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Gapped Ground State Phases

Quantum lattice models are used to investigate and classify phases of quantum
matter, including topological phases.

There is a major distinction between gapped and gapless phases, and so determining if
a model has a gap is one of the first important questions to settle.

However, proving a nonvanishing gap above the ground state energy is notoriously
difficult to determine.

Photo Credit: Lucy Reading-Ikkanda for Quanta Magazine, adapted from Xiao-Gang Wen
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Quantum Spin Systems

A quantum spin system (QSS) is a many-body model defined on a lattice Γ where
each vertex x ∈ Γ has only dx linearly-independent states, i.e. Hx = Cdx .

For example, dx = 2sx + 1 if x represents a particle of spin sx .
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These models are initially only well-defined for
finite subsets of Λ ⊆ Γ:

HΛ =
⊗
x∈Λ

Hx , AΛ =
⊗
x∈Λ

Mdx (C)

For each finite X ⊂ Γ fix an interaction term:

Φ(X )∗ = Φ(X ) ∈ AX .

The Hamiltonian HΛ ∈ AΛ and Heisenberg dynamics τΛt : AΛ → AΛ are defined as

HΛ =
∑
X⊆Λ

Φ(X ), τΛt (A) = e itHΛAe−itHΛ

Note: AX ↪→ AΛ via A 7→ A⊗ 1lΛ\X . The set of possible energies is spec(HΛ):

E0
Λ < E1

Λ < E2
Λ < . . .
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Ground States and the Spectral Gap

Finite Volume Gap: The ground state space, denoted GΛ, is the eigenspace associated
with the ground state energy, E0

Λ . A QSS is uniformly gapped if there is a sequence
Λn ↑ Γ such that

γ = inf
n
gap(HΛn ) > 0, where gap(HΛn ) = E1

Λn
− E0

Λn
.

Λ1

Λ2

Λ3

Infinite System: The C∗-algebra of quasi-local observables is

AΓ = Aloc

∥·∥
, Aloc =

⋃
Λ finite

AΛ.

A weak-* limit ω : AΓ → C of finite volume ground state functionals ωn(A) = Tr(ρnA),
ranρn ⊆ GΛn , is gapped if the associated GNS Hamiltonian Hω ≥ 0 is gapped, i.e.

gap(Hω) := sup{δ > 0 | (0, δ) ∩ spec(Hω) = ∅} > 0.

Well-known: Under mild assumptions on the interaction gap(Hω) ≥ infn gap(HΛn ).



6

Why is the Gap so Important?

Implications of a nonvanishing ground state gap:

(1) Exponential decay of spin correlations in ground states: [Hastings, Koma ’06],
[Nachtergaele, Sims ’06]

(2) Adiabatic theorems for ground states: [Bachmann, De Roeck, Fraas ’17],
[Monaco, Teufel ’19], [Henheik, Teufel. ’22].

(3) The split property for quantum spin chains: [Matsui ’10, ’13]

(4) Proof of quantization of Hall conductance for interacting electrons on torus:
[Hastings, Michalakis ’15], [Bachmann, Bols, De Roeck, Fraas ’18]

In addition, many properties exhibited by gapped models are stable under small
perturbations. [Mariën, Audenaert, Acoleyen, Verstraete ’16], [Cha, Naaijkens,
Nachergaele ’18], [Nachtergaele, Sims, Y. ’22]

While the importance of the spectral gap is well known, very few rigorous proving a
nonvanishing gap are actually known, especially for multi-dimensional lattices.

Moreover, the spectral gap question is generically undecidable [Cubitt, Pérez-Garćıa,
Wolf, ’15] [Bausch, Cubitt, Lucia, Pérez-Garćıa, ’18].
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Gapped Ground State Phase
A uniform gap is too strong for defining a gapped ground state phase. This can be
relaxed to allow for finite volume excited states that converge to infinite volume
ground states on Γ.

s

λ(s)

E0
Λn

E1
Λn

γ

1

[Chen, Gu, Wen ’10, ’11]Two quantum spin interactions Φ0 and Φ1 are in the same
gapped ground state phase if there exists a path of interactions Φ(r), r ∈ [0, 1], and
sequence of finite volume Λn ↑ Γ so that

1. Φ(X , 0) = Φ0(X ) and Φ(X , 1) = Φ1(X ) for every finite X ⊆ Γ.

2. Φ(X , r) is piece-wise differentiable on (0, 1) and continuous on [0, 1] for each
finite X ⊆ Γ.

3. There exists γ > 0 and ϵn(r) ↓ 0 as n → ∞ so that

spec(HΛn (r)) ⊆ [E0
Λn
(r),E0

Λn
(r) + ϵn(r)] ∪ [E0

Λn
(r) + ϵn(r) + γ,∞)
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Example: The Heisenberg Model and Haldane’s Conjecture

Fix s ∈ N/2. For J = (J1, J2) ∈ R2 with ∥J∥ = 1 define

H
(s)
N (J) =

N−1∑
x=1

J1(Sx · Sx+1) + J2(Sx · Sx+1)
2, Sx · Sx+1 =

∑
j=1,2,3

S j
x ⊗ S j

x+1

Haldane’s Conjecture ’83: There exists ϵ(s) > 0 so that if ∥J − (1, 0)∥ < ϵ(s), then
the model H(s)(J) has a unique infinite volume ground state ω : AZ → C, and

1. s ∈ N : The model is gapped and ω has exponential decaying correlations.

2. s ∈ N
2
\ N : The model is gapless and ω has power-law decaying correlations.

For s ∈ N
2
\ N, this was not surprising:

1. [Bethe ’31], [Lieb, Schultz, Mattis ’61] Heisenberg-1/2 model is gapless.

2. [Affleck, Lieb ’86] For any s: either non-unique infinite volume ground state, or
unique, gapless ground state.



9

The Heisenberg Model and Haldane’s Conjecture

Figure: Phase diagram of antiferromagnetic, SU(2) symmetric, spin-1 chains. Credit: B.
Nachtergaele.

Haldane’s Conjecture ’83: There exists ϵ(s) > 0 so that if ∥J − (1, 0)∥ < ϵ(s), then
the model H(s)(J) has a unique infinite volume ground state ω : AZ → C, and
1. s ∈ N : The model is gapped and ω has exponential decaying correlations.

2. s ∈ N
2
\ N : The model is gapless and ω has power-law decaying correlations.

The conjecture for integer s, and in particular s = 1, was unexpected. For s = 1 :

1. [Renard et. al. ’87] Experimental evidence.

2. [Affleck, Kennedy, Lieb and Tasaki ’87, ’88] Proved properties when J2/J1 = 1/3.

3. [White ’92] Numerical evidence for Heisenberg model via DMRG (i.e. J2/J1 = 0).
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Phases of Quantum Matter
Typical strategy for analyzing gapped ground state phases:

1. Prove gap for model HΛ conjectured to be typical of a phase.

2. Prove the gap is stable under small perturbations: HΛ(s) = HΛ + sVΛ gapped for
|s| << 1.

3. Refine phase classification by requiring other properties shared, e.g. entanglement
structure: [Naaijkens, Ogata ’22], symmetry protected phases: [Pollmann,
Turner, Berg, Oshikawa ’10, ’12], [Ogata ’18-’21], [Bourne, Schulz-Baldes ’20],
[Sopenko ’21], [Tasaki ’25].

Photo Credit: Lucy Reading-Ikkanda for Quanta Magazine, adapted from Xiao-Gang Wen



11

Uniform Gap Stability
We consider gap stability for a sequence of perturbed Hamiltonians

HΛn (s) = HΛn + sVΛn , s ∈ R

VΛn =
∑
X⊆Λ

vX , ∥vX ∥ → 0 as diam(X ) → ∞

for which γ0 := infn≥1 gap(HΛn ) > 0.

s

λ(s)

E0
Λn

E1
Λn

γ

s
(n)
γ

The spectral gap is stable if for all 0 < γ < γ0,

sγ := inf
n≥1

s
(n)
γ > 0.
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Form Bound Implies Gap Estimate

Theorem (Persistence of Gaps): Let H be a densely defined self adjoint operator on a
complex Hilbert space H with domain D and spectral gap

(0, γ) ∩ spec(H) = ∅.

Suppose V is a self-adjoint operator on H with D ⊆ dom(V ). If there are constants
ϵ ≥ 0 and β ∈ [0, 1) such that

|⟨ψ|Vψ⟩| ≤ ϵ∥ψ∥2 + β⟨ψ|Hψ⟩ ∀ψ ∈ D

then:
spec(H + sV ) ∩

(
sϵ, (1− sβ)γ − sϵ

)
= ∅.

Note: In the case of uniform stability, have HΛn and VΛn , but want to find ϵ and β
independent of Λn.

For quantum lattice models, there are various approaches for proving gap stability via
form bounds for wide classes of perturbations, including

1. Cluster expansion: [Yarotsky, ’06], [De Roeck, Salmhofer ’19]

2. Quasi-adiabatic continuation: [Bravyi, Hastings, Michalakis, ’10], [Michalakis,
Zwolak ’13], [Nachtergaele, Sims, Y. ’22, ’23]

3. Lie-Schwinger Diagonalization: [Fröhlich, Pizzo ’20] [Del Vecchio, Fröhlich,
Pizzo, Rossi ’21]
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BHM Stability Strategy

Ground State Indistinguishability (LTQO): There is a decay function Ω so that for any
observable A ∈ Abx (k) there is a constant C(A) so that for m ≥ k

∥Gbx (m)AGbx (m) − C(A)Gbx (m)∥ ≤ ∥A∥Ω(m − k) → 0, as m → ∞ (1)

where Gbx (m) is the orthogonal projection onto ker(Hbx (m)).

• • • • • • • • • • •
x

A

Gbx (m)

For a uniformly gapped Hamiltonian, we say the ground states are sufficiently
indistinguishable (or satisfy LTQO) if (1) holds and

∑
k≥0 k

3ν/2Ω(k) <∞, where ν is
the spatial dimension.

Theorem: [Bravyi, Hastings, Mickalakis ’10], [Michalakis, Zwolak ’13], [Nachtergaele,
Sims, Y. ’22] Let h be a uniformly gapped, frustration-free interaction whose ground
states are sufficiently indistinguishable. Then, the spectral gap is stable for any
perturbation satisfying

∥vX ∥ ≤ e−a diam(X )θ for some a > 0, θ ∈ (0, 1].
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BHM Stability Strategy

Ground State Indistinguishability (LTQO): There is a decay function Ω so that for any
observable A ∈ Abx (k) and m ≥ k

∥Gbx (m)AGbx (m)−ω(A)Gbx (m)∥ ≤ |bx (k)|∥A∥Ω(m−k) → 0, as m → ∞ (1)

where Gbx (m) is the orthogonal projection onto ker(Hbx (m)).

• • • • • • • • • • •
x

A

Gbx (m)

For a uniformly gapped Hamiltonian, we say the ground states are sufficiently
indistinguishable (or satisfy LTQO) if (1) holds and

∑
k≥0 k

3ν/2Ω(k) <∞, where ν is
the spatial dimension.

Theorem: [Bravyi, Hastings, Mickalakis ’10], [Michalakis, Zwolak ’13], [Nachtergaele,
Sims, Y. ’22] Let h be a uniformly gapped, frustration-free interaction whose ground
states are sufficiently indistinguishable. Then, the spectral gap is stable for any
perturbation satisfying

∥vX ∥ ≤ e−a diam(X )θ for some a > 0, θ ∈ (0, 1].
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Results on LTQO

Results utilizing LTQO:

1. [Cubitt, Lucia, Michalakis, Perez-Garcia ’15]: Stability of local quantum
dissipative systems

2. [Cha, Naaijkens, Nachtergaele ’22]: Stability of superselection sectors.

3. [Movassagh, Ouyang ’24]: Realizing quantum codes constructed from classical
codes as ground states of local Hamiltonians.

4. [Jones, Naaijkens, Penneys, Wallick ’23], [Jones, Naaijkens, Penneys ’25]:
Boundary algebras describing holomorphic dual of bulk topological order.

Gapped models with LTQO:

1. [Nachtergaele, Sims, Y. ’22]: Spin chains with matrix product ground states
(including AKLT model, XXZ model, PVBS model,. . . )

2. [Bravyi, Hastings, Michalakis ’10], [Cui et. al. ’19], [ Qiu, Wang ’20]: Spin
models with commuting interactions (e.g. Kitaev’s Quantum Double models,
String net models, etc.)

3. [Bachmann, Hamza, Nachtergaele, Y. ’14]: d-dimensional, single species PVBS
models

4. [Lucia, Y. ’23], [Lucia, Moon, Y. ’24]: AKLT models on sufficiently decorated
(hybrid) multi-dimensional lattices and graphs

What about other multi-dimensional models with non-commuting interactions?
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A Brief History: Gaps and Gap Stability of the AKLT Model

HHeis
[1,L] =

L−1∑
x=1

Sx · Sx+1, H[1,L] =
L⊗

x=1

C3

HAKLT
[1,L] =

L−1∑
x=1

1

3
1l+

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)

2 =

L−1∑
x=1

P
(2)
x,x+1

[Affleck, Kennedy, Lieb, Tasaki (AKLT) ’88]: Introduced a perturbation of the spin-1
Heisenberg AF chain and showed it belonged to the Haldane phase. Generalized
model to other lattices and conjectured that the hexagonal lattice model is gapped.

[Kennedy, Lieb, Tasaki (KLT) ’88] Proved the hexagonal model had a unique
infinite-volume ground state with exponential decay of correlations.

[Pomata, Wei ’ 20], [Lemm, Sandvik, Wang ’20]: Provided strong evidence of the gap
for the hexagonal model.

[Yarotsky ’04], [Nachtergaele, Sims, Y. ’21], [Del Vecchio, Fröhlich, Pizzo, Ranallo
’23]: Gap stability of the AKLT spin chain using various methods (cluster expansions,
LTQO, Lie-Schwinger diagonalization scheme).

[Abdul-Rahman, Lemm, Lucia, Nachtergaele, Y. ’20], [Lucia, Y. ’23] Spectral gap of
decorated AKLT models, including hexagonal model with d ≥ 3.

[Lucia, Moon, Y. ’24] Gap stability for AKLT model on decorated hexagonal lattice
with decoration parameters d ≥ 5. Proved by using cluster expansions to verify LTQO.
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Generalized AKLT Models

Figure: Valence Bond State description of the AKLT ground states and the 2-decorated hexagonal lattice. Photo
Credit: [AKLT, ’88], [ALLNY ’20]

General AKLT Model [AKLT ’88] For any site x ∈ Γ, a lattice, let Hx = C2sx+1 where
sx = deg(x)/2. Then, for any finite subset Λ ⊆ Γ, define

HΛ =
∑
edge

e={x,y}∈Λ

P
(sx+sy )
e , HΛ =

⊗
x∈Λ

Hx , AΛ = B(HΛ)

where P
(sv+sw )
e projects onto the subspace of total spin-(sv + sw ) of Hv ⊗Hw .

Clebsch-Gordon Series: Recall the (2sx + 1)-dimensional irrep of SU(2), denoted
V (sx ), acts on Hx and

V (sx ) ⊗ V (sy ) ∼= V (sx+sy ) ⊕ V (sx+sy−1) ⊕ . . .⊕ V (|sx−sy |)
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Ground State Indistinguishability and LTQO for Hexagonal AKLT

Theorem (LTQO) [Jackson, Nachtergaele, Y. in prep] There exists ϵ,C > 0 such that
for any C ′ > ϵ−1, k ≥ 20, n ≥ k +max{20,C ′ ln(k)} and A ∈ AΛk−1

, one has

∥GΛnAGΛn − ω(A)GΛn∥ ≤ C |∂Λk−1|e−2ϵ(n−k)

This result is a simple consequence of the following indistinguishability result:

Theorem (Indistinguishability) [Jackson, Nachtergaele, Y. in prep] There exists
ϵ,C > 0 such that for all n > k + 20 ≥ 40

|⟨ψn|Aψn⟩ − ω(A)| ≤ C∥A∥G(n, k)eG(n,k)

for all A ∈ AΛk−1
and normalized ψn ∈ GΛn where

G(n, k) ∝ ke−2ϵ(n−k)
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Weyl Representation of the Ground States
As in [KLT ’88], we use homogeneous polynomials and the Weyl representations to get
a convenient description of the finite volume ground states:

Hx ≃ span
{
ukx v

3−k
x : k = 0, 1, 2, 3

}
⊆ L2(S2, dΩx )

ux = cos(θx/2)e
iϕx/2, vx = sin(θx/2)e

−iϕx/2

Ωx = (sin θx cosϕx , sin θx sinϕx , cos θx )

S3
x =

1

2
(vx∂vx − ux∂ux ), S−

x = ux∂vx , S+
x = vx∂ux

We note that: |uxvy − vxuy |2 = 1
2
(1− Ωx · Ωy )

Theorem [KLT ’88]: In the Weyl representation,

GΛ = span

ψ(f ) ∈ HΛ : ψ(f ) = f ·
∏

(x,y)∈Λ

(uxvy − vxuy )


Moreover, for any A ∈ AΛ′ , Λ′ ⊆ Λ, there is a symbol A(Ω) depending only on the
variables (ux , vx ) associated to x ∈ Λ′ so that for any ground state ψ(f ) ∈ GΛ

⟨ψ(f )|Aψ(f )⟩ = CΛ

∫
dΩΛ|f |2

∏
(x,y)∈Λ

(1− Ωx · Ωy )A(Ω)
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Polymer representation for ground state expectations
Fixing a normalized ψn(f ) ∈ GΛn and observable A ∈ AΛk

, k < n

⟨ψn(f )|Aψn(f )⟩ = CΛn

∫
dΩΛn |f |2

∏
(x,y)∈Λn

(1− Ωx · Ωy )A(Ω)

A hard core polymer representation emerges from integrating ⟨ψn(f )|Aψn(f )⟩ over the

sites x ∈ Λ̊n \ Λk . Namely, using the relations∏
(x,y)∈Λn

(1− Ωx · Ωy ) =
∑

edge induced
G⊆Λn

∏
(x,y)∈G

(−Ωx · Ωy )

∫
dΩx f (−Ωx ) =

∫
dΩx f (Ωx )∫

dΩx (Ωy · Ωx )(Ωx · Ωz ) =
1

3
Ωy · Ωz∫

dΩx (Ωx · Ωx ) = 1

one finds there is a weight function satisfying
|w(γ)| ≤ 3−|γ|+1 such that

⟨ψn(f )|Aψn(f )⟩ ≈ Cn,k (f ,A)
∑

h.c. polymer sets
{γ1,...,γℓ}

ℓ∏
i=1

w(γi ).
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Indistinguishability via Cluster Expansions

⟨ψn(f )|Aψn(f )⟩ ≈ Cn,k (f ,A)
∑

h.c. polymer sets
{γ1,...,γℓ}

ℓ∏
i=1

w(γi ), |w(γ)| ≤ 3−|γ|+1

Indistinguishability result obtained from identifying a specific bulk ground state ψbulk
n

and bounding

|⟨ψn(f )|Aψn(f )⟩−ω(A)| ≤ |⟨ψn(f )|Aψn(f )⟩−⟨ψbulk
n |Aψbulk

n ⟩|+|⟨ψbulk
n |Aψbulk

n ⟩−ω(A)|

Each difference can then be bound in terms of ∥A∥ and a Renyi-divergence, dependent
of quantities such as

log

 ∑
h.c. polymer sets

{γ1,...,γℓ}

ℓ∏
i=1

w(γi )

 .

The end result is a consequence of rewriting these
logarithms as a sum over clusters of polymers.

We follow the analogous approach from [KLT ’88]
to prove the cluster expansion convergence criterion
from [Kotecky, Preis ’86].
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Comparing with the KLT Result

The key difficulty in immediately extending the results of [KLT ’88] is that one requires
bounds in terms of the operator norm ∥A∥ for LTQO whereas the bounds from KLT
would produce estimates dependent on ∥A(Ω)∥∞, and these norms are inequivalent:

∃Am ∈ Aloc
Γ s.t. ∥Am∥ = 1, ∥Am(Ω)∥∞ =

(
5

4

)m

This stems from how the ground state expectations ⟨ψn(f )|Aψn(f )⟩ were decomposed
in KLT, which lead to them to considering a related, but different, polymer set,
PKLT
n,k . Since PJNY

n,k ̸⊆ PKLT
n,k , we could not immediately invoke their results.

PJNY
n,k

PKLT
n,k
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Final Comments

▶ Over the last two decades, significant progress has been made in studying and
classifying gapped ground state phases of matter, including topological phases.

▶ An important endeavor in this study is establishing rigorous gap and gap stability
results for models conjectured to be typical of key phases.

▶ Given that the gap conjecture for the hexagonal AKLT model is true, our result
implies the stability of the gap.

▶ Our result also extends to decorated models on the hexagonal lattice for all
d ≥ 1, improving the result of [Lucia, Moon, Y. ’23].

Thank you for your attention!


