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1. Notation

• p := a fixed prime

• K := a p-adic field, i.e. a finite extension of Qp

• K := an algebraic closure of K

• OK := the ring of integers of K

• κ := the residue field of OK

• q := the cardinality of κ

• GK := Gal(K/K)

2. The Weil group

• Let σK be the arithmetic Frobenius automorphism (x 7→ xq) and φK =

σ−1
K the geometric Frobenius.

• Let IK be the inertia group of K, i.e. IK := ker(π : GK → Gκ).

• Note that Gκ = Gal(K/Knr) ∼= Ẑ where Knr is the maximal unramified

extension.

• The Weil group WK is the inverse image of 〈σK〉 under π,

0→ IK →WK → 〈σK〉→ 0,

endowed with the topology of a locally compact group such that WK →
〈σK〉 ∼= Z is continuous where Z has the discrete topology and IK has
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the profinite topology from GK. This is not the subspace topology. The

canonical injective homomorphism ΦK : WK ↪→ GK is continuous and

from the inclusion.

• Alternatively, WK
∼= Proj limLWL/K, where WL/K :=WK/W

c
L and

1 L× WL/K Gal(L/K) 1

1 L ′× WL ′/K Gal(L ′/K) 1,

NL ′/L

so the canonical injective homomorphism ΦK : WK ↪→ GK with dense

image is the projective limit of homomorphisms WL/K ↪→ Gal(L/K).

3. Representations of the Weil group

Definition 3.1. Let Rep(G) denote the category of representations of G.

Remark 3.2. Since ΦK is injective with dense image, we can identify Rep(GK)

with a sub-category of Rep(WK).

Definition 3.3. A representation of WK that lies in the subcategory corre-

sponding to Rep(GK) is called Galois-type.

Example 3.4. Via rK : K× ∼= Wab
K , the absolute value |·|K on K× gives the

absolute value character ω : WK → C× sending x 7→ |x|K. This has infinite

image and therefore is not a character of GK.

Proposition 3.5. A representation ρ of WK is of Galois-type if and only if

ρ(WK) is finite.

Proof. The open subgroups of WK of finite index are the WL for finite L/K.

Their intersection is kerΦ = 1. �
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Definition 3.6. Denote ωs :WK → C× the quasi-character sending x 7→ |x|s
for s ∈ C.

Proposition 3.7 ([Tat67, Lemma 2.3.1.]). Every one-dimensional represen-

tation of WK that is unramified (i.e. trivial on IK) is of the form ωs for some

s ∈ C.

Proof. Any unramified quasi-character χ of WK will depend only on ω and, as

a function ofω, is itself a quasi-character χ ′ of the value group {N(p)n | n ∈ Z}

of WK. This is given by s = − log(χ ′N(p))
logN(p)

. �

Theorem 3.8 ([Del73, Section 4.10]). Every irreducible representation of WK

is of the form r = r ′⊗ωs for some s ∈ C and representation r ′ of Galois-type.

In fact, this is true for any extension of Z by a profinite group.

Proof. Every representation of WK is trivial on a finite-index subgroup J of IK.

Since IK/J is finite, φn acts trivially on IK/J by conjugation for some n > 0

and so is central in WK/J. Each power πm of φn has exactly one eigenvalue

am if the representation is irreducible. Then each irreducible representation

has a type given by

(am) ∈ lim−→
n|m

{Xm, φn,m}m,

where Xm = C× and φn,m(x) = x
m
n .

The representations of WK of type s form an abelian category Ms(WK), and

Rep(WK) =
⊕
s∈C

Reps(WK)

The representations of type 1 are precisely the Galois-type representations

Rep(GK). Then we have an isomorphism

· ⊗ωs : Rep(GK) → Reps(WK).
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Proposition 3.9. A Galois-type representation of WK is irreducible iff it is

irreducible as a GK-representation. Furthermore, if ρ is any irreducible WK-

representation, it is of Galois-type iff the image of det ◦ρ is a subgroup of C×

of finite order.

Definition 3.10. For any finite extension L/K, let WL := φ−1
K (GL) ⊂ WK

where GL := Gal(K/L). Note: WK/WL
∼= GK/GL ∼= homK(L, K) is finite.

Then we have the restriction functor

resL/K : Rep(WK) → Rep(WL)

given by ρ 7→ ρ|WL
. The induction functor

indL/K : Rep(WL) → Rep(WK)

is given by (ρ, V) 7→ (τ, {f : WK → V | f(xw) = ρ(x)f(w) for all x ∈ WL, w ∈

WK}). These functors satisfy Frobenius reciprocity.

4. Weil–Deligne Representations

Definition 4.1. A Weil–Deligne representation of WK is a triple (ρ, V,N)

where (ρ, V) is a representation of WK and N is a nilpotent C-linear endomor-

phism of V such that

ρ(x)Nρ(x)−1 = |x|N.

It is called Frobenius semisimple if ρ is semisimple.

Definition 4.2. Let (ρ1, V1, N1) and (ρ2, V2, N2) be two Weil–Deligne repre-

sentations.
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Define the representation (ρ, V,N) = (ρ1, V1, N1) ⊗ (ρ2, V2, N2) by V =

V1 ⊗ V2 and, for x ∈WK and vi ∈ Vi,

ρ(x)(v1 ⊗ v2) := ρ1(x)v1 ⊗ ρ2(x)v2

N(v1 ⊗ v2) := N1v1 ⊗ v2 + v1 ⊗N2v2.

The formula is a result of:

log(ρ1(x)⊗ ρ2(x)) = log(ρ1(x)⊗ 1+ 1⊗ ρ2(x)).

Define the representation (ρ, V,N) = hom
(
(ρ1, V1, N1), (ρ2, V2, N2)

)
by V =

hom(V1, V2) and, for φ ∈ hom(V1, V2), x ∈WK and vi ∈ Vi,

(ρ(x)φ)(v1) := ρ2(x)(φ(ρ1(x)
−1v1))

(Nφ)(v1) := N2(φ(v1) − φ(N1v1)).

The contragredient ρV of a Weil–Deligne representation is hom(ρ, 1) where

1 is the trivial one-dimensional representation.

Remark 4.3. If x ∈ WK corresponds to the uniformizer πK via the Artin reci-

procity map ArtK : K× → GabK , then N is conjugate to qN and hence has no

nonzero eigenvalues, i.e. N is automatically nilpotent.

Remark 4.4. The kernel of N is stable under WK, so (ρ, V,N) is irreducible iff

(ρ, V) is irreducible and N = 0. So the irreducible Weil–Deligne representa-

tions of WK are the irreducible representations of WK.

Remark 4.5. The category of WDRepk(WK) does not depend on the topology

on k. Thus, we can identify WDRepC(WK) with WDRepQ`
(WK).

Example 4.6. If n = 1, then N is nilpotent and 1-by-1 and hence zero. Then

a Weil–Deligne representation is just a continuous homomorphism WK → C×.
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Definition 4.7. The Weil–Deligne group W ′
K is the group scheme WK n Ga

over Q given by the action

wxw−1 = |w| x,

for all w ∈WK. Composition is given by

(w1, x1)(w2, x2) = (w1w2, |w2|−1 x1 + x2).

Remark 4.8. A Weil–Deligne representation of WK is the same as a represen-

tation of W ′
K. This arises from the fact that finite-dimensional representations

of the additive group Ga correspond to nilpotent endomorphisms.

5. L-adic representations

Theorem 5.1 (Grothendieck’s l-adic monodromy theorem). Let F be an `-adic

field, where ` 6= p is prime. Let (ρ, V) be a finite-dimensional representation

of WK over F. Then there exists a finite-index open subgroup H ⊂ IK such that

ρ(x) is unipotent for all x ∈ H.

Remark 5.2. A similar theorem is true if we replace WK by GK because unipo-

tent subgroups are closed in the image of GK and WK ⊂ GK is dense.

Definition 5.3. Let t` : IK → Q` be a nonzero homomorphism. (This exists

and is unique up to a constant multiple because the wild ramification group

PK is a pro-p-group and IK/PK ∼=
∏
6̀=p Z`).

We have t`(xyx
−1) = |x| t`(y) for all x ∈ WK, y ∈ IK (because conjugation

by x induces raising to the |x| power in IK/PK).

Corollary 5.4. There exists a unique nilpotent operator N of V such that

ρ(x) = exp(t`(x)N) for all x ∈ H in some open subgroup of IK. (This is N

from now on.)
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Proof. Nilpotency and uniqueness follow directly from writingN = t`(x0)
−1 log(ρ(x0))

for some x0 ∈ H∩IK such that t`(x0) is nontrivial (using the `-adic monodromy

theorem for nilpotency).

Existence follows because ρ|H∩IK factors through t` as some continuous repre-

sentation of Z`(1) which coincides with the continuous representation Z`(1) →
GLF(V), x 7→ exp(xN) on t`(x0) and hence on t`(x0)Z`(1) for all x0 ∈ H ∩ IK
such that t`(x0) is nontrivial. Thus, they coincide on H ∩ IK. �

Remark 5.5. Corollary 5.4 allows us to attach a Weil–Deligne representation

to each representation of WK. But we cannot naively use (ρ, V) 7→ (ρ, V,N)

since (ρ, V) is not smooth in general.

Theorem 5.6 ([Del73, Section 8]). There is an equivalence of categories

between finite dimensional continuous representations of WK and the Weil–

Deligne representations of WK

(−−)WD :Repk(WK) → WDRepk(WK)

(ρ, V) 7→ (ρφ, V,N)

ρφ(φ
nx) = ρ(φnx) exp(−t`(x)N).

Proof. The condition

ρφ(x)Nρφ(x)
−1 = |x|N,

holds because the exponential commutes with N. Exercise: show that (ρφ, V)

is a continuous representation of WK.

For a map f : (ρ1, V1) → (ρ2, V2, the uniqueness of the Ni gives

f ◦N1 = N2 ◦ f.

So (−−)WD is a faithful functor.
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The uniqueness of the monodromy operator implies that N is the mon-

odromy operator associated to (ρφ, V) �

Remark 5.7. The functor depends on our choice of φ and t`, but only up to a

natural automorphism of the identity functor.

Remark 5.8. We can view the `-adic representations of GK over Q` as a sub-

category of Weil–Deligne representations over C (or over Q`) via Theorem 5.6,

Remark 4.5, and Remark 3.2.

References

[Com14] Johan M. Commelin. Weil–Deligne representations, December 2014.

[Del73] P. Deligne. Les constantes des equations fonctionnelles des fonctions l. In Pierre

Deligne and Willem Kuijk, editors, Modular Functions of One Variable II, pages

501–597, Berlin, Heidelberg, 1973. Springer Berlin Heidelberg.

[Tat67] J. T. Tate. Fourier analysis in number fields, and Hecke’s zeta-functions. In Alge-

braic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 305–347.

Thompson, Washington, D.C., 1967.

[Tat79] J. Tate. Number theoretic background. In Automorphic forms, representations

and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore.,

1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 3–26. Amer. Math. Soc.,

Providence, R.I., 1979.

[Wed08] Torsten Wedhorn. The local Langlands correspondence for GL(n) over p-adic

fields. In School on Automorphic Forms on GL(n), volume 21 of ICTP Lect. Notes,

pages 237–320. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008.

(Robin Zhang) Department of Mathematics, Columbia University

Email address: rzhang@math.columbia.edu


	1. Notation
	2. The Weil group
	3. Representations of the Weil group
	4. Weil–Deligne Representations
	5. L-adic representations
	References

