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1 Motivation

The goal of this lecture is to build a bridge between the theory of Quantum Hall Effect,
as we have seen it until now, and the Chern-Simons theories which will be discussed
in the upcoming lectures. The pillars of the bridge are built out of the theory of braid
statistics and the bridge will lead us directly into the core of Chern-Simons theory. Braid
statistics can be found in the Fractional Quantum Hall effect, by introducing singular-
like disturbances of the electron density of the quantum Hall fluid and looking at their
behaviour under exchange processes.

We start by introducing the mathematics behind Braid-Statistics, their abelian repre-
sentation theory and then we see how they fit in the theory of the fractional quantum
Hall effect.

2 Exchange Statistics and Anyons

2.1 Geometric Braids

We define the configuration space of N-particles living on a manifold M , which for
our purposes may be connected and locally simply connected, by:

CN = (MN −∆N )�G
where

• ∆N = {(x1, · · · , xN )|∃i, j : xi = xj} , which we subtract, to prevent two or more
particles from occupying the same point in our space-manifold.

• G is the group that describes permutation-symmetry among identical particles.
For example if we have N-identical particles: G = SN , the symmetric group of
N-objects.

We give now a definition for the N-Strand Braid Group onM as:

BN (M) := π1(CN )

where an element of the braid group, [α] ∈ BN (M) is the class describing an exchange
process, that begins and ends with the same particle configuration up to interchanges of
indistinguishable particles. We may visualize the trajectories of [α(t)] in M × [0, 1]. For
M = R2 we have for example such a process in B4(R2) : The strands are allowed to
move in the xy-plane, but the end configuration is confined by the start configuration,
as we just explained.

One could think of interpreting this strands as worldlines of particles, and try to un-
derstand how the path-integral formalism would react, briefly: evolution operators are



Figure 1: Example of a geometric braid in B4(R2)

given by unitary representations of BN (M) and so the propagator splits into contribu-
tions from homotopically inequivalent path sectors, labeled by the classes in π1(CN ).
Schematically we have:

G(Xb, tb;Xa, ta) =
∑

[α]∈π1(CN )

U([α]) ·G[α](Xb, tb;Xa, ta)

where [α] parametrizes a particle exchange process and U([α]) is the operator represen-
tation of the statistics of the transformation.

2.2 Representations

We usually think of exchange statistics of our system to be given by 1-dimensional uni-
tary representations of the group that prevails our statistics, namely the Braid group.
Although higher representations are of great interest and give rise to theories with non-
abelian statistics and superselection rules, we will stick for now to the abelian case and
we will discuss those some other time1.

We have sketched above how a braid in 2 dimensions may look like, and it turns out
that we can find abelian braid statistics in their full beauty only in 2-d systems! Lets see
why this is the case:

• For dimM ≥ 3 the braid group reduces to its subgroup, the symmetric group,
BN (M) = SN . This very general result was proven in Fadell[62],but at least in

1Bill Evans: "Some Other Time" - https://www.youtube.com/watch?v=WV53dWisQBw
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R3 one may try to imagine that relative to the 2d case, we have enough degrees of
freedom, so that we can homotopically unbraid the strands by lifting them in the
third dimension, without cutting through any of them. That would mean that all
configurations of worldlines producing the same permutation of particle-positions
are homotopically equivalent and this reduces the braid group into the symmetric
group.

If we consider the 1-dim representations of SN , we have the trivial one, which
gives rise to bosonic statistics and the alternating one which gives rise to fermionic
statistics. These are exactly the statistics we expect to see in the 3 dimensional
world we live in.

• So let us now constrain into 2-dim and set for simplicityM = R2:

Here in our exchange statistics, "non-trivial"-"pure" braids statistics, will be playing a
role. Before we proceed to the representation theory, we shall give a description of
Artin’s braid group in terms of generators and relations. BN is the group of infinite
order generated by halftwists:

Figure 2: Halftwists-Generators

which obey the relations:

Figure 3: Halftwists-Generators
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So the Artin braid group is given as:

BN = 〈{Ri}i=1,··· ,N |RiRj = RjRi ∀i, j : |i− j| ≥ 2 ; RiRjRi = RjRiRj〉

One dimensional representations of BN are in general of the form : D[Rj ] = eiθ ∀j where
θ can take any value in [0, 2π) So we call these representations Any-ons, and F.Wilczek
is the one we have to blame for the name...

In the early 90’s we understood that the only reasonable physical manifestations of
braid statistics are Chern-Simons theories, with a few exceptions of some particular O(3)
non-linear σ-models which share similar characteristics with the Chern-Simons theories
(their Hopf-terms are equivalent to C.S.-theories), see for example Fröhlich[3]. But now
it is time to go back and consider how this kind of statistics fits into QHE.

3 Fractional Quantum Hall Effect

3.1 Quasi-Holes

We consider excitations of the ν = 1
m - Laughlin wavefunction.

• The initial ground-state wavefunction we introduced in the last lecture by Roman,
had the form:

ψ(z) =
∏
k≤l

(zk − zl)me
−

∑N
i

|zi|
2

4l2
B

where lB =
√

~
B·e .

• By disturbing/ "creating a hole" in the electron density distribution at a point η ∈ C,
we get a new factor in the wavefunction:

ψ(z; η) =
N∏
i

(zi − η)
∏
k≤l

(zk − zl)me
−

∑N
i

|zi|
2

4l2
B

We say that this wavefunction describes a quasi-hole at the point η ∈ C.

• In the same manner we can create m-such quasi holes at points {ηj}j=1,··· ,m and
we obtain a wavefunction:

ψ =
m∏
j

N∏
i

(zi − ηj)
∏
k≤l

(zk − zl)me
−

∑N
i

|zi|
2

4l2
B

• Now lets suppose that we bring all m quasi-holes at one point:
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ψ(z; η) =

N∏
i

(zi − η)m
∏
k≤l

(zk − zl)me
−

∑N
i

|zi|
2

4l2
B

What we observe is that the first product here describes the deficit of an electron at
η, where η is a non- dynamical variable. Heuristically, one may say that each one
of the m-quasi-holes behaves as 1

m th of an electron and carries fractional charge
+e
m , (where we take the charge of the electron to be −e).

• Interpreting this wavefunction in terms of the plasma analogy, which was also
introduced in the last lecture, we obtain a potential for a quasi-hole/ impurity in
the plasma:

U = −m2
∑

log

(
|zi − zj |
lB

)
+

m

4l2B

N∑
i

|zi|2 −m
∑

log

(
|zi − η|
lB

)
Where the first two terms build the potential for the pure plasma, with no impu-
rities, and the last term gives the particle-quasi hole interaction. As we have dis-
cussed last time, the electrons, as particles in the quantum Hall fluid carry charge
q = −m, so the impurities carry charge: 1 = − q

m . Therefore the effective charge
missing from the fluid is 1

m of an electron. We will use the plasma analogy to see
if there is any physical validity in the heuristic we have discussed in the last point.

3.2 The Berry-Connection in the plasma analogy

Let |η〉 = |η1, · · · , ηM 〉 be a state of M-quasi-holes, that is :

〈z, z̄|η〉 =

M∏
j

N∏
i

(zi − ηj)
∏
k≤l

(zk − zl)me
−

∑N
i

|zi|
2

4l2
B

which we normalize to: |ψ〉 = 1
Z |η〉, with :

Z := 〈η|η〉 =

∫ ∏
d2zi exp

∑
ij

log
(
|zi − zj |2

)
− 1

2l2B

N∑
i

|zi|2 +m
∑
ij

log
(
|zi − ηj |2

)
Which plays the role of the partition function in the plasma analogy in the presence
of impurities at points {ηj}j . Now we compute for this model the holomorphic Berry-
connection :

Aη(η, η̄) = −i 〈ψ| ∂
∂η
|η〉 =

i

2Z
∂Z
∂η
− i

Z
〈ψ| ∂

∂η
|η〉

and we can rewrite this expression for the connection just in terms of Z and its deriva-
tives by:

∂Z
∂η

=
∂

∂η
〈η|η〉 〈η| is antihol.−−−−−−−−→ ∂Z

∂η
= 〈ψ| ∂

∂η
|η〉
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So we have for the holomorphic and antiholomorphic Berry-connections:

Aη(η, η̄) = − i

2Z
∂Z
∂η

=
i

2

∂ log(Z)

∂η

Aη̄(η, η̄) =
i

2

∂ log(Z)

∂η̄

Now we are left with the dirty job to calculate ∂ log(Z)
∂η . Instead of performing this task

by brute force, we will use some physical intuition to simplify it. In the plasma analogy,
there is an effect taking place, called screening. There, mobile particles of the quantum
Hall fluid, cluster around the impurities, so that they effectively screen the quasi-hole-
potential. This means that from great distances we can not tell the exact position of the
quasi-holes. Therefore the free energy F of the system must be independent of the exact
positions {ηj}j . We know for the free energy that F ∝ log (Z), but for an equality to
hold, there are two ingredients to be added:

1. The energy cost between the impurities and the constant background charge.

2. The Coulomb-interaction energy between the quasi-holes.

These considerations lead us to a "corrected" potential for the plasma with M-impurities:

U ′ = U +
1

4l2B

M∑
i

|ηi|2 −
∑

log

(
|ηi − ηj |
lB

)

=−m2
∑
i,j

log

(
|zi − zj |
lB

)
+

m

4l2B

N∑
i

|zi|2 −m
∑
i,j

log

(
|zi − ηj |
lB

)

+
1

4l2B

M∑
i

|ηi|2 −
∑

log

(
|ηi − ηj |
lB

)
We can also write down the new partition function, for the corrected potential:

C :=

∫ ∏
i

dzie
−β·U ′({zi}i,{ηj}j) = exp

(
1

2ml2B

M∑
i

|ηi|2 −
1

m

∑
log
(
|ηi − ηj |2

))
· Z

From the screening-argument we have that the free energy, and therefore also the cor-
rected partition function C, are independent from the exact position of the impurities
and this will allow us to calculate ∂ log(Z)

∂η easily, as:

Z = C · exp

(
− 1

2ml2B

M∑
i

|ηi|2 +
1

m

∑
log
(
|ηi − ηj |2

))

=⇒

Aηi = − i
2m

∑
j 6=i

1
ηi−ηj + i η̄i

4ml2B
Holomorphic Berry-Conncetion

Aη̄i = + i
2m

∑
j 6=i

1
η̄i−η̄j − i

η̄i
4ml2B

Anti-Holomorphic Berry-Conncetion

We will use now the computed Berry-Connection to discuss explicitly the charge and the
statistics of the quasi-holes.
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3.3 Fractional Charge

Let us choose a generic quasi-hole from our system at a point η and we take that hole
around a closed path P, which does not enclose any other quasi-hole. We calculate the
geometric phase of the process with respect to the Berry-Connection:

eiγ = exp

(
−i
∮
P
Aηdη − i

∮
P
Aη̄dη̄

)
Under the above assumption for the chosen path, the relevant part of the connection
reduces to:

Aηi = i
η̄i

4ml2B
; Aη̄i = −i η̄i

4ml2B

Integration of the form: ∮
P
η̄dη = A

gives us just the area A of the enclosed surface. So we obtain in that case, a geometric
phase of:

γ =
e · Φo

m · ~
·A =

e · Φ
m · ~

where e·Φo
m·~ comes from 1

4ml2B
as we have per definition lB =

√
~
B·e .

This looks somehow familiar! Lets take a step back an remember, the basic example for
a geometric phase, which was considered in the context of the Aharonov-Bohm model.
There we calculated the Berry-phase of the process, of taking a particle of charge q
around a path α, enclosing a magnetic flux Φ. Where we have taken the Berry connection
to be proportional to the electromagnetic gauge potential A, namely:

A(x) =
e

~
· A.

Which gave as a phase:

eiγ
′

= exp

(
−i e
~

∮
α

A(x)dx =⇒ γ′ =
q · Φ
~

)
.

By comparing this result with the one obtained from the quantum Hall fluid we have:

γ′ = γ =⇒ q =
e

m

which is result showing an actual physical manifestation of the heuristic, of "fractional
charge", we discussed before just by looking at the form of the Laughlin wavefunction.
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3.4 Fractional Statistics

Now we describe the second case we left open in the discussion above, namely what
happens if we take a quasi-hole around a path P̃ that encloses another quasi-hole. So
lets take a quasi-hole η1 around a closed loop, that encloses the quasi-hole η2. Now we
have also a contribution of the first term appearing in the Berry-connection, and that is
exactly the term describing the statistics of quasi-holes:

eiγ = exp

− 1

2m

∮
P̃

dη1

η1 − η2︸ ︷︷ ︸
=−2πi

+
1

2m

∮
P̃

dη̄1

η̄1 − η̄2︸ ︷︷ ︸
=2πi

 = e
2πi
m︸︷︷︸

statistics

Looking at the exchange statistics of a wavefunction describing two particles, we have
under position exchange:

• ψ(r1, r2) = eiπθψ(r2, r1) after one exchange and

• ψ(r1, r2) = e2πiθψ(r1, r2) after exchanging the positions twice.

We can easily convince ourselves, that in 2 dimensions, exchanging two particles
twice, is the same as taking one particle around the other, in braid-notation:

Figure 4: Particle exchange-twice

But we have already calculated the phase for a quasi-hole taking a closed path once
around an other one, so we have:

e2πiα = e
2πi
m =⇒ α =

1

m
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This means that for a fully filled Landau level, m=1, the quasi-holes are of fermionic
nature, but in general, for a fractional quantum Hall state, the quasi-holes are anyons.

3.5 Ground State Degeneracy

Here we will discuss a property of the Fractional quantum Hall effect which first becomes
apparent when the system lives on a compact manifold. Namely, that the number of
ground states depends on the topology of the ambient manifold!

Remark:Until now we have introduced only the concept of quasi holes, but these
have dual-cousins, the quasi-particles . These respect the exact same statistics but have
charge −em and increase the electron density in the quantum Hall fluid, and therefore
they decrease the relative angular momentum. We will not go into detail but we just
mention that we may produce pairs of quasi-holes/quasi-particles, which then can be
again annihilated.

Let’s consider now the following process taking place on the torus T 2: We produce a
quasi-hole/quasi-particle pair on T 2 and we may think of these as actual punctures on
the surface of the torus. The topology of the punctured torus is given by:

π1(T 2 − pt) = Z ? Z

following the Seifert-van Kampen recipe. Analogously we get higher products for more
punctures... This amalgamated product is per construction non-abelian.

• Take an operation T1 to be the production of a pair, then taking the quasi- particle
around the meridian cycle once and annihilating it with the quasi-hole.

• Analogously, take the operation T2 to be the production of a pair, then taking the
quasi- particle around the horizontal cycle once and annihilating it again with the
quasi-hole.

Figure 5: Operations T1 and T2

Because π1(T 2 − {pt, ..}) is non-abelian, we have for the commutator of the generators
T1 and T2 that [T1, T2] = T1 · T2 · T−1

1 · T−1
2 6= 1.

We can now interpret the commutator as the process taking the quasi-particle around
the quasi-hole. This is explained by the following sketch of the fundamental polytope of
the punctured torus:
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Figure 6: Fundamental polytope and cycles

Here we sliced-open the torus exactly at the point where the quasi-hole was and "we
sliced the quasi-hole in four ". Then we performed the process described by the commu-
tator on the quasi-hole, which lies at first in the middle of the polytope, and deformed-
retracted all paths taken, up to the quasi-hole-singularity. Under this interpretation of
the commutator and from the statistics of quasi-holes and quasi-particles, which we have
already computed explicitly, we know that for a ground state |Ω〉 must hold:

[T1, T2] |Ω〉 = e
2πi
m |Ω〉 .

So we obtain an algebra generated by T1 and T2 and respecting the commutation relation
above:

Ξ = 〈T1, T2|[T1, T2] = e
2πi
m 〉 .

What we also observe is that such an algebra of operators cannot be realized on a sin-
gle ground-state =⇒ Ground-state degeneracy! In particular the lowest dimensional
representation of Ξ is m-dimensional and is isomorphic to:

T1 |n〉 = e
2πi
m |n〉 ; T2 |n〉 = |n+ 1〉 .
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