Linear Logic and Linear Algebra

Steve Zdancewic with Jennifer Paykin \& Benoît Valiron

December 2, 2013
(work in progress!)

(Intuitionistic) Linear Logic

```
A,B ::= 0 additive sum unit
    1 multiplicative product unit
    T additive product unit
    \perp \quad m u l t i p l i c a t i v e ~ s u m ~ u n i t
    A\oplusB additive sum
    A& B additive product
    A\otimesB multiplicative product
    A\multimapB linear implication
    !A exponential
    \Gamma ::= A contexts
    \Gamma\vdashA judgments
```


Denotational (Categorical) Models

Basic idea:

- Interpret each type A as some structure $\llbracket A \rrbracket$
- Interpret each judgement $\Gamma \vdash A$ as a morphism

$$
\llbracket \Gamma \vdash A \rrbracket: \llbracket\ulcorner\rrbracket \rightarrow \llbracket A \rrbracket
$$

- Interpret inference rules compositionally

Interpretations should "respect" proof equivalences, e.g.:

$$
\llbracket \overline{\overline{A \vdash A}} \quad \overline{B \vdash B}] \rrbracket=[[\overline{A \otimes B \vdash A \vdash A \otimes B}]]
$$

Many Models of Linear Logic

(Fairly?) Simple:

- Sets and Relations

$$
\begin{aligned}
\llbracket \mathbb{I} \| & =\emptyset \\
\llbracket 1 \| & =\{\bullet\} \\
\llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \uplus \llbracket B \rrbracket \\
\llbracket A \vdash A \rrbracket & =\{(x, x) \mid x \in \llbracket A \rrbracket\} \\
\llbracket A \vdash A \oplus B \rrbracket & =\{(x, \text { inl } x) \mid x \in \llbracket A \llbracket\}
\end{aligned}
$$

(Fairly?) Complex:

- Coherence Spaces, Proof Nets, Game Semantics

Linear Logic and Linear Algebra

FinVect:

- Interpret a type as a finite dimensional vector space (over a finite field)
- Interpret a judgment as a linear transformation (i.e., a matrix)

Linear Logic and Linear Algebra

FinVect:

- Interpret a type as a finite dimensional vector space (over a finite field)
- Interpret a judgment as a linear transformation (i.e., a matrix)

Why?

- Next simplest reasonable model (after Set).
- I haven't seen this worked out in detail anywhere before.
- There are lots of interesting things that live in the category FinVect:
- All of linear algebra: Matrix algebra, derivatives, eigenvectors, Fourier transforms, cryptography(?), etc.

Linear Algebra

Fields

A field $\mathbb{F}=(F,+, \cdot, 0,1)$ is a structure such that:

- F is a set containing distinct elements 0 and 1 .
- Addition: $(F,+, 0)$ abelian group, identity 0
- Multiplication: $(F-\{0\}, ; 1)$: abelian group, identity 1
- The distributive law holds:

$$
\forall \alpha, \beta, \gamma \in F \cdot \alpha \cdot(\beta+\gamma)=(\alpha \cdot \beta)+(\alpha \cdot \gamma)
$$

- There are no zero divisors:

$$
\forall \alpha, \beta \in F \cdot \alpha \cdot \beta=0 \Longrightarrow \alpha=0 \vee \beta=0
$$

Vector Spaces

A vector space over \mathbb{F} is just a set V with addition and scalar multiplication:

$$
\begin{aligned}
& \forall v, w \in V .(v+w) \in V \\
& \forall \alpha \in \mathbb{F} . \forall v \in V . \alpha v \in V
\end{aligned}
$$

Satisfying some laws:

- $(V,+, 0)$ form an abelian group
- $\alpha(v+w)=\alpha v+\alpha w$
- $(\alpha+\beta) \boldsymbol{v}=\alpha \boldsymbol{v}+\beta \boldsymbol{v}$

Functional Vector Spaces \mathbb{F}^{X}

Pick a coordinate system (i.e. a set X) and define \mathbb{F}^{X}, the "vector space with coordinates in X ":

$$
\mathbb{F}^{X} \triangleq\{v \mid v: X \rightarrow \mathbb{F}\}
$$

- A vector is just a function that maps each coordinate to an element of \mathbb{F}
- Example: In the plane, we might pick $X=\{$ "x", "y" $\}$
- Vector addition and scalar multiplication are defined pointwise
- The dimension of \mathbb{F}^{X} is just the cardinality of X.

Canonical Basis

Canonical basis for \mathbb{F}^{X} :

$$
\left\{\delta_{x} \mid x \in X\right\}
$$

- Here δ_{x} is the vector:

$$
\delta_{x}[y]= \begin{cases}1 & \text { if } y=x \\ 0 & \text { if } y \neq x\end{cases}
$$

- Every vector in \mathbb{F}^{X} can be written as a weighted sum of basis elements.

$$
\left[\begin{array}{l}
3 \\
4
\end{array}\right]=3 \cdot \delta_{x}+4 \cdot \delta_{y}
$$

Linear Maps

A linear transformation $f: \mathbb{F}^{X} \rightarrow \mathbb{F}^{Y}$ is a function such that:

$$
f(\alpha v+\beta w)=\alpha f(v)+\beta f(w)
$$

f is completely characterized by its behavior on the set of basis vectors δ_{x}.

$$
f\left(\delta_{x}\right)=\sum_{y \in Y} M_{f}[y, x] \delta_{y}
$$

Here: $M_{f}[y, x]$ is a (matrix) of scalars in \mathbb{F}

Matrices

If \mathbb{F}^{X} has n coordinates and \mathbb{F}^{Y} has m coordinates, then any linear map $f: \mathbb{F}^{X} \rightarrow \mathbb{F}^{Y}$ can be represented as a matrix:

$$
\left[\begin{array}{cccc}
f\left[y_{1}, x_{1}\right] & f\left[y_{1}, x_{2}\right] & \cdots & f\left[y_{1}, x_{n}\right] \\
f\left[y_{2}, x_{1}\right] & f\left[y_{2}, x_{2}\right] & \cdots & f\left[y_{2}, x_{n}\right] \\
\vdots & \vdots & \ddots & \vdots \\
f\left[y_{m}, x_{1}\right] & f\left[y_{m}, x_{2}\right] & \cdots & f\left[y_{m}, x_{n}\right]
\end{array}\right]
$$

For example, the 3×3 identity map:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { or }\left[\begin{array}{lll}
\bullet & \cdot & . \\
. & \bullet & . \\
. & . & \bullet
\end{array}\right]
$$

Linear Logic

Multiplicative Unit: 1

Interpret 1 as a vector space:

Multiplicative Unit: 1

Interpret 1 as a vector space:

- Coordinates: $1^{\dagger}=\{\bullet\}$
$\bullet \llbracket 1 \rrbracket=\mathbb{F}^{1^{\dagger}} \quad\left(=\left\{v \mid v: 1^{\dagger} \rightarrow \mathbb{F}\right\}\right)$

Interpret the " 1 introduction" inference rule as the 1×1 identity matrix:

$$
\llbracket 1 \vdash 1 \rrbracket=[1]
$$

Multiplicative Product: $A \otimes B$

Interpret $A \otimes B$ as a vector space:

Multiplicative Product: $A \otimes B$

Interpret $A \otimes B$ as a vector space:

- Coordinates: $(A \otimes B)^{\dagger}=A^{\dagger} \times B^{\dagger}$
- $\llbracket A \otimes B \rrbracket=\mathbb{F}^{(A \otimes B)^{\dagger}}$

Multiplicative Product: $A \otimes B$

Interpret $A \otimes B$ as a vector space:

- Coordinates: $(A \otimes B)^{\dagger}=A^{\dagger} \times B^{\dagger}$
- $\llbracket A \otimes B \rrbracket=\mathbb{F}^{(A \otimes B)^{\dagger}}$

Interpret \otimes introduction:

$$
\frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1} \otimes \Gamma_{2} \vdash A \otimes B}
$$

Multiplicative Product: $A \otimes B$

Interpret $A \otimes B$ as a vector space:

- Coordinates: $(A \otimes B)^{\dagger}=A^{\dagger} \times B^{\dagger}$
- $\llbracket A \otimes B \rrbracket=\mathbb{F}^{(A \otimes B)^{\dagger}}$

Interpret \otimes introduction:

$$
\frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1} \otimes \Gamma_{2} \vdash A \otimes B}
$$

$$
\frac{f: \llbracket \Gamma_{1} \rrbracket \rightarrow \llbracket A \rrbracket \quad g: \llbracket \Gamma_{2} \rrbracket \rightarrow \llbracket B \rrbracket}{f \otimes g: \llbracket \Gamma_{1} \otimes \Gamma_{2} \rrbracket \rightarrow \llbracket A \otimes B \rrbracket}
$$

$$
(f \otimes g)[(a, b),(x, y)]=f[a, x] \cdot g[b, y]
$$

Multiplicative Product: Examples

$$
\begin{array}{cc}
f & \\
{\left[\begin{array}{ccc}
\bullet & \cdot & \bullet \\
\cdot & \bullet & \cdot \\
\cdot & \bullet & \cdot
\end{array}\right]} & g \\
f \otimes g & {\left[\begin{array}{l}
\bullet \\
\bullet
\end{array}\right.} \\
\\
& \\
& \\
\hline
\end{array}
$$

Multiplicative Product: Examples

$$
\begin{aligned}
& \begin{array}{c}
f \\
{\left[\begin{array}{lll}
\bullet & \cdot & \bullet \\
\cdot & \bullet & \cdot \\
\cdot & \bullet & \cdot
\end{array}\right]}
\end{array} \\
& g \\
& {\left[\begin{array}{ll}
\bullet & \cdot \\
\bullet & \bullet
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
& f \otimes g \\
\bullet & \cdot & \cdot & \cdot & \bullet & \cdot \\
\bullet & \bullet & \cdot & \cdot & \bullet & \bullet \\
\cdot & \cdot & \bullet & \cdot & \cdot & \cdot \\
\cdot & \cdot & \bullet & \bullet & \cdot & \cdot \\
\cdot & \cdot & \bullet & \cdot & \cdot & \cdot \\
\cdot & \cdot & \bullet & \bullet & \cdot & \cdot
\end{array}\right] \quad\left[\begin{array}{cccccc}
& \bullet & \cdot & \bullet & \cdot & \cdot \\
\cdot & \bullet & \cdot & \cdot & \cdot & \cdot \\
\cdot & \bullet & \cdot & \cdot & \cdot & \cdot \\
\bullet & \cdot & \bullet & \bullet & \cdot & \bullet \\
\cdot & \bullet & \cdot & \cdot & \bullet & \cdot \\
\cdot & \bullet & \cdot & \cdot & \bullet & \cdot
\end{array}\right]}
\end{aligned}
$$

Multiplicative Product: Structural Rules

Contexts:

$$
\Gamma::=A \mid \Gamma \otimes \Gamma
$$

Structural Rule:

$$
\frac{\Gamma_{1} \vdash A \Gamma_{1} \equiv \Gamma_{2}}{\Gamma_{2} \vdash A}
$$

$\Gamma_{1} \equiv \Gamma_{2}$

- reflexivity, symmetry, transitivity
- associativity: $\left(\Gamma_{1} \otimes \Gamma_{2}\right) \otimes \Gamma_{3} \equiv \Gamma_{1} \otimes\left(\Gamma_{2} \otimes \Gamma_{3}\right)$
- unit law: $\Gamma \equiv \Gamma \otimes 1$
- commutativity: $\Gamma_{1} \otimes \Gamma_{2} \equiv \Gamma_{2} \otimes \Gamma_{1}$
- $\llbracket \Gamma_{1} \equiv \Gamma_{2} \rrbracket$ is an isomorphism

Function Composition

Function Composition

Given $f: \mathbb{F}^{X} \rightarrow \mathbb{F}^{Z}$ and $g: \mathbb{F}^{Z} \rightarrow \mathbb{F}^{Y}$, define

$$
(f ; g)[y, x]=\sum_{z \in Z} g[y, z] \cdot f[z, x]
$$

(a.k.a. matrix multiplication)

Function Composition

Function Composition

Given $f: \mathbb{F}^{X} \rightarrow \mathbb{F}^{Z}$ and $g: \mathbb{F}^{Z} \rightarrow \mathbb{F}^{Y}$, define

$$
(f ; g)[y, x]=\sum_{z \in Z} g[y, z] \cdot f[z, x]
$$

(a.k.a. matrix multiplication)

Note: We sum over all elements of Z, so this is not necessarily defined if Z is infinite!

- Option 1: Allow infinite vectors but only those with "finite support" (zero almost everywhere)
\Longrightarrow Ehrhard's Finiteness spaces
- Option 2: Work with only finite matrices. \Longrightarrow How to ensure that ! A remains finite?

Identity and Cut

Identity:

$$
\begin{gathered}
\overline{A \vdash A} \\
i d_{A}[y, x]= \begin{cases}1 & \text { if } x=y \\
0 & \text { if } x \neq y\end{cases}
\end{gathered}
$$

Identity and Cut

Identity:

$$
\begin{gathered}
\overline{A \vdash A} \\
i d_{A}[y, x]= \begin{cases}1 & \text { if } x=y \\
0 & \text { if } x \neq y\end{cases}
\end{gathered}
$$

Cut:

$$
\frac{\Gamma_{1} \vdash A \quad A \otimes \Gamma_{2} \vdash B}{\Gamma_{1} \otimes \Gamma_{2} \vdash B}
$$

$$
\frac{f: \llbracket \Gamma_{1} \rrbracket \rightarrow \llbracket A \rrbracket g: \llbracket A \otimes \Gamma_{2} \rrbracket \rightarrow \llbracket B \rrbracket}{\left(f \otimes i d_{\Gamma_{2}}\right) ; g: \llbracket \Gamma_{1} \otimes \Gamma_{2} \rrbracket \rightarrow \llbracket A \otimes B \rrbracket}
$$

Additive Sums

Interpret $A \oplus B$ as a vector space:

Additive Sums

Interpret $A \oplus B$ as a vector space:

- Coordinates: $(A \oplus B)^{\dagger}=A^{\dagger} \uplus B^{\dagger}$
- $\llbracket A \oplus B \rrbracket=\mathbb{F}^{(A \oplus B)^{\dagger}}$

Additive Sums

Interpret $A \oplus B$ as a vector space:

- Coordinates: $(A \oplus B)^{\dagger}=A^{\dagger} \uplus B^{\dagger}$
- $\llbracket A \oplus B \rrbracket=\mathbb{F}^{(A \oplus B)^{\dagger}}$

Interpret \oplus introduction:

$$
\begin{gathered}
\frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B} \\
\operatorname{inl}_{A, B}[y, x]= \begin{cases}1 & \text { if } y=\operatorname{inl} x \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Additive Sums

Booleans (over \mathbb{F}_{2}):

$$
\begin{gathered}
\mathbb{B}=1 \oplus 1 \\
{\left[\begin{array}{l}
\cdot \\
\cdot
\end{array}\right] \quad\left[\begin{array}{l}
\bullet \\
\cdot
\end{array}\right] \quad\left[\begin{array}{l}
\cdot \\
\bullet
\end{array}\right] \quad\left[\begin{array}{l}
\bullet \\
\bullet
\end{array}\right]}
\end{gathered}
$$

$\operatorname{inl}_{\mathbb{B}, \mathbb{B}}: \llbracket \mathbb{B} \rrbracket \rightarrow \llbracket \mathbb{B} \rrbracket \oplus \llbracket \mathbb{B} \rrbracket \quad \operatorname{inr}_{\mathbb{B}, \mathbb{B}}: \llbracket \mathbb{B} \rrbracket \rightarrow \llbracket \mathbb{B} \rrbracket \oplus \llbracket \mathbb{B} \rrbracket$

$$
\left[\begin{array}{ll}
\bullet & \cdot \\
\cdot & \bullet \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
\cdot & \cdot \\
\cdot & \cdot \\
\bullet & \cdot \\
\cdot & \cdot
\end{array}\right]
$$

Exponential Types

Linear Logic: Exponentials

Dereliction

$$
\frac{\Gamma \otimes A \vdash B}{\Gamma \otimes!A \vdash B}
$$

Weakening

$$
\frac{\Gamma \otimes 1 \vdash B}{\Gamma \otimes!A \vdash B}
$$

Contraction

$$
\frac{\Gamma \otimes(!A \otimes!A) \vdash B}{\Gamma \otimes!A \vdash B}
$$

Introduction

$$
\frac{!\Gamma \vdash A}{!\Gamma \vdash!A}
$$

! is a Comonad

-! is a functor:

- On types: for vector space $\llbracket A \rrbracket$, need a vector space ! $\llbracket A \rrbracket$
- On functions: For $f: \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$, need $!f:!\llbracket A \rrbracket \rightarrow!\llbracket B \rrbracket$

$$
\begin{gathered}
\text { coreturn }_{A}:!\llbracket A \rrbracket \rightarrow \llbracket A \rrbracket \\
\text { comultiply }_{A}:!\llbracket A \rrbracket \rightarrow!!\llbracket A \rrbracket
\end{gathered}
$$

- Satisfying the comonad laws.
- Plus some other operations: $m:!A \otimes!B \rightarrow!(A \otimes B)$

Defining!

For objects: interpret ! A as a vector space:

- Coordinates: $(!A)^{\dagger}=\llbracket A \rrbracket$
- $\llbracket!A \rrbracket=\mathbb{F}^{(!A)^{\dagger}}$
- The canonical basis for $\llbracket!A \rrbracket$ is $\left\{\delta_{v} \mid v \in \llbracket A \rrbracket\right\}$.

Defining!

For objects: interpret $!A$ as a vector space:

- Coordinates: $(!A)^{\dagger}=\llbracket A \rrbracket$
- $\llbracket!A \rrbracket=\mathbb{F}^{(!A)^{\dagger}}$
- The canonical basis for $\llbracket!A \rrbracket$ is $\left\{\delta_{v} \mid v \in \llbracket A \rrbracket\right\}$.

Potential Problem: $\llbracket A \rrbracket$ might be infinite

- e.g. if \mathbb{F} is infinite
- e.g. so require \mathbb{F} to be a finite field

Defining!

For objects: interpret $!A$ as a vector space:

- Coordinates: $(!A)^{\dagger}=\llbracket A \rrbracket$
- $\llbracket!A \rrbracket=\mathbb{F}^{(!A)^{\dagger}}$
- The canonical basis for $\llbracket!A \rrbracket$ is $\left\{\delta_{v} \mid v \in \llbracket A \rrbracket\right\}$.

Potential Problem: $\llbracket A \rrbracket$ might be infinite

- e.g. if \mathbb{F} is infinite
- e.g. so require \mathbb{F} to be a finite field

For functions: suppose $f: A \rightarrow B$ then:

$$
(!f)\left(\delta_{v}\right)=\delta_{f(v)}
$$

Finite Fields

A field \mathbb{F} is finite if $|F|$ is finite.
Some beautiful theorems:

- Every finite field \mathbb{F}_{q} with q elements has $q=p^{k}$, where p is a prime.
- For every element $\alpha \in \mathbb{F}_{q}$ we have:
$\underbrace{\alpha+\alpha+\ldots+\alpha}_{p \text { times }}=0$
- $\alpha^{q}=\alpha$

Comonadic structure

- coreturn ${ }_{A}:!\llbracket A \rrbracket \rightarrow \llbracket A \rrbracket$

$$
\operatorname{coreturn}_{A}\left(\delta_{v}\right)=v
$$

- comultiply ${ }_{A}:!\llbracket A \rrbracket \rightarrow!!\llbracket A \rrbracket$

$$
\operatorname{comultiply}_{A}\left(\delta_{v}\right)=\delta_{\delta_{v}}
$$

Back to the Comonad: Coreturn

Example: coreturn $_{\mathbb{B}}: \llbracket!\mathbb{B} \rrbracket \rightarrow \mathbb{B}$ over \mathbb{F}_{2}
[:

More generally: The $n^{\text {th }}$ column of the matrix is just n written in base q

Dimensionality

$$
\begin{aligned}
\operatorname{dim}[0] & =0 \\
\operatorname{dim}[\top] & =0 \\
\operatorname{dim}[1] & =1 \\
\operatorname{dim}[\perp] & =1 \\
\operatorname{dim}[A \oplus B] & =\operatorname{dim}[A]+\operatorname{dim}[B] \\
\operatorname{dim}[A \& B] & =\operatorname{dim}[A]+\operatorname{dim}[B] \\
\operatorname{dim}[A \otimes B] & =\operatorname{dim}[A] \times \operatorname{dim}[B] \\
\operatorname{dim}[A \multimap B] & =\operatorname{dim}[A] \times \operatorname{dim}[B] \\
\operatorname{dim}[!A] & =? ?
\end{aligned}
$$

Dimensionality

$$
\begin{aligned}
\operatorname{dim}[0] & =0 \\
\operatorname{dim}[\top] & =0 \\
\operatorname{dim}[1] & =1 \\
\operatorname{dim}[\perp] & =1 \\
\operatorname{dim}[A \oplus B] & =\operatorname{dim}[A]+\operatorname{dim}[B] \\
\operatorname{dim}[A \& B] & =\operatorname{dim}[A]+\operatorname{dim}[B] \\
\operatorname{dim}[A \otimes B] & =\operatorname{dim}[A] \times \operatorname{dim}[B] \\
\operatorname{dim}[A \multimap B] & =\operatorname{dim}[A] \times \operatorname{dim}[B] \\
\operatorname{dim}[!A] & =q^{\operatorname{dim}[A]}
\end{aligned}
$$

Observations

Basic Properties

- This model is sound with respect to (simply-typed) lambda calculus.
- One way to gain completeness is to move to an algebraic lambda calculus.

$$
\begin{aligned}
M, N, P::= & x|\lambda x \cdot M| M N\left|\pi_{l}(M)\right| \pi_{r}(M)|\langle M, N\rangle| \\
& \text { tt }|\mathrm{ff}| \text { if } M \text { then } N \text { else } P \mid \\
& 0|M+N| \alpha \cdot M \\
A, B \quad:= & \text { Bool }|A \rightarrow B| A \times B .
\end{aligned}
$$

Added Typing Rules

$$
\overline{\Delta \vdash 0: A} \quad \frac{\Delta \vdash M: A \quad \Delta \vdash N: A}{\Delta \vdash M+N: A} \quad \frac{\Delta \vdash M: A}{\Delta \vdash \alpha \cdot M: A}
$$

Linear-Nonlinear Adjunction

Benton-style Linear-Nonlinear Decomposition:

Classical Linear Logic

- The Linear/Nonlinear approach generalizes to full classical linear logic.
- Duality in $\operatorname{FinVect}(\mathbb{F})$ is given by transposition.

Porting ideas from Linear Algebra to Lambda

Calculus

- Example: eigenvalues of a square matrix. $\ln \mathbb{F}_{2}$, given a lambda calculus function $f: A \rightarrow B$ it is possible to construct $\hat{f}: A \& B \rightarrow A \& B$ (a square matrix) such that:

$$
v \in \operatorname{eigvalues}(\hat{\mathrm{f}}) \Longrightarrow f(\text { fst } v)=\text { snd } v
$$

Conclusions

The category of finite dimensional vector spaces over finite fields is a model of linear logic.

- Very pretty mathematics!
- Connects lambda calculus and linear algebra
- Interpretation of $(!A)$ in $\operatorname{FinVect}(\mathbb{F})$ is interesting.
- What are the implications of picking a particular \mathbb{F}_{q} ?
- Applications?

Multinomials

Finite Fields

A field \mathbb{F} is finite if $|F|$ is finite.
Some beautiful theorems:

- Every finite field \mathbb{F}_{q} with q elements has $q=p^{k}$, where p is a prime.
- For every element $\alpha \in \mathbb{F}_{q}$ we have:
$\underbrace{\alpha+\alpha+\ldots+\alpha}_{p \text { times }}=0$
- $\alpha^{q}=\alpha$

Finite Fields

A field \mathbb{F} is finite if $|F|$ is finite.
Some beautiful theorems:

- Every finite field \mathbb{F}_{q} with q elements has $q=p^{k}$, where p is a prime.
- For every element $\alpha \in \mathbb{F}_{q}$ we have:
$\underbrace{\alpha+\alpha+\ldots+\alpha}_{p \text { times }}=0$
> $\alpha^{q}=\alpha$

Consequence:

When working with multinomials whose variables range over elements of \mathbb{F}, we have $\mathbf{x}^{q}=\mathbf{x}$.
For example, in \mathbb{F}_{2} :

$$
(x+1)^{2}=x^{2}+2 x+1=x^{2}+1=x+1
$$

Another Endo-Functor: $M: A \rightarrow!A$

Morally, we have:

$$
!A \approx 1 \& A \& A^{2} \& A^{3} \& \ldots
$$

Another Endo-Functor: $M: A \rightarrow!A$

Morally, we have:

$$
!A \approx 1 \& A \& A^{2} \& A^{3} \& \ldots
$$

Analogy: In Set $\llbracket!A \rrbracket$ is the set of all finite multisets whose elements are drawn from $\llbracket A \rrbracket$.

- So the coordinates of the vector space corresponding to $!A$ should (morally) be finite multisets drawn from A.
- Example: Write $\mathbb{B}^{\dagger}=\{\mathrm{inl} \bullet, \operatorname{inr} \bullet\}$ as $\{0,1\}$

$$
(!\mathbb{B})^{\dagger}=\{\emptyset,\{0\},\{1\},\{0,0\},\{0,1\},\{1,1\},\{0,0,0\}, \ldots\}
$$

Another Endo-Functor: $M: A \rightarrow!A$

Morally, we have:

$$
!A \approx 1 \& A \& A^{2} \& A^{3} \& \ldots
$$

Analogy: In Set $\llbracket!A \rrbracket$ is the set of all finite multisets whose elements are drawn from 【A】.

- So the coordinates of the vector space corresponding to $!A$ should (morally) be finite multisets drawn from A.
- Example: Write $\mathbb{B}^{\dagger}=\{\mathrm{inl} \bullet, \operatorname{inr} \bullet\}$ as $\{0,1\}$

$$
(!\mathbb{B})^{\dagger}=\{\emptyset,\{0\},\{1\},\{0,0\},\{0,1\},\{1,1\},\{0,0,0\}, \ldots\}
$$

Problem: This isn't finite! (But we persevere anyway...)

Vectors With Multisets as Coords

$$
(!\mathbb{B})^{\dagger}=\{\emptyset,\{0\},\{1\},\{0,0\},\{0,1\},\{1,1\},\{0,0,0\}, \ldots\}
$$

One more observation: What would a vector with coordinates as above look like?

$$
\begin{array}{rcc}
v & = & \alpha_{\emptyset} \cdot \delta_{\emptyset} \\
+ & \alpha_{\{0\}} \cdot \delta_{\{0\}} \\
& + & \alpha_{\{1\}} \cdot \delta_{\{1\}} \\
& + & \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} \\
& + & \alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} \\
& + & \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} \\
& + & \alpha_{\{0,0,0\}} \cdot \delta_{\{0,0,0\}}
\end{array}
$$

Multinomials

Suppose we knew that we would only ever need multisets with at most two of each element?

$$
\begin{aligned}
& (!\mathbb{B})^{\dagger}=\{\emptyset,\{0\},\{1\},\{0,0\},\{0,1\}, \\
& \{1,1\},\{1,1,0\},\{1,0,0\},\{1,1,0,0\}\} \\
& v=\quad \alpha_{\emptyset} \cdot \delta_{\emptyset} \\
& +\quad \alpha_{\{0\}} \cdot \delta_{\{0\}} \\
& +\quad \alpha_{\{1\}} \cdot \delta_{\{1\}} \\
& +\quad \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} \\
& +\quad \alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} \\
& +\quad \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} \\
& +\quad \alpha_{\{1,1,0\}} \cdot \delta_{\{1,1,0\}} \\
& +\quad \alpha_{\{1,0,0\}} \cdot \delta_{\{1,0,0\}} \\
& +\alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}}
\end{aligned}
$$

Multinomials

Suppose we knew that we would only ever need multisets with at most two of each element?

$$
\begin{aligned}
& (!\mathbb{B})^{\dagger}=\{\emptyset,\{0\},\{1\},\{0,0\},\{0,1\}, \\
& \{1,1\},\{1,1,0\},\{1,0,0\},\{1,1,0,0\}\} \\
& v=\quad \alpha_{\emptyset} \cdot \delta_{\emptyset} \\
& +\quad \alpha_{\{0\}} \cdot \delta_{\{0\}} \\
& +\quad \alpha_{\{1\}} \cdot \delta_{\{1\}} \\
& +\quad \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} \\
& +\quad \alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} \\
& +\quad \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} \\
& +\quad \alpha_{\{1,1,0\}} \cdot \delta_{\{1,1,0\}} \\
& +\quad \alpha_{\{1,0,0\}} \cdot \delta_{\{1,0,0\}} \\
& +\alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}} \\
& \begin{aligned}
v & =\alpha_{00} \cdot x_{0}^{0} x_{1}^{0} \\
& +\alpha_{10} \cdot x_{0}^{1} x_{1}^{0} \\
& +\alpha_{01} \cdot x_{0}^{0} x_{1}^{1} \\
\Rightarrow \quad & \alpha_{20} \cdot x_{0}^{2} x_{1}^{0} \\
& +\alpha_{11} \cdot x_{0}^{1} x_{1}^{1} \\
& +\alpha_{02} \cdot x_{0}^{0} x_{1}^{2} \\
& +\alpha_{21} \cdot x_{0}^{2} x_{1}^{1} \\
& +\alpha_{12} \cdot x_{0}^{1} x_{1}^{2} \\
& +\alpha_{22} \cdot x_{0}^{2} x_{1}^{2}
\end{aligned}
\end{aligned}
$$

Multinomials

Suppose we knew that we would only ever need multisets with at most two of each element?

$$
\begin{aligned}
& (!\mathbb{B})^{\dagger}=\{\emptyset,\{0\},\{1\},\{0,0\},\{0,1\}, \\
& \{1,1\},\{1,1,0\},\{1,0,0\},\{1,1,0,0\}\} \\
& v=\quad \alpha_{\emptyset} \cdot \delta_{\emptyset} \\
& +\quad \alpha_{\{0\}} \cdot \delta_{\{0\}} \\
& +\quad \alpha_{\{1\}} \cdot \delta_{\{1\}} \\
& +\quad \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} \\
& +\quad \alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} \\
& +\quad \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} \\
& +\quad \alpha_{\{1,1,0\}} \cdot \delta_{\{1,1,0\}} \\
& +\alpha_{\{1,0,0\}} \cdot \delta_{\{1,0,0\}} \\
& +\alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}} \\
& \begin{aligned}
v & =\alpha_{00} \cdot x_{0}^{0} x_{1}^{0} \\
& +\alpha_{10} \cdot x_{0}^{1} x_{1}^{0} \\
& +\alpha_{01} \cdot x_{0}^{0} x_{1}^{1} \\
& +\alpha_{20} \cdot x_{0}^{2} x_{1}^{0} \\
& +\alpha_{11} \cdot x_{0}^{1} x_{1}^{1} \\
& +\alpha_{02} \cdot x_{0}^{0} x_{1}^{2} \\
& +\alpha_{21} \cdot x_{0}^{2} x_{1}^{1} \\
& +\alpha_{12}^{1} \cdot x_{0}^{1} x_{1}^{2} \\
& +\alpha_{22} \cdot x_{0}^{2} x_{1}^{2}
\end{aligned} \\
& \begin{aligned}
v & =\alpha_{00} \cdot \mathbf{1} \\
& +\alpha_{10} \cdot x_{0} \\
& +\alpha_{01} \cdot \mathbf{x}_{1} \\
& +\alpha_{20} \cdot x_{0}^{2} \\
& +\alpha_{11} \cdot x_{0} x_{1} \\
& +\alpha_{02} \cdot x_{1}^{2} \\
& +\alpha_{21} \cdot x_{0}^{2} \mathbf{x}_{1} \\
& +\alpha_{12} \cdot x_{0} x_{1}^{2} \\
& +\alpha_{22} \cdot x_{0}^{2} x_{1}^{2}
\end{aligned}
\end{aligned}
$$

Multinomials

Suppose we knew that we would only ever need multisets with at most two of each element?

$$
\begin{aligned}
& (!\mathbb{B})^{\dagger}=\{\emptyset,\{0\},\{1\},\{0,0\},\{0,1\}, \\
& \{1,1\},\{1,1,0\},\{1,0,0\},\{1,1,0,0\}\} \\
& v=\quad \alpha_{\emptyset} \cdot \delta_{\emptyset} \\
& +\quad \alpha_{\{0\}} \cdot \delta_{\{0\}} \\
& +\quad \alpha_{\{1\}} \cdot \delta_{\{1\}} \\
& +\quad \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} \\
& +\alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} \quad \Rightarrow \quad+\alpha_{11} \cdot x_{0}^{1} x_{1}^{1} \quad \Rightarrow \quad+\alpha_{11} \cdot x_{0} x_{1} \\
& +\quad \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} \\
& +\quad \alpha_{\{1,1,0\}} \cdot \delta_{\{1,1,0\}} \\
& +\alpha_{\{1,0,0\}} \cdot \delta_{\{1,0,0\}} \\
& +\alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}}
\end{aligned}
$$

Upshot: A vector whose coordinates are multisets over A can be thought of as a multinomial with one variable for each element of A.

Definition of M

- A multiset $\{0,0,1\}$ corresponds to a term $\mathbf{x}_{0}^{2} \mathbf{x}_{1}$ of the multinomial.
- The set of these terms form a basis. $f:[A] \rightarrow[B]$ acts on each x_{a} by:

$$
\mathbf{x}_{a} \stackrel{f}{\longmapsto} \sum_{b \in B} f[b, a] \cdot \mathbf{y}_{b}
$$

Definition of M

- A multiset $\{0,0,1\}$ corresponds to a term $x_{0}^{2} x_{1}$ of the multinomial.
- The set of these terms form a basis. $f:[A] \rightarrow[B]$ acts on each x_{a} by:

$$
\mathbf{x}_{a} \stackrel{f}{\longmapsto} \sum_{b \in B} f[b, a] \cdot \mathbf{y}_{b}
$$

So $M(f)$ acts on a term like $x_{0}^{2} \mathrm{x}_{1}$ by:

$$
\mathbf{x}_{0}^{2} \mathbf{x}_{1} \stackrel{!f}{\longmapsto}\left(\sum_{b \in B} f[b, 0] \cdot \mathbf{y}_{b}\right) \times\left(\sum_{b \in B} f[b, 0] \cdot \mathbf{y}_{b}\right) \times\left(\sum_{b \in B} f[b, 1] \cdot \mathbf{y}_{b}\right)
$$

This is multinomial multiplication, modulo $\mathrm{y}^{q}=\mathbf{y}$.

Example in \mathbb{F}_{2}

Let $f: \llbracket 1 \oplus 1 \oplus 1 \rrbracket \rightarrow \llbracket 1 \oplus 1 \oplus 1 \rrbracket$ be:

$$
[\because]
$$

Then $M(f):!\llbracket 1 \oplus 1 \oplus 1 \rrbracket \rightarrow!\llbracket 1 \oplus 1 \oplus 1 \rrbracket$ is:

$$
\left[\begin{array}{cccccccc}
\bullet & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \bullet & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right]
$$

Theorem (Functoriality of M)
For any $f: \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ and $g: \llbracket B \rrbracket \rightarrow \llbracket C \rrbracket$:

$$
M(f ; g)=M(f) ; M(g):!\llbracket A \rrbracket \rightarrow!\llbracket C \rrbracket
$$

