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ABSTRACT

A super-modular category is a unitary pre-modular category with Müger center equivalent

to the symmetric unitary category of super-vector spaces. Physically, super-modular categories

describe universal properties of fermionic topological phases of matter. Mathematically, super-

modular categories are important alternatives to modular categories as any unitary pre-modular

category is the equivariantization of either a modular or a super-modular category. Unlike the

modular case, one does not have a representation of the modular group SL(2,Z) associated to

a super-modular category, but it is possible to obtain a representation of the index 3 θ-subgroup:

Γθ < SL(2,Z). We study the image of this representation and conjecture a super-modular analogue

of the Ng-Schauenburg Congruence Subgroup Theorem for modular categories, namely that the

kernel of the Γθ representation is a congruence subgroup. We prove this conjecture for any super-

modular category that is a subcategory of a modular category of twice its dimension, i.e., admitting

a minimal modular extension.

We also study algebraic methods for classifying super-modular categories by rank. In related

work, it was shown that up to fusion rules the only non-split super-modular categories of rank

≤ 6 are PSU(2)4m+2 for m ∈ {0, 1, 2}. We develop super-modular analogs of theorems and

techniques previously used in the modular setting. As an application, we classify rank 8 super-

modular categories up to Grothendieck equivalence with certain restrictions. In particular, we find

three prime super-modular categories of rank 8.
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NOMENCLATURE

1 The trivial object in C

C ′ The Müger center of a braided fusion category C

coevX The coevaluation map 1 7→ X ⊗X∗

dX The categorical dimension of X

D2 The global dimension of a category

D The positive square root of D2

evX The evaluation map X∗ ⊗X 7→ 1

Fib The Fibonacci modular category

FPdim(C) The Frobenius-Perron dimension of C

FPdim(X) The Frobenius-Perron dimension of an object X in C

FSExp(C) The Frobenius-Schur Exponent of C

Gal(C) Gal(Q(S)/Q)

K0(C) The Grothendieck ring of a fusion category C.

Nk
ij The fusion coefficient dim HomC(Xi ⊗Xj, Xk)

νn(X) The nth Frobenius-Shur indicator of an object X

p± Gauss sums of a pre-modular category

Rep(G) The representation category of a group G

s The generator of the group SL(2,Z) given by
(

0 −1
1 0

)
S The S-matrix of a pre-modular category

Ŝ The S-matrix of the fermionic quotient of a super-modular
category

Sem The Semion modular category
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sVec The category of super vector spaces

Sn The symmetric group on n letters

t The generator of the group SL(2,Z) given by
(

1 1
0 1

)
T The T -matrix of a pre-modular category

T̂ The T -matrix of the fermionic quotient of a super-modular
category

trC The categorical trace in a spherical category

θX The twist of an object X

Vec The category of vector spaces

VecG,ω G-graded vector spaes with the associativity by ω ∈
Z3(G,k×)
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1. INTRODUCTION1

Tensor categories, categorical analogs of rings, arise in a variety of areas such as representa-

tion theory, noncommutative algebra, operator algebra theory, mathematical physics, and quantum

computing. A particularly important class of tensor categories are modular tensor categories, which

are braided tensor categories satisfying certain axioms and a non-degeneracy condition. The study

of modular tensor categories is related to the representation theory of quantum groups, conformal

field theory, link invariants, vertex operator algebras, and topological quantum field theory. In

particular, unitary modular categories are algebraic models of anyons in bosonic systems. Non-

abelian anyons can be used for topological quantum computing [39], as illustrated in Figure 1.1.

Braiding anyons corresponds to acting by a unitary braid group representation on their state space.

Figure 1.1: TQC

1Part of this section is reprinted from “Congruence subgroups and super-modular categories,” Parsa Bonderson,
Eric C. Rowell, Qing Zhang, Zhenghan Wang, Pacific Journal of Mathematics, Vol. 296 (2018), No. 2, 257–270,
published by Mathematical Sciences Publishers.
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Super-modular categories are the fermionic analogs of modular tensor categories. More pre-

cisely, super-modular categories are unitary pre-modular categories with Müger center equivalent

to the unitary symmetric fusion category of super-vector spaces (sVec). Physically, super-modular

categories are related to the study of fermionic topological phases of matter ([1, 17]). Mathemati-

cally, one motivation for pursuing a theory of super-modular categories is that any unitary braided

fusion category is the equivariantization of either a modular or super-modular category [63, Theo-

rem 2].

The relationship between super-modular and modular category is not simply one of analogy;

quite often, super modular categories can actually be constructed from modular categories. Given

any modular category D, the category sVec�D is super-modular. A super-modular category of

this form is called split, and otherwise it is called non-split. An alternative construction involves

spin modular categories. A spin modular category (C, f) is a modular category with a chosen

fermion f , which is a simple object f such that f⊗2 = 1 and θf = −1. Tensoring with the fermion

gives a Z2-grading: C ' C0 ⊕ C1, where C0 is super-modular. Here we have 2 dim(C0) = dim(C).

We say that such super-modular category has a minimal modular extension. Conjecturally ([52,

Conjecture 5.2], [28, Question 5.15] and [17, Conjecture III.9]), every super-modular category

has a minimal modular extension. Moreover, every such minimal modular extension C is a spin

modular category [6].

One of the fundamental invariants of a modular tensor category the following representation of

SL(2,Z). Let s, t ∈ SL(2,Z) be the generators given by s :=

(
0 −1

1 0

)
and t :=

(
1 1

0 1

)
. For a

modular category, the assignment s→ S
D

, t→ T gives a projective representation of SL(2,Z)[4],

where the S- and T -matrices are given by the trace of the double braiding and the twist, respecitvely

(as defined in Section 2.1.3). The celebrated Congruence Subgroup Theorem of Ng and Schauen-

burg states that the above representation has kernel a congruence subgroup of level N , where N

is the order of the T matrix[55]. In other words, the image factors through SL(2,Z/NZ), so the

group generated by S-matrix and T -matrix is finite.

The definition of the S- and T -matrices makes sense for any premodular category. In the case

2



of super-modular categories, the S- and T -matrices have tensor decompostions: S =

(
1 1

1 1

)
⊗ Ŝ

and T =

(
1 0

0 −1

)
⊗ T̂ , where Ŝ invertible and T̂ diagonal ([17]). The assignment of s to Ŝ and t2

to T̂ 2 gives a projective representation ρ̂ of the group Γθ, where Γθ = 〈s, t2〉 is an index 3 subgroup

of SL(2,Z)[17]. Following the analogy with the modular case, it is natural to ask if the kernel of ρ̂

is a congruence subgroup of SL(2,Z). Particularly, one may ask:

Question 1.1. For a super-modular category, do Ŝ and T̂ 2 generate a finite group?

We prove the following theorem (Theorem 4.4) for super-modular categories with minimal

modular extension.

Theorem 1.2. If a super-modular category has a minimal modular extension, ρ̂(Γθ) is a finite

group, with kernel a congruence subgroup.

Given their physical motivation, an important problem in the study of super-modular categories

is their classification. More broadly, the classification of braided fusion categories (BFCs) stands

as a formidable, yet enticing problem. There are many approaches to this problem with varying

levels of preciseness and corresponding degrees of difficulty. As examples, one might try to clas-

sify by categorical dimension [37, 53, 18, 20, 20, 24, 68], by Witt class [26, 28], by dimension of a

generating object [2, 32, 33], or by rank [61, 59]. Each of these approaches has a different motiva-

tion and has seen some measure of success. For example, classifying by categorical dimension is

related to the problem of classifying groups by their orders, while classifying by the dimension of a

generating object is related to the classification of subfactors of finite index and depth. Classifica-

tion by rank can be motivated physically: for condensed matter systems (e.g. topological phases of

matter) modeled by braided fusion categories, the rank of the category corresponds to the number

of distinguishable indecomposable particle species [54]. In this dissertation we will be interested

in classification of unitary BFCs by (low) rank as motivated by this physical interpretation.

Interestingly, the classification of low-rank fusion categories has not progressed very far; it

is an open question whether there are finitely many fusion categories of each rank whereas with

3



the braiding assumption rank-finiteness is known [21, 44]. The classification of pivotal fusion

categories is complete up to rank 3 [58]. Adding the braiding assumption allows one to go a bit

further. For example, there is a complete classification of pre-modular categories of rank at most 5

[15, 23].

Techniques for classifying modular categories are well-established ([61, 22]), and the classifi-

cation up to rank 6 is nearly complete [25, 43]. Those methods cannot always be applied to general

braided fusion categories. For example, a key approach in [22] is to use the representation theory

of the modular group SL(2,Z) to constrain the (modular) S- and (twist) T -matrices, whereas a

super-modular category does not provide such representations as the S- matrix has determinant 0.

Some techniques for classifying super-modular categories have been developed recently [16,

19], which lead to a complete classification up to rank 6. There are only 2 such categories: modulo

trivial Deligne product constructions and up to fusion rules there are only two examples with rank

≤ 6, and both of them belong to the a family of super-modular categories arising from quantum

groups. A particularly useful technique is to formally condense the fermion at the level of fusion

rules and modular data to obtain a fermionic quotient, which has naive fusion rules. These can

be studied using the concept of a sVec-enriched fusion category [65, 48], but we will not pursue

that here. In Section 3 and Section 5 we make progress towards the classification of rank 8 super-

modular categories using a stratification by Galois group and some new techniques. We find many

non-trivial examples in contrast to lower ranks, and we were unable to give a definitively complete

classification–that is, we expect our list to be complete, but do not have an unconstrained proof.

For the following the (standard) notation is explained in Appendix B.

Theorem 1.3. 1. The following are constructions of prime rank 8 super-modular categories as

centralizers of a distinguished fermion in spin modular categories:

(a) PSU(2)14 = 〈f〉′ ⊂ SU(2)14 where f is the unique fermion corresponding to highest

weight 7$.

(b) [PSU(2)6 � PSU(2)6]Z2 = 〈(f,1)〉′ ⊂ ([SU(2)6 � SU(2)6]Z2)0 where the Z2-de-
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equivariant-ization in both cases is with respect to the boson (f, f) where f has highest

weight 3$, and (f,1) is the image of (f,1) under de-equivariantization.

(c) 〈f〉′ ⊂ SO(12)2, where f is either of the fermions labelled by 2$5 or 2$6.

2. Moreover, if we assume that the naive fusion rules {N̂k
ij = Nk

ij + N fk
ij }i,j,k and the simple

objects’ dimensions di are each bounded by 14, then any prime super-modular category of

rank 8 has the same fusion rules as one of the above.

A more precise classification with less stringent bounds can be found in Section 5.1.

While we cannot claim this is a complete classification as we have placed bounds in some

cases on naive fusion rule multiplicities or dimensions, it is possible that we have listed all possi-

bilities. A counterexample would have large naive fusion multiplicities/dimensions compared to

the known examples: the largest naive fusion multiplicity we find among fermionic quotients is

4 while the largest dimension of a simple object is 3 + 2
√

2 ≈ 5.8. There is some precedent for

these types of constraints: [42] gives a classification of low rank modular categories with bounded

fusion multiplicities and [67] uses numerical techniques to study low rank modular categories with

constrained categorical dimension. Although our result is not complete, we provide some new

powerful methods for classifying super-modular categories, and illustrate the utility of the existing

techniques.

The content of this dissertation is arranged as follows. In Section 2, we collect basic definitions

and results on pre-modular and modular categories. We introduce and develop the significant prop-

erties of super-modular categories in Section 3. In Section 4 we prove the congruence subgroup

theorem for super-modular categories with minimal modular extension. Finally, in Section 5, we

determine the rank 8 super-modular categories up to fusion rules with certain restrictions.
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2. PRELIMINARIES

In this section, we collect some conventions and preliminary results on pre-modular and mod-

ular categories we are interested in, referring the reader to [36, 4, 22, 61] for further details. In this

paper, k is always assumed to be an algebraically closed field of characteristic zero.

2.1 Pre-modular Categories

2.1.1 Definition of a Pre-Modular Category

Definition 2.1. A monoidal category is a category C equipped with:

(1) a bifunctor: ⊗ : C × C → C called the tensor product,

(2) an object 1 ∈ C called the unit object,

(3) a natural isomorphism

αX,Y,Z : (X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z), X, Y, Z ∈ C

called the associator,

(4) a natural isomorphism

λX : 1⊗X → X, X ∈ C

called the left unitor,

(5) and a natural isomorphism

ρX : X ⊗ 1→ X, X ∈ C

called the right unitor, such that the following diagrams commute for all objects involved:

(1) The triangle diagram

6



(X ⊗ 1)⊗ Y X ⊗ (1⊗Y )

X ⊗ Y

αX,1,Y

ρX⊗IdY IdX ⊗λY

(2) The pentagon diagram

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y ⊗IdZ

αW,X⊗Y,Z

IdW ⊗αX,Y,Z

Examples 2.2. (1) The category of k-vector spaces is monoidal. The objects of Vec are k-vector

spaces and the morphisms are k-linear maps. The morphisms α, λ and ρ are defined in an

obvious way.

(2) Let G be a group. Then Rep(G), which is the category of finite dimensional representations

of G over k, is a monoidal category. The objects are the representations of G and the mor-

phisms are the intertwiners. The ⊗ is the tensor product of two representations. The unit

object is given by the trivial representation.

(3) Given a group G, let VecG be the category of G-graded vector spaces over k. The objects

are V =
⊕

g∈G Vg and the morphisms are the grade preserving transformations. The tensor

product is given by

(V ⊗W )g =
⊕
jk=g

Vj ⊗ Vk

The unit 1 is given by 1e = k and 1g = 0 otherwise. This gives us a monoidal category with

α, λ and ρ being the obvious ones.

Definition 2.3. A braided monoidal category is a monoidal category C with a natural isomor-

phism cX,Y : X ⊗ Y ' Y ⊗X called the braiding, such that the following two hexagon diagrams

commute

7



X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

cX,Y⊗Z

αY,Z,X

cX,y⊗IdZ

αX,Y,Z

αY,X,Z

IdY ⊗cX,Z

(X ⊗ Y )⊗ Z (Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

cX⊗Y,Z

α−1
Z,X,Y

IdX ⊗cY,Z

α−1
X,Y,Z

α−1
X,Z,Y

cX,Z⊗IdY

Examples 2.4. (1) The categories Vec and Rep(G) are braided fusion categories. The braidings

are the transpositions of two tensor factors. If G is an abelian group, VecG is braided.

(2) The category of super-vector spaces has objects as the Z2-graded vector spaces. The mor-

phisms are the grade preserving linear transformations. Define the braiding by cX,Y (x⊗y) =

(−1)|x||y|y ⊗ x for homogeneous vectors x, y. It is a braided monoidal category and is de-

noted as sVec. This category plays an important role in our paper.

Definition 2.5. Let C be a monoidal category and X be an object, a left-dual to X is an object X∗

with two morphisms

evX : X∗ ⊗X → 1,

coevX : 1→ X ⊗X∗,

such that the composition

X (X ⊗X∗)⊗X X ⊗ (X∗ ⊗X) X,
coevX ⊗ IdX αX,X∗,X IdX ⊗ evX

is equal to IdX and the composition

X∗ X∗ ⊗ (X ⊗X∗) (X∗ ⊗X)⊗X∗ X∗
IdX ⊗ coevX

α−1
X∗,X,X∗ evX ⊗ IdX∗
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is equal to Id∗X . Similarly, an object ∗X is said to be the right-dual if there exist morphisms

ev′X : X ⊗ ∗X → 1,

coev′X : 1→ ∗X ⊗X

such that the composition

X X ⊗ (∗X ⊗X) (X ⊗ ∗X)⊗X X,
IdX ⊗ coev′X

α−1
X,∗X,X ev′X ⊗ IdX

is equal to IdX and the composition

∗X (∗X ⊗X)⊗ ∗X ∗X ⊗ (X ⊗ ∗X) ∗X
coev′X ⊗ Id∗X α∗X,X,∗X Id∗X ⊗ ev′X

is equal to Id∗X . Let X and Y be objects in C with left-duals X∗ and Y ∗ and f : X → Y be a

morphism. Define the left-dual morphism f ∗ : Y ∗ → X∗ by

Y ∗ Y ∗ ⊗ (X ⊗X∗) (Y ∗ ⊗X)⊗X∗

(Y ∗ ⊗ Y )⊗X∗ X∗.

IdY ∗ ⊗ coevX α−1
Y ∗,X,X∗

(IdY ∗ ⊗f)⊗IdX∗ evY ⊗ IdX∗

Similarly, for objects X and Y in C with right duals ∗X and ∗Y , the right-dual morphism ∗f is

given by

∗Y (∗X ⊗X)⊗ ∗Y ∗X ⊗ (X ⊗ ∗Y )

∗X ⊗ (Y ⊗ ∗Y ) ∗X.

coev′X ⊗ Id∗Y α∗X,X,∗Y

Id∗X ⊗(f⊗Id∗Y ) Id∗X ⊗ ev′Y

Definition 2.6. A monoidal category C is called rigid if every object in C has left and right duals.

Definition 2.7. Let C be a rigid monoidal category, then a pivotal structure on C is an isomorphism

of monoidal functors jX : X ' X∗∗. A rigid monoidal category with a pivotal structure is called

pivotal.

Definition 2.8. Let X be an object in a pivital category C and ψ ∈ End(X). We have two trace

maps trL and trR from EndC(X) to EndC(1) defined by
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trL(ψ) : 1 X ⊗X∗ X ⊗X∗ X∗∗ ⊗X∗ 1,

trR(ψ) : 1 X∗ ⊗X∗∗ X∗ ⊗X X∗ ⊗X 1 .

coevX ψ⊗Id∗X jX⊗IdX∗ evX∗

coevX∗ IdX∗ ⊗j−1
X IdX∗ ⊗ψ evX

Definition 2.9. A pivotal category is said to be spherical if for all objectsX and for all morphisms

ψ ∈ End(X), we have trL(ψ) = trR(ψ). Define the dimension of an object X to be dim(X) :=

tr(IdX). The global dimension is defined byD2 =
∑
j∈ΠC

d2
j . Note that despite its notation,D2 need

not be a perfect square.

Definition 2.10. Let C be an abelian category, then an object X is called simple if any injection

Y ↪→ X is either 0 or an isomorphism.

Remark 2.11. The simple objects in the category Vec over k are the 1-dimensional vector spaces,

which is isomorphic to k. For the category Rep(G), the simple objects are the irreducible repre-

sentations.

Definition 2.12. An abelian category C is called semisimple if every object in C is a direct sum of

simple objects.

Definition 2.13. Let k be a field, then a category C is said to be k-linear if HomC(X, Y ) is a vector

space over k for all objects X and Y , and compositions of morphisms are bilinear.

Definition 2.14. A fusion category over k is a semisimple rigid k-linear monoidal category with

finitely many isomorphism classes of simple objects and finite-dimensional Hom spaces, such that

the endomorphisms of the unit object form the ground field k.

Definition 2.15. A twist on a braided rigid monoidal category C is a natural family of isomor-

phisms

θX : X → X,

such that

θX⊗Y = (θX ⊗ θY )cY,XcX,Y .
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We call a twist a ribbon structure if (θX)∗ = θX∗ . A ribbon category is a braided rigid monoidal

category with a ribbon structure.

Definition 2.16. A pre-modular category is a spherical braided fusion category.

Remark 2.17. 1. Let C be a pre-modular category of rank r, we will use the notation ΠC =

{Xi}ri=0 to denote the set of isomorphism classes of simple objects. We label the tensor unit

1 = X0. By abuse of notation, i ∈ ΠC means Xi ∈ ΠC .

2. Since End(Xi) = k, we have θXi = θi IdXi and dim(Xi) = di for some θi and di in k. di is

called the categorical dimension of Xi.

3. A pre-modular category C is self-dual if Xi = (Xi)
∗ for all i ∈ ΠC . C is self-dual if and

only if S-matrix is real.

A conjugation in a monoidal category C assigns every f ∈ HomC(X, Y ) a morphism f † ∈

HomC(Y,X) such that (f †)† = f , (f ⊗ g)† = f † ⊗ g† and (fg)† = g†f †. A Hermitian ribbon

category is a ribbon category C with a conjugation such that (cX,Y )† = (cY,X)−1 and (θX)† =

(θX)−1, (coevX)† = evX cX,X∗(θX ⊗ IdX∗) and (evX)† = (IdX∗ ⊗θ−1
X )c−1

X∗,X coevX . The name

Hermitian comes from the fact that (f, g) 7→ tr(fg†) is a non-degenerate Hermitian form on

Hom(X, Y )[64, Lemma 5.2.1]. We say that C is unitary if the ground field is C and † acts on C

by complex conjugation and (f, g) is a positive definite form.

2.1.2 Grothendieck Ring

Given a fusion category C, we will denote by K0(C) its Grothendieck semiring(see, e.g. [4,

2.4]). It is a unital based ring of finite rank. The structure coefficients of K0(C) are given by

Xi ⊗Xj '
⊕
k

Nk
i,jXk,

where Nk
i,j = dim Hom(Xk, Xi ⊗ Xj). We call this formula a fusion rule. The coefficients Nk

i,j

are fusion coefficients. The object dual to Xi is denoted by X∗i or Xi∗ . The fusion coefficients
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satisfy

Nk
ij = Nk

ji = N j∗

ik∗ = Nk∗

i∗j∗ , N0
ij = δij∗ . (2.1)

Two fusion categories B and C are Grothendieck equivalent if K0(B) ' K0(C). The fusion

matrices Ni are defined by (Ni)k,j = Nk
i,j . These are integral matrices with non-negative entries.

In particular, they satisfy the condition for the Frobenius-Perron theorem. For Xi ∈ ΠC , denfine

FPdim(Xi) as the maximal eigenvalue of the corresponding matrixNi, which is called Frobenius-

Perron dimension of Xi. In a fusion category, one has FPdim(Xi) ≥ 1 for all i ∈ ΠC ([36,

Proposition 3.3.4]). The Frobenius-Perron dimension of a fusion category C is defined to be

FPdim(C) =
∑
i∈ΠC

FPdim(Xi)
2.

2.1.3 S and T Matrices

Definition 2.18. Let C be a pre-modular category. For i, j ∈ ΠC , define the numbers S̃ij ∈ k with

entries

S̃i,j := TrC(cXi,X∗j cX∗j ,Xi).

The S-matrix is a symmetric n-by-n matrix with n = |ΠC|. The entries of S satisfy Si,j = Si∗,j∗

and S0,i = di. The global dimension is defined by D2 =
∑
i∈ΠC

d2
i . Define the normalized S-matrix

by S := S̃
D

, where D is the positive square root of the global dimension.

Definition 2.19. A pre-modular category is called modular if its S-matrix is non-degenerate.

Let T -matrix be the diagonal matrix such that Ti,j = δi,jθi, where θi are roots of unity which

have finite order (Vafa’s theorem, see [4]) for any pre-modular category. Let C be pre-modular, we

have the following balancing relation

θiθjS̃ij =
∑
k∈ΠC

Nk
i∗jθkdk. (2.2)
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The S̃ and T matrices satisfy (see e.g. [4, Theorem 3.1.7]):

(1) (S̃T )3 = p+S̃2,

(2) (S̃T−1)3 = p−S̃2C,

(3) TC = CT , CS̃ = S̃C,

where p± :=
∑

i∈ΠC
θ±i d

2
i are Gauss sums and Ci,j = δi,j∗ is called the charge conjugation ma-

trix.

If C is a pre-modular category and Xi is a simple self-dual object, then we have the second

Frobenius-Schur indicator formula[15]:

ν2(Xi) =
1

D2

∑
j,k

N i
j,kdjdk

(θj
θk

)2

− θi
∑

a∈Π′C\{1}

da Tr(Rii
a ), (2.3)

where Rjk
i are braiding eigenvalues.

Proposition 2.20. (see e.g., [36, Section 8.13]) Let C be a modular category, then the entries of S

satisfy

SijSik = di
∑
l∈ΠC

N l
jkSil, i, j, k ∈ ΠC. (2.4)

Consequently, the maps φk : i 7→ Sik
S0k

for each k ∈ ΠC determine linear characters of K0(C).

Remark 2.21. By Proposition 2.20, we know that
Sij
di

for any i, j ∈ C are eigenvalues of the

integer matrix Ni. Therefore the numbers
Sij
di

are algebraic integers.

2.1.4 Dimensions

So far, we introduced two notions of dimensions for a fusion category, namely, the FP-dimension

and the categorical dimension. Here we introduce more terminologies and results related to di-

mensions. A fusion category C is said to be weakly integral if FPdim(C) ∈ Z; it is integral if

FPdim(Xi) ∈ Z for all i; it is pointed if FPdim(Xi) = 1 for all i.
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Theorem 2.22. [38] Let C be a fusion category over C. Then

(1) 0 < d2
X ≤ FPdim(X)2 for all X . So 1 ≤ dim(C) ≤ FPdim(C).

(2) If dim(C) = FPdim(C), then C admits a unique spherical structure for which dX = FPdim(X) >

0 for every X. We call such category pseudo-unitary.

Remark 2.23. In a pseduo-unitary fusion category C, we have di = ±FPdim(Xi) for all

i ∈ ΠC (See, e.g., [22, Lemma 3.3]). Additionally, if C is unitary, then tr(IdX) = dim(X) >

0 for all X . Thus in a unitary category, we have dX = FPdim(X) for all X .

2.2 Modular Categories

Representation of SL(2,Z). For a modular category, the S and T satisfy (see e.g. [4, Collary

3.1.8]):

(ST )3 =

√
p+

p−
S2, S2 = C, CT = TC, C2 = I. (2.5)

These imply that from any modular category C of rank r (i.e. with r isomorphism classes of simple

objects) one obtains a projective unitary representation of the modular group ρ : SL(2,Z) →

PSU(r) defined on generators by: s =

0 −1

1 0

→ S and t =

1 1

0 1

→ T composed with the

canonical projection πr : U(r)→ PSU(r). By rescaling the S and T matrices, ρ may be lifted to a

linear representation of SL(2,Z), but these lifts are not unique. This representation has topological

significance: one identifies the modular group with the mapping class group Mod(Σ1,0) of the

torus (t and st−1s−1 correspond to Dehn twists about the meridian and parallel) and this projective

representation is the action of the mapping class group on the Hilbert space associated to the torus

by the modular functor obtained from C.

A subgroup H < SL(2,Z) is called a congruence subgroup if H contains a principal congru-

ence subgroup Γ(n) := {A ∈ SL(2,Z) : A ≡ I (mod n)} for some n ≥ 1. Since Γ(n) is the

kernel of the reduction modulo n map SL(2,Z) → SL(2,Z/nZ), any congruence subgroup has

finite index. The level of a congruence subgroup H is the minimal n so that Γ(n) < H . More
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generally, for G < SL(2,Z) we say H < G is a congruence subgroup if G ∩ Γ(n) < H with the

level of H defined similarly.

The connection between topology and number theory found through the representation above

is deepened by the following Congruence Subgroup Theorem:

Theorem 2.24 ([55]). Let C be a modular category of rank r with T matrix of order N . Then the

projective representation ρ : SL(2,Z)→ PSU(r) has ker(ρ) a congruence subgroup of level N .

In particular, the image of ρ factors over SL(2,Z/NZ) and hence is a finite group. This fact has

many important consequences: for example, it is related to rank-finiteness [21] and can be used in

classification problems [22].

2.2.1 Galois Symmetries for Modular Categories

Let C be a modular category. The pair (S, T ) is called modular data for a given modular cate-

gory C. The non-degeneracy condition leads to some remarkable properties for modular categores.

For example, it can further be shown the fusion coefficients of C are given by the entries of the

S-matrix using the Verlinda formula ([4, Theorem 3.1.14]):

Nk
i,j =

1

D2

∑
m∈ΠC

SimSjmSk∗m
dm

for all i, j, k ∈ ΠC. (2.6)

We denote by Q(S) the smallest field containing all elements of the S-matrix. It is known that

Q(S) is Galois over Q . Let QN := Q(ζN), where ζN is a primitive N th root of unity. We define

Gal(C) = Gal(Q(S)/Q). Then Gal C is an abelian subgroup of Sr, the symmetric group on r

letters [61]. Recall from Proposition 2.20, the assignments φk : i 7→ Sik
S0k

define linear characters

for K0(C). In the modular setting, since the S-matrix is non-degenerate, {φi}i∈C is the set of all

characters ofK0(C). For any σ ∈ Gal(C), σ(φk) maps i to σ
(Sik
S0k

)
, which is also a linear character

of K0(C). Thus, there is a unique σ̂ ∈ Sr such that σ(φk) = φσ̂(k) [22]. We will use σ for both the

element of the Galois group Gal(C) and its associated element of Sn. The above argument gives

σ
(Sik
S0k

)
=
Siσ(k)

S0σ(k)

. (2.7)
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Moreover, we have(see [61], [22])

σ(Sj,k) = εσ(k),σSj,σ(k)/dσ(0), (2.8)

where εj,σ = ±1. This action gives the following symmetries:

Sj,k = εσ(j),σεk,σSσ(j),σ−1(k). (2.9)

The smallest field containing T is given by T = QFSExp(C) the cyclotomic field at FSExp(C)

roots of unity. Here FSExp(C) is called the Frobenius-Schur Exponent of C and is defined to

be the minimal integer, n, such that νn(Xj) = dj for all j. Here νn is the n-th Frobenius-Schur

indicator and is defined by:

νn(Xj) =
1

D2

r∑
i,k=1

N j
i,kdidk

( θi
θk

)n
.

Note that ν2(k) = 0 if and only if Xk 6= X∗k otherwise it is ±1.

The two field extensions Q(T ) and Q(S) have the following relation:

Lemma 2.25. [30, Proposition 6.7] If C is a modular category with modular data (S, T ), then

Gal(Q(T )/Q(S)) is an elementary 2-group.

For a modular category, we have the following generalization of the Cauchy theorem from

group theory:

Theorem 2.26. [21, Theorem 3.9] If C is a modular tensor category, then FSExp C and ordT have

the same prime factors (as ideals).

It was Wang’s conjecture that there are finitely many modular categories of a given rank up to

equivalence in 2003 ([61]). We call this the rank-finiteness conjecture. A proof of this conjecture

was given in [21]:
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Theorem 2.27 (Rank finitenes). [21] There are only finitely many modular categories of fixed rank

r, up to equivalence.

Therefore the classification of modular categories by rank seems to be a natural and interesting

problem. Unitary modular categories were completely classified up to rank 4 in [61]. A classifica-

tion of modular categories up to monoidal equivalence of rank 5 was obtained in [22].

2.2.2 Low-Rank Modular Categories

We end this section by introducing some low-rank modular categories that will show up later

in Section 5. Readers are referred to [61] for more examples and specific details.

Examples 2.28. (1) Semion. The semion modular category has 2 simple objects 1 and s.

Fusion rules: s⊗ s = 1.

S-matrix: 1√
2

1 1

1 1


T -matrix: diag(1, i)

(2) Fib. The Fibonacci modular category. There are 2 simple objects 1 and τ . Let φ = 1+
√

5
2

be

the Golden ratio.

Fusion rules: τ ⊗ τ = 1⊕τ

S-matrix:
1√

1 + φ

1 φ

φ −1


T -matrix: diag(1, e

4πi
5 )

(3) Z4 modular category has 4 simple objects: 1, ε, σ and σ∗. In particular, it is a non-self dual

pointed modular category.

Fusion rules: ε⊗2 = σ ⊗ σ∗ = 1, σ⊗2 = (σ∗)2 = ε, σε = σ∗, ε∗σ = σ
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S-matrix: 1
2



1 1 1 1

1 1 −1 −1

1 −1 −i i

1 −1 i −i


T -matrix: diag(1,−1, e

πi
4 , e

πi
4 )

(4) Toric code modular category has simple objects: 1, e, m and ε. It is a self-dual pointed

modular category.

Fusion rules: e⊗2 = m⊗2 = ε⊗2 = 1, e⊗m = ε , e⊗ ε = m, m⊗ ε = e

S-matrix:
1

2



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


T -matrix: diag(1, 1, 1,−1)

(5) (A1, 7) 1
2

modular category has simple objects: 1, α, ω and ρ.

Fusion rules: α⊗2 = 1⊕ω, α ⊗ ω = α ⊕ ρ, α ⊗ ρ = ω ⊕ ρ, ω⊗2 = 1⊕ω ⊕ ρ,

ω ⊗ ρ = α⊕ ω ⊕ ρ, ρ⊗2 = 1⊕α⊕ ω ⊕ ρ

S-matrix:



1 d2 − 1 1 + d d

d2 − 1 0 −d2 + 1 d2 − 1

1 + d −d2 + 1 d −1

d d2 − 1 −1 −d− 1


T -matrix: diag(1, e

2πi
3 , e

4πi
9 , e

4πi
3 )

18



3. SUPER-MODULAR CATEGORIES

In this section, we first introduce the notion of super-modular categories and some of its prop-

erties. Most of the results can be found in ([16, 19]) and the references therein. Then we discuss

the Galois symmetry for super-modular categories, which is parallel to the modular case in Section

2.2.1.

3.1 Centralizers

Whereas one may always define an S-matrix for any ribbon fusion category B, it may be

degenerate. This failure of modularity is encoded it the subcategory of transparent objects called

the Müger center C ′. Here an object X is called transparent if all the double braidings with X

are trivial: cY,XcX,Y = IdX⊗Y . Generally, we have the following notion of the centralizer of the

braiding.

Definition 3.1. The Müger centralizer of a subcategory D in of a pre-modular category C is the

full fusion subcategory

CC(D) = {X ∈ C|cY,XcY,X = IdX⊗Y ,∀Y ∈ D}.

The Müger center of C is C ′ = CC(C).

By a theorem of Bruguières [14] the simple objects in B′ are thoseX with S̃X,Y = dXdY for all

simple Y , where dY = dim(Y ) = S̃1,Y is the categorical dimension of the object Y . The Müger

center is obviously symmetric, that is, cY,XcX,Y = IdX⊗Y for all X, Y ∈ B′. Symmetric fusion

categories have been classified by Deligne [29], in terms of representations of supergroups. In the

case that B′ ∼= Rep(G) (i.e. is Tannakian), the modularization (de-equivariantization) procedure

of Bruguières [14] and Müger [50] yields a modular category BG of dimension dim(B)/|G|. Oth-

erwise, by taking a maximal Tannakian subcategory Rep(G) ⊂ B′ the de-equivariantization BG

has Müger center (BG)′ ∼= sVec, the symmetric fusion category of super-vector spaces. Gener-
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ally, a braided fusion category B with B′ ∼= sVec as symmetric fusion categories is called slightly

degenerate [31].

The symmetric fusion category sVec has a unique spherical structure compatible with unitarity

and has S- and T -matrices: SsVec = 1√
2

1 1

1 1

 and TsVec =

1 0

0 −1

.

From this point on we will assume that all our categories are unitary, so that sVec is a unitary

symmetric fusion category.

3.2 Definition of a Super-Modular Category

Definition 3.2. A unitary pre-mdoular category C is called super-modular if C ′ ' sVec.

Remark 3.3. In other terminology, we say B is super-modular if its Müger center is generated by

a fermion, that is, an object f with f⊗2 ∼= 1 and θf = −1.

Super-modular categories (or slight variations) have been studied from several perspectives, see

[12, 26, 16, 10, 46] for a few examples. An algebraic motivation for studying these categories is the

following: any unitary braided fusion category is the equivariantization [31] of either a modular

or super-modular category (see [62, Theorem 2]). Physically, super-modular categories provide

a framework for studying fermionic topological phases of matter [16]. Topological motivations

include the study of spin 3-manifold invariants ([62, 8, 9]) and (3 + 1)-TQFTs ([66]).

Remark 3.4. We restrict to unitary categories both for mathematical convenience and for their

physical significance. On the other hand, there is a non-unitary version sVec− of sVec: the under-

lying (non-Tannakian) symmetric fusion category is the same, but with the other possible spherical

structure, which leads to negative dimensions. We could define super-modular categories more

generally as pre-modular categories B with Müger center equivalent to either of sVec or sVec−.

However, we do not know of any examples B with B′ ∼= sVec− that are not simply of the form

C � sVec− for some modular category C.
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3.3 Spin Modular Cateogories

A spin modular category C is a modular category with a (chosen) fermion. Let C be a spin

modular category, with fermion f , (unnormalized) S-matrix S̃ and T -matrix T . Proposition II.3 of

[16] provides a number of useful symmetries of S̃ and T :

1. S̃f,α = εαdα, where εα = ±1 and εf = 1.

2. θψα = −εαθα.

3. S̃fα,β = εβS̃α,β .

Remark 3.5. We have a canonical Z/2Z-grading C0 ⊕ C1 with simple objects X ∈ C0 if εX = 1

and X ∈ C1 when εX = −1. The trivial component C0 is a super-modular category, since C ′0 =

〈f〉 ∼= sVec.

Further, we have the canonical decomposition C1 = Cv ⊕ Cσ as abelian categories (see Section

4.2.1 for details). The following result is useful for classifying spin modular categories.

Lemma 3.6. [19, Lemma 4.2] Given a spin modular category (C, f) with C0, Cv and Cσ. Denote

their rank as |C0|, |Cv| and |Cσ|. Then we have

(1) |C0 = |Cv|+ 2|Cσ|, in particular |C| = 2|C0| − |Cσ|.

(2)
3|C0|

2
≤ |C| ≤ 2|C0|.

(3) |Cv| and |C0| are even.

Remark 3.7. Let B be a ribbon fusion category. A minimal modular extension of B is a modular

category C such that B ⊂ C and FPdim(C) = FPdim(B′) FPdim(B). If B is super-modular, a

minimal modular extension of B is a spin modular category (C, f), where the fermion f is trans-

parent in B.
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3.4 Fermionic Quotient

One interesting feature of super-modular categories B is that their S- and T -matrices have

tensor decompositions:

Theorem 3.8. [16, Theorem 3.9] Let B be a super-modular category, then S =

(
1 1

1 1

)
⊗ Ŝ and

T =

(
1 0

0 −1

)
⊗ T̂ with Ŝ symmetric invertible and T̂ diagonal.

Note that for the category sVec, we have S̃sVec =

(
1 1

1 1

)
and TsVec =

(
1 0

0 −1

)
. Consequently,

the Gauss sums of a super-modular category is alway 0, i.e., p± :=
∑

i∈ΠB
θ±i d

2
i = 0.

If a super-modular B ∼= C � sVec for some modular C, we call it split, otherwise we say it is

non-split.

By the following proposition, pointed super-modular categories always split.

Proposition 3.9. [31, Corollary A.19.] Let B be a pointed super-modular category, then B '

C � sVec, where C is a pointed modular category.

Let f be a fermion in a super-modular category B with label set ΠB, by the following lemma,

we know that f ⊗ − on ΠB is fixed-point-free. We will omit the ⊗ symbol and denote f ⊗ X

simply as fX .

Lemma 3.10. [51, Lemma 5.4] Let B be a super-modular category and f a fermion, then fX � X

for any X ∈ ΠB.

As a direct consequence of the previous lemma, we have that super-modular categories have

even rank.

Lemma 3.11. Let B be a super-modular category with transparent fermion f . Then fX 6∼= X∗ for

any X ∈ B.
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Proof. By the balancing equation (given in by the third equality) we have that

−θXdX = θXθfdfdX

= θXθfSf,X =
∑
Y

NY
f,XdY θY

= dfXθfX = dXθfX .

Therefore θfX = −θX . But since θX∗ = θX , it follows that fX 6∼= X∗.

Thus there is a non-canonical partition of the label set ΠB = Π0 t fΠ0. We can arrange

this partition such that 0 ∈ Π0. By the previous lemma, we can choice the partition such that

if X ∈ Π0, then X∗ ∈ Π0. For a rank 2(r + 1) super-modular B, we have 0, . . . , r ∈ Π0 and

f = f · 0, . . . , f · r ∈ fΠ0, where f · i is the label for fXi, i = 0, . . . , r.

For i, j, k ∈ Π0, we define the naive fusion rule

N̂k
ij = dim Hom(Xi ⊗Xj, Xk) + dim Hom(Xi ⊗Xj, f ⊗Xk) = Nk

i,j +N fk̇
i,j .

and corresponding naive fusion matrices (N̂i)k,j := N̂k
i,j . The semisimple commutative algebra

they generate will be denoted ÛB.

Proposition 3.12. [19, Proposition 2.7] Let B be a super-modular category, then

(a) Ŝ is symmetric and Ŝ ¯̂
S = D2

2
I .

(b) N̂iN̂j = N̂jN̂i for any i, j ∈ Π0.

(c) Let {xi|i ∈ Π0} denote the basis of UB. Then the functions φi(xj) := Ŝij/Ŝ0i for 0 ≤

i ≤ r form a set of orthogonal characters of the fusion algebra UB. Thus Ŝ simultaneously

diagonalizes the matrices N̂i.

(d) N̂k
ij =

2

D2

∑
m∈Π0

ŜimŜjm
¯̂
Skm

dm
.
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Remark 3.13. (1) Let N̂ be the set of (r + 1) × (r + 1) matrices N̂i = (N̂k
i,j) indexed by the

label set Π0. The naive fusion coefficients define a rank r + 1 unital based ring ÛB.

(2) Ŝ is called the S-matrix of the fermionic quotient. T̂ is the T -matrix of the fermionic

quotient. s→ Ŝ and t2 → T̂ 2 defines a projective representation of Γθ, which is an index 3

subgroup of SL(2,Z) ∼=< s, t >. See Section 4 for details.

Corollary 3.14. Let B be super-modular and N̂k
ij be its naive fusion rule, where i, j, k ∈ Π0.

N̂k
ij = N̂k

ji = N̂ j∗

ik∗ = N̂k∗

i∗j∗ , N̂0
ij = δij∗

Proof. The first equation is a direct consequence of Proposition 3.12 (d). N̂0
ij = δij∗ can be derived

by combining (a).

Remark 3.15. One can combine Corollary 3.14 and [4, Equation 2.4.3] to get more relations for

the fusion coefficients. For example, we have N fk
ij = N fj∗

ik∗ . In fact, the result follows from

N̂k
ij = Nk

ij +N fk
ij = N j∗

ik∗ +N fk
ij = N j∗

ik∗ +N fj∗

ik∗ = N̂ j∗

ik∗ .

Similar to the proof for modular category case(see, e.g.,[35, Lemma 1.2]), one can derive the

following property of the dimensions for super-modular categories.

Lemma 3.16. [68, Corollary 3.4] Let B be a super-modular category, then d2
i |D

2

2
.

Proof. By Proposition 3.12, we know that Ŝ ¯̂
S = D2

2
I , hence we have

D2

2
=
∑
j∈Π0

Ŝij
¯̂
Sjk =

∑
j∈Π0

ŜijŜjk∗ .

The second equation comes from the fact that for pre-modular categories, we have S̄ij = Sij∗ since

we can embed them into their modular Drifield center. Therefore we have
∑
j∈Π0

Ŝij
dj

Ŝjk∗

dj
= D2/2

d2i
.

The result follows since the left hand side is an algebraic integer.

The following property of the second Frobenius-Schur indicator can be derived from Equation

2.3 and is useful in section 5:
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Lemma 3.17. [19, Lemma 2.8.] Let B be a super-modular category and Xi a simple object such

that Xi
∼= X∗i (self-dual), then

±1 = ν2(Xi) =
2

D2

∑
j,k∈Π0

N̂ i
j,kdjdk

(θj
θk

)2
.

The following corollary can be derived from the balancing equation for pre-modular categories.

Corollary 3.18. (Balancing equation for super-modular categories) For a super-modular category

of rank 2r, we have:

θiθjŜij =
r−1∑
k=0

(Nk
i∗j −N

fk
i∗j)θkdk.

Proof. The balancing equation[4] for a pre-modular category gives us

θiθjŜij =
2r−1∑
k=0

Nk
i∗jθkdk

=
r−1∑
k=0

Nk
i∗jθkdk +

2r−1∑
k=r

Nk
i∗jθkdk

=
r−1∑
k=0

Nk
i∗jθkdk +

2r−1∑
k=r

N fk
i∗jθfkdfk

=
r−1∑
k=0

(Nk
i∗j −N

fk
i∗j)θkdk.

3.5 Galois Symmetries for Super-modular Categories

In this section, we discuss the Galois symmetry in the fermionic quotient of a super-modular

category, which is parallel to the modular setting. We extend results that are well-known for

modular categories to this setting.

Let B be a super-modular category and Ŝ, T̂ and N̂i defined as above. We have the following
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relation for the entries of Ŝ and N̂i [19, Equation 2.3]:

ŜijŜik

Ŝ0,i

=
∑
m∈Π0

N̂m
jkŜim (3.1)

This means that λ̂ij :=
Ŝij

Ŝ0j
are eigenvalues of the matrices N̂j with eigenvectors (Ŝim)m∈Π0 .

Defining the diagonal matrix (Λ̂i)jk = δjk
Ŝij

Ŝ0j
, then Equation (3.1) can be written as N̂iŜ = ŜΛ̂i

for all i ∈ Π0.

Remark 3.19. LetQ(Ŝ) be the smallest field containing all elements of the S-matrix. Similarly to

the modular setting, Q(Ŝ) is Galois over Q . Define Gal(B) = Gal(Q(Ŝ)/Q). Then Gal(B) is an

abelian subgroup of Sr, where 2r is the rank of the corresponding super modular category and Sr

is the symmetric group on r letters. We will use σ for both the element of the Galois group Gal(B)

and its associated element in Sr. Indeed, since σ(
Ŝik

Ŝ0k

) is a character of ÛB (see Proposition 3.12),

the following defines σ(k) for k ∈ Π0:

σ
( Ŝik
Ŝ0k

)
=
Ŝiσ(k)

Ŝ0σ(k)

=
Ŝiσ(k)

dσ(k)

. (3.2)

Lemma 3.20. Let Ŝ be as above for a super-modular category B.

(i) Let σ ∈ Gal(B). Then σ (k)∗ = σ (k∗) for all k ∈ Π0.

(ii) The algebraic integers Ŝk,σ(0) are real numbers.

(iii) We have
∣∣ Ŝk,σ(0)
dσ(k)

∣∣2 = 1 for all k, σ.

Proof. Let τ ∈ Gal(Q̄/Q) be complex conjugation. Now since Ŝij = Ŝij∗ we have

Sj,k∗

dk∗
= (Ŝj,k/dk)

= τ
(
Ŝj,k/dk

)
= Ŝj,τ(k)/dτ(k).

Thus τ sends the normalized k-th column to the τ (k)-th column which is also the k∗-th column.

Since Gal (B) is abelian, we have σ (k)∗ = τσ (k) = στ (k) = σ (k∗).
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The second result now follows from the following computation

Ŝk,σ(0) = Ŝk,σ(0)∗ = Ŝk,σ(0∗) = Ŝk,(0).

For the third result we compute

σ
(
D2
)

= 2
∑
j∈Π0

σ (dj)
2 = 2

∑
j∈Π0

σ (dj)σ
(
d∗j
)

= 2
∑
j∈Π0

Ŝj,σ(0)

dσ(0)

Ŝj∗,σ(0)

dσ(0)

=
2

d2
σ(0)

∑
j∈Π0

Ŝj,σ(0)

(
Ŝj,σ(0)

)∗
=

D2

d2
σ(0)

.

On the other hand, we have

σ
(
D2
)

= 2
∑
j∈Π0

σ
(
Ŝj,kŜj,k∗

)
= 2

∑
j∈Π0

σ
(
Ŝj,k

)
σ
(
Ŝj,k∗

)
= 2

∑
j∈Π0

(
Ŝj,σ(k)Ŝk,σ(0)

dσ(0)dσ(k)

)(
Sj,σ(k∗)Sk∗,σ(0)

dσ(0)dσ(k∗)

)

=
Ŝk,σ(0)Ŝk∗,σ(0)

d2
σ(0)dσ(k)dσ(k∗)

2
∑
j∈Π0

Ŝj,σ(k∗)Ŝj,σ(k)

=
Ŝk,σ(0)Ŝk∗,σ(0)

d2
σ(0)dσ(k)dσ(k∗)

D2.

Since dσ(k∗) = dσ(k)∗ = dσ(k) and Ŝk∗,σ(0) = Ŝk,σ(0) = Ŝk,σ(0), the result follows because

D2/d2
σ(0) is nonzero.

We can also derive a result parallel to [22, Equation 2.12] for the S-matrix of the fermionic

quotient:

Corollary 3.21. Let σ ∈ Gal(B) and j, k the indices of simple objects in Π0. Then

σ
(
Ŝj,k

)
= ±

Ŝj,σ(k)

dσ(0)

.
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Moreover, we have the following symmetries:

Ŝj,k = ±Ŝσ(j),σ−1(k). (3.3)

Proof. By Equation (3.2), we have

σ
(
Ŝj,k

)
= Ŝj,σ(k)σ (dk) /dσ(k),

σ (dk) = Ŝk,σ(0)/dσ(0).

In particular,

σ
(
Ŝj,k

)
=
Ŝj,σ(k)Ŝk,σ(0)

dσ(0)dσ(k)

.

So it suffices to show that
Sk,σ(0)

dσ(k)

= ±1 which follows from Lemma 3.20. For Equation (3.3), we

use the symmetry of the Ŝ-matrix and apply σ ◦ σ−1 to the first equation.

Let (C, f) be a spin modular category, recall that the fermion f gives a grading C0 ⊕ C1.

Lemma 3.22. Let (C, f) be spin modular with (unnormalized) S-matrix S, and Ŝ the S-matrix for

the fermionic quotient. Then [Q(S) : Q(Ŝ)] = 2n, for some n.

Proof. Denote by S(0,0), S(0,1) = [S(1,0)]T and S(1,1) the 2× 2 blocks of the S-matrix S relative to

the grading C0 ⊕ C1. Suppose that Xa, Xb ∈ C1 so that Sb,a is an entry in S(1,1). Then, since the

normalized ith column Si,a/da is a character of the Grothendieck ring K0(C) for each i, we see

that (Sb,a)
2 = d2

a

∑
j N

j
b,aSj,a/da. Since N j

b,a = 0 if Xj ∈ C1 we find that (Sb,a)
2 lies in the field

generated by the entries of S(0,1). In particular, [Q(S(1,1)) : Q(S(0,1))] = 2k for some k, since every

entry of S(1,1) satisfies a polynomial equation of degree ≤ 2 over S(0,1).

Now let Sb,c be an entry of S(0,1) = [S(1,0)]T , i.e. Xb ∈ C1 and Xc ∈ C0. A similar argument

shows that (Sb,c)
2 lies in the field generated by S(0,0), so that [Q(S(0,1)) : Q(S(0,0))] = 2`. Since

Q(Ŝ) = Q(S(0,0)), the result follows.
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Example 3.23. Consider the Ising modular category with label set {1, σ, ψ}. It is a spin modular

category with fermion ψ. Its S-matrix is

1

2


1

√
2 1

√
2 0 −

√
2

1 −
√

2 1

 .

The subcategory generated by 1 and ψ is sVec, and we have [Q(S) : Q(SsVec)] = 2.

Question 3.24. Is there a relationship between the Galois group of the S-matrix of a braided fusion

category B and that of its Drinfeld center Z(B)?

The following lemma can probably be generalized to non-self-dual categories, but we will only

use it in the self-dual case:

Lemma 3.25. Suppose that B is a self-dual super-modular category and z is a label in the fermionic

quotient such that dz = 1 and Ŝz,z 6= 1. Then B contains a modular pointed subcategory equivalent

to C(Z2, Q) (i.e. Sem or Sem).

Proof. The hypothesis immediately implies that B contains an invertible, self-dual simple object

Z. Since SZ,Z = Ŝz,z 6= 1, the object Z is not self-centralizing, hence generates a modular

subcategory of dimension 2.

Question 3.26. Can we drop the self-duality condition in the above, with the same conclusion?

3.5.1 Rank Finiteness

The rank-finiteness property can be extended to categories that do not necessarily admit a

spherical structure. It was recently proved that rank-finiteness holds for G-crossed braided fusion

categories.

Theorem 3.27. [44, Corollary 4.7.] There are finitely many equivalence classes of G-crossed

braided fusion categories of any given rank.
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This motives us to pursue a classification of low-rank super-modular categories parallel to

[61, 22]. A classification of super-modular categories of rank ≤ 6 is given in [19]. It is shown, for

example, that the fusion rules of any non-split super-modular category of rank ≤ 6 are the same as

PSU(2)4k+2 for k = 0, 1 and 2.
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4. CONGRUENCE SUBGROUPS AND SUPER-MODULAR CATEGORIES1

Given a super-modular category B, recall that its S and T matrices have tensor decompositions

(Theorem 3.8):

S =
1√
2

1 1

1 1

⊗ Ŝ, T =

1 0

0 −1

⊗ T̂
where Ŝ is unitary and T̂ is a diagonal (unitary) matrix, depending on r/2 − 1 sign choices. Two

naive questions motivated by the above are: 1) Do Ŝ and a choice of T̂ provide a (projective)

representation of SL(2,Z)? and 2) Is the group generated by Ŝ and a choice of T̂ finite? Of course

if B = sVec�D for some modular category D (split super-modular) then the answer to both is

yes. More generally, as Example 4.2 below illustrates, the answer to both questions is no.

The physical and topological applications of super-modular categories motivate a more refined

question as follows. The consideration of fermions on a torus [3] leads to the study of spin struc-

tures on the torus Σ1,0: there are three even spin structures (A,A), (A,P ), (P,A) and one odd spin

structure (P, P ), where A,P denote antiperiodic and periodic boundary conditions. The full map-

ping class group Mod(Σ1,0) = SL(2,Z) permutes the even spin structures: s interchanges (P,A)

and (A,P ), and preserves (A,A), whereas t interchanges (A,A) and (P,A) and preserves (A,P ).

Note that both s and t2 preserve (A,A), so that the index 3 subgroup Γθ := 〈s, t2〉 < SL(2,Z) is the

spin mapping class group of the torus equipped with spin structure (A,A). The spin mapping class

group of the torus with spin structure (A,P ) or (P,A) is similarly generated by s2 and t, which is

projectively isomorphic to Z. On the other hand, Γθ is projectively the free product of Z/2Z with

Z ([60]). Now the matrix T̂ 2 is unambiguously defined for any super-modular category B, and in

[16, Theorem II.7] it is shown that s→ Ŝ and t2 → T̂ 2 defines a projective representation ρ̂ of Γθ.

We propose the following:

1Part of this section is reprinted from “Congruence subgroups and super-modular categories,” Parsa Bonderson,
Eric C. Rowell, Qing Zhang, Zhenghan Wang, Pacific Journal of Mathematics, Vol. 296 (2018), No. 2, 257–270,
published by Mathematical Sciences Publishers.
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Conjecture 4.1. Let B be a super-modular category of rank 2k and Ŝ and T̂ 2 the corresponding

matrices as in equation (4). Then the projective representation ρ̂ : Γθ → PSU(k) given by ρ̂(s) =

πk(Ŝ) and ρ̂(t2) = πk(T̂
2) has kernel a congruence subgroup.

In particular if this conjecture holds then ρ̂(Γθ) is finite. We do not know what to expect the

level of ker ρ̂ to be (in terms of, say, the order of T̂ 2), but we provide some examples below.

An important outstanding conjecture ([27, Question 5.15], [16, Conjecture III.9], see also [49,

Conjecture 5.2]) is that every super-modular categoryB has a minimal modular extension: that is, B

can be embedded in a modular category C of dimension dim(C) = 2 dim(B). One may characterize

such C: they are called spin modular categories ([5]), see Section 4.2.1 below. Our main result

proves Conjecture 4.1 for super-modular categories admitting minimal modular extensions.

4.1 Super-Modular Categories

Equation (4) shows that the S and T matrices of any super-modular category can be expressed

as (Kronecker) tensor products: S = SsVec⊗ Ŝ and T = TsVec⊗ T̂ with Ŝ uniquely determined and

T̂ determined by some sign choices. The projective group generated by Ŝ and T̂ may be infinite

for all choices of T̂ as the following example illustrates:

Example 4.2. Consider the modular category SU(2)6. The label set is I = {0, 1, 2, 3, 4, 5, 6}.

The subcategory PSU(2)6 is generated by 4 simple objects with even labels: X0 = 1, X2, X4, X6.

We have Ŝ =
1√

4 + 2
√

2

 1 1 +
√

2

1 +
√

2 −1

 and T̂ =

1 0

0 ±i

. For either choice of T̂ the

eigenvalues of ŜT̂ are not roots of unity: one checks that they satisfy the irreducible polynomial

x16 − x12 + 1
4
x8 − x4 + 1, which has non-abelian Galois group and is not monic over Z.

4.1.1 The θ-Subgroup of SL(2,Z)

The index 3 subgroup Γθ < SL(2,Z) generated by s and t2 has a uniform description (see e.g.

[45]):

Γθ = {

a b

c d

 ∈ SL(2,Z) : ac ≡ bd ≡ 0 (mod 2)}.
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The notation Γθ comes from the fact that Jacobi’s θ series θ(z) :=
∑∞

n=−∞ e
n2πiz is a modular

form of weight 1/2 on Γθ. Moreover,Γθ is isomorphic to Γ0(2), the Hecke congruence subgroup

of level 2 defined as those matrices in SL(2,Z) that are upper triangular modulo 2, and Γ(2) is a

subgroup of both Γ0(2) and Γθ. In particular Γ0(2) and Γθ are distinct, yet isomorphic, congruence

subgroups of level 2. An explicit isomorphism ϑ : Γθ → Γ0(2) is given by ϑ(g) = MgM−1 where

M =

1 1

0 2

. This can be verified directly, via:

M

a b

c d

M−1 =

a+ c d+b−a−c
2

2c d− c

 .

Observe that ϑ(Γ(n)) = Γ(n) for any n, and for n even Γ(n) C Γθ. In particular, we see that

Γθ/Γ(n) < SL(2,Z)/Γ(n) is isomorphic to an index 3 subgroup of SL(2,Z/nZ) that is not normal.

Suppose ϕ : Γθ → H has kernel a congruence subgroup, i.e. Γ(n) < ker(ϕ). The congruence level

of ker(ϕ), i.e. the minimal n with Γ(n) < ker(ϕ), is the minimal n so that Γθ/Γ(n)� ϕ(Γθ). The

following provides a characterization of such quotients:

Lemma 4.3. Suppose that n = 2kq with k ≥ 1 and q odd. Denote by Pk a 2-Sylow subgroup of

SL(2,Z/2kZ). Then,

Γθ/Γ(n) ∼= Pk × SL(2,Z/qZ).

Proof. By the Chinese Remainder Theorem, non-normal index 3 subgroups of

SL(2,Z/nZ) ∼=
∏
p|n

SL(2,Z/p`pZ)

correspond to non-normal index 3 subgroups of SL(2,Z/p`pZ) where n =
∏

p|n p
`p is the prime

factorization of n. Any 2-Sylow subgroup of SL(2,Z/2kZ) has index 3 and is not normal (since

reduction modulo 2 gives a surjection to SL(2,Z/2Z) ∼= S3) so it is enough to show that this fails

for SL(2,Z/pkZ) with p > 2.
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In general, if H < G is a non-normal subgroup of index 3 then the (transitive) left action of G

on the coset space G/H provides a homomorphism to the symmetric group on 3 letters: φ : G→

S3. If φ(G) = A3 (the alternating group on 3 letters) then we would have ker(φ) = H CG. Thus

φ(G) = S3, so that any such group G must have an irreducible 2 dimensional representation with

character values 2,−1, 0.

By [57, 34] we see that for p > 2, the groups SL(2,Z/pkZ) only have 2-dimensional irreducible

representations for p = 3, 5, and each of these representations factor over the reduction modulo p

map SL(2,Z/pkZ)� SL(2,Z/pZ). By inspection neither SL(2,Z/3Z) nor SL(2,Z/5Z) have S3

as quotients.

4.2 Main Results

In this section we prove Conjecture 4.1 for any super-modular category that admits a minimal

(spin) modular extension.

4.2.1 Spin Modular Categories

Let (C, f) be a spin modular category, where f is a chosen fermion. Recall from Remark 3.5,

we have a canonical Z/2Z-grading C0 ⊕ C1 with simple objects X ∈ C0 if εX = 1 and X ∈ C1

when εX = −1. The trivial component C0 is a super-modular category.

Since θX = −εXθfX it is clear that fX 6∼= X for X ∈ C0. However, objects in C1 may be

fixed by − ⊗ f or not. This provides another canonical decomposition C1 = Cv ⊕ Cσ as abelian

categories, where a simple object X ∈ Cv ⊂ C1 if Xf 6∼= X and X ∈ Cσ ⊂ C1 if Xf ∼= X .

Finally, using the action of − ⊗ f we make a (non-canonical) decomposition of C0 = C̆0 ⊕ f C̆0

and Cv = C̆v ⊕ f C̆v so that when X ∈ C̆0 we have Xf ∈ f C̆0 and similarly for Cv. Notice that for

X ∈ C0 we have X∗ 6∼= f ⊗ X since θX = θX∗ , so that we may ensure X and X∗ are both in C̆0

or both in f C̆0. On the other hand, for Y ∈ Cv it is possible that X∗ ∼= f ⊗ X–for example, this

occurs for SO(2)1.

As in [10] we choose an ordered basis Π = Π0

⊔
ψΠ0

⊔
Πv

⊔
fΠv

⊔
Πσ for the Grothendieck

ring of C that is compatible with the above partition C = C̆0 ⊕ f C̆0 ⊕ C̆v ⊕ f C̆v ⊕ Cσ. Using [16,
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Proposition II.3] we have the block matrix decomposition for the S and T matrices:

S =



1
2
Ŝ 1

2
Ŝ A A X

1
2
Ŝ 1

2
Ŝ −A −A −X

AT −AT B −B 0

AT −AT −B B 0

XT −XT 0 0 0


T =



T̂ 0 0 0 0

0 −T̂ 0 0 0

0 0 T̂v 0 0

0 0 0 T̂v 0

0 0 0 0 Tσ


(4.1)

Here B and Ŝ are symmetric matrices, and each of T̂ , T̂v and Tσ are diagonal matrices.

Now consider the following ordered partitioned basis:

1. Π+
0 := {Xi + fXi : Xi ∈ Π0},

2. Π−0 := {Xi − fXi : Xi ∈ Π0},

3. Π+
v := {Yi + fYi : Yi ∈ Πv},

4. Πσ := {Zi ∈ Πσ} and

5. Π−v := {Yi − fYi : Yi ∈ Πv}.

With respect to this partitioned basis, the S and T matrices have the block form:

S ′ =



Ŝ 0 0 0 0

0 0 2A X 0

0 2AT 0 0 0

0 2XT 0 0 0

0 0 0 0 2B


T ′ =



0 T̂ 0 0 0

T̂ 0 0 0 0

0 0 T̂v 0 0

0 0 0 Tσ 0

0 0 0 0 T̂v


.

From this choice of basis one sees that the representation ρ restricted to Γθ = 〈s, t2〉 has 3 invariant

(projective) subspaces, spanned by Π+
0 ,Π

−
0 ∪Π+

v ∪Πσ and Π−v respectively. In particular we have a

surjection ρ(Γθ)� ρ̂(Γθ), mapping the image of S in PSU(|Π|) to the image of Ŝ in PSU(|Π+
0 |).

We can now prove:
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Theorem 4.4. Suppose that B is a super-modular category with minimal modular extension C so

that B = C0. Assume further that the T -matrix of C has order N . Then ρ̂ : Γθ → PSU(k) has

ker(ρ̂) a congruence subgroup of level at most N .

Proof. Let S and T be the S-matrix and T -matrix of C. Consider the projective representation

ρ of SL(2,Z) defined by ρ(s) = S and ρ(t) = T . By Theorem 2.24, ker(ρ) is a congruence

subgroup of level N , i.e. Γ(N) < ker(ρ). Now the restriction of ρ|Γθ to Γθ has ker(ρ|Γθ) =

ker(ρ) ∩ Γθ ⊃ Γ(N) ∩ Γθ. However, since C contains a fermion N is even, so Γ(N) < Γ(2) < Γθ

hence Γ(N) ∩ Γθ = Γ(N). It follows that Γ(N) < ker(ρ|Γθ). The discussion above now implies

Γ(N) < ker(ρ|Γθ) < ker(ρ̂) as we have a surjection ρ(Γθ) � ρ̂(Γθ). Thus, we have shown that

ker(ρ̂) is a congruence subgroup of level at most N , and in particular ρ̂ has finite image.

4.2.2 Further Questions

The charge conjugation matrix C in the basis above has the form C ′i,j = ±δi,j∗ . Since we

have arranged that Xi ∈ Π0 implies X∗i ∈ Π0, C ′i,j = −1 can only occur for i = j ∈ Π−v : if

(W−ψW )∗ = −(W−ψW ) for some simple objectW , thenW ∗ = ψW . We see that this can only

happen if W ∈ Cv by comparing twists. Under this change of basis, we have (S ′)2 = dim(C)C ′

and (S ′T ′)3 = D+

D
(S ′)2. It would be interesting to explore the extra relations among the various

submatrices of S ′ and T ′.

The 16 spin modular categories of dimension 4 are of the form SO(n)1 (where SO(n)1
∼=

SO(m)1 if and only if n ∼= m (mod 16)). For n odd SO(n)1 has rank 3 whereas for n even

SO(n)1 has rank 4. For example, the Ising modular category corresponds to n = 1 and SO(2)1

has fusion rules like the group Z4. For any modular category D and 1 ≤ n ≤ 16 the spin modular

category SO(n)1 � D with fermion (f,1) has either Cσ = ∅ or Cv = ∅. An interesting problem

is to classify spin modular categories with either Cσ = ∅ or Cv = ∅, particularly those with no

�-factorization.
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4.3 A Case Study

Our result gives an upper bound on the level of ker(ρ̂) for super-modular categories B with

minimal modular extensions C: the level of ker(ρ̂) is at most the order of the T -matrix of C. The

actual level can be lower: for a trivial example we consider the super-modular category sVec. In

this case Ŝ = T̂ 2 = I so the level ker(ρ̂) is 1, yet the order of the T matrix for its (16) minimal

modular extensions can be 2, 4, 8 or 16. More generally for any split super-modular category

B = D � sVec ⊂ D � SO(n)1 = C (with fermion (1, ψ)) the ratio of the levels of the kernels of

the SL(2,Z) (for C) and Γθ (for B, i.e. D) representations can be 2k for 0 ≤ k ≤ 4.

To gain further insight we consider a family of non-split super-modular categories obtained

from the spin modular category (see [16, Lemma III.7]) SU(2)4m+2. This has modular data:

S̃i,j :=
sin
(

(i+1)(j+1)π
4m+4

)
sin( π

4m+4
)

, Tj,j := e
πi(j2+2j)

8m+8

where 0 ≤ i, j ≤ 4m+ 2. Since T has order 16(m+ 1), Theorem 2.24 implies that the image

of the projective representation ρ : SL(2,Z)→ PSU(4m+3) defined via the normalized S-matrix

S and T factors over SL(2,Z/NZ) where N = 16(m+ 1).

The super-modular subcategory PSU(2)4m+2 has simple objects labeled by even i, j. The

factorization (4) yields the following:

Ŝi,j =
sin
(

(2i+1)(2j+1)π
4m+4

)
Ξ sin( π

4m+4
)

, T̂j,j = e
πi(j2+j)
2m+2 (4.2)

for 0 ≤ i, j ≤ m, where Ξ =

√
m+1

2

sin( π
4m+4)

. In [16] all 16 minimal modular extensions of PSU(2)4m+2

are explicitly constructed and each has T -matrix of order 16(m + 1) so that the kernel of the

corresponding projective SL(2,Z) representation is a congruence subgroup of level 16(m + 1).

Our computations suggests the following conjecture, with cases verified using Magma software

[13] indicated in parentheses. A sample of the results of these computations are found in Table
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4.1. The notation 〈n, k〉 indicates the kth group of order n in the GAP [41] library of small groups.

In the last column, we sometimes give a slightly different description than is indicated in part (f)

below. We include the groups ρ̂(Γθ), A′m := [Am, Am] and Am := Am/Z(Am). As ρ̂ is not

necessarily irreducible, we have ρ̂(Γθ) � Am. The congruence level of ker ρ̂ is computed using

Lemma 4.3.

Conjecture 4.5. LetAm be the subgroup of SU(k) generated by Ŝ and T̂ 2 associated with PSU(2)4m+2,

the quotient Am := Am/Z(Am) and the commutator subgroup A′m := [Am, Am]. Then

(a) When m+ 1 = q is odd, Am = Aq−1
∼= PSL(2,Z/qZ) (verified for 2 ≤ m ≤ 18).

(b) When m+ 1 = 2n we have |Am| = |A2n−1| = 23n+1 (verified for 1 ≤ n ≤ 5).

(c1) If we writem+1 = 2nq where q is odd, thenAm ∼= A2n−1×Aq−1 (verified for 1 ≤ m ≤ 14).

(c2) If we write m + 1 = 2nq where q is odd |Am| = 23n+1q3
∏

p|q
p2−1
2p2

(primes p) (verified for

1 ≤ m ≤ 21).

(d) For 5 ≤ m+ 1 = p prime A′p−1
∼= SL(2,Z/pZ) (verified for 4 ≤ m ≤ 12).

(e) If we writem+1 = 2nq where q is odd, thenA′m ∼= A′2n−1×A′q−1 (verified for 1 ≤ m ≤ 14).

(f) For m+ 1 6≡ 0 (mod 4), we have A′mC ρ̂(Γθ) and ρ̂(Γθ) is an iterated semidirect product of

A′m with cyclic group actions (verified for 1 ≤ m ≤ 14). In general, ker(ρ̂) is a congruence

subgroup of level 4(m+ 1) (verified for 1 ≤ m ≤ 12).
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Table 4.1: A Sample of PSU(2)4k+2 Results

m |Am| Am A′m ρ̂(Γθ)

1 24 D16 Z/8Z D16 = A′1 o Z/2Z
2 12 PSL(2,Z/3Z) Q8 SL(2,Z/3Z)o Z/2Z
3 27 〈128, 71〉 〈64, 184〉 〈128, 71〉
4 60 PSL(2,Z/5Z) SL(2,Z/5Z) A′4 o Z/2Z
5 24 · 12 D16 × PSL(2,Z/3Z) Z/8Z×Q8 (Z/8Z× SL(2,Z/3Z))o Z/2Z
6 168 PSL(2,Z/7Z) SL(2,Z/7Z) A′6 o Z/2Z
7 210 A7 | · | = 29 A7

8 324 PSL(2,Z/9Z) (Z/3Z)3 oQ8 (A′8 o Z/3Z)o Z/2Z
9 24 · 60 D16 × PSL(2,Z/5Z) Z/8Z× SL(2,Z/5Z) A′9 o Z/2Z
10 660 PSL(2,Z/11Z) SL(2,Z/11Z) A′10 o Z/2Z
11 27 · 12 〈128, 71〉 × PSL(2,Z/3Z) 〈64, 184〉 ×Q8 SL(2,Z/3Z)o 〈128, 71〉
12 1092 PSL(2,Z/13Z) SL(2,Z/13Z) SL(2,Z/13Z)o Z/2Z
13 24 · 168 D16 × PSL(2,Z/7Z) Z/8Z× SL(2,Z/7Z) A′13 o Z/2Z
14 720 PSL(2,Z/15Z) Q8 × SL(2,Z/5Z) SL(2,Z/15Z)o Z/2Z
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5. CLASSIFICATION OF SUPER-MODULAR CATEGORIES BY RANK

5.1 Main Results

Similarly to modular categories, the Galois group Gal(B) of a super-modular category B de-

fined in Section 3.5 is an abelian subgroup of the symmetric group Sr, where 2r is the rank of B

(see Remark 3.19).

In this section, we consider the problem of classifying rank 2r = 8 super-modular categories.

If B is non-self dual, we can denote the four simple objects in Π0 as 1, Y,X,X∗. The naive fusion

rules satisfy the relations in Corollary 3.14 and the argument in [61, Appendix A.2] works for this

case. Therefore, we sometimes assume the super-modular categories are self-dual, in which case

Ŝ has real entries.

The abelian subgroups (up to relabeling, but with 0 distinguished) G of S4 are listed in the

following table:

Table 5.1: Abelian Subgroups of S4

〈1〉 〈(0)〉
Z2 〈(01)〉, 〈(23)〉, 〈(01)(23)〉

Z2 × Z2 〈(01)(23), (02)(13)〉, 〈(01), (23)〉
Z3 〈(012)〉, 〈(123)〉
Z4 〈(0123)〉

In this section, we determine the possible Ŝ-matrices for super-modular categories, and then

derive the fusion rules in Section 5.2. We summarize our results into the following.

Theorem 5.1. Suppose B is a rank 8 self-dual super-modular category and G is its Galois group

as in Table 5.1 then:

• If G = 〈(23)〉, 〈(01), (23)〉 or 〈(123)〉, then B does not exist.
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• If G = 〈(0)〉, then B is pointed, i.e., of the form C(Z2 × Z2, Q)� sVec.

• If G = 〈(01)〉, then B is prime and weakly integral with the same fusion rules as the

centralizer of either fermion in SO(12)2.

• If G = 〈(01)(23), (02)(13)〉, then B has the same fusion as Fib�PSU(2)6.

• If G = 〈(0123)〉 and N̂k
ij < 14, then B is prime and has the same fusion rules as PSU(2)14.

• If G = 〈(012)〉 and N̂k
ij < 21, then B has the same fusion rules as PSU(2)7 � sVec.

• IfG = 〈(01)(23)〉 and di ≤ 14 for all i, then the fusion rules of B are the same as [PSU(2)6�

PSU(2)6]Z2 and is prime, Fib�Fib� sVec, Sem�Fib� sVec or Sem�PSU(2)6.

In several cases the proofs in [61] for the classification of rank 4 modular use techniques and

results that apply to super-modular categories as well, so we do not repeat the proof here. For

many computations the Gröbner basis software in Maple is useful–we used Maple 2018 for our

calculations.

5.1.1 Ŝ-Matrices for Rank 8

The naive fusion coefficients N̂k
ij can be computed by the entries of Ŝ via the Verlinde formula

(see Proposition 3.12 (d)). More precisely, to get the N̂k
ij’s, it suffices to determine the Ŝ-matrix.

Remark 5.2. We denote by φn the positive real root of the equation x2 − nx− 1 = 0, where n is

an integer, i.e., φn =
n+
√
n2 + 4

2
. If an algebraic number φ has conjugate − 1

φ
, then φ must be of

the form φn for some n ∈ Z.

Theorem 5.3. If B is a rank 8 non-self dual super-modular category, then the corresponding Ŝ-

matrix, up to relabeling the simple objects, has the following form:

Ŝ =



1 1 1 1

1 1 −1 −1

1 −1 ±i ∓i

1 −1 ∓i ±i


.
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Proof. The proof in [61, Appendix A.2] carries through, mutatis mutandis.

Remark 5.4. Having dispensed with the non-self-dual case, we assume for the rest of this section

that all categories are self-dual. In particular the naive fusion coefficients are cyclically symmetric

(see Corollary 3.14), so we will denote N̂k
ij by ni,j,k.

Theorem 5.5. There are no rank 8 self-dual super-modular categories with Galois group G =

〈(23)〉, 〈(01), (23)〉 or 〈(123)〉.

Proof. (1) If G = 〈(23)〉, applying Equation (3.3) with σ = 〈(23)〉, we have the following form

for the Ŝ-matrix

Ŝ =



1 d1 d2 d2

d1 s11 s12 ε1s12

d2 s12 s22 s23

d2 ε1s12 s23 ε2s22


.

As 0 and 1 are fixed by G, by Equation (3.2), we know that d1, d2,
s11

d1

,
s12

d1

,
s2

12

d2
2

and
s22s23

d2
2

are

rationals as they are fixed by the Galois group. Since they are also algebraic integers (see [36,

Proposition 8.13.11]), we know these are integers. Consequently, s11, s12, s22s23 are also integers.

If ε1 = −1, the orthogonality of the columns of Ŝ gives

d1(1 + s11) = 0

d1d2 + s11s12 + s12s22 − s12s23 = 0

d1d2 − s11s12 + s12s23 − ε2s12s22 = 0

So we have s11 = −1. If ε2 = 1, then we have d1d2 = 0, which is a contradiction. If ε2 = −1,

we have d1d2 = −s12s22. Plugging this into the second equation above, we get s12(1 + s23) = 0.

If s12 = 0, then d1d2 = 0, which is impossible. If s23 = −1, then s22 is an integer. Then all the

entries of Ŝ are integers, which contradicts the assumption that G is Z2.

If ε1 = 1, the orthogonality of the columns of Ŝ gives
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d2
2 + s2

12 + s22s23 + ε2s22s23 = 0

If ε2 = −1, then d2
2 + s2

12 = 0, a contradiction. If ε2 = 1, by applying a Gröebner basis algorithm

on Maple, we get (2s22 + s11 + 1)(2d1d2 + s11s12 + 2s12s22 − s12) = 0. One sees that if either

factor is 0, we will have trivial G, a contradiction.

(2) Assume G = 〈(01), (23)〉. Using Equation (3.3), we get

Ŝ =



1 d1 d2 d3

d1 ±1 ±d2 ±d3

d2 ±d2 s22 s23

d3 ±d3 s23 ±s22


.

It follows from Ŝ2 = D2

2
I that 2d2

2 + s2
22 + s2

23 = 2d2
3 + s2

22 + s2
23. Since di’s are positive, d2 = d3.

Let

Ŝ =



1 d1 d2 d2

d1 ε1 ε2d2 ε3d2

d2 ε2d2 s22 s23

d2 ε3d2 s23 ε4s22


.

This case can be eliminated using orthogonality of the columns of Ŝ. Applying a Gröbner basis

algorithm to these equations we find that the only possible sign choice is given by ε1 = ε4 = 1 and

ε2 = ε3 = −1. We can further deduce that s23 = −1, s22 = d1 and d1 = d2
2. Therefore, we have

Ŝ =



1 d2
2 d2 d2

d2
2 1 −d2 −d2

d2 −d2 d2
2 −1

d2 −d2 −1 d2
2


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Notice that G = Gal(Q(d2)/Q). Computing the characteristic polynomial for N̂2, we have

p2(x) = x4 + (−2d2 +
2

d2

)x3 + (d2
2 +

1

d2
2

− 4)x2 + (2d2 −
2

d2

)x+ 1

Therefore, −2d2 + 2
d2

must be an integer. In particular, d2 satisfies a quadratic equation over Q.

This means Gal(Q(d2)/Q) is either trivial or Z2, which contradicts the fact that G is Z2 × Z2.

(3) If G = 〈(123)〉, then G fixes 0. Therefore Ŝi,0 = di are rational numbers. Since the

dimensions di’s are always algebraic integers, then they must be integers in this case. Moreover,

di = Ŝ0,1 = ±Ŝ0,i+1 = ±di+1. So, by the positivity of the dimensions (i.e., unitarity assumption),

we have

Ŝ =



1 d1 d1 d1

d1 s11 ε1s33 ε2s22

d1 ε1s33 s22 ε3s11

d1 ε2s22 ε3s11 s33


.

From Corollary 3.16, we have d2
1|(1 + 3d2

1). We can deduce that d1 = 1. Since d1 is the largest

(in magnitude) eigenvalue of the fusion matrices N1, N2 and N3, we see that the other eigenvalues

(which are real numbers) satisfy ±Ŝii/d1 = ±Ŝi,i = ±1. This means the entries of Ŝ are ±1’s

which contradicts the assumption of G being nontrivial.

Theorem 5.6. If G = 〈(0)〉, then the corresponding Ŝ-matrix, up to relabeling the simple objects,

is one of the following:



1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1


,



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


.
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Proof. If G is trivial, then the proof of [61, Theorem 4.1, Case 7] goes through mutatis mutandis

showing that the corresponding super-modular category is pointed. Thus by Proposition 3.9 the

super-modular category splits, so that Ŝ has the same form as the S-matrix of some rank 4 pointed

modular category [61] as in the statement.

Theorem 5.7. If G = 〈(01)〉, then the corresponding Ŝ is



1 1 2
√

6

1 1 2 −
√

6

2 2 −2 0
√

6 −
√

6 0 0


.

Proof. By Equation (3.3), we have

Ŝ =



1 d1 d2 d3

d1 ε1 ε2d2 ε3d3

d2 ε2d2 s22 s23

d3 ε3d3 s23 s33


.

We first assume that ε1 = 1. Then we can have ε2ε3 = −1 or ε2 = ε3 = −1.

For the first case, we can assume ε2 = 1, ε3 = −1 and interchange N2 and N3 if necessary.

Then the orthogonality of Ŝ gives us s23(s22 + s33) = 0 and 2d1 + d2
2 − d2

3 = 0. Assume that

s22 + s33 = 0, then since the columns of Ŝ are of equal length 2d2
2 + s2

22 = 2d2
3 + s2

33. This gives

that d2 = d3, and that d1 = 0, which is a contradiction. So we must have s23 = 0. Then Ŝ becomes

Ŝ =



1 d1 d2 d3

d1 1 d2 −d3

d2 d2 s22 0

d3 −d3 0 s33


.
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Since σ = (01) is the only non-trivial element of the Galois group, we conclude that

m =
d2(d1 + 1)

d1

, n =
d3(d1 − 1)

d1

, t =
s22

d2

, u =
s33

d3

, v =
d2

2

d1

, w =
(d2

1 + 1)

d1

and x =
d2

3

d1

are

integers as coefficients of the minimal polynomials of the N̂i. Notice that m, v, w and x are strictly

greater than 0 and n ≥ 0. Since d2 + d1d2 + d2s22 = 0, we have s22 < 0 so t < 0. Moreover, we

have t2−u2 6= 0. In fact, if t2−u2 = 0, then u2 +2 =
s2

33 + 2d2
3

d2
3

=
s2

22 + 2d2
2

d2
3

=
d2

2

d2
3

(
s2

22 + 2d2
2

d2
2

) =

d2
2

d2
3

(t2 + 2). This implies that d2 = d3. Using 2d1 + d2
2 − d2

3 = 0, we have d1 = 0, a contradiction.

Thus t2 − u2 6= 0 and we have

m = −2t(u2 + 2)

t2 − u2
, n =

2u(t2 + 2)

t2 − u2
, v =

2(u2 + 2)

t2 − u2,

w =
2(t2u2 + t2 + u2)

t2 − u2
, x =

2(t2 + 2)

t2 − u2
.

Since x > 0, we have t2−u2 > 0. We have n2,2,2 =
t(t2 − u2 − 2)

(t2 − u2)
. In order to have n2,2,2 ≥ 0, we

must have t2 − u2 − 2 ≤ 0. The only integer solution satisfying all the restrictions here is t = −1

and u = 0. Then s33 = 0 and s22 = −d2. Thus, we have d1 = 1. The orthogonality condition on

the columns of Ŝ gives that 2d2 − d2
2 = 0. This implies that d2 = 2 and d3 =

√
6.

If ε2 = ε3 = −1, we have

Ŝ =



1 d1 d2 d3

d1 1 −d2 −d3

d2 −d2 s22 s23

d3 −d3 s23 s33


.

Similarly to the previous case, we have m =
d3(d1 − 1)

d2

, n =
d2

1 + 1

d1

, t =
d2

3

d1

, u =
s22

d2

, v =
d2

2

d1

,

w =
s33

d3

, x =
s23

d2

, y =
s23

d3

and z =
d2(d1 − 1)

d1

are integers. Here we have nv − z2 − 2v = 0,

t + v − 2 = 0 and m2 + z2 − 2n + 4 = 0. Notice that m2 + n2 6= 0 since n 6= 0. So we have

n =
m2 + z2

2
+ 2, t =

2m2

m2 + z2
, and v =

2z2

m2 + z2
. Since t is an integer, we have m2 ≥ z2.
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Similarly, we have z2 ≥ m2. Thus |m| = |z| so t = v = 1. This means d2 = d3 =
√
d1. Then

m = d1 − 1 and d1 is an integer. From |m| = |z|, we get d1 − 1 =
d2(d1 − 1)

d1

. If d1 = 1, then

we have d2 = d3 = 1. This would force all the entries of Ŝ to be integers, which a contradiction

to the assumption that the Galois group is Z2. If d1 > 1, then we have d2 = d1. Recall that

d2 = d3 =
√
d1. This means either d2 = d3 = d1 = 0 or d2 = d3 = d1 = 1, again a contradiction.

If ε1 = −1, the orthogonality of the columns of Ŝ gives ε2d2
2 + ε3d

2
3 = 0. Thus we have

ε2ε3 = −1 and d2 = d3. But then we have σ(d2) =
d2

d1

= −d2

d1

so d2 = 0, a contradiction.

Theorem 5.8. If G = 〈(01)(23), (02)(13)〉, then the corresponding Ŝ has the following form:



1 φ1φ2 φ1 φ2

φ1φ2 1 −φ2 −φ1

φ1 −φ2 −1 φ1φ2

φ2 −φ1 φ1φ2 −1


.

Proof. By Equation (3.3), we have the corresponding Ŝ:



1 d1 d2 d3

d1 ε1 ε2d3 ε3d2

d2 ε2d3 ε4 ε5d1

d3 ε3d2 ε5d1 ε6


.

Using orthogonality of the columns of Ŝ and the fact that di ≥ 1, there are only 2 possibilities for

εi’s, namely,

1. ε1 = 1, ε2 = −1, ε3 = −1, ε4 = 1, ε5 = −1, ε6 = 1, or

2. ε1 = 1, ε2 = −1, ε3 = −1, ε4 = −1, ε5 = 1, ε6 = −1.
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For the first case, the orthogonality of Ŝ gives d1 = d2d3, d2 = d1d3 and d3 = d1d2. So

we have d1d2d3 = (d1d2d3)2, we have d1d2d3 = 1. Since di ≥ 1 for all i, this implies that

d1 = d2 = d3 = 1. This cannot happen since the corresponding Galois group should be trivial,

which is a contradiction to our assumption.

Consider the second case. The orthogonality of Ŝ gives d1 = d2d3. So we can write the

corresponding matrix as

Ŝ =



1 d2d3 d2 d3

d2d3 1 −d3 −d2

d2 −d3 −1 d2d3

d3 −d2 d2d3 −1


.

Notice that Equation (3.2) indicates that d2 and −1/d2 are conjugates. By Remark 5.2, we know

that d2 = φm for some m ∈ Z. Similarly, d3 = φn for some integer n.

Thus we have

Ŝ =



1 φmφn φm φn

φmφn 1 −φn −φm

φm −φn −1 φmφn

φn −φm φmφn −1


.

The corresponding N̂i matrices have integer entries in terms of m and n. More precisely, we

have

N̂1 =



0 1 0 0

1 mn m n

0 m 0 1

0 n 1 0


, N̂2 =



0 0 1 0

0 m 0 1

1 0 m 0

0 1 0 0


, and N̂3 =



0 0 0 1

0 n 1 0

0 1 0 0

1 0 0 n


.

Using the formula given in Lemma 3.17 , we calculate the 2nd Frobenius-Schur indicator for
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the simple object X2:

ν2(X2) = ±1 =
2

D2

(
d2

(
1

θ2

)2

+md2
1 + d1d3

(
θ1

θ3

)2

+md2
2 + d1θ

2
2 + d1d3

(
θ3

θ1

)2
)

from this we obtain

±D
2

2
= m

(
d2

1 + d2
2

)
+ d2

(
θ2

2 + θ−2
2

)
+ d1d3

((
θ1

θ3

)2

+

(
θ1

θ3

)−2
)

= m
(
d2

2d
2
3 + d2

2

)
+ 2d2 Re

(
θ2

2

)
+ 2d2d

2
3 Re

(
θ1

θ3

)2

≤ D2

2
= 1 + d2

2d
2
3 + d2

2 + d2
3

⇒ 0 ≥ md2
2

(
d2

3 + 1
)

+ 2d2 Re
(
θ2

2

)
+ 2d2d

2
3 Re

(
θ1

θ3

)2

− 1− d2
2d

2
3 − d2

2 − d2
3

= md2
2

(
d2

3 + 1
)
− 2d2

(
d2

3 + 1
)
− d2

2

(
d2

3 + 1
)
−
(
d2

3 + 1
)

=
(
md2

2 − 2d2 − d2
2 − 1

) (
d2

3 + 1
)

⇒ 0 ≥
(
md2

2 − 2d2 − d2
2 − 1

)
= d2

2 (m− 1)− 2d2 − 1

= φ2
m (m− 1)− 2φm − 1

= (mφm + 1) (m− 1)− 2φm − 1

= (m− 2) (φm (m+ 1) + 1) .

Thus m must be 0, 1, or 2.

Similarly, we calculate the 2nd Frobenius-Schur indicator for X3:
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ν2(X3) = ±1 =
2

D2

(
d3θ
−2
3 + nd2

1 + d1d2

(
θ1

θ2

)2

+ d1d2(
θ2

θ1

)2 + nd2
3 + d3θ

2
3

)

⇒ ±D
2

2
= 2d3 Re(θ2

3) + n(d2
2d

2
3 + d2

3) + 2d2
1d3 Re

(
θ1

θ2

)2

≤ D2

2
= 1 + d2

2d
2
3 + d2

2 + d2
3

⇒ 0 ≥2d3 Re(θ2
2) + nd2

3(d2
2 + 1) + 2d3d

2
2 Re

(
θ1

θ2

)2

− 1− d2
2d

2
3 − d2

2 − d2
3

≥− 2d3 + nd2
3(d2

2 + 1)− 2d3d
2
2 − d2

3(d2
2 + 1)− (1 + d2

2)

= (nd2
3 − 2d3 − d2

3 − 1)(d2
2 + 1)

⇒ 0 ≥(nd2
3 − 2d3 − d2

3 − 1)

= d2
3(n− 1)− 2d3 − 1

= φ2
n(n− 1)− 2φn − 1

= (nφn + 1)(n− 1)− 2φn − 1

= (n− 2)(φn(n+ 1) + 1)

So n must be 0, 1, or 2.

Up to symmetry, we can exclude the cases (m,n) = (0, 0), (1, 1), (1, 0), (2, 2) since the cor-

responding Galois groups are not isomorphic to Z2 × Z2. The possible value for this case, up to

symmetry, is (m,n) = (1, 2). Notice that φ1 =
1 +
√

5

2
and φ2 = 1 +

√
2.

In the last few cases we were unable to complete the classification in general–instead we placed

bounds on the N̂k
ij’s. Since Nk

ij ≤ 2||Ni||max, this could also be done in terms of bounds on the

Ni’s. Sometimes it is easier to work in terms of a bound on the dimensions di. Indeed, the proof of

[21, Lemma 3.14] goes through with no change, from which we conclude: N̂k
ij ≤ di ≤ 4||N̂i||max.
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Theorem 5.9. If G = 〈(0123)〉 and N̂k
ij < 14, the corresponding Ŝ is



1 d1 d2 d3

d1 −d2 d3 1

d2 d3 −1 −d1

d3 1 −d1 d2


,

where d1 = 1 +
√

2 +
√

2 +
√

2, d2 = 1 +
√

2 +
√

2(2 +
√

2), and d3 = 1 +
√

2 +
√

2.

Proof. Applying Equation (3.3) with σ = 〈(0123)〉, we have the following form of Ŝ matrix

Ŝ =



1 d1 d2 d3

d1 ε1d2 ε2d3 ε3

d2 ε2d3 ε4 ε5d1

d3 ε3 ε5d1 ε6d2


.

Using a Maple’s Gröbner basis algorithm, we deduce that ε1 = ε4 = ε5 = −1 and ε2 = ε3 =

ε6 = 1.

So

Ŝ =



1 d1 d2 d3

d1 −d2 d3 1

d2 d3 −1 −d1

d3 1 −d1 d2


.

Let p1(x) = x4 − c1x
3 + c2x

2 + c3x − 1 be the characteristic polynomial of N̂1. Then p3(x) =

x4 − c3x
3 − c2x

2 + c1x − 1, where ci ∈ Z for i = 1, 2 and 3. Notice that c1 = Trace(N̂1) ≥ 0

and c3 = Trace(N̂3) ≥ 0 as the N̂i’s are matrices with nonnegative integer entries. Let p2(x) =

x4 − b1x
3 + b2x

2 + b3x+ 1 be the characteristic polynomial of N̂2, where

b1 = b3 = d2 + d3
d1
− 1

d2
− d1

d3
and b2 = −2 + d1

d2d3
− d3

d1d2
− d2d1

d3
+ d2d3

d1
.

The orthogonality of the rows of Ŝ gives d1 = d1d2 − d2d3 − d3, d3 = −d1 + d1d2 − d2d3,

51



d1d2 = d3 + d1 + d2d3 and d2d3 = −d1 + d1d2 − d3. So we have b2 = −6 and b3 = −b1. Thus

p2(x) = x4 − b1x
3 − 6x2 + b1x+ 1, where b1 = Trace(N̂2) ≥ 0.

Notice that c1 + c3 = 2
(d2 + 1)d3

d2

+ 4
d2

(d2 + 1)d3

. This gives c1 + c3 ≥ 4
√

2. Since c1 and c3

are integers, we have c1 + c3 ≥ 6. Moreover, we have 4b1 − c2
1 + 8c2 + c2

3 = 0.

Let ∆ = c1 − c3 and Σ = c1 + c3, then c2 = 1
16

[3∆Σ ±
√

(32 + ∆2)(−32 + Σ2)] and b1 =

1
8
[−∆Σ∓

√
(32 + ∆2)(−32 + Σ2)]. Let P = 16c2−3∆Σ

∆2+32
= ±

√
Σ2−32
∆2+32

.

We compute the ni,j,k’s and we get the following relations:

n1,1,1 =
5c1 − 3c3

8
− (c1 − c3)P

8

n1,1,2 = 1− P = 1 + n1,2,3 = 2 + n2,3,3

n1,1,3 =
c1 + c3

8
− (c1 − c3)P

8
= n1,3,3 =

1

2
(n1,1,1 + n3,3,3)

n1,2,2 =
c1 + c3

4
+

(c1 − c3)P

4
= n2,2,3

n2,2,2 =
c2

1 − c2
3

4
− 2c2 + 2P = b1 + 2P

Recall that the fusion coefficients are integral. In particular, since n2,2,2 is an integer, we know

that c1 and c3 are both even. Thus ∆ and Σ are divisible by 2. Via a computer search for integer

solutions using the above equations, we found there is only one solution when ni,j,k < 14, with

c1 = c3 = 4 and c2 = 2P = −2. The corresponding Ŝ matrix for this case is the one in the

statement (and is the same as that of PSU(2)14).

We can make further progress using more sophisticated number theoretical arguments:

Lemma 5.10. If Σ and ∆ are divisible by 4, the corresponding super-modular categories have

c1 = c3 =
√

2(ζ2i−1−ζ2i−1
), c2 = −(ζ2i−1+ζ

2i−1
) and P = −1

2
(ζ2i−1+ζ

2i−1
), where ζ = 1+

√
2,

ζ = 1−
√

2 and i ≥ 1 is an integer.

Proof. Assume that Σ and ∆ in the proof above are also divisible by 4. Denote a = Σ
4

, b = ∆
4

and
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c = P . Then we have the following Diophantine equation

a2 − (b2 + 2)c2 = 2.

Lemma 5.13 below shows that b = 0. Consequently, we have c1 = c3, and the Diophantine

equation becomes a2 − 2c2 = 2. Since a = c1
2
≥ 0 and c = P = c2

2
≤ −1 the resulting solutions

are

a(i) :=
1√
2

(ζ2i−1 − ζ2i−1
), c(i) = −1

2
(ζ2i−1 + ζ

2i−1
),

where 1 ≤ i and ζ = 1 +
√

2 and ζ = 1 −
√

2. This determines all possible fusion rules under

these assumptions. The first few are (a, c) ∈ {(2,−1), (10,−7), (58,−41), (338,−239), . . .}.

Some cases can be ruled out if we assume the MME conjecture using Lemma 3.22 as follows.

Example 5.11. In the case (a, c) = (58,−41), we find that d1 is a root of the irreducible polyno-

mial x4−2 ·58x3−82x2 +2 ·58x−1. The smallest cyclotomic field in which d1 resides has degree

464 = 24 · 29 (i.e., the conductor of Q(d1) is 464). Now suppose that the corresponding super-

modular category B has a MME (C, f). Then the order of the T matrix of C is divisible by 29, so

that 7 | ϕ(29) | [Q(T ) : Q]. But Lemma 3.22 and the results of [55] imply that [Q(T ) : Q] = 2m

for some m (since [Q(T ) : Q(S)] = 2t). Thus no such category can exist.

Remark 5.12. The (a, c) = (10,−7) case cannot be dealt with in this way since the corresponding

conductor is 80.

Lemma 5.13. Assume a, b and c are integers and a2 − (b2 + 2)c2 = 2, then b = 0.

Proof. Reducing modulo 8 both sides of the equation, there are three cases to consider since a

square modulo 8 is 0, 1, or 4.

• If b2 ≡ 1 mod 8, then we have a2 − 2 ≡ 3c2 mod 8. This gives no solutions.

• If b2 ≡ 0 mod 8, then we have c ≡ 1 mod 8 and a ≡ 4 mod 8.
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• If b2 ≡ 4 mod 8, then we have c ≡ 1 mod 8 and a ≡ 0 mod 8.

Therefore, we must have that a and b are even and c is odd. Moreover, if 4|b, then 4 - a and

vice versa.

Now we consider both sides of a2−(b2 +2)c2 = 2 modulo 4. This gives us b2 +2 ≡ 2 mod 4.

Let B = b2 + 2, and then we need to solve the following Pell-like equation

a2 −Bc2 = 2

As b is even, B is not divisible by 4. So we write B = m2d, where d is square-free and even and

m is odd.

Claim: d = 2. Assume otherwise, then we can prove that a2 − Bc2 = 2 has no solutions by

looking at the class group of Z[
√
d] via genus theory. In fact, assume d 6= 2 and even. Then the

equation a2 − d(mc)2 = 2 can be written as

a2 − dy2 = 2.

If the above equation has no integer solution, then a2−Bc2 = 2 has no solution. Now we consider

the quadratic number fieldK = Q(
√
d). We denote the class group ofK byCK (see [40] Page 45),

which is a finite abelian group. Let V = (Z/2Z)g, where g is the number of distinct prime dividing

d. Let ei = (0, . . . , 1, . . . , 0) be the basis of V , where i = 1, . . . , g and 1 is on the nth position.

Let CK,2 be the subgroup of CK consisting of the elements of order 2. For primes p1, . . . , pg ∈ Z,

denote the corresponding prime ideals as p1, . . . , pg ∈ Z[
√
d]. Define the map

φ : V → CK,2

ei 7→ [pi].

This assignment gives a group homomorphism. By Corollary 1 in Section 5 of [40], we know

that φ is surjective and ker(φ) = {0, (1, 1, . . . , 1)}. Consequently, CK,2 ' (Z/Z2)g−1. In particu-
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lar, if g ≥ 2, then for any prime p|d, p = (p,
√
d) is not principal.

Now we return to our equation a2 − dy2 = 2, where d 6= 2 and even. Consider the ideal

(a+ y
√
d) ⊆ Z[

√
d], which has norm 2. We have (a+ y

√
d)(a− y

√
d) = (2). Moreover, we have

(2,
√
d)2 = (2). By the unique factorization, we have (2,

√
d) = (a + y

√
d). However, if g ≥ 2,

(2,
√
d) is not principal. Consequently, there is no integer solutions for a and y when d 6= 2.

Thus we have

a2 − 2m2c2 = 2 b2 − 2m2 = −2.

One can further deduce that 4|b. Let b = 4β, the second equation gives us m2 − 8β2 = 1. This

is a Pell-equation. Notice that (m,β) = (3, 1) is the smallest non-trivial solution. Let z = 3+2
√

2

and denote its conjugate as z̄. The solutions (m,β) of the equation are given by

mn =
zn + z̄n

2
βn =

zn − z̄n

4
√

2
,

where n is a positive integer. We also have a2− 2y2 = 2, which is a Pell-type equation. Notice

that (a, y) = (2, 1) is a solution. Let s = 2 +
√

2. By the theorem of K. Mahler [47], the solutions

are given by

ak =
sk + s̄k

2
√

2(k−1)
yk =

sk − s̄k

2
√

2k
,

where k is an odd positive integer. By modifying the indices, we know the solutions of the pair

(mn, yn) are given by

yn =
(z + 1)2n+1 − (7− z)2n+1

23n+2
√

2
mn =

zn + (6− z)n

2
,

where n ∈ N. Recall that the values of m and y are related by y = mc, where m and c are both

odd. In particular, y ≥ m. Now we consider the function given by f(x) =
yx
mx

. Using standard

calculus, we know that f is a monotonic increasing function and lim
x→∞

f(x) = 1 +
√

2. Therefore,

the only possible solution here is m = 1. Consequently, we have b = 0.
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Remark 5.14. If ni,j,k < 115, by a computer search for positive integer values, we find two more

solutions with (Σ,∆) = (40, 0) and (232, 0), which are correspond to i = 2, 3 in Lemma 5.10.

The first possible solution with Σ ≡ 2 (mod 4) has (Σ,∆) = (434, 18) and n1,1,1 = 115.

Theorem 5.15. If G = 〈(012)〉 and N̂k
ij < 21, then Ŝ is



1 d 1 + d d2 − 1

d −(1 + d) −1 d2 − 1

1 + d −1 d −(d2 − 1)

d2 − 1 d2 − 1 −(d2 − 1) 0


,

where d is the largest real root of the polynomial x3 − 3x− 1 = 0.

Proof. Applying Equation (3.3) to σ = (012), we get

Ŝ =



1 d1 d2 d3

d1 ε1d2 ε2 ε3d3

d2 ε2 ε4d1 ε5d3

d3 ε3d3 ε5d3 s33


.

A computation using Ŝ2 = D2

2
I and di ≥ 1 reduces the sign choices to the following 3 cases:

(1) ε3 = ε4 = −1, ε1 = ε5 = 1, ε2 = −1,

(2) ε3 = ε4 = 1, ε1 = ε5 = −1, ε2 = −1, or

(3) ε3 = ε4 = −1, ε1 = ε5 = −1, ε2 = 1.

In case (3), we find that d2
3 + d1d2− (d1 + d2) = 0. However, since di ≥ 1, we have d2

3 + d1d2 ≥ 2

and −(d1 + d2) ≤ −2. So, the equality holds if and only if d1 + d2 = 2 = d2
3 + d1d2, which forces

d1 = d2 = d3 = 1. This is impossible since the Galois group is non-trivial by hypothesis.

Case (1) is equivalent to case (2) by permuting columns/rows 2 and 3 and relabeling d1 ↔ d2.

So, without loss of generality, we may assume we are in case (2). Let g(x) = x3− c1x
2 + c2x− c3
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be an irreducible polynomial for which d3 is a root. Note that c1 =
d3

d1d2

(d1d2 + d2 − d1),

c2 =
d2

3

d1d2

(d2−d1−1), and c3 = − d3
3

d1d2

. The orthogonality of the rows of Ŝ shows that c1 = −c3.

Moreover,
c2

c3

= −λ33 ∈ Z. Let n = λ33 and c = −c3 = c1, so we have g(x) = x3−cx2 +ncx+c.

Since the Galois group is Z3, we have that
dis(g)

c2
= c2(n2 + 4)− 2nc(9 + 2n2)− 27 is a square.

Take t to be the positive root of this, that is, t =
(d1 − 1)(d1 + d2)(1 + d2)

d1d2

.

Notice that c =
d3

3

d1d2

> 0. Moreover t > 0. Computing the fusion rules, we get

n1,1,1 =
(t− nc− 1)

2
− t

n2 + 3
n1,1,2 = n1,3,3 =

−cn+ 2n2 + t− 3

2 (n2 + 3)

n1,1,3 =
cn2 + 2c− nt+ 3n

2 (n2 + 3)
n1,2,2 = n2,3,3 =

cn− 2n2 + t+ 3

2 (n2 + 3)

n1,2,3 =
c− 3n

n2 + 3
n2,2,2 =

1 + nc+ t

2
− t

3 + n2

n2,2,3 =
2c+ 3n+ cn2 + nt

2(3 + n2)
n3,3,3 =

c+ n3

n2 + 3

If we restrict ni,j,k < 21, the only integer values of n, t and c that satisfy t2 = c2(n2 + 4) −

2nc(9 + 2n2) − 27 and yield ni,j,k ∈ Z is (n, t, c) = (0, 3, 3). The corresponding Ŝ-matrix is the

one given in the statement and is the same as that of PSU(2)7 (see [61]).

Remark 5.16. Here is an alternative approach that is less computationally intensive, but assumes

the minimal modular extension conjecture holds. First notice that c is a divisor of dim(C), so that

if we assume the MME conjecture holds then, by the Cauchy theorem [21], any prime divisor p of

c must divide the order N of the T -matrix of any minimal modular extension of the corresponding

super-modular category. Now, by Lemma 3.22, we have ϕ(N) = [Q(T ) : Q] = 3 · 2k since

|G| = 3. Thus if p | c, we also have ϕ(p) = 2a3b where b ∈ {0, 1} and at most one prime divisor

p can have 3 | ϕ(p). Thus the prime divisors of c are somewhat uncommon (for example Fermat

primes).

For n = 0, the discriminant equation above yields the Diophantine equation (2c)2 − 27 = t2,

57



which has finitely many solutions. The only values of c > 0 that correspond to a solution are: 3

and 7. Since n3,3,3 ∈ Z, when n = 0 we have 3 | c. So c = 3 which, in turn, implies t = 3, giving

the same solution as above. So in this case we do not need to assume the MME conjecture.

For n = 1 the Diophantine discriminant equation 5c2 − 22c − 27 = t2 has infinitely many

solutions, with the smallest few c values:

c ∈ {7, 31, 199, 1351, 9247, 63367, 434311, 2976799, 20403271}.

The method above eliminates all of these values of c except for 7 (notice that 9 | ϕ(1351) = 2732).

In the case that c = 7, we find that t = 8 which implies n1,1,1 = −2, so this cannot occur.

Theorem 5.17. If G = 〈(01)(23)〉 and di < 14 for all i, then the corresponding Ŝ is one of the

following: 

1 φ2
1 φ1 φ1

φ2
1 1 −φ1 −φ1

φ1 −φ1 −1 φ2
1

φ1 −φ1 φ2
1 −1


,



1 φ2
2 φ2 φ2

φ2
2 1 −φ2 −φ2

φ2 −φ2 −1 φ2
2

φ2 −φ2 φ2
2 −1


,



1 φ1 1 φ1

φ1 −1 φ1 −1

1 φ1 −1 −φ1

φ1 −1 −φ1 1


,



1 φ2 1 φ2

φ2 −1 φ2 −1

1 φ2 −1 −φ2

φ2 −1 −φ2 1


.

Proof. Similar as previous cases, we have

Ŝ =



1 d1 d2 d3

d1 ε1 ε2d3 ε3d2

d2 ε2d3 s22 s23

d3 ε3d2 s23 s33


.
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Case (1) ε1 = 1. Using Maple’s Gröbner basis algorithm, we deduced that

(s33 + 1)(s23 − 1)(s23 + 1) = 0.

First, we assume s33 + 1 = 0, then we have s33 = s22 = −1, ε2 = ε3 = −1, ε1 = 1 and

s23 = d1 = d2d3. Therefore the corresponding Ŝ is given by

Ŝ =



1 d2d3 d2 d3

d2d3 1 −d3 −d2

d2 −d3 −1 d2d3

d3 −d2 d2d3 −1


.

Notice that this is exactly the same matrix we derived in Theorem 5.8. But here we do not get

a contradiction since the Galois group is Z2. Thus the same argument using the 2nd Frobenius-

Schur indicator works here. Since the Galois group is Z2, we have solutions for S-matrix when

(m,n) = (1, 1), (1, 0), (2, 0) and (2, 2), i.e. (d2, d3) = (φi, φi) or (φi, 1) for i = 1, 2. The cases

(1, 1) and (2, 2) yield the first two Ŝ-matrices above, while for (2, 0) and (1, 0) the Galois group

G 6= 〈(01)(23)〉, a contradiction. However, see Case 2 below where these solutions do occur.

If s23 − 1 = 0, one can show that the corresponding Galois group is trivial.

Now we assume s23 + 1 = 0, then the matrix Ŝ has the form

Ŝ =



1 d2
3 d3 d3

d2
3 1 −d3 −d3

d3 −d3 d2
3 −1

d3 −d3 −1 d2
3


.

Notice this is the same matrix as the previous one if d2 = d3 and permuting the matrices N̂2 and

N̂3.
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Case (2) ε1 = −1. In this case, the Ŝ is of the form

Ŝ =



1 d1 d2 d3

d1 −1 d3 −d2

d2 d3 s22 s23

d3 −d2 s23 −s22


.

Notice that the conjugate of d1 is − 1

d1

. Moreover, we know that if d1 = 1, then the corresponding

Galois group is trivial. Thus the field Q(Ŝ) = Q(d1), where d1 = φn =
n+
√
n2 + 4

2
for some

n. Now we assume k
√
P =

√
n2 + 4, where k is an integer and P is a square-free integer. Then

d1 =
n+ kξ

2
, where ξ =

√
P . Then Q(Ŝ) = Q(ξ). As all the entries of Ŝ are algebraic integers,

we can assume d2 = a + bξ, d3 = c + dξ, s22 = e + fξ, s23 = g + hξ, where a, b, c, d, e, f, g

and h are either half integers or integers. Then using Maple’s Gröbner basis algorithm to eliminate

non-rational variables we obtain 21 Diophantine equations (over 1
2
Z).

Notice that N̂3
12 = −1 if d = 0 or 2h− k = 0. One Diophatine equation we derive is:

2b2h− b2k + 2d2h+ d2k = 0,

which can be written as
b2

d2
= −2h+ k

2h− k
. So we have (2h − k)(2h + k) ≤ 0, and since k > 0,

we see that h ∈ (−k
2
, k

2
). The condition d1 < 14 implies n ≤ 13 and k ≤

√
n2 + 4, and k is

determined by n, so we do a brute force search for solutions using parameters (n, h, k). There are

13 cases which pass the non-negative and integral condition of the naive fusion coefficients N̂k
ij ,

which are the cases when n = 1, . . . , 13 and h = −k
2
, for each k corresponding to n. In fact, for
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these cases, the corresponding Ŝ matrix has the following form:



1 φn 1 φn

φn −1 φn −1

1 φn −1 −φn

φn −1 −φn 1


.

All the cases can be ruled out by Lemma 3.25 except when (n, k, h) = (1, 1,−1
2
) and (n, k, h) =

(2, 2,−1). For the first case, we have a = 2d, b = 0, c = d, e = −1, f = 0, and g = −1
2
. Then

n3,3,3 = 2d − 1
2d

, which is non-negative and integral. Thus d = −1
2

or 1
2
. Notice that d2 = −1 if

d = −1
2
, which is a contradiction. If d = 1

2
, the corresponding Ŝ-matrix has a modular realization

as Fib� Sem. For the second case, we have n2,2,2 = d − 1
d
. Thus d = 1 and the corresponding

S-matrix has a modular realization as PSU(2)6 � Sem. These are the second pair of Ŝ-matrices.

5.2 Fusion Rules

Recall that the naive fusion coefficients are defined as N̂k
ij = Nk

ij + N fk
ij , where i, j, k ∈ Π0.

To get the fusion coefficients Nk
ij for the corresponding super-modular categories, we need to

determine how these N̂k
ij split. Note that for the pointed cases, such as the ones in Theorem 5.3

and Theorem 5.6, the corresponding super-modular categories split by Proposition 3.9. Moreover,

the Ŝ matrices in Theorem 5.6 give the same naive fusion coefficients. From this discussion, we

have the following results:

Lemma 5.18. If B is non-self dual super-modular category of rank 8, then B has the same fusion

rules as C(Z4, Q)� sVec where C(Z4, Q) is a pointed modular category with Z4 fusion rules.

Lemma 5.19. If B is a self-dual super-modular category with Galois group G = 〈(0)〉, then B has

the same fusion rules as D � sVec, where D is a Toric code modular category.
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Lemma 5.20. Let B be a self-dual super-modular category with Ŝ of the following form



1 1 2
√

6

1 1 2 −
√

6

2 2 −2 0
√

6 −
√

6 0 0


.

Then B has the same fusion rules as the centralizer 〈f〉′ of either fermion f in the modular

category SO(12)2 (see the Appendix).

Proof. N̂1
11 = N̂2

11 = N̂3
12 = N̂3

22 = N̂3
33 = 0, N̂2

12 = N̂3
13 = N̂2

22 = 1 and N̂3
23 = 2.

We can assume that N2
22 = 1 and N f2

22 = 0 by interchanging X2 and fX2 if necessary. Simi-

larly, we assume N3
13 = 1 and N f3

13 = 0 by interchanging X3 and fX3 and X1 and fX1 simultane-

ously, if needed. Using the modified balancing equation on Ŝ23, we get 0 = (N3
23−N

f3
23 )θ3

√
6. So

we have N3
23 = N f3

23 = 1. Now we have:

1. f⊗2 = 1,

2. X⊗2
1 = 1,

3. X⊗2
2 = 1⊕ aX1 ⊕ bfX1 ⊕X2,

4. X⊗2
3 = 1⊕X1 ⊕X2 ⊕ fX2,

5. X1 ⊗X2 = aX2 ⊕ bfX2,

6. X1 ⊗X3 = X3,

7. X2 ⊗X3 = X3 ⊕ fX3.

Computing X2⊗X2⊗X3 in two ways gives us: (2 + a)X3⊕ (b+ 1)fX3 = 2X3⊕ 2fX3. So

we have a = 0 and b = 1.
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Lemma 5.21. Let B be a self-dual super-modular category with

Ŝ =



1 φ1φ2 φ1 φ2

φ1φ2 1 −φ2 −φ1

φ1 −φ2 −1 φ1φ2

φ2 −φ1 φ1φ2 −1


.

Then B has the same fusion rules as Fib�PSU(2)6.

Proof. The naive fusion coefficients are: N̂1
11 = N̂3

33 = 2, N̂2
11 = N̂3

12 = N̂2
22 = 1, N̂2

12 = N̂3
13 =

N̂3
22 = N̂3

23 = 0. As N̂2
22 = N2

22 + N f2
22 = 1, we assume N2

22 = 1 and N f2
22 = 0 by interchanging

X2 and fX2 if necessary. Then we have X⊗2
2 = 1 ⊕ X2, so X2 generates a subcategory F with

fusion rules like those of Fib, which is necessarily modular. Therefore B ∼= F � D where D is

a super-modular category of rank 4([31, Theorem 3.13]). The classification results in [19] imply

that B has the same fusion rules as Fib�PSU(2)6.

Lemma 5.22. Let B be a self-dual super-modular category with Ŝ of the following form



1 d1 d2 d3

d1 −d2 d3 1

d2 d3 −1 −d1

d3 1 −d1 d2


,

where d1 = 1 +
√

2 +
√

2 +
√

2, d2 = 1 +
√

2 +
√

2(2 +
√

2) and d3 = 1 +
√

2 +
√

2. Then B

has the same fusion rules as PSU(2)14.

Proof. The corresponding naive fusion coefficients are:N̂1
11 = N̂3

11 = N̂3
12 = N̂3

13 = N̂3
33 = 1,

N̂2
11 = N̂2

12 = N̂2
22 = N̂3

22 = 2 and N̂3
23 = 0. Since N̂1

11 = N1
11 +N f1

11 = 1, we can assume N1
11 = 1

and N f1
11 = 0 by interchanging X1 and fX1 if necessary. Similarly, since N̂3

33 = N3
33 + N f3

33 = 1,

we can assume N3
33 = 1 and N f3

33 = 0. Finally, we may use the X2 versus fX2 labeling ambiguity
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to assume that N2
13 = 1. We have:

1. f⊗2 = 1,

2. X⊗2
1 = 1⊕X1 ⊕ aX2 ⊕ bfX2 ⊕ cX3 ⊕ dfX3, where a+ b = 2, c+ d = 1,

3. X⊗2
2 = 1⊕ gX1 ⊕ hfX1 ⊕ lX2 ⊕mfX2 ⊕ pX3 ⊕ qfX3, where g + h = 2, l +m = 2 and

p+ q = 2,

4. X⊗2
3 = 1⊕ rX1 ⊕ sfX1 ⊕X3, where r + s = 1,

5. X1 ⊗X2 = aX1 ⊕ bfX1 ⊕ gX2 ⊕ hfX2 ⊕X3,

6. X1 ⊗X3 = cX1 ⊕ dfX1 ⊕X2 ⊕ rX3 ⊕ sfX3,

7. X2 ⊗X3 = X1 ⊕ pX2 ⊕ qfX2.

Computing X1 ⊗X3 ⊗X3 in two ways and comparing the coefficients of X1, fX1, X2 and fX2,

we have c+ r = 2, d+ s = 0, ar+ bs+ 1 = c+ p and br+ as = d+ q. Thus we have c = r = 1,

d = s = 0, a = p and b = q. Applying Corollary 3.18 to Ŝ23, we have |d1| = |d1θ1+(p−q)d2θ2| ≥

||(p− q)d2θ2| − d1|. If |p− q| = 2, then 4.26 ≈ d1 ≥ |2d2 − d1| ≈ 5.79, which is impossible. So

we have p = q = 1. Therefore a = b = 1. Computing X2 ⊗X3 ⊗X3 in two different ways and

comparing the coefficients of X2 and fX2, we have g = h = 1. Tensoring X2 ⊗X2 ⊗X3 in two

ways and comparing the coefficients of X1 and fX1, we have l = 1 and m = 1.

Lemma 5.23. Let B be a self-dual super-modular category with

Ŝ =



1 d 1 + d d2 − 1

d −(1 + d) −1 d2 − 1

1 + d −1 d −(d2 − 1)

d2 − 1 d2 − 1 −(d2 − 1) 0


,

where d is the largest real root of x3−3x−1 = 0. Then B has the same fusion rules as PSU(2)7�

sVec.

64



Proof. We have N̂1
11 = N̂2

11 = N̂3
13 = 0 and N̂3

11 = N̂2
12 = N̂3

12 = N̂2
22 = N̂3

22 = N̂3
23 = N̂3

33 = 1.

Notice that since N̂2
22 = N2

22+N f2
22 = 1, we can assumeN2

22 = 1 andN f2
22 = 0 by interchanging

X2 and fX2 if necessary. Similarly, we can assume N3
33 = 1, N f3

33 = 0, N̂1
22 = 1 and N̂ f1

22 = 0. We

have

1. f⊗2 = 1,

2. X⊗2
1 = 1⊕ aX3 ⊕ bfX3, where a+ b = 1,

3. X⊗2
2 = 1⊕X1 ⊕X2 ⊕ gX3 ⊕ hfX3, where g + h = 1,

4. X⊗2
3 = 1⊕ lX2 ⊕mfX2 ⊕X3, where l +m = 1,

5. X1 ⊗X2 = X2 ⊕ pX3 ⊕ qfX3, where p+ q = 1,

6. X1 ⊗X3 = aX1 ⊕ bfX1 ⊕ pX2 ⊕ qfX2,

7. X2 ⊗X3 = pX1 ⊕ qfX1 ⊕ gX2 + hfX2 ⊕ lX3 ⊕mfX3.

ComputingX1⊗X1⊗X2 in two different ways and comparing the coefficients ofX2 and fX2,

we have ag + bh = 1, bg + ah = 0. Thus we have a = g and b = h. Similarly, comparing the

coefficients ofX3 and fX3 inX1⊗X1⊗X3 gives us a = 1 and b = 0. ComputingX2⊗X2⊗X3 and

comparing the coefficients of X3 and fX3, we have l = 1 and m = 0. Computing X1 ⊗X3 ⊗X3

in two different ways and comparing the coefficients for X2 and fX2, we have p = 1 and q = 0.

Observing that the simple objects 1, X1, X2 and X3 generate a fusion subcategory with the same

fusion rules as PSU(2)7 we obtain the stated result.

Lemma 5.24. Let B be a self-dual super-modular category. Suppose that the corresponding Ŝ has

one of the following forms



1 φ2
1 φ1 φ1

φ2
1 1 −φ1 −φ1

φ1 −φ1 −1 φ2
1

φ1 −φ1 φ2
1 −1


,



1 φ2
2 φ2 φ2

φ2
2 1 −φ2 −φ2

φ2 −φ2 −1 φ2
2

φ2 −φ2 φ2
2 −1


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

1 φ1 1 φ1

φ1 −1 φ1 −1

1 φ1 −1 −φ1

φ1 −1 −φ1 1


,



1 φ2 1 φ2

φ2 −1 φ2 −1

1 φ2 −1 −φ2

φ2 −1 −φ2 1


,

then B has the same fusion rules as Fib�Fib� sVec, [PSU(2)6�PSU(2)6]Z2 , Sem�PSU(2)6�

sVec, or Sem�Fib� sVec, respectively.

Proof. Consider the first Ŝ-matrix. We have N̂1
11 = N̂2

11 = N̂3
11 = N̂3

12 = N̂2
22 = N̂3

33 = 1 and

N̂2
12 = N̂3

13 = N̂3
22 = N̂3

23 = 0. Without loss of generality, we may assume N2
22 = 1, N f2

22 = 0 by

interchanging X2 and fX2 if necessary. Thus X⊗2
2 = 1 ⊕ X2, so X2 generates a subcategory F

with fusion rules like those of Fib, which is necessarily modular. In particular B ∼= F �D, where

D is a super-modular category of rank 4. The classification results of [19] now imply that B has

the same fusion rules as Fib�Fib� sVec.

For the second Ŝ-matrix, we have that the associated naive fusion coefficients are N̂1
11 = 4,

N̂2
11 = N̂3

11 = N̂2
22 = N̂3

33 = 2, N̂3
12 = 1, N̂2

12 = N̂3
13 = N̂3

22 = N̂3
23 = 0. We may assume N3

12 = 1

and N f3
12 = 0 by interchanging X3 and fX3 if necessary. Using Corollary 3.18 on Ŝ12 gives

−θ1θ2φ2 = (N1
12 −N

f1
12 )φ2

2θ1 + φ2θ3.

Dividing by φ2, we have

−θ1θ2 = (N1
12 −N

f1
12 )φ2θ1 + θ3.

Taking absolute value on both sides, we get

1 =
∣∣(N1

12 −N
f1
12 )φ2θ1 + θ3

∣∣ ≥ ∣∣|(N1
12 −N

f1
12 )φ2| − 1

∣∣.
So we must have N1

12 = N f1
12 = 1. Similarly, applying Corollary 3.18 to Ŝ33 and Ŝ13 gives
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−θ2
3 = 1 + (N3

33 −N
f3
33 )φ2θ3, −θ1θ3φ2 = (N1

13 −N
f1
13 )φ2

2 + φ2θ2

and we get N3
33 = N f3

33 = 1 and N3
11 = N f3

11 = 1. A parallel calculation for Ŝ22 yields N2
22 =

N f2
22 = 1. By using Corollary 3.18 again for Ŝ11, we get

θ2
1 = (N1

11 −N
f1
11 )φ2

2θ1 + 1.

The potential choices of (N1
11, N

f1
11 ) are (2, 2), (4, 0), (0, 4), (1, 3) and (3, 1), but since φ2

2 > 2 the

only possibility is (2, 2). This category has the same fusion rules as [PSU(2)6 � PSU(2)6]Z2 , see

the Appendix.

In the last two cases, observe that B must contain a modular subcategory of the form C(Z2, Q)

by Lemma 3.25. Then B ∼= C(Z2, Q)�D, where D is a rank 4 super-modular category. The result

now follows from the classification in [19].
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6. SUMMARY

The following conjecture was first asked in [19] when classifying super-modular categories up

to rank 6. Our results provide further supporting evidence.

Conjecture 6.1. If B is a super-modular category and the corresponding Ŝ is the S-matrix for

some modular category. Then B is split super-modular.

The twist equation(see [61, Theorem 2.14]) for modular categories is very helpful for classify-

ing low modular categories. One can use this property to figure out the bound for the dimensions,

thus could bound all the solutions. We do not have a parallel inequality for the fermionic quotient

of super-modular categories so far. By mimicking the proof, we can have some inequalities for the

dimensions of super-modular categories. However, these conditions are too weak to use for our

classification process. The major obstacle here is that the S-matrix is degenerate.

The Gauss sum mentioned in Section 3.4 is an invariant for pre-modular categories. For super-

modular, it is always 0. Higher Gauss sums were recently studied in [56]. It is an interesting

question to study the higher Gauss sums for super-modular categories.
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APPENDIX A

MAGMA CODE

For our computational experiments we used the symbolic algebra software Magma [13]. In

this appendix we give some basic pseudo-code and some sample Magma code to illustrate how we

found the image of ρ̂(Γθ) in our case study, so that the interested reader can do similar explorations.

Given an integer m, the (m + 1) × (m + 1) Ŝ and T̂ 2 matrices obtained from PSU(2)4m+2 are

given in equation (4.2). In order to use the Magma software we express the entries of Ŝ and T̂ 2

in the cyclotomic field Q(ω), where ω is an (8m + 8)-th root of unity. For this we must write

sin
(

(2i+1)(2j+1)π
4m+4

)
and

√
2(m+ 1) in terms of ω for which we use the result of generalized form

of quadratic Gauss sums [7].

Here is the pseudocode to find ρ̂(Γθ) for PSU(2)4m+2:

algorithm projective image:

input: integer m

output: ρ̂(Γθ)

set K to be the cyclotomic field Q(ω), where ω is an (8m+ 8)-th root of unity.

set M = 2(m+ 1)

initialize S and T2 to be (m+ 1)× (m+ 1) zero matrices over K.

initialize α = 0.

step 1: calculate α

if M ≡ 0 (mod 4) return α =
∑M−1

n=0 ω4n2
/(1 + ωM)

else Consider M/2 = m + 1 (mod 4). Notice there are only two cases: m + 1 ≡ 1 (mod 4) and

m+ 1 ≡ 3 (mod 4).

if m+ 1 ≡ 1 (mod 4) return α = ωm+1−ω−(m+1)

ω2m+2

∑m
n=0 ω

8n2
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else return α = ωm+1−ω−(m+1)

ω2m+2

∑m
n=0 ω

8n2
/(ωM)

return α = 2/α.

step 2: define the entries

for 1 ≤ i, j ≤ m+ 1, Si,j = α
ω(2i−1)(2j−1) − ω−(2i−1)(2j−1)

2(ωM)
and T2j,j = ω(2(j−1))2+4(j−1)

step 3: find the projective image

set A to be the matrix group generated by S and T2 defined above, and ZK the group of scalar

matrices over K. The projective image of A is then A/(ZK ∩ A).

The following code can be used in Magma [13] to find the ρ̂(Γθ) in this case, and slight modi-

fications will give the other headings of Table 4.1:

m:=1;

K<w>:= CyclotomicField(8*m+8);

GL:=GeneralLinearGroup(m+1,K);

M:=2*(m+1);

alpha:=0;

if M mod 4 eq 0 then

for n:=0 to M-1 do

alpha:=alpha + w^(4*(n^2));

end for;

alpha:=alpha/(w^M+1);

else

if (m+1) mod 4 eq 1 then

for n:=0 to m do

alpha:= alpha + w^(8*n^2);

end for;
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else

for n:=0 to m do

alpha:=alpha + w^(8*(n^2));

end for;

alpha:=alpha/(w^M);

end if;

alpha:=((w^(m + 1) - w^(-(m + 1)))/(w^(2*m + 2)))*alpha;

end if;

alpha:=2/alpha;

S:=ZeroMatrix(K,m+1,m+1);

for i:=1 to m+1 do

for j:=1 to m+1 do

S[i,j]:=(w^((2*i-1)*(2*j-1))-w^(-(2*i-1)*(2*j-1)))/(2*(w^M));

S[i,j]:=S[i,j]*alpha;

end for;

end for;

T2:=ZeroMatrix(K,m+1,m+1);

for j:=1 to m+1 do

T2[j,j]:=w^((2*(j-1))^2+4*(j-1));

end for;

A:=MatrixGroup<m+1,K|S,T2>;

ZK:=MatrixGroup<m+1,K|w*IdentityMatrix(K,m+1)>;

F:=(A/(A meet ZK));

77



APPENDIX B

REALIZATIONS OF THE FUSION RULES

Here we record the data for some of the realizations of the super-modular categories that appear

in this article, both modular and super-modular, as well as the families of categories in which they

reside. We write the T -matrix as an n-tuple with the understanding that these are the diagonal

entries.

B.1 Pointed Modular Categories

Pointed braided fusion categories are classified, see [31]. They correspond to pairs (A,Q),

where Q is a symmetric quadratic form on A (with values in U(1)). The fusion rules of C(A,Q)

are the same as the multiplication in A, and the S- and T -matrices are determined by Q as follows:

Sa,b = Q(a+b)
Q(a)Q(b)

and θa = Q(a). If the symmetric bilinear form given by Sa,b is non-degenerate

then C(A,Q) is modular.

For example the semion theory Sem = C(Z2, Q) that appears in our classification has the

following modular data: S =

1 1

1 −1

, and T = (1, i).

B.2 PSU(2)k

The rank k+1 modular category SU(2)k obtained from Uqsl2 at q = eπi/(2+k) contains the sub-

category PSU(2)k whose simple objects have even labels (“integer spin" in the physics literature).

Denote by $ the fundamental weight of type A1, so that X$ tensor generates SU(2)k. The object

labeled by k
2
$ is always invertible. When k ≡ 2 (mod 4) the category PSU(2)k is super-modular

with f = X k
2
$, when 4 | k, there is a boson b = X k

2
$ in PSU(2)k, and when k is odd, PSU(2)k is

modular, with X k
2
$ a semion (not in PSU(2)k.)

The (modular) Fibonacci theory Fib = PSU(2)rev3 as well as PSU(2)7 appear in our classifica-

tion, and the data can be found in [61].
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Some low rank super-modular categories that appear in this article are:

• PSU(2)6 with data:

S =

 1 1 +
√

2

1 +
√

2 −1

⊗
1 1

1 1

 and T = (1, i)⊗ (1,−1).

• PSU(2)10 with data:

S =


1 2 +

√
3 1 +

√
3

2 +
√

3 1 −1−
√

3

1 +
√

3 −1−
√

3 1 +
√

3

⊗
1 1

1 1

 and T = (1,−1, eπi/3)⊗ (1,−1).

• PSU(2)14 with data:

S =



1 1 + x 1 +
√

2 + x 1 +
√

2 +
√

2x

1 + x 1 +
√

2 +
√

2x 1 −1−
√

2− x

1 +
√

2 + x 1 −1−
√

2−
√

2x 1 + x

1 +
√

2 +
√

2x −1−
√

2− x 1 + x −1


⊗

1 1

1 1

,

where x =
√

2 +
√

2 and T = (1, eiπ/4, e3iπ/4,−i)⊗ (1,−1).

The full sequence of super-modular categories PSU(2)4m+2 was studied in [16, 11], where the

modular data can be found. If we order the simple objects [1, X1, . . . , Xr−1, fXr−1, . . . , fX1, f ] =

[Y0, . . . , Y2(r−1)] the fusion rules are completely determined by the rule Y1⊗Yk ∼= Yk−1⊕Yk⊕Yk+1

for 0 < k < 2(r − 1) and the obvious rules involving Y2(r−1) = f and Y0 = 1.

B.3 Other Examples

The following are spin modular categories coming from quantum groups with fermion f so

that the subcategory 〈f〉′ is super-modular, where r,m ∈ N:

• SU(4k + 2)4m+2,

• SO(2k + 1)2m+1,

• Sp(2r)m with rm = 2 (mod 4),
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• SO(2r)m with r = 2 (mod 4) and m = 2 (mod 4),

• (E7)4m+2.

The pointed sub-category of the rank 13 modular category SO(12)2 is sVec� sVec and hence

contains two fermions labeled by 2$5 and 2$6, where $i are the fundamental weights of type D6.

The centralizer of either of these fermions is super-modular and has modular data:

S :=



1 1 2
√

6

1 1 2 −
√

6

2 2 −2 0
√

6 −
√

6 0 0


⊗

1 1

1 1

 and T = (1, 1, e2πi/3, e3πi/8) ⊗ (1,−1). If we

label the simple objects of dimension
√

6 by X3 and fX3 then the fusion rules are determined by

X⊗2
3
∼= 1⊕X1 ⊕X2 ⊕ fX2, X⊗2

1
∼= 1, X⊗2

2
∼= 1⊕ fX1 ⊕X2 and X2 ⊗X3

∼= X3 ⊕ fX3.

Finally we observe that if (C1, f1) and (C2, f2) are spin modular categories, then (f1, f2) ∈

C1�C2 is a boson and hence can be condensed to obtain a new spin modular category ([C1�C2]Z2)0,

where we de-equivariantize by Rep(Z2) ∼= 〈(f1, f2)〉 and then take the trivial component of the

corresponding Z2-grading. For example applying this to PSU(2)6 we obtain the prime rank 8

example (PSU(2)6 � PSU(2)6)Z2 with data:

S :=



1 3 + 2
√

2 1 +
√

2 1 +
√

2

3 + 2
√

2 1 −1−
√

2 −1−
√

2

1 +
√

2 −1−
√

2 −1 3 + 2
√

2

1 +
√

2 −1−
√

2 3 + 2
√

2 −1


⊗

1 1

1 1

 and T = (1,−1, i, i) ⊗

(1,−1). The fusion rules may be readily determined from those of PSU(2)6 by condensing the

boson b := (f1, f1). Notice that b ⊗ X 6∼= X for any simple X so that there is no ambiguity in

labeling the objects in the de-equivariantization. Setting f := [(f1,1)] = [(1, f1)] we have

X⊗2
1
∼= 1⊕ 2(X1 ⊕ fX1)⊕X2 ⊕ fX2 ⊕X3 ⊕ fX3, X1 ⊗X2

∼= X3 ⊕X1 ⊕ fX1

X1 ⊗X3
∼= X2 ⊕X3 ⊕ fX3, X2 ⊗X3

∼= X1, and X⊗2
2
∼= 1⊕X2 ⊕ fX2

from which all fusion rules can be recovered.
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