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Gapped Ground State Phases

Quantum lattice models are used to investigate and classify phases of quantum

matter, including topological phases.

There is a major distinction between gapped and gapless phases, and so determining if
a model has a gap is one of the first important questions to settle.

However, proving a nonvanishing gap above the ground state energy is notoriously

difficult to determine.
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Quantum Spin Systems

A quantum spin system (QSS) is a many-body model defined on a lattice ' where
each vertex x € I has only dx linearly-independent states, i.e. Hx = Cx.

For example, dx = 2sx + 1 if x represents a particle of spin sy.

These models are initially only well-defined for

T 1 finite subsets of A C T':
. . . . . H/\:®HX7 A/\:®de((c)
X x€EN xEN
A For each finite X C I' fix an interaction term:

O(X)* = &(X) € Ax.

The Hamiltonian Hp € Ap and Heisenberg dynamics T{\ : Apn — Ap are defined as

Ha=>_o(X),  7/(A)=e"hAe=ith
XCA

Note: Ax < Ap via A+ A® la\ x. The set of possible energies is spec(Hp):

E}<Er<Ei<...



Ground States and the Spectral Gap

Finite Volume Gap: The ground state space, denoted Gy, is the eigenspace associated
with the ground state energy, E/(\). A QSS is uniformly gapped if there is a sequence
An T T such that

v = infgap(Hp,) >0, where gap(Hp,)= Ex — E? .
N n n
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Infinite System: The C*-algebra of quasi-local observables is

Arzmlulv Aloc = U A/\~

Afinite

A weak-* limit w : A — C of finite volume ground state functionals w,(A) = Tr(pnA),
ranp, C Ga,, is gapped if the associated GNS Hamiltonian H,, > 0 is gapped, i.e.

gap(Hw ) := sup{d > 0| (0,6) Nspec(H,) = 0} > 0.

Well-known: Under mild assumptions on the interaction gap(H.) > inf, gap(Hp,).



Why is the Gap so Important?

Implications of a nonvanishing ground state gap:

(1) Exponential decay of spin correlations in ground states: [Hastings, Koma '06],
[Nachtergaele, Sims '06]

(2) Adiabatic theorems for ground states: [Bachmann, De Roeck, Fraas '17],
[Monaco, Teufel '19], [Henheik, Teufel. '22].

(3) The split property for quantum spin chains: [Matsui '10, '13]

(4) Proof of quantization of Hall conductance for interacting electrons on torus:
[Hastings, Michalakis '15], [Bachmann, Bols, De Roeck, Fraas '18]

In addition, many properties exhibited by gapped models are stable under small
perturbations. [Marién, Audenaert, Acoleyen, Verstraete '16], [Cha, Naaijkens,
Nachergaele '18], [Nachtergaele, Sims, Y. '22]

While the importance of the spectral gap is well known, very few rigorous proving a
nonvanishing gap are actually known, especially for multi-dimensional lattices.

Moreover, the spectral gap question is generically undecidable [Cubitt, Pérez-Garcia,
Wolf, '15] [Bausch, Cubitt, Lucia, Pérez-Garcia, '18].



Gapped Ground State Phase
A uniform gap is too strong for defining a gapped ground state phase. This can be
relaxed to allow for finite volume excited states that converge to infinite volume
ground states on .

B
[ -
«

[Chen, Gu, Wen 10, '11]Two quantum spin interactions ®¢ and ®; are in the same
gapped ground state phase if there exists a path of interactions ®(r), r € [0, 1], and
sequence of finite volume A, 1T so that

1. ®(X,0) = dp(X) and $(X, 1) = 1(X) for every finite X CT.

2. ®(X,r) is piece-wise differentiable on (0,1) and continuous on [0, 1] for each
finite X CT.

3. There exists v > 0 and €y(r) L 0 as n — oo so that

spec(Hp,(r)) C [ER, (1), ER,(r) + en(N] U [ER, () + €n(r) + 7, 00)



Example: The Heisenberg Model and Haldane's Conjecture

Fix s € N/2. For J = (J1, J2) € R? with ||J|| = 1 define

H(s Z Jl(sx : X+1 + JZ(SX . Sx+1)27 Sx - Sx+1 = Z 5){ ® SiJrl
j=1,2,3

Haldane's ConJecture '83: There exists €(s) > 0 so that if ||J — (1,0)|| < €(s), then
the model H(*)(J) has a unique infinite volume ground state w : Az — C, and

1. s € N: The model is gapped and w has exponential decaying correlations.

2. s¢€ % \ N : The model is gapless and w has power-law decaying correlations.

For s € % \ N, this was not surprising:
1. [Bethe "31], [Lieb, Schultz, Mattis '61] Heisenberg-1/2 model is gapless.

2. [Affleck, Lieb '86] For any s: either non-unique infinite volume ground state, or
unique, gapless ground state.



The Heisenberg Model and Haldane's Conjecture
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Figure: Phase diagram of antiferromagnetic, SU(2) symmetric, spin-1 chains. Credit: B.
Nachtergaele.

Haldane's Conjecture '83: There exists €(s) > 0 so that if ||J — (1,0)|| < e(s), then
the model H(*)(J) has a unique infinite volume ground state w : Az — C, and

1. s € N: The model is gapped and w has exponential decaying correlations.
2. s5¢€ % \ N : The model is gapless and w has power-law decaying correlations.

The conjecture for integer s, and in particular s = 1, was unexpected. For s =1:

1. [Renard et. al. '87] Experimental evidence.
2. [Affleck, Kennedy, Lieb and Tasaki '87, '88] Proved properties when J,/J; = 1/3.

3. [White '92] Numerical evidence for Heisenberg model via DMRG (i.e. J»/J; = 0).
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Phases of Quantum Matter
Typical strategy for analyzing gapped ground state phases:
1. Prove gap for model Hp conjectured to be typical of a phase.
2. Prove the gap is stable under small perturbations: Hp(s) = Hx + sV gapped for
|s| << 1.
3. Refine phase classification by requiring other properties shared, e.g. entanglement

structure: [Naaijkens, Ogata '22], symmetry protected phases: [Pollmann,
Turner, Berg, Oshikawa '10, '12], [Ogata '18-'21], [Bourne, Schulz-Baldes '20],

[Sopenko '21], [Tasaki '25].
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Uniform Gap Stability

We consider gap stability for a sequence of perturbed Hamiltonians
H/\n(S) = H/\n + S\//\n7 seR
Vi, = D x, lvx|l = 0 as diam(X) — oo
XCA
for which ~g := inf,>1 gap(Ha,) > 0.

As)

Ay @

The spectral gap is stable if for all 0 < v < 7o,

s = inf s > o.

s



Form Bound Implies Gap Estimate

Theorem (Persistence of Gaps): Let H be a densely defined self adjoint operator on a
complex Hilbert space H with domain D and spectral gap

(0,~) N'spec(H) = 0.

Suppose V is a self-adjoint operator on H with D C dom(V). If there are constants
e >0 and 5 € [0,1) such that

[(WIVe)| < ellll® + BWIHY) ¥y €D
then:
spec(H + sV) N (se, (1 — sB)y — se) = 0.
Note: In the case of uniform stability, have Hp, and Vj,, but want to find € and 3
independent of A,.
For quantum lattice models, there are various approaches for proving gap stability via
form bounds for wide classes of perturbations, including
1. Cluster expansion: [Yarotsky, '06], [De Roeck, Salmhofer "19]

2. Quasi-adiabatic continuation: [Bravyi, Hastings, Michalakis, '10], [Michalakis,
Zwolak '13], [Nachtergaele, Sims, Y. '22, '23]

3. Lie-Schwinger Diagonalization: [Frohlich, Pizzo '20] [Del Vecchio, Fréhlich,
Pizzo, Rossi '21]
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BHM Stability Strategy

Ground State Indistinguishability (LTQO): There is a decay function Q so that for any
observable A € Ay (i) there is a constant C(A) so that for m > k

|Gy (m)AGh, (m) — C(A)Gp (m)ll < IAIIA(m — k) = 0, as m — oo (1)
where Gy, (my is the orthogonal projection onto ker(Hp (m))-

G, (m)

A

—_—

X

For a uniformly gapped Hamiltonian, we say the ground states are sufficiently
indistinguishable (or satisfy LTQO) if (1) holds and 3", k3/2Q(k) < oo, where v is
the spatial dimension. -

Theorem: [Bravyi, Hastings, Mickalakis '10], [Michalakis, Zwolak '13], [Nachtergaele,
Sims, Y. 22| Let h be a uniformly gapped, frustration-free interaction whose ground
states are sufficiently indistinguishable. Then, the spectral gap is stable for any
perturbation satisfying

—a diam(X)e

Jvx|| < e for some a >0, 6 € (0,1].
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BHM Stability Strategy

Ground State Indistinguishability (LTQO): There is a decay function Q so that for any
observable A € Ay () and m > k

| b (m)AGb, (m) —w(A) Gp, (m)|l < 1bx(K)[||AI(m—k) =0, as m — oo
where Gy, (my is the orthogonal projection onto ker(Hp (m))-

G, (m)

A

—_—

X

For a uniformly gapped Hamiltonian, we say the ground states are sufficiently
indistinguishable (or satisfy LTQO) if (1) holds and 3", k3/2Q(k) < oo, where v is
the spatial dimension. -

Theorem: [Bravyi, Hastings, Mickalakis '10], [Michalakis, Zwolak '13], [Nachtergaele,
Sims, Y. 22| Let h be a uniformly gapped, frustration-free interaction whose ground
states are sufficiently indistinguishable. Then, the spectral gap is stable for any
perturbation satisfying

—a diam(X)e

Jvx|| < e for some a >0, 6 € (0,1].

(1)
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Results on LTQO
Results utilizing LTQO:

1. [Cubitt, Lucia, Michalakis, Perez-Garcia '15]: Stability of local quantum
dissipative systems

2. [Cha, Naaijkens, Nachtergaele '22]: Stability of superselection sectors.

3. [Movassagh, Ouyang '24]: Realizing quantum codes constructed from classical
codes as ground states of local Hamiltonians.

4. [Jones, Naaijkens, Penneys, Wallick '23], [Jones, Naaijkens, Penneys '25]:
Boundary algebras describing holomorphic dual of bulk topological order.

Gapped models with LTQO:

1. [Nachtergaele, Sims, Y. '22]: Spin chains with matrix product ground states
(including AKLT model, XXZ model, PVBS model,...)

2. [Bravyi, Hastings, Michalakis '10], [Cui et. al. '19], [ Qiu, Wang '20]: Spin
models with commuting interactions (e.g. Kitaev's Quantum Double models,
String net models, etc.)

3. [Bachmann, Hamza, Nachtergaele, Y. '14]: d-dimensional, single species PVBS
models

4. [Lucia, Y. 23], [Lucia, Moon, Y. '24]: AKLT models on sufficiently decorated
(hybrid) multi-dimensional lattices and graphs

What about other multi-dimensional models with non-commuting interactions?



A Brief History: Gaps and Gap Stability of the AKLT Model

L
[IiIeLl]s = st ©9x+1, H[LL] = ®C3
x=1

L—1
1.1
HEG T =2 U+ 5SSt ¢ ( « Su1)’ = Z S
x=1

[Affleck, Kennedy, Lieb, Tasaki (AKLT) '88]: Introduced a perturbation of the spin-1
Heisenberg AF chain and showed it belonged to the Haldane phase. Generalized
model to other lattices and conjectured that the hexagonal lattice model is gapped.

[Kennedy, Lieb, Tasaki (KLT) '88] Proved the hexagonal model had a unique
infinite-volume ground state with exponential decay of correlations.

[Pomata, Wei ' 20], [Lemm, Sandvik, Wang '20]: Provided strong evidence of the gap
for the hexagonal model.

[Yarotsky '04], [Nachtergaele, Sims, Y. '21], [Del Vecchio, Frohlich, Pizzo, Ranallo
23]: Gap stability of the AKLT spin chain using various methods (cluster expansions,
LTQO, Lie-Schwinger diagonalization scheme).

[Abdul-Rahman, Lemm, Lucia, Nachtergaele, Y. '20], [Lucia, Y. '23] Spectral gap of
decorated AKLT models, including hexagonal model with d > 3.

[Lucia, Moon, Y. '24] Gap stability for AKLT model on decorated hexagonal lattice
with decoration parameters d > 5. Proved by using cluster expansions to verify LTQO.
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Generalized AKLT Models

»eod
J

A

S S

Figure: Valence Bond State description of the AKLT ground states and the 2-decorated hexagonal lattice. Photo
Credit: [AKLT, '88], [ALLNY '20]

General AKLT Model [AKLT '88] For any site x € I, a lattice, let Hx = C?>*! where
sx = deg(x)/2. Then, for any finite subset A C I, define

Ha= S0 PO = QM An = B(Hp)

edge xEN
e={x,y}eN
where P£SV+SW) projects onto the subspace of total spin-(s, + sw) of Hy @ Huw.

Clebsch-Gordon Series: Recall the (2sx + 1)-dimensional irrep of SU(2), denoted
V(<) acts on Hy and

V(Sx) ® V(sy) o~ V(Sx+5y) P V(Sersy*l) D...0 V(|5x*5y‘)
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Ground State Indistinguishability and LTQO for Hexagonal AKLT

Theorem (LTQO) [Jackson, Nachtergaele, Y. in prep] There exists €, C > 0 such that
for any C’ > €71, k > 20, n > k + max{20, C'In(k)} and A € A,,_,, one has

1Gr, AGh, — w(A)Gp, || < ClOA,_1]e ("0

This result is a simple consequence of the following indistinguishability result:

Theorem (Indistinguishability) [Jackson, Nachtergaele, Y. in prep] There exists
€, C > 0 such that for all n > k + 20 > 40

|(tbn| Athn) — w(A)| < C||A||G(n, k)eC(mH)
for all A€ Ap, , and normalized v, € Gp, where

G(n, k) ox ke=2¢(n=k)
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Weyl Representation of the Ground States

As in [KLT '88], we use homogeneous polynomials and the Weyl representations to get
a convenient description of the finite volume ground states:

Hx ~ span {uﬁvffk k=0, 1,2,3} C L2(S2, d)
Uy = cos(B,/2)e’®/2 v, = sin(By/2)e”¢x/?
Q= (sin Ox cos ¢y, sin Oy sin ¢x, cos Ox)

1
S3 = E(anvx —ux0y,), Sy =uxOy,, S =0,

We note that: |uxvy, — vyuy|? = %(1 - Q.- Q)

Theorem [KLT '88]: In the Weyl representation,

Gr =span Y(f) € Hp:(f) =f- H (uxvy — vxuy)

(xy)EN

Moreover, for any A € Ap/, N C A, there is a symbol A(R2) depending only on the
variables (ux, vx) associated to x € A’ so that for any ground state ¥(f) € Gp

(W(F)IAG(F)) = Ca / dMFP T (1— 20 2)AQ@)

(x.y)EN
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Polymer representation for ground state expectations
Fixing a normalized 1,(f) € Ga, and observable A € Ap,, k < n

Wn(IAGH(E) = Cn, [ a1 T (-2 2)A@)

(x,y)ENn

A hard core polymer representation emerges from integrating (1n(f)|A¢n(f)) over the
sites x € A, \ Ak. Namely, using the relations

1__[ (1-Q-Q) = Z 1__[ (=% - Q)
(x,y)EN, edgeicnduced (x,y)€G

=/\n

/ A0 F(—Q) = / 40 ()

e

> N 1
! q} /dQX(Qy ) Q) =22, - Q2
o - 3
4 W
. one finds there is a weight function satisfying
[w(v)] < 37171+1 such that
14
Wn(F)|Apa(F)) = Cos(F,A) > T wlw).
h.c. polymer sets i=1
{5 ve}



2l

Indistinguishability via Cluster Expansions

4
<¢"(f)|A’¢n(f)> ~ Cn,k(f, A) Z H W(’Yi)y |W(’Y)| S 37"Y|+1

h.c. polymer sets i=1
{vseve}

Indistinguishability result obtained from identifying a specific bulk ground state ¢Pulk
and bounding

|(@n(F) | Avon(£)) —w(A) < [(Won(F)|An(F)) = (1" | A ) [ (0 1 A ) —w(A))|

Each difference can then be bound in terms of ||A|| and a Renyi-divergence, dependent
of quantities such as

14
e og | > [ww
q} h.c. polymer sets i=1

F by {71570}
/—3 : The end result is a consequence of rewriting these
logarithms as a sum over clusters of polymers.
We follow the analogous approach from [KLT '88]

) to prove the cluster expansion convergence criterion
- < from [Kotecky, Preis '86].



Comparing with the KLT Result

The key difficulty in immediately extending the results of [KLT '88] is that one requires
bounds in terms of the operator norm ||A|| for LTQO whereas the bounds from KLT
would produce estimates dependent on [|A(2)||s, and these norms are inequivalent:

5 m
A e A st Anl =1 [An@le = ()
This stems from how the ground state expectations (1n(f)|A¢n(f)) were decomposed
in KLT, which lead to them to considering a related, but different, polymer set,
’P,I](,I:T. Since 'P;HZIY z ’P,'f’;(T, we could not immediately invoke their results.

o
o e o
4*_.5 :CC%_S " ¥ 4 _3" CS
M M
: O : Pn
s oy .
ol P
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Final Comments

» Over the last two decades, significant progress has been made in studying and
classifying gapped ground state phases of matter, including topological phases.

» An important endeavor in this study is establishing rigorous gap and gap stability
results for models conjectured to be typical of key phases.

» Given that the gap conjecture for the hexagonal AKLT model is true, our result
implies the stability of the gap.

» Our result also extends to decorated models on the hexagonal lattice for all
d > 1, improving the result of [Lucia, Moon, Y. '23].

Thank you for your attention!



