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Abstract

Adinkras are graphical tools created to study representations of supersymmetry al-
gebras. Besides having inherent interest for physicists, the study of adinkras has
already shown nontrivial connections with coding theory and Clifford algebras. Fur-
thermore, adinkras offer many easy-to-state and accessible mathematical problems
of algebraic, combinatorial, and computational nature. In this work, we make a
self-contained treatment of the mathematical foundations of adinkras that slightly
generalizes the existing literature. Then, we make new connections to other areas
including homological algebra, theory of polytopes, Pfaffian orientations, graph col-
oring, and poset theory. Selected results include the enumeration of odd dashings for
all adinkraizable chromotopologies, the notion of Stiefel-Whitney classes for codes
and their vanishing conditions, and the enumeration of all Hamming cube adinkras
up through dimension 5.
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Chapter 1

Introduction

In a series of papers starting with [15], different subsets of the “DFGHILM collabora-
tion” (Doran, Faux, Gates, Hübsch, Iga, Landweber, Miller) have built and extended
the machinery of adinkras. Following the ubiquitous spirit of visual diagrams in
physics, adinkras are combinatorial objects that encode information about the rep-
resentation theory of supersymmetry algebras. Adinkras have many intricate links
with other fields such as graph theory, Clifford theory, and coding theory. Each
of these connections provide many problems that can be compactly communicated
to a (non-specialist) mathematician. This work is a humble attempt to bridge the
language gap and generate communication.

In short, adinkras are chromotopologies, a class of edge-colored bipartite graphs,
with two additional structures, a dashing condition on the edges and a ranking condi-
tion on the vertices. In this chapter, we give the preliminaries, including a discussion
of physical motivation in Section 1.4. We then redevelop the foundations in Chapter 2
in a slightly different way from the existing literature, leading to a cleanly-nested set
of classifications (Theorems 2.3.1, 2.3.2, and 2.3.3).

After this semi-expository portion, we look at the two aforementioned condi-
tions, dashings and rankings, separately. For each condition, we extract the purely
combinatorial problem, make connections with different area of mathematics, and
generalize the corresponding notion to wider classes of graphs.

In Chapter 3 we use homological algebra to study dashings; our main result is the
enumeration of odd dashings for any chromotopology. We also make a connection
with the theory of Pfaffian orientations. In Chapter 4, we introduce the idea of
Stiefel-Whitney classes of codes, a concept inspired by the combination of dashings
and topology.

After dashings, we study rankings. In Chapter 5, we use the theory of posets to
put a lattice structure on the set of all rankings of any bipartite graph (including
chromotopologies); we also count Hamming cube rankings up through dimension 5.
After these enumerative results, we introduce the strongly-related concept of discrete
Lipschitz functions and make some connections between rankings and the theory of
polytopes using them.
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These chapters focus on combinatorics and not as much on the foundational prob-
lems of adinkras from the physics literature. We return to these roots in Chapter 6,
ending with a quick survey of recent developments and some original observations.

1.1 Posets

We assume basic notions of graphs. For a graph G, we use E(G) to denote the edges
of G and V (G) to denote the vertices of G. We also assume most basic notions of
posets (there are many references, including [38]).

One slight deviation from literature is that we consider the Hasse diagram for a
poset as a directed graph, with x → y an edge if y covers x. Thus it makes sense
to call the maximal elements (i.e. those x with no y > x) sinks and the minimal
elements sources.

For this work, a ranked poset is a posetA equipped with a rank function h : A→ Z
such that for all x covering y we have h(x) = h(y)+1. There is a unique rank function
h0 among these such that 0 is the lowest value in the range of h0, so it makes sense
to define the rank of an element v as h0(v). The largest element in the range of h0
is then the length of the longest chain in A; we call it the height of A. We remark
that such a poset is often called a graded poset, though there are similar but subtly
different uses of that name. Thus, we use ranked to avoid ambiguity.

1.2 Chromotopologies and Adinkras

An n-dimensional chromotopology is a finite connected simple graph A such that the
following conditions hold:

• A is n-regular (every vertex has exactly n incident edges) and bipartite. Re-
specting the physics literature, we call the two sets in the bipartition of V (A)
bosons and fermions. As the actual choice is mostly arbitrary for our purposes,
we will usually not explicitly include this data.

• The elements of E(A) are colored by n colors, which are elements of the set
[n] = {1, 2, . . . , n} unless denoted otherwise, such that every vertex is incident
to exactly one edge of each color.

• For any distinct i and j, the edges in E(A) with colors i and j form a disjoint
union of 4-cycles.

We now introduce the key example of a chromotopology. Define the n-dimensional
Hamming cube In to be the graph with 2n vertices labeled by the n-codewords, with
an edge between two vertices if they differ by exactly one bit. It is easy to see
that In is bipartite and n-regular. Noticing that I = I1 is just a single edge, our
exponentiation In is justified as a cartesian product. Now, if two vertices differ
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at some bit i, 1 ≤ i ≤ n, color the edge between them with the color i. The
2-colored 4-cycle condition holds, so we get a chromotopology that we call the n-
cubical chromotopology Inc . Figure 1-1 shows I3c .

111 011

101 001

110 010

100 000

Figure 1-1: The 3-cubical chromotopology I3c . We can take the bosons to be either
{000, 011, 101, 110} or {001, 010, 100, 111} and take the fermions to be the other set.

We now define two structures we can put on a chromotopology.

1. let a ranking of a bipartite graph (in particular, any chromotopology) A be a
map h : V (A)→ Z that gives A the additional structure of a ranked poset on
A via h as the rank function. By this, we mean that we identify A with the
Hasse diagram of the said ranked poset with rank function h. We consider two
rankings equivalent if they differ only by a translate, as the resulting ranked
posets would then be isomorphic. Given a ranking h of A, we say that A is
ranked by h.

In this work, such as in Figure 1-3, we will usually represent ranks via vertical
placement, with higher values of h corresponding to being higher on the page.
The vertices at the odd ranks and the vertices at the even ranks naturally form
the bipartition of V (A).

Any bipartite graph (and thus any chromotopology) A can be ranked as follows:
take one choice of bipartition of V (A) into bosons and fermions. Assign the
rank function h to take values 0 on all bosons and 1 on all fermions, which
creates a ranked poset with 2 ranks. We call the corresponding ranking a
valise. Because we could have switched the roles of bosons and fermions, each
bipartite graph gives rise to exactly two valises. For an example, see Figure 1-2.

We remark that in the existing literature, such as [9], posets are never men-
tioned and the following equivalent definition is used, under the names engi-
neerable or non-escheric: give A the structure of a directed graph, such that
in traversing the boundary of any (non-directed) loop with a choice of direc-
tion, the number of edges oriented along the direction equals the number of
edges oriented against the direction. This is easily seen to be equivalent to our
definition.
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2. let a dashing of a bipartite graph A be a map d : E(A)→ Z2 (in this work, we
will always use Zk as shorthand to denote Z/kZ). Given a dashing d of A, we
say that A is dashed by d. We visually depict a dashing as making each edge
e ∈ E(A) either dashed or solid, corresponding to d(e) = 1 or 0 respectively.
We will slightly abuse notation and write d(v, w) to mean d((v, w)), where
(v, w) is an edge from v to w.
For a chromotopology A, a dashing is an odd dashing if the sum of d(e) as e
runs over each 2-colored 4-cycle (that is, a 4-cycle of edges that use a total
of 2 colors) is 1 ∈ Z2 (alternatively, every 2-colored 4-cycle contains an odd
number of dashed edges). If A is dashed by an odd dashing d, we say that A
is well-dashed.

111

101

010

000110 011

100 001

Figure 1-2: A valise; one possible ranking of the chromotopology I3c .

An adinkra is a ranked well-dashed chromotopology. We call a graph that can
be made into an adinkra adinkraizable. Since any chromotopology, being a bipar-
tite graph, can be ranked, adinkraizability is equivalent to the condition of having
at least one odd dashing. A well-dashed chromotopology is just an adinkraizable
chromotopology equipped with this dashing.

We frequently use some forgetful functions in the intuitive way: for example,
given any (possibly ranked and/or well-dashed) chromotopology A, we will use “the
chromotopology of A” to mean the underlying edge-colored graph of A, forgetting
the ranking and the dashing.

Many of our proofs involve algebraic manipulation. To make our treatment more
streamlined, we now set up algebraic interpretations of our definitions.

• The condition of A being a chromotopology is equivalent to having a map
qi : V (A)→ V (A) for every color i that sends each vertex v to the unique vertex
connected to v by the edge with color i, such that the different qi commute
(equivalently, the qi generate a Zn2 action on V (A). The well-definedness of the
qi corresponds to the edge-coloring condition and the commutation requirement
corresponds to the 4-cycle condition. Note that qi is an involution, as applying
qi twice simply traverses the same edge twice. Furthermore, qi sends any boson
to a fermion, and vice-versa.

• The condition of a chromotopology A being well-dashed (with dashing func-
tion d) is equivalent to having the maps qi anticommute, where we define
qi : R[V (A)]→ R[V (A)] for every color i by qi(v) = d(v, qi(v))qi(v).
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000

010

101

111

100 001

110 011

h = 0

h = 1

h = 2

h = 3

Figure 1-3: An adinkra with the chromotopology I3c .

1.3 Multigraphs
It seems natural to extend our definition to multigraphs. Let a multichromotopology
be a generalization of chromotopology where we relax the condition that the graph
be simple and now allow loops and multiple-edges. The n-regular condition remains,
but is reinterpreted so that a loop counts as degree 1 as opposed to 2. The algebraic
condition is still that the qi must commute. However, the combinatorial version of
the rule (that the union of edges of different colors i and j form a disjoint union of 4-
cycles) must be extended to allow degenerate 4-cycles that use double-edges or loops.
Define the well-dashed and ranked properties on multichromotopologies analogously,
again extending our condition for 2-colored 4-cycles to allow double-edges and loops.

These generalizations exclude each other in a cute way:

• While there are ranked multichromotopologies with double-edges, no well-
dashed multichromotopology can have a double-edge because a double-edge
immediately gives a degenerate 2-colored 4-cycle, and it is impossible for the
sum of dashes over a degenerate 2-colored 4-cycle to be odd.

• The loops have the opposite problem: they allow new well-dashed multichro-
motopologies, but none of these multichromotopologies can be ranked because
bipartite graphs cannot have loops.

See Figure 1-4 for some examples.
The above discussion shows that the natural definition of multiadinkras, that

is, well-dashed ranked multichromotopologies, does not give us any new objects that
are not already adinkras. However, multigraphs naturally appear in our classification
paradigm in Chapter 2, so they are still a nice notion to have for our work.

1.4 Physical Motivation

13



0

1
0 1

Figure 1-4: A ranked multichromotopology (with double-edge) that cannot be well-
dashed, and a well-dashed multichromotopology (with loops) that cannot be ranked.
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The reader is equipped to understand the rest of the paper (with the exception
of Chapter 6) with no knowledge from this section. However, we hope our brief
outline will serve as enrichment that may provide some additional intuition, as well
as provide a review of the original problems of interest (where much remains to
be done). While knowledge of physics will help in understanding this section, it
is by no means necessary. We have neither the space nor the qualification to give
a comprehensive review, so we encourage interested readers to explore the original
physics literature.

The physics motivation for adinkras is the following: “we want to understand off-
shell representations of the N -extended Poincaré superalgebra in the 1-dimensional
worldline.” There is no need to understand what all of these terms mean1 to ap-
preciate the rest of the discussion; we now sketch the thinking process that leads to
adinkras.

Put simply, we are looking at the representations of the algebra po1|N generated
by N + 1 generators Q1, Q2, . . . , QN (the supersymmetry generators) and H = i∂t
(the Hamiltonian), such that

{QI , QJ} = 2δIJH,

[QI , H] = 0.

Here, δ is the Kronecker delta, {A,B} = AB + BA is the anticommutator, and
[A,B] = AB − BA is the commutator. We can also say that po1|N is a superalgebra
where the Qi’s are odd generators and H is an even generator. Since H is basically
a time derivative, it changes the engineering dimension (physics units) of a function
f by a single power of time when acting on f .

Consider R-valued functions {φ1, . . . , φm} (the bosonic fields or bosons) and
{ψ1, . . . , ψm} (the fermionic fields or fermions), collectively called the component
fields. The fact that the two cardinalities match come from the physics assumption
that the representations are off-shell ; i.e. the component fields do not obey other
differential equations. We want to understand representations of po1|N acting on the
following infinite basis:

{HkφI , H
kψJ | k ∈ N; I, J ≤ m}.

There is a subtlety here, as these infinite-dimensional representations are frequently
called “finite-dimensional” by physicists, who would just call the {φI} and the {ψI}
as the “basis,” emphasizing the finiteness of m. A careful treatment of this is given
in [11].

In particular, we want to understand representations of po1|N satisfying some
physics restrictions (most importantly, having the supersymmetry generators send
bosons to only fermions, and vice-versa; this kind of “swapping symmetry” is what
supersymmetry tries to study). We restrict our attention to representations where

1The author certainly does not.
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the supersymmetry generators act as permutations (up to a scalar) and also possibly
the Hamiltonian H = i∂t on the basis fields: we require that for any boson φ and
any QI ,

QIφ = ±(−iH)sψ = ±(∂t)sψ,

where s ∈ {0, 1}, the sign, and the fermion ψ depends on φ and I. We enforce a
similar requirement

QIψ = ±i(−iH)sφ = ±i(∂t)sφ

for fermions. We call the representations corresponding to these types of actions
adinkraic representations. For each of these representations, we associate an adinkra.
We now form a correspondence between our definition of adinkras in Section 1.2 and
our definition for adinkraic representations.

adinkras representations
vertex bipartition bosonic/fermionic bipartition

colored edges and qI action of QI without the sign or powers of (−iH)
dashing / sign in qI sign in QI

change of rank by qI and qI powers of (−iH) in QI

ranking partition of fields by engineering dimension

To summarize,

An adinkra encodes a representation of po1|N . An adinkraic representation is a
representation of po1|N that can be encoded into an adinkra.

Our main problem is then the following:

Problem 1. What are all the adinkraic representations of po1|N?

One motivation for the restriction of study to adinkraic representations is having
an easily-visualized graphical tool to study these representations; another is that the
set of adinkraic representations is already rich enough to contain representations of
interest. When the poset structure of our adinkra A is a boolean lattice, we get
the classical notion of superfield introduced in [35] by Salam and Strathdee. When
the poset of A is a height-2 poset (in which case we say that A is a valise), we get
[12]’s Clifford supermultiplet. By direct sums, tensors, and other operations familiar
to the Lie algebras setting, it is possible to construct many more representations, a
technique that has been extended to higher dimensions in [26].

16



Chapter 2

The Classification Theorems

We now classify multichromotopologies, chromotopologies, and adinkraizable chro-
motopologies; we also note the pleasant connections with codes and Clifford algebras
that make adinkras fascinating. Compared to the relevant sections of the original
literature, our approach is more general and at times more compact, though we owe
most ideas in this chapter to the original work.

2.1 Graph Quotients and Codes

In this section, we recover the main result (Theorem 2.3.3) classifying adinkraizable
chromotopologies from the existing literature. However, our more general approach
(using multigraphs) gives the benefit of easily obtaining classification theorems of
multichromotopologies and chromotopologies that are very analogous in flavor.

We now give a quick review of codes (there are many references, including [27]).
An n-codeword is a vector in Zn2 , which we usually write as b1b2 · · · bn, bi ∈ Z2. We
distinguish two n-codewords

−→
1n = 11 . . . 1 and

−→
0n = 00 . . . 0, and when n is clear

from context we suppress the subscript n. The number of 1’s in a codeword v is
called the weight of the string, which we denote by wt(v). We use v to denote the
bitwise complement of v, which reverses 0’s and 1’s. For example, 00101 = 11010.
An (n, k)-linear binary code (for this work, we will not talk about any other kind of
codes, so we will just say code for short) is a k-dimensional Z2-subspace of codewords.
A code is even if all its codewords have weight divisible by 2 and doubly even if all
its codewords have weight divisible by 4.

Consider the n-cubical chromotopology Inc . For any linear code L ⊂ Zn2 , the
quotient Zn2/L is a Z2-subspace. Using this, we define the map pL, which sends Inc
to the following multichromotopology, which we call the graph quotient (or quotient
for short) Inc /L:

• let the vertices of Inc /L be labeled by the equivalence classes of Zn2/L and define
pL(v) to be the image of v under the quotient Zn2/L. When L is an (n, k)-code,
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the preimage over every vertex in Inc /L contains 2k vertices, so Inc /L has 2n−k
vertices.

• let there be an edge pL(v, w) in Inc /L with color i between pL(v) and pL(w) in
In/L if there is at least one edge with color i of the form (v′, w′) in Zn2 , with
v′ ∈ p−1L (v) and w′ ∈ p−1L (w).

Every vertex in Inc /L still has degree n (counting possible multiplicity) and the
commutivity condition on the qi’s is unchanged under a quotient, so Inc /L is indeed
a multichromotopology. Denote its underlying multigraph by In/L. We now prove
some properties of the quotient.

Proposition 2.1.1. The following hold for A = In/L:

1. A has a loop if and only if L contains a codeword of weight 1; A has a double
edge if and only if L contains a codeword of weight 2. Thus, A is a simple
graph if and only if L contains only codewords of weight 3 or greater.

2. A can be ranked if and only if A is bipartite, which is true if and only if L is
an even code.

Proof. 1. Suppose A has a loop. This means some edge (v, w) in Inc has both
endpoints v and w mapped to the same vertex in the quotient. Equivalently,
(v − w) ∈ L. However, v and w differ by a codeword of weight 1. Suppose A
has a double edge (v, w) with colors i and j. Since q1(q2(v)) = v in A = Inc /L,
for some v′ ∈ p−1L (v), we must have in Inc that q1(q2(v′))− v′ is in L. But this
is a weight 2 codeword with support in i and j. The logic is reversible in both
of these situations.

2. Suppose A were not bipartite, then A has some odd cycle. One of the preimages
of this cycle in Inc is a path of odd length from some v to some w that both
map to the same vertex under the quotient (i.e. v − w ∈ L). Since each edge
changes the weight of the vertex by 1 (mod 2), v−w must have an odd weight.
Since v −w ∈ L, L cannot be an even code. For the other direction, note that
if L were an even code such odd cycles cannot occur.

Recall that any bipartite graph can be ranked by making a valise. If A can
be ranked via a rank function h, the sets {v ∈ V (A) | h(v) ∼= 0 (mod 2)} and
{v ∈ V (A) | h(v) ∼= 1 (mod 2)} must be a bipartition of A because all the
edges in A change parity of h.

The most difficult condition to classify is being well-dashed, which is intricately
connected with Clifford algebras. We focus on them in the next section.
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2.2 Clifford Algebras and Codes
For our purposes, the Clifford algebra is an algebra Cl(n) with generators γ1, . . . , γn
and the anticommutation relations

{γi, γj} = 2δi,j · 1.

The Clifford algebra can be defined for any field, but we will typically assume R.
There are also more general definitions than what we give, though we won’t need
them for our paper. For references, see [1] or [7].

We can associate an element of the Clifford algebra to any n-codeword b =
b1b2 · · · bn, by defining

clif(b) =
∏
i

γbii ,

where the product is taken in increasing order of i. Call these elements monomials.
The 2n possible monomials form a basis of Cl(n) as a vector space, and the 2n+1

signed monomials ± clif(b) form a multiplicative group SMon(n), or just SMon
when the context is clear. It is easy to see that two signed monomials of degrees
a and b commute if and only if ab = 0 (mod 2), and one could equivalently define
Clifford algebras as commutative superalgebras with odd and even parts generated
by the odd and even degree monomials, respectively.

The following facts are needed for Proposition 2.2.4, where we defined the notion
of an almost doubly-even code as a code with all codewords having weight 0 or 1
(mod 4).

Lemma 2.2.1. For any two codewords w1 and w2 in an almost doubly-even code,
we have

(w1 · w2) + wt(w1) wt(w2) = 0 (mod 2),

where the first term is the dot product in Zn2 .

Proof. Given an almost doubly-even length n code L, introduce 3 new bits in the
code to construct a doubly-even length (n+ 3) code L′ via the following map g: for
w ∈ L, let g(w ∈ L) be the concatenation w|111 if w has odd weight and w|000 if
w has even weight. Since the weight parity of two codewords are additive modulo
2, g(v + w) = g(v) + g(w) and L′ is linear. Our construction also clearly ensures
that L′ is doubly-even. It is well known (see, for example, [27]) that doubly-even
codes are self-orthogonal, so (g(w1) · g(w2)) = 0 (mod 2) for all w1 and w2 in L. But
(g(w1) ·g(w2))−(w1 ·w2) is 0 (mod 2) when either w1 or w2 has even weight (because
the additional bits 000 cannot affect the dot product) and is 1 (mod 2) exactly when
both w1 and w2 have odd weights. This is equivalent to the condition we want to
prove.

Lemma 2.2.2. The image of a code L under clif is commutative if and only if for
all a, b ∈ L,

(a · b) + wt(a) wt(b) = 0 (mod 2).
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In particular, an almost-doubly-even code satisfies this property.

Proof. Finally, consider clif(a) = γa1 . . . γar and clif(b) = γb1 . . . γbs , where r = wt(a)
and s = wt(b). Note we can get from clif(a) clif(b) to clif(b) clif(a) in wt(a) wt(b)
transpositions, where we move, in order γb1 , · · · , γbs through clif(a) to the left, picking
up exactly wt(a) powers of (−1). However, we’ve also overcounted once for each
time a and b shared a generator γi, since γi commutes with itself. Therefore, we have
exactly (a · b)+wt(a) wt(b) powers of (−1). The condition for commutativity is then
that this quantity be even for all pairs a and b.

These concepts of almost-doubly-even codes and commuting codewords have ap-
peared independently in the undergraduate thesis work of Ratanasangpunth [34],
where the commutation condition defines a class of codes called Clifford codes.
Ratanasangpunth goes forth to prove further structural and classification theorems
for these codes.

Proposition 2.2.3. A code L is an almost doubly-even code if and only if L has
the property that for a suitable sign function s(v) ∈ {±1} with s(

−→
0 ) = 1, the set

SMonL = {s(v) clif(v) | v ∈ L} form a subgroup of SMon.

Proof. Without loss of generality, say clif(v) = s(v)
∏k

i=1 γi. Then

clif(v)2 = (γ1γ2 · · · γk)(γ1γ2 · · · qk)
= (−1)(k−1)(γ2γ3 · · · γk)(γ1)(γ1γ2 · · · γk)
= (−1)k(k−1)/2.

Suppose s exists. Then, we must not have (−1) ∈ SMonL (since we already have
1 ∈ SMonL. Therefore, it is necessary to have the last quantity equal 1, which
happens exactly when wt(v) = 0 or 1 (mod 4) for all v ∈ L.

If L were an almost-doubly even code, then pick a basis l1, . . . , lk of L and assign
s(li) = 1 for all i. Note by the above equations clif(li)

2 = 1 for all i. The linear
independence of the li is equivalent to the condition that no group axioms are broken
by this choice of li. Now, we can extend the definition to

s(
∏
i∈I

clif(li)) =
∏
i∈I

s(
∏

(clif(li)),

which is well-defined and closed under multiplication since the li commute and square
to 1.

Let an almost-doubly even code be a code where all codewords in the code have
weight 0 or 1 (mod 4). The following result extends the ideas used in proving [12,
Theorem 4.4].

Proposition 2.2.4. The multichromotopology A = Inc /L can be well-dashed if and
only if L is an almost doubly-even code.
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Proof. Given a codeword v = v1v2 · · · vn, define qv to be the map qvnn · · · q
v1
1 .

Suppose we have an odd dashing. Let v and w be codewords in L. Both qv and
qw take any vertex to itself in R[V (A)] with possibly a negative sign, since the qi are
basically the qi with possibly a sign, and following a sequence of qi corresponding
to a codeword is a closed loop in Inc /L. This means qv and qw must commute;
furthermore, q2v must be the identity map for any v ∈ L. By Lemma 2.2.2, this is
exactly the condition required for L being an almost-doubly even code.

Now, suppose L were an almost doubly-even code. Then by Proposition 2.2.3,
we can find a sign function s such that {s(v) clif(v) | v ∈ L} form a subgroup
SMonL ⊂ SMon, the signed monomials of Cl(n). This gives a well-defined action
of SMon on SMon/SMonL via left multiplication while possibly introducing signs.
The cosets of SMonL under SMon naturally correspond to V (A), so we can define
qi(v) to introduce the same sign as γi on clif(v) ∈ SMon/SMonL. Since we have a
Clifford algebra action, we get the desired anticommutation relations between qi and
thus an odd dashing.

2.3 The Classifications

In this section, we give three nested classification theorems for three nested types of
codes.

To start, recall that quotients of Inc are multichromotopologies. Surprisingly, the
converse is also true, which gives us our main classification:

Theorem 2.3.1. Multichromotopologies are exactly quotients Inc /L for some code L.

Proof. Take a multichromotopology A. Consider the abelian group G acting on V (A)
generated by the qi. The elements of G can be written as g = qs11 q

s2
2 · · · qsnn , where

si ∈ Z2 for all i. Consider the isomorphism φ : G → L which sends such a g to the
n-codewords s1s2 · · · sn ∈ Zn2 . Take any vertex v0 ∈ V (A) and consider its stabilizer
group H under G. φ(H) is a subspace of Zn2 and thus must be some code L. Any
vertex v is equal to g(v0) for some g ∈ G, so we may label v with the coset φ(g)+L.
It is easy to check the resulting multichromotopology is exactly the one produced by
the quotient Inc /L.

Combining Proposition 2.1.1 and Theorem 2.3.1 immediately gives the classifica-
tion of all chromotopologies and adinkraizable chromotopologies:

Theorem 2.3.2. Chromotopologies are exactly quotients Inc /L, where L is an even
code with no codeword of weight 2.

Theorem 2.3.3 (DFGHILM, basically [12, Theorem 4.4]). Adinkraizable chromo-
topologies are exactly quotients Inc /L, where L is a doubly even code.

Thanks to Theorem 2.3.1, we can assume the following:
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From now on, any multichromotopology (including chromotopologies) A we dis-
cuss comes from some (n, k)-code L(A) = L. If L is an (n, k)-code, we say that
the corresponding A is an (n, k)-multichromotopology (or chromotopology).

An (n, 0)-multichromotopology must be the n-cubical chromotopology, corre-
sponding to the trivial code {−→0 }. The smallest non-cubical adinkraizable chro-
motopology, shown in Figure 2-1, is the quotient I4c /L for L = {0000, 1111}, the
smallest non-trivial doubly-even code. Its underlying graph is the complete bipartite
graph K4,4.

A

CB D E

H’ G’ F’ HGF

D’E’ C’ B’

A’

A

CB D E

HGF

Figure 2-1: The graphs I4 and I4/{0000, 1111}. Labels with the same letter are sent
to the same vertex.

While the problem of classifying adinkraizable chromotopologies reduces to that
of classifying doubly-even linear codes, the theory of these codes is very rich and non-
trivial. Computationally, [32] contains the current status of the classification through
an exhaustive search. We invite the reader to explore the other connections between
adinkras and coding theory (for example, the irreducible adinkraic representations
correspond to the self-dual codes) from the original sources, such as [12].

Finally, we remark that studying well-dashed chromotopologies is basically equiv-
alent to studying Clifford algebras. Some of this intuition is suggested by the proof
of Proposition 2.2.4. We discuss this further in Section 6.3.
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Chapter 3

Dashings

Given a chromotopology A, define o(A) to be the set of odd dashings of A. Thus,
adinkraizable chromotopologies are exactly those A with |o(A)| > 0.

Problem 2. What are the enumerative and algebraic properties of o(A)?

In this section, we first generalize the concept of odd dashings to other graphs
using the homological language we introduced in Section 3.1. We make some obser-
vations of this generalized setting from other parts of mathematics, the closest link
being that of noneven graphs from the study of Pfaffian orientations.

Most of our results are on the enumeration of dashings of adinkraizable chromo-
topologies, which is basically settled in this chapter. We introduce the concept of
even dashings and relate them to odd dashings, showing that not only do the even
dashings form a more convenient model for calculations, there is a bijection between
the two types of dashings. We then count the number of (odd or even) dashings of
Inc via a cute application of linear algebra and decompositions. Finally, we generalize
our formula to all chromotopologies with a homological algebra computation.

3.1 A Homological View
From the theorems in Chapter 2, we see that the n-cubical chromotopologies Inc look
like universal covers. We make this intuition rigorous in this section. We appeal
to only basic techniques in homological algebra (any standard introduction, such as
[24], is more than sufficient), but having another point of view greatly enriches the
study of dashings on adinkras, as we will see in Section 3.5.

We work over Z2. Construct the following 2-dimensional complex X(A) from a
chromotopology A. Let C0 be formal sums of elements of V (A) and C1 be formal
sums of elements of E(A). For each 2-colored 4-cycle C of A, create a 2-cell with
C as its boundary as a generator in C2, the boundary maps {di : Ci → Ci−1} are
the natural choices (we do not worry about orientations since we are using Z2),
giving homology groups Hi = Hi(X(A)). The most important observation about
our complex X(A) is the following, which we return to in Section 3.5.
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Proposition 3.1.1. Let A be an (n, k)-adinkraizable chromotopology with L(A) = L.
Then X(A) = X(Inc )/L as a quotient complex, where L acts freely on X(Inc ). We
have that X(Inc ) is a simply-connected covering space of X(A), with L the group of
deck transformations.

Proof. The fact that X(A) is a quotient complex is already evident from the con-
struction of the graph quotient, since we have restricted to simple graphs (recall that
adinkraizable chromotopologies have simple graphs). It is easy to check that such an
action is free for all i-dimensional cells if the codewords have minimal weight greater
than i, and the minimal possible weight of our codes is 4.

A quick way to see that X(Inc ) is simply connected is note that X(Inc ) is the
2-skeleton of the n-dimensional (solid) Hamming cube Dn. Thus, X(In) and D must
have matching H1 and π1, but D is obviously simply-connected.

We have learned that there is some independent work by the original authors of
the adinkras literature [10] using similar homological techniques. They work with the
full complex and not just the 2-skeleton, which has some added benefits but also loses
some properties we enjoy (for example, our L is free on the 2-skeleton for doubly-even
codes L; this freeness is lost for higher-dimensional cells). We do, however, revisit
their construction in Chapter 4 when we discuss Stiefel-Whitney classes of codes.

3.2 Generalizations and Sightings of Odd Dashings
In Section 3.1, we created a (cubical) complex X(A) from a chromotopology A by
using A as the 1-skeleton and then attaching 2-cells for every 2-colored 4-cycle. One
interpretation of this process is that we are distinguishing certain cycles (whose
parities we care about when we dash A) and marking them via 2-cells.

Thus, an obvious generalization of odd dashings is the following: given a graph
G and a set of distinguished cycles C in G, call a dashing d : E(G) → Z2 an odd
dashing of (G,C) if for all cycles c ∈ C, the sum of d(e) for e in c is odd. We then
call the set of odd dashings o(G,C). We can construct a 2-dimensional cell complex
X(G,C) by attaching 2-cells for every c ∈ C. When G = Inc /L and C is the set of
2-colored 4-cycles in G, we recover our original definitions. Since we will always only
have one C to consider at a time, we can suppress this notation and just write o(G)
instead of o(G,C) (and similarly for X(G)) once C is fixed.

The benefit of this generalization is that the odd dashings have a natural cohomo-
logical interpretation: associate a dashing of (G,C) with an element ofH1(X(G,C),Z2)
in the natural way by sending each edge e to d(e). Then the distinguished element
in H2(X(G,C)) obtained by sending each 2-cell to 1 vanishes in cohomology if and
only if there is an odd dashing. This suggests that the homological approach may
make some proofs easier, as we will exhibit in Section 3.5 (as all our calculations
are done in homology, we do not directly use the cohomological observation we just
made in this work. However, we would like to note that it plays a critical role in
[10]).
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Remark 3.2.1. We want to remark that not only do these generalized odd dashings
come up naturally in the study of adinkras, they have appeared elsewhere in math-
ematics under different disguises. A frivolous example is that making the signs of a
total differential consistent in a double complex requires changing signs in the grid
graph of differential maps such that every square has an odd number of sign changes
(see, for example, [5]). A more sophisticated example is in [2, Lemma 10.4], where
the authors needed to exhibit an odd dashing on a poset structure of the Weyl group
of a Lie algebra g in the construction of a g-module resolution. A uniform study of
these occurrences would be very interesting.

3.3 Even Dashings
Let an even dashing be a way to dash E(G) such that every 2-colored 4-cycle contains
an even number of dashed edges, and let e(G,C) (and again, just e(G) for short) be
the set of even dashings. We have the following nice fact:

Lemma 3.3.1. If |o(G,C)| > 0, then we have |o(G,C)| = |e(G,C)|.

Proof. Let l = |E(G)|. We may consider a dashing of G as a vector in Zl2, where
each coordinate corresponds to an edge and is assigned 1 for a dashed edge and 0
for a solid edge. There is an obvious way to add two dashings (i.e. addition in Zl2)
and there is a zero vector d0 (all edges solid), so the family of all dashings (with no
restrictions) form a vector space Vfree(n) of dimension l.

Observe that e(G) is a subspace of Vfree(n). To see this, we can directly check
that adding two even dashings preserve the even parity of each 2-colored 4-cycle and
that d0 is an even dashing. Alternatively, we can note the restriction of a dashing
d having a particular cycle with an even number of dashes just means the inner
product of d and some vector with four 1’s as support is zero, so such dashings are
exactly the intersection of Vfree(n) and a set of hyperplanes, which is a subspace.

Unlike the even dashings e(G), the odd dashings o(G) do not form a vector space;
in particular, they do not include d0. However, adding an even dashing to an odd
dashing gives an odd dashing and the difference between any two odd dashings gives
an even dashing. Thus, o(A) is a coset in Vfree(n) of e(G) and must then have the
same cardinality as e(G) given that at least one odd dashing exists.

Corollary 3.3.2. For any adinkraizable chromotopology A and C being the set of
2-colored 4-cycles, we have |o(A,C)| = |e(A,C)|.

The proof of Lemma 3.3.1 hints that working with the even dashings may be
slightly easier than the odd dashings, thanks to their vector space structure. Struc-
turally, the intuition we gain is that the odd dashings form a torsor for the even
dashings. Here is a linear algebraic explanation of these concepts that offers another
(basically equivalent) proof of Lemma 3.3.1.

Consider the vector space V over Z2 indexed by the edges. We can then represent
each c ∈ C by a vector with 1’s on the edges in c and 0’s elsewhere. Define M(C)
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to be the |C| × |E(G)| matrix where each row corresponds to a different cycle in C.
Note we can represent a dashing by a column vector in Z

|E(G)|
2 . With this notation,

even dashings are simply vectors that are annhilated by M(C) and odd dashings
are vectors that map to the all 1’s vector. It is clear from this formulation that the
cardinality of the latter set is either 0 (if the said vector has no preimage) or equal
to the former set.

It is clear from this setup that our enumeration of even and odd (when they exist)
dashings is equivalent to counting the dimension of the cycle space of cycles spanned
by C. We give this formulation in the following Proposition, though we will not use
it explicitly later.

Proposition 3.3.3. The number of even dashings, |e(G,C)|, is equal to 2r(M(C)),
where r(M) denotes the rank of M . The number of odd dashings, o(G,C)|, is either
0 or equal to e(G,C).

Proof. This is basically obvious from the proof of Lemma 3.3.1 and the observation
that r(M(C)) is exactly the dimension of the space of cycles generated by C.

3.4 Decomposition and Dashings on Hamming Cubes

In this section, we resolve Problem 2 for Hamming cubes A = Inc , with C being the
set of 2-colored 4-cubes. We will generalize the result later in Section 3.5, but we can
gain some insights from this special case, the main observation being that dashings
behave extremely well under a concept of decomposition.

Call a graph G decomposable if G = H × I, the cartesian product of some graph
G and a single edge. Say that a color i decomposes a chromotopology A if removing
all edges of color i splits A into 2 separate connected components. In this case, we
must have the underlying graph of A be decomposable. Our definition was inspired
by observations in [12], where certain adinkras were called 1-decomposable. As Greg
Landweber pointed out to us, the concept corresponding to decomposition in coding
theory is punctured codes [27].

Lemma 3.4.1. The color i decomposes the chromotopology A if and only if for all
d ∈ L(A), the i-th bit of d is 0.

Proof. This is a very straightforward verification. We leave the proof as an exercise
to the reader.

Corollary 3.4.2. Every color in [n] decomposes Inc .

In the situation where Lemma 3.4.1 holds, we say that i decomposes A into A0

and A1, or A = A0 qi A1, if removing all edges with color i creates two disjoint
chromotopologies A0 and A1, which are labeled and colored in a natural fashion,
equipped with an inclusion inc on their vertices that map into V (A). Formally:
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• V (A) can be partitioned into two sets V (A|0) and V (A|1), where vertices in
V (A|0) have 0 in the i-th bit (by Lemma 3.4.1, this is a well-defined notion)
and vertices in V (A|1) have 1 in the i-th bit. Furthermore, all edges between
V (A|0) and V (A|1) are of color i.

• define A0 to be isomorphic to the edge-colored graph induced by vertices in
V (A|0), where any codeword v = (b1b2 · · · bn) in the vertex label class of v′ ∈
V (A|0) is sent to the (n− 1)-codeword (b1b2 · · · b̂i · · · bn), where we remove the
bit bi. Color the edges analogously with colors in {1, 2 · · · , î, · · · , n}. Define
A1 in the same way with V (A|1) instead of V (A|0).

• define the maps inc(b1b2 . . . bn−1, j → i) = b1 . . . bi−1jbi . . . bn−1, which inserts
j into the i-th place of an (n − 1)-codeword to create an n-codeword. If A =
A0 qi A1, let inc(v) send a vertex v ∈ Aj to inc(v, j → i) for j ∈ {0, 1}.
Lemma 3.4.1 gives that the union of the image of V (A0) and V (A1) under inc
is exactly V (A).

000

010

101

111

001 100

011 110

00

01

10

11

00 10

01 11

Figure 3-1: The color 3 decomposes a ranked chromotopology A (with
chromotopology I3c ) as A = A0q3A1. Each Ai has chromotopology I2c .

Proposition 3.4.3. Let A = A0 qi A1, where A is an (n, k)-chromotopology. Then
A0 and A1 are (n− 1, k) chromotopologies, isomorphic as graphs.

Proof. The image of qi on V (A0 is exactly V (A1) and qi is an involution, so we
have a bijection between the vertices. If qj(v1) = v2 in A0, the 4-cycle condition
on (v1, qi(v1), qi(v2), v2) gives that (qi(v1), qi(v2)) is also an edge of color j in A1,
so the bijection between the vertices extends to a bijection between A0 and A1 as
edge-colored graphs, and thus chromotopologies. Each of these chromotopologies has
2n−1 vertices and is (n− 1)-regular, so by Proposition 2.1.1 they must be (n− 1, k)-
chromotopologies.
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We now prove our main idea, which tells us that dashings of decomposable graphs
are easy to compute recursively.

Lemma 3.4.4. If A has l edges colored i and A = A0 qi A1, then each even (resp.
odd) dashing of the induced graph of A0 and each of the 2l choices of dashing the
i-colored edges extends to exactly one even (resp. odd) dashing of A.

Proof. Without loss of generality, we can take i = 1, so A0 contains equivalence
classes of codewords with first bit 0 and A1 contains those with first bit 1.

After an even dashing of A0 and an arbitrary dashing of the i-colored edges, note
the remaining 2-colored 4-cycles are of exactly two types:

1. the 4-cycles in A1;

2. the 4-cycles of the form (u, v, w, x), where (u, v) is in A0, (w, x) is in A1, and
(v, w) and (x, u) are colored i.

Note that in all the cycles (u, v, w, x) of the second type, (w, x) is the only one we
have not selected. Thus, there is exactly one choice for each of those edges to satisfy
the even parity condition. Since there is exactly one such cycle for every edge in
A1, this selects a dashing for all the remaining edges, and the only thing we have to
check is that the 4-cycles of the first type, the ones entirely in A1, are evenly dashed.

Now, a 4-cycle of this type is of form (1a1, 1a2, 1a3, 1a4), which is a face of a
3-cube with vertices (0a1, 0a2, 0a3, 0a4, 1a1, 1a2, 1a3, 1a4). There are 5 other 4-cycles
in this Hamming cube which have all been evenly dashed (the 0ai vertices form a
cycle in A0 and the other 4 cycles are evenly dashed by our previous paragraph).
Thus, we have that:

d(0a1, 0a2) + d(0a2, 0a3) + d(0a3, 0a4) + d(0a4, 0a1) = 0;

d(0a1, 0a2) + d(0a2, 1a2) + d(1a2, 1a1) + d(1a1, 0a1) = 0;

d(0a2, 0a3) + d(0a3, 1a3) + d(1a3, 1a2) + d(1a2, 0a2) = 0;

d(0a3, 0a4) + d(0a4, 1a4) + d(1a4, 1a3) + d(1a3, 0a3) = 0;

d(0a4, 0a1) + d(0a1, 1a1) + d(1a1, 1a4) + d(1a4, 0a4) = 0.

Adding these equations in Z2 gives:

d(1a1, 1a2) + d(1a2, 1a3) + d(1a3, 1a4) + d(1a4, 1a1) = 0.

Thus, we have constructed an even dashing. The analogous result for odd dashings
follow if we replace 0’s on the right sides of the above equations by 1’s.

Remark 3.4.5. This proof is easily seen to generalize to dashings of (A × I, C),
where the cycles of C occur in a “mirrored” fashion in the two halves of the graph,
and all 4-cycles that use the edges corresponding to I belong to C.
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Proposition 3.4.6. The number of even (or odd) dashings of Inc is

|e(Inc )| = |o(Inc )| = 22
n−1.

Proof. A convenient property of Hamming cubes is that every 4-cycle is a 2-colored
4-cycle. Thus, we get to just say “4-cycles” instead of “2-colored 4-cycles” in this
proof.

We prove our result by induction. The base case is easy: for n = 1 (a single
edge), there are exactly 2 even dashings, since there is no 4-cycle. Suppose our result
were true for every k < n. We will now show it is also true for n. Recall from
Corollary 3.4.2 that every color decomposes Inc into two smaller In−1c ’s. Since we
have 2n−1 edges with color 1, by Lemma 3.4.4 we get the recurrence

|e(Inc )| = 22
n−1 |e(In−1c )|.

With the initial case |e(I1c )| = 2, we get |e(Inc )| = 22
n−1+2n−2+···+1 = 22

n−1, as desired.
The result for |o(Inc )| is immediate by Lemma 3.3.1.

Note that |o(Inc )| = 22
n
/2. This suggests that, besides a single factor of 2, each

of the 2n vertices gives exactly one “degree of freedom” for odd dashings. We will
justify this hunch in the following discussion, in particular with Proposition 3.5.1.

3.5 Dashings on Adinkras
In this section, we generalize Proposition 3.4.6 to all adinkraizable chromotopologies,
where A is some adinkraizable chromotopology Inc /L and C is again the set of 2-
colored 4-cycles. We will use the idea of vertex switching and some homological
algebra.

In [13], Douglas, Gates, and Wang examined dashings from a point of view in-
spired by Seidel’s two-graphs ([36]). Define the vertex switch at a vertex v of a
well-dashed chromotopology A as the operation that produces the same A, except
with all edges adjacent to v flipped in parity (sending dashed edges to solid edges,
and vice-versa). It is routine to verify that a vertex switch preserves odd dashings
(in fact, parity in all 4-cycles), so the odd dashings of A can be split into orbits
under all possible vertex switchings, which we will call the labeled switching classes
(or LSCs) of A. We emphasize the adjective “labeled” because the term switching
class in [13] refers to equivalence classes not only under vertex switchings, but also
under different types of vertex permutations.

In the representation theory interpretation of adinkras (see Section 1.4), a vertex
switch corresponds to adding a negative sign in front of a component field, which
gives an isomorphic representation. Thus, it is natural to think about equivalence
classes under these transformations. The following computation will not only be
useful to study switchings, but will also justify our hunch about the “degrees of
freedom” from Proposition 3.4.6.

29



Figure 3-2: Before and after a vertex switch at the outlined vertex.

Proposition 3.5.1. In an adinkraizable (n, k)-chromotopology A, there are exactly
22

n−k−1 dashings in each LSC.

Proof. Vertex switches commute and each vertex switch is an order-2 operation, so
they form a Z2-vector space, which we may index by subsets of the vertices. Consider
a set of vertex switches that fix a dashing. Then, each edge must have its two vertices
both switched or both non-switched. This decision can only be made consistently
over all vertices if all vertices are switched or all vertices are non-switched. Thus,
the 2n−k sets of vertex switches generate a Z2-vector space of dimension 2n−k − 1.
This proves the result.

Corollary 3.5.2. The cubical chromotopology Inc has exactly one labeled switching
class.

Proof. This is immediate from Proposition 3.5.1 and Proposition 3.4.6, with the
substitution k = 0. Alternatively, this is also evident from [13, Lemma 4.1].

Finally, we combine several ideas (even dashings, vertex switchings, and our cell
complex interpretation of chromotopologies) to generalize Proposition 3.4.6.

Proposition 3.5.3. Let A be an adinkraizable (n, k)-chromotopology. Then there
are 2k LSCs in A.

Proof. First, vertex switchings preserve parity of all 4-cycles, so counting orbits of
odd dashings (LSCs) under vertex switchings is equivalent to counting orbits of even
dashings.

An even dashing can also be thought of as a formal sum of edges over Z2 (we
dash an edge if the coefficient is 1 and do not otherwise), which is precisely a 1-chain
of X(A) over Z2. Second, the even dashings are defined as dashings where all 2-
colored 4-cycles have sum 0. Since these 4-cycles, as elements of C1, are exactly the
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boundaries of C2, the even dashings are exactly the orthogonal complement of Im(d2)
inside of C1 by the usual inner product. Thus, the even dashings have Z2-dimension:

dim((Im(d2)
⊥) = dim(C1)− dim(Im(d2))

= (dim(ker(d1)) + dim(Im(d1)))− dim(Im(d2))

= dim(H1) + dim(Im(d1))

= dim(H1) + dim(C0)− dim(H0).

However, note that dim(C0)− dim(H0) = 2n−k − 1, which is exactly the dimen-
sion of the vector space of the vertex switchings for a particular LSC from Propo-
sition 3.5.1. Since the product of the number of LSCs and the number of vertex
switchings per LSC is the total number of even dashings, dividing the number of
even dashings by 22

n−k−1 gives that the dimension of switching classes is precisely
dim(H1).

By Proposition 3.1.1 and basic properties of universal covers and fundamental
groups, π1(X(A)) = L, the quotient group, which in this case is the vector space
Zk2. Also, H1 = Zk2 since H1 is the abelianization of π1. Thus, we have 2k switching
classes.

Propositions 3.5.3 and 3.5.1 immediately give:

Theorem 3.5.4. The number of even (or odd) dashings of an adinkraizable (n, k)-
chromotopology A is

|e(A)| = |o(A)| = 22
n−k+k−1.

A surprising but neat consequence of this result is that the number of dashings
does not depend on the actual code L(A), rather just on its dimension. This is very
nonintuitive to see with elementary combinatorial methods. In either case, this sec-
tion shows that the dashing enumeration problem on adinkras is mostly understood.

3.6 A Generalization of Dashings and Noneven Graphs

We started out with a notion of odd dashings for adinkras. In Section 3.2 we gener-
alized this notion to odd (and even) dashings on general undirected graphs.

The concept of noneven graphs from the theory of Pfaffian orientations (for a
reference, see [39]) is similar to odd dashings, but are defined for directed graphs
instead of undirected graphs. In this section, we develop a generalization of noneven
graphs and odd dashings on adinkras. The reader should take care to note that this
is an independent direction of generalization as the generalization in Section 3.2.

For an undirected graph G and a set of even-lengthed cycles CG, let an (edge)
orientation of G be a directed graph with the underlying undirected graph G. Now,
define an odd orientation (relative to CG) to be an orientation of G where each cycle
in CG has an odd number of edges oriented in either direction (equivalently, both
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directions) around the cycle. As before, define even orientation analogously. Note
that it is important that these CG have even length; otherwise the parities of the
number of edges oriented in the two directions would be different.

The following bijection shows us that odd (and even) dashings in adinkras can
be seen as a special case of odd (and even) orientations.

Lemma 3.6.1. There is a bijection between odd (even) dashings of an undirected
bipartite graph G relative to a set of even cycles CG and odd (even) orientations of
G relative to CG if all cycles in CG have lengths divisible by 4.

Proof. Pick a bipartition O∪E of G; let G0 be the orientation of G such that all edges
point from O to E. Now, for an odd (even) dashing d of G, define an orientation
G(d) to have an edge (u, v) be oriented in the same direction as in G if d(u, v) = 0
and in the reverse direction as in G if d(u, v) = 1.

Since all cycles in CG have lengths divisible by 4, G0 is an even orientation. Thus,
G(d) becomes an odd orientation if and only if for each cycle in CG there is an odd
number of reversals, which happens exactly when d is an odd dashing.

Because adinkraizable chromotopologies are bipartite graphs and all the 2-colored
4-cycles have length 4, the bijection in Lemma 3.6.1 holds, so we can choose to think
of dashings as orientations. Now, a noneven graph is exactly a graph G with an odd
orientation relative to CG being the set of all even cycles. These two facts together
show that the concept of odd (and even) orientations generalize both concepts. It
is also important to note that this generalization cannot be made to subsume the
earlier generalization of dashings to general graphs because of the modulo 4 condition,
though they coincide for adinkraizable chromotopologies.
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Chapter 4

Stiefel-Whitney Classes of Codes

Doran et. al. [10] consider quotients Inf /L of the full Hamming cube Inf , which,
unlike our X(In), is homeomorphic to the unit ball and have cells of all dimensions
up to n. They define homology classes ωi ∈ H i(Inf /L,Z2) to be the sum of all the
i-cells in Inf /L. They make the following observation based on the adinkra A(L):

Proposition 4.0.1 ([10]). We have that ω1 = 0 if and only if A(L) is bipartite and
ω2 = 0 if and only if A(L) has an odd dashing (which requires ω1 = 0).

They conjecture that this may be related to Stiefel-Whitney classes, in the sense
that when we have a manifold M with the tangent bundle TM → M , the Stiefel-
Whitney classes ωk(TM) behave similarly: ω1(TM) = 0 if and only ifM is orientable
and ω2(TM) = 0 if and only if M has a discrete spin structure. In this chapter, we
give a rigorous connection between codes and Stiefel-Whitney classes, which inspires
some topological techniques applied to coding theory.

Remark 4.0.2. Alert readers may realize that for closed manifolds, these sums
of i-cells are Poincaré dual to Stiefel-Whitney classes [23], however, this does not
seem to immediately explain the actual observations that Doran et. al. [10]. For
starters, RP∞, the space we use, is different from Inf /L. Furthermore, Inf /L may
have boundary and thus cannot be a closed manifold, so there are boundary terms
to consider and the above sum does not seem to immediately have a Stiefel-Whitney
interpretation. It is definitely desirable to reconcile these two viewpoints, however.

It is important to note that adinkras, while mostly absent from this chapter, were
invaluable in motivating this connection due to the existence of so many ways (in
this case, codes) of examinging them. We thank Josh Batson for a discussion that
generated most of the material in this section.

4.1 Seeing Codes as Maps
To find something resembling Stiefel-Whitney classes for an adinkra, we need a real
vector bundle. The obvious choices, such as taking the tangent bundle of XI(L) or
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X(L), do not seem to work. The key insight is that we can translate our adinkra
into a code, think of the code as a map, and then produce a bundle (and the Stiefel-
Whitney classes) from the map.

Recall (for basics of vector bundles and characteristic classes, see e.g. Hatcher
[25]) that EG → BG is a principal G-bundle associated with any group G, where
BG denotes the classifying space of G and EG its universal cover. The associated
bundle to EF n

2 → BF n
2 is a real rank-m vector bundle (since F2 = O(1), BF2 = RP∞

is the classifying space of real line bundles, so our bundle over BF n
2 is no more than

a direct sum of m real line bundles).
If we have a group G, a map f : G→ F n

2 induces a pullback bundle over BG since
f induces a homotopy class of maps from BG to BF n

2 . The Stiefel-Whitney classes
of this bundle are elements of H∗(BG); they will be the images of the universal
Stiefel-Whitney classes in H∗(BF n

2 ) under the map in cohomology induced from f .
Thus, instead of looking for a manifold or a real bundle directly, we look for a

map into BF n
2 . We have defined an (n, k)-linear code L as a k-dimensional subspace

of F n
2 ; an equivalent definition is thinking of L as a homomorphism fL : F

k
2 → F n

2 .
We can simply use this map as f !

Furthermore, in our situation, this map is very simple. It is well-known that the
cohomology ring H∗(BF n

2 ) is a free algebra F2[x1, . . . , xn], with one generator for
each dimension; similarly, H∗(BF k

2 ) = F2[y1, . . . , yk] for some yi. On the generators,
the induced map in cohomology f ∗L is simply a linear map represented by the k ×m
matrix, with each row corresponding to a codeword; this is just the generator matrix
AL.

We may then obtain the Stiefel-Whitney classes in H∗(BF k
2 ) by computing the

ωj = f ∗L(ωj). Here, the universal Stiefel-Whitney classes ωj are the elementary
symmetric polynomials ej(x1, . . . , xn) in H∗(BF n

2 ). For shorthand, let us denote
f ∗L(xi) by vi, then ωi = ei(v1, . . . , vn). Equivalently, we can take the image ω = f ∗(ω)
of the total Stiefel-Whitney class ω = (1+ x1)(1 + x2) · · · (1 + xn) after the map and
look at the graded components of ω.

Example 4.1.1. Say we have L = {111 · · · 1} ∈ F n
2 . This gives a map fL : F2 → F n

2 .
The dual f ∗L has the matrix

[
1 1 1 · · ·

]
. It sends each generator xi (corresponding

to the unit vector in the i-th coordinate) to y1, the unique generator of H∗(BF2) =
F2[y1], so vi = f ∗(xi) = y for all i. Here, the total Stiefel-Whitney class ω is just
the image of (1 + x1)(1 + x2) · · · (1 + xn) under this map, which is just (1 + y1)

n.
Thus, ωi =

(
n
i

)
yi1. Note that ω1 = ny1 vanishes exactly when n is even. Furthermore,

given that ω1 vanishes, ω2 =
(
n
2

)
y21 vanishes exactly when n is divisble by 4. This

calculation coincides with our expected intuition! For codes L of this type, L is even
if and only if n is even and doubly-even if and only if n is divisible by 4.

Example 4.1.2. Consider L = {111100, 001111}. Here the matrix corresponding to

f ∗L is
[
0 0 1 1 1 1
1 1 1 1 0 0.

]
. Letting y1 and y2 be the generating classes of H∗(BF 2

2 ).
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We are then interested in the image of (1 + x1) · · · (1 + vx) under this map:

f ∗L((1 + x1) · · · (1 + x6)) = (1 + y1)
2(1 + y2)

2(1 + y1 + y2)
2 (4.1.3)

= (1 + y21)(1 + y22)(1 + y21 + y22). (4.1.4)

This polynomial is even, so ω1 vanishes. ω2 = 2y21 + 2y22 = 0, so it vanishes as well.
As this is a doubly-even code, our intuition is again supported.

Our main problem, then, is the following:

Problem 3. Fix an (n, k)-code L. For any m ≤ n, suppose the first m Stiefel-
Whitney classes ω1, . . . , ωm all vanish in F2[x1, . . . , xk]. What constraints are then
placed on L?

4.2 Preliminaries
Before going on, we need to review some elementary but useful facts from symmetric
functions and number theory.

Recall that the Newton identities are the following: (recall that the power-sum
symmetric functions are pi(x1, . . . , ) = xk1 + xk2 + · · · )

p1 = e1

p2 = e1p1 − 2e2

p3 = e1p2 − e2p1 + 3e3

· · ·

Suppose our generator matrix AL has entries {aij}. Define the t-weights of L
as the numbers

∑
s ai1s · · · aits as we run through all different t-tuples {i1, . . . , it} of

numbers in {1, . . . , k}. We will denote the t-weights of L by the set ct(L). We say
that L satisfies the t-weight condition if 2t+1−j|cj for all j.

Example 4.2.1. Here are two examples that show this definition to be very natural:
the 1-weights are just the sums of the parities in each codeword, which are the
bona fide weights of the generators modulo 2. The 2-weights are the

(
k
2

)
inner

products between the generators. Note that even codes satisfy the 1-weight condition
and doubly-even codes (because they are are self-orthogonal) satisfy the 2-weight
condition.

Define the type of a monomial to be the partition of its powers. So the monomial
y2y

2
3y4 has type (211). A recurring tool we will use is:

Lemma 4.2.2. For a given partition ρ of m with p parts, the set of coefficients of
type ρ in pm(v1, . . . , vn) consists exactly of identical copies of p-weights, each number
multiplied by

(
m

ρ1···ρm

)
.
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Proof. We have that pm = (a11y1 + . . .+ ak1yk)
m + (a12y1 + . . .+ ak2yk)

m + · · · . For
the r-th term, there are

(
m

ρ1···ρm

)
ways of getting a particular term of form yρ1t1 · · · y

ρp
tp ,

which gets the coefficient aρ1t1r · · · a
ρp
tpr = at1r · · · atpr (here is where we use the very

simple but useful observation is that since we are over F2, we always have akij = aij),
which is a corresponding term in the p-weight. Since we sum over all r, we pick up
exactly

(
m

ρ1···ρm

)
times the p-weight. By symmetry, each p-weight appears an equal

number of times this way.

Corollary 4.2.3. pm(v1, . . . , vn) vanishes (mod N) if and only if all elements in
{
(

m
ρ1···ρp

)
cp} do.

Example 4.2.4. As an example, for the D3 code we have

AL =

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

 .
For m = 3 and ρ = (2, 1). The 2-weights of D3 are (2, 2, 0). The part of terms of
type (2, 2) in p3 = 2y31 + 2(y1 + y2)

3 + 2(y2 + y3)
3 + y33 is 6y21y2 + 6y22y1 + 6y22y3 +

6y23y2 + 0y21y3 + 0y23y1, so the set of coefficients are (6, 6, 0, 6, 6, 0), which is just two
copies of the 2-weights, scaled by 3 =

(
3
2,1

)
, as desired.

We now introduce some notation to deal with all the binary arithmetic that we
will end up doing. Let ν(n) be the highest power of 2 that divides n and let o(n) be
the number of 1’s in the binary expansion of n. The following is a well-known fact
[42].

Proposition 4.2.5. ν2(
(

n
ρ1,...,ρt

)
) is equal to the number of carries made base 2 when

the ρi are added to produce n.

Finally, we will also need the following claim:

Lemma 4.2.6. If o(n) = m, then adding ρ1 + · · · + ρm+s = n requires at least s
carries. Furthermore, this is achievable.

Proof. We do this by induction. The base case s = 0 is trivial. Now, suppose this
were true up to s > 0. Consider a partition ρ1, · · · , ρm+s+1. If adding two of the parts
requires a carry, we are done by the inductive assumption. So adding no two parts
requires a carry. However, every part needs at least one 1 in its base-2 expansion
and n only has m; so if no carries were allowed there can only be at most m parts,
a contradiction since s > 0.

The achievability is shown by just greedily breaking up powers of 2 into smaller
powers of 2; each such step requires exactly one carry.

Now we are equipped to prove the main theorems in this chapter.
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4.3 Interpretation of Vanishing Stiefel-Whitney Classes
Here are some small examples. The alert reader should be able to guess the pattern:

• w1 vanishes if and only if the code is even.

• If w1 = 0, w2 = 0 if and only if the code is doubly even.

• If w1 = w2 = 0, then w3 = 0.

• If w1 = w2 = w3 = 0, then w4 = 0 if and only if the 1-weights are 0 (mod 8),
the 2-weights are 0 (mod 4), and the 3-weights are 0 (mod 2).

The following two structural lemmas relate the (m)-weight conditions and pn.

Lemma 4.3.1. If we have the (m)-weight condition, where m ≥ o(n) − 1, then
2m−o(n)+1|pn.

Proof. It suffices to show that 2m−o(n)+1|
(

n
ρ1···ρj

)
cj for all such partitions. For j > m,

by Proposition 4.2.5 we know that the multinomial coefficient is divisible by 2j−o(n),
which implies divisibility by 2m−o(n)+1 since j ≥ m + 1. Every time we decrease j
by 1 starting from m + 1, we lose one power of 2 but gain one from the (m)-weight
condition. Thus we will always have enough power of 2.

An important intuition that comes with this result is that each higher weight-
condition than the (o(n) − 1)-st “activation energy” makes pn one power of 2 more
divisible. So, for example, 5 has 2 1’s in its binary representation. Then the 1-weight
condition gives no information, the 2-weight condition gives 2|p5, etc.

Lemma 4.3.2. If p2t = 0 (mod 2t+1), then we have the (t+ 1)-weight condition.

Proof. This means, 2t+1 divides any number in
(

t
ρ1···ρj

)
cj for any allowed j. By

Lemma 4.2.6, since t has exactly one 1 in its base-2 expansion,there is a way of
splitting into j parts with j−1 carries. Thus, by Proposition 4.2.5, 2t+1|2j−1cj. This
means 2t+2−j|cj for all j, which is exactly the condition we needed.

Proposition 4.3.3. Let 2m+1 > n ≥ 2m. If n1+n2 = n, then we have the inequality

(m+ 1) + o(n) ≥ o(n1) + o(n2) + ν(n1).

Furthermore, if n = 2m, then this bound is strict.

Proof. So we havem+1 bits. Think of the (m+1) on the left as each bit contributing
1 to the LHS. Consider the rightmost ν(n1) of them. Here there is no carry, so every
1 bit in n2 contributes exactly 1 to both o(n2) and o(n), and every 0 bit contributes
to neither. Each one of these bits also contributes 1 to ν(n1) and 1 to the (k + 1)
sum, so we can deduce that the rightmost ν(n1) bits do not affect the inequality at
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all and may be removed. Thus we may assume n1 were odd and only consider the
inequality

(m+ 1) + o(n) ≥ o(n1) + o(n2).

Going through the addition base-2, it is apparent that the only local addition
that can make this inequality more false is when we have added 1 + 1 = 10 (with
no carry) and created a carry, in which case we contribute 2 to the RHS and only
1 to the LHS. However, we know by the time we get to the left the carry must be
“resolved” by a 0 + 0 = 1 (with carry) somewhere, which contributes 2 to the LHS
and none to the right. Thus, this inequality always holds.

Furthermore, the above argument shows that when a carry actually happens, we
have actually gained an extra 1 for the inequality. When n = 2m the final addition
must be of such a form, so we actually have a strict inequality and thus may replace
(m) by (m+ 1).

We are now ready to prove the main structural result:

Proposition 4.3.4. For 2t+1 > n ≥ 2t, if w1 = · · · = wn = 0 (mod 2), then the
following are true:

(An) the (t+ 1)-weight condition holds.

(Bn) we have that the m-weight condition implies 2m+1−o(n)|nen for all k ≥ (o(n)−
1). In particular, the (t + 1)-weight condition implies 2|en, and thus wn = 0
(mod 2).

Proof. We show this by induction. For the base case, it is trivial that n = 1 = 20,
wn = 0 (mod 2) if and only if the 1-weight condition holds. Furthermore, the m-
weight condition implies 2m|e1 for all m.

Now, assume the statement holds through (n−1) and we are verifying n. Newton
gives us pn = e1pn−1+ · · ·+en−1p1+nen. Consider each en1pn−n1 and let n2 = n−n1.
We have two cases:

1. If n = 2t is a power of 2, then by induction, we know that the (t)-weight
condition holds and we have 2t+1−o(n1)|n1en1 . We also know that 2t+1−o(n2)|pn2 .
Thus, we know that 22t+2−o(n1)−o(n2)|n1en1pn2 . However, by Proposition 4.3.3,
we have that

2t+ 2− o(n1)− o(n− 2) ≥ t+ 2 + ν(n1)− o(n) (4.3.5)
= t+ 1 + ν(n1). (4.3.6)

thus, we have have 2t+1+ν2(n1)|n1en1pn2 , or equivalently 2t+1|en1pn2 . Since this
is true for all n > n1 > 1, we know that pn = nen (mod 2t+1). Since en = 0
(mod 2), we actually obtain that these are both 0 (mod 2t+1). By Lemma
4.3.2, we obtain the (t+ 1)-weight condition, or An.
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We now prove statement Bn by a induction inside our main induction. We
already know that the t-weight condition implies 2t|2ten = nen trivially. Note
that in the expansion of Newton’s identity, each time we already have the
(t + s)-weight condition and gain the (t + s + 1)-weight condition, all the ei
where i < n, increases divisibility of 2 by at least 1 power (thanks to previous
instances of B), and the pn term on the left also increases divisibility of 2 by 1
power thanks to Lemma 4.3.1. Thus an extra power of 2 must be required to
divide en. Thus, this induction is complete and we get Bn.

2. If n is not a power of 2, then by induction we already know that the (t + 1)-
weight condition holds, as the highest power of 2 dividing n did not change
from (n− 1) to n. Thus, it suffices to show Bn.

Similar to previously, since we have the (t+1)-condition in this case, we know
that 2t+2−o(n1)|n1en1 and 2t+2−o(n2)|pn2 . By Proposition 4.3.3, we have that

2t+ 4− o(n1)− o(n− 2) ≥ t+ 3 + ν(n1)− o(n),

so we know that 2t+3−o(n) divides en1pn2 for all 1 < n1 < n. Thus we have
pn = nen (mod 2t+3−o(n)). We also know from the (t + 1)-condition that
2t+2−o(n) divides pn, so 2t+2−o(n) must divide nen as well. This is the base
case of statement Bn. The induction step is identical to the n = 2t case: any
additional weight-condition we gain will increase the known-divisibility by all
the pi’s in the Newton identity by 1 and thus also the nen term.

To see the final claim in the clause of Bn, note that the (t+ 1)-condition gives
2t+2−o(n)−ν(n)|en, since o(n)+ ν(n) is at most (t+1), the number of digits of n,
we get at least one power of 2.

Thus, we obtain the following pattern: each time a new w2t is enforced to be
even, we get the (t+1)-weight condition, and this immediately forces w2t+1 through
w2t+1−1 to be even.

Now, the alert reader may have realized that we have not used anything specific
to linear codes so far, because we have been dealing with just the generating matrix.
The final missing ingredient, the fact that we could have chosen any set of generators,
makes the t-weight condition a particularly good one in our setting of linear codes.
Note that if we have 4|c1, we don’t immediately get 2|c2 – but we do if we extend
the 4|c1 condition to any list of generators of the code! The reason we get 2|c2 is
linearity. We generalize this concept with the main theorem:

Theorem 4.3.7. The (t)-weight condition of a linear code L holds if and only if
2t|c1 holds for every set of generators of L.

Proof. Consider what happens when we replace a single codeword gi by gi + gj,
where gj is another codeword. Let us call this operation Sij. It is easy to see that
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a generating set will remain a generating set and the set of all generating sets is
transitive under this action. Knowing this fact, the “only if” condition is easy. Thus,
we will focus on the “if” condition.

For any given bit, consider the pair (a, b) of the values of that bit in ci and cj,
respectively. When we perform Sij, (0, 0) and (0, 1) will remain invariant und (1, 0)
switches with (1, 1).

We will prove by induction that 2t−j+1|cj for any set of generators in C. The
base case (j = 1) is given. Suppose we have this statement true for j and are
trying to prove the statement for (j + 1). Consider the columns of AC . For all m-
words a1 · · · am, ai ∈ {0, 1}, define the 2m quantities χ(a1 · · · am) to be the number
of column vectors equivalent to (a1, . . . , am). Then, the statement that 2t−j+1|cj is
equivalent to ∑

a1=1,a2=1,...,aj=1

χ(a1 · · · am) = 0 (mod 2t−j+1),

where the sum holds any j of the ai fixed and allow any of the other (m− j) ai’s to
take either 0 or 1. Without loss of generality, we assumed that a1, a2, . . . , aj are fixed
and the other variables are free; but this statement will hold for all such j-element
sets.

Now, the above sum can be partitioned into the two sets∑
a1=1,a2=1,...,aj=1,aj+1=1

χ(a1 · · · am)

and ∑
a1=1,a2=1,...,aj=1,aj+1=0

χ(a1 · · · am).

However, Sj+1,j is an involution that sends any column with the (j + 1)st bit 0 to 1
and vice-versa (given that the j-th bit is 1), so these two sets must have the same
size. In particular, the first set must be 0 (mod 2t−j). However, the first set is just
a set where (j + 1) indices are fixed to be 1; by symmetry, all such sets must be
0 (mod 2t−j), which is the desired statement for (j + 1). By induction, we get all
prerequisites for the t-weight condition.

So to recap, a natural way of defining Stiefel-Whitney classes for codes gave
a list of interesting conditions on generator matrices that are simple to state as
Theorem 4.3.7. Thus, Problem 3 is completely answered.

One interesting consequence of this result is philosophical: since Stiefel-Whitney
classes are very natural constructs, these weight conditions should correspond to
natural families of codes. Sure enough, the first two such families are exactly the
even and doubly-even codes, which are venerated special families of codes for study.
But what about higher families? Sure enough, Betsumiya and Munemasa [3] have
recently given a study of triply-even codes, which arose serendipitously from the study
of vertex operator algebras. As this work is extremely recent, maybe the relevance of
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codes that satisfy higher-order weight conditions are only beginning to be untapped.
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Chapter 5

Rankings

We now turn our study to rankings. Unlike dashings, it is easy to generalize rankings
immediately to all connected bipartite graphs: define an ranking of a connected
bipartite graph G to be equivalence classes of maps (up to translation) h : V (G)→ Z,
where adjacent vertices in G take adjacent values in Z. Call the set of all rankings
of G the rank family R(G) of G. Note that the rank family has finite cardinality
because of the connectedness of G. Figure 5-1 shows the rank family of I2.
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Figure 5-1: The rank family of I2.

Problem 4. Fix a bipartite graph G. What are the enumerative and algebraic
properties of R(G)?

Two more equivalent ways of thinking about rankings are graph homomorphisms
and graded poset structures.

• A graph homomorphism from a graph G into another H is a map G→ H that
sends adjacent vertices into adjacent vertices (in our case, H is the infinite
line graph). Graph homomorphisms generalize many other concepts, including
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graph coloring (when H = Kn, the complete graph). For a survey on graph
homomorphisms, see [4]. Some particularly relevant papers to our work that
have studied homomorphisms involving the Hamming cube are [20] and [14].

• Rankings are also equivalent to graded poset structures on graphs, which is a
very natural combinatorial object. The study of poset structures on graphs is
the study of acyclic orientations, so one can think of rankings as the subproblem
of studying distinguished acyclic orientations as well. For a review of acyclic
orientations, see [37].

All of these equivalent definitions suggest that rankings are a nice object of study
and a good opportunity to combine ideas from different parts of mathematics.

After a short survey of the preliminaries (mostly developed in [9]) in Section 5.1,
we give some original results using the language of posets and lattices in Section 5.2.
In particular, we put a structure of a distributive lattice on R(G) with Theorem 5.2.3.
These results explicitly prove some observations made but not proven in [9, Section
8]. With the help of decomposition and a computer algorithm, we enumerate the
rankings for Inc with n ≤ 5 in Section 5.3.

However, we will not be done with rankings after these results – there are many
flavorful connections between rankings, discrete Lipschitz functions, graph colorings,
and even statistical mechanics. We make these connections clear in Sections 5.4, 5.5,
and 5.7. We even give a strange connection between discrete Lipschitz functions and
dashings in Section 5.6 that can potentially be used for further computation.

5.1 Preliminaries: Hanging Gardens
The main structural theorem for rankings is the following theorem. Let D(v, w) be
the graph distance between v and w.

Theorem 5.1.1 (DFGHIL, [9, Theorem 4.1]). Fix a bipartite graph G. Let S ⊂
V (G) and hS : S → Z satisfy the following properties:

1. hS takes only odd values on one side of the biparition of V (G) and only even
values on the other.

2. For every distinct s1 and s2 in S, we have D(s1, s2) ≥ |hs(s1)− hs(s2)|.

Then, there exists a unique ranking h of G, such that h agrees with hS on S and h’s
set of sinks is exactly S. By symmetry, there also exists a unique ranking of G whose
set of sources is exactly S.

In other words, any ranking of G is determined by a set of sinks (or sources)
and the relative ranks of those sinks/sources. We can visualize such a choice thus:
pick some nodes as sinks and “pin” them at acceptable relative ranks, and let the
other nodes naturally “hang” down. Thus, Theorem 5.1.1 is also called the “Hanging
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Gardens” Theorem. Figure 5-2 shows an example. If we chose sources instead of
sinks, we can imagine pinning down those nodes and having the other nodes “floating”
up; the name “Floating Gardens” evokes an equally pleasant image.

Figure 5-2: Left: I3. Right: Hanging Gardens on I3 applied to the two outlined
vertices.

In particular, note that we can pick the set of sinks to contain only a single
element, which defines a unique ranking. Thus, for any vertex v of a bipartite graph
G, by Theorem 5.1.1 we can get a ranking Gv defined by its only having one sink v
(visually, Gv “hangs” from its only sink v). We call Gv the v-hooked ranking and all
such rankings one-hooked. By symmetry, we can also define the v-anchored ranking
Gv, which “floats” from its only source v. For example, Figure 1-3 is both the 111-
hooked ranking G111 and the 000-anchored ranking G000 of I3.

Now, we introduce two operators on R(G). Given a ranking B in R(G) (with rank
function h) and a sink s, we define Ds, the vertex lowering on s, to be the operation
that sends B to the ranking h′ where everything is unchanged except h′(s) = h(s)−2
(visually, we have “flipped” s down two ranks and its edges with it). Observe that
since s was a sink, this operation retains the fact that all covering relations have
rank difference 1 and thus we still get a ranking. We define Us, the vertex raising
on s, to be the analogous operation for s a source. We call both of these operators
vertex flipping operators.

Proposition 5.1.2 (DFGHIL, [9, Theorem 5.1, Corollary 5.2]). Let G be a ranking.
For any vertex v:

1. we can obtain Gv from G (or G from Gv) via a sequence of vertex lowerings;

2. we can obtain G from Gv (or Gv from G) via a sequence of vertex raisings.

Furthermore, in any of these sequences we do not need to ever raise or lower v.

Proof. The main idea of the proof is again visually intuitive: starting with any
G, “pin” v to a fixed rank and let everything else fall down by gravity (slightly
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more formal: greedily make arbitrary vertex lowerings, except on v, until it is no
longer possible). The result is easily seen to be Gv. The other claims follow by
symmetry.

Corollary 5.1.3. Any two rankings with the same graph G can be obtained from
each other via a sequence of vertex-raising or vertex-lowering operations.

Corollary 5.1.3 shows that there exists a connected graph H with V (H) = R(G)
and E(H) corresponding to vertex flips. In the literature (say [9]), R(G), equipped
with this graph structure, is called the main sequence.

5.2 The Rank Family Lattice
Consider a bipartite graph G. We know from the discussion in the previous section
that its rank family has the structure of a graph. In this section, we show that it
actually has much more structure.
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Figure 5-3: The rank family poset for Pv(I2), where next to each node
is a corresponding ranking. The rankings are presented as miniature
posets, with the black dots corresponding to v, the vertex at which we
are not allowed to raise.

Theorem 5.2.1. For a bipartite graph G and any vertex v of G, there exists a poset
Pv(G) such that:

1. R(G) = V (Pv(G));

2. Pv(G) is a symmetric ranked poset, with exactly one element in the top rank
and exactly one element in the bottom rank;
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3. each covering relation in Pv(G) corresponds to vertex-flipping on some vertex
w 6= v.

Proof. Construct Pv(G), as a ranked poset, in the following way: on the bottom
rank 0 put Gv as the unique element. Once we finish constructing rank i, from any
element B on rank i, perform a vertex-raising on all sources (except v) to obtain a
set of rankings S(B). Put the union of all S(B) (as B ranges through the elements
on rank i) on rank i+ 1, adding covering relations C > B if we obtained C from B
via a vertex-raising. It is obvious from this construction that the covering relations
in Pv(G) are exactly the vertex flippings on vertices that are not v.

We stop this process if all the elements of rank i have no sources besides v to
raise. By Theorem 5.1.1, this is only possible for a single ranking, namely Gv. Thus,
there is exactly one element in the top rank of Pv(G) as well. By Proposition 5.1.2,
we can get from Gv to any element of R(G) by vertex-raising only, without ever
raising v. This means that every element of R(G) has appeared exactly once in our
construction.

Now, consider the map φ that takes a ranking B of rank k to the ranking B′, in
which each any v with rank i in B has rank k − i in B′. Since φ takes Gv to Gv,
and vice versa, the top and bottom ranks are symmetric. However, φ also switches
covering relations of vertex-raisings to vertex-lowerings. Thus, we can show that for
every i the i-th ranks and the (k− i)-th ranks are symmetric by induction on i. This
makes Pv(G) into a symmetric poset as desired.

For a ranking B ∈ R(G), we now explicitly define Ds(B) or Us(B) to 0 if the
corresponding flip is not allowed. This allows us to consider Ds and Us as operators
F [R(G)]→ F [R(G)], where F is an arbitrary field and F [R(G)] are formal sums of
rankings over F . Define U(G) to be the operator algebra generated by all Us with
s ∈ V (G).

Corollary 5.2.2. The image of Gv under the action of the quotient U(G)/Uv is
R[R(G)].

Proof. This is immediate from the construction in Theorem 5.2.1, where we started
with a single ranking Gv. Taking the image under vertex raisings is exactly taking
the image of the U(G)-action on Gv. Forbidding the vertex raising at v is exactly
restricting this action to the quotient U(G)/Uv.

The authors of [9] noted that the rank family is reminiscent of a Verma module.
Corollary 5.2.2 is an algebraic realization of this observation. The ranking Gv takes
the role of the lowest-weight vector. If we allowed vertex raisings at v, we would have
obtained an infinite repeating family of rankings, as in Figure 5-4. When we strip
the redundant rankings by forbidding Uv, we leave ourselves with a finite R(G).

In fact, we can put even more structure on Pv(G) with the language of lattices.
For a review of lattices, see any standard reference such as [38]. We first construct
an auxiliary poset Ev(G), which we call the v-elevation poset of G:
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Figure 5-4: Left: if we were to allow vertex raising at v, we no longer
get a poset since we introduce cycles. Right: we can also think of this
situation by an infinite poset leading upwards.

• let the vertices of Ev(G) be ordered pairs (w, h), where w ∈ G, w 6= v, and
h ∈ {1, 2, . . . , D(w, v)}.

• wheneverD(w1, w2) = 1 andD(w1, v)+1 = D(w2, v), have (w1, h) cover (w2, h)
and (w2, h+ 1) cover (w1, h).

Our main result of this section is the following theorem.

Theorem 5.2.3. The v-elevation poset and the v-rank family poset are related by

Pv(G) = J(Ev(G)).

Thus, the rank family poset Pv(G) is a finite distributive lattice.

Proof. We show that there is a bijection between order ideals of Ev(G) and elements
of Pv(G). The second claim in the theorem follows immediately from the Fundamen-
tal Theorem for Finite Distributive Lattices.

Each ideal I of Ev(G) gives exactly one ranking in Pv(G), as follows: for every
vertex w ∈ G, take the maximum h ∈ Z such that (w, h) ∈ I, taking h = 0 if no
(w, h) appears in I. Now assign to w the rank 2h − D(w, v). In other words, h
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Figure 5-5: The elevation poset E000(I
3
c ). Nodes (w, h) on each vertical

line have the same w-value. In order (left to right), the w-values are:
100, 010, 001, 110, 101, 011, 111.

indexes the elevation of w by counting the number of total times we flip w up from
the initial state of the v-hooked ranking (which corresponds to the empty ideal),
justifying the name elevation poset. It remains to check that this map is a bijection.

Take a ranking B in Pv(G). For any w ∈ B, we have h(w) = 2h − D(w, v) for
some 0 ≤ h ≤ D(w, v). Define I ⊂ V (Ev(G)) to contain all (w, h′), possibly empty,
with h′ ≤ h. The property of B being a ranking is equivalent to the condition
that for every pair of neighbors w1 and w2 with D(v, w2) = D(v, w1) + 1, we have
|h(w1) − h(w2)| = 1. However, this in turn is equivalent to the condition that the
maximal h1 and h2 such that (w1, h1) and (w2, h2) appear (as before, define one of
them to be 0 if no corresponding vertices exist in I) in I satisfy either h1 = h2 or
h1 = h2 + 1, which is exactly the requirement for I to be an order ideal. Thus, our
bijection is complete.

The proof of Theorem 5.2.3 gives another interpretation of Theorem 5.1.1. Con-
sider the order ideals of Ev(G). Each such order ideal corresponds to an antichain of
maximal elements, which is some collection of (wi, h(wi)). It can be easily checked
that in the corresponding element of Pv(G), the wi are exactly the sinks, placed at
rank 2hi −D(wi, v).

Even though Theorem 5.2.3 gives us more structure on the rank family, it is
very difficult in general to count the order ideals of an arbitrary poset. The typical
cautionary tale is the case of the (extremely well-understood) Boolean algebra Bn,
where the problem of counting the order ideals, known as Dedekind’s Problem, has
resisted a closed-form solution to this day, with answers computed up to only n = 8
(see [41]).
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5.3 Counting Rankings of the Hamming Cube

For a general bipartite graphG, counting the cardinality ofR(G) seems to be difficult,
even whenG = Icn. We perform an algorithmic attack with the help of decomposition.

Suppose G = G0 qi G1. Now, let z0 = inc(
−−→
0n−1, 0→ i) and z1 = inc(

−−→
0n−1, 1→ i)

be elements in V (G). Since they are adjacent, their rank functions must differ by
exactly 1; that is, |h(z0) − h(z1)| = 1. We denote G = G0 ↗i G1 in the case
h(z1) = h(z0) + 1 and G = G0 ↘i G1 otherwise. With this notation, we reinterpret
Figure 3-1 as G0 ↗3 G1, where we have ↗ because 000 > 001 in G.

For any A ∈ R(Inc ), the color n must decompose A uniquely into A0 ↗n A1 or
A0 ↘n A1, where each of A0 and A1 is a ranking in R(In−1c ). Thus, we can iterate
over potential pairs of rankings (A0, A1) and see if each of them could have come from
some A. It suffices to check that each pair of vertices inc(c, 0→ n) and inc(c, 1→ n),
where c ∈ Zn−12 , has rank functions differing by exactly 1. However, this requires
2n−1 comparisons for each pair of ranking in R(In−1). The following lemma cuts
down the number of comparisons.

Lemma 5.3.1. For an (n, k)-ranking A and (n− 1, k)-rankings A0 and A1, we have
A = A0 ↗n A1 if and only if the colors and vertex labelings of the three rankings are
consistent and the following condition is satisfied: for each c ∈ Zn−12 and the pair of
corresponding vertices s0 = inc(c, 0 → n) and s1 = inc(c, 1 → n) such that at least
one of s0 or s1 is a sink (in A0 or A1, respectively), we have |h(s0)− h(s1)| = 1.

Proof. These are clearly both necessary conditions. It obviously suffices if the adja-
cency condition |h(s0)−h(s1)| = 1 were checked over all c for all pairs s0 and s1 in A
corresponding to the same c. It remains to show that checking the situations where
at least one si is a sink (in their respective Ai) is enough.

Suppose we had a situation where checking just these pairs were not enough. This
means for all pairs of vertices corresponding to the same c (where at least one vertex
is a sink in its respective Ai) we meet the adjacency condition, but for some such
pair where neither are sinks, we have |h(s0) − h(s1)| 6= 1. Let (s(0)0 = s0, s

(0)
1 = s1)

be such a pair. Without loss of generality, assume h(s0) > h(s1). Since s0 is not
a sink in A0, there is some s(1)0 covering s

(0)
0 by an edge with some color i 6= n.

Similarly, let s1 = s
(0)
1 be connected to s(1)1 via color i. Continuing this process, we

eventually must come to a pair of vertices s(l)0 and s(l)1 where at least one is a sink.
However, h(s(l)0 ) = h(s0) + l > h(s

(l)
1 ). Since we assumed that h(s0) > h(s1) and

|h(s(l)0 )−h(s(l)1 )| = 1, the only way for these conditions to hold is if for each i < l, we
had h(s(i+1)

1 ) = h(s
(i)
1 ) + 1. But this meant |h(s(0)0 )− h(s(0)1 )| = 1 in the first place, a

contradiction. Thus, these situations do not exist, and it suffices to only check pairs
where at least one vertex is a sink.

Lemma 5.3.1 makes the following algorithm possible:

50



n dashings rankings adinkras
1 2 2 4
2 8 6 48
3 128 38 4864
4 32768 990 32440320
5 2147483648 395094 848457904422912

Table 5.1: Enumeration of dashings, rankings, and adinkras with chromotopology
Inc .

1. For the data structure, represent all rankings A by a set of sinks S(A) and
their ranks as in Theorem 5.1.1.

2. Start with R(I1c ), which is a set of 2 rankings.

3. Given a set rankings in R(In−1c ), iterate over all pairs of (possibly identical)
rankings (A,B) in R(In−1c ) × R(In−1c ). For each pair (with rank functions
hA and hB, respectively),

(a) Consider the ranking B′ which is identical to B except with the rank
function hB′(

−→
0 ) = hB(

−→
0 ) + 1.

(b) For each sink s ∈ S(A) ∪ S(B′), check that |hA(s)− hB′(s)| = 1.

(c) If the above is satisfied for all s, put A↗n B
′ in R(Inc ).

We used the above algorithm to compute the results for n ≤ 5, which we include in
Table 5.1 along with the counts of dashings (recall this is o(n) = 22

n−1) and adinkras
(which we obtain by multiplying |R(Inc )| and o(n) as the dashings and rankings are
independent). Finding the answer for n = 6 seems intractible with an algorithm that
is at least linear in the number of solutions.

For bipartite graphs other than R(Inc ) that can be decomposed (more generally,
bipartite graphs of the form A× I), Lemma 5.3.1 allows us to perform some similar
computations.

5.4 Grid Graphs and Eulerian Orientations
While adinkras come from Hamming cubes and their quotients, counting rankings of
other families of graphs make for interesting problems. The most interesting family
would be the grid graph Gm,n, which define as the graph with mn vertices obtained
by the Cartesian product of two path graphs of m and n vertices respectively. The
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grid graph serves as a nice approximation of the plane. Rankings of the square
graph is well-studied, though in a disguised form: the “square ice” problem of Lieb
?? basically comes down to counting rankings of the square grid. We show the
connection here, using the idea of Eulerian orientations.

A recurring problem in statistical mechanics is to calculate the entropy of a
system via combinatorial approximations of the system: often we want to calculate
the number of configurations of a graph satisfying certain combinatorial constraints.
Define the boundary-free grid graph G′m,n as the graph with ((m + 1)(n + 1) − 4)
vertices obtained by removing the 4 corner vertices and all edges on the boundary
of Gm+1,n+1. These are the “lattices of coordination number 4” that Lieb ?? was
interested in. We wish to count orientations of the edges of G′m,n satisfying the
property that each internal vertex (i.e. the 4-valent vertices) must have outdegree
and indegree equal to 2. Call these configurations square ice configurations.

Now, recall that an Eulerian orientation of a graph G is a choice of direction
on every edge of G such that each vertex has equal indegree and outdegree, which
allows an Eulerian circuit, a cycle that uses each edge of G exactly once. An Eulerian
orientation exists if and only if all vertices of G has even degree.

Lemma 5.4.1. Square ice configurations of G′m,n are in bijection with Eulerian ori-
entations of the dual of Gm,n.

Proof. Take the boundary-free grid graph G′m,n and join all the vertices of degree 1
into a single vertex v∞. This creates a planar graph G′′m,n. It is clear from inspection
that G′′m,n is the planar dual of Gm,n. Now, an edge orientation is Eulerian if and
only if each vertex has equal indegree and outdegree. Thus, an Eulerian orientation
of G′′m,n satisfies the square ice configuration. It suffices to show that the indegree
and outdegree of v∞ are equal in a square ice configuration. However, if all vertices
but one have equal indegree and outdegree, the remaining vertex must also have this
property, becausing summing the quantity of indegree minus the outdegree over all
vertices must obtain zero.

Proposition 5.4.2. The Eulerian orientations of a planar graph G are in bijection
with rankings of its dual G′.

Proof. Consider an orientation of G. For each edge e with face f1 on its left and f2
on its right, orient its dual edge in G′ from f1 to f2. Now consider a minimal cycle
in G′. The vertices in the cycle correspond to the faces around a vertex in G. The
orientation on G is Eulerian if and only if the outdegree and indegree of each vertex
match, which corresponds to there being an equal number of edges going one way as
the other way on the cycle in G′. However, this is precisely what is required for the
orientation on G′ to be a ranking.

Since the grid graph is planar, we immediately obtain the following result.

Corollary 5.4.3. There is a bijection between square ice configurations of G′m,n and
rankings of Gm,n.
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Lieb [30] attacks the square ice configuration enumeration problem with the
transfer-matrix method. Asymptotically, the number of square ice configurations
thus corresponds to powers of the highest eigenvalue of the transfer matrix with the
rows and columns corresponding to the 2n different possible configurations of vertical
edges in each column of G′m,n. Klein [28] has obtained some specific enumerations
of rankings of the rectangular grid of small width and also enumerated rankings for
other fundamental classes of graphs, including paths, trees, and cycles.

The grid graph has some particularly nice properties and we will revisit it after
Theorem 5.7.1 is proved, due to its connection with 3-colorings.

5.5 Rankings and Discrete Lipschitz Functions

In this section, we present the concept of discrete Lipschitz functions, which turns out
to be intricately related to rankings. We then construct some mathematical objects
that connect them (and in turn rankings) to the theory of hyperplane arrangements
and the theory of polytopes.

Let us define a discrete Lipschitz function (DLF) on a graph G as a function
f : V (G)→ Z where for every edge (i, j) we have |f(i)− f(j)| ≤ 1. As in rankings,
we consider two functions to be equivalent if they differ only by translation in Z. We
denote the set of DLF’s of G by DLF (G).

While Lipschitz functions form a fundamental class of functions in analysis and
our definition of DLF’s seems to be the most natural discrete analogue, they have
appeared in what seems to be isolated discussion in various fields, such as in the
context of the No Free Lunch Theorem [6]. We came upon them as a method to
study rankings; the following result is the main connection.

Theorem 5.5.1. For any graph G, we have a 2-to-1 map identifying pairs of ele-
ments of R(G× I) and elements of DLF (G).

Proof. Suppose |V (G)| = n. Let v0 be a distinguished vertex of V (G). Let DLF (G)
be formed of representatives where v0 takes value 0. Each v ∈ V (G) corresponds to
a pair of vertices u(v) = (v′, v′′) in V (G× I). We give a bijection between DLF (G)
and elements h of R(G× I) where h(v′0) = 0 and h(v′′0) = 1. Note that by symmetry
this accounts for exactly half of the rankings of R(G × I), since we can reverse all
the signs to get a different ranking that has h(v′0) = 0.

Now take an element h ∈ R(G × I) where h(v0) = 0 and h(v′′0) = 1. Construct
a function f : V (G) → Z as follows: assign f(v) the value (1/2)(h(v′) + h(v′′) − 1).
In particular, f(v0) = 0. Suppose (v, w) ∈ E(G). Then because the adjacent pairs
(h(v′), h(w′)) and (h(v′′), h(w′′)) both differ by exactly 1, the difference of f(v) and
f(w) can take values exactly in {−1, 0, 1}, so f ∈ DLF (G). Furthermore, it is
easy to see that there is exactly one way to realize any of these three differences, as
illustrated by Figure 5-6. This implies that this process is reversible so we in fact
have a bijection.
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Figure 5-6: In each of these three cases, the vertical heights corresponds to the values
of the relevant functions, the left graph represents an edge in an element of DLF (G),
and the right graph corresponds to the 4 related vertices in G× I.

It has come to our attention that this result is just a slight generalization of the
“Yadin Bijection” found in Peled’s work [33] for Hamming cubes. In Section 5.3, we
counted rankings of a specific graph, the Hamming cube. It is important to point
out that if we were interested in asymptotic results instead of exact enumeration,
the rankings of a Hamming cube (and related objects) are fairly well-understood
thanks to Peled and some precursors, such as Galvin [20]. In particular, Peled [33]
uses this bijection to reduce thinking about discrete Lipschitz functions to thinking
about rankings.

In our context of adinkras, where the main objects are the Hamming cubes,
Theorem 5.5.1 is especially nice because it reduces studying the number of rankings
of In to studying DLF’s of In−1, the Hamming cube of dimension one less:

Corollary 5.5.2. We have 2|DLF (In)| = R(In+1).

We now introduce another connection between DLF’s and rankings with the
theory of polytopes. Take any (not necessarily bipartite) connected graph G. If
|V (G)| = n, identify the vertices with [n] and consider pairs of hyperplanes xi−xj =
±1 for each (i, j) ∈ E(G). This gives a particular hyperplane arrangement. Now,
intersect this arrangement with the hyperplane xn = 0 (this corresponds to the
fact that the interpretation of rankings as equivalence classes under translation is
equivalent to the concept of assigning a fixed value to a particular vertex) to obtain
an arrangement in Rn−1 with a bounded central region, which we denote DLPG,
the discrete Lipschitz polytope of G. Now, we show that the name discrete Lipschitz
polytope is appropriate via the following result.

Theorem 5.5.3. For a connected graph G, the discrete Lipschitz polytope DLPG
satisfies the following:

1. The lattice points in DLPG are in bijection with DLF (G).

2. If G is bipartite, the vertices of DLPG are in bijection with R(G).

Proof. Let the lattice point (x1, . . . , xn−1) correspond to the ranking where vertices
i < n are assigned the value xi and vertex n is assigned the value 0. It is then
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clear from the definitions of the hyperplanes given that the edge constraint on the
edge (i, j) necessary for a ranking is satisfied exactly when |xi − xj| ≤ 1. Since the
point belongs to the bounded central region of the arrangement exactly when all
these inequalities are satisfied, the lattice points exactly correspond to the discrete
Lipschitz functions. We now focus on the second part of the theorem statement.

It will help us to imagine a point x = (x1, . . . , xn−1) in DLPG as a point x′ =
(x1, . . . , xn−1, xn = 0) in the ambient space Rn, and imagine DLPG being embedded
as the slice DLP ′G in Rn, also with the last coordinate equal to 0. Now, x is a vertex
of DLPG if and only if there is no open line segment around x′ that lies within DLP ′G.
Equivalently, for any nonzero vector e = (e1, . . . , en), one of x′±εe is outside ofDLP ′G
for any positive ε. For a function f on V (G), call an edge rigid if the values of f at
those vertices differ exactly by 1. Let a connected component of vertices connected
by rigid edges be called a rigid cluster. In particular, a ranking has a rigid cluster of
the entirity of V (G), and every edge is rigid in a ranking.

Now, note that if two vertices i and j are connected by a rigid edge, then if we
have a nonzero e such that ei 6= ej, at least one of x′± εe must leave DLP ′G since the
difference |xi − xj| will either strictly increase or decrease. Therefore, given a rigid
cluster C, any nonzero e that do not assign the same ei for i ∈ C will force one of
x′ ± εe to leave the polytope. This is the main observation we will use.

Suppose we have a ranking, we now show it is a vertex of DLPG. In a ranking,
all edges are rigid. Thus, any perturbation vector e will leave the polytope unless
e = (ε, ε, . . . , ε). However, we need the last coordinate of e to be 0 to stay within
DLP ′G, so e must be the zero vector, a contradiction. So all rankings are vertices.

Given a vertex x of DLPG. We claim that V (G) is a rigid cluster. Suppose not.
Then there exists some rigid cluster C not including vertex n. Thus, we may shift the
value of x′ on all vertices in C simultaneusly in either direction by some small ε > 0,
corresponding to a vector e which has value ε in the coordinates corresponding to C
and 0 otherwise. Since no vertices in C are at distance exactly 1 from the vertices
outside of C, we may pick ε sufficiently small such that x′ ± e stay within DLP ′G,
which corresponds to an open segment around x in DLPG. Therefore V (G) must be
a rigid cluster, and x′ actually takes on only integral values on V (G). This means
that adjacent vertices must differ by either 0 or 1.

Now, because G is connected and V (G) is a rigid cluster, we can take a spanning
tree T of G that uses only rigid edges, rooted at n. Starting from the root (remember
that xn = 0 is enforced), going down the branches of T , we see that all nodes of even
distance from n in T must be assigned even values and all nodes of odd distance
from n must be assigned odd values. Since G is bipartite, all edges must actually be
between odd and even values, and thus differ by 1 instead of 0. Therefore, all edges
are actually rigid, and we have a ranking, as desired.

Theorem 5.5.3 give another connection between DLF’s and rankings. Further-
more, DLPG simply is a very nice object to study. Its dual also seems interesting:
recall the polar P ∗ of a polytope P containing the origin in its interior is the set
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{x|〈x, y〉 ≤ 1 for all y}. Define GRG, the graphical root polytope, to be DLP ∗G. Since
DLPG was defined via pairs of hyperplanes that straddle the origin, GRG can be de-
fined by the convex hull of vertices that correspond to the duals of these hyperplanes.
As before, identify the vertices of G with [n] and distinguish the vertex labelled 1.
Let ei be the unit vector in the direction of i. Then GRG is just the convex hull of:

1. ±(ei − ej) , for (i, j) ∈ E(G) where i, j 6= 1.

2. ±(ei), for (i, 1) ∈ E(G).

It follows that GRG is the generalized root polytope (as defined in [31]) corre-
sponding to G. For example, when G is the complete graph Kn, we get exactly the
root polytope for An.

As is the case with rankings, counting DLF’s for other families of graphs seems
like an interesting problem, especially if we compare their asymptotic growth to that
of rankings. We give an example computation here where we have both an algebraic
expression and an asymptotic estimation (using Laplace’s Method. For a primer,
see, e.g., Flajolet and Sedgewick [18]). Klein [28] has some concrete computations
for various other graphs.

Proposition 5.5.4. The number of DLF’s of the cyclic graph C2n is∑
k≥0

(
2n

k, k, 2n− 2k

)
.

Asymptotically, this grows as α32n/
√
n, where α is a constant.

Proof. After selecting a distinguished vertex to take value 0, each clockwise move
around C2n must change the value by +1, 0, or −1, ending with a net change of 0.
We must thus pick an equal number of (+1)’s as (−1)’s. Thus, the sum expression
above is exactly the quantity we desire.

To get an asymptotic approximation, we will use Laplace’s method and some
generating function manipulations.

Consider the function

fn(z) =
n∑
k=0

(
2n

k, k, 2n− 2k

)
zk.

We wish to obtain fn(1) as n→∞. To do this, we invoke the auxiliary generating
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function

g(t, z) =
∑
n≥0

fn(z)t
2n

=
∑
k

(
∑
n≥k

(
2n

2k

)
t2n)

(
2k

k

)
zk

=
1

2

∑
k

[
t2k

(1− t)2k+1
+

t2k

(1 + t)2k+1
]

(
2k

k

)
zk

=
1

2

∑
k

[
(t2z)k

(1− t)2k+1
+

(t2z)k

(1 + t)2k+1
]

(
2k

k

)
,

where in the third line we used the well-known fact∑
n≥k

(
n

k

)
tn =

tk

(1− t)k+1
.

Now, by differentiating the generating function for Catalan numbers (or direct
power series expansion) we can obtain the generating function

1√
1− 4z

=
∑
n

(
2n

n

)
zn.

Using this gives

g(t, z) =
1

2(1− t)
1√

1− 4t2z/(1− t)2
+

1

2(1 + t)

1√
1− 4t2z/(1 + t)2

=
1

2
[

1√
1− 2t+ t2 − 4t2z

+
1√

1 + 2t+ t2 − 4t2z
].

Since we are interested in z = 1, we have

g(t, 1) =
1

2
[

1√
(1− 3t)(1 + t)

+
1√

(1 + 3t)(1− t)
].

We want the t2n term of this generating function, so we want to evaluate the
contour integral on a small loop around 0 of t−2n+1g(t, 1). For the first term (the
second term is analogous), substituting y =

√
−3(1− 3t)(1 + t) gives the integral

(now around y =
√
3i instead of t = 0):

√
3i

∫
(4 + y2)−1/2(

3√
4 + y2 − 1

)2n+1dy

Now, the function in the parentheses has a unique critical point at y = 0 and
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its double derivative is nonzero. By Laplace’s method, this integral is dominated
asymptotically by 1/

√
n times the evaluation of the integrand, evaluated at y = 0.

We thus obtain that f2n(1) ∼ α32n/
√
n for some nonzero constant α.

5.6 Discrete Lipschitz Functions and Dashings
While having connections between DLF’s and rankings make some sense, there is a
connection between DLF’s and dashings, which is strange as dashings seem to be
entirely independent from rankings.

Given a dashing d on G, denote by Con(G, d) the contraction of G by all solid
edges in d. We then have the following result:

Proposition 5.6.1. Let G be a bipartite graph. We have that

|DLF (G)| =
∑

d∈e(G,CG)

|R(Con(G, d))|.

Proof. For each DLF, consider the edges where the two vertices are given the same
value. It is clear that contracting the edge gives a DLF on the reduced graph. If we
make all such edges solid and contract them, since there is no edge connecting two
vertices with the same value, the resulting DLF on the reduced graph must actually
be a ranking. So it is clear that

|DLF (G)| =
∑
d

|R(Con(G, d))|,

where we sum over all rankings d. However, for each cycle in CG, we need exactly
an even cycle to remain for a ranking to exact after the contractions. This means
that there must be an even number of dashes allocated to each cycle, and thus we
only care about terms with an even dashing.

In principle, this may lead to some sort of computation of |R(I6)| = 2|DLF (I5)|.
However, as there are now 22

5−1, or about 109 terms, in the sum, we would still need
a couple of optimizations to make this breakthrough.

5.7 Rankings and Colorings
There is another very nice connection involving rankings and graph colorings that
happen to work very well for graphs arising from adinkras. This section draws upon
joint work with Aaron Klein from the MIT PRIMES high school program [28].

Define squarely generated graphs to be graphs where the cycle space has a basis
consisting of 4-cycles or 2-cycles. Note that a squarely generated graph must be
bipartite. Suppose we have a graph G with a 2-cycle (i.e. a multiedge). Note that
replacing the multiedge by a single edge does not change the squarely generated
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property. Thus, studying squarely generated graphs is equivalent to thinking about
simple graphs with a basis of the cycle space consisting of 4-cycles.

The main result relating rankings and colorings is the following result.

Theorem 5.7.1. For any G, we have |R(G) ≤ (1/3)χG(3). Furthermore, if G is
squarely generated, then

|R(G)| = (1/3)χG(3),

where χG is the chromatic polynomial of G.

Proof. Let the vertices of G be labeled with [n] and rankings having the property
that the vertex n is assigned 0 in the ranking. Label the 3 colors with members
of Z3. We now show that every ranking of G gives a different 3-coloring such that
the vertex n is assigned the color 0. The number of such colorings are exactly the
(1/3)χG(3) on the right-hand-side of the statement.

To see this, consider a ranking h. Now, assign every vertex v the color c(v) =
h(v) (mod 3). Now, since |h(v) − h(w)| = 1 for adjacent v and w, we must have
c(v) 6= c(w), giving a proper coloring. We definitely have c(n) = 0 as we wanted;
furthermore, this map is obviously one-to-one, so the inequality holds.

When G is squarely generated, we now show that this map is surjective as well.
Starting with a coloring c : V (G) → Z3, we seek to create a ranking h by first
assigning the rank 0 to the vertex n, recalling that we have c(n) = 0. Now, we greedily
assign ranks adjacent to vertices that we have already assigned in the following
manner: suppose w was assigned the value h(w) and unassigned v is adjacent to w;
now, assign h(v) = h(w) + q(c(v) − c(w)), where q(t) ∈ Z for t ∈ Z3 is the integer
corresponding to the representative of t in {−1, 0, 1}. This guarantees h(w) to be a
ranking because in the proper coloring c we must have c(v)− c(w) equal to 1 or −1
(mod 3).

The only trouble we would run into is if v were adjacent to two w1 and w2 that
want to assign different values of c(v) via the above algorithm. Since this assignment
process keeps the vertices that are assigned values already connected, w1 and w2 must
already be connected, creating a cycle through v. Since G is squarely generated, the
minimal such cycle must have length 4; in particular, this means both w1 and w2

must be adjacent to some w. It is easy to check from the definition of our algorithm
that the value of c(v) that w1 wants to assign must be equal to the value of c(v)
that w2 wants to assign modulo 3. Nowever, as we have completed a cycle of length
4, these two potential values must actually be equal to the sum of 4 elements taken
from {−1, 1}, since each adjacent edge corresponds to the change of value by 1. The
only way for this to be possible is if the two assigned values to be the same, so there
is no ambiguity in assigning c(v). Thus, there is a consistent method to obtain a
ranking h, which is easily seen to give c back via the previously described method
of taking c(v) = h(v) (mod 3). Thus, we have equality of the two quantities for
squarely generated graphs, as desired.

The result most relevant for us for adinkras is:
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Figure 5-7: Example of turning a ranking into a 3-coloring.

Proposition 5.7.2. The graph In/L is squarely generated if L has a basis of weights
4 or 2. In particular, the Hamming cubes In are squarely generated.

Proof. First, we show that In is squarely generated. For this we again use some
topology: because we have a 2-cell for all the 4-cycles and there are no 2-cycles, In
is squarely generated if every cycle is a boundary, or if the first homology vanishes.
However, In is the two-skeleton of the unit-cube, which has trivial H1.

Now, suppose that L has a basis of weights 4 or 2. Take a cycle C in In/L. It
lifts to a path x→ y in In where y − x ∈ L. Since In is squarely generated, we may
write y−x as a sum of weight-2 and weight-4 codewords, which becomes a sum C ′ of
2− and 4− cycles under the quotient. Since C +C ′ must then lift to a cycle (which
in turn quotients to a sum of weight-2 and 4 codewords), C itself can be written as
a sum of weight-2 and 4 codewords, so In/L is squarely generated.

A neat corollary of the above is that studying rankings of certain adinkras (in-
cluding the Hamming cube) is equivalent to studying 3-colorings.

For the Hamming cube [33] and the square grid [30], the equality part of The-
orem 5.7.1 seems to have already been known in literature. Theorem 5.7.1 is a
generalization of both of these observations. As a bonus, the inequality portion of
the statement shows that this is the sharpest possible statement about when such
equalities can exist. It is remarkable that Theorem 5.7.1 bears some resemblance to
Stanley’s result [37], where the number of acyclic orientations is related to χA(−1).

The grid graph from Lieb’s work is also squarely generated. It was mentioned in
Lieb [30] that the problem was also effectively counting 3-colorings. We can interpret
this as a combination of Proposition 5.4.2 and Theorem 5.7.1. The square grid is
an especially nice graph, being self-dual, squarely generated, and effectively (again,
modulo boundary conditions) Eulerian. Thus, it serves as an intersection where the
different conditions required for our results all apply and where rankings, Eulerian
orientations, and 3-colorings all appear.
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Chapter 6

Physics and Representation Theory

The study of adinkras originated from physics, in particular supersymmetric repre-
sentation theory. The main purpose of our work has been to extract combinatorics
problems from adinkras and showcase their connections to other parts of mathemat-
ics.

In this chapter, we end our work with some discussion more relevant to the
original physics context. We survey the recent papers and make some observations
that would hopefully be useful to a reader interested in these problems. We believe
each of these topics is a resource for rich mathematical discussion.

6.1 Constructing Representations

Take an adinkra A, and consider the component fields (the bosons φ and the fermions
ψ) as a basis. Then, consider a set of matrix generators {ρ(Qi)} in that basis, where
ρ(Qi) is the adjacency matrix of the subgraph of A induced by the edges of color
i. If we order all the φ to come before all the ψ in the row/column orderings, these
matrices are block-antisymmetric of the form

ρ(Qi) =

(
0 Li
Ri 0

)
,

where the Li and Ri are [21]’s garden matrices. For the adinkra in Figure 6-1, we have
the following matrices, where the row/column indices are in the order 00, 11, 10, 01.

ρ(Q1) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ρ(Q2) =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


So far, we have encoded the graph and the dashing into the matrices, but we

do not yet have a representation of the supersymmetry algebra po1|N . In fact, the
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Figure 6-1: An adinkra with chromotopology I2.

ρ(Qi) form a representation of the Clifford algebra Cl(N), which we discuss further
in Section 6.3. The missing information (up to scalars) is the ranks of the vertices,
which we can add into these matrices by adding the Hamiltonian operator H’s to
appropriate entries (recall Section 1.4 for details). In this sense, we are partitioning
the infinite-dimensional basis of the representation into finite-dimensional “slices,”
each slice corresponding to a single finite-dimensional representation corresponding
to our finite-dimensional matrices.

An obvious question to consider whenever we study representations is the follow-
ing:

Problem 5. Which adinkraic representations are irreducible?

In the valise case, this is well-understood (see [12]) with a surprising answer. If
L were not a maximal subspace inside Zn2 , we may quotient Inc /L further to give
a subrepresentation. Thus, irreducible valise adinkraic representations must have
maximal doubly-even codes, which are self-dual. There seems to be no good general
method for other rankings. The intuition of the obstruction is that this method
of creating subrepresentations require the vertices in each coset to come from the
same rank, corresponding to the same engineering dimension. This kind of physics
constraint is intricately connected to the selection of the right notion of isomorphism
for adinkraic representations, which we now discuss.

6.2 When are Two Adinkras Isomorphic?
The instinct for the choice of the definition of “isomorphism” seems to be completely
intuitive for the authors of the literature (see [21] and [13]), but we think it is im-
portant to have a formal discussion since the existing literature is somewhat cavalier
about these definitions.

We usually consider two representations isomorphic if they are conjugate by some
change of basis. However, because of our physics context we need more restrictions.
To find the right notion, we now recall/define three types of transformations and
discuss what it means for them to give the “same” adinkra.

• Recall that a vertex switching changes the dashing of all edges adjacent to a
vertex. This corresponds to simply changing the sign (as a function) of the

62



component field corresponding to that vertex, or equivalently, conjugation of
the representation by a diagonal matrix of all 1’s except for a single (−1). It is
reasonable to consider this move as an operation that preserves isomorphism.

• Let a color permutation permute the names of the colors (in the language of
codes, it is a simultaneous column permutation of the codewords corresponding
to each vertex). In our situation, this is just a shuffling of the generators, so at
first glance it is reasonable to consider this operation to preserve isomorphism.
The existing literature, e.g. [12], seems to do so as well. However, this is not
quite what we want in a natural definition, where we need to consider the base
ring fixed. By analogy, consider the k[x, y]-modules k[x, y]/(x) and k[x, y]/(y),
which may look “equivalent” (they are indeed isomorphic as algebras) but are
not isomorphic as modules. They should not be: we really want A ⊕ B to
be isomorphic to A ⊕ B′ if B and B′ were isomorphic, but the direct sums
k[x, y]/(x)⊕ k[x, y]/(x) and k[x, y]/(x)⊕ k[x, y]/(y) are not isomorphic in any
reasonable way.

In fact, the existing adinkra literature notices this problem when considering
disconnected adinkras (i.e. adinkras with topology of a disconnected graph).
These graphs correspond to direct sums of representations of single adinkras.
However, since a color permutation is done over all disjoint parts simultane-
ously, if we consider color permutations as operations that preserve isomor-
phism, we obtain situations where A ∼= C and B ∼= D, but A ⊕ B 6∼= C ⊕ D.
The literature deals with this situation by calling color permutations outer iso-
morphisms. We believe the correct thing to do is to just to not consider these
situations isomorphic and treat them as a separate kind of similarity.

• Let a vertex permutation permute the vertex labels of an adinkra A. This
corresponds to conjugating the matrices ρ(Qi) by permutation matrices. Here
it makes sense to impose further physics constraints: we want these transfor-
mations to preserve the engineering dimensions of the component fields. This
prevents us from allowing arbitrary vertex permutations and simply consid-
ering two adinkraic representations isomorphic if they’re conjugate. On the
adinkras side, this corresponds to us enforcing that the rank function of A
be preserved under any vertex permutation (in particular, bosons must go to
bosons, and fermions to fermions). Happily, this neatly corresponds to the
natural definition of isomorphism for ranked posets.

Problem 6. What is the right definition of “isomorphism” for two adinkraic repre-
sentations? How does it relate to the combinatorics of adinkras?

• Following physics requirements, we define two adinkras A and B to be isomor-
phic if there is some matrix R that transforms each generator ρ(QI) of A to
the corresponding ρ(QI) in B via conjugation, with the stipulation that such
a conjugation preserves the ranks of the component fields. To be explicit, let
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the component fields be partitioned into P1 ∪ P2 ∪ · · · , where each Pi contains
all ψj or φj of some rank (equivalently, engineering dimension). We require M
to be block-diagonal with respect to this partition.

• Following combinatorial intuition, we define two adinkras to be C-isomorphic
if there is a sequence from one to the other via only vertex switchings or ranked
poset isomorphisms. The discussion in Appendix ?? shows that both of these
operations preserve isomorphism, so C-isomorphism is more restrictive than
isomorphism.

In a perfect world, these two notions would coincide. We are not so lucky here: the
underlying graph is an invariant of the operations in the definition of C-isomorphism,
but there are adinkras with different graphs that correspond to isomorphic represen-
tations [8]. We still do not have a complete picture of the nuances between the
two definitions. C-isomorphism is studied in more detail in [13] (where it is simply
called “isomorphism”; this is an example of why a formal discussion would be good
to avoid accidental overlap of different concepts), which gives a deterministic algo-
rithm to determine if two adinkras are C-isomorphic. Similar discussion relevant to
isomorphism (even though it was not defined as such) can be found in [21] and [12].

A lot of interesting mathematics remain in the area. As an example, both [21] and
[13] distinguish adinkras with the help of what amounts to the trace of the matrix

ρ(Q1)ρ(Q2) · · · ρ(QN)

after multiplying by the matrix
(
I 0
0 −I

)
. We would like to point out that this is

precisely the well-known supertrace from the theory of superalgebras.

6.3 Clifford Representations

In Section 1.4, we called the adinkraic representations arising from valise adinkras
“Clifford supermultiplets.” This is no big surprise – when we ignore the Hamiltonian
H in the defining relations

{QI , QJ} = 2δIJH,

we get precisely the Clifford algebra relations

{QI , QJ} = 2δIJ .

In other words, when we forget about the rank of an adinkra and look at only the
well-dashed chromotopology (alternatively, the valise, where no bosons or fermions
are privileged by rank from the other fields of the same type), we are really looking
at a Clifford algebra representation, something that we saw in 6.1 and in the proof
of Theorem 2.3.3. Therefore, we can think of adinkraic representations as extensions
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of representations of the Clifford algebra; [11] makes this analogy more rigorous by
realizing adinkraic representations as filtered Clifford supermodules.

While Clifford algebras and their representations are well-understood (see [1] or
[29]), the following is a natural question to ask:

Problem 7. Can adinkras give us better intuition (organizational or computational)
about the theory of Clifford representations?

In [12], each valise adinkra with the Inc chromotopology is used to explicitly
construct a representation of the Clifford algebra Cl(n). This introduces a plethora
of representations with lots of isomorphisms between them – after all, there are
at most 2 irreducible representations for each Clifford algebra over R. Even for
a beginner, the visually appealing aspect of adinkras (more precisely, well-dashed
chromotopologies) may be the foundation of an easier mental model of thinking
about Clifford algebras.

6.4 Extensions
As we brushed over in Section 1.4, the adinkraic representations correspond to the
1-dimensional (more precisely, (1, 0)-dimensional) worldline situation with N super-
charge generators. We now discuss the more general context. Helpful expositions of
related concepts are [19] and [40].

In general, we are interested in some (1 + q)-dimensional vector space over R
with Lorentzian signature (1, q). Besides our (1, 0) situation, some examples are
(1, 1) (worldsheet) and (1, 3) (Lorentzian spacetime). We can write this more general
situation as (1, q|N)-supersymmetry1 We would then call the corresponding super-
algebra po1+q|N , which specializes to the particular superalgebra po1|N we have been
working with when q = 0.

In the case where (1 + q) = 2, 6 (mod 8), we actually get two different types of
supercharge generators (this again corresponds to the fact that there are two Clifford
algebra representations over R in those situations), so we can partition N = P +Q
and call these situations (1, q|P,Q)-supersymmetry.

Problem 8. What happens when we look at q > 0? What kind of combinatorial
objects appear? Will the machinery we developed for adinkraic representations in
the wordline case be useful?

[22] examines the (1, 1)-case, where the combinatorics get more complex. The
reader may have gotten the intuition that the dashings and rankings are fairly in-
dependent conditions of the adinkra. This is true for the (1, 0)-case but no longer

1Here is another unfortunate source of language confusion: for physicists, N means the number
of supersymmetry generators, whereas mathematicians would instead count the total number of
dimensions and write dN instead of N , where d is the real dimension of the minimal spin-(1/2)
representation of R1+q. These minimal dimensions are 1, 1, 2, 4, 8, . . . starting with n = 1. Luckily,
for most of our work, we have d = 1 and thus no problems. A clear explanation is given in [19].
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holds for the (1, 1)-case, where certain forbidden patterns arise that depend both
on the dashings and rankings. [26] creates (1, 1|P,Q) representations by tensoring
and quotienting worldline representations, similar in spirit to the construction of
representations of semisimple Lie algebras.

In a different direction, [16] and [17] examine which worldline representations can
be “shadows” of higher-dimensional ones and give related consistency-tests and algo-
rithms. As worldline representations are involved, the 1-dimensional theory already
built plays an instrumental role.
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