
WALLPAPER GROUPS

Julija Zavadlav

Abstract

In this paper we present the wallpaper groups or plane crystallographic groups. The name
wallpaper groups refers to the symmetry group of periodic pattern in two dimensions. We start
by presenting the symmetries of the Euclidean plane. Than all 17 types of wallpaper symmetries
are described.
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1 Introduction

Intuitively a wallpaper pattern is a design used for making wallpaper. One can make such a pattern
by taking a motif and repeating it horizontally and vertically. The example on Figure 1 (left) was
made by taking a motif Γ, and translating it horizontally and vertically. There are other ways of
repeating a basic motif to get a pattern. For instance, one could repeat the the same motif in an
another way to obtain different wallpaper pattern (Figure 1 right). As we will see there are exactly
17 number of ways a motif can be arranged to form a patter.

Figure 1: Two different ways of wallpaper pattern construction by repeating the same motif.

Wallpaper patterns occur frequently in architecture and decorative art. A nice example is the
Alhambra. This Islamic palace lays in the valleys of Granada, Spain and was built after the
Muslims conquered Spain in the 8th century. The palaces interior design exhibits the Islamic
necessity to use geometric shapes. This mathematical labyrinth, as it has been referred to, exhibits
walls that are decorated using all possible wallpaper patterns. It is not known whether the architects
had a mathematical knowledge of all the different wallpaper patterns or simply exhausted all the
possibilities.
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2 Symmetry in the plane

An isometry of R2 is a distance-preserving transformation of the plane [1]. It is a map f : R2 → R2

such that for any points P and Q in the plane

d(P,Q) = d(f(P ), f(Q)), (1)

where d(P,Q) is the distance between P and Q. As we will later show there are only four types of
isometries of the plane: translations, rotations, reflections and glide reflections.
If vector v ∈ R2, then a function T : R2 → R2 defined by Tv(r) = r + v for all r ∈ R2 is
a translation by a vector v. Rotation R0,α by an angle α about the origin is in Cartesian
coordinates given by

R0,α(r) =

(
cosα − sinα
sinα cosα

)[
x

y

]
. (2)

Rotation by α about a point P ∈ R2 can be written as RP,α = T ◦R0,α ◦T−1, where T is translation
by P . We say that a planer object has rotational symmetry about a point P if it is carried into
itself by at least one non-trivial rotation around P . Let l be a line in R2 going through the origin
parallel to a unit vector w, then the reflection Ml of vector r across l is given by

Ml(r) = 2(rw)w − r. (3)

An object is symmetric with respect to a line l if it is carried into itself by reflection across l. Let
Ml be a reflection about a line l passing through the origin. If vector t ∈ R2 is not perpendicular
to l, than a composition of reflection and translation G = Tt ◦Ml is a glide reflection parallel to
l and displaced in perpendicular direction by 1

2t.

The composition of two isometries is an isometry [1]. The isometries of the plane form a group
under composition of function, the so called Euclidean group E2. Euclidean group is built from the
translational group T the orthogonal group O2(R) [1]. Every element of O2(R) can be represented
by a 2 x 2 matrix, where any such matrix satisfies the condition ATA = I. Let A be the matrix
with respect to the standard basis for an element in O2(R). If

A =

(
a b
c d

)
, (4)

then the condition ATA = I gives(
a2 + c2 ab+ cd
ab+ cd d2 + d2

)
=

(
1 0
0 1

)
. (5)

The above relation can be satisfied if there is an angle θ with a = cos θ, c = sin θ and (b, d) =
(− sin θ, cos θ) or (b, d) = (sin θ,− cos θ). The first choice gives a matrix A with determinant 1 that
represents a rotation about the origin by an angle θ. Such matrix is an element of special orthogonal
group SO2(R) a subgroup of O2(R) whose elements preserve orientation. On the other hand the
second choice gives a matrix of determinant -1 that represents a reflection across a line through the
origin. Elements of SO2(R) are rotations and elements of O2(R) \ SO2(R) are reflections. Since
every element of E2 is the composition of a translation with an element of O2(R), it follows that
every isometry of the plane is either a translation, a rotation, a reflection or a glide reflection [2].
Every isometry of the plane can be written in a specific notation as an ordered pair (A,u), where
u ∈ R2 and A ∈ O2.
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2.1 Composition of isometries

Now we will look at some compositions of isometries, that will later help us construct the wallpaper
groups.
Rotation ◦ translation
Composition of rotation RP,α about point P by an angle α and a translation Tt is another rotation

RQ,α by α about a point Q that is displaced vertically by |t|2 cot α2 along bisector of t (Figure 2).

Figure 2: Composition of rotation and translation. Initial object (1) is rotated about P by an angle α to a
second object (2), which is than translated by t to third object (3). The first and third object are directly
related with rotation about Q by an angle α.

Reflection ◦ translation
If Mm is a reflection across line m and Tt translation perpendicular to reflection line, than the
composition of reflection and translation is a reflection Mm′ across line m′ at the bisector of t. If
however the translation is not perpendicular, than the composition is a glide reflection Gt‖ parallel

to reflection line and displaced by t⊥
2 in perpendicular direction (Figure 3).

Figure 3: Composition of reflection and translation. Initial object (1) is reflected across line m to a second
object (2), which is than translated by t to third object (3). If the vector of translation is perpendicular to
the mirror line m, the first and third object are directly related with reflection across m′, otherwise they are
related with glide reflection g.

Glide reflection ◦ translation
Composition of a glide reflection G and a perpendicular translation Tt is a glide reflection G′ at
the bisector of t. Composition of a glide reflection Gt‖ and a non-perpendicular translation is a

reflection M perpendicular to glide reflection and displaced by t⊥
2 in perpendicular direction.

Reflection ◦ rotation
If Mm is a reflection across line m and P center of rotation by α that lies on m, than the compo-
sition of rotation and reflection is a reflection M ′m across a line m′, that is passing through P and
is inclined by an angle α

2 to line m (Figure 4). If center of rotation does not lie on reflection line,
than the composition is a glide reflection.
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Figure 4: Composition of rotation and reflection. Initial object (1) is reflected across line m to a second
object (2), which is than rotated about P by α to third object (3). We can see that the first and third object
are related by reflection across line m′, which is inclined at an angle α

2 relative to line m.

Reflection ◦ reflection
Suppose we have two parallel reflection lines m and m′ separated by t. Reflecting an object across
reflection line m followed by reflection across the line m′ is the same as translating the original
object by 2t (Figure 5 left). In the more general case the two reflection lines are inclined to one
another by an angle α and we have an intersection point P (Figure 5 right). The composition of
two reflections is in this case a rotation RP,α by 2α about point P .

Figure 5: Composition of two parallel (left) and non-parallel (right) reflections. Initial object (1) is reflected
across line m to a second object (2), which is than reflected across line m′ to third object (3).

2.2 Lattices and point groups

Wallpaper pattern is a two dimensional repeating pattern that fills the whole plane. The sym-
metry group of a wallpaper pattern is said to be a wallpaper group. A subgroup W ∈ E2 is a
wallpaper group if its translation subgroup H is generated by two independent translations and its
points group J is finite [2].
A two-dimensional lattice L in R2, is the set of all the points that the origin gets mapped to
under the action of H, the translation subgroup of a wallpaper pattern. It is a subgroup of the
form nt1 + mt2, where n,m ∈ Z for some basis t1, t2 of R2 [1]. By examining all possible basic
parallelograms determined by the vectors t1 and t2 we will later see that there are only five different
types of lattices; parallelogram (oblique), rectangular, centred rectangular, square and hexagonal
[1].

Theorem (Crystallographic restriction): The order of a rotation in a wallpaper group can
only be 2, 3, 4, or 6.

Proof: Let Q be a lattice point and center of rotation of period n. Transformation operator of
the lattice transforms Q into infinitely many other centers of rotation of the same period. Let P ′
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Figure 6: Crystalographic restriction.

be one of these other centers at the least possible distance form Q (Figure 6). A third center of
rotation P is obtained by rotation of P ′ through α = 2π/n about Q; and a fourth Q′ by rotation
of Q by α about P ′.
Points generated by rotation must coincide with lattice points, therefore Q′ and P are lattice points
and ‖Q′P‖ = p‖QP ′‖, where p ∈ Z. Form Figure we can see the following relation

‖QP ′‖ = 2‖QP ′‖ cosα+ p‖QP ′‖ or cosα = 1−p
2 . (6)

By considering each p in turn we can obtain all possible orders of rotation (Table 1).

p cosα α n-fold

4 −3/2 / /

3 −1 180◦ 2-fold

2 −1/2 120◦ 3-fold

1 0 90◦ 4-fold

0 1/2 60◦ 6-fold

-1 1 0◦ trivial

-2 3/2 / /

Table 1: Possible orders of rotations in wallpaper patterns.

Let R be a rotation by 360◦/n and M a reflection. Dihedral group Dn is a group that contains
rotations R,R2, ..., Rn and reflections M,RM, ..., Rn−1M , where the elements R and M satisfy the
relations Rn = M2 = I and MRM = R−1. The subgroup of all rotations in Dn is the cyclic
subgroup I,R, ..., Rn−1, denoted by Cn [2].
If J is a point group of a wallpaper group W , then J is isomorphic to one of the following ten
groups {

C1, C2, C3, C4, C6

D1, D2, D3, D4, D6

}
.

For proof see [2]. Since the elements of wallpaper groups are all isometries we will use the notation
(j, tj) to denote an element of a wallpaper group. For each j ∈ J there is a vector tj ∈ R2

with (j, tj) ∈ J . Furthermore, tj is uniquely determined up to addition by an element of L. We
will refer to {tj}j∈J as point group vectors for wallpaper group W . If {t1, t2} is a basis for the
translational lattice, than W is generated by the two translations (I, t1), (I, t2) together with the
elements {(j, tj); j ∈ J}. This is a finite set of generators. To describe explicitly a wallpaper group
W , it is then sufficient to determine all possible vectors {tj} that satisfy certain restrictions.
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3 The Wallpaper groups

Having found all the possible point groups we now move on to classifying all possible wallpaper
groups. We will denote wallpaper groups with crystallographic notation. The full name consists of
four symbols. The first symbol represents the lattice type; p for primitive and c for centred. This
is followed by a digit, n, indicating the highest order of rotational symmetry: 1(none), 2, 3, 4, or
6-fold. The next two symbols is either an m, g, or 1. An m (g) at the place of third symbol means
there is a reflection line (glide reflection line) perpendicular to the x-axis while a 1 means there is
no line of either type. Finally, the last symbol m (g) represents a reflection line (glide reflection) at
an angle α with the x-axis, the angle depending on the largest order of rotation as follows: α = 90◦

for n = 1, 2; α = 60◦ for n = 3, 6; α = 45◦ for n = 4. The short notation drops digits or an m
that can be deduced. For example, the group name p3m1 represents a group with a 120◦ rotation,
a reflection line perpendicular to the x-axis, and no reflection or glide line at an angle of 60◦ with
the x-axis.
For each wallpaper group we can draw a structure lattice diagram where the lattice is colored in
blue, while the present operators are indicated with the well established symbols presented in Table
2.

Table 2: Notation used in the structure lattice diagram of wallpaper groups.

3.1 Parallelogram lattices

We choose a basis t1, t2 for the two independent translations, where the x-axis is in direction of
t1. Let lattice point Q be the center of rotation by 180◦. With rotation of lattice point P’ around
Q and Q around P’ we obtain the most general situation. On Figure 7 we see that the operation
of rotation by 180◦ does not impose any restriction on the geometry of the lattice. In other words
|t1| 6= |t1| with an arbitrary angle between them.

Figure 7: Construction of the lattice in the case of rotation by 180◦ (left). Parallelogram lattice (right).

Point group C1

The description of the point group C1 does not depend on the basis and contains only the identity
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matrix, therefore

C1 =

{(
1 0
0 1

)}
. (7)

The wallpaper group isomorphic to C1 is the simplest one denoted by p1. It is generated by two
independent translations and a trivial rotation. An example of group p1 is depicted on Figure 8.

Figure 8: Lattice structure diagram and a pattern example of wallpaper group p1.

Point group C2

Point group C2 contains the operation of rotation by 180◦ and can be written as

C2 =

{(
−1 0
0 −1

)}
. (8)

Suppose we place the center of 2-fold rotation operator at one lattice point. Translation operation
produces the rotation operator at all lattice points. The 2-fold rotation centers are therefore
present at the corners of parallelogram lattice (Figure 9). Since the composition of 2-fold rotation
and translation is another 2-fold rotation there are additional centers located at 1

2t1,
1
2t2 and

1
2(t1 + t2). Obtained wallpaper group is labelled with p2.

Figure 9: Lattice structure diagram, diagram with the addition of simple motif and a pattern example of
wallpaper group p2.

3.2 Rectangular and centerd rectangular (rhombic) lattices

Let Ml be a nontrivial reflection across line l and t ∈ L a nonzero vector not parallel to l (Figure
10). Vectors t + M(t) and t −M(t) are also elements of L, so L contains nonzero vectors both
parallel and perpendicular to the line of reflection l. If s1 and s2 are nonzero vectors of minimal
length parallel and perpendicular to the reflection line, than for any t ∈ L we have t+M(t) = mts1
and t−M(t) = nts2 for some mt, nt ∈ Z. Solving for t gives

t =
mt

2
s1 +

nt
2

s2. (9)

If both integers mt, nt are even, than {s1, s2} is the basis for L. The corresponding lattice is
rectangular lattice whose basis are two orthogonal not equal in length vectors, one of which is fixed
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Figure 10: Transformation of nontrivial reflection of vector non parallel to the line of reflection.

by a reflection line (Figure 11). On the other hand, if mt or nt is odd for some t, then both have
to be odd, otherwise we have a contradiction. If we set t1 = 1

2(s1 + s2) and t2 = 1
2(s1− s2) = f(t1),

then

t =
mt

2
s1 +

nt
2

s2 =
1

2
(mt + nt)t1 +

1

2
(mt − nt)t2 =

m′t
2

t1 +
n′t
2

t2 (10)

with m′t, n
′
t ∈ Z and the set {t1, t2} is a basis of vectors of the same length with a reflection that

interchanges them. Alternatively we can use larger lattice with additional lattice point where the
basis are orthogonal vectors of non equal length. Lattice L is called rhombic or. centred rectangular
lattice.

Figure 11: Rectangular (left) and centred rectangular lattice (right).

Point group D1

Point group D1 can be combined either with rectangular or centred rectangular lattice. We fist
look at the rectangular lattice. The matrix representation of D1,p in above defined basis is

D1,p =

{(
1 0
0 −1

)}
, (11)

where p stands for primitive lattice.

Lemma: There are two nonisomorphic wallpaper groups with point group D1,p.
Proof: To determinate the point group vectors we have to consider the condition u + M(u) ∈ L.
Rectangular lattice has the basis {t1, t2} with M(t1) = t1 and M(t2) = −t2. If u = αt1 + βt2
with α, β ∈ R and 0 ≤ α, β < 1 we have u +M(u) = 2αt1. For this to be an element of L we must
have 2α ∈ Z, so α = 0 or α = 1

2 , while β is arbitrary. Therefore, there are two wallpaper groups
with point group D1,p; one corresponds to the choice of u = 0 and the other to u = 1

2t1.

If wallpaper group W contains a reflection in a horizontal mirror that the wallpaper group is
named pm that contains group elements{

t1, t2,

((
1 0
0 −1

)
, 0

)}
. (12)
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The reflection lines pass through the lattice points. Another distinct reflections are due to the
composition of translation and orthogonal reflection and lie midway between lattice points (Figure
12).

Figure 12: Wallpaper group pm.

If wallpaper group W is isomorphic to point group D1,p, yet there are no reflections in W . Than W
has to contain a glide reflection whose line is horizontal. Group elements of this wallpaper group
denoted pg are {

t1, t2,

((
1 0
0 −1

)
,
1

2
t1

)}
. (13)

By the same argument as before there is also a horizontal glide reflection at 1
2t1 (Figure 13).

Figure 13: Wallpaper group pg.

In the case of centred rectangular lattice. The matrix representation of D1,c is

D1,c =

{(
1 0
0 −1

)}
, (14)

where c stands for centerd lattice. There is only one way of constructing a wallpaper group with
this point group. The group is named cm and contains horizontal reflections that go through lattice
points and horizontal glide reflections which lie midway between lattice points (Figure 14).

Figure 14: Wallpaper group cm.

9



Point group D2

As before there are two possibilities for matrix representation for D2, corresponding to two different
lattices. For the rectangular lattice we have

D2,p =

{(
−1 0
0 −1

)
,

(
1 0
0 −1

)}
. (15)

Lemma: There are three nonisomorphic wallpaper groups with point group D2,p.
Proof: Let J = D2,p. Then L has a basis {t1, t2} with M(t1) = t1 and M(t2) = −t2, while
R(t) = −t for all t ∈ L. If u = αt1 + βt2, then condition R(u) − u ∈ L says that α = 0, 12 and
β = 0, 12 . The condition M(u) + u ∈ L gives no further restriction. Therefore, we have four possi-
bilities: u = 0,u = 1

2t1,u = 1
2t2,u = 1

2(t1 + t2). Since groups corresponding to u = 1
2t1,u = 1

2t2
are isomorphic we have only three nonisomorphic wallpaper groups.

If G contains a reflection in a horizontal mirror and a reflection in a vertical mirror than the
wallpaper group is named p2mm (Figure 15) and generated by{

t1, t2,

(
−1 0
0 −1

)
,

((
1 0
0 −1

)
, 0

)}
. (16)

Figure 15: Wallpaper group p2mm.

If G contains a reflection in a horizontal mirror and a glide reflection in a vertical mirror than the
wallpaper group is named p2mg (Figure 16) and generated by{

t1, t2,

(
−1 0
0 −1

)
,

((
1 0
0 −1

)
,
1

2
t1

)}
. (17)

Figure 16: Wallpaper group p2mg.

The third wallpaper group belonging to D2,p is p2gg with glide reflections in horizontal and vertical
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mirror planes (Figure 17) and the generators are{
t1, t2,

(
−1 0
0 −1

)
,

((
1 0
0 −1

)
,
1

2
(t1 + t2)

)}
. (18)

Figure 17: Wallpaper group p2gg.

Matrix representation of D2 for the centred rectangular lattice is

D2,c =

{(
−1 0
0 −1

)
,

(
0 1
1 0

)}
. (19)

Wallpaper group corresponding to this point group is named c2mm and contains the perpendicular
reflections passing through the lattice points and perpendicular glide reflections in between the
reflections (Figure 18).

Figure 18: Wallpaper group c2mm.

3.3 Square lattices

Let R be a rotation by 90◦. If t1 is a vector in L of minimal length, then {t1, R(t1)} is a basis for
L. The basis vectors are of equal length and the angle between them is equal to 90◦. The lattice
is called a square lattice (Figure 19).

Figure 19: Construction of a square lattice.
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Point group C4

With respect to this basis, we see that if J = C4, then the representation of J by this basis is

C4 =

{(
0 −1
1 0

)}
. (20)

Figure 20 shows wallpaper group with 4-fold rotational symmetry and no reflections is denoted by
p4. Adding 4-fold axis of rotation to one lattice point will add a 4-fold rotation at all corners of
a square lattice. Additional 4-fold axis lies in the center of square due to composition of 4-fold
rotation and translation. Since group C2 is a subgroup of C4 we know that 2-fold axis of rotation
have to be located at the middle of each lattice edge.

Figure 20: Wallpaper group p4.

Point group D4

Since D4 is generated by C4 and any reflection, using the reflection about the line parallel to t1,
we obtain the representation

D4 =

{(
0 −1
1 0

)
,

(
1 0
0 −1

)}
. (21)

Lemma: There are two nonisomorphic wallpaper groups with point group D4.
Proof: Suppose that J = D4, there is a basis {t1, t2} for L with R(t1) = t2 and R(t2) = −t1 and
u = αt1 + βt2. The condition R(u) − u ∈ L says (−α − β)t1 + (α − β)t2 ∈ L. In other words,
α + β ∈ Z and α − β ∈ Z. Therefore, with 0 ≤ α, β < 1, we have the solutions α = β = 0 and
α = β = 1

2 . So, either u = 0 or u = 1
2(t1 + t2).

Figure 21: Wallpaper groups p4m (left) and p4g (right).

The wallpaper group p4m is generated by{
t1, t2,

(
0 −1
1 0

)
,

((
1 0
0 −1

)
, 0

)}
. (22)
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It contains reflections at angles 0◦, 45◦, 90◦ and 135◦ with respect to t1 and glide reflections passing
through the 2-fold axes (Figure 21). If we exchange the reflections and glide reflections we obtain
wallpaper group p4g that is generated by{

t1, t2,

(
0 −1
1 0

)
,

((
1 0
0 −1

)
,
1

2
(t1 + t2)

)}
. (23)

3.4 Hexagonal lattices

Let R be a rotation by 120◦. If t1 is a vector in L of minimal length, then by setting t2 = R(t1),
the set {t1, t2} is a basis for L. The lattice in this case is called a hexagonal lattice (Figure 22).

Figure 22: Construction of hexagonal lattice.

The group C3

In this basis the point group C3 can be written as

C3 =

{(
0 −1
1 −1

)}
. (24)

With point group C3 we obtain the wallpaper group p3 shown on Figure 23. The centers of 3-fold
axis are located at corners of lattice. Two additional centers of 3-fold axis arise due to composition
of rotation and translation.

Figure 23: Wallpaper group p3.

The group C6

Wallpaper group isomorphic to C6, denoted by p6 is generated by 6-fold rotation, where

C6 =

{(
1 −1
1 0

)}
. (25)

To construct the pattern, we use the fact that the point group C6 contains both C2 and C3. Wall-
paper group p6 is therefore going to contain all the elements of groups p2 and p3. As we can see
on Figure 24 the centers of 6-fold axis are located at corners of hexagonal lattice, while the centres
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Figure 24: Wallpaper group p6.

of 3 and 2-fold axis lie at the same positions as in p2 and p3.

The group D6

If J = D6, then J contains 6 lines of reflection separated by 30◦. The group D6 is generated by C6

and any reflection; using the reflection that fixes t1, we have

D6 =

{(
1 −1
1 0

)
,

(
1 −1
0 −1

)}
. (26)

The corresponding wallpaper group is named p6m (Figure 25). There are additional glide reflec-
tions in six distinct directions, whose axes are located halfway between adjacent parallel reflection
axes.

Figure 25: Wallpaper group p6m.

The group D3

If J = D3, then the point group contains three reflections. The lines of reflection are separated by
60◦ angles, since if M is a reflection in D3, then MR is a reflection whose line of reflection makes
a 60◦ angle with that of M . The reflection lines for D3 must be reflection lines for D6 since D3

is a subgroup of D6. This indicates that D3 can act in two ways with respect to this basis. The
reflection lines can be at angles 30◦, 90◦ and 150◦ with respect to t1. The rotation by 120◦ and the
reflection line about the 30◦ are generating the group D3,l, where

D3,l =

{(
0 −1
1 −1

)
,

(
1 0
1 −1

)}
, (27)

where l stands for long. The group D3,l contains a reflection about the 150◦ line, which is the long
diagonal of a parallelogram. The wallpaper group associated with D3,l is p3m1 (Figure 26 left).
The centre of every rotation lies on a reflection axis. There are additional glide reflections in three
distinct directions, whose axes are located halfway between adjacent parallel reflection axes.
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Figure 26: Wallpaper groups p3m1 (left) and p31m (right).

The other possibility are reflection lines at 0◦, 60◦ and 120◦ with respect to t1. The rotation
by 120◦ and the reflection line about the 0◦ are generating the group D3,s

D3,s =

{(
0 −1
1 −1

)
,

(
1 −1
0 −1

)}
, (28)

where s stands for short. The group D3,s contains a reflection about the 60◦ line, which is the
short diagonal of a parallelogram. Isomorphic to D3,s is wallpaper group p31m (Figure 26 right).
This group has at least one rotation whose centre does not lie on a reflection axis. There are
additional glide reflections in three distinct directions, whose axes are located halfway between
adjacent parallel reflection axes.
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A 17 Wallpaper groups

p1 p2

pm pg cm

pmm pmg pgg cmm

p4 p4m p4g

p3 p3m1 p31m

p6 p6m
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