Gap stability and the AKLT model on the hexagonal lattice

Amanda Young University of Illinois Urbana-Champaign

 $\label{eq:Based on joint work with}$ Thomas Andrew Jackson (UC Davis \to UAE University) and Bruno Nachtergaele (UC Davis)

Outline

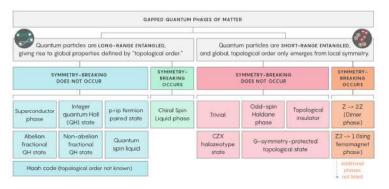
- 1. Gapped Ground State Phases of Quantum Lattice Models
 - 1.1 Quantum Spin Systems: Key Definitions and Results
 - 1.2 Haldane's Conjecture
- 2. Stability of the Gap and BHM Strategy
- 3. Main Result: Gap Stability for the Hexagonal AKLT Model

Gapped Ground State Phases

Quantum lattice models are used to investigate and classify phases of quantum matter, including topological phases.

There is a major distinction between gapped and gapless phases, and so determining if a model has a gap is one of the first important questions to settle.

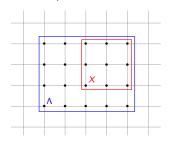
However, proving a nonvanishing gap above the ground state energy is notoriously difficult to determine.



Quantum Spin Systems

A quantum spin system (QSS) is a many-body model defined on a lattice Γ where each vertex $x \in \Gamma$ has only d_x linearly-independent states, i.e. $\mathcal{H}_x = \mathbb{C}^{d_x}$.

For example, $d_x = 2s_x + 1$ if x represents a particle of spin s_x .



These models are initially only well-defined for finite subsets of $\Lambda \subseteq \Gamma$:

$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_{x}, \quad \mathcal{A}_{\Lambda} = \bigotimes_{x \in \Lambda} M_{d_{x}}(\mathbb{C})$$

For each finite $X \subset \Gamma$ fix an interaction term:

$$\Phi(X)^* = \Phi(X) \in \mathcal{A}_X.$$

The Hamiltonian $H_{\Lambda} \in \mathcal{A}_{\Lambda}$ and Heisenberg dynamics $\tau_t^{\Lambda} : \mathcal{A}_{\Lambda} \to \mathcal{A}_{\Lambda}$ are defined as

$$H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X), \qquad au_t^{\Lambda}(A) = e^{itH_{\Lambda}} A e^{-itH_{\Lambda}}$$

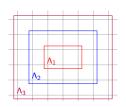
Note: $A_X \hookrightarrow A_\Lambda$ via $A \mapsto A \otimes \mathbb{1}_{\Lambda \setminus X}$. The set of possible energies is $\operatorname{spec}(H_\Lambda)$:

$$E^0_\Lambda < E^1_\Lambda < E^2_\Lambda < \dots$$

Ground States and the Spectral Gap

Finite Volume Gap: The ground state space, denoted \mathcal{G}_{Λ} , is the eigenspace associated with the ground state energy, E_{Λ}^{0} . A QSS is uniformly gapped if there is a sequence $\Lambda_{n} \uparrow \Gamma$ such that

$$\gamma = \inf_{n} \operatorname{gap}(H_{\Lambda_n}) > 0$$
, where $\operatorname{gap}(H_{\Lambda_n}) = E_{\Lambda_n}^1 - E_{\Lambda_n}^0$.



Infinite System: The C*-algebra of quasi-local observables is

$$\mathcal{A}_{\Gamma} = \overline{\mathcal{A}_{loc}}^{\|\cdot\|}, \quad \mathcal{A}_{loc} = \bigcup_{\Lambda \in \mathcal{A}_{\Gamma}} \mathcal{A}_{\Lambda}.$$

A weak-* limit $\omega: \mathcal{A}_{\Gamma} \to \mathbb{C}$ of finite volume ground state functionals $\omega_n(A) = \text{Tr}(\rho_n A)$, $\operatorname{ran} \rho_n \subseteq \mathcal{G}_{\Lambda_n}$, is gapped if the associated GNS Hamiltonian $H_{\omega} \geq 0$ is gapped, i.e.

$$gap(H_{\omega}) := sup\{\delta > 0 \mid (0, \delta) \cap spec(H_{\omega}) = \emptyset\} > 0.$$

Well-known: Under mild assumptions on the interaction $gap(H_{\omega}) \ge \inf_n gap(H_{\Lambda_n})$.

Why is the Gap so Important?

Implications of a nonvanishing ground state gap:

- Exponential decay of spin correlations in ground states: [Hastings, Koma '06], [Nachtergaele, Sims '06]
- (2) Adiabatic theorems for ground states: [Bachmann, De Roeck, Fraas '17], [Monaco, Teufel '19], [Henheik, Teufel. '22].
- (3) The split property for quantum spin chains: [Matsui '10, '13]
- (4) Proof of quantization of Hall conductance for interacting electrons on torus: [Hastings, Michalakis '15], [Bachmann, Bols, De Roeck, Fraas '18]

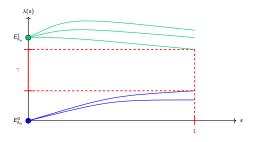
In addition, many properties exhibited by gapped models are stable under small perturbations. [Mariën, Audenaert, Acoleyen, Verstraete '16], [Cha, Naaijkens, Nachergaele '18], [Nachtergaele, Sims, Y. '22]

While the importance of the spectral gap is well known, very few rigorous proving a nonvanishing gap are actually known, especially for multi-dimensional lattices.

Moreover, the spectral gap question is generically undecidable [Cubitt, Pérez-García, Wolf, '15] [Bausch, Cubitt, Lucia, Pérez-García, '18].

Gapped Ground State Phase

A uniform gap is too strong for defining a gapped ground state phase. This can be relaxed to allow for finite volume excited states that converge to infinite volume ground states on Γ .



[Chen, Gu, Wen '10, '11]Two quantum spin interactions Φ_0 and Φ_1 are in the same gapped ground state phase if there exists a path of interactions $\Phi(r)$, $r \in [0,1]$, and sequence of finite volume $\Lambda_n \uparrow \Gamma$ so that

- 1. $\Phi(X,0) = \Phi_0(X)$ and $\Phi(X,1) = \Phi_1(X)$ for every finite $X \subseteq \Gamma$.
- 2. $\Phi(X,r)$ is piece-wise differentiable on (0,1) and continuous on [0,1] for each finite $X\subseteq \Gamma$.
- 3. There exists $\gamma > 0$ and $\epsilon_n(r) \downarrow 0$ as $n \to \infty$ so that

$$\operatorname{spec}(H_{\Lambda_n}(r))\subseteq [E_{\Lambda_n}^0(r),E_{\Lambda_n}^0(r)+\epsilon_n(r)]\cup [E_{\Lambda_n}^0(r)+\epsilon_n(r)+\gamma,\infty)$$

Example: The Heisenberg Model and Haldane's Conjecture

Fix $s \in \mathbb{N}/2$. For $J = (J_1, J_2) \in \mathbb{R}^2$ with $\|J\| = 1$ define

$$H_N^{(s)}(J) = \sum_{x=1}^{N-1} J_1(\mathbf{S}_x \cdot \mathbf{S}_{x+1}) + J_2(\mathbf{S}_x \cdot \mathbf{S}_{x+1})^2, \quad \mathbf{S}_x \cdot \mathbf{S}_{x+1} = \sum_{j=1,2,3} S_x^j \otimes S_{x+1}^j$$

Haldane's Conjecture '83: There exists $\epsilon(s)>0$ so that if $\|J-(1,0)\|<\epsilon(s)$, then the model $H^{(s)}(J)$ has a unique infinite volume ground state $\omega:\mathcal{A}_{\mathbb{Z}}\to\mathbb{C}$, and

- 1. $\mathbf{s} \in \mathbb{N}$: The model is gapped and ω has exponential decaying correlations.
- 2. $s \in \frac{\mathbb{N}}{2} \setminus \mathbb{N}$: The model is gapless and ω has power-law decaying correlations.

For $s \in \frac{\mathbb{N}}{2} \setminus \mathbb{N}$, this was not surprising:

- 1. [Bethe '31], [Lieb, Schultz, Mattis '61] Heisenberg-1/2 model is gapless.
- 2. [Affleck, Lieb '86] For any s: either non-unique infinite volume ground state, or unique, gapless ground state.

The Heisenberg Model and Haldane's Conjecture

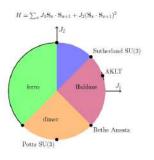


Figure: Phase diagram of antiferromagnetic, SU(2) symmetric, spin-1 chains. Credit: B. Nachtergaele.

Haldane's Conjecture '83: There exists $\epsilon(s)>0$ so that if $\|J-(1,0)\|<\epsilon(s)$, then the model $H^{(s)}(J)$ has a unique infinite volume ground state $\omega:\mathcal{A}_{\mathbb{Z}}\to\mathbb{C}$, and

- 1. $s \in \mathbb{N}$: The model is gapped and ω has exponential decaying correlations.
- 2. $s \in \frac{\mathbb{N}}{2} \setminus \mathbb{N}$: The model is gapless and ω has power-law decaying correlations.

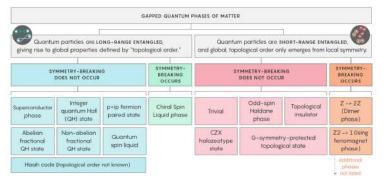
The conjecture for integer s, and in particular s=1, was unexpected. For s=1:

- 1. [Renard et. al. '87] Experimental evidence.
- 2. [Affleck, Kennedy, Lieb and Tasaki '87, '88] Proved properties when $J_2/J_1=1/3$.
- 3. [White '92] Numerical evidence for Heisenberg model via DMRG (i.e. $J_2/J_1=0$).

Phases of Quantum Matter

Typical strategy for analyzing gapped ground state phases:

- 1. Prove gap for model H_{Λ} conjectured to be typical of a phase.
- 2. Prove the gap is stable under small perturbations: $H_{\Lambda}(s) = H_{\Lambda} + sV_{\Lambda}$ gapped for |s| << 1.
- Refine phase classification by requiring other properties shared, e.g. entanglement structure: [Naaijkens, Ogata '22], symmetry protected phases: [Pollmann, Turner, Berg, Oshikawa '10, '12], [Ogata '18-'21], [Bourne, Schulz-Baldes '20], [Sopenko '21], [Tasaki '25].



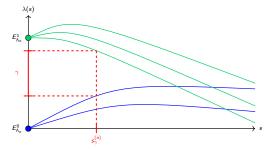
.

Uniform Gap Stability

We consider gap stability for a sequence of perturbed Hamiltonians

$$H_{\Lambda_n}(s) = H_{\Lambda_n} + sV_{\Lambda_n}, \quad s \in \mathbb{R}$$
 $V_{\Lambda_n} = \sum_{X \subseteq \Lambda} v_X, \qquad \|v_X\| o 0 \ \ ext{as} \ \ ext{diam}(X) o \infty$

for which $\gamma_0 := \inf_{n \geq 1} \operatorname{gap}(H_{\Lambda_n}) > 0$.



The spectral gap is stable if for all $0 < \gamma < \gamma_0$,

$$s_{\gamma}:=\inf_{n\geq 1}s_{\gamma}^{(n)}>0.$$

Form Bound Implies Gap Estimate

Theorem (Persistence of Gaps): Let H be a densely defined self adjoint operator on a complex Hilbert space $\mathcal H$ with domain $\mathcal D$ and spectral gap

$$(0,\gamma)\cap\operatorname{spec}(H)=\emptyset.$$

Suppose V is a self-adjoint operator on $\mathcal H$ with $\mathcal D\subseteq \mathrm{dom}(V)$. If there are constants $\epsilon\ge 0$ and $\beta\in [0,1)$ such that

$$|\langle \psi | V \psi \rangle| \le \epsilon ||\psi||^2 + \beta \langle \psi | H \psi \rangle \quad \forall \psi \in \mathcal{D}$$

then:

$$\operatorname{spec}(H+sV)\cap \big(s\epsilon,\,(1-s\beta)\gamma-s\epsilon\big)=\emptyset.$$

Note: In the case of uniform stability, have H_{Λ_n} and V_{Λ_n} , but want to find ϵ and β independent of Λ_n .

For quantum lattice models, there are various approaches for proving gap stability via form bounds for wide classes of perturbations, including

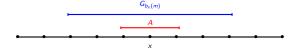
- 1. Cluster expansion: [Yarotsky, '06], [De Roeck, Salmhofer '19]
- Quasi-adiabatic continuation: [Bravyi, Hastings, Michalakis, '10], [Michalakis, Zwolak '13], [Nachtergaele, Sims, Y. '22, '23]
- Lie-Schwinger Diagonalization: [Fröhlich, Pizzo '20] [Del Vecchio, Fröhlich, Pizzo, Rossi '21]

BHM Stability Strategy

Ground State Indistinguishability (LTQO): There is a decay function Ω so that for any observable $A \in \mathcal{A}_{b_X(k)}$ there is a constant C(A) so that for $m \ge k$

$$\|G_{b_x(m)}AG_{b_x(m)} - C(A)G_{b_x(m)}\| \le \|A\|\Omega(m-k) \to 0, \text{ as } m \to \infty$$
 (1)

where $G_{b_x(m)}$ is the orthogonal projection onto $\ker(H_{b_x(m)})$.



For a uniformly gapped Hamiltonian, we say the ground states are sufficiently indistinguishable (or satisfy LTQO) if (1) holds and $\sum_{k\geq 0} k^{3\nu/2} \Omega(k) < \infty$, where ν is the spatial dimension.

Theorem: [Bravyi, Hastings, Mickalakis '10], [Michalakis, Zwolak '13], [Nachtergaele, Sims, Y. '22] Let h be a uniformly gapped, frustration-free interaction whose ground states are sufficiently indistinguishable. Then, the spectral gap is stable for any perturbation satisfying

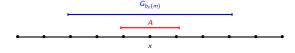
$$||v_X|| \le e^{-a\operatorname{diam}(X)^{\theta}}$$
 for some $a > 0, \ \theta \in (0, 1]$.

BHM Stability Strategy

Ground State Indistinguishability (LTQO): There is a decay function Ω so that for any observable $A \in \mathcal{A}_{b_x(k)}$ and $m \geq k$

$$\|G_{b_{x}(m)}AG_{b_{x}(m)}-\omega(A)G_{b_{x}(m)}\| \leq |b_{x}(k)|\|A\|\Omega(m-k) \to 0, \text{ as } m \to \infty$$
 (1)

where $G_{b_{\times}(m)}$ is the orthogonal projection onto $\ker(H_{b_{\times}(m)})$.



For a uniformly gapped Hamiltonian, we say the ground states are sufficiently indistinguishable (or satisfy LTQO) if (1) holds and $\sum_{k\geq 0} k^{3\nu/2} \Omega(k) < \infty$, where ν is the spatial dimension.

Theorem: [Bravyi, Hastings, Mickalakis '10], [Michalakis, Zwolak '13], [Nachtergaele, Sims, Y. '22] Let h be a uniformly gapped, frustration-free interaction whose ground states are sufficiently indistinguishable. Then, the spectral gap is stable for any perturbation satisfying

$$||v_X|| \le e^{-a\operatorname{diam}(X)^{\theta}}$$
 for some $a > 0, \ \theta \in (0, 1]$.

Results on LTQO

.

Results utilizing LTQO:

- [Cubitt, Lucia, Michalakis, Perez-Garcia '15]: Stability of local quantum dissipative systems
- 2. [Cha, Naaijkens, Nachtergaele '22]: Stability of superselection sectors.
- 3. [Movassagh, Ouyang '24]: Realizing quantum codes constructed from classical codes as ground states of local Hamiltonians.
- 4. [Jones, Naaijkens, Penneys, Wallick '23], [Jones, Naaijkens, Penneys '25]: Boundary algebras describing holomorphic dual of bulk topological order.

Gapped models with LTQO:

- [Nachtergaele, Sims, Y. '22]: Spin chains with matrix product ground states (including AKLT model, XXZ model, PVBS model,...)
- [Bravyi, Hastings, Michalakis '10], [Cui et. al. '19], [Qiu, Wang '20]: Spin models with commuting interactions (e.g. Kitaev's Quantum Double models, String net models, etc.)
- [Bachmann, Hamza, Nachtergaele, Y. '14]: d-dimensional, single species PVBS models
- 4. [Lucia, Y. '23], [Lucia, Moon, Y. '24]: AKLT models on sufficiently decorated (hybrid) multi-dimensional lattices and graphs

What about other multi-dimensional models with non-commuting interactions?

A Brief History: Gaps and Gap Stability of the AKLT Model

$$\begin{split} \mathcal{H}_{[1,L]}^{\mathrm{Heis}} &= \sum_{x=1}^{L-1} \mathbf{S}_{x} \cdot \mathbf{S}_{x+1}, \qquad \mathcal{H}_{[1,L]} = \bigotimes_{x=1}^{L} \mathbb{C}^{3} \\ \mathcal{H}_{[1,L]}^{\mathrm{AKLT}} &= \sum_{x=1}^{L-1} \frac{1}{3} \mathbb{1} + \frac{1}{2} \mathbf{S}_{x} \cdot \mathbf{S}_{x+1} + \frac{1}{6} (\mathbf{S}_{x} \cdot \mathbf{S}_{x+1})^{2} = \sum_{x=1}^{L-1} P_{x,x+1}^{(2)} \end{split}$$

[Affleck, Kennedy, Lieb, Tasaki (AKLT) '88]: Introduced a perturbation of the spin-1 Heisenberg AF chain and showed it belonged to the Haldane phase. Generalized model to other lattices and conjectured that the hexagonal lattice model is gapped.

[Kennedy, Lieb, Tasaki (KLT) '88] Proved the hexagonal model had a unique infinite-volume ground state with exponential decay of correlations.

[Pomata, Wei ' 20], [Lemm, Sandvik, Wang '20]: Provided strong evidence of the gap for the hexagonal model.

[Yarotsky '04], [Nachtergaele, Sims, Y. '21], [Del Vecchio, Fröhlich, Pizzo, Ranallo '23]: Gap stability of the AKLT spin chain using various methods (cluster expansions, LTQO, Lie-Schwinger diagonalization scheme).

[Abdul-Rahman, Lemm, Lucia, Nachtergaele, Y. '20], [Lucia, Y. '23] Spectral gap of decorated AKLT models, including hexagonal model with $d \ge 3$.

[Lucia, Moon, Y. '24] Gap stability for AKLT model on decorated hexagonal lattice with decoration parameters $d \ge 5$. Proved by using cluster expansions to verify LTQO.

Generalized AKLT Models

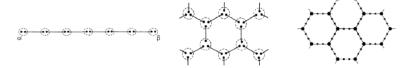


Figure: Valence Bond State description of the AKLT ground states and the 2-decorated hexagonal lattice. Photo Credit: [AKLT, '88], [ALLNY '20]

General AKLT Model [AKLT '88] For any site $x \in \Gamma$, a lattice, let $\mathcal{H}_x = \mathbb{C}^{2s_x+1}$ where $s_x = \deg(x)/2$. Then, for any finite subset $\Lambda \subseteq \Gamma$, define

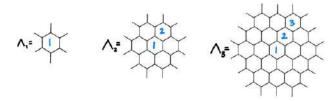
$$H_{\Lambda} = \sum_{\substack{\text{edge} \\ e = \{x,y\} \in \Lambda}} P_e^{(s_x + s_y)}, \quad \mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x, \quad \mathcal{A}_{\Lambda} = \mathcal{B}(\mathcal{H}_{\Lambda})$$

where $P_e^{(s_v+s_w)}$ projects onto the subspace of total spin- (s_v+s_w) of $\mathcal{H}_v\otimes\mathcal{H}_w$.

Clebsch-Gordon Series: Recall the $(2s_x + 1)$ -dimensional irrep of SU(2), denoted $V^{(s_x)}$, acts on \mathcal{H}_x and

$$V^{(s_x)} \otimes V^{(s_y)} \cong V^{(s_x+s_y)} \oplus V^{(s_x+s_y-1)} \oplus \ldots \oplus V^{(|s_x-s_y|)}$$

Ground State Indistinguishability and LTQO for Hexagonal AKLT



Theorem (LTQO) [Jackson, Nachtergaele, Y. in prep] There exists $\epsilon, C>0$ such that for any $C'>\epsilon^{-1},\ k\geq 20,\ n\geq k+\max\{20,C'\ln(k)\}$ and $A\in\mathcal{A}_{\Lambda_{k-1}}$, one has

$$||G_{\Lambda_n}AG_{\Lambda_n}-\omega(A)G_{\Lambda_n}|| \leq C|\partial\Lambda_{k-1}|e^{-2\epsilon(n-k)}$$

This result is a simple consequence of the following indistinguishability result:

Theorem (Indistinguishability) [Jackson, Nachtergaele, Y. in prep] There exists ϵ , C > 0 such that for all $n > k + 20 \ge 40$

$$|\langle \psi_n | A \psi_n \rangle - \omega(A)| \le C ||A|| G(n, k) e^{G(n, k)}$$

for all $A \in \mathcal{A}_{\Lambda_{k-1}}$ and normalized $\psi_n \in \mathcal{G}_{\Lambda_n}$ where

$$G(n,k) \propto ke^{-2\epsilon(n-k)}$$

Weyl Representation of the Ground States

As in [KLT '88], we use homogeneous polynomials and the Weyl representations to get a convenient description of the finite volume ground states:

$$\mathcal{H}_{x} \simeq \operatorname{span} \left\{ u_{x}^{k} v_{x}^{3-k} : k = 0, 1, 2, 3 \right\} \subseteq L^{2}(S^{2}, d\Omega_{x})$$

$$u_{x} = \cos(\theta_{x}/2) e^{i\phi_{x}/2}, \quad v_{x} = \sin(\theta_{x}/2) e^{-i\phi_{x}/2}$$

$$\Omega_{x} = \left(\sin\theta_{x} \cos\phi_{x}, \sin\theta_{x} \sin\phi_{x}, \cos\theta_{x}\right)$$

$$S_{x}^{3} = \frac{1}{2} (v_{x} \partial_{v_{x}} - u_{x} \partial_{u_{x}}), \quad S_{x}^{-} = u_{x} \partial_{v_{x}}, \quad S_{x}^{+} = v_{x} \partial_{u_{x}}$$
We note that: $|u_{x}v_{y} - v_{x}u_{y}|^{2} = \frac{1}{2} (1 - \Omega_{x} \cdot \Omega_{y})$

Theorem [KLT '88]: In the Weyl representation,

$$\mathcal{G}_{\Lambda} = \operatorname{span} \left\{ \psi(f) \in \mathcal{H}_{\Lambda} : \psi(f) = f \cdot \prod_{(x,y) \in \Lambda} (u_x v_y - v_x u_y) \right\}$$

Moreover, for any $A \in \mathcal{A}_{\Lambda'}$, $\Lambda' \subseteq \Lambda$, there is a symbol $A(\Omega)$ depending only on the variables (u_x, v_x) associated to $x \in \Lambda'$ so that for any ground state $\psi(f) \in \mathcal{G}_{\Lambda}$

$$\langle \psi(f)|A\psi(f)\rangle = C_{\Lambda} \int d\Omega^{\Lambda}|f|^2 \prod_{(x,y)\in\Lambda} (1-\Omega_x\cdot\Omega_y)A(\Omega)$$

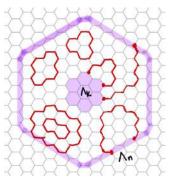
Polymer representation for ground state expectations

Fixing a normalized $\psi_n(f) \in \mathcal{G}_{\Lambda_n}$ and observable $A \in \mathcal{A}_{\Lambda_k}$, k < n

$$\langle \psi_n(f)|A\psi_n(f)\rangle = C_{\Lambda_n}\int d\Omega^{\Lambda_n}|f|^2\prod_{(x,y)\in\Lambda_n}(1-\Omega_x\cdot\Omega_y)A(\Omega)$$

A hard core polymer representation emerges from integrating $\langle \psi_n(f)|A\psi_n(f)\rangle$ over the sites $x\in \mathring{\Lambda}_n\setminus \Lambda_k$. Namely, using the relations

$$\prod_{(x,y)\in \Lambda_n} (1-\Omega_x \cdot \Omega_y) = \sum_{\substack{\text{edge induced} \\ G \subseteq \Lambda_n}} \prod_{(x,y)\in G} (-\Omega_x \cdot \Omega_y)$$



$$\int d\Omega_x f(-\Omega_x) = \int d\Omega_x f(\Omega_x)$$

$$\int d\Omega_x (\Omega_y \cdot \Omega_x) (\Omega_x \cdot \Omega_z) = \frac{1}{3} \Omega_y \cdot \Omega_z$$

$$\int d\Omega_x (\Omega_x \cdot \Omega_x) = 1$$

one finds there is a weight function satisfying $|w(\gamma)| \leq 3^{-|\gamma|+1}$ such that

$$\langle \psi_n(f)|A\psi_n(f)\rangle \approx C_{n,k}(f,A)\sum_{\substack{\text{h.c. polymer sets }i=1\\ \gamma_1,\ldots,\gamma_\ell}}\prod_{i=1}^\ell w(\gamma_i).$$

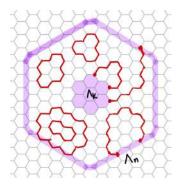
Indistinguishability via Cluster Expansions

$$\langle \psi_n(f) | A \psi_n(f) \rangle \approx C_{n,k}(f,A) \sum_{\substack{\text{h.c. polymer sets } i=1 \\ \{\gamma_1, \dots, \gamma_\ell\}}} \prod_{i=1}^\ell w(\gamma_i), \qquad |w(\gamma)| \leq 3^{-|\gamma|+1}$$

Indistinguishability result obtained from identifying a specific bulk ground state $\psi_n^{\rm bulk}$ and bounding

$$|\langle \psi_n(f)|A\psi_n(f)\rangle - \omega(A)| \leq |\langle \psi_n(f)|A\psi_n(f)\rangle - \langle \psi_n^{\text{bulk}}|A\psi_n^{\text{bulk}}\rangle| + |\langle \psi_n^{\text{bulk}}|A\psi_n^{\text{bulk}}\rangle - \omega(A)|$$

Each difference can then be bound in terms of $\|A\|$ and a Renyi-divergence, dependent of quantities such as



$$\log \left(\sum_{egin{smallmatrix} ext{h.c. polymer sets } i=1 \ ext{} \gamma_1,...,\gamma_\ell ext{} \end{bmatrix} \prod_{i=1}^\ell w(\gamma_i)
ight) \,.$$

The end result is a consequence of rewriting these logarithms as a sum over clusters of polymers.

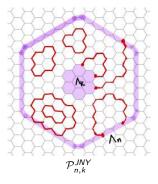
We follow the analogous approach from [KLT '88] to prove the cluster expansion convergence criterion from [Kotecky, Preis '86].

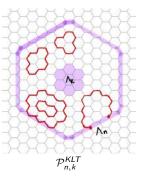
Comparing with the KLT Result

The key difficulty in immediately extending the results of [KLT '88] is that one requires bounds in terms of the operator norm $\|A\|$ for LTQO whereas the bounds from KLT would produce estimates dependent on $\|A(\Omega)\|_{\infty}$, and these norms are inequivalent:

$$\exists A_m \in \mathcal{A}_{\Gamma}^{\mathrm{loc}} \quad \mathrm{s.t.} \qquad \|A_m\| = 1, \quad \|A_m(\Omega)\|_{\infty} = \left(\frac{5}{4}\right)^m$$

This stems from how the ground state expectations $\langle \psi_n(f)|A\psi_n(f)\rangle$ were decomposed in KLT, which lead to them to considering a related, but different, polymer set, $\mathcal{P}_{n,k}^{\mathrm{KLT}}$. Since $\mathcal{P}_{n,k}^{\mathrm{JNY}} \not\subseteq \mathcal{P}_{n,k}^{\mathrm{KLT}}$, we could not immediately invoke their results.





Final Comments

- Over the last two decades, significant progress has been made in studying and classifying gapped ground state phases of matter, including topological phases.
- An important endeavor in this study is establishing rigorous gap and gap stability results for models conjectured to be typical of key phases.
- Given that the gap conjecture for the hexagonal AKLT model is true, our result implies the stability of the gap.
- Our result also extends to decorated models on the hexagonal lattice for all $d \ge 1$, improving the result of [Lucia, Moon, Y. '23].

Thank you for your attention!