= o.]

3. Rotation. Each rotation maps a line of points onto itself pointwise. This
line is called therotation axis. The whole space is rotated around this axis
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by an angleΦ, therotation angle. The unit vectoru◦ parallel to the rotation
axis is called thedirection of the rotation axis. Each plane perpendicular
to the rotation axis is mapped onto itself as a whole: it is rotated about the
intersection point of the plane with the rotation axis. For a 2–fold rotation
also each plane containing the rotation axis is left invariant as a whole. [The
identity operation may be considered as a special rotation with the rotation
angleΦ = 0◦. Except if it is mentioned explicitly, the term ‘rotation’ is used
for proper rotations only,i. e. for rotations withΦ 6= 0◦.]

4. Screw rotation. A screw rotation is a combination of a rotation (u◦ is the
direction of the rotation axis) and a translation with its translation vector
parallel tou◦. A screw rotation leaves no point fixed, the rotation axis of
the involved rotation is called thescrew axis, and the vector of the involved
translation is thescrew vector. The screw axis is not left fixed pointwise but
as a whole only (it is shifted parallel to itself by the involved translation). In
general the result of the combination of two isometries depends on the se-
quence in which the isometries are performed. The screw rotation, however,
is independent of the sequence of its two components.

5. Inversion. An inversion is the reflection of the whole space in a pointP ,
which is called thecentre of inversion. The pointP is the only fixed point.
Each line or plane throughP is mapped onto itself as a whole because it
is reflected inP . The inversion is an isometry of the second kind: any right
glove is mapped onto a left one andvice versa.

6. Rotoinversion. A rotoinversion can be understood as a combination of a
rotation withΦ 6= 0◦ andΦ 6= 180◦ and an inversion, where the centre of
inversion is placed on the rotation axis of the rotation. A rotoinversion is
an isometry of the second kind. The inversion point (which is no longer a
centre of inversion !) is the only fixed point; the axis of the rotation, now
calledrotoinversion axis, is the only line mapped onto itself as a whole, and
the plane through the inversion point and perpendicular to the rotoinversion
axis is the only plane mapped onto itself as a whole. Again, a rotoinversion
does not depend on the sequence in which its components are performed.

7. Reflection. A reflection is another isometry of the second kind. Each point
of space is reflected in a plane, thereflection planeor mirror plane, such that
all points of this plane, and only these points, are fixed points. In addition,
each line and each plane perpendicular to the mirror plane is left invariant
as a whole.

8. Glide reflection. A glide reflection is an isometry of the second kind as well.
It can be conceived as a combination of a reflection in a plane and a trans-
lation parallel to this plane. The mirror plane of the reflection is now called
a glide plane. The translation vector of the translation involved is called the
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glide vectorg. There is no fixed point of a glide reflection. Left invariant as
a whole are the glide plane and those planes which are perpendicular to the
glide plane and parallel tog as well as those lines of the glide plane which
are parallel tog.

Crystallographic symmetry operations may belong to any of these kinds of isome-
tries. They are designated in text and formulae by the so–called Hermann–Mauguin
symbols and in drawings by specific symbols which are all listed in IT A, Sec-
tion 1 as well as in the Brief Teaching Edition of Vol. A. Although each kind of
isometries is represented among the crystallographic symmetry operations, there
are restrictions which will be dealt with in the next two sections.

3.2 Crystallographic site–symmetry operations

In theoretical and practical work one frequently needs to know the symmetry
around a position in a molecule or in a crystal structure. The symmetry of the
surroundings of an atom or of the centre of gravity of a (more or less complex)
group of atoms (ion, molecule,etc.) is determined, among others, by chemical
bonds. The surroundings of such a constituent strongly influence the physical and
chemical properties of a substance. A striking example is the pair ‘graphite and
diamond’, which both are chemically carbon but display different surroundings of
the carbon atoms and thus extremely different chemical and physical properties.
The symmetry of the surroundings of a pointP , called the site symmetry or point
symmetry ofP , is determined by the symmetry of the whole molecule or crystal
and by the locus ofP in the molecule or crystal. Here, we are interested incrys-
tallographicsite symmetries only,i. e. the local symmetries around pointsP in a
crystal (better, in a crystal pattern). Strictly, one defines:

Definition (D 3.2.1) The setR of all symmetry operations of a crystal pattern is
called thespace groupof the crystal pattern. The set of all elements ofR, i. e. of
the space group, which leave a given pointP fixed, is called thesite symmetry,
site–symmetry group, point–symmetry group, orpoint groupS of P with regard to
the space groupR.

In this manuscript the term site–symmetry group or, for short,site symmetry, is
preferred for reasons which will become clear in Section 3.4.
Because of its periodicity each crystal has an infinite number of translations as
symmetry operations,i. e.R is an infinite set. However, a translation cannot be an
element of a site–symmetry group because a translation has no fixed point at all.
The same holds for screw rotations and glide reflections.
For the description of the crystallographic symmetry operations, it is convenient
to have available the notion of the ‘order of an isometry’.

Definition (D 3.2.2) An isometryW has the (or: is of)orderk, if Wk = I holds,
whereI is the identity operation, andk > 0 is the smallest integer number for
which this equation is fulfilled.
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Remark. Thek different isometriesWj , j = 1, . . . ,k, form a group withk elements.
See also the definition (D 3.4.2) of the group order.

The following types of isometries may be elements of crystallographic site sym-
metries:

1. Identity . The identityI is a member of any crystallographic site–symmetry
group because it leaves any point fixed. It is the only operation whose order
is 1, itsHermann–Mauguin symbol(HM symbol) is also 1. [TheHM sym-
bols have been introduced by CARL HERMANN and CHARLES MAUGUIN

around 1930. There areHM symbols for point–group and for space–group
operations, as well as for site–symmetry, space and pointgroups. In IT A
theHM symbols form the standard nomenclature].

2. Inversion. If the inversion is a member of the site–symmetry group, then the
point P is the centre of inversion. The order of the inversion is 2, itsHM
symbol is1̄.

3. Rotations. The pointP is placed on the rotation axis. Due to the periodicity
of the crystals, the rotation angles of crystallographic rotations are restricted
to multiples of60◦ and90◦, i. e. to 60◦, 120◦, 180◦, 240◦, 300◦, 90◦ and
270◦. All these angles are of the formj 360◦/N , whereN = 2, 3, 4 or 6, and
j is an integer which is relative prime toN . (This restriction does not hold
for the symmetry of molecules which may display,e. g., a rotation angle of
360◦/5 = 72◦ and its multiples.) Moreover, the angles between different
axes of crystallographic rotations are limited to a small number of values
only.

A rotation with the rotation anglej 360◦/N is called anN–fold rotation. Its
HM symbol isN j . TheHM symbols of the crystallographic rotations are
21 = 2(180◦), 31 = 3(120◦), 32 = (240◦), 41 = 4(90◦), 43 = (270◦), 61 = 6 (60◦),
65 = (300◦), (and 1(0◦ or360◦) for the identity). The order of the rotation
N j is k = N .

4. Rotoinversions. The pointP is placed in the inversion point on the rotoin-
version axis. The restrictions on the anglesΦ of the rotational parts are the
same as for rotations. IfΦ = j 360◦/N , the rotoinversion is called anN–
fold rotoinversion. TheHM symbol for such a rotoinversion is̄N j. In crys-
tals can occur:

(1̄ inversion),̄31 = 3̄, 3̄5, 4̄1 = 4̄, 4̄3, 6̄1 = 6̄ and6̄5. The rotoinversion̄2 is
identical with a reflection, see next item.

Question. Which isometry is̄33, 4̄2, 6̄2 and6̄3 ? The answer to this ques-
tion is found at the end of this chapter.

5. Reflections. The pointP is situated on the mirror plane. There are only a few
possible angles between the normals of different mirror planes belonging to
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the reflections of a site–symmetry group:30◦, 45◦, 60◦ and90◦. TheHM
symbol of a reflection ism (mirror, miroir) instead of̄2. The order of a
reflection is 2, because its 2–fold application yields the identity operation.

The combination of these types of symmetry operations to site-symmetry or point
groups will be discussed in Section 3.4.

3.3 Space-group operations

The following facts are stated, their proof is beyond the scope of this manuscript:

1. The symmetry operations listed in Section 3.2 are elements of space groups
which leave the given pointP fixed, see definition (D 3.2.1). Therefore,
identity, inversion, rotations, rotoinversions, and reflections are symmetry
operations of space groups. Moreover, the same restrictions for the possible
angles of rotation and rotoinversion of space–group operations hold as in
Section 3.2. This concerns also the rotations involved in screw rotations.

2. It is always possible to choose a primitive basis, see definition (D 1.5.2)
and the remarks to it. Referred to a primitive basis, all lattice vectors of the
crystal are integer linear combinations of the basis vectors. Each of these
lattice vectors defines a (symmetry) translation. The order of any translation
T is infinite because there is no integer numberk 6= 0 such thatTk = I.

3. Parallel to each rotation, screw–rotation or rotoinversion axis as well as par-
allel to the normal of each mirror or glide plane there is a row of lattice
vectors.

4. Perpendicular to each rotation, screw–rotation, or rotoinversion axis as well
as parallel to each mirror or glide plane there is a plane of lattice vectors.

5. Let Φ = 360◦/N be the rotation angle of a screw rotation, then the screw
rotation is calledN–fold. Note that the order of any screw rotation is infinite.
Letu be the shortest lattice vector in the direction of the corresponding screw
axis, andnu/N , with n 6= 0 and integer, be the screw vector of the screw
rotation by the angleΦ. Then theHM symbol of the screw rotation isNn.

Performing anN–fold rotationN–times results in the identity mapping,i. e.
the crystal has returned to its original position. AfterN screw rotations with
rotation angleΦ = 360◦/N the crystal has its original orientation but is
shifted parallel to the screw axis by the lattice vectorn u.

6. LetW be a glide reflection. Then the glide vector is parallel to the glide plane
and is 1/2 of a lattice vectort. Whereas twice the application of a reflection
restores the original position of the crystal, applying a glide reflection twice
results in a translation of the crystal with the translation vectort. The order
of any glide reflection is infinite. TheHM symbol of a glide reflection is
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g in the plane anda, b, c, d, e or n in the space. The letter indicates the
direction of the glide vectorg relative to the basis of the coordinate system.

3.4 Crystallographic groups

The symmetry,i. e. the set of all symmetry operations, of any object forms a group
in the mathematical sense of the word. Therefore, the theorems and results of group
theory can be used when dealing with the symmetries of crystals. The methods of
group theory cannot be treated here but a few results of group theory for crystallo-
graphic groups will be stated and used.

We start with the definition of the terms ‘subgroup’ and ‘order of a group’.

Definition (D 3.4.1) LetG andH be groups such that all elements ofH are also
elements ofG. ThenH is called asubgroupof G.

Remark. According to its definition, each crystallographic site–symmetry group is
a subgroup of that space group from which its elements are selected.

Definition (D 3.4.2) The numberg of elements of a groupG is called theorder of
G. In caseg exists,G is called afinite group. If there is no (finite) numberg, G is
called aninfinite group.

Remark. The term ‘order’ is an old mathematical term and has nothing to do with
order or disorder in crystals. Space groups are always infinite groups; crystallo-
graphic site–symmetry groups are always finite.

The following results for crystallographic site–symmetry groupsS and point groups
P are known for more than 170, those for space groupsR more than 100 years.

We considersite–symmetry groupsfirst.

1. The possible crystallographic site–symmetry groupsS are always finite groups.
The maximal number of elements ofS in the plane is 12, in the space is 48.

2. Due to the periodicity of the crystal, crystallographic site–symmetry groups
never occur singly. LetS be the site–symmetry group of a pointP , andP ′

be a point which is equivalent toP under a translation ofR. To P ′ belongs
a site–symmetry groupS ′ which is equivalent toS. The infinite number of
translations results in an infinite number of pointsP ′ and thus in an infinite
number of groupsS ′ which all are equivalent toS. In Subsection 5.3.1 is
shown, howS ′ can be calculated fromS.

Note that this assertion is correct even if not all of the groupsS ′ are different.
This is demonstrated by the following example: If the site symmetryS of
P consists of a reflection and the identity, the pointP is placed on a mirror
plane. If the translation mappingP ontoP ′ is parallel to this plane, thenS
of P andS ′ of P ′ are identical. Nevertheless, there are always translations
of R which are not parallel to the mirror plane and which carryP andS to
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pointsP ′′ with site symmetriesS ′′. These are different from but equivalent
to S. The groupsS andS ′′ leave different planes invariant.

3. According to their geometric meaning the groupsS may be classified into
types. A type of site–symmetry groups is also called acrystal class.

4. There are altogether 10 crystal classes of the plane. Geometrically, their
groups are the symmetries of the regular hexagon, of the square and the
subgroups of these symmetries. Within the same crystal class, the site–
symmetry groups consist of the same number of rotations and reflections
and have thus the same group order. The rotations have the same rotation
angles. Site–symmetry groups of different crystal classes differ by the num-
ber and angles of their rotations and/or by the number of their reflections
and often by their group orders.

5. There are 32 crystal classes of groupsS of the space. Their groups are the
symmetries of the cube, of the hexagonal bipyramid and the subgroups of
these symmetries. Again, the groupsS of the same crystal class agree in
the numbers and kinds of their rotations, rotoinversions, reflections and thus
in the group orders. Moreover, there are strong restrictions for the possible
relative orientations of the rotation and rotoinversion axes and of the mir-
ror planes. Site–symmetry groups of different crystal classes differ by the
numbers and kinds of their symmetry operations.

6. In order to get a better overview, the crystal classes are further classified into
crystal systems and crystal families.

The following exercise deals with a simple example of a possible planar crystallo-
graphic site–symmetry group.
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Problem 1A. Symmetry of the square.
For the solution, see p. 73.

b

a

2

4 1

3

-1,-1

1,-1

-

1,1

-1,1

y +

m+

mmm-

mx

my

mx

m

Fig. 3.4.1 The vertices1, 2,
3, 4 of the square are de-
scribed by their coordinates
1, 1; –1, 1; –1, –1; 1, –1, re-
spectively. The coordinates
are referred to the axesa and
b and to the centre of the
square as origin.

Questions For further questions, see Problem 1B, p. 63.

(i) List the symmetry operations of the square.

(ii) What is the geometric meaning of each of these symmetry
operations ?

(iii) What are the orders of these symmetry operations ?

(iv) How many symmetry operations of the square do exist ?
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Some remarks onspace groupsfollow.

Space groups are the symmetries of crystal patterns, they have been defined already
by definition (D 3.2.1). Their order is always infinite because of the infinitely many
translations. Not only the order but also the number of space groups is infinite be-
cause each existing or conceivable crystal (crystal pattern) has ‘its’ space group.
However, an infinite set, as that of all space groups, is difficult to overlook. There-
fore, it is advantageous to have a classification of the space groups into afinite
number of classes.
The classification of site symmetries into types of site symmetries (crystal classes)
has already been discussed. Like site–symmetry groups, also space groups may
be classified into types, thespace–group types. This classification into 230 space–
group types is so commonly used that these space–group types are just calledthe
230 space groupsin many text books and in the spoken language. In most cases
there is no harm caused by this usage. However, for certain kinds of problems in
crystal chemistry, or when dealing with phase transitions, the distinction between
the individual ‘space group’ and theset ‘type of space groups’ is indispensable.
The distinction is important enough to be illustrated by an example from daily life:
There are millions of cars running on earth but there are only a few hundred types
of cars. One loosely says: ‘I have the same car as my neighbour’ when one means
‘My car is of the same type as that of my neighbour’. The difference becomes
obvious if the neighbour’s car is involved in a traffic accident.
Really, there are two classifications of space groups into types. The one just men-
tioned may be called the ‘classification into the 230crystallographic space–group
types’. The different types are distinguished by the occurence of different types
of rotations, screw rotations,etc.(One cannot argue with the ‘numbersof 2–fold
rotations’etc.because in space groups all these numbers are infinite). However,
there are 11 pairs of these types, calledenantiomorphic pairs, where in each pair
the space groups of the one type can be transferred to those of the other type by
improper but not by proper mappings. (Proper and improper mappings are de-
fined in analogy to the proper and improper isometries, see Section 3.1. A pair of
enantiomorphic space–group types is analogous to a pair of gloves: right and left).
Counting each of these pairs as one type results in altogether 219affine space–
group types.

More than 2/3 of the 911 pp. of Vol. IT A, 5th edition (2002) are devoted to the
description of the 17 ‘plane groups’ and the 230 ‘space groups’ (really: plane–
group and space–group types). There are four ways for this description; two of
them are described in the next section, the others in Sections 4.6 and 5.2.

The termpoint–symmetry group, point group, or point symmetry P is used
in two different meanings. In order to have a clear distinction between the two
items which are commonly called ‘point symmetry’, the one item has been called
‘site–symmetry group’S or ‘site symmetry’, see above. This is done also in IT
A, Section 8, ‘Introduction to space–group theory’. The other item is the external
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symmetryP of the ideal macroscopic crystal. It is simultaneously the symmetry
of its physical properties. The symmetryP is very much related to the symme-
try S in so far as to each groupS there exists a groupP with the same order,
the same number and kind of rotations, rotoreflections and reflections, although
not necessarily in the same space group. Analogously, to each groupP there may
exist groupsS which have the same ‘structure’ asP has. Taken as groups with-
out paying attention to the kind of operations,S andP cannot be distinguished.
Therefore, the statements 1. to 6., made above for groupsS, are valid for groups
P as well, with the exception of statement 2. The latter is obvious: A macroscopic
crystal is not periodic but ‘a massive block’ of finite extension, and there isonly
onefinite symmetry groupP for the external shape of the crystal as compared to
the infinite number of site–symmetry groupsS.

What is the essential difference betweenS andP ? Why can they not be identi-
fied ?

The description of the symmetryP is different from that ofS. The relation be-
tweenS and the space groupR is simple:S is a subgroup ofR. The relation
betweenP andR is more complicated and rather different. This will become clear
from the following example.

Example. There are not many compounds known whose symmetry consists of the
identity, translations and 2–fold rotations. The symbol of their space groupsR1

is P2. Several omphacites (rock-forming pyroxene minerals), high-temperature
Nb2O5, Cu2In2O5, and a few more compounds are reported to belong to space–
group typeP2.
The compound Li2SO4· H2O is the best pyroelectric non-ferroelectric substance
which is known today. Its space groupR2 is P21 with the identity, translations
and 2–fold screw rotations21. There are many compounds,e. g.sugars, with the
same kinds of symmetry operations.
Consider the points of point space. With regard to space groupR1, there are points
with site symmetry 2, namely all points situated on one of the 2–fold rotation axes.
However, with regard to space groupR2 there is no point with site symmetry 2,
because screw rotations have no fixed points. Nevertheless, the symmetry of the
macroscopic crystal is that of (identity and) a 2–fold rotation in both cases. One
can say, thatR1 andR2 have point groups of the same type, but exhibit strong
differences in their site–symmetry groups.
In order to understand this difference it is useful to consider the determination of
P. A natural crystal is mostly distorted: the growth velocities of its faces have been
influenced by currents of the medium from which the crystal has grown (liquid,
gas), or by obstacles which have prevented the development of the ideal shape.
Therefore, the faces present at a macroscopic crystal are replaced by their face
normals for the determination of the macroscopic symmetry. These face normals
are vectors which are independent of the state of development of the faces. ThenP
is determined from the symmetry operations which map the bundle of face–normal



42 3 CRYSTALLOGRAPHIC SYMMETRY

vectors onto itself. Thus, the groupP is a group of symmetry in vector space.
It is the conceptual difference between vector space and point space, experienced
already in Section 1.4 when considering origin shifts, which leads to the difference
between the groupsP andS. The symmetry operations ofS are mappings of
point space, whereas the symmetry operations ofP are mappings of vector space.
In Section 4.4 the description of these operations by matrices will be dealt with.
It will turn out that the difference betweenS andP is reflected in the kinds of
matrices which describe the operations ofS andP.

The above example of the space groupsP2 andP21 has shown that there are space
groups for which the groupsP andS may have the same order, namely inP2. This
is a special property which deserves a separate name.

Definition (D 3.4.3) A space group is calledsymmorphicif there are site–symmetry
groupsS which have the same order as the point groupP of the space group.

In the non–symmorphic space groupP21, there is no groupS with the order 2 of
P .

3.5 Display of crystallographic symmetry in IT A

A crystallographic symmetry operation may be visualized geometrically by its
‘geometric element’, mostly calledsymmetry element. The symmetry element is
a point, line, or plane related to the symmetry: depending on the symmetry op-
eration, it is the centre of inversion or (for rotoinversions) the inversion point;
the rotation, screw rotation, or rotoinversion axis; the mirror or glide plane. Only
the identity operationI and the translationsT do not define a symmetry element.
Whereas the symmetry element of a symmetry operation is uniquely defined, more
than one symmetry operation may belong to a symmetry element. For example, to a
4–fold rotation axis belong the symmetry operations41 = 4, 42 = 2 and43 = 4−1

around this axis.

[There is some confusion concerning the termssymmetry elementandsymmetry
operation. It is caused by the fact thatsymmetry operationsare thegroup elements
of the symmetry groups (space groups, site–symmetry groups or point groups).
Symmetry operationscan be combined resulting in other symmetry operations and
forming a symmetry group.Symmetry elementscannot be combined such that the
combination results in a uniquely determined other symmetry element. As a con-
sequence, symmetry elements do not form groups, and group theory cannot be
applied to them. Nevertheless, the description of symmetry by symmetry elements
is very useful, as will be seen now.]

In IT A, crystallographic symmetry is described in four ways:
1. The analytical description of symmetry operations by matrix-column pairs

will be considered in Chapter 4. The listing of these matrix–column pairs
as the ‘General position’ of IT A in a kind of short–hand notation will be
discussed in Section 4.6.
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2. The geometric meaning of the matrix–column pair can be determined, see
Section 5.2. In order to save the user this determination, in IT A the geomet-
ric meaning is listed for each matrix–column pair, see Section 4.6.

3. A visual geometric description of a space group (more exactly: a space–
group type) is possible by displaying the framework of symmetry elements
in a diagram, see this section.

4. In another diagram the space–group symmetry is represented by a set of
points which are symmetrically equivalent under the operations of the space
group, see this section.

In IT A, for each space group there are at least two diagrams displaying the sym-
metry (there are more diagrams for space groups of low symmetry). In this section
only one example for each kind of diagrams can be discussed in order to explain
the principles of this way of symmetry description. A full explanation of the details
is found in IT A, Section 2.6 ‘Space–group diagrams’,dto. in the Brief Teaching
Edition of IT A.
The Figs. 3.5.1 and 3.5.2 are taken from IT A, space-group table No. 86,P42/n
(HM symbol for this space–group type),C4

4h (SCHOENFLIES symbol for this
space–group type). In both diagrams, displayed is an orthogonal projection of a
unit cell of the crystal onto the paper plane. The direction of projection is thec
axis, the paper plane is the projection of thea–b plane (ifc is perpendicular toa
andb, then the paper plane is thea–b plane). The thin lines outlining the projection
are the traces of the side planes of the unit cell. Because opposite lines represent
translationally equivalent side planes of the unit cell, the line pairs can be consid-
ered as representing the basic translationsa andb. The origin (projection of all
points with coordinates 0 0z) is placed in the upper left corner; the other vertices
represent the edges 1 0z (lower left), 0 1z (upper right) and 1 1z (lower right).
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The following diagram is always placed on the left side of the page in IT A.

Fig. 3.5.1 Symmetry elements. A
small circle represents a centre of
inversion1̄, the attached number14
is itsz coordinate (height above pa-
per in units of the lattice parameter
c). There are black squares with two
small tails: 4–fold screw-rotation
axesN = 4, n = 2, see Sec-
tion 3.3,HM symbol42. A partly
filled empty square represents a 4–
fold rotoinversion axis,HM symbol
4̄. The 4̄ axes are parallel toc, they
are projected onto points. The right
angle drawn outside the top left of
the unit cell indicates a horizontal
glide plane with the direction of its
arrow as the glide vector. Missing
z coordinates mean either ‘z = 0’,
e. g.for the centres of̄4, or ‘z mean-
ingless’, as for the screw axes.

In the unit cell or on its borders are (only one representative of each set of transla-
tionally equivalent elements is listed):

(i) centres of inversion in 1/4, 1/4, 1/4; 1/4, 1/4, 3/4; 3/4, 1/4, 1/4;
3/4, 1/4, 3/4; 1/4, 3/4, 1/4; 1/4, 3/4, 3/4; 3/4, 3/4, 1/4; 3/4, 3/4, 3/4;

(ii) 42 axes in 1/2, 0,z; 0, 1/2,z;

(iii) 4̄ axes in 0, 0,z; 1/2, 1/2,z with inversion points in 0, 0, 0; 0, 0, 1/2; 1/2, 1/2, 0;
1/2, 1/2, 1/2;

(iv) glide planesx, y, 1/4; x, y, 3/4 with glide vector 1/2, 1/2, 0.
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The following diagram is always placed on the right side of the page in IT A.

Fig. 3.5.2 Starting with the point
in the upper left corner of the unit
cell, marked by an open circle and
with the sign ‘+’, all points in and
near the unit cell are drawn which
are images of the starting point un-
der some symmetry operation of the
space group. The starting point is
a point with site symmetry 1,i. e.
identity only. (Note that the high
symmetry of a circle does not re-
flect the site symmetry 1 of its cen-
tre properly. The circle is chosen for
historical reasons.) Then

all image points have site symmetry 1 too. Thex andy coordinates of all points
can be taken from the projection; thez coordinate of the starting point is indicated
by ‘+’ (= +z), the other points have either ‘+’, or ‘−’ (= −z), ‘1/2+’ (= 1/2 +z); or
‘1/2−’ (= 1/2−z); in other diagrams1/4+, 1/4−, 3/4+, 3/4−, etc.

A ’–sign (comma) in the circle means that this point is an image of the starting
point by a symmetry operation of the second kind, see Section 3.1. If the empty
circles are assumed to represent right gloves, then the circles with a comma repre-
sent left gloves andvice versa.

The correspondence between the two diagrams is obvious: With some practice
each of the diagrams can be produced from the other. Therefore, they are com-
pletely equivalent descriptions of the same space–group symmetry. Nevertheless,
both diagrams are displayed in IT A in order to provide different aspects of the
same symmetry. Because of the periodicity of the arrangement, the presentation of
the contents of one unit cell is sufficient.

Answerto the question in Section 3.2.

3̄3 = 1̄, (3̄6 = 1); 4̄2 = 2; 6̄2 = 3; and 6̄3 = m, where the normal of the
mirror plane is parallel to the rotoinversion axis of6̄ (the mirror plane itself is
perpendicular to the rotoinversion axis).

The following statements hold always:

1. The even powers of rotoinversions are rotations.
2. The order of anN–fold rotoinversion is 2N for oddN .
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4 The description of mappings by matrix–column
pairs

4.1 Matrix–column pairs

As was mentioned already in Section 2.2, an affine mappingA is described by a
matrix A and a columna, see equations (2.2.1) and (2.2.5) on p. 19. Crystallo-
graphic symmetry operations are special affine mappings. They will be designated
by the letterW and described by the matrixW and the columnw. Their description
is analogous to equation (2.2.1):

x̃ = W11x + W12y + W13z + w1

ỹ = W21x + W22y + W23z + w2 .
z̃ = W31x + W32y + W33z + w3

(4.1.1)

There are different ways of simplifying this array. One of them leads to the descrip-
tion with Σ sign and indices in analogy to that for mappings, see equations (2.4.1)
and (2.4.2). It will not be followed here. Another one is the symbolic description
introduced in Section 2.3. It will be treated now in more detail.

Step 1 One writes the system of equations in the form
 x̃

ỹ
z̃


 =


 W11 W12 W13

W21 W22 W23

W31 W32 W33





 x

y
z


 +


 w1

w2

w3


 . (4.1.2)

The form 4.1.2 has the advantage that the coordinates and the coefficients which
describe the mapping are no longer intimately mixed but are more separated in
the equation. For actual calculations with concrete mappings this form is most
appropriate, applying the definitions (D 2.4.3) and (D 2.4.2). For the derivation of
general formulae, a further abstraction is advantageous.

Step 2 Denoting the coordinate columns byx̃ andx, the (3 × 3) matrix by
W and the column byw, one obtains in analogy to equation (2.2.5)

x̃ = W x + w. (4.1.3)
Step 3 Still the coordinate part and the mapping part are not completely
separated. Therefore, one writes

x̃ = (W, w) x or x̃ = (W |w) x. (4.1.4)

The latter form is called the SEITZ notation.

Note that the forms (4.1.1) to (4.1.4) of the equations are only different ways of
describing the same mappingW. The matrix–column pairs (W, w) or (W |w) are
suitable in particular for general considerations; they present the pure description
of the mapping, and the coordinates are completely eliminated. Therefore, in Sec-
tion 4.2 the pairs are used for the formulation of the combinationVU of two sym-
metry operationsV andU and of the inverseW−1 of a symmetry operationW.
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However, if one wants to provide a list of specific mappings, then there is no way
to avoid the explicit description by the formulae 4.1.1 or 4.1.2, see Section 4.6.

With the matrix–column pairs one can replace geometric considerations by analyt-
ical calculations. To do this one first determines those matrix–column pairs which
describe the symmetry operations to be studied. This will be done in Section 5.1.
Then one performs the necessary procedures with the matrix–column pairs,e. g.
combination or reversion, see Section 4.2. Finally, one has to extract the geometric
meaning from the resulting matrix–column pairs. This last step is shown in Section
5.2.

4.2 Combination and reversion of mappings

The combination of two symmetry operations follows the procedure of Section
2.2. In analogy to equations (2.2.5) to (2.2.8) one obtains

x̃ = Ux + u; (4.2.1)
˜̃x = Vx̃ + v; (4.2.2)
˜̃x = V(Ux + u) + v; (4.2.3)

˜̃x = VUx + Vu + v = Wx + w. (4.2.4)

These equations may be formulated with matrix–column pairs:

˜̃x = (V, v) x̃ = (V, v)(U, u)x = (W, w)x. (4.2.5)

Note that in the product (V,v)(U, u) the operation (U, u) is performed first and
(V,v) second. Because of writing point coordinates and vector coefficients as
columns, in the combination of their mappings the sequence is always from right
to left.

By comparing equations (4.2.4) and (4.2.5) one obtains

(W, w) = (V, v)(U, u) = (VU, V u + v). (4.2.6)

This law of compositionfor matrix–column pairs is not easy to keep in mind be-
cause of its asymmetry. It would be easy if the resulting matrix part would be the
product of the original matrices and the resulting column the sum of the original
columns. However, the columnu of the operation, which is applied to the pointX
first, is multiplied with the matrixV of the second operation, before the addition
is carried out. In the next section a formalism will be introduced which smoothes
out this awkwardness.
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The multiplication of matrix–column pairs isassociative, because

(W, w)((V, v)(U, u)) = (W, w)(VU, Vu + v) =
= (WVU, WVu + Wv+ w), (4.2.7)

and on the other hand,

((W, w)(V, v))(U, u) = (WV, Wv+ w)(U, u) =
= (WVU, WVu + Wv+ w). (4.2.8)

By comparison of both expressions one finds

(W, w)((V, v)(U, u)) = ((W, w)(V, v))(U, u). (4.2.9)

Associativity is a very important property. It can be used,e. g., to find the value of
a product of matrix–column pairs without any effort. Suppose, that in the above
triple product of matrix–column pairs,(W, w) = (V, v)−1 holds and the upper
sequence of multiplications is to be calculated. Then, due to the associativity the
second equation may be used instead. Because(V, v)−1(V, v) = (I , o) is the
identity mapping, the result ‘(U, u)’ is obtained immediately.
A linear mapping is a mapping which leaves the origin fixed. Its column part is
thus theo column. According to equation (4.2.6) any matrix–column pair can be
decomposed into a linear mapping (W, o) containingW only and a translation (I, w)
with w only:

(W, w) = (I , w)(W, o). (4.2.10)

The linear mapping has to be performed first, the translation after that.

Question: What is the result if the translation (I , w) is performed first and the linear
mapping (W, o) after that,i. e. if the factors are exchanged ?

Before the reversion of a symmetry operation is dealt with, a general remark is
appropriate. In general, the formulae of this section are not restricted to crystallo-
graphic symmetry operations but are valid also for affine mappings. However, there
is one exception. In the inversion of a matrixW the determinantdet (W) appears
in the denominator of the coefficients ofW−1, see Subsection 2.6.1. Therefore,
the conditiondet (W) 6= 0 has to be fulfilled. Such mappings are calledregularor
non–singular. Otherwise, ifdet (W) = 0, the mapping is aprojectionand cannot
be reverted. For crystallographic symmetry operations,i. e. isometriesW, always
det (W) = ±1 holds. Therefore, an isometry is always reversible, a general affine
mapping may not be. Projections are excluded from this manuscript because they
do not occur in crystallographic groups.

Now to the calculation of the reverse of a matrix–column pair. It is often necessary
to know which matrixC and columnc belong to that symmetry operationC which
makes the original actionW undone,i. e. which maps every image point̃X onto
the original pointX . The operationC is called thereverse operationof W. The
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combination ofW with C restores the original state and the combined actionC W
mapsX → X̃ → X . It is the identity operationI which maps any pointX onto
itself. The operationI is described by the matrix–column pair (I , o), whereI is the
unit matrix ando is the column consisting of zeroes only. This means

x = (C, c)x̃ = Cx̃ + c or

x = Ix + o = (I , o)x = C(Wx + w) + c = CWx+ Cw+ c. (4.2.11)

Equation (4.2.11) is valid for any coordinate tripletx. Therefore, the coefficients
on the right and left side are the same. It follows

CW = I andCw+ c = o or C = W−1 andW−1w + c = o,

i . e. (C, c) = (W, w)−1 = (W−1, −W−1w). (4.2.12)

This equation is as unpleasant as is equation (4.2.6). The matrix part is fine but
the column part is not just−w as one would like to see but−w has to be mul-
tiplied with W−1. The next section will present a proposal how to overcome this
inconvenience.

It is always good to test the result of a calculation or derivation. One verifies the
validity of the equations(W, w)−1(W, w) = (W, w)(W, w)−1 = (I , o) by applying
equations (4.2.6) and (4.2.12). In addition in the following Problem 2A the results
of this section may be practised.

Problem 2A. Symmetry described by matrix–column pairs.
For the solution, see p. 75.

In Vol. A of International Tables for Crystallographythe crystallographic symme-
try operationsA, B, . . . are referred to a conventional coordinate system and are
represented by matrix–column pairs (A, a), (B, b), . . . . Among others one finds in
the space-group tables of IT A indirectly, see Section 4.6:

(A, a) =


 0 1 0

1 0 0
0 0 1̄


 ,


 1/2

1/2
1/2


 and(B, b) =


 0 1 0

0 0 1
1 0 0


 ,


 0

0
0


 .

Combining two symmetry operations or reversion of a symmetry operation corre-
sponds to multiplication or reversion of these matrix–column pairs, such that the
resulting matrix–column pair represents the resulting symmetry operation.

The following calculations make use of the formulae 4.2.6 and 4.2.12.
Can one exploit the fact that the matricesA, B, C andD are orthogonal matrices ?

Questions
(i) What is the matrix–column pair resulting from

(B, b) (A, a) = (C,c) ?
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(ii) What is the matrix–column pair resulting from
(A, a) (B, b) = (D,d) ?

(iii) What is (A, a)−1 ?

(iv) What is (B, b)−1 ?

(v) What is (C, c)−1 ?

(vi) What is (D, d)−1 ?

(vii) What is (B, b)−1 (A, a)−1 ?

For another question of this Problem, see p. 66.

4.3 (4 × 4) matrices

The formulae (4.2.6) and (4.2.12) are difficult to keep in mind. It would be fine to
have them in a more user–friendly shape. Such a shape exists and will be demon-
strated now. It is not only more convenient but also solves another problem, viz the
clear distinction between point coordinates and vector coefficients, as will be seen
in Section 4.4.
If a crystallographic symmetry operation is described by the matrix–column pair
(W,w), then one can form the(3 × 4) matrix


 W11 W12 W13 w1

W21 W22 W23 w2

W31 W32 W33 w3


 .

Regrettably, such matrices cannot be multi-
plied with each other because of the different
number (4) of columns of the left matrix and
(3) of rows of the right matrix, see Section 2.4.
However, one can make the matrix square by
adding a fourth row ‘0 0 0 1’. Such(4 × 4)

matrices can be multiplied with each other. For the applications also the coordinate
columns have to be extended. This is done by adding a fourth row with the number
1 to the(3 × 1) column. We thus have:

x → x =




x
y
z
1


 ; x̃ → x̃ =




x̃
ỹ
z̃
1


 ; (W, w) → W =


 W w

0 0 0 1


 .

(4.3.1)
Definition (D 4.3.1) The(4×4) matrixW obtained fromW andw in the way just
described is called theaugmented matrixW; the columns are calledaugmented
columns.

The horizontal and vertical lines in the matrix and the horizontal line in the columns
have no mathematical meaning; they are to remind the user of the geometric con-
tents and of the way in which the matrix has been built up.
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Equation (4.1.2) is replaced by an equation in outlined letters


x̃
ỹ
z̃
1


 =


 W w

0 0 0 1







x
y
z
1


 or x̃ = Wx. (4.3.2)

The augmented matrices may be multiplied, and the product is indeed a(4×4) ma-
trix whose matrix and column parts are the same as those obtained from equation
(4.2.6):

 V v

0 0 0 1





 U u

0 0 0 1


 =


 VU Vu + v

0 0 0 1


 .

(4.3.3)

For the reverse mappingW−1, W
−1

W = I holds, whereI is the (4 × 4) unit
matrix. This is fulfilled for

W
−1 =


 W−1 −W−1w

0 0 0 1


 , (4.3.4)

which corresponds to equation (4.2.12).

In practice the augmented quantities are very convenient for general formulae and
for the actual combination of mappings by multiplying(4× 4) matrices. Equation
(4.3.4) is useful to provide the inverse of a(4 × 4) matrix by calculating the right
side. It does not make sense to invert a(4 × 4) matrix using equation (2.6.1) on p.
28 for direct matrix inversion.

In an analogous way one can describe mappings of the plane by(3×3) augmented
matrices and(3 × 1) augmented columns.

4.4 Transformation of vector coefficients

It has already been demonstrated, in Section 1.4, that point coordinates and vector
coefficients display a different behaviour when the coordinate origin is shifted. The
same happens when a translation is applied to a pair of points. The coordinates of
the points will be changed according to

x̃ = (I, t) x = x + t; ỹ = (I, t) y = y + t.

However, the distance between the points will be invariant:

ỹ− x̃ = (y + t) − (x + t) = y− x.
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Distances are absolute values of vectors, see Section 1.6. Usually point coordinates
and vector coefficients are described by the same kind of(3 × 1) columns and are
difficult to distinguish. It is a great advantage of the augmented columns to provide
a clear distinction between these quantities.
If xx andxy are the augmented columns of coordinates of the pointsX andY ,

xx =




x1

x2

x3

1


 andxy =




y1

y2

y3

1


 , thenr =




y1 − x1

y2 − x2

y3 − x3

0




is the augmented columnr of the coefficients of the distance vectorr between
X andY . The last coefficient ofr is zero, because of1 − 1 = 0. It follows that
columns of vector coefficients are augmented in another way than columns of point
coordinates.
Let T be a translation, (I, t) its matrix–column pair,T its augmented matrix,r the
(3×1) column of coefficients of the distance vectorr betweenX andY , andr the
augmented column ofr . Then,

r̃ = Tr or




r̃1

r̃2

r̃3

0


 =




t1
I t2

t3
0 0 0 1







r1

r2

r3

0


 =




r1

r2

r3

0


 . (4.4.1)

When using augmented columns and matrices, the coefficients oft are multiplied
with the last coefficient 0 of ther column and thus become ineffective.
This behaviour is valid not only for translations but holds in general for affine
mappings, and thus for isometries and crystallographic symmetry operations:

y− x → ỹ− x̃ = (W y+ w) − (W x + w) = W y− W x = W(y− x) or

r̃ = Wr =⇒ r̃ = W r + 0 w = W r. (4.4.2)

Whereas point coordinates are transformed byx̃ = (W, w)x = W x + w,

vector coefficientsr are affected only by the matrix partW:

r̃ = (W, w)r = W r. (4.4.3)

In other words: if (W,w) describes an affine mapping (isometry, crystallographic
symmetry operation) in point space, thenW describes the corresponding mapping
in vector space. For vector coefficients, the column partw does not contribute to
the mapping. This is valid for any vector,e. g., also for the basis vectors of the
coordinate system.

Note thatỹ − x̃ = W(y − x) is different from(ỹ− x) = W(y − x) + w. The
latter expression describes the image pointZ̃ of the pointZ with the coordinates
z = y− x.
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4.5 The matrix-column pairs of crystallographic symmetry op-
erations

For general matrices, multiplication and inversion may be rather tedious manipu-
lations. These are unavoidable if the geometry of the object is complicated and if
there is no way to simplify it. In crystallography one is in a better situation. By def-
inition crystals are periodic, and their periodicity is not that of the continuum but
that of the lattice. Therefore, primitive bases for the lattices can always be found,
see definition (D 1.5.2). As a consequence, the matrix–column pairs for the crys-
tallographic symmetry operations are simple if an appropriate coordinate system
has been chosen. The conventional coordinate systems as used in the space– and
plane–group tables of IT A are chosen under this aspect.

The matrix parts shall be considered first.

Suppose, a primitive lattice basis has been chosen as the coordinate basis. We take
from the last section that the mapping of vectors by a crystallographic symme-
try operationW is described only by the matrix partW of the (4 × 4) matrix
W. The image of a lattice vector under a symmetry operation must be a lattice
vector, otherwise the lattice would not be mapped onto itself as a whole. Being
referred to a primitive basis, all lattice vectors have integer coefficients. Therefore,
the matrix partsW of the crystallographic symmetry operations must have integer
coefficients, they areinteger matrices.

On the other hand, a crystallographic symmetry operationW is an isometry. There-
fore, referred to an orthonormal basis, the matrix is an orthogonal matrix, see Sub-
section 2.6.1, p. 28. When leaving all distances invariant, also the volume is invari-
ant. Analytically, this meansdet(W) = ±1.

If a matrix is integer and orthogonal, then in each row and column there are exactly
one entry±1 and two zeroes. The matrix has thus three coefficients±1 and six ze-
roes. How many(3×3) matrices of this kind do exist ? There are six arrangements
to distribute the non–zero coefficients among the positions of the matrix. In addi-
tion, there are three signs with23 possibilities of distributing + and−. Altogether
there are6 × 8 = 48 different orthogonal integer matrices.

The matrix parts of crystallographic symmetry operations form groups which de-
scribe the point groups, see Sections 3.4 and 4.4. The highest order of a crystallo-
graphic point group is 48, and referred to the conventional basis this point group is
described by the group of the 48 orthogonal integer matrices. It is the point group
of copper, gold, rocksalt, fluorite, galena, garnet, spinel and many other crystalline
compounds. The symmetries of 24 other point groups are contained as subgroups
in this highest symmetry, so that 25 of the 32 types of point groups (crystal classes)
can be described by orthogonal integer matrices. The advantages of these matrices
are:

1. The product of two matrices is easily calculated because of the many zeroes;
it is again an orthogonal integer matrix.
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2. Due to the orthogonality, the inverse of a matrix is the transpose matrix and
does not need calculation.

3. The determinant of a matrix, see equation 2.5.2, is the product of three co-
efficients±1, adjusted for the sign.

What about the necessary bases ? The matrix part of an isometryis orthogonal if
referred to an orthonormal basis; itmayalso be orthogonal if referred to another
basis. The restrictions to the basis depend on the point group. For example, the
matrices describing the identity mapping and the inversion are orthogonal in any
basis, viz the unit matrix and the negative unit matrix. The conventional bases in
crystallography are lattice bases (not orthonormal bases). They are mostly chosen
such that the matrices are integer orthogonal matrices. As already mentioned, this
is possible for 25 of the 32 crystal classes of point groups.

The matrix is even simpler, if it is a diagonal orthogonal matrix,i. e. a diagonal
matrix with coefficients±1. There are23 = 8 such matrices, among them the
unit matrix I and the inversion̄I . If the symmetry of the crystal is low enough, all
matrices are diagonal. There are eight crystal classes (of the 25) permitting such a
description. Crystals with this symmetry are also calledoptically biaxial crystals
because of their optical properties (birefringence).

The point groups of the remaining seven crystal classes cannot be described by
orthogonal integer matrices. Referred to a primitive basis, their matrices are in-
teger, of course. However, this representation is not orthogonal. One can choose
an orthonormal basis instead but then the matrices are no longer integer matrices.
These point groups are hexagonal and belong to the hexagonal crystal family.

Only in crystal physics the non–integer orthogonal representation is used for hexag-
onal point groups, in crystallography the representation by integer matrices is pre-
ferred. One introduces the so–called hexagonal basis, referred to which the ma-
trices consist of at least five zeroes and four coefficients±1. In the conventional
settings of IT A, there occur up to 16 such matrices, the other up to eight matri-
ces are orthogonal integer matrices. Although not necessary, also trigonal point
groups are mostly referred to the hexagonal basis, because this description is for
many crystals more natural than the decription by integer orthogonal matrices.

The column parts will be discussed now.

Provided a conventional coordinate system is chosen, also the coefficients of the
columns are simple. They are determined

1. by the choice of the basis which, however, is more or less fixed already by
the matrix considerations.

2. by the origin choice. If the origin is chosen in a fixed point of a symmetry
operationW, thenw is theo column. Clearly, one choice of the origin is
such that as many of the symmetry operations as possible have the origin as
fixed point.
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Doing this it turns out, that the remaining non-zero coefficients of the columnsw
are fractions with denominators at most 6.

4.6 The ‘General Position’ in IT A

In IT A the set of all symmetry operations is listed for all space groups. As we
have seen, space groups are infinite groups, and there is an infinite number of
space groups for each space–group type, see Section 3.4. How can such a listing
be done at all ? In this section the principles are dealt with which make the listings
possible, as well as the points of view which determine the actual listings.

1. Consider the infinite number of space groups belonging to a certain space–
group type. If one refers each space group to its conventional coordinate
system, one obtains a set of matrix–column pairs for each space group but
all these sets are identical. (This is one way to classify the space groups into
space–group types.) Therefore, a listing is necessary only for each space–
group type, but not for each space group. This means 230 listings for the
space groups and 17 listings for the plane groups, and these listings are in-
deed contained in IT A. In reality the number of space–group listings is
higher by about 20 % because there is sometimes more than one conven-
tional coordinate system: different settings, different bases, or different ori-
gins, see IT A.

2. No doubt, there is an infinite number of symmetry operations for each space
group. How can they be listed in a book of finite volume ? LetW be a
symmetry operation and (W, w) its matrix–column pair. Because the con-
ventional bases are always lattice bases, (W, w) can be decomposed into a
translation(I , tn) with integer coefficients and the matrix(W, w◦):

(W, w) = (W, w◦ + tn) = (I , tn)(W, w◦). (4.6.1)

For the coefficientsw◦, 0 ≤ wi◦ < 1 holds. By this decomposition one
splits the infinite set of pairs (W, w) into a finite set of representatives(W, w◦)
and an infinite set of translations(I , tn). Clearly, only the representatives
need to be listed. Such a list is contained in IT A for each space–group type;
the number of necessary entries is reduced from infinite to at most 48.

For primitive bases, the list is complete and unique. There are ambiguities
for centred settings, see the remarks to definition (D 1.5.2). For example, for
a space group with anI–centred lattice, to each pointx, y, z there belongs a
translationally equivalent pointx+1/2, y+1/2, z+1/2. Nevertheless, only
one entry(W, w◦) is listed. Again, instead of listing a translationally equiv-
alent pair for each entry, the centring translation is extracted from the list
and written once for all on top of the listing. For example, the rational trans-
lations for theI–centred lattice are indicated by ‘(0, 0, 0)+( 1

2 , 1
2 , 1

2 )+’.
For each of the matrix–column pairs(W, w◦), listed in the sequel, not only
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the products(I , tn)(W, w◦) have to be taken into account, but also the prod-
ucts(I , tn + 1

2 )(W, w◦). (The term1
2 is a symbol for the column with all

coefficients1
2 .) The following example 3 (General position for space–group

typeI213, No. 199) provides such a listing.

3. The representatives(W, w◦) could be listed as matrix–column pairs but that
would be wasting space. Although one could not save much space with fur-
ther conventions when listing general matrices, the simple (48 orthogonal +
16 other = 64) standard matrices of crystallography with their many zeroes
have a great potential for rationalization. Is there any point to list thousands
of zeroes ? Therefore, in crystallography an efficient procedure is applied
to condense the description of symmetry by matrix–column pairs consid-
erably. This method works like the shorthand notation for the normal lan-
guage, when the usual letters are replaced by shorthand symbols.

The equations (4.1.1) on p. 46 are shortened in the following way:

(a) The left side and the ‘=’ sign are omitted
(b) On the right side, all terms with coefficients 0 are omitted
(c) Coefficients ‘+1’ are omitted, coefficients ‘–1’ are replaced by ‘–’ and

are frequently written on top of the variable:x instead of−x, etc.
(d) The three different rows are written in one line but separated by com-

mas.

3 examples shall display the procedure.

Example 1. x̃ = (W, w)x =


 0 1 0

1̄ 0 0
0 0 1





 x

y
z


 +


 1/2

1/2
1/4


 would be

x̃ = 0 x+1 y+0 z +1/2, ỹ = −1 x+0 y+0 z+1/2, z̃ = 0 x+0 y+1 z +1/4.

The shorthand notation of IT A reads y + 1/2, x + 1/2, z + 1/4.

It is found in IT A under space groupP43212, No. 96 on p. 376. There it is entry
(4) of the first block (the so–called General position) under the headingPositions.

Example 2. x̃ = (W, w)x =


 0 1 0

1̄ 1 0
0 0 1





 x

y
z


 +


 0

0
1/2




is written in the shorthand notation of IT A y, x + y, z + 1/2;
space groupP63mc, No. 186 on p. 584 of IT A.
It is entry (5) of the General position.

Example 3. The following table is the actual listing of the General position
for space–group typeI213, No. 199 in IT A on p. 612. The 12 entries, numbered
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(1) to (12), are to be taken as they are (indicated by (0, 0, 0)+) and in addition with
1/2 added to each elementwi◦ (indicated by(1

2 , 1
2 , 1

2 )+). Altogether these are 24
entries, which is announced by the first number in the row, the ‘Multiplicity’. The
reader is recommended to convert some of the entries into matrix–column pairs or
(4 × 4) matrices.

Positions
Multiplicity,
Wyckoff letter, Coordinates
Site symmetry (0, 0, 0) + (1

2 , 1
2 , 1

2 )+

24 c 1 (1) x, y, z (2) x + 1
2
, y, z + 1

2
(3) x, y + 1

2
, z + 1

2
(4) x + 1

2
, y + 1

2
, z

(5) z, x, y (6) z + 1
2
, x + 1

2
, y (7) z + 1

2
, x, y + 1

2
(8) z, x + 1

2
, y + 1

2

(9) y, z, x (10) y, z + 1
2
, x + 1

2
(11) y + 1

2
, z + 1

2
, x (12) y + 1

2
, z, x + 1

2

The listing of the ‘General position’ kills two birds with one stone:

(i) each of the numbered entries lists the coordinates of an image pointX̃ of
the original pointX under a symmetry operation of the space group.

(ii) Each of the numbered entries of the General position lists a symmetry op-
eration of the space group by the shorthand notation of the matrix–column
pair. This fact is not as obvious as the meaning described under (i) but it is
much more important. Knowing this way one can extract and make available
for calculations the full analytical symmetry information of the space group
from the tables of IT A.

Exactly one image point belongs to each of the infinitely many symmetry oper-
ations andvice versa. Some of these points are displayed in Figure 3.5.2 on p.
45.

Definition (D 4.6.1) The set of all points which are symmetrically equivalent to a
starting pointX (and thus to each other) under the symmetry operations of a space
groupR is called apoint orbitRX of the space group.

Remarks.

1. The starting point is a point of the orbit because it is mapped onto itself
by the identity operation (I , o) which is a symmetry operation of any space
group.

2. The one–to–one correspondence between symmetry operations and points
is valid only for the General position,i. e. the first block from top in the
space–group tables. In this block the coordinate triplets (shorthand symbols
for symmetry operations) refer to points which have site symmetryI, i. e.
only the identity operation is a symmetry operation. In all the other blocks,
the points have site symmetriesS > I with more than one site-symmetry
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operation. IfS > I, also|S| > 1 holds, where|S| is the order ofS. One can
show, that the pointX is mapped onto its imagẽX by exactly as many sym-
metry operations of the space groupR as is the order of the site–symmetry
groupS of X . Therefore, for such points the symmetry operation cannot be
derived from the data listed in IT A because it is not uniquely determined.

Definition (D 4.6.2) The blocks with points of site symmetriesS > I are called
special positions.

Different from the General position, a coordinate triplet of a special position pro-
vides the coordinates̃x, ỹ, z̃ of the image point of the starting pointx, y, z only
but no information on a matrix–column pair.
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5 Special aspects of the matrix formalism

The contents of this chapter serve two purposes:

1. To forge a link between geometry and calculations;

2. To provide the tools for coordinate changes.

The first point is described in the first two sections. The questions to be discussed
are:

(i) How can the matrix–column pair be obtained when the geometric meaning
of the symmetry operation is known ?

(ii) Given a matrix–column pair, what is its geometric meaning ?

The second point is a practical one. The complexity and amount of calculations
depend strongly on the coordinate system of reference for the geometric actions.
Therefore, it is advantageous to be flexible and free to choose for each calcula-
tion the optimal coordinate system. This means to change the coordinate system if
necessary and to know what happens with the coordinates and the matrix–column
pairs by such a change. In the last section of this chapter, partitioned into three
subsections, coordinate changes will be treated in three steps: Origin shift, change
of basis and change of both,i. e.general coordinate changes.

5.1 Determination of the matrix-column pair

In this section it is assumed that not only the kind of symmetry operation is known
but also its details,e. g.it is not enough to know that there is a 2–fold rotation, but
one should also know the orientation and position of the rotation axis. At first one
tries to find for some pointsX their imagesX̃ under the symmetry operation. This
knowledge is then exploited to determine the matrix–column pair which decribes
the symmetry operation.
Examples will illustrate the procedures. In all of them the point coordinates are
referred to a Cartesian coordinate system, see Section 1.2. The reader is recom-
mended to make small sketches in order to see visually what happens.

In the system (4.1.1) of equations there are 12 coefficients to be determined, 9
Wik and 3wj . If the image pointX̃ of one pointX is known from geometric
considerations, one can write down the three linear equations of (4.1.1) for this
pair of points. Therefore, writing down the equations (4.1.1) for four pairs (point
→ image point) is sufficient for the determination of all coefficients, provided the
points are independent,i. e. are not lying in a plane. One obtains a system of 12
inhomogeneous linear equations with 12 undetermined parametersWik andwj .
This may be difficult to solve without a computer. However, if one restricts to
crystallographic symmetry operations, the solution is easy more often than not
because of the special form of the matrix–column pairs.
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Procedure 1

In many cases it may be possible to apply the following strategy, which avoids all
calculations. It requires knowledge of the image points of the originO and of the
3 ‘coordinate points’A: 1, 0, 0;B: 0, 1, 0; andC: 0, 0, 1.

(1) The origin Let Õ with coordinates̃o be the image of the originO with
coordinateso, i. e.x◦ = y◦ = z◦ = 0. Examination of the equations (4.1.1)
shows that̃o = w, i. e. the columnw can be determined separately from the
coefficients of the matrixW without any effort.

(2) The coordinate points We consider the pointA. Inserting 1, 0, 0 in the
equations (4.1.1) one obtainsx̃i = Wi1 + wi or Wi1 = x̃i −wi, i = 1, 2, 3.
The first column ofW is separated from the others, and for the solution
only the known coefficientswi have to be subtracted from the coordinates
x̃i of the image pointÃ of A. Analogously one calculates the coefficients
Wi2 from the image of pointB: 0, 1, 0 andWi3 from the image of pointC:
0, 0, 1.

Evidently, the sought after coefficients can be determined without any difficult
calculation.

Example 1
What is the pair (W,w) for a glide reflection with the plane through the origin, the
normal of the glide plane parallel toc, and with the glide vectorg = 1/2, 1/2, 0 ?

(a) Image of the originO: The origin is left invariant by the reflection part of the
mapping; it is shifted by the glide part to 1/2, 1/2, 0 which are the coordinates
of Õ. Therefore,w = 1/2, 1/2, 0.

(b) Images of the coordinate points. Both the pointsA andB are not affected
by the reflection part butA is then shifted to 3/2, 1/2, 0 andB to 1/2, 3/2, 0.
This results in the equations

3/2 =W11 + 1/2, 1/2 =W21 + 1/2, 0 =W31 + 0 for A and

1/2 =W12 + 1/2, 3/2 =W22 + 1/2, 0 =W32 + 0 for B.

One obtainsW11 = 1, W21 = W31 = W12 = 0, W22 = 1 andW32 = 0.

PointC: 0, 0, 1 is reflected to 0, 0,−1 and then shifted to 1/2, 1/2,−1.

This means 1/2 = W13 + 1/2, 1/2 = W23 + 1/2, −1 = W33 + 0

or W13 = W23 = 0, W33 = −1.

(c) The matrix–column pair is thus

W =


 1 0 0

0 1 0
0 0 1̄


 andw =


 1/2

1/2
0


.
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Tests for the correctness of the result are always advisable: Each pointx, y, 0 is
mapped onto the pointx + 1/2, y + 1/2, 0, i. e. the planex, y, 0 is invariant as
a whole; each pointx, x, z is mapped ontox + 1/2, x + 1/2, −z, i. e. the plane
x, x, z is also left invariant as a whole. Both results agree with the geometric view.

Example 2[Draw a diagram !]

What is the pair (W, w) for an anti–clockwise 4–fold rotoinversion̄4 if the rotoin-
version axis is parallel toc, and 1/2, 1/2, 1/2 is the inversion point ?

(a) The anti–clockwise 4–fold rotation maps the origin onto the point 1, 0, 0;
the following inversion in 1/2, 1/2, 1/2 maps this intermediate point onto the
point 0, 1, 1, such thatw1 = 0, w2 = 1, w3 = 1.

(b) For the other points: 1, 0, 0 → 1, 1, 0 → 0, 0, 1;
0, 1, 0 → 0, 0, 0,→ 1, 1, 1; 0, 0, 1 → 1, 0, 1 → 0, 1, 0.

The equations are0 = W11 + 0; 0 = W21 + 1; 1 = W31 + 1;
1 = W12 + 0; 1 = W22 + 1; 1 = W32 + 1;
0 = W13 + 0; 1 = W23 + 1; 0 = W33 + 1.

(c) The result is W =


 0 1 0

1̄ 0 0
0 0 1̄


; w =


 0

1
1


.

The resulting matrix–column pair is checked by mapping the fixed point 1/2, 1/2, 1/2
and the point 1/2, 1/2, 0. Their images are 1/2, 1/2, 1/2 and 1/2, 1/2, 1 in agreement
with the geometric meaning of the operation.

Procedure 2

If the images of the origin and/or the coordinate points are not known, other pairs
‘point–image point’ must be used. It is difficult to give general rules but often fixed
points are appropriate in such a case. In addition, one may exploit the different
transformation behaviour of point coordinates and vector coefficients, see Section
4.4. Vector coefficients ‘see’ only the matrixW and not the columnw, and that
may facilitate the solution. Nevertheless, the calculations may now become more
involved. The next example is not crystallographic in the usual sense, but related
to twinning in ‘spinel’ mineral.

Example 3
What is the pair (W,w) for a 2–fold rotation about the space diagonal [1 1 1] with
the point 1/2, 0, 0 lying on the rotation axis ?

It is not particularly easy to find the coordinates of the imageÕ of the originO.
Therefore, another procedure seems to be more promising. One can use the trans-
formation behaviour of the vector coefficients of the direction [1 1 1] and other



62 5 SPECIAL ASPECTS OF THE MATRIX FORMALISM

distinguished directions. The direction [1 1 1 ] is invariantunder the 2–fold rota-
tion, and the latter is described by the matrix part only, see Section 4.4. Therefore,
the following equations hold

1 = W11 +W12+W13, 1 = W21 +W22 +W23, 1 = W31 +W32+W33. (5.1.1)

On the other hand, the directions [11̄ 0], [0 1 1̄], and [̄1 0 1] are perpendicular to
[1 1 1] and thus are mapped onto their negative directions. This means

[1 1̄ 0] : [0 1 1̄] : [1̄ 0 1] :
−1 = W11 − W12, 0 = W12 − W13, 1 = −W11 + W13,

1 = W21 − W22, −1 = W22 − W23, 0 = −W21 + W23,
0 = W31 − W32, 1 = W32 − W33, −1 = −W31 + W33,


 . (5.1.2)

From the equations (5.1.2) one concludes

W12 = W13, W21 = W23, W31 = W32

W11 = W13 − 1, W22 = W21 − 1, W33 = W32 − 1.

Together with equations (5.1.1) one obtains

W11 = W22 = W33 = −1/3; W12 = W13 = W21 = W23 = W31 = W32 =
2/3.

Thus,W =


 −1/3 2/3 2/3

2/3 −1/3 2/3
2/3 2/3 −1/3


 .

The point 1/2 0 0 is a fixed point, thus
1/2 = −1/3 · 1/2 + 2/3 · 0 + 2/3 · 0 + w1,
0 = 2/3 · 1/2 − 1/3 · 0 + 2/3 · 0 + w2 and
0 = 2/3 · 1/2 + 2/3 · 0 − 1/3 · 0 + w3.

The coefficients ofw are then:w1 = 2/3, w2 = −1/3, w3 = −1/3.

There are different tests for the matrix: It is orthogonal, its order is 2 (because
it is orthogonal and symmetric), its determinant is+1, it leaves the vector[1 1 1]
invariant, and maps the vectors[1 1̄ 0], [0 1 1̄] and [1̄ 0 1] onto their negatives (as
was used for its construction). The matrix–column pair can be tested with the fixed
points,e. g.with 1/2, 0, 0; with 1/2, 0, 0 + 1, 1, 1 = 3/2, 1, 1; or other points
on the rotation axis.
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Problem 1B. Symmetry of the square. For the solution, see p. 74.

Problem 1A, p. 39, dealt with the symmetry of the square, see Fig. 3.4.1.
There are two more questions concerning this problem.

(v) Calculate the matrix–column pairs of the symmetry operations of the square.

(vi) Construct the multiplication table of the group of the square. [The multipli-
cation table of a groupG of orderN is a table withN rows andN columns.
The elements of the group are written on top of the table and on the left side,
preferably in the same sequence and starting with the unit element. In the in-
tersection of theith row and thekth column the productWi Wk is listed for
any pair of indices1 ≤ i, k ≤ N . The complete table is themultiplication
table].

Are there remarkable properties of the multiplication table ?

5.2 The geometric meaning of (W, w)

How can one find the geometric meaning of a matrix–column pair ? Large parts of
the following recipe apply not only to crystallographic symmetry operations but
also to general isometries.

1. One must know the reference coordinate system of the matrix–column pair.
Without this knowledge a geometric evaluation is impossible.

Example. The matrix (in IT A shorthand notation)x−y, x, z describes
a 6–fold anti–clockwise rotation if referred to a hexagonal basis. If referred
to an orthonormal basis it does not describe an isometry at all but contains a
shearing component.

2. The matrix part is evaluated first.

In general the coefficients of the matrix depend on the choice of the ba-
sis; a change of basis changes the coefficients, see Section 5.3.2. However,
there are geometric quantities which are independent of the basis. Corre-
spondingly, there exist characteristic numbers of a matrix from which the
geometric features may be derived andvice versa.

– The preservation of the ‘handedness’ of an object,i. e. the question if
the symmetry operation is a rotation or rotoinversion is a geometric
property. The corresponding property of the matrix is its determinant:

det(W) = +1: rotation; det(W) = −1: rotoinversion.

– Theangle of rotationϕ. It does not depend on the coordinate basis.
The corresponding invariant of the matrixW is thetrace, it is defined
by

tr(W) = W11 + W22 + W33. The rotation angleϕ of the rotation or
of the rotation part of a rotoinversion can be calculated from the trace
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by the formula
cosϕ = (±tr(W) − 1)/2. (5.2.1)

The+ sign is used for rotations, the− sign for rotoinversions.

One can list this correlation in a table

det(W) = +1 det(W) = −1

tr(W) 3 2 1 0 −1 −3 −2 −1 0 1

type 1 6 4 3 2 1̄ 6̄ 4̄ 3̄ 2̄ = m

order 1 6 4 3 2 2 6 4 6 2

.

By this table the type of operation may be found, as far as it is determined by the
matrix part. For example, one takes from the table that a specific operation is a
two–fold rotation but one does not know if the operation is a rotatation or a screw
rotation, what the direction of the rotation axis is and where it is located in space.
This characterization will be done in the following list for thecrystallographic
symmetry operations.

1. Type 1 or̄1: no preferred direction

1 identity(for w = o) or translationfor w 6= o.

The coefficients ofw are the coefficients of the translation vector.
1̄ inversion, coordinates of the inversion centreF

xF =
1
2

w. (5.2.2)

2. All other symmetry operations have a preferred axis (therotationor rotoin-
version axis). The directionu of this axis may be determined from the equa-
tion

W u = ±u. (5.2.3)

The+ sign is for rotations, the− sign for rotoinversions.

For typem, reflections or glide reflections,u is the direction of the normal
of the (glide) reflection plane.

3. If W is the matrix of a rotation of orderk or of a reflection (k = 2), then
Wk = I , and one determines theintrinsic translation part, also calledscrew
part or glide part t/k by

(W, w)k = (Wk, Wk−1w + Wk−2w + . . . + W w+ w) = (I, t) (5.2.4)

to t/k =
1
k

(Wk−1 + Wk−2 + . . . + W + I ) w. (5.2.5)
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The vector with the column of coefficientst/k is called thescrewor glide
vector. This vector is invariant under the symmetry operation:W t/k = t/k:
Indeed, multiplication withW permutes only the terms on the right side of
equation 5.2.5. Thus, the screw vector of a screw rotation is parallel to the
screw axis. The glide vector of a glide reflection is left invariant for the same
reason. Therefore, it is parallel to the glide plane.

If t = o holds, then (W,w) describes arotationor reflection. Fort 6= o, (W, w)
describes ascrew rotationor glide reflection. One forms the so–calledre-
duced operationby subtracting theintrinsic translation partt/k from (W, w):

(I , −t/k)(W, w) = (W, w− t/k) = (W, wlp). (5.2.6)

The columnwlp = w− t/k is called thelocation partbecause it determines
the position of the rotation or screw–rotation axis or of the reflection or
glide–reflection plane in space.

If W is a diagonal matrix,i. e. if only the coefficientsWii are non–zero, then
either isWii = +1 andwi is a screw or glide component, orWii = −1 and
wi is a location component. IfW is not a diagonal matrix, then the location
partwlp has to be calculated according to equation 5.2.6.

4. Thefixed pointsare obtained by solving the equation

W xF + w = xF . (5.2.7)

Equation (5.2.7) has a unique solution for all rotoinversions (including1̄,
excluding2̄ = m). There is a 1–dimensional set of solutions for rotations
(the rotation axis) and a 2–dimensional set of solutions for reflections (the
mirror plane). For screw rotations and glide reflections, there are no solu-
tions: there are no fixed points. However, a solution is found for the reduced
operation,i. e. after subtraction of the intrinsic translation part, by equation
5.2.8

WxF + wlp = xF . (5.2.8)

The formulae of this section enable the user to find the geometric contents of any
symmetry operation. In reality, IT A have provided the necessary information for
all symmetry operations which are listed in the plane–group or space–group tables.
The entries of the General position are numbered. The geometric meaning of these
entries is listed under the same number in the blockSymmetry operationsin the
tables of IT A. The explanation of the symbols for the symmetry operations is
found in Sections 2.9 and 11.2 of IT A.

The section shall be closed with an exercise.
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Problem 2B. Symmetry described by matrix–column pairs.
For the solution, see p. 76.

The matrix–column pairs (A,a), (B, b) (C, c) and (D, d) have been listed or derived
in Problem 2A, p. 49, which dealt with their combination and reversion.

Question

(viii) Determine the geometric meaning of the matrix–column pairs

(A,a), (B, b), (C, c) and (D, d).

5.3 Coordinate transformations

There are several reasons to change the coordinate system. Some examples for
such reasons are the following:

1. If one and the same crystal structure is described in different coordinate
systems by different authors, then the structural datae. g.lattice parameters,
atomic coordinates, or displacement parameters (thermal parameters) have
to be transformed to the same coordinate system in order to be comparable.
The same holds for the comparison of related crystal structures.

2. In phase transitions frequently the phases are related by their symmetries,
e. g.in phase transitions of the second order. Often the conventional setting
of the new phase is different from that of the original one. Then a change
of the coordinate system may be necessary in order to find the structural
changes which are connected with the phase transition.

3. In the physics of macroscopic crystals (thermal expansion, dielectric con-
stant, elasticity, piezoelectricity,etc.) the properties are described mostly
relative to an orthonormal basis. Therefore, for physical calculations the di-
rection and Miller indicesetc.have to be transformed from the conventional
crystallographic to an orthonormal basis.

4. In IT A, 44 space–group types are described in more than one conventional
coordinate system. The transition from one description to the other may be
necessary and needs coordinate transformations.

For these and other reasons either the origin or the basis of the coordinate system
or both may have to be changed. The necessary tools for these manipulations are
developed in this section.

5.3.1 Origin shift

At first the consequences of an origin shift are considered. We start from Fig. 1.4.1
on p. 11 whereO is the origin with the zero columno as coordinates, andX is
a point with coordinate columnx. The new origin isO′ with coordinate column
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(referred to the old origin)o′ = p, whereasx′ are the coordinates ofX with respect
to the new originO′. This nomenclature is consistent with that of IT A, see Section
5.1 of IT A.
For the columns,p + x′ = x holds, or

x′ = x − p. (5.3.1)

This can be written in the formalism of matrix–column pairs as

x′ = (I , −p) x or x′ = (I , p)−1 x. (5.3.2)

[It may look strange to write the simple equation (5.3.1) in the complicated form
of (5.3.2). The reason will become apparent later in this section].

Equation (5.3.2) can be written in augmented matricesx
′ = P

−1
x with

P =




1 0 0 p1

0 1 0 p2

0 0 1 p2

0 0 0 1


 . A distance vectorr =




r1

r2

r3

0


 is not changed by

the transformationr′ = P
−1

r because the columnp is not effective, see Sections
4.3 and 4.4.

How do the matrix and column parts of an isometry change if the origin is shifted ?
In the old coordinate system̃x = (W, w) x holds, in the new one is̃x′ = (W′, w′) x′.
By application of equation (5.3.2) one obtains

(I , p)−1 x̃ = (W′, w′) (I , p)−1 x or x̃ = (I , p)(W′, w′)(I , p)−1x.

Comparison with̃x = (W, w)x yields

(I , p)(W′, w′)(I , p)−1 = (W, w) or

(W′, w′) = (I , p)−1(W, w)(I , p). (5.3.3)

This means for the matrix and column parts of the pair(W′, w′)

W’ = W, w′ = w + Wp− p or w′ = w + (W − I ) p. (5.3.4)

Conclusion. A change of origin does not change the matrix part of an isometry.
The change of the columnw does not only depend on the shiftp of the origin, but
also on the matrix partW.

How is a screw or glide component changed by an origin shift,i. e. what happens
if one replaces in(W, w)k of equation 5.2.4 the columnw by w′ = w+(W− I ) p ?
The answer is simple: the additional term

(Wk−1 + Wk−2 + . . . + W + I ) (W − I ) p does not contribute because

(Wk−1 + Wk−2 + . . . + W + I ) W = (Wk−1 + Wk−2 + . . . + W + I ) I .
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An origin shift does not change the screw or glide component of a symmetry op-
eration. The component(W − I ) p is the component ofp which is vertical to the
screw–rotation or rotation axis or to the mirror or glide plane. It causes only a
change of the location partwlp of the symmetry operation.

5.3.2 Change of basis

A change of basis is mostly described by a(3 × 3) matrix P by which the new
basis vectors are given as linear combinations of the old basis vectors:

(a′
1, a′

2, a′
3) = (a1, a2, a3)P or (a′)

T
= (a)

T
P. (5.3.5)

For a pointX , the vector
−→
OX= x is

x = a1x1 + a2x2 + a3x3 = a′
1x

′
1 + a′

2x
′
2 + a′

3x
′
3 or x = (a)

T
x = (a′)

T
x′.

By inserting equation (5.3.5) one obtains

x = (a)
T

x = (a)
T

P x′ or x = P x′, i. e.

x′ = P−1x = (P, o)−1x. (5.3.6)

The transformation of an isometry follows from equation (5.3.6)

and from the relatioñx′ = (W′, w′)x′ by comparison withx̃ = (W, w)x:

(P, o)−1x̃ = (W′, w′)(P, o)−1x or x̃ = (P, o)(W′, w′)(P, o)−1x →
(W, w) = (P, o)(W′, w′)(P, o)−1 or

(W′, w′) = (P, o)−1(W, w)(P, o). (5.3.7)

From this follows
W′ = P−1W P and w′ = P−1w. (5.3.8)

Example

In Fig. 1.5.2 on p. 13 the conventional and a primitive basis are defined for a
plane group of the rectangular crystal system. If(a)T is the conventional,(a′)T the
primitive basis, then

P =

(
1/2 1/2

−1/2 1/2

)
. One findsP−1 =

(
1 1̄
1 1

)
either by trial and error or

with equation (2.6.1) on p. 28.

For the coordinates,x′ = P−1 x or x′ = x−y, y′ = x+y holds. The conventional
coordinates 1, 0 of the endpoint ofa become 1, 1 in the primitive basis; those of the
endpoint 1/2, 1/2 ofb′ become 0, 1; those of the endpoint 0, 1 ofb become−1, 1.
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If the endpoints of the lattice–translation vectors of Fig. 1.5.2 on p. 13, and those of
their integer linear combinations are marked with points, apoint latticeis obtained.

Suppose, the origin is in the upper left corner of the unit cell of Fig. 1.5.2. Then,
the reflection through the line ‘a’ is described by the matrix–column pair

(W1, w1) =
(

1 0
0 1̄

)
,

(
0
0

)
;

the reflection through the parallel line through the endpoint of the vector

b′ is described by (W2, w2) =
(

1 0
0 1̄

)
,

(
0
1

)
.

Then, W′
1 =

(
1 1̄
1 1

) (
1 0
0 1̄

) (
1/2 1/2

−1/2 1/2

)
=

(
0 1
1 0

)
.

The columnw′
1 is theo column becausew1 is theo column. According to equation

(5.3.8),

the columnw′
2 is obtained fromw2 by w′

2 =
(

1 1̄
1 1

) (
0
1

)
=

(
1̄
1

)
.

Indeed, this is the image of the origin, expressed in the new basis. All these results
agree with the geometric view.

5.3.3 General coordinate transformations

In general both the origin and the basis have to be changed. One can do this in two
different steps. Because the origin shiftp is referred to the old basis(a)T, it has to
be performed first:

x′ = (P, o)−1(I , p)−1x = ((I , p)(P, o))−1 x = (P, p)−1x, (5.3.9)

using ((I , p)(P, o))−1 = (P, o)−1(I , p)−1.

In the usual way one concludes from equation (5.3.9) together with

x̃ = (W, w) x andx̃′ = (W′, w′) x′ :

(P, p)−1x̃ = (W′, w′) (P, p)−1 x or x̃ = (P, p)(W′, w′)(P, p)−1x.

Finally, (W′, w′) = (P, p)−1(W, w) (P, p) is obtained,i. e. (5.3.10)

W′ = P−1W P andw′ = −P−1p + P−1w + P−1W p. (5.3.11)

The second equation may be written

w′ = P−1(w + (W − I )p). (5.3.12)

From equation 5.3.11 one obtains the equations (5.3.4) and (5.3.8) as special cases.
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In (4 × 4) matrices the equation (5.3.10) is written
(with (P, p)−1 → P

−1, (W, w) → W and(P, p) → P)

W
′ = P

−1
WP. (5.3.13)

This shape of equation (5.3.10 ) facilitates the formulation but not the actual cal-
culation. For the latter, the forms 5.3.11 or 5.3.12 are more appropriate.
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x
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Fig. 5.3.3 Diagram of ‘mapping of mappings’.

The formalism of transformations can be displayed by the diagram of Fig. 5.3.3.
The pointsX (left) andX̃ (right) are represented by the original coordinatesx und
x̃ (top) and the new coordinatesx′ undx̃′ (bottom). At the arrows the corresponding
transformations are denoted. They describe from left to right a mapping, from
top to bottom the change of coordinates. Equation 5.3.10 is read from the figure
immediately: On the one hand one readsx̃′ = (W′, w′)x′ along the lower edge;
on the other hand taking the way up→ left → down one finds

x̃′ = (P, p)−1x̃ = (P, p)−1(W, w)x = (P, p)−1(W, w)(P, p)x′.

Both ways start at the same point and end at the same point. Therefore, the one way
can be equated to the other, and herewith equation 5.3.10 is derived in a visual way.

Remark. If there are different listings of the same crystal structure or of a set of
related crystal structures, it is often not sufficient to transform the data to the same
coordinate system. Even after such a transformation the coordinates of the atoms
may be incomparable. The reason is the following:
In IT A for each (general or special) Position thefull setof representatives(W, w◦)
is listed, see the table in Section 4.6. After insertion of the actual coordinates one
has a set of triplets of numbers, 24 (including the centring) in the table of Section
4.6.Any oneof these representatives may be chosen to describe the structure in a
listing; the others can be generated from the selected one. The following Problem



5.3 Coordinate transformations 71

shows that different choices happen in reality. For a comparison of the structures
it is then necessary to choose for the descriptioncorrespondingatoms in the struc-
tures to be compared.

Problem 3. Change of the coordinate system.
For the solution, see p. 77.

In R. W. G. Wyckoff,Crystal structures, vol. II , Ch. VIII, one finds the important
mineral zirconZrSiO4 and a description of its crystal structure under (VIII, a 4)
on text p. 5, table p. 9 and Figure VIII A, 4. Many rare-earth phosphates, arsen-
ates and vanadates belong to the same structure type. They are famous for their
interesting magnetic properties.

Structural data: Space groupI41/amd = D19
4h, No. 141;

lattice parametersa = 6.60Å; c = 5.88Å.
The origin choice is not stated explicitly. However, Wyckoff’sCrystal Structures
started to appear in 1948, when there was one conventional origin only (the later
ORIGIN CHOICE 1,i. e.Origin at 4̄m2).

Zr : (a) 0, 0, 0; 0, 1
2 , 1

4 ; 1
2 , 0, 3

4 ; 1
2 , 1

2 , 1
2 ;

Si : (b) 0, 0, 1
2 ; 0, 1

2 , 3
4 ; 1

2 , 0, 1
4 ; 1

2 , 1
2 , 0;

O : (h) (0, u, v; 0, ū, v; u, 0, v̄; ū, 0, v̄; 0, 1
2 + u, 1

4 − v; 0, 1
2 − u, 1

4 − v;
ū, 1

2 , v + 1
4 ; u, 1

2 , v + 1
4 ; ) [ and the same with(1

2 , 1
2 , 1

2 )+ ].

The parametersu andv are listed withu = 0.20 andv = 0.34.

In theStructure Reports, vol. 22, (1958), p. 314 one finds:

‘a = 6.6164(5)Å, c = 6.0150(5)Å’
‘Atomic parameters. Origin at centre (2/m) at0, 1̄

4 , 1
8 from 4̄m2.’

‘Oxygen: (0, y, z) with y = 0.067,z = 0.198.’

In order to compare the different data, the parameters of Wyckoff’s book are to be
transformed to ‘origin at centre 2/m’, i. e. ORIGIN CHOICE 2.

Questions

(i) What are the new coordinates of theZr atoms ?
(ii) What are the new coordinates of theSi atoms ?
(iii) What are the new coordinates of theO atom at0, u, v ?
(iv) What are the new coordinates of the otherO atoms ?

For a physical problem it is advantageous to refer the crystal structure onto a prim-
itive cell with origin in 2/m. The choice of the new basis is
a′ = a; b′ = b; c′ = 1

2 (a + b + c).
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Questions

(v) What are the new coordinates of the firstZr atom ?
(vi) What are the new coordinates of the firstSi atom ?
(vii) What are the new coordinates of theO atom originally at 0,u, v ?
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6 Solution of the exercises

6.1 Solution of problem 1

Solution 1A. Symmetry of the square.For the problems, see p. 39.

Answers
(i) The symmetry operations of the square are:

(a) the mapping1 −→ 1, 2−→ 2, 3−→ 3 and4−→ 4;

(b) the mapping1 −→ 3, 2−→ 4, 3−→ 1 and4−→ 2;

(c) the mapping1 −→ 2, 2−→ 3, 3−→ 4 and4−→ 1;

(d) the mapping1 −→ 4, 2−→ 1, 3−→ 2 and4−→ 3;

(e) the mapping1 −→ 2, 2−→ 1, 3−→ 4 and4−→ 3;

(f) the mapping1 −→ 4, 2−→ 3, 3−→ 2 and4−→ 1;

(g) the mapping1 −→ 3, 3 −→ 1, which maps the points2 and4 onto
themselves (leaves them invariant);

(h) the mapping2 −→ 4, 4 −→ 2, which maps the points1 and3 onto
themselves (leaves them invariant).

(ii) The symmetry operations are, respectively:

(a) the identity operation 1, (b) the two-fold rotation 2,

(c) the four-fold rotation 4 =4+ (anti-clockwise),

(d) the four-fold rotation43 = 4−1 = 4− (clockwise),

(e) the reflectionmx in the linemx,

(f) the reflectionmy in the linemy,

(g) the reflectionm+ in the linem+,

(h) and the reflectionm− in the linem−.

(iii) The orders of these symmetry operations are, respectively:

1, 2, 4, 4, 2, 2, 2 and 2.

(iv) There are altogether eight symmetry operations.
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Solution 1B. Symmetry of the square.For the problems, see p. 63.

Answers
(v) The determination of the matrix–column pairs is particularly easy because

the originO is a fixed point under all symmetry operations of the square.
Therefore, for all of themw = o holds. The images of the coordinate points
1, 0 and 0, 1 and their coordinates are easily found visually. The matrices
are:

1 =
(

1 0
0 1

)
, 2 =

(
1̄ 0
0 1̄

)
, 4+ =

(
0 1̄
1 0

)
, 4− =

(
0 1
1̄ 0

)
,

mx =
(

1̄ 0
0 1

)
, my =

(
1 0
0 1̄

)
, m+ =

(
0 1̄
1̄ 0

)
, m− =

(
0 1
1 0

)
.

(vi) The multiplication table of the group of the square is

1 2 4 4−1 mx m+ my m−
1 1 2 4 4−1 mx m+ my m−
2 2 1 4−1 4 my m− mx m+

4 4 4−1 2 1 m+ my m− mx

4−1 4−1 4 1 2 m− mx m+ my

mx mx my m− m+ 1 4−1 2 4
m+ m+ m− mx my 4 1 4−1 2
my my mx m+ m− 2 4 1 4−1

m− m− m+ my mx 4−1 2 4 1

.

Remarkable properties of the multiplication table are

1. If there is a ‘1’ in the main diagonal of the table, then the element is the unit
element or has order 2 andvice versa. This is easy to see.

2. One finds that in each row and in each column each element of the group
occurs exactly once. This is a property of the multiplication table of any
group. It is not difficult to prove but the proof needs elementary group theory.
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6.2 Solution of problem 2

Solution 2A. Symmetry described by matrices.
For the problems, see p. 75.

Answers

(i) (B, b)(A, a): B A =


 1 0 0

0 0 1̄
0 1 0


, B a =


 1/2

1/2
1/2


,

B a + b = B a for b = o.

Therefore, (B A, B a + b) = (C, c) =


 1 0 0

0 0 1̄
0 1 0


,


 1/2

1/2
1/2


.

(ii) Analogously one calculates

(A, a) (B, b) = (D, d) =


 0 0 1

0 1 0
1̄ 0 0


 ,


 1/2

1/2
1/2


.

(iii) (A, a)−1 =


 0 1 0

1 0 0
0 0 1̄


 ,


−1/2

−1/2
1/2


.

(iv) (B, b)−1 =


 0 0 1

1 0 0
0 1 0


,


 0

0
0


.

(v) (C, c)−1 =


 1 0 0

0 0 1
0 1̄ 0


,


 −1/2

−1/2
1/2


.

(vi) (D, d)−1 =


 0 0 1̄

0 1 0
1 0 0


 ,


 1/2

−1/2
−1/2


.

(vii) (B, b)−1 (A, a)−1 =


 0 0 1̄

0 1 0
1 0 0


 ,


 1/2
−1/2
−1/2


 = (D, d)−1 6= (C, c)−1.

Note, that (B, b)−1 (A, a)−1 = [(A, a) (B, b)] −1 = (D, d)−1.
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Solution 2B. Symmetry described by matrices.
For the problem, see p. 66.

Answer
(viii) We follow the procedure described in Section 5.2.

From the matrix parts the ‘types’ of the
operations are determined by the deter-
minants and traces:

A B C D
det +1 +1 +1 +1
tr 1̄ 0 1 1

type 2 3 4 4

All the matrices are those
of rotations. The directions
[u v w] of the rotation axes
are determined by applying
equation (5.2.3):

A B C D
u = v u = v u = u u = w
v = u v = w v = −w v = v
w = −w w = u w = v w = −u

[1 1 0] [1 1 1] [1 0 0] [0 1 0]

It is more or less a matter of taste and experience if one continues with
the calculation of the screw part (possiblyo) by equation 5.2.5 or if one
calculates the (possibly non–existing) fixed points by equation 5.2.7. If the
order of the matrix is low then the calculation of the screw part is not so
costly as if the order is high. If the screw part turns out to beo or if there are
no fixed points then the calculation was not quite in vain because one then
knows that the other way will be successful.

‘Obviously’ the pair (B, b) describes a rotation because the columnw = o
indicates the originO to be a fixed point. Solution: (B,b) describes a 3–fold
rotation with rotation axis [1 1 1] and the pointsx, x, x (including 0, 0, 0) as
fixed points.

We decide to calculate the screw parts in all other cases. Because of the order
2, the calculation for (A,a) is short. The pairs (C,c) and (D,D) cannot have
fixed points because in both cases a ‘+1’ in the main diagonal is combined
with a non-zero coefficientwi in the column. Thiswi is a screw coefficient,
see the remark on diagonal matrices in Section 5.2. We start with (A,a).

1
2




 0 1 0

1 0 0
0 0 1̄


+


 1 0 0

0 1 0
0 0 1








 1/2

1/2
1/2


=1

2


 1 1 0

1 1 0
0 0 0





 1/2

1/2
1/2


=


 1/2

1/2
0




is the screw part of (A, a).

The reduced operation is(A, alp) =


 0 1 0

1 0 0
0 0 1̄


 ,


 0

0
1/2


 .

Equation 5.2.8 yieldsyF = xF , xF = yF ,−zF + 1/2 = zF and the fixed
pointsx, x, 1/4, with arbitraryx. The fixed points are not really fixed points
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of the symmetry operation but are the coordinates of the screw–rotation axis
21.

The calculation for (C, c) is a bit more lengthy:

t
4 = 1

4




 1 0 0

0 0 1
0 1̄ 0


+


 1 0 0

0 1̄ 0
0 0 1̄


+


 1 0 0

0 0 1̄
0 1 0


+


 1 0 0

0 1 0
0 0 1








 1/2

1/2
1/2


 =

=1
4


 4 0 0

0 0 0
0 0 0





 1/2

1/2
1/2


 =


 1/2

0
0


 .

The symmetry operation is a 4–fold screw rotation withHM symbol42.

The points of the screw axis are determined by equation 5.2.8 again:

xF = xF , −zF + 1/2 = yF , yF + 1/2 = zF result inx, 0, 1/2 with
arbitraryx.

Analogously one determines (D, d) to describe a 4–fold screw rotation42,
the screw axis in1/2, y, 0, with arbitraryy.

6.3 Solution of problem 3

Solution 3. Change of the coordinate system.
For the problem, see p. 71.

The new originO′ has the coordinatesp = 0, 1̄
4 , 1

8 referred to the present origin

O. Therefore, the change of coordinates consists of subtracting 0,1̄
4 , 1

8 from the old
values,i. e. leave thex coordinate unchanged, add14 = 0.25 to they coordinate,
and subtract18 = 0.125 from thez coordinate.

Answers
The new coordinates are

(i) Zr : (a) 0, 1
4 , 1̄

8 ∼ 7
8 ; 0, 3

4 , 1
8 ; 1

2 , 1
4 , 5

8 ; 1
2 , 3

4 , 3
8 ;

(ii) Si : (b) 0, 1
4 , 3

8 ; 0, 3
4 , 5

8 ; 1
2 , 1

4 , 1
8 ; 1

2 , 3
4 , 1̄

8 ∼ 7
8 ;

(iii) O : (h) 0, 0.20 + 0.25, 0.34 − 0.125 = 0, 0.45, 0.215.

This oxygen atom is obviously not the one (0, 0.067,0.198) listed by the
Structure Reportsbut must be a symmetrically equivalent one. Therefore,
it is necessary to determine also the new coordinates of the other oxygen
atoms.
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(iv) O : (h) The coordinates of the other oxygen atoms are (normalized0 ≤
xi < 1):

0, 0.05, 0.215 0.20, 0.25, 0.535 0.80, 0.25, 0.535 0, 0.95, 0.785
0, 0.55, 0.785 0.80, 0.75, 0.465 0.20, 0.75, 0.465, all also with
(1
2 , 1

2 , 1
2 ) + .

The first one of these oxygen atoms corresponds to the one representing the
results of the later refinement with higher accurancy. TheSi−O distance is
reduced from 1.62̊A to 1.61Å.

Answers
The change of basis to the primitive cell is described by the matrix

P =


 1 0 1/2

0 1 1/2
0 0 1/2


.

One determines the inverse matrixP−1 =


 1 0 1̄

0 1 1̄
0 0 2


 ,

by which the coordinates are transformed using the formula (5.3.6):
x′ = P−1x. The coordinatesx are those referred to the origin in2/m.

(v) The new coordinates of the firstZr atom are

0 − 7
8 , 1

4 − 7
8 , 2 · 7

8 ∼ 1
8 , 3

8 , 3
4 .

(vi) The new coordinates of the firstSi atom are

0 − 3
8 , 1

4 − 3
8 , 2 · 3

8 ∼ 5
8 , 7

8 , 3
4 .

(vii) The new coordinates of the firstO atom are

0 − 0.215, 0.45 − 0.215, 2 · 0.215 ∼ 0.785, 0.235, 0.430.
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proper, 32
second kind, 32
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