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Abstract

Vortices in type-II superconductor arise when the magnetic field starts

to penetrate the materials in the form of quantized flux. The vortices

interact with each, and can form different phases under the influence of

the magnetic field, thermal fluctuations, and the pinning effect of disorder

and defects. As the usual theoretical methods towards vortex matter, the

London model is briefly introduced while the Ginzburg-Landau models

are discussed at length for their capability of describing more interesting

phases of the vortices. Some experimental techniques of measuring the

vortices are also mentioned at the end of the term essay.
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1 Introduction

The history of superconductivity in the 1950s always makes delightful and in-
structive reading. As is mentioned in A. A. Abrikosov’s Nobel lecture[1], in that
decade several long-awaited theoretical discoveries were made by extraordinary
minds – the famous Ginzburg-Landau (GL) model in 1950 by Vitaly Ginzburg
and Lev Landau, the brilliant introduction of type-II superconductors in 1952
and the vortex lattice in 1957 by Alexei Alexeyevich Abrikosov himself, and the
celebrated BCS model in 1957 by John Bardeen, Leon Neil Cooper, and John
Robert Schrieffer. The details of how these discoveries advanced the research
both in and outside of the field of superconductivity require a rather thick book
by an expert other than this short term essay by me, and thus can be saved
here. But one thing, which is remarkably short but inspiring, is yearning to
be mentioned. Without using any microscopic details of the phonon-electron
interaction, the phenomenological GL models of conventional superconductors
were simply guessed, but they proved even more useful when fitting various
experimental data.

Of all these theoretical discoveries, which still have tremendous influence
today, personally I want to devote this term essay to the development of theo-
retical tools on dealing with the vortices in type-II superconductors, because of
the freshness (only to me) of the topic, and its relevance to the intriguing high
Tc problem.

1.1 Type-I and -II Superconductors

Type-I and -II superconductors mainly differ in their responses to the external
magnetic field. The differences generally can be shown by the Ginzburg-Landau
theory.

Without magnetic field and excluding the “normal electron” contribution,
the GL free energy takes the form of

F =

ˆ
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where  is the order parameter.
In the presence of the magnetic field, we need to adopt the GL Gibbs energy
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where ~H is a constant magnetic field, ( ~B� ~H) is the magnetization, and e⇤ = 2e.
Minimization with respect to ~A and  leads to the nonlinear Shroedinger

equation
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 + ↵(T ) + �(T )| |2 = 0 (3)

and the supercurrent equation
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Expanding the coefficients to their lowest orders, ↵(T ) ⇡ �aTc(1 � t) and
�(T ) ⇡ � = const., where t = T/Tc.

By looking at the surface energy, and by linearizing the two equations above,
some important quantities can be extracted. However, for the sake of simplic-
ity, a complete analysis will not be shown here in order to make space for
more interesting physics. I only want to go over the definitions and notations,
whose derivation can be found in lots of books and lecture notes, such as M.
Tinkham’s[2].

• The magnetic penetration depth: � =

c
2e⇤

p

m⇤�/⇡aTc(1� t)

• The correlation length: ⇠ = ~/
p

2m⇤aTc(1� t)

• The ratio of the penetration depth and the correlation length:  =

cm⇤

~e⇤
p

�/2⇡

• Type-I superconductor: 0 <  < 1/
p
2 (positive surface energy)

• Type-II superconductor:  > 1/
p
2 (negative surface energy)

• Extreme type-II superconductor: � 1

Note that the type-II superconductors generally have large dimensionless factor
, which does not depend on temperature, at least to this order.

1.2 Vortices of Type-II Superconductors and London Model

For a type-II superconductor, there is a lower critical Hc1 and a upper critical
field Hc2.

• (H < Hc1) The superconductor is a perfect diamagnet, exhibiting Meiss-
ner effect.

• (Hc1 < H < Hc2) The magnetic field penetrates the superconductor in
a form of small “tubes” (vortices), each with quantized flux �0 = hc/e⇤.
When increasing H, the number and density of the vortices will increase.

• (H > Hc2) The superconductor goes into the normal state.

In principle, the lower and upper critical fields as well as the field profile can be
calculated by solving Eq. (3) and Eq. (4). Approximation is generally required
becasue of the nonlinearity.

1. As for the upper critical field, it is defined as the boundary of the super-
conducting phase and the normal phase, hence the order parameter field
 is greatly suppressed while magnetic penetration is most prominent. It
allows us to make the linear approximation
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2
 + ↵(T ) = 0 (5)
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Assuming ~H is in ẑ direction, choosing ~A = Bxŷ and  = eikz

zeiky

yf(x)
(because of the translational symmetry), Eq. (5) becomes

�f 00
(x) + (

2⇡B

�0
)

2
(x� ky�0

2⇡B
)f = (

1

⇠2
� k2z)f (6)

This is just the same as the one of a displaced quantum harmonic oscilla-
tor. Recall the quantized energy of the oscillator, and assume that B ⇡ H
(almost no magnetization) when H ⇡ Hc2, then the largest possible mag-
netic field, or the upper critical field is given by

Hc2 =

�0

2⇡⇠2
(7)

Note that ⇠ appears to be the radius of the vortex.

2. As for the lower critical field, it is defined as the field when the first vortex
is formed. The region close to the lower critical field is where the London
model of the vortices is the most reliable. Because the London model is
defined with two major assumptions:
(1)  is homogeneous everywhere except at the core of the vortex.
(2) The core of the vortex is so small that the vortex can be essentially
taken as a line object.
Assuming ~H is in ẑ direction, Eq. (4) should be modified slightly to
account for the quantized magnetic field along the vortex line.

4⇡�2

c
r⇥ ~Js + ~B =

X

i

ẑ�0�(~r � ~ri) (8)

where ~Js is the supercurrent and ~ri labels the position of the vortices.
Substituting one of the Maxwell equation r⇥ ~B = 4⇡ ~Js/c,

r2 ~B �
~B

�2
= ��0

�2
ẑ
X

i

�(~r � ~ri) (9)

whose solution can give the field profile. For a single vortex, by calculating
the energy, it can be shown that

Hc1 ⇡ �0

4⇡�2
ln (10)

Note that the equation above only works for lare .

The London model of the vortices is a very simple one. But it soon becomes in-
valid when approaching Hc2, where  is inhomogeneous and greatly suppressed,
and the vortices tend to have overlaps and cannot be linelike. Especially, the
London model cannot be used to deal with the more interesting case when the
vortices are closely packed into a lattice, which is a common structure when the
density of the vortices is high.
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Figure 1: Left: Vortex lattice with constant | | lines obtained by A. A.
Abrikosov. Right: A schematic phase diagram of a type-II superconductor.

The first solution of the vortex lattice of a type-II superconductor was by A.
A. Abrikosov[3], where he considered an equation similar to Eq. (6), and got
a periodic solution as shown in Fig. 1 above. The graph shown on the right is
a schematic phase diagram of the type-II superconductor from Rosenstein and
Li, Jan 2010[4], just to show the differences between H s Hc1 and H ⇠ Hc2.
The Abrikosov vortex lattice as well as the various phases of vortices will be
discussed using GL models in Section 2.

2 Ginzburg-Landau Models and Various Phases

of Vortices

This section follows the review article of Rosenstein and Li, Jan 2010. Before
going into the details of the GL models, I want to mention four things.

1. (When are they valid?) The GL models below are only valid for high 
type-II superconductors in a magnetic field slightly below Hc2.

2. (What approximation?) The approximation ~B(~r) ⇡ ~H = const. will be
made, which is just the opposite of the London model. Linear approxi-
mation of the nonlinear Shroedinger equation will be made at first, and
later the nonlinear terms can be included as a perturbation on the lowest
Landau level states (details will be provided later).

3. (Any thing put in by hand?) During theoretical calculations, the struc-
tures of the vortex lattices, no matter square or rhombic, are put in by
hand.

4. (What dimension?) Without considering any disorder or fluctuation, a
2-dimensional GL model is sufficient, because of the translational invari-
ance in the direction of the magnetic field, say ẑ direction. However,
when introducing fluctuation and disorder, the ẑ direction terms should
be included in case the translational invariance is broken.
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Figure 2: (a)Experimental phase diagram of LaSCO; (b) Theoretical phase
diagram advocated by Rosenstein and Li. The red curve is the melting line.

Also, to get an idea of the various magnetic phases of the vortices, an example
from Rosenstein and Li, Jan 2010, is shown above. One can get stable Abrikosov
latticewhen fluctuation and disorder are both negligible. Increasing fluctuation
will generally lead to first order melting towards vortex liquid, while increasing
disorder is likely to make it a vortex glass. The Bragg glass, in spite of having
multiple metastable states due to the disoder, still maintains long range order,
and has Bragg peaks as a solid does.

2.1 Abrikosov Vortex Lattices

G =

ˆ
dxdy

⇥
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where t = T/Tc, ~H = (0, 0, H), ~A = (�By, 0, 0) ⇡ (�Hy, 0, 0), and ~D =

r+ i(2⇡/�0)
~A. Note the Gibbs energy above does not involve

• The magnetic penetration depth is defined as � =

c
2e⇤

p

m⇤�/⇡aTc.

• The correlation length is defined as ⇠ = ~/
p
2m⇤aTc.

• The upper critical field is defined as Hc2 = �0/2⇡⇠2.

Note the temperature dependence is dropped from all the definitions. To get a
neat expression, we can do rescaling

x = x/⇠, y = y/⇠,  = (�/2aTc)
1
2
 , b = B/Hc2, h = H/Hc2 (12)

G =

ˆ
dxdy
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⇤
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2
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4

⇤
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where the linear operator ˆH = �(D2
x + @2y + b)/2, and aH = (1 � t � b)/2.

Minimizing the Gibbs energy with respect to  
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ˆH � aH + | |2 = 0 (14)

and drop the nonlinear term at first (it will be added back later) to get

ˆH = aH (15)

Assume the wavefunction is

 (x, y) = eikx

xf(y) (16)

This results in the familiar displaced quantum harmonic oscillator equation
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where HN are Hermite polynomials. Recall the definition of the upper crtical
field. It can be seen that N = 0 (lowest Landau level, short for LLL) gives the
largest b at a temperature t < 1, or we can say

aH =

1� t� b0(t)

2

= 0 (19)

defines the Hc2(T ) line on the phase diagram.
Now the nonlinear term can be added back as a perturbation. As in the

perturbation theory of quantum mechanics, all the eigenstates of ˆH should be
included as the basis functions. But, since we are considering a magnetic field
slightly below Hc2, so it is legitimate to only include the N = 0 states, or the
LLL states as the basis functions. Therefore a variational function can be chosen

 =

X

k
x

Ck
x

�k
x

(~r) (20)

where Ck
x

are variational parameters. However, because the Landau levels are
highly degenerate, this variational function is still impractical. Generally, we
know that symmetry can be used to reduce the degrees of freedom. At this
point, it is the lattice structure that needs to be introduced.

Assuming that the vortices are closely packed into a lattice. And assume
that “closely packed” means hexagonal structure (the other structure can be
calculated in the same way). Then the two lattice vectors can be denoted as
~d1 = d(1, 0), ~d2 = (

1
2 ,

p
3
2 ).
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The periodicity in the d1 or ~x direction means kx is quantized, i.e. kx =

2⇡n/d, n = 0,±1,±2, · · ·. This simplifies the variantional function a little.

 =

X

n

Cn�n(~r) (21)

It is possible to make further simplification, such as making the two-parameter
ansatz Cn+2 = Cn and C1 = iC0, which essentially reduces the number of vari-
antional parameters to one. Specific calculations using the variational functions
will not be provided here, but it should be mentioned that the nonlinear term
lifts the degeneracy of the basis functions.

Now that we know, at least in principle, how to calculate the order parameter
field, let’s look back at an approximation made earlier to check the consitency.

With the LLL approximation, ˆH = E0 = 0, but aH = (1 � t � b)/2 is
assumed to be slightly above zero.

G =

ˆ
d~r
⇥

� aH | |2 + 1

2

| |4 + 2(~b� ~h)2

4

⇤

(22)

Minimizing with respect to b

2(h� b(~r)) = | |2 (23)

or
b(~r) = h� 1

2
| |2 (24)

Recall that � 1 and  is greatly suppressed, so this result is indeed consistent
with the approximation that b ⇡ h. Also, it gives the inhomogeneous distribu-
tion of b(~r) to the order of �2. Fig. 3 shown above is from Rosenstein and
Li, Jan 2010, based upon the method mentioned above with hexagonal struc-
ture and the two-parameter ansatz. More acuurate results may be obtained by
expanding the order paramter field  and the magnetic field b in power of �2.

Figure 3: Hexagonal vortex lattice (arrows indicate directions of the superflow)
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2.2 Excitations of Vortex Lattices

The excitation of the vortex lattice can also be called “phonons”. Since these
excitations may break the translational symmetry in ẑ direction, it is better to
include the ẑ direction terms as mentioned above. Still, LLL approximation is
assumed. Note that the rescaled ˆH = 0 in the original units is

� ~2
2m⇤D

2
 =

~e⇤
2m⇤c

B (25)

So the we can adopt the following form for the Gibbs energy in the original
units.
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where m⇤
c is the effective mass in the ẑ idrection. Note there is no derivative

term in the trasverse direction. Define the Ginzburg number as
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1/2 is a measure of the anisotropy. Similarly, it is useful to
do rescaling
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where t and b are the same as before. In the rescaled units, the Boltzman factor
becomes

g[ , b] ⌘ G[ , B]
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(

p
Gitb

4

)
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Again, it is usefule to invoke the symmetry argument. Based on the structure of
the lattice (rhombic, square, ...), it is better to choose some functions {'k(~r)}
as the basis functions. Then  (~r) can be projected onto this basis.

 (~r) =
1

(2⇡)3/2

ˆ
k

'k(~r) k (32)

where  k are the new variables. The functional f [ ] can be rewritten using  k.
The first two terms of f [ ] are quadratic, and last quartic term is regarded as
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the interaction. As in the case of weakly interacting boson condensates, one can
to define

 k = v0(2⇡)
3/2�k +

ckp
2

(Ok + iAk) (33)

where v0 represents the condensation part, and Ok and Ak are real fields which
are analogous to the optical and acoustic modes in the crystals. Substitute Eq.
(33) into the quadratic term of f [ ]. By choosing ck properly, the quadratic
terms can be diagonalized in the forms of O⇤

kOk and A⇤
kAk, with the coefficients

as the excitation energies, respectively. The acoustic dispersion relation can
be shown to be proportional to |~k|4, which means the “acoustic phonons” are
“supersoft”.

Also, the effect of the quartic term can be included perturbatively, by sum-
ming over Feynman diagrams. From here on, lots of caculation details have to
be replaced by hand-waving arguments for simplicity.

2.3 Vortex Liquid

To deal with vortex liquid, one can still start with Eq. (30), but the lack of
lattice structure means no basis of functions is particularly favored. There are
generally three approaches to calculation of the vortex liquid energy density,
with increasing reliability.

1. Treat the quadratic quartic terms as a “free theory”, and then include
quartic term perturbatively by summing over Feynman diagrams directly.

2. Put a portion of the quadratic term into the perturbation, and treat this
portion as a variaional parameter. Then calculate the energy density per-
turbatively. Finally minimizing the energy density with respect to the
variational parameter.

3. Based on Method 2, and use the Borel-Pade resummation technique.

Comparing the vortex liquid energy density with the vortex lattice energy den-
sity leads to determination of the melting line, or actually determination of the
value of aT . In this way, it can shown that there is a specific heat jump and a
magnetization jump across the melting line. As Li and Rosenstein argues, the
theoretical calculations fit very well with the experimental data[5]. The melting
of the vortex lattice is believed to be of first order.

2.4 Disorder and Vortex Glass

Vortex glass phase mainly owes its existence to disorder. Impurities and defects
generally act attractively to pin the vortex. This random pinning can destroy
the vortex lattice, and is most prominent when fluctuation is not too high.
The competition between the disorder and fluctuation will severely increase the
complexity of the problem, such as in high Tc superconductors.
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The usual approach to vortex glass is by adding white noise and using replica
trick.

Assuming that the white noise W (~r) is introduced to the coefficient of the
quadratic term of the GL free energy (as a random disturbance to the local
temperature)

F =

ˆ
d~r
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2
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So the partition function is
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The replica trick comes into play by writing the Helmholtz free energy as

F = �kBT lim

n!0

1

2

(Zn � 1) (36)

And Zn can be regarded as a statistical summation of n identical copies of the
order parameter field  , thus
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X

a
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1

2

�(t)
X

a,b

ˆ
r

| a|2| b|2 (38)

After averaging over the disorder, different replicas get a interacting term. And
Fn serves as a starting point for calculating the physical properties of the vortex
glass.

Replica symmetry means the invariance of the physical quantities under the
permutation of different replicas, or the index a above. And the Bragg glass
is believed to spontaneously break the replica symmetry. Rosenstein and Li
confirmed that white noise added to the quadratic terms does not spontaneous
break the replica symmetry, but white noise added to the quartic term does.

3 Techniques on Measuring Vortices

Here, the usual techniques on measuring vortices are briefly introduced.

3.1 Bitter Decoration

Bitter Decoration provides a indirect illustration of the vortex lattice. It works
in a pretty simple way.

1. Spray ferromagnetic powder onto the surface of the superconductor.
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2. The tiny ferromagnets are attracted to the locations of the vortex and
align themselves in a certain pattern.

This is among the earliest methods to verify the existence of the Abrikosov
lattices. But this method cannot be used to extract interesting information
about the vortices, and is limited to low magnetic field.

3.2 Scanning Tunneling Spectroscopy

The IV curve obtained by scanning tunneling spectroscopy can be strongly sen-
sitive of vortex core, because of the states confined in the vortex cores. STM
can be used under the whole range of the magnetic field, and can detect the
change of density of states in the vortex cores.

3.3 µSR Technique

µSR is a indirect method for probing the vortices, and is short for “muon spin
rotation”. Usually, it uses powdered superconductor. The way it works is as
follows.

1. Highly polarized muons are shot onto the surface of the superconductor.
The muons’ spins will rotate under the influence of the local magnetic of
surface.

2. The muons decay and emit positron mostly in the direction of the muon’s
spins.

3. By measuring the distribution of the positrons, the polarization of the
muons’ spins in the time domain can be obtained.

4. The inhomogeneous magnetic field of the surface can be extracted, using
the details of the London model or the GL models.

The µSR technique can provide information on some physical quantities, such
as the penetration depth and correlation length[6], but the information provided
is model-dependent.

4 Summary

The study of vortices in type-II superconductors have a long history. As can be
seen above, the London model and the GL model are useful in different ranges
of the magnetic field, and do a decent job on describing various phases of the
vortices. However, since they are all phenomenological theories, neither is capa-
ble of providing information on the microscopic details. It is natural that we ask
questions, like how does the superconducting gap react to the creation of vortex
lattice? How does the creation of vortex lattice influence the pair mechanism
and the quasiparticle spectrum near the Fermi surface? These questions are re-
ally important. Because there are people who want to use de Haas-Van Alphen
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technique to study type-II and high Tc superconductors. And there is intrigu-
ing observation of paseudogap in the vortex cores of cuprate superconductors.
However, these questions, linking the vortices to the microscopic aspects of the
superconductors, have not yet had complete answers.
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