Quantum simplicial framework

Quantum simplicial implementation

Conclusions

A new quantum computational set-up for algebraic topology via simplicial sets

(based on arXiv:2309.11304)

Roberto Zucchini

Physics and Astronomy Department,

Alma Mater Studiorum University of Bologna,

INFN, Bologna division, Italy

下 化原下 化原下

æ

Quantum Colloquium, CQTS at NYU Abu Dhabi Abu Dhabi, May 6 2024

Roberto Zucchini

康

Summary

Simplicial sets

Quantum simplicial framework

Quantum simplicial implementation

5 Conclusions

<日 > <問 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < | 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > <

Quantum simplicial framework

Quantum simplicial implementation

Conclusions

Summary

1 Introduction

2 Simplicial sets

Quantum simplicial framework

Quantum simplicial implementation

5 Conclusions

・ロト ・ 四ト ・ ヨト ・ ヨー・ りゃつ

Quantum simplicial framework

Quantum simplicial implementation

Conclusions

Summary

1 Introduction

2 Simplicial sets

Quantum simplicial framework

Quantum simplicial implementation

5 Conclusions

・ロト ・ 週 ト ・ 国 ト ・ 国 ・ の 9、

Quantum simplicial framework

Quantum simplicial implementation

イロトス値 トイヨトメヨト

康

Conclusions

Summary

- 2 Simplicial sets
- Quantum simplicial framework
- Quantum simplicial implementation

5) Conclusions

Roberto Zucchini

Quantum simplicial framework

Quantum simplicial implementation

イロトメ使トメヨトメヨト

Conclusions

Summary

- 2 Simplicial sets
- Quantum simplicial framework
- Quantum simplicial implementation

5 Conclusions

Roberto Zucchini

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:

- computational 3-manifold theory;
- computational knot theory;
- computational homotopy theory;
- computational homology theory;
- topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- Computational topology is the study of topological invariants of topological spaces by the methods of algebraic topology and computer science:
 - computational 3-manifold theory;
 - computational knot theory;
 - computational homotopy theory;
 - computational homology theory;
 - topological data analysis.
- Computational topology involves:
 - a wide range of applications;
 - formidable computational challenges.
- In computational topology, many topological spaces embedded in Euclidean spaces are analyzed by associating abstract simplicial complexes to samplings of them mostly using the techniques of persistent simplicial homology.

Quantum simplicial implementation

イロトス値 トイヨト イヨト

.....

Simplicial approaches

- In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer a number of drawbacks:
 - the product and quotient of two simplicial complexes are defined only under restrictive conditions;
 - face identification is not possible in a simplicial complex;
 - the simplicial complexes usually employed (e.g Čech, Vietoris-Rips, witness, alpha, mapper etc. complexes) are characterized by an explosive growth in the number of simplices as the size of the sampling gets large;
 - reduction methods to curtail the size of these complexes (e.g. Whitehead's simplicial contraction) have limited usefulness.

Quantum simplicial implementation

・ロト (過)ト (ほ)ト (ほ)トー

Simplicial approaches

- In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer a number of drawbacks:
 - the product and quotient of two simplicial complexes are defined only under restrictive conditions;
 - face identification is not possible in a simplicial complex;
 - the simplicial complexes usually employed (e.g Čech, Vietoris-Rips, witness, alpha, mapper etc. complexes) are characterized by an explosive growth in the number of simplices as the size of the sampling gets large;
 - reduction methods to curtail the size of these complexes (e.g. Whitehead's simplicial contraction) have limited usefulness.

Quantum simplicial implementation

• 4 国 • 4 国 •

Simplicial approaches

- In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer a number of drawbacks:
 - the product and quotient of two simplicial complexes are defined only under restrictive conditions;
 - face identification is not possible in a simplicial complex;
 - the simplicial complexes usually employed (e.g Čech, Vietoris-Rips, witness, alpha, mapper etc. complexes) are characterized by an explosive growth in the number of simplices as the size of the sampling gets large;
 - reduction methods to curtail the size of these complexes (e.g. Whitehead's simplicial contraction) have limited usefulness.

Quantum simplicial implementation

(4) 国家 (4) 国家

Simplicial approaches

- In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer a number of drawbacks:
 - the product and quotient of two simplicial complexes are defined only under restrictive conditions;
 - face identification is not possible in a simplicial complex;
 - the simplicial complexes usually employed (e.g Cech, Vietoris-Rips, witness, alpha, mapper etc. complexes) are characterized by an explosive growth in the number of simplices as the size of the sampling gets large;
 reduction methods to curtail the size of these complexes (e.g. Whitehead's simplicial contraction) have limited usefulness.

Quantum simplicial implementation

イロト 不得 ト イヨト イヨト

Simplicial approaches

A simplicial complex associated to a sampling (from A. Zomorodian (2010)).

- In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer a number of drawbacks:
 - the product and quotient of two simplicial complexes are defined only under restrictive conditions;
 - face identification is not possible in a simplicial complex;
 - the simplicial complexes usually employed (e.g Čech, Vietoris-Rips, witness, alpha, mapper etc. complexes) are characterized by an explosive growth in the number of simplices as the size of the sampling gets large;

 reduction methods to curtail the size of these complexes (e.g. Whitehead's simplicial contraction) have limited usefulness.

Quantum simplicial implementation

ヨト イヨト

Simplicial approaches

- In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer a number of drawbacks:
 - the product and quotient of two simplicial complexes are defined only under restrictive conditions;
 - face identification is not possible in a simplicial complex;
 - the simplicial complexes usually employed (e.g Čech, Vietoris-Rips, witness, alpha, mapper etc. complexes) are characterized by an explosive growth in the number of simplices as the size of the sampling gets large;
 - reduction methods to curtail the size of these complexes (e.g. Whitehead's simplicial contraction) have limited usefulness.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclu
000000				

- It is reasonable to search for alternative simplicial approaches to computational topology free of these shortcomings.
- The limitations of abstract simplicial complex theory can be traced back to its regarding as admissible only simplices which are non degenerate and have distinct faces and forbidding distinct simplices to share the same set of faces.
- Simplicial set theory is a generalization of simplicial complex theory which dispenses with this restrictions allowing for a wider range of options:
 - simplicial sets allow for both non degenerate and degenerate simplices and simplices with identified faces;
 - distinct simplices sharing the same set of faces are allowed in simplicial sets;
 - the product, quotient and identification operations are always possible for simplicial sets;

イロトス値 トス ヨトメ ヨトー

「夏」 めんで

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
000000				

- It is reasonable to search for alternative simplicial approaches to computational topology free of these shortcomings.
- The limitations of abstract simplicial complex theory can be traced back to its regarding as admissible only simplices which are non degenerate and have distinct faces and forbidding distinct simplices to share the same set of faces.

Simplicial set theory is a generalization of simplicial complex theory which dispenses with this restrictions allowing for a wider range of options:

- simplicial sets allow for both non degenerate and degenerate simplices and simplices with identified faces;
- distinct simplices sharing the same set of faces are allowed in simplicial sets;
- the product, quotient and identification operations are always possible for simplicial sets;

イロトス値を 不良をし

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
000000				

- It is reasonable to search for alternative simplicial approaches to computational topology free of these shortcomings.
- The limitations of abstract simplicial complex theory can be traced back to its regarding as admissible only simplices which are non degenerate and have distinct faces and forbidding distinct simplices to share the same set of faces.
- Simplicial set theory is a generalization of simplicial complex theory which dispenses with this restrictions allowing for a wider range of options:
 - simplicial sets allow for both non degenerate and degenerate simplices and simplices with identified faces;
 - distinct simplices sharing the same set of faces are allowed in simplicial sets;
 - the product, quotient and identification operations are always possible for simplicial sets;

イロトス値 トス ヨトメ ヨトー

「夏」 めんで

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusi
000000				

- It is reasonable to search for alternative simplicial approaches to computational topology free of these shortcomings.
- The limitations of abstract simplicial complex theory can be traced back to its regarding as admissible only simplices which are non degenerate and have distinct faces and forbidding distinct simplices to share the same set of faces.
- Simplicial set theory is a generalization of simplicial complex theory which dispenses with this restrictions allowing for a wider range of options:
 - simplicial sets allow for both non degenerate and degenerate simplices and simplices with identified faces;
 - distinct simplices sharing the same set of faces are allowed in simplicial sets;
 - the product, quotient and identification operations are always possible for simplicial sets;

イロトス値を 不良をし

夏 のへの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusi
000000				

- It is reasonable to search for alternative simplicial approaches to computational topology free of these shortcomings.
- The limitations of abstract simplicial complex theory can be traced back to its regarding as admissible only simplices which are non degenerate and have distinct faces and forbidding distinct simplices to share the same set of faces.
- Simplicial set theory is a generalization of simplicial complex theory which dispenses with this restrictions allowing for a wider range of options:
 - simplicial sets allow for both non degenerate and degenerate simplices and simplices with identified faces;
 - distinct simplices sharing the same set of faces are allowed in simplicial sets;
 - the product, quotient and identification operations are always possible for simplicial sets;

イロト 不得下 イヨト イヨトー

夏 のへの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
000000				

- It is reasonable to search for alternative simplicial approaches to computational topology free of these shortcomings.
- The limitations of abstract simplicial complex theory can be traced back to its regarding as admissible only simplices which are non degenerate and have distinct faces and forbidding distinct simplices to share the same set of faces.
- Simplicial set theory is a generalization of simplicial complex theory which dispenses with this restrictions allowing for a wider range of options:
 - simplicial sets allow for both non degenerate and degenerate simplices and simplices with identified faces;
 - distinct simplices sharing the same set of faces are allowed in simplicial sets;
 - the product, quotient and identification operations are always possible for simplicial sets;

原 ト イ 原 トー

夏 のへの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusi
000000				

- It is reasonable to search for alternative simplicial approaches to computational topology free of these shortcomings.
- The limitations of abstract simplicial complex theory can be traced back to its regarding as admissible only simplices which are non degenerate and have distinct faces and forbidding distinct simplices to share the same set of faces.
- Simplicial set theory is a generalization of simplicial complex theory which dispenses with this restrictions allowing for a wider range of options:
 - simplicial sets allow for both non degenerate and degenerate simplices and simplices with identified faces;
 - distinct simplices sharing the same set of faces are allowed in simplicial sets;
 - the product, quotient and identification operations are always possible for simplicial sets;

トイヨト

《曰》《問》《臣》《臣》:

Simplicial complexes vs. sets

The 7 possible 2-simplices in a simplicial set. The triangle abc is the only one allowed in a complex (from A. Zomorodian (2010)).

Two torus triangulations (from D. Bernoulli (2016))

- Simplicial sets furnish streamlined simplicial models of topological spaces:
 - a 2d torus can be represented as a simplicial set with 1 vertex, 3 edges and 2 triangles, while as a simplicial complex with at least 7 vertices and many more edges and triangles;
 - describing 3d sphere as a simplicial complex requires 5 vertices, 10 edges, 10 triangles, 5 tetrahedrons, while as a simplicial set only 1 vertex and 1 3-simplex as non-degenerate simplices.

・ロト (雪) () () () ()

Simplicial complexes vs. sets

The 7 possible 2-simplices in a simplicial set. The triangle abc is the only one allowed in a complex (from A. Zomorodian (2010)).

Two torus triangulations (from D. Bernoulli (2016))

Simplicial sets furnish streamlined simplicial models of topological spaces:

- a 2d torus can be represented as a simplicial set with 1 vertex, 3 edges and 2 triangles, while as a simplicial complex with at least 7 vertices and many more edges and triangles;
- describing 3d sphere as a simplicial complex requires 5 vertices, 10 edges, 10 triangles, 5 tetrahedrons, while as a simplicial set only 1 vertex and 1 3-simplex as non-degenerate simplices.

・ロト (雪) () () () () ()

1

Simplicial complexes vs. sets

The 7 possible 2-simplices in a simplicial set. The triangle abc is the only one allowed in a complex (from A. Zomorodian (2010)).

Two torus triangulations (from D. Bernoulli (2016))

- Simplicial sets furnish streamlined simplicial models of topological spaces:
 - a 2d torus can be represented as a simplicial set with 1 vertex, 3 edges and 2 triangles, while as a simplicial complex with at least 7 vertices and many more edges and triangles;
 - describing 3d sphere as a simplicial complex requires 5 vertices, 10 edges, 10 triangles, 5 tetrahedrons, while as a simplicial set only 1 vertex and 1 3-simplex as non-degenerate simplices.

• 4 国 • 4 国 •

Simplicial complexes vs. sets

The 7 possible 2-simplices in a simplicial set. The triangle abc is the only one allowed in a complex (from A. Zomorodian (2010)).

Two torus triangulations (from D. Bernoulli (2016))

- Simplicial sets furnish streamlined simplicial models of topological spaces:
 - a 2d torus can be represented as a simplicial set with 1 vertex, 3 edges and 2 triangles, while as a simplicial complex with at least 7 vertices and many more edges and triangles;
 - describing 3d sphere as a simplicial complex requires 5 vertices, 10 edges, 10 triangles, 5 tetrahedrons, while as a simplicial set only 1 vertex and 1 3-simplex as non-degenerate simplices.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
0000000				

- Simplicial sets allow for simpler simplicial modelling of topological spaces in computational topology (P. Perry (2003)).
- Tidy sets, minimal simplicial sets capturing the topology of simplicial complexes, are available (A. Zomorodian (2010)).
- Incorporation of degenerate simplices, i.e. simplices with an effective dimension smaller than the formal one, is an essential feature of simplicial sets (and also a price to pay for having them):
 - degenerate simplices are hidden in topological realization;
 - however their indiscriminate removal may lead to incomplete and/or inconsistent simplicial constructs;

イロトス値 トス 回下 ス 回下 …

there are ways of disposing of them.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
0000000				

- Simplicial sets allow for simpler simplicial modelling of topological spaces in computational topology (P. Perry (2003)).
- Tidy sets, minimal simplicial sets capturing the topology of simplicial complexes, are available (A. Zomorodian (2010)).
- Incorporation of degenerate simplices, i.e. simplices with an effective dimension smaller than the formal one, is an essential feature of simplicial sets (and also a price to pay for having them):
 - degenerate simplices are hidden in topological realization;
 - however their indiscriminate removal may lead to incomplete and/or inconsistent simplicial constructs;

医水面医水面医

there are ways of disposing of them.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
0000000				

- Simplicial sets allow for simpler simplicial modelling of topological spaces in computational topology (P. Perry (2003)).
- Tidy sets, minimal simplicial sets capturing the topology of simplicial complexes, are available (A. Zomorodian (2010)).
- Incorporation of degenerate simplices, i.e. simplices with an effective dimension smaller than the formal one, is an essential feature of simplicial sets (and also a price to pay for having them):
 - degenerate simplices are hidden in topological realization;
 - however their indiscriminate removal may lead to incomplete and/or inconsistent simplicial constructs;

不良 医不良 医

there are ways of disposing of them.
Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
0000000				

Simplicial complexes vs. sets

- Simplicial sets allow for simpler simplicial modelling of topological spaces in computational topology (P. Perry (2003)).
- Tidy sets, minimal simplicial sets capturing the topology of simplicial complexes, are available (A. Zomorodian (2010)).
- Incorporation of degenerate simplices, i.e. simplices with an effective dimension smaller than the formal one, is an essential feature of simplicial sets (and also a price to pay for having them):
 - degenerate simplices are hidden in topological realization;
 - however their indiscriminate removal may lead to incomplete and/or inconsistent simplicial constructs;

不良 医不良 医

there are ways of disposing of them.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
0000000				

Simplicial complexes vs. sets

- Simplicial sets allow for simpler simplicial modelling of topological spaces in computational topology (P. Perry (2003)).
- Tidy sets, minimal simplicial sets capturing the topology of simplicial complexes, are available (A. Zomorodian (2010)).
- Incorporation of degenerate simplices, i.e. simplices with an effective dimension smaller than the formal one, is an essential feature of simplicial sets (and also a price to pay for having them):
 - degenerate simplices are hidden in topological realization;
 - however their indiscriminate removal may lead to incomplete and/or inconsistent simplicial constructs;

ほん 不良んし

.....

there are ways of disposing of them.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
0000000				

Simplicial complexes vs. sets

- Simplicial sets allow for simpler simplicial modelling of topological spaces in computational topology (P. Perry (2003)).
- Tidy sets, minimal simplicial sets capturing the topology of simplicial complexes, are available (A. Zomorodian (2010)).
- Incorporation of degenerate simplices, i.e. simplices with an effective dimension smaller than the formal one, is an essential feature of simplicial sets (and also a price to pay for having them):
 - degenerate simplices are hidden in topological realization;
 - however their indiscriminate removal may lead to incomplete and/or inconsistent simplicial constructs;

ほん 不良んし

.....

there are ways of disposing of them.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusi
0000000				

- Quantum computing may provide new powerful means to speedup algorithms in computational topology.
- A quantum algorithm with exponential speedup for computing Betti numbers in persistent homology was originally worked out by S. Lloyd *et al.* (2014).
- This opened a new field in quantum computing, quantum topological data analysis, whose development intensified in recent years (S. Gunn and N. Kornerup (2019); C. Gyurik et al. (2022); S. Ubaru et al. (2021); R. Hayakawa (2022); S. McArdle et al. (2022); D. W. Berry et al. (2022); M. Black et al. (2023))
- A critical evaluation of this quantum computational framework from the perspective of complexity theory was carried out by A. Schmidhuber and S. Lloyd (2022).
- The algorithms used apply to the simplicial complexes occurring in topological data analysis.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
0000000				

- Quantum computing may provide new powerful means to speedup algorithms in computational topology.
- A quantum algorithm with exponential speedup for computing Betti numbers in persistent homology was originally worked out by S. Lloyd *et al.* (2014).
- This opened a new field in quantum computing, quantum topological data analysis, whose development intensified in recent years (S. Gunn and N. Kornerup (2019); C. Gyurik et al. (2022); S. Ubaru et al. (2021); R. Hayakawa (2022); S. McArdle et al. (2022); D. W. Berry et al. (2022); M. Black et al. (2023))
- A critical evaluation of this quantum computational framework from the perspective of complexity theory was carried out by A. Schmidhuber and S. Lloyd (2022).
- The algorithms used apply to the simplicial complexes occurring in topological data analysis.

メタト 不良を 不良を 一度

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
0000000				

- Quantum computing may provide new powerful means to speedup algorithms in computational topology.
- A quantum algorithm with exponential speedup for computing Betti numbers in persistent homology was originally worked out by S. Lloyd *et al.* (2014).
- This opened a new field in quantum computing, quantum topological data analysis, whose development intensified in recent years (S. Gunn and N. Kornerup (2019); C. Gyurik *et al.* (2022); S. Ubaru *et al.* (2021); R. Hayakawa (2022); S. McArdle *et al.* (2022); D. W. Berry *et al.* (2022); M. Black *et al.* (2023))
- A critical evaluation of this quantum computational framework from the perspective of complexity theory was carried out by A. Schmidhuber and S. Lloyd (2022).
- The algorithms used apply to the simplicial complexes occurring in topological data analysis.

医水理医水理医

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
0000000				

- Quantum computing may provide new powerful means to speedup algorithms in computational topology.
- A quantum algorithm with exponential speedup for computing Betti numbers in persistent homology was originally worked out by S. Lloyd *et al.* (2014).
- This opened a new field in quantum computing, quantum topological data analysis, whose development intensified in recent years (S. Gunn and N. Kornerup (2019); C. Gyurik *et al.* (2022); S. Ubaru *et al.* (2021); R. Hayakawa (2022); S. McArdle *et al.* (2022); D. W. Berry *et al.* (2022); M. Black *et al.* (2023))
- A critical evaluation of this quantum computational framework from the perspective of complexity theory was carried out by A. Schmidhuber and S. Lloyd (2022).
- The algorithms used apply to the simplicial complexes occurring in topological data analysis.

(4) 東京 (4) 東京

.....

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
0000000				

- Quantum computing may provide new powerful means to speedup algorithms in computational topology.
- A quantum algorithm with exponential speedup for computing Betti numbers in persistent homology was originally worked out by S. Lloyd *et al.* (2014).
- This opened a new field in quantum computing, quantum topological data analysis, whose development intensified in recent years (S. Gunn and N. Kornerup (2019); C. Gyurik *et al.* (2022); S. Ubaru *et al.* (2021); R. Hayakawa (2022); S. McArdle *et al.* (2022); D. W. Berry *et al.* (2022); M. Black *et al.* (2023))
- A critical evaluation of this quantum computational framework from the perspective of complexity theory was carried out by A. Schmidhuber and S. Lloyd (2022).
- The algorithms used apply to the simplicial complexes occurring in topological data analysis.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- One may explore the possibility of adapting and extend such quantum computational approach to simplicial sets.
- Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices turn into simplex vectors forming a distinguished orthonormal basis and the face and degeneracy maps into face and degeneracy operators.
- A foundation of a quantum computational framework for algebraic topology via simplicial set theory is provided.
- Disclaimer: no new quantum algorithms solving specific problems of algebraic topology is presented,
- Hopefully, the ground for the future development of such algorithms is prepared.
- The focus is on homology computation (as is customary in topological data analysis).

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
000000				

- One may explore the possibility of adapting and extend such quantum computational approach to simplicial sets.
- Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices turn into simplex vectors forming a distinguished orthonormal basis and the face and degeneracy maps into face and degeneracy operators.
- A foundation of a quantum computational framework for algebraic topology via simplicial set theory is provided.
- Disclaimer: no new quantum algorithms solving specific problems of algebraic topology is presented,
- Hopefully, the ground for the future development of such algorithms is prepared.
- The focus is on homology computation (as is customary in topological data analysis).

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
000000				

- One may explore the possibility of adapting and extend such quantum computational approach to simplicial sets.
- Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices turn into simplex vectors forming a distinguished orthonormal basis and the face and degeneracy maps into face and degeneracy operators.
- A foundation of a quantum computational framework for algebraic topology via simplicial set theory is provided.
- Disclaimer: no new quantum algorithms solving specific problems of algebraic topology is presented,
- Hopefully, the ground for the future development of such algorithms is prepared.
- The focus is on homology computation (as is customary in topological data analysis).

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
000000				

- One may explore the possibility of adapting and extend such quantum computational approach to simplicial sets.
- Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices turn into simplex vectors forming a distinguished orthonormal basis and the face and degeneracy maps into face and degeneracy operators.
- A foundation of a quantum computational framework for algebraic topology via simplicial set theory is provided.
- Disclaimer: no new quantum algorithms solving specific problems of algebraic topology is presented,
- Hopefully, the ground for the future development of such algorithms is prepared.
- The focus is on homology computation (as is customary in topological data analysis).

イロト 不得 トイヨト イヨト 二度 二

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
000000				

- One may explore the possibility of adapting and extend such quantum computational approach to simplicial sets.
- Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices turn into simplex vectors forming a distinguished orthonormal basis and the face and degeneracy maps into face and degeneracy operators.
- A foundation of a quantum computational framework for algebraic topology via simplicial set theory is provided.
- Disclaimer: no new quantum algorithms solving specific problems of algebraic topology is presented,
- Hopefully, the ground for the future development of such algorithms is prepared.
- The focus is on homology computation (as is customary in topological data analysis).

人間 とくほ とくほと

1

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
000000				

- One may explore the possibility of adapting and extend such quantum computational approach to simplicial sets.
- Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices turn into simplex vectors forming a distinguished orthonormal basis and the face and degeneracy maps into face and degeneracy operators.
- A foundation of a quantum computational framework for algebraic topology via simplicial set theory is provided.
- Disclaimer: no new quantum algorithms solving specific problems of algebraic topology is presented,
- Hopefully, the ground for the future development of such algorithms is prepared.
- The focus is on homology computation (as is customary in topological data analysis).

人間 とくほ とくほとう

Introduction	Simplicial se
	000000

0000

Quantum simplicial framework

オロトス値 トスヨトメヨト 一張 ののの

Simplicial sets

- Simplicial sets generalize simplicial complexes in many ways.
- A simplicial set is a combinatorial blueprint of a topological space, its topological realization.
- Homotopy and homology have a correlate in simplicial set theory.
- A simplicial set X consists of a family of *n*-simplex sets X_n , $n \in \mathbb{N}$, and face and degeneracy maps $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
	0000000000			

- Simplicial sets generalize simplicial complexes in many ways.
- A simplicial set is a combinatorial blueprint of a topological space, its topological realization.
- Homotopy and homology have a correlate in simplicial set theory.
- A simplicial set X consists of a family of *n*-simplex sets X_n , $n \in \mathbb{N}$, and face and degeneracy maps $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations

$$\begin{aligned} & d_{n-1i}d_{nj} = d_{n-1j-1}d_{ni} & \text{if } 0 \leq i,j \leq n, \ i < j, \\ & d_{n+1i}s_{nj} = s_{n-1j-1}d_{ni} & \text{if } 0 \leq i,j \leq n, \ i < j, \\ & d_{n+1i}s_{nj} = \text{id}_n & \text{if } 0 \leq j \leq n, \ i = j, \ j+1, \\ & d_{n+1i}s_{nj} = s_{n-1j}d_{ni-1} & \text{if } 0 \leq i,j \leq n+1, \ i > j+1, \\ & s_{n+1i}s_{nj} = s_{n+1j+1}s_{ni} & \text{if } 0 \leq i,j \leq n, \ i \leq j. \end{aligned}$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial imple
	•0000000000		

メロトメ劇 トメヨトメヨト 一度 ろんの

Simplicial sets

- Simplicial sets generalize simplicial complexes in many ways.
- A simplicial set is a combinatorial blueprint of a topological space, its topological realization.
- Homotopy and homology have a correlate in simplicial set theory.
- A simplicial set X consists of a family of *n*-simplex sets X_n , $n \in \mathbb{N}$, and face and degeneracy maps $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation
	0000000000		

- Simplicial sets generalize simplicial complexes in many ways.
- A simplicial set is a combinatorial blueprint of a topological space, its topological realization.
- Homotopy and homology have a correlate in simplicial set theory.
- A simplicial set X consists of a family of n-simplex sets X_n , $n \in \mathbb{N}$, and face and degeneracy maps $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations

$$\begin{split} & d_{n-1i}d_{nj} = d_{n-1j-1}d_{ni} & \text{if } 0 \leq i,j \leq n, \, i < j, \\ & d_{n+1i}s_{nj} = s_{n-1j-1}d_{ni} & \text{if } 0 \leq i,j \leq n, \, i < j, \\ & d_{n+1i}s_{nj} = \text{id}_n & \text{if } 0 \leq j \leq n, \, i = j, \, j+1, \\ & d_{n+1i}s_{nj} = s_{n-1j}d_{ni-1} & \text{if } 0 \leq i,j \leq n+1, \, i > j+1, \\ & s_{n+1i}s_{nj} = s_{n+1j+1}s_{ni} & \text{if } 0 \leq i,j \leq n, \, i \leq j. \end{split}$$

・ロト ・四 ト ・ 田 ト ・ 田 ・ つんぐ

Introduction 0000000	Simplicial sets ○●○○○○○○○○○	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

• A morphism $\phi : X \to X'$ of the simplicial sets X, X' is a collection of maps $\phi_n : X_n \to X'_n$ with $n \ge 0$ obeying the simplicial morphism relations

$$\begin{split} \phi_{n-1} d_{ni} &= d'_{ni} \phi_n & \text{ if } \ 0 \leq i \leq n, \\ \phi_{n+1} s_{ni} &= s'_{ni} \phi_n & \text{ if } \ 0 \leq i \leq n. \end{split}$$

A simplicial set X is represented by the diagram

where the rightward/leftward arrows stand for the face/degeneracy maps. A simplicial set morphism $\phi: X \to X'$ is a commutative diagram

Introduction 0000000	Simplicial sets ○●○○○○○○○○○	Quantum simplicial framework 000000000000000000000000000000000000	Quantum simplicial implementation	Conclusions 00

• A morphism $\phi : X \to X'$ of the simplicial sets X, X' is a collection of maps $\phi_n : X_n \to X'_n$ with $n \ge 0$ obeying the simplicial morphism relations

$$\begin{split} \phi_{n-1} d_{ni} &= d'_{ni} \phi_n & \text{ if } 0 \leq i \leq n, \\ \phi_{n+1} s_{ni} &= s'_{ni} \phi_n & \text{ if } 0 \leq i \leq n. \end{split}$$

A simplicial set X is represented by the diagram

$$\cdots \bigoplus X_2 \bigoplus X_1 \bigoplus X_0 ,$$

where the rightward/leftward arrows stand for the face/degeneracy maps. A simplicial set morphism $\phi:X\to X'$ is a commutative diagram

Introduction 0000000	Simplicial sets	Quantum simplicial framework 000000000000000000000000000000000000	Quantum simplicial implementation	Conclusions 00

- The Cartesian product $X \times X'$ of X, X' is the simplicial set defined by setting $X \times X'_n = X_n \times X'_n$ and $d \times d'_{ni} = d_{ni} \times d'_{ni}$ and $s \times s'_{ni} = s_{ni} \times s'_{ni}$.
- The disjoint union $X \sqcup X'$ of X, X' is the simplicial set defined by setting $X \sqcup X'_n = X_n \sqcup X'_n$ and $d \sqcup d'_{ni} = d_{ni} \sqcup d'_{ni}$ and $s \sqcup s'_{ni} = s_{ni} \sqcup s'_{ni}$.
- With the operations of Cartesian product and disjoint union and the empty and singleton simplicial sets D*, DØ as units simplicial sets and morphisms form a bimonoidal category <u>sSet</u>.
- The simplicial quantum computational framework involves only parafinite simplicial sets.
- A simplicial set X is called *parafinite* (not to be confused with finite) if the n-simplex set X_n is finite for all n.

イロト 不得 トイヨト イヨト 三張

Introduction 0000000	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- The Cartesian product $X \times X'$ of X, X' is the simplicial set defined by setting $X \times X'_n = X_n \times X'_n$ and $d \times d'_{ni} = d_{ni} \times d'_{ni}$ and $s \times s'_{ni} = s_{ni} \times s'_{ni}$.
- The disjoint union $X \sqcup X'$ of X, X' is the simplicial set defined by setting $X \sqcup X'_n = X_n \sqcup X'_n$ and $d \sqcup d'_{ni} = d_{ni} \sqcup d'_{ni}$ and $s \sqcup s'_{ni} = s_{ni} \sqcup s'_{ni}$.
- With the operations of Cartesian product and disjoint union and the empty and singleton simplicial sets D*, DØ as units simplicial sets and morphisms form a bimonoidal category <u>sSet</u>.
- The simplicial quantum computational framework involves only parafinite simplicial sets.
- A simplicial set X is called *parafinite* (not to be confused with finite) if the n-simplex set X_n is finite for all n.

|御を 御屋を | 御を

1

Introduction 0000000	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- The Cartesian product $X \times X'$ of X, X' is the simplicial set defined by setting $X \times X'_n = X_n \times X'_n$ and $d \times d'_{ni} = d_{ni} \times d'_{ni}$ and $s \times s'_{ni} = s_{ni} \times s'_{ni}$.
- The disjoint union $X \sqcup X'$ of X, X' is the simplicial set defined by setting $X \sqcup X'_n = X_n \sqcup X'_n$ and $d \sqcup d'_{ni} = d_{ni} \sqcup d'_{ni}$ and $s \sqcup s'_{ni} = s_{ni} \sqcup s'_{ni}$.
- With the operations of Cartesian product and disjoint union and the empty and singleton simplicial sets D*, DØ as units simplicial sets and morphisms form a bimonoidal category <u>sSet</u>.
- The simplicial quantum computational framework involves only parafinite simplicial sets.
- A simplicial set X is called *parafinite* (not to be confused with finite) if the n-simplex set X_n is finite for all n.

<ロト < 個 ト < 注 ト < 注 ト 、 注 ・ のへの</p>

Introduction 0000000	Simplicial sets 00000000000	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- The Cartesian product $X \times X'$ of X, X' is the simplicial set defined by setting $X \times X'_n = X_n \times X'_n$ and $d \times d'_{ni} = d_{ni} \times d'_{ni}$ and $s \times s'_{ni} = s_{ni} \times s'_{ni}$.
- The disjoint union $X \sqcup X'$ of X, X' is the simplicial set defined by setting $X \sqcup X'_n = X_n \sqcup X'_n$ and $d \sqcup d'_{ni} = d_{ni} \sqcup d'_{ni}$ and $s \sqcup s'_{ni} = s_{ni} \sqcup s'_{ni}$.
- With the operations of Cartesian product and disjoint union and the empty and singleton simplicial sets D*, $D\emptyset$ as units simplicial sets and morphisms form a bimonoidal category <u>sSet</u>.
- The simplicial quantum computational framework involves only parafinite simplicial sets.
- A simplicial set X is called *parafinite* (not to be confused with finite) if the n-simplex set X_n is finite for all n.

オロトス値 トスヨトメヨト 一張 ののの

Introduction 0000000	Simplicial sets 00000000000	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- The Cartesian product $X \times X'$ of X, X' is the simplicial set defined by setting $X \times X'_n = X_n \times X'_n$ and $d \times d'_{ni} = d_{ni} \times d'_{ni}$ and $s \times s'_{ni} = s_{ni} \times s'_{ni}$.
- The disjoint union $X \sqcup X'$ of X, X' is the simplicial set defined by setting $X \sqcup X'_n = X_n \sqcup X'_n$ and $d \sqcup d'_{ni} = d_{ni} \sqcup d'_{ni}$ and $s \sqcup s'_{ni} = s_{ni} \sqcup s'_{ni}$.
- With the operations of Cartesian product and disjoint union and the empty and singleton simplicial sets D*, $D\emptyset$ as units simplicial sets and morphisms form a bimonoidal category <u>sSet</u>.
- The simplicial quantum computational framework involves only parafinite simplicial sets.
- A simplicial set X is called *parafinite* (not to be confused with finite) if the n-simplex set X_n is finite for all n.

・ロト (個)ト (語)・ (語)・ (語)・ のへで

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- The Cartesian product $X \times X'$ of X, X' is the simplicial set defined by setting $X \times X'_n = X_n \times X'_n$ and $d \times d'_{ni} = d_{ni} \times d'_{ni}$ and $s \times s'_{ni} = s_{ni} \times s'_{ni}$.
- The disjoint union $X \sqcup X'$ of X, X' is the simplicial set defined by setting $X \sqcup X'_n = X_n \sqcup X'_n$ and $d \sqcup d'_{ni} = d_{ni} \sqcup d'_{ni}$ and $s \sqcup s'_{ni} = s_{ni} \sqcup s'_{ni}$.
- With the operations of Cartesian product and disjoint union and the empty and singleton simplicial sets D*, $D\emptyset$ as units simplicial sets and morphisms form a bimonoidal category <u>sSet</u>.
- The simplicial quantum computational framework involves only parafinite simplicial sets.
- A simplicial set X is called *parafinite* (not to be confused with finite) if the n-simplex set X_n is finite for all n.
- Parafinite simplicial sets form a full bimonoidal subcategory pfsSet of \underline{sSet} .

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- Example: the *discrete* simplicial set DA of a set A. If A is a finite set, DA is parafinite.
- Example: the simplicial set KS of an ordered abstract simplicial complex S. KS obtained from S by allowing simplices with repeated vertices. If S has finitely many vertices, KS is parafinite.
- Example: the *nerve* NC of a category C. If If C is a finite category, NC is parafinite.
- The simplicial set KΔ[p] of the standard combinatorial simplex Δ[p], an instance of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a category, can be identified.
- Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere etc.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
	0000000000			

- Example: the *discrete* simplicial set DA of a set A. If A is a finite set, DA is parafinite.
- Example: the simplicial set KS of an ordered abstract simplicial complex S. KS obtained from S by allowing simplices with repeated vertices. If S has finitely many vertices, KS is parafinite.
- Example: the *nerve* NC of a category C. If If C is a finite category, NC is parafinite.
- The simplicial set KΔ[p] of the standard combinatorial simplex Δ[p], an instance of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a category, can be identified.
- Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere etc.

イロトス値 トス ヨトス ヨトー

1

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
	0000000000			

- Example: the *discrete* simplicial set DA of a set A. If A is a finite set, DA is parafinite.
- Example: the simplicial set KS of an ordered abstract simplicial complex S. KS obtained from S by allowing simplices with repeated vertices. If S has finitely many vertices, KS is parafinite.
- Example: the *nerve* NC of a category C. If If C is a finite category, NC is parafinite.
- The simplicial set KΔ[p] of the standard combinatorial simplex Δ[p], an instance of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a category, can be identified.
- Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere etc.

0000000 000000000 0000000000000000000	Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		0000000000			

- Example: the *discrete* simplicial set DA of a set A. If A is a finite set, DA is parafinite.
- Example: the simplicial set KS of an ordered abstract simplicial complex S. KS obtained from S by allowing simplices with repeated vertices. If S has finitely many vertices, KS is parafinite.
- Example: the *nerve* NC of a category C. If If C is a finite category, NC is parafinite.
- The simplicial set KΔ[p] of the standard combinatorial simplex Δ[p], an instance of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a category, can be identified.
- Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere etc.

- 4 週 ト 4 恵 ト 4 恵 ト - 恵 - めんゆ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
	0000000000			

- Example: the *discrete* simplicial set DA of a set A. If A is a finite set, DA is parafinite.
- Example: the simplicial set KS of an ordered abstract simplicial complex S. KS obtained from S by allowing simplices with repeated vertices. If S has finitely many vertices, KS is parafinite.
- Example: the *nerve* NC of a category C. If If C is a finite category, NC is parafinite.
- The simplicial set KΔ[p] of the standard combinatorial simplex Δ[p], an instance of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a category, can be identified.
- Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere etc.

▶ 4 恵 ▶ 4 恵 ▶ ○ 恵 ○ � � �

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A simplicial object X in a general category C is a simplicial set internal to C.
- A simplicial object X in C is a family of n-simplex objects X_n , $n \in \mathbb{N}$, and face and degeneracy morphisms $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, i = 0, ..., n, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, i = 0, ..., n, obeying the simplicial relations (Fig.
- Example: a simplicial set X is just a simplicial object in the category <u>Set</u> of sets and functions.
- Example: a simplicial group G is a simplicial object in the category <u>Grp</u> of groups and group morphisms.
- Example: a simplicial manifold *M* is a simplicial object in the category <u>Mnfd</u> of smooth manifolds and manifold mappings.

イロトス値 トス ヨトス ヨトニ 展示

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A simplicial object X in a general category C is a simplicial set internal to C.
- A simplicial object X in C is a family of n-simplex objects X_n , $n \in \mathbb{N}$, and face and degeneracy morphisms $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations $\stackrel{\text{sourphi}}{\longrightarrow}$ such as $x_{n-1} = 0$.
- A morphism $\phi : X \to X'$ of the simplicial objects X, X' of C is a collection of morphisms $\phi_n : X_n \to X'_n$ with $n \ge 0$ obeying the simplicial morphism relations \cdots .
- Example: a simplicial set X is just a simplicial object in the category <u>Set</u> of sets and functions.
- Example: a simplicial group G is a simplicial object in the category <u>Grp</u> of groups and group morphisms.
- Example: a simplicial manifold *M* is a simplicial object in the category <u>Mnfd</u> of smooth manifolds and manifold mappings.

イロトス値 トス ヨトス ヨトニ 展示

Introduction 0000000	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- A simplicial object X in a general category C is a simplicial set internal to C.
- A simplicial object X in C is a family of n-simplex objects X_n , $n \in \mathbb{N}$, and face and degeneracy morphisms $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations $\stackrel{\text{sorphysical}}{\longrightarrow}$ sorp.
- A morphism $\phi : X \to X'$ of the simplicial objects X, X' of C is a collection of morphisms $\phi_n : X_n \to X'_n$ with $n \ge 0$ obeying the simplicial morphism relations \Rightarrow such as \Rightarrow such as \Rightarrow such as $x \ge 0$.
- Example: a simplicial set X is just a simplicial object in the category <u>Set</u> of sets and functions.
- Example: a simplicial group G is a simplicial object in the category <u>Grp</u> of groups and group morphisms.
- Example: a simplicial manifold *M* is a simplicial object in the category <u>Mnfd</u> of smooth manifolds and manifold mappings.

Introduction 0000000	Simplicial sets 000000000000	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- A simplicial object X in a general category C is a simplicial set internal to C.
- A simplicial object X in C is a family of n-simplex objects X_n , $n \in \mathbb{N}$, and face and degeneracy morphisms $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations $\stackrel{\text{sorphyselocal}}{\longrightarrow}$ sorplicity.
- A morphism $\phi : X \to X'$ of the simplicial objects X, X' of C is a collection of morphisms $\phi_n : X_n \to X'_n$ with $n \ge 0$ obeying the simplicial morphism relations \Rightarrow such as \Rightarrow such as \Rightarrow such as $x \ge 0$.
- Example: a simplicial set X is just a simplicial object in the category <u>Set</u> of sets and functions.
- Example: a simplicial group G is a simplicial object in the category <u>Grp</u> of groups and group morphisms.
- Example: a simplicial manifold *M* is a simplicial object in the category <u>Mnfd</u> of smooth manifolds and manifold mappings.

Introduction 0000000	Simplicial sets 000000000000	Quantum simplicial framework	Quantum simplicial implementation	Conclusions 00

- A simplicial object X in a general category C is a simplicial set internal to C.
- A simplicial object X in C is a family of n-simplex objects X_n , $n \in \mathbb{N}$, and face and degeneracy morphisms $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations $\stackrel{\text{sorphysical}}{\longrightarrow}$ sorp.
- A morphism $\phi : X \to X'$ of the simplicial objects X, X' of C is a collection of morphisms $\phi_n : X_n \to X'_n$ with $n \ge 0$ obeying the simplicial morphism relations \Rightarrow such as \Rightarrow
- Example: a simplicial set X is just a simplicial object in the category <u>Set</u> of sets and functions.
- Example: a simplicial group G is a simplicial object in the category <u>Grp</u> of groups and group morphisms.
- Example: a simplicial manifold *M* is a simplicial object in the category <u>Mnfd</u> of smooth manifolds and manifold mappings.
| 0000000 O | mplicial sets
000€000000 | Quantum simplicial tramework 000000000000000000000000000000000000 | Quantum simplicial implementation | Conclusions
00 |
|-----------|-----------------------------|---|-----------------------------------|-------------------|
| | | | | |

Simplicial objects

- A simplicial object X in a general category C is a simplicial set internal to C.
- A simplicial object X in C is a family of n-simplex objects X_n , $n \in \mathbb{N}$, and face and degeneracy morphisms $d_{ni} : X_n \to X_{n-1}$, $n \ge 1$, $i = 0, \ldots, n$, and $s_{ni} : X_n \to X_{n+1}$, $n \ge 0$, $i = 0, \ldots, n$, obeying the simplicial relations $\stackrel{\text{sorphysical}}{\longrightarrow}$ sorp.
- A morphism $\phi : X \to X'$ of the simplicial objects X, X' of C is a collection of morphisms $\phi_n : X_n \to X'_n$ with $n \ge 0$ obeying the simplicial morphism relations \Rightarrow such as \Rightarrow such as \Rightarrow such as $x \ge 0$.
- Example: a simplicial set X is just a simplicial object in the category <u>Set</u> of sets and functions.
- Example: a simplicial group G is a simplicial object in the category $\underline{\operatorname{Grp}}$ of groups and group morphisms.
- Example: a simplicial manifold *M* is a simplicial object in the category <u>Mnfd</u> of smooth manifolds and manifold mappings.

オロトス団トス ヨトメヨト 一度 ろんぐ

- The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.

Introduction S	implicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
0000000 0	0000000000			

- The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.
- A finite dimensional simplicial Hilbert space *H* is a simplicial set internal to the category <u>fdHilb</u> of finite dimensional Hilbert spaces and linear maps.
- *H* has n-simplex spaces *H_n* and face and degeneracy operators F_{ni} and S_{ni}.
- The direct product of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \otimes \mathscr{H}'$ defined by setting $\mathscr{H} \otimes \mathscr{H}'_n = \mathscr{H}_n \otimes \mathscr{H}'_n$ and $F \otimes F'_{ni} = F_{ni} \otimes F'_{ni}$ and $S \otimes S'_{ni} = S_{ni} \otimes S'_{ni}$.
- The direct sum of the simplicial Hilbert spaces $\mathscr{H}, \mathscr{H}'$ is the simplicial Hilbert space $\mathscr{H} \oplus \mathscr{H}'$ with $\mathscr{H} \oplus \mathscr{H}'_n = \mathscr{H}_n \oplus \mathscr{H}'_n$ and $F \oplus F'_{ni} = F_{ni} \oplus F'_{ni}$ and $S \oplus S'_{ni} = S_{ni} \oplus S'_{ni}$.
- With the operations of direct product and direct sum and the simplicial Hilbert spaces DC, D0 as units simplicial Hilbert spaces and maps form a bimonoidal category fdsHilb.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusio
	00000000000			

- The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.
- A finite dimensional simplicial Hilbert space *H* is a simplicial set internal to the category <u>fdHilb</u> of finite dimensional Hilbert spaces and linear maps.
- \blacksquare \mathscr{H} has *n*-simplex spaces \mathscr{H}_n and face and degeneracy operators F_{ni} and S_{ni} .
- The direct product of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \otimes \mathscr{H}'$ defined by setting $\mathscr{H} \otimes \mathscr{H}'_n = \mathscr{H}_n \otimes \mathscr{H}'_n$ and $F \otimes F'_{ni} = F_{ni} \otimes F'_{ni}$ and $S \otimes S'_{ni} = S_{ni} \otimes S'_{ni}$.
- The direct sum of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \oplus \mathscr{H}'$ with $\mathscr{H} \oplus \mathscr{H}'_n = \mathscr{H}_n \oplus \mathscr{H}'_n$ and $F \oplus F'_{ni} = F_{ni} \oplus F'_{ni}$ and $S \oplus S'_{ni} = S_{ni} \oplus S'_{ni}$.
- With the operations of direct product and direct sum and the simplicial Hilbert spaces DC, D0 as units simplicial Hilbert spaces and maps form a bimonoidal category fdsHilb.

イロトス値 トス ヨトス ヨトー 恵

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	0000000000			

- The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.
- A finite dimensional simplicial Hilbert space *H* is a simplicial set internal to the category <u>fdHilb</u> of finite dimensional Hilbert spaces and linear maps.
- \blacksquare \mathscr{H} has *n*-simplex spaces \mathscr{H}_n and face and degeneracy operators F_{ni} and S_{ni} .
- The direct product of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \otimes \mathscr{H}'$ defined by setting $\mathscr{H} \otimes \mathscr{H}'_n = \mathscr{H}_n \otimes \mathscr{H}'_n$ and $F \otimes F'_{ni} = F_{ni} \otimes F'_{ni}$ and $S \otimes S'_{ni} = S_{ni} \otimes S'_{ni}$.
- The direct sum of the simplicial Hilbert spaces $\mathscr{H}, \mathscr{H}'$ is the simplicial Hilbert space $\mathscr{H} \oplus \mathscr{H}'$ with $\mathscr{H} \oplus \mathscr{H}'_n = \mathscr{H}_n \oplus \mathscr{H}'_n$ and $F \oplus F'_{ni} = F_{ni} \oplus F'_{ni}$ and $S \oplus S'_{ni} = S_{ni} \oplus S'_{ni}$.
- With the operations of direct product and direct sum and the simplicial Hilbert spaces DC, D0 as units simplicial Hilbert spaces and maps form a bimonoidal category fdsHilb.

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

Introduction Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
0000000 00000000	00 000000000000000000000000000000000000		

- The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.
- A finite dimensional simplicial Hilbert space *H* is a simplicial set internal to the category <u>fdHilb</u> of finite dimensional Hilbert spaces and linear maps.
- \blacksquare \mathscr{H} has *n*-simplex spaces \mathscr{H}_n and face and degeneracy operators F_{ni} and S_{ni} .
- The direct product of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \otimes \mathscr{H}'$ defined by setting $\mathscr{H} \otimes \mathscr{H}'_n = \mathscr{H}_n \otimes \mathscr{H}'_n$ and $F \otimes F'_{ni} = F_{ni} \otimes F'_{ni}$ and $S \otimes S'_{ni} = S_{ni} \otimes S'_{ni}$.
- The direct sum of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \oplus \mathscr{H}'$ with $\mathscr{H} \oplus \mathscr{H}'_n = \mathscr{H}_n \oplus \mathscr{H}'_n$ and $F \oplus F'_{ni} = F_{ni} \oplus F'_{ni}$ and $S \oplus S'_{ni} = S_{ni} \oplus S'_{ni}$.
- With the operations of direct product and direct sum and the simplicial Hilbert spaces DC, D0 as units simplicial Hilbert spaces and maps form a bimonoidal category fdsHilb.

・ロト ・回 ト ・ヨト ・ヨト ・ 思 ・ のんぐ

Introduction Simplicial sets Quan	ntum simplicial tramework	Quantum simplicial implementation	Conclusion
0000000 0000000 000			

- The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.
- A finite dimensional simplicial Hilbert space *H* is a simplicial set internal to the category <u>fdHilb</u> of finite dimensional Hilbert spaces and linear maps.
- \blacksquare \mathscr{H} has *n*-simplex spaces \mathscr{H}_n and face and degeneracy operators F_{ni} and S_{ni} .
- The direct product of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \otimes \mathscr{H}'$ defined by setting $\mathscr{H} \otimes \mathscr{H}'_n = \mathscr{H}_n \otimes \mathscr{H}'_n$ and $F \otimes F'_{ni} = F_{ni} \otimes F'_{ni}$ and $S \otimes S'_{ni} = S_{ni} \otimes S'_{ni}$.
- The direct sum of the simplicial Hilbert spaces \mathscr{H} , \mathscr{H}' is the simplicial Hilbert space $\mathscr{H} \oplus \mathscr{H}'$ with $\mathscr{H} \oplus \mathscr{H}'_n = \mathscr{H}_n \oplus \mathscr{H}'_n$ and $F \oplus F'_{ni} = F_{ni} \oplus F'_{ni}$ and $S \oplus S'_{ni} = S_{ni} \oplus S'_{ni}$.
- With the operations of direct product and direct sum and the simplicial Hilbert spaces *D*C, *D*0 as units simplicial Hilbert spaces and maps form a bimonoidal category fdsHilb.

・ロト ・回 ト ・ヨト ・ヨト ・ 思 ・ のんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A distinguishing feature of a simplicial set X when compared to a simplicial complex is the appearance of infinitely many degenerate simplices, which are topologically invisible.
- An n-simplex σ_n ∈ X_n is degenerate if there is some τ_{n-1} ∈ X_{n-1} and index i with 0 ≤ i ≤ n − 1 with σ_n = s_{n-1i}τ_{n-1}. 0-simplices are regarded as non degenerate.
- The degenerate simplices of X_n form a subset sX_n .
- Example: in the discrete simplicial set DA of a non empty set A all positive degree simplices are degenerate.
- Example: in the simplicial set KS of an ordered abstract simplicial complex S, all simplices with repeated vertices are degenerate.
- Example: in the nerve NC of a category C, all simplices containing identity morphisms are degenerate.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A distinguishing feature of a simplicial set X when compared to a simplicial complex is the appearance of infinitely many degenerate simplices, which are topologically invisible.
- An n-simplex σ_n ∈ X_n is degenerate if there is some τ_{n-1} ∈ X_{n-1} and index i with 0 ≤ i ≤ n − 1 with σ_n = s_{n-1i}τ_{n-1}. 0-simplices are regarded as non degenerate.
- The degenerate simplices of X_n form a subset sX_n .
- Example: in the discrete simplicial set DA of a non empty set A all positive degree simplices are degenerate.
- Example: in the simplicial set KS of an ordered abstract simplicial complex S, all simplices with repeated vertices are degenerate.
- Example: in the nerve NC of a category C, all simplices containing identity morphisms are degenerate.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A distinguishing feature of a simplicial set X when compared to a simplicial complex is the appearance of infinitely many degenerate simplices, which are topologically invisible.
- An n-simplex σ_n ∈ X_n is degenerate if there is some τ_{n-1} ∈ X_{n-1} and index i with 0 ≤ i ≤ n − 1 with σ_n = s_{n-1i}τ_{n-1}. 0-simplices are regarded as non degenerate.
- The degenerate simplices of X_n form a subset sX_n .
- Example: in the discrete simplicial set DA of a non empty set A all positive degree simplices are degenerate.
- Example: in the simplicial set KS of an ordered abstract simplicial complex S, all simplices with repeated vertices are degenerate.
- Example: in the nerve NC of a category C, all simplices containing identity morphisms are degenerate.

イロトス値 トス ヨトス ヨトニ 展示

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A distinguishing feature of a simplicial set X when compared to a simplicial complex is the appearance of infinitely many degenerate simplices, which are topologically invisible.
- An n-simplex σ_n ∈ X_n is degenerate if there is some τ_{n-1} ∈ X_{n-1} and index i with 0 ≤ i ≤ n − 1 with σ_n = s_{n-1i}τ_{n-1}. 0-simplices are regarded as non degenerate.
- The degenerate simplices of X_n form a subset sX_n .
- Example: in the discrete simplicial set *DA* of a non empty set *A* all positive degree simplices are degenerate.
- Example: in the simplicial set KS of an ordered abstract simplicial complex S, all simplices with repeated vertices are degenerate.
- Example: in the nerve NC of a category C, all simplices containing identity morphisms are degenerate.

<ロト < 個 ト < 注 ト < 注 ト 、 注 ・ のへの</p>

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A distinguishing feature of a simplicial set X when compared to a simplicial complex is the appearance of infinitely many degenerate simplices, which are topologically invisible.
- An n-simplex σ_n ∈ X_n is degenerate if there is some τ_{n-1} ∈ X_{n-1} and index i with 0 ≤ i ≤ n − 1 with σ_n = s_{n-1i}τ_{n-1}. 0-simplices are regarded as non degenerate.
- The degenerate simplices of X_n form a subset sX_n .
- Example: in the discrete simplicial set DA of a non empty set A all positive degree simplices are degenerate.
- Example: in the simplicial set KS of an ordered abstract simplicial complex S, all simplices with repeated vertices are degenerate.
- Example: in the nerve NC of a category C, all simplices containing identity morphisms are degenerate.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

- A distinguishing feature of a simplicial set X when compared to a simplicial complex is the appearance of infinitely many degenerate simplices, which are topologically invisible.
- An n-simplex σ_n ∈ X_n is degenerate if there is some τ_{n-1} ∈ X_{n-1} and index i with 0 ≤ i ≤ n − 1 with σ_n = s_{n-1i}τ_{n-1}. 0-simplices are regarded as non degenerate.
- The degenerate simplices of X_n form a subset sX_n .
- Example: in the discrete simplicial set DA of a non empty set A all positive degree simplices are degenerate.
- Example: in the simplicial set KS of an ordered abstract simplicial complex S, all simplices with repeated vertices are degenerate.
- Example: in the nerve NC of a category C, all simplices containing identity morphisms are degenerate.

オロトス団トス ヨトメヨト 一度 ろんぐ

オロトス値 トスヨトメヨト 一張 ののの

Truncation and skeletonization

- The practical implementation of algorithms of computational topology involves a finite approximation of a simplicial set containing infinitely many simplices.
- A K-truncated simplicial set X is a collection of sets X_n, 0 ≤ n ≤ K, and maps d_{ni} : X_n → X_{n-1}, 1 ≤ n ≤ K, i = 1,...,n, and s_{ni} : X_n → X_{n+1}, 0 ≤ n ≤ K − 1, i = 1,...,n, obeying the simplicial relations
- A morphism $\phi: X \to X'$ of the K-truncated simplicial sets X, X' is a collection of maps $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations \bullet
- K-truncated simplicial sets form a bimonoidal category \underline{sSet}_K as \underline{sSet} .
- There is a truncation functor $tr_K : \underline{sSet} \to \underline{sSet}_K$ that discards all the simplices of degree n > K of the simplicial sets on which it acts.
- The K-truncation $\operatorname{tr}_K X$ of a simplicial set X is the K-truncated simplicial set such that $\operatorname{tr}_K X_n = X_n$ for $n \leq K$.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
	000000000000			

- The practical implementation of algorithms of computational topology involves a finite approximation of a simplicial set containing infinitely many simplices.
- A K-truncated simplicial set X is a collection of sets X_n , $0 \le n \le K$, and maps $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, and $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ set.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial sets X, X' is a collection of maps $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations ϕ_n .
- K-truncated simplicial sets form a bimonoidal category \underline{sSet}_K as \underline{sSet} .
- There is a truncation functor $tr_K : \underline{sSet} \to \underline{sSet}_K$ that discards all the simplices of degree n > K of the simplicial sets on which it acts.
- The K-truncation $\operatorname{tr}_K X$ of a simplicial set X is the K-truncated simplicial set such that $\operatorname{tr}_K X_n = X_n$ for $n \leq K$.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
	000000000000			

- The practical implementation of algorithms of computational topology involves a finite approximation of a simplicial set containing infinitely many simplices.
- A K-truncated simplicial set X is a collection of sets X_n , $0 \le n \le K$, and maps $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, and $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ set.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial sets X, X' is a collection of maps $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism \Rightarrow such as the simplicial
- K-truncated simplicial sets form a bimonoidal category <u>sSet</u>_K as <u>sSet</u>.
- There is a truncation functor $tr_K : \underline{sSet} \to \underline{sSet}_K$ that discards all the simplices of degree n > K of the simplicial sets on which it acts.
- The K-truncation $\operatorname{tr}_K X$ of a simplicial set X is the K-truncated simplicial set such that $\operatorname{tr}_K X_n = X_n$ for $n \leq K$.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
	000000000000			

- The practical implementation of algorithms of computational topology involves a finite approximation of a simplicial set containing infinitely many simplices.
- A K-truncated simplicial set X is a collection of sets X_n , $0 \le n \le K$, and maps $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, and $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ set.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial sets X, X' is a collection of maps $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism \Rightarrow such as the simplicial
- K-truncated simplicial sets form a bimonoidal category \underline{sSet}_K as \underline{sSet} .
- There is a truncation functor tr_K : <u>sSet</u> → <u>sSet_K</u> that discards all the simplices of degree n > K of the simplicial sets on which it acts.
- The K-truncation $\operatorname{tr}_K X$ of a simplicial set X is the K-truncated simplicial set such that $\operatorname{tr}_K X_n = X_n$ for $n \leq K$.

<ロト < 個 ト < 注 ト < 注 ト 、 注 ・ の へ ()</p>

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
	000000000000			

- The practical implementation of algorithms of computational topology involves a finite approximation of a simplicial set containing infinitely many simplices.
- A K-truncated simplicial set X is a collection of sets X_n , $0 \le n \le K$, and maps $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, and $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ set.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial sets X, X' is a collection of maps $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism \Rightarrow such as the simplicial
- K-truncated simplicial sets form a bimonoidal category \underline{sSet}_K as \underline{sSet} .
- There is a truncation functor $\operatorname{tr}_K : \underline{\operatorname{sSet}} \to \underline{\operatorname{sSet}}_K$ that discards all the simplices of degree n > K of the simplicial sets on which it acts.
- The K-truncation $\operatorname{tr}_K X$ of a simplicial set X is the K-truncated simplicial set such that $\operatorname{tr}_K X_n = X_n$ for $n \leq K$.

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
	000000000000			

- The practical implementation of algorithms of computational topology involves a finite approximation of a simplicial set containing infinitely many simplices.
- A K-truncated simplicial set X is a collection of sets X_n , $0 \le n \le K$, and maps $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, and $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ set.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial sets X, X' is a collection of maps $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism relation \Rightarrow such as the simplicial morphism \Rightarrow such as the simplicial
- K-truncated simplicial sets form a bimonoidal category \underline{sSet}_K as \underline{sSet} .
- There is a truncation functor $\operatorname{tr}_K : \underline{\operatorname{sSet}} \to \underline{\operatorname{sSet}}_K$ that discards all the simplices of degree n > K of the simplicial sets on which it acts.
- The K-truncation $\operatorname{tr}_K X$ of a simplicial set X is the K-truncated simplicial set such that $\operatorname{tr}_K X_n = X_n$ for $n \leq K$.

オロトス団トス ヨトメヨト 一度 ろんぐ

- tr_K admits a left adjoint functor $\operatorname{lk}_K : \underline{\operatorname{sSet}}_K \to \underline{\operatorname{sSet}}$ (left Kan extension).
- The K-skeleton functor is the composite $\mathrm{sk}_K = \mathrm{lk}_K \circ \mathrm{tr}_K : \underline{\mathrm{sSet}} \to \underline{\mathrm{sSet}}$
- The K-skeleton $\operatorname{sk}_K X$ of a simplicial set X is the smallest simplicial subset of X such that $\operatorname{sk}_K X_n = X_n$ for $n \leq K$ and $\operatorname{sk}_K X_n \subseteq {}^sX_n$ for n > K.
- Similar notions can be introduced for simplicial objects in a category C.
- An K-truncated simplicial object X in C consists of X_n , $0 \le n \le K$, and morphisms $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, obeying the simplicial relations (****).
- A morphism $\phi: X \to X'$ of the K-truncated simplicial objects X, X' of C is a collection of morphisms $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations (\bullet, \bullet) .
- The truncation tr_K X and skeletonization sk_K X are defined analogously also for a simplicial object X.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
	000000000000			

- tr_K admits a left adjoint functor $\operatorname{lk}_K : \underline{\operatorname{sSet}}_K \to \underline{\operatorname{sSet}}$ (left Kan extension).
- The K-skeleton functor is the composite $sk_K = lk_K \circ tr_K : \underline{sSet} \to \underline{sSet}$
- The K-skeleton $\operatorname{sk}_K X$ of a simplicial set X is the smallest simplicial subset of X such that $\operatorname{sk}_K X_n = X_n$ for $n \le K$ and $\operatorname{sk}_K X_n \subseteq {}^sX_n$ for n > K.
- Similar notions can be introduced for simplicial objects in a category C.
- An K-truncated simplicial object X in C consists of X_n , $0 \le n \le K$, and morphisms $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, obeying the simplicial relations (*, *).
- A morphism $\phi: X \to X'$ of the K-truncated simplicial objects X, X' of C is a collection of morphisms $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations.
- The truncation tr_K X and skeletonization sk_K X are defined analogously also for a simplicial object X.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	000000000000			

- tr_K admits a left adjoint functor $\operatorname{lk}_K : \underline{\operatorname{sSet}}_K \to \underline{\operatorname{sSet}}$ (left Kan extension).
- The K-skeleton functor is the composite $sk_K = lk_K \circ tr_K : \underline{sSet} \to \underline{sSet}$
- The K-skeleton $\operatorname{sk}_K X$ of a simplicial set X is the smallest simplicial subset of X such that $\operatorname{sk}_K X_n = X_n$ for $n \leq K$ and $\operatorname{sk}_K X_n \subseteq {}^s X_n$ for n > K.

Similar notions can be introduced for simplicial objects in a category C.

- An K-truncated simplicial object X in C consists of X_n , $0 \le n \le K$, and morphisms $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, obeying the simplicial relations (M_{n-1}) .
- A morphism $\phi: X \to X'$ of the K-truncated simplicial objects X, X' of C is a collection of morphisms $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations.
- The truncation tr_K X and skeletonization sk_K X are defined analogously also for a simplicial object X.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	000000000000			

- tr_K admits a left adjoint functor $\operatorname{lk}_K : \underline{\operatorname{sSet}}_K \to \underline{\operatorname{sSet}}$ (left Kan extension).
- The K-skeleton functor is the composite $sk_K = lk_K \circ tr_K : \underline{sSet} \to \underline{sSet}$
- The K-skeleton $\operatorname{sk}_K X$ of a simplicial set X is the smallest simplicial subset of X such that $\operatorname{sk}_K X_n = X_n$ for $n \leq K$ and $\operatorname{sk}_K X_n \subseteq {}^s X_n$ for n > K.
- Similar notions can be introduced for simplicial objects in a category C.
- An K-truncated simplicial object X in C consists of X_n , $0 \le n \le K$, and morphisms $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, obeying the simplicial relations (*)
- A morphism $\phi: X \to X'$ of the K-truncated simplicial objects X, X' of C is a collection of morphisms $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations.
- The truncation tr_K X and skeletonization sk_K X are defined analogously also for a simplicial object X.

イロトス値 トス ヨトス ヨトニ 展示

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	000000000000			

- tr_K admits a left adjoint functor $\operatorname{lk}_K : \underline{\operatorname{sSet}}_K \to \underline{\operatorname{sSet}}$ (left Kan extension).
- The K-skeleton functor is the composite $sk_K = lk_K \circ tr_K : \underline{sSet} \to \underline{sSet}$
- The K-skeleton $\operatorname{sk}_K X$ of a simplicial set X is the smallest simplicial subset of X such that $\operatorname{sk}_K X_n = X_n$ for $n \leq K$ and $\operatorname{sk}_K X_n \subseteq {}^s X_n$ for n > K.
- Similar notions can be introduced for simplicial objects in a category *C*.
- An *K*-truncated simplicial object *X* in *C* consists of X_n , $0 \le n \le K$, and morphisms $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ sec.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial objects X, X' of C is a collection of morphisms $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations (\bullet, \bullet) .
- The truncation tr_K X and skeletonization sk_K X are defined analogously also for a simplicial object X.

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	000000000000			

- tr_K admits a left adjoint functor $\operatorname{lk}_K : \underline{\operatorname{sSet}}_K \to \underline{\operatorname{sSet}}$ (left Kan extension).
- The K-skeleton functor is the composite $sk_K = lk_K \circ tr_K : \underline{sSet} \to \underline{sSet}$
- The K-skeleton $\operatorname{sk}_K X$ of a simplicial set X is the smallest simplicial subset of X such that $\operatorname{sk}_K X_n = X_n$ for $n \leq K$ and $\operatorname{sk}_K X_n \subseteq {}^s X_n$ for n > K.
- Similar notions can be introduced for simplicial objects in a category C.
- An K-truncated simplicial object X in C consists of X_n , $0 \le n \le K$, and morphisms $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ sec.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial objects X, X' of C is a collection of morphisms $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations ϕ_{surple} .
- The truncation tr_K X and skeletonization sk_K X are defined analogously also for a simplicial object X.

 Image: Algebra Set Alg

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	000000000000			

- tr_K admits a left adjoint functor $\operatorname{lk}_K : \underline{\operatorname{sSet}}_K \to \underline{\operatorname{sSet}}$ (left Kan extension).
- The K-skeleton functor is the composite $sk_K = lk_K \circ tr_K : \underline{sSet} \to \underline{sSet}$
- The K-skeleton $\operatorname{sk}_K X$ of a simplicial set X is the smallest simplicial subset of X such that $\operatorname{sk}_K X_n = X_n$ for $n \leq K$ and $\operatorname{sk}_K X_n \subseteq {}^s X_n$ for n > K.
- Similar notions can be introduced for simplicial objects in a category C.
- An *K*-truncated simplicial object *X* in *C* consists of X_n , $0 \le n \le K$, and morphisms $d_{ni}: X_n \to X_{n-1}$, $1 \le n \le K$, i = 1, ..., n, $s_{ni}: X_n \to X_{n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, obeying the simplicial relations $\xrightarrow{\bullet}$ sec.
- A morphism $\phi: X \to X'$ of the K-truncated simplicial objects X, X' of C is a collection of morphisms $\phi_n: X_n \to X'_n$ with $0 \le n \le K$ obeying the simplicial morphism relations $\stackrel{\text{(b)}}{\longrightarrow} \text{ and }$.
- The truncation tr_K X and skeletonization sk_K X are defined analogously also for a simplicial object X.

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

 With a simplicial set X and an Abelian group A there are associated a simplicial Abelian group C(X, A) with n-simplex groups

$$C_n(X, \mathsf{A}) = \mathbb{Z}[X_n] \otimes \mathsf{A},$$

along with face and degeneracy morphisms $d_{ni} : C_n(X, A) \to C_{n-1}(X, A)$, $s_{ni} : C_n(X, A) \to C_{n+1}(X, A)$ induced by the d_{ni} , s_{ni} of X.

 \blacksquare The boundary morphisms $\partial_n: C_n(X,\mathsf{A}) o C_{n-1}(X,\mathsf{A})$

$$\partial_n = \sum_{0 \le i \le n} \, (-1)^i d_{ni}$$

obey the homological relations

$$\partial_n \partial_{n+1} = 0.$$

The simplicial homology H(X, A) of X with coefficients in A is

 $\mathrm{H}_n(X,\mathsf{A}) = \ker \partial_n / \operatorname{ran} \partial_{n+1}.$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

With a simplicial set X and an Abelian group A there are associated a simplicial Abelian group C(X, A) with *n*-simplex groups

$$C_n(X,\mathsf{A}) = \mathbb{Z}[X_n] \otimes \mathsf{A},$$

along with face and degeneracy morphisms $d_{ni} : C_n(X, A) \to C_{n-1}(X, A)$, $s_{ni} : C_n(X, A) \to C_{n+1}(X, A)$ induced by the d_{ni} , s_{ni} of X.

• The boundary morphisms $\partial_n : C_n(X, \mathsf{A}) \to C_{n-1}(X, \mathsf{A})$

$$\partial_n = \sum_{0 \le i \le n} \, (-1)^i d_{ni}$$

obey the homological relations

$$\partial_n \partial_{n+1} = 0.$$

The simplicial homology H(X, A) of X with coefficients in A is

 $\mathrm{H}_n(X,\mathsf{A}) = \ker \partial_n / \operatorname{ran} \partial_{n+1}.$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

 With a simplicial set X and an Abelian group A there are associated a simplicial Abelian group C(X, A) with n-simplex groups

$$C_n(X, \mathsf{A}) = \mathbb{Z}[X_n] \otimes \mathsf{A},$$

along with face and degeneracy morphisms $d_{ni} : C_n(X, A) \to C_{n-1}(X, A)$, $s_{ni} : C_n(X, A) \to C_{n+1}(X, A)$ induced by the d_{ni} , s_{ni} of X.

• The boundary morphisms $\partial_n : C_n(X, \mathsf{A}) \to C_{n-1}(X, \mathsf{A})$

$$\partial_n = \sum_{0 \le i \le n} \, (-1)^i d_{ni}$$

obey the homological relations

$$\partial_n \partial_{n+1} = 0.$$

The simplicial homology H(X, A) of X with coefficients in A is

$$\mathrm{H}_n(X,\mathsf{A}) = \ker \partial_n / \operatorname{ran} \partial_{n+1}.$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000			

 With a simplicial set X and an Abelian group A there are associated a simplicial Abelian group C(X, A) with n-simplex groups

$$C_n(X, \mathsf{A}) = \mathbb{Z}[X_n] \otimes \mathsf{A},$$

along with face and degeneracy morphisms $d_{ni} : C_n(X, A) \to C_{n-1}(X, A)$, $s_{ni} : C_n(X, A) \to C_{n+1}(X, A)$ induced by the d_{ni} , s_{ni} of X.

• The boundary morphisms $\partial_n : C_n(X, \mathsf{A}) \to C_{n-1}(X, \mathsf{A})$

$$\partial_n = \sum_{0 \le i \le n} \, (-1)^i d_{ni}$$

obey the homological relations

$$\partial_n \partial_{n+1} = 0.$$

The simplicial homology H(X, A) of X with coefficients in A is

$$\mathrm{H}_n(X,\mathsf{A}) = \ker \partial_n / \operatorname{ran} \partial_{n+1}.$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
	0000000000			

- Denote by ${}^{s}C_{n}(X, A)$ the subgroup of $C_{n}(X, A)$ generated by the degenerate simplex set ${}^{s}X_{n}$. The group $\overline{C}_{n}(X, A) = C_{n}(X, A)/{}^{s}C_{n}(X, A)$ is the normalized *n*-chain group.
- The boundary morphisms ∂_n give rise to a normalized boundary morphisms $\overline{\partial}_n : \overline{C}_n(X, A) \to \overline{C}_{n-1}(X, A)$ obeying

 $\overline{\partial}_n \overline{\partial}_{n+1} = 0.$

The normalized simplicial homology $\overline{\mathrm{H}}(X, \mathsf{A})$ of X with coefficients in A is

 $\overline{\mathrm{H}}_n(X,\mathsf{A}) = \ker \overline{\partial}_n / \operatorname{ran} \overline{\partial}_{n+1}.$

Normalization theorem (Eilenberg & Mac Lane (1953)): the isomorphism

 $\operatorname{H}_n(X, \mathsf{A}) \simeq \overline{\operatorname{H}}_n(X, \mathsf{A})$

オロトス値 トスヨトメヨト 一張 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	0000000000			

- Denote by ${}^{s}C_{n}(X, A)$ the subgroup of $C_{n}(X, A)$ generated by the degenerate simplex set ${}^{s}X_{n}$. The group $\overline{C}_{n}(X, A) = C_{n}(X, A)/{}^{s}C_{n}(X, A)$ is the normalized *n*-chain group.
- The boundary morphisms ∂_n give rise to a normalized boundary morphisms $\overline{\partial}_n : \overline{C}_n(X, A) \to \overline{C}_{n-1}(X, A)$ obeying

 $\overline{\partial}_n \overline{\partial}_{n+1} = 0.$

The normalized simplicial homology $\overline{\mathrm{H}}(X, \mathsf{A})$ of X with coefficients in A is

 $\overline{\mathrm{H}}_n(X,\mathsf{A}) = \ker \overline{\partial}_n / \operatorname{ran} \overline{\partial}_{n+1}.$

Normalization theorem (Eilenberg & Mac Lane (1953)): the isomorphism

 $\operatorname{H}_n(X, \mathsf{A}) \simeq \overline{\operatorname{H}}_n(X, \mathsf{A})$

オロトス値 トスヨトメヨト 一張 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	0000000000			

- Denote by ${}^{s}C_{n}(X, A)$ the subgroup of $C_{n}(X, A)$ generated by the degenerate simplex set ${}^{s}X_{n}$. The group $\overline{C}_{n}(X, A) = C_{n}(X, A)/{}^{s}C_{n}(X, A)$ is the normalized n-chain group.
- The boundary morphisms ∂_n give rise to a normalized boundary morphisms $\overline{\partial}_n : \overline{C}_n(X, A) \to \overline{C}_{n-1}(X, A)$ obeying

$$\overline{\partial}_n \overline{\partial}_{n+1} = 0.$$

The normalized simplicial homology $\overline{\mathrm{H}}(X, A)$ of X with coefficients in A is

$$\overline{\mathrm{H}}_n(X,\mathsf{A}) = \ker \overline{\partial}_n / \operatorname{ran} \overline{\partial}_{n+1}.$$

Normalization theorem (Eilenberg & Mac Lane (1953)): the isomorphism

 $\operatorname{H}_n(X, \mathsf{A}) \simeq \overline{\operatorname{H}}_n(X, \mathsf{A})$

オロトス値 トスヨトメヨト 一張 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	0000000000			

- Denote by ${}^{s}C_{n}(X, A)$ the subgroup of $C_{n}(X, A)$ generated by the degenerate simplex set ${}^{s}X_{n}$. The group $\overline{C}_{n}(X, A) = C_{n}(X, A)/{}^{s}C_{n}(X, A)$ is the normalized *n*-chain group.
- The boundary morphisms ∂_n give rise to a normalized boundary morphisms $\overline{\partial}_n : \overline{C}_n(X, A) \to \overline{C}_{n-1}(X, A)$ obeying

$$\overline{\partial}_n \overline{\partial}_{n+1} = 0.$$

The normalized simplicial homology $\overline{\mathrm{H}}(X, A)$ of X with coefficients in A is

$$\overline{\mathrm{H}}_n(X,\mathsf{A}) = \ker \overline{\partial}_n / \operatorname{ran} \overline{\partial}_{n+1}.$$

Normalization theorem (Eilenberg & Mac Lane (1953)): the isomorphism

$$\operatorname{H}_n(X, \mathsf{A}) \simeq \overline{\operatorname{H}}_n(X, \mathsf{A})$$

オロトス値 トスヨトメヨト 一張 ののの

イロトス値 トス ヨトメ ヨトー

康

The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

- The quantum simplicial set framework is the natural set-up for the analysis and implementation of quantum algorithms of simplicial set theoretic computational topology.
- It allows also in principle the modelling of simplicial quantum computation and circuitry.
- It is an instance of quantum basis coding of classical data, where the latter are simplicial data of a parafinite simplicial set X.
- For $n \in \mathbb{N}$, the *n*-simplex Hilbert space \mathscr{H}_n is the Hilbert space generated by the *n*-simplex set X_n .
- \mathscr{H}_n has thus a canonical orthonormal basis $|\sigma_n\rangle$ labelled by the *n*-simplices $\sigma_n \in X_n$ (*n*-simplex basis).
- The face and degeneracy maps of X convert into face and degeneracy operators relating the Hilbert spaces \mathscr{H}_n .

イロトス値を 不良をし

The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

- The quantum simplicial set framework is the natural set-up for the analysis and implementation of quantum algorithms of simplicial set theoretic computational topology.
- It allows also in principle the modelling of simplicial quantum computation and circuitry.
- It is an instance of quantum basis coding of classical data, where the latter are simplicial data of a parafinite simplicial set X.
- For $n \in \mathbb{N}$, the *n*-simplex Hilbert space \mathscr{H}_n is the Hilbert space generated by the *n*-simplex set X_n .
- \mathscr{H}_n has thus a canonical orthonormal basis $|\sigma_n\rangle$ labelled by the *n*-simplices $\sigma_n \in X_n$ (*n*-simplex basis).
- The face and degeneracy maps of X convert into face and degeneracy operators relating the Hilbert spaces \mathscr{H}_n .
イロトス値 トイヨト イヨト

- The quantum simplicial set framework is the natural set-up for the analysis and implementation of quantum algorithms of simplicial set theoretic computational topology.
- It allows also in principle the modelling of simplicial quantum computation and circuitry.
- It is an instance of quantum basis coding of classical data, where the latter are simplicial data of a parafinite simplicial set X.
- For $n \in \mathbb{N}$, the *n*-simplex Hilbert space \mathscr{H}_n is the Hilbert space generated by the *n*-simplex set X_n .
- \mathscr{H}_n has thus a canonical orthonormal basis $|\sigma_n\rangle$ labelled by the *n*-simplices $\sigma_n \in X_n$ (*n*-simplex basis).
- The face and degeneracy maps of X convert into face and degeneracy operators relating the Hilbert spaces \mathscr{H}_n .

イロト 不得下 不良下 不良下 …

漫 のへの

- The quantum simplicial set framework is the natural set-up for the analysis and implementation of quantum algorithms of simplicial set theoretic computational topology.
- It allows also in principle the modelling of simplicial quantum computation and circuitry.
- It is an instance of quantum basis coding of classical data, where the latter are simplicial data of a parafinite simplicial set X.
- For $n \in \mathbb{N}$, the *n*-simplex Hilbert space \mathscr{H}_n is the Hilbert space generated by the *n*-simplex set X_n .
- \mathscr{H}_n has thus a canonical orthonormal basis $|\sigma_n\rangle$ labelled by the *n*-simplices $\sigma_n \in X_n$ (*n*-simplex basis).
- The face and degeneracy maps of X convert into face and degeneracy operators relating the Hilbert spaces \mathcal{H}_n .

イロト 不得下 イヨト イヨト

漫 のへの

- The quantum simplicial set framework is the natural set-up for the analysis and implementation of quantum algorithms of simplicial set theoretic computational topology.
- It allows also in principle the modelling of simplicial quantum computation and circuitry.
- It is an instance of quantum basis coding of classical data, where the latter are simplicial data of a parafinite simplicial set X.
- For $n \in \mathbb{N}$, the *n*-simplex Hilbert space \mathscr{H}_n is the Hilbert space generated by the *n*-simplex set X_n .
- \mathscr{H}_n has thus a canonical orthonormal basis $|\sigma_n\rangle$ labelled by the *n*-simplices $\sigma_n \in X_n$ (*n*-simplex basis).
- The face and degeneracy maps of X convert into face and degeneracy operators relating the Hilbert spaces *H_n*.

イロト 不得下 不良下 不良下 …

漫 のへの

- The quantum simplicial set framework is the natural set-up for the analysis and implementation of quantum algorithms of simplicial set theoretic computational topology.
- It allows also in principle the modelling of simplicial quantum computation and circuitry.
- It is an instance of quantum basis coding of classical data, where the latter are simplicial data of a parafinite simplicial set X.
- For $n \in \mathbb{N}$, the *n*-simplex Hilbert space \mathscr{H}_n is the Hilbert space generated by the *n*-simplex set X_n .
- \mathscr{H}_n has thus a canonical orthonormal basis $|\sigma_n\rangle$ labelled by the *n*-simplices $\sigma_n \in X_n$ (*n*-simplex basis).
- The face and degeneracy maps of X convert into face and degeneracy operators relating the Hilbert spaces \mathscr{H}_n .

The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

The face operators $D_{ni} : \mathscr{H}_n \to \mathscr{H}_{n-1}$, i = 0, ..., n and $n \ge 1$, and degeneracy operators $S_{ni} : \mathscr{H}_n \to \mathscr{H}_{n+1}$ and i = 0, ..., n and $n \ge 0$ are

$$D_{ni} = \sum_{\sigma_n \in X_n} |d_{ni}\sigma_n\rangle \langle \sigma_n|, \qquad (3.1)$$

$$S_{ni} = \sum_{\sigma_n \in X_n} |s_{ni}\sigma_n\rangle \langle \sigma_n|.$$
(3.2)

The simplicial relations \bigcirc imply the exchange identities $(1_n \equiv 1_{\mathscr{H}_n})$:

$$\begin{split} D_{n-1i}D_{nj} - D_{n-1j-1}D_{ni} &= 0 & \text{ for } 0 \leq i,j \leq n, \, i < j, \\ D_{n+1i}S_{nj} - S_{n-1j-1}D_{ni} &= 0 & \text{ for } 0 \leq i,j \leq n, \, i < j, \\ D_{n+1i}S_{nj} - 1_n &= 0 & \text{ for } 0 \leq j \leq n, \, i = j, \, j+1, \\ D_{n+1i}S_{nj} - S_{n-1j}D_{ni-1} &= 0 & \text{ for } 0 \leq i,j \leq n+1, \, i > j+1, \\ S_{n+1i}S_{nj} - S_{n+1j+1}S_{ni} &= 0 & \text{ for } 0 \leq i,j \leq n, \, i \leq j. \end{split}$$

These are the Hilbert simplicial identities.

▲ロト ▲樹 ト 4 回 ト ▲ 回 ト → 回 → の Q ()

The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

The face operators $D_{ni}: \mathscr{H}_n \to \mathscr{H}_{n-1}$, i = 0, ..., n and $n \ge 1$, and degeneracy operators $S_{ni}: \mathscr{H}_n \to \mathscr{H}_{n+1}$ and i = 0, ..., n and $n \ge 0$ are

$$D_{ni} = \sum_{\sigma_n \in X_n} |d_{ni}\sigma_n\rangle \langle \sigma_n|, \qquad (3.1)$$

$$S_{ni} = \sum_{\sigma_n \in X_n} |s_{ni}\sigma_n\rangle \langle \sigma_n|.$$
(3.2)

The simplicial relations \triangleright ser imply the exchange identities $(1_n \equiv 1_{\mathscr{H}_n})$:

$$\begin{split} D_{n-1i}D_{nj} - D_{n-1j-1}D_{ni} &= 0 & \text{ for } 0 \leq i,j \leq n, \, i < j, \\ D_{n+1i}S_{nj} - S_{n-1j-1}D_{ni} &= 0 & \text{ for } 0 \leq i,j \leq n, \, i < j, \\ D_{n+1i}S_{nj} - 1_n &= 0 & \text{ for } 0 \leq j \leq n, \, i = j, \, j+1, \\ D_{n+1i}S_{nj} - S_{n-1j}D_{ni-1} &= 0 & \text{ for } 0 \leq i,j \leq n+1, \, i > j+1, \\ S_{n+1i}S_{nj} - S_{n+1j+1}S_{ni} &= 0 & \text{ for } 0 \leq i,j \leq n, \, i \leq j. \end{split}$$

These are the Hilbert simplicial identities.

The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

- The Hilbert simplicial identities $(\mathcal{H}_n, D_{ni}, S_{ni})$ constitutes a finite dimensional simplicial Hilbert space \mathcal{H} .
- With any morphism $\phi: X \to X'$ of the parafinite simplicial sets X, X' there is associated a morphism $\Phi: \mathcal{H} \to \mathcal{H}'$ of the simplicial Hilbert spaces $\mathcal{H}, \mathcal{H}'$ given by the linear operators $\Phi_n: \mathcal{H}_n \to \mathcal{H}'_n$.

$$\Phi_n = \sum_{\sigma_n \in X_n} |\phi_n \sigma_n\rangle \langle \sigma_n|,$$

since indeed

$$\begin{split} & \varPhi_{n-1} D_{ni} - D'_{ni} \varPhi_n = 0 & \text{if } 0 \leq i \leq n, \\ & \varPhi_{n+1} S_{ni} - S'_{ni} \varPhi_n = 0 & \text{if } 0 \leq i \leq n. \end{split}$$

Theorem: the map $X \mapsto \mathcal{H}$, $(\phi : X \to X') \mapsto (\Phi : \mathcal{H} \to \mathcal{H}')$ is a functor ς : pfsSet $\to \underline{fdsHilb}$ of bimonoidal categories (Hilbert simplicial functor).

The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

- The Hilbert simplicial identities $(\mathcal{H}_n, D_{ni}, S_{ni})$ constitutes a finite dimensional simplicial Hilbert space \mathcal{H} .
- With any morphism $\phi: X \to X'$ of the parafinite simplicial sets $X, X' \xrightarrow{\text{vest}}$ there is associated a morphism $\Phi: \mathscr{H} \to \mathscr{H}'$ of the simplicial Hilbert spaces $\mathscr{H}, \mathscr{H}'$ given by the linear operators $\Phi_n: \mathscr{H}_n \to \mathscr{H}'_n$,

$$\Phi_n = \sum_{\sigma_n \in X_n} |\phi_n \sigma_n\rangle \langle \sigma_n|,$$

since indeed

$$\begin{split} \varPhi_{n-1}D_{ni}-D'_{ni}\varPhi_n &= 0 & \text{ if } 0\leq i\leq n, \\ \varPhi_{n+1}S_{ni}-S'_{ni}\varPhi_n &= 0 & \text{ if } 0\leq i\leq n. \end{split}$$

Theorem: the map $X \mapsto \mathcal{H}$, $(\phi : X \to X') \mapsto (\Phi : \mathcal{H} \to \mathcal{H}')$ is a functor ς : pfsSet \to <u>fdsHilb</u> of bimonoidal categories (Hilbert simplicial functor).

The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

- The Hilbert simplicial identities $(\mathcal{H}_n, D_{ni}, S_{ni})$ constitutes a finite dimensional simplicial Hilbert space \mathcal{H} .
- With any morphism $\phi: X \to X'$ of the parafinite simplicial sets $X, X' \xrightarrow{\text{vest}}$ there is associated a morphism $\Phi: \mathscr{H} \to \mathscr{H}'$ of the simplicial Hilbert spaces $\mathscr{H}, \mathscr{H}'$ given by the linear operators $\Phi_n: \mathscr{H}_n \to \mathscr{H}'_n$,

$$\Phi_n = \sum_{\sigma_n \in X_n} |\phi_n \sigma_n\rangle \langle \sigma_n|,$$

since indeed

$$\begin{split} & \varPhi_{n-1} D_{ni} - D'_{ni} \varPhi_n = 0 & \text{if } 0 \leq i \leq n, \\ & \varPhi_{n+1} S_{ni} - S'_{ni} \varPhi_n = 0 & \text{if } 0 \leq i \leq n. \end{split}$$

Theorem: the map $X \mapsto \mathscr{H}$, $(\phi : X \to X') \mapsto (\Phi : \mathscr{H} \to \mathscr{H}')$ is a functor $\varsigma : pfsSet \to \underline{fdsHilb}$ of bimonoidal categories (Hilbert simplicial functor).

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

The cosimplicial Hilbert structure

For a parafinite simplicial set X, the dagger structure of the Hilbert space category <u>fdHilb</u> yields the adjoints $D_{ni}^+: \mathscr{H}_{n-1} \to \mathscr{H}_n, S_{ni}^+: \mathscr{H}_{n+1} \to \mathscr{H}_n$,

$$D_{ni}^{+} = \sum_{\sigma_{n-1} \in X_{n-1}} \sum_{\omega_n \in D_{ni}(\sigma_{n-1})} |\omega_n\rangle \langle \sigma_{n-1}|,$$

$$S_{ni}^{+} = \sum_{\sigma_{n+1} \in X_{n+1}} \sum_{\omega_n \in S_{ni}(\sigma_{n+1})} |\omega_n\rangle \langle \sigma_{n+1}|$$

where the face and degeneracy star sets $D_{ni}(\sigma_{n-1})$, $S_{ni}(\sigma_{n+1}) \subset X_n$ are

$$D_{ni}(\sigma_{n-1}) = \{\omega_n \in X_n | d_{ni}\omega_n = \sigma_{n-1}\},\$$

$$S_{ni}(\sigma_{n+1}) = \{\omega_n \in X_n | s_{ni}\omega_n = \sigma_{n+1}\}.$$

- One has $|D_{ni}(\sigma_{n-1})| \ge 1$ and $|S_{ni}(\sigma_{n+1})| \le 1$ (by the surjectivity of the d_{ni} and the injectivity of the s_{ni}).
- Via the $D_{ni}(\sigma_{n-1})$, $S_{ni}(\sigma_{n+1})$, the adjoint operators D_{ni}^+ , S_{ni}^+ encode special features of X not directly accessible through the operators D_{ni} , S_{ni} .

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

The cosimplicial Hilbert structure

For a parafinite simplicial set X, the dagger structure of the Hilbert space category <u>fdHilb</u> yields the adjoints $D_{ni}^+: \mathscr{H}_{n-1} \to \mathscr{H}_n, S_{ni}^+: \mathscr{H}_{n+1} \to \mathscr{H}_n$,

$$D_{ni}^{+} = \sum_{\sigma_{n-1} \in X_{n-1}} \sum_{\omega_n \in D_{ni}(\sigma_{n-1})} |\omega_n\rangle \langle \sigma_{n-1}|,$$

$$S_{ni}^{+} = \sum_{\sigma_{n+1} \in X_{n+1}} \sum_{\omega_n \in S_{ni}(\sigma_{n+1})} |\omega_n\rangle \langle \sigma_{n+1}|$$

where the face and degeneracy star sets $D_{ni}(\sigma_{n-1})$, $S_{ni}(\sigma_{n+1}) \subset X_n$ are

$$D_{ni}(\sigma_{n-1}) = \{\omega_n \in X_n | d_{ni}\omega_n = \sigma_{n-1}\},\$$

$$S_{ni}(\sigma_{n+1}) = \{\omega_n \in X_n | s_{ni}\omega_n = \sigma_{n+1}\}.$$

• One has $|D_{ni}(\sigma_{n-1})| \ge 1$ and $|S_{ni}(\sigma_{n+1})| \le 1$ (by the surjectivity of the d_{ni} and the injectivity of the s_{ni}).

Via the $D_{ni}(\sigma_{n-1})$, $S_{ni}(\sigma_{n+1})$, the adjoint operators D_{ni}^+ , S_{ni}^+ encode special features of X not directly accessible through the operators D_{ni} , S_{ni} .

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

The cosimplicial Hilbert structure

For a parafinite simplicial set X, the dagger structure of the Hilbert space category <u>fdHilb</u> yields the adjoints $D_{ni}^+: \mathscr{H}_{n-1} \to \mathscr{H}_n, S_{ni}^+: \mathscr{H}_{n+1} \to \mathscr{H}_n$,

$$D_{ni}^{+} = \sum_{\sigma_{n-1} \in X_{n-1}} \sum_{\omega_n \in D_{ni}(\sigma_{n-1})} |\omega_n\rangle \langle \sigma_{n-1}|,$$

$$S_{ni}^{+} = \sum_{\sigma_{n+1} \in X_{n+1}} \sum_{\omega_n \in S_{ni}(\sigma_{n+1})} |\omega_n\rangle \langle \sigma_{n+1}|,$$

where the face and degeneracy star sets $D_{ni}(\sigma_{n-1})$, $S_{ni}(\sigma_{n+1}) \subset X_n$ are

$$D_{ni}(\sigma_{n-1}) = \{\omega_n \in X_n | d_{ni}\omega_n = \sigma_{n-1}\},\$$

$$S_{ni}(\sigma_{n+1}) = \{\omega_n \in X_n | s_{ni}\omega_n = \sigma_{n+1}\}.$$

• One has $|D_{ni}(\sigma_{n-1})| \ge 1$ and $|S_{ni}(\sigma_{n+1})| \le 1$ (by the surjectivity of the d_{ni} and the injectivity of the s_{ni}).

Via the $D_{ni}(\sigma_{n-1})$, $S_{ni}(\sigma_{n+1})$, the adjoint operators D_{ni}^+ , S_{ni}^+ encode special features of X not directly accessible through the operators D_{ni} , S_{ni} .

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

オロトス値 トスヨトメヨト 一張 ののの

The cosimplicial Hilbert structure

- The exchange identities of D_{ni}^+ , S_{ni}^+ stem from those of D_{ni} , S_{ni}^+ . They have the same form except for the reversed order of the factors. They are therefore Hilbert cosimplicial identities.
- These relations entail that the data collection {\$\mathcal{H}_n, D_{ni}^+, S_{ni}^+\$} is a finite dimensional cosimplicial Hilbert space \$\mathcal{H}^+\$.
 NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.
- With any simplicial set morphism $\phi : X \to X'$ of parafinite simplicial sets X, X'there is associated a morphism $\Phi^+ : \mathscr{H}'^+ \to \mathscr{H}^+$ of the cosimplicial Hilbert spaces $\mathscr{H}'^+, \mathscr{H}^+$ specified by the adjoint operators $\Phi_n^+ : \mathscr{H}'_n \to \mathscr{H}_n$,

$$\Phi_n^{+} = \sum_{\sigma'_n \in X'_n} \sum_{\omega_n \in X_n, \phi_n \omega_n = \sigma'_n} |\omega_n\rangle \langle \sigma'_n|$$

- A simplicial and a cosimplicial Hilbert structure coexist in this way in the quantum simplicial set-up.
 - NB This is a generic feature of simplicial Hilbert spaces.

オロトメ劇トメミトメミト ほうのくぐ

The cosimplicial Hilbert structure

- The exchange identities of D_{ni}^+ , S_{ni}^+ stem from those of D_{ni} , S_{ni} (* ¹⁰). They have the same form except for the reversed order of the factors. They are therefore Hilbert cosimplicial identities.
- These relations entail that the data collection {\$\mathcal{H}_n, D_{ni}^+, S_{ni}^+\$} is a finite dimensional cosimplicial Hilbert space \$\mathcal{H}^+\$.
 NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.
- With any simplicial set morphism $\phi : X \to X'$ of parafinite simplicial sets X, X'there is associated a morphism $\Phi^+ : \mathscr{H}'^+ \to \mathscr{H}^+$ of the cosimplicial Hilbert spaces $\mathscr{H}'^+, \mathscr{H}^+$ specified by the adjoint operators $\Phi_n^+ : \mathscr{H}'_n \to \mathscr{H}_n$.

$$\Phi_n^{+} = \sum_{\sigma'_n \in X'_n} \sum_{\omega_n \in X_n, \phi_n \omega_n = \sigma'_n} |\omega_n\rangle \langle \sigma'_n|$$

- A simplicial and a cosimplicial Hilbert structure coexist in this way in the quantum simplicial set-up.
 - NB This is a generic feature of simplicial Hilbert spaces.

The cosimplicial Hilbert structure

- The exchange identities of D_{ni}^+ , S_{ni}^+ stem from those of D_{ni} , S_{ni} (> has the same form except for the reversed order of the factors. They are therefore Hilbert cosimplicial identities.
- These relations entail that the data collection {\$\mathcal{H}_n, D_{ni}^+, S_{ni}^+\$} is a finite dimensional cosimplicial Hilbert space \$\mathcal{H}^+\$.
 NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.
- With any simplicial set morphism $\phi: X \to X'$ of parafinite simplicial sets X, X'there is associated a morphism $\Phi^+: \mathscr{H}'^+ \to \mathscr{H}^+$ of the cosimplicial Hilbert spaces $\mathscr{H}'^+, \mathscr{H}^+$ specified by the adjoint operators $\Phi_n^+: \mathscr{H}'_n \to \mathscr{H}_n$.

$$\Phi_n^{+} = \sum_{\sigma'_n \in X'_n} \sum_{\omega_n \in X_n, \phi_n \omega_n = \sigma'_n} |\omega_n\rangle \langle \sigma'_n|$$

- A simplicial and a cosimplicial Hilbert structure coexist in this way in the quantum simplicial set-up.
 - NB This is a generic feature of simplicial Hilbert spaces.

The cosimplicial Hilbert structure

- The exchange identities of D_{ni}^+ , S_{ni}^+ stem from those of D_{ni} , S_{ni} (* ¹⁰). They have the same form except for the reversed order of the factors. They are therefore Hilbert cosimplicial identities.
- These relations entail that the data collection {\$\mathcal{H}_n, D_{ni}^+, S_{ni}^+\$} is a finite dimensional cosimplicial Hilbert space \$\mathcal{H}^+\$.
 NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.
- With any simplicial set morphism $\phi: X \to X'$ of parafinite simplicial sets X, X'there is associated a morphism $\Phi^+: \mathscr{H}'^+ \to \mathscr{H}^+$ of the cosimplicial Hilbert spaces $\mathscr{H}'^+, \mathscr{H}^+$ specified by the adjoint operators $\Phi_n^+: \mathscr{H}'_n \to \mathscr{H}_n$.

$$\Phi_n^{+} = \sum_{\sigma'_n \in X'_n} \sum_{\omega_n \in X_n, \phi_n \omega_n = \sigma'_n} |\omega_n\rangle \langle \sigma'_n|$$

 A simplicial and a cosimplicial Hilbert structure coexist in this way in the quantum simplicial set-up.

NB This is a generic feature of simplicial Hilbert spaces.

Roberto Zucchini

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

For a parafinite simplicial set X, the mixed exchange identities involving one of the D_{ni} , S_{ni} and one of the D_{ni}^+ , S_{ni}^+ have the form

$$\begin{split} D_{ni}{}^{+}D_{nj} - D_{n+1j+1}D_{n+1i}{}^{+} &= \Delta^{DD}{}_{nij} & \text{for } 0 \leq i,j \leq n, \, i \leq j, \\ D_{n+2i}{}^{+}S_{nj} - S_{n+1j+1}D_{n+1i}{}^{+} &= \Delta^{DS}{}_{nij} & \text{for } 0 \leq i,j \leq n, \, i \leq j, \\ S_{n-2i}{}^{+}D_{nj} - D_{n-1j-1}S_{n-1i}{}^{+} &= \Delta^{SD}{}_{nij} & \text{for } 0 \leq i,j \leq n, \, i+1 < j, \\ S_{ni}{}^{+}S_{nj} - S_{n-1j-1}S_{n-1i}{}^{+} &= \Delta^{SS}{}_{nij} & \text{for } 0 \leq i,j \leq n, \, i < j. \end{split}$$

The operators $\Delta^{DD}{}_{nij}, \, \Delta^{DS}{}_{nij}, \, \Delta^{SD}{}_{nij}, \, \Delta^{SS}{}_{nij}$ are called defects.

 Δ^{DD}_{nij}, Δ^{DS}_{nij}, Δ^{SD}_{nij}, Δ^{SS}_{nij} arise as distinguished contributions of analogous form to certain simplicial Hodge Laplacians.

No degeneracy defect theorem: it holds that

$$\Delta^{SS}{}_{nij} = 0 \qquad \qquad \text{for } 0 \le i, j \le n, \ i < j.$$

オロトス値 トスヨトメヨト 一張 ののの

It follows from the simplicial identities ᆣ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

For a parafinite simplicial set X, the mixed exchange identities involving one of the D_{ni} , S_{ni} and one of the D_{ni}^+ , S_{ni}^+ have the form

$$\begin{split} D_{ni}{}^{+}D_{nj} - D_{n+1j+1}D_{n+1i}{}^{+} &= \Delta^{DD}{}_{nij} & \text{for } 0 \leq i,j \leq n, i \leq j, \\ D_{n+2i}{}^{+}S_{nj} - S_{n+1j+1}D_{n+1i}{}^{+} &= \Delta^{DS}{}_{nij} & \text{for } 0 \leq i,j \leq n, i \leq j, \\ S_{n-2i}{}^{+}D_{nj} - D_{n-1j-1}S_{n-1i}{}^{+} &= \Delta^{SD}{}_{nij} & \text{for } 0 \leq i,j \leq n, i+1 < j, \\ S_{ni}{}^{+}S_{nj} - S_{n-1j-1}S_{n-1i}{}^{+} &= \Delta^{SS}{}_{nij} & \text{for } 0 \leq i,j \leq n, i < j. \end{split}$$

The operators $\Delta^{DD}{}_{nij}, \Delta^{DS}{}_{nij}, \Delta^{SD}{}_{nij}, \Delta^{SS}{}_{nij}$ are called defects.
 $\Delta^{DD} = \Delta^{DS} = \Delta^{SD} = \Delta^{SS} = \alpha$ give as distinguished contributions of the set of

- $\Delta^{\nu\nu}{}_{nij}$, $\Delta^{\nu\sigma}{}_{nij}$, $\Delta^{\sigma\nu}{}_{nij}$, $\Delta^{\sigma\sigma}{}_{nij}$ arise as distinguished contributions of analogous form to certain simplicial Hodge Laplacians.
- No degeneracy defect theorem: it holds that

$$\Delta^{SS}{}_{nij} = 0 \qquad \qquad \text{for } 0 \le i, j \le n, \ i < j.$$

康

イロトメ 同ト イヨトメ ヨトー

It follows from the simplicial identities 만

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

For a parafinite simplicial set X, the mixed exchange identities involving one of the D_{ni} , S_{ni} and one of the D_{ni}^+ , S_{ni}^+ have the form

$$\begin{split} D_{ni}{}^{+}D_{nj} - D_{n+1j+1}D_{n+1i}{}^{+} &= \Delta^{DD}{}_{nij} & \text{for } 0 \leq i,j \leq n, \ i \leq j, \\ D_{n+2i}{}^{+}S_{nj} - S_{n+1j+1}D_{n+1i}{}^{+} &= \Delta^{DS}{}_{nij} & \text{for } 0 \leq i,j \leq n, \ i \leq j, \\ S_{n-2i}{}^{+}D_{nj} - D_{n-1j-1}S_{n-1i}{}^{+} &= \Delta^{SD}{}_{nij} & \text{for } 0 \leq i,j \leq n, \ i+1 < j, \\ S_{ni}{}^{+}S_{nj} - S_{n-1j-1}S_{n-1i}{}^{+} &= \Delta^{SS}{}_{nij} & \text{for } 0 \leq i,j \leq n, \ i < j. \end{split}$$

The operators $\Delta^{DD}{}_{nij}, \ \Delta^{DS}{}_{nij}, \ \Delta^{SS}{}_{nij}$ are called defects.

- Δ^{DD}_{nij} , Δ^{DS}_{nij} , Δ^{SD}_{nij} , Δ^{SS}_{nij} arise as distinguished contributions of analogous form to certain simplicial Hodge Laplacians.
- No degeneracy defect theorem: it holds that

$$\Delta^{SS}{}_{nij} = 0 \qquad \qquad \text{for } 0 \le i, j \le n, \ i < j.$$

オロトス団トス ヨトメヨト 一度 ろんぐ

It follows from the simplicial identities 💛 ssr.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

- Δ^{DD}_{nij} , Δ^{DS}_{nij} , Δ^{SD}_{nij} detect basic properties of X.
- Proposition: the simplicial set KS of an ordered finite abstract simplicial complex S is semi perfect:

$$\begin{split} \Delta^{DS}{}_{nij} &= 0 & \quad \text{for } 0 \leq i,j \leq n, \ i \leq j, \\ \Delta^{SD}{}_{nij} &= 0 & \quad \text{for } 0 \leq i,j \leq n, \ i+1 < j. \end{split}$$

Proposition: the nerve NC of a finite category C is quasi perfect:

If C is a groupoid, then NC is perfect: the last identity holds true also for $i \leq j$.

Such results depend on the special 'local' nature of the face and degeneracy maps of these simplicial sets.

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

- Δ^{DD}_{nij} , Δ^{DS}_{nij} , Δ^{SD}_{nij} detect basic properties of X.
- Proposition: the simplicial set KS of an ordered finite abstract simplicial complex S is semi perfect:

$$\begin{split} \Delta^{DS}{}_{nij} &= 0 & \qquad \text{for } 0 \leq i,j \leq n, \ i \leq j, \\ \Delta^{SD}{}_{nij} &= 0 & \qquad \text{for } 0 \leq i,j \leq n, \ i+1 < j. \end{split}$$

Proposition: the nerve NC of a finite category C is quasi perfect:

If C is a groupoid, then NC is perfect: the last identity holds true also for $i\leq j$.

 Such results depend on the special 'local' nature of the face and degeneracy maps of these simplicial sets.

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

- Δ^{DD}_{nij} , Δ^{DS}_{nij} , Δ^{SD}_{nij} detect basic properties of X.
- Proposition: the simplicial set KS of an ordered finite abstract simplicial complex S is semi perfect:

$$\begin{split} \Delta^{DS}{}_{nij} &= 0 & \qquad \text{for } 0 \leq i,j \leq n, \ i \leq j, \\ \Delta^{SD}{}_{nij} &= 0 & \qquad \text{for } 0 \leq i,j \leq n, \ i+1 < j. \end{split}$$

■ Proposition: the nerve NC of a finite category C is quasi perfect:

$\Delta^{DS}{}_{nij} = 0$	for $0 \leq i, j \leq n, i \leq j$,
$\varDelta^{SD}{}_{nij}=0$	for $0 \le i, j \le n, i+1 < j$.
$\Delta^{DD}{}_{nij} = 0$	for $0 \leq i, j \leq n, i < j$.

If C is a groupoid, then NC is perfect: the last identity holds true also for $i \leq j$.

 Such results depend on the special 'local' nature of the face and degeneracy maps of these simplicial sets.

・ロト ・回 ト ・ ヨト ・ ヨー うんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

- Δ^{DD}_{nij} , Δ^{DS}_{nij} , Δ^{SD}_{nij} detect basic properties of X.
- Proposition: the simplicial set KS of an ordered finite abstract simplicial complex S is semi perfect:

$$\begin{split} \Delta^{DS}{}_{nij} &= 0 & \qquad \text{for } 0 \leq i,j \leq n, \ i \leq j, \\ \Delta^{SD}{}_{nij} &= 0 & \qquad \text{for } 0 \leq i,j \leq n, \ i+1 < j. \end{split}$$

■ Proposition: the nerve NC of a finite category C is quasi perfect:

$\Delta^{DS}{}_{nij} = 0$	for $0 \leq i, j \leq n, i \leq j$,
$\varDelta^{SD}{}_{nij}=0$	for $0 \le i, j \le n, i+1 < j$.
$\Delta^{DD}{}_{nij} = 0$	for $0 \leq i, j \leq n, i < j$.

If C is a groupoid, then NC is perfect: the last identity holds true also for $i \leq j$.

 Such results depend on the special 'local' nature of the face and degeneracy maps of these simplicial sets.

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

• The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert space $\mathscr{H}^{(\infty)}$ that stores all the simplicial data of X in the same way as a quantum register is a Hilbert space $\mathbb{C}^{2\otimes n}$ that stores all the configurations of a classical n bit string.

■ Mathematically, ℋ^(∞) is the infinite dimensional pre-Hilbert space

$$\mathscr{H}^{(\infty)} = \bigoplus_{0 \le n < \infty} \mathscr{H}_n \tag{3.3}$$

オロトス値 トスヨトメヨト 一張 ののの

- A simplicial quantum circuit is a quantum circuit supported on the register *H*^(∞) compatible with the underlying simplicial structure of X and capable in theory of performing meaningful simplicial computations (no measurements are assumed to be involved).
- Mathematically, a simplicial quantum circuit is a unitary operator $U \in U(\mathscr{H}^{(\infty)})$ that satisfies certain simplicial conditions.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert space ℋ^(∞) that stores all the simplicial data of X in the same way as a quantum register is a Hilbert space C^{2⊗n} that stores all the configurations of a classical n bit string.
- \blacksquare Mathematically, $\mathscr{H}^{(\infty)}$ is the infinite dimensional pre-Hilbert space

$$\mathscr{H}^{(\infty)} = \bigoplus_{0 \le n < \infty} \mathscr{H}_n \tag{3.3}$$

オロトス値 トスヨトメヨト 一頭 ののの

- A simplicial quantum circuit is a quantum circuit supported on the register *H*^(∞) compatible with the underlying simplicial structure of X and capable in theory of performing meaningful simplicial computations (no measurements are assumed to be involved).
- Mathematically, a simplicial quantum circuit is a unitary operator $U \in U(\mathscr{H}^{(\infty)})$ that satisfies certain simplicial conditions.

0000000 000000000 0000000000000000000	Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000		

- The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert space ℋ^(∞) that stores all the simplicial data of X in the same way as a quantum register is a Hilbert space C^{2⊗n} that stores all the configurations of a classical n bit string.
- \blacksquare Mathematically, $\mathscr{H}^{(\infty)}$ is the infinite dimensional pre-Hilbert space

$$\mathscr{H}^{(\infty)} = \bigoplus_{0 \le n < \infty} \mathscr{H}_n \tag{3.3}$$

・ロト ・回 ト ・ ヨト ・ ヨー うんの

- A simplicial quantum circuit is a quantum circuit supported on the register *H*^(∞) compatible with the underlying simplicial structure of X and capable in theory of performing meaningful simplicial computations (no measurements are assumed to be involved).
- Mathematically, a simplicial quantum circuit is a unitary operator $U \in U(\mathscr{H}^{(\infty)})$ that satisfies certain simplicial conditions.

0000000 000000000 0000000000000000000	Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000		

- The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert space $\mathscr{H}^{(\infty)}$ that stores all the simplicial data of X in the same way as a quantum register is a Hilbert space $\mathbb{C}^{2\otimes n}$ that stores all the configurations of a classical n bit string.
- Mathematically, $\mathscr{H}^{(\infty)}$ is the infinite dimensional pre-Hilbert space

$$\mathscr{H}^{(\infty)} = \bigoplus_{0 \le n < \infty} \mathscr{H}_n \tag{3.3}$$

・ロト (個)ト (語)・ (語)・ (語)・ のへで

- A simplicial quantum circuit is a quantum circuit supported on the register *H*^(∞) compatible with the underlying simplicial structure of X and capable in theory of performing meaningful simplicial computations (no measurements are assumed to be involved).
- Mathematically, a simplicial quantum circuit is a unitary operator $U \in U(\mathscr{H}^{(\infty)})$ that satisfies certain simplicial conditions.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit is a unitary simplicial automorphism of \mathscr{H} \mathfrak{H} that is a collection of unitary operators $U_n \in U(\mathscr{H}_n)$ with $n \ge 0$ such that for $0 \le i \le n$

$$U_{n-1}D_{ni} - D_{ni}U_n = 0,$$
$$U_{n+1}S_{ni} - S_{ni}U_n = 0.$$

The circuit can be thought of as a collection of simplicial quantum gates

$$U^{(n)} = U_n \oplus \bigoplus_{0 \le n' < \infty, n' \ne n} 1_{n'}.$$

lacksquare The unitary operator $U\in {\sf U}(\mathscr{H}^{(\infty)})$ corresponding to the circuit is

$$U = \prod_{0 \le n < \infty} U^{(n)} = \bigoplus_{0 \le n < \infty} U_n.$$

 Simple simplicial quantum circuits form a group under degreewise multiplication and inversion.

オロトス値 トスヨトメヨト 一頭 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit is a unitary simplicial automorphism of \mathscr{H} \mathfrak{H} that is a collection of unitary operators $U_n \in U(\mathscr{H}_n)$ with $n \ge 0$ such that for $0 \le i \le n$

$$U_{n-1}D_{ni} - D_{ni}U_n = 0,$$
$$U_{n+1}S_{ni} - S_{ni}U_n = 0.$$

The circuit can be thought of as a collection of simplicial quantum gates

$$U^{(n)} = U_n \oplus \bigoplus_{0 \le n' < \infty, n' \ne n} 1_{n'}.$$

lacksquare The unitary operator $U\in {\sf U}(\mathscr{H}^{(\infty)})$ corresponding to the circuit is

$$U = \prod_{0 \le n < \infty} U^{(n)} = \bigoplus_{0 \le n < \infty} U_n.$$

 Simple simplicial quantum circuits form a group under degreewise multiplication and inversion.

オロトス値 トスヨトメヨト 一頭 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit is a unitary simplicial automorphism of ℋ
 ..., that is a collection of unitary operators U_n ∈ U(ℋ_n) with n ≥ 0 such that for 0 ≤ i ≤ n

$$U_{n-1}D_{ni} - D_{ni}U_n = 0,$$
$$U_{n+1}S_{ni} - S_{ni}U_n = 0.$$

The circuit can be thought of as a collection of simplicial quantum gates

$$U^{(n)} = U_n \oplus \bigoplus_{0 \le n' < \infty, n' \ne n} 1_{n'}.$$

The unitary operator $U \in U(\mathscr{H}^{(\infty)})$ corresponding to the circuit is

$$U = \prod_{0 \le n < \infty} U^{(n)} = \bigoplus_{0 \le n < \infty} U_n.$$

 Simple simplicial quantum circuits form a group under degreewise multiplication and inversion.

・ロト ・回 ト ・ ヨト ・ ヨー うんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit is a unitary simplicial automorphism of ℋ
 ..., that is a collection of unitary operators U_n ∈ U(ℋ_n) with n ≥ 0 such that for 0 ≤ i ≤ n

$$U_{n-1}D_{ni} - D_{ni}U_n = 0,$$
$$U_{n+1}S_{ni} - S_{ni}U_n = 0.$$

The circuit can be thought of as a collection of simplicial quantum gates

$$U^{(n)} = U_n \oplus \bigoplus_{0 \le n' < \infty, n' \ne n} 1_{n'}.$$

The unitary operator $U \in U(\mathscr{H}^{(\infty)})$ corresponding to the circuit is

$$U = \prod_{0 \le n < \infty} U^{(n)} = \bigoplus_{0 \le n < \infty} U_n.$$

 Simple simplicial quantum circuits form a group under degreewise multiplication and inversion.

・ロト ・回 ト ・ ヨト ・ ヨー うんの

- Simple simplicial quantum circuits can perform only computations at fixed simplicial degree, an important limitation. We need more general circuits for more general computations.
- The simplicial conditions which a general simplicial quantum circuit obeys should be an appropriate generalization of those obeyed by simple circuits.
- For $\emptyset \neq A \subset \mathbb{N}$ a finite subset, the simplicial A-subregister is the finite dimensional Hilbert space

$$\mathscr{H}_A = \bigoplus_{n \in A} \mathscr{H}_n \subset \mathscr{H}^{(\infty)}$$

Set $\Sigma = \{-1, +1\}$ and $\mathbb{N}_n = \{n' | n' \in \mathbb{N}, 0 \le n' \le n\}$. For $\emptyset \ne A \subset \mathbb{N}$ a finite subset, $\alpha \in \Sigma^A$ and $i \in \prod_{n \in A} \mathbb{N}_n$, let $X^{(\alpha)}{}_{Ai} : \mathscr{H}_A \to \mathscr{H}_{\tau_\alpha(A)}$ be

$$X^{(\alpha)}{}_{Ai} = \bigoplus_{n \in A} X^{(\alpha_n)}{}_{ni_n},$$

- Simple simplicial quantum circuits can perform only computations at fixed simplicial degree, an important limitation. We need more general circuits for more general computations.
- The simplicial conditions which a general simplicial quantum circuit obeys should be an appropriate generalization of those obeyed by simple circuits.
- For $\emptyset \neq A \subset \mathbb{N}$ a finite subset, the simplicial A-subregister is the finite dimensional Hilbert space

$$\mathscr{H}_A = \bigoplus_{n \in A} \mathscr{H}_n \subset \mathscr{H}^{(\infty)}$$

Set $\Sigma = \{-1, +1\}$ and $\mathbb{N}_n = \{n' | n' \in \mathbb{N}, 0 \le n' \le n\}$. For $\emptyset \ne A \subset \mathbb{N}$ a finite subset, $\alpha \in \Sigma^A$ and $i \in \prod_{n \in A} \mathbb{N}_n$, let $X^{(\alpha)}{}_{Ai} : \mathscr{H}_A \to \mathscr{H}_{\tau_\alpha(A)}$ be

$$X^{(\alpha)}{}_{Ai} = \bigoplus_{n \in A} X^{(\alpha_n)}{}_{ni_n},$$

Quantum simplicial framework

Quantum simplicial implementation

ロトメ劇トメミトメミトー語・の文で

Conclusions

Simplicial quantum registers and circuits

- Simple simplicial quantum circuits can perform only computations at fixed simplicial degree, an important limitation. We need more general circuits for more general computations.
- The simplicial conditions which a general simplicial quantum circuit obeys should be an appropriate generalization of those obeyed by simple circuits.
- For $\emptyset \neq A \subset \mathbb{N}$ a finite subset, the simplicial A-subregister is the finite dimensional Hilbert space

$$\mathscr{H}_A = \bigoplus_{n \in A} \mathscr{H}_n \subset \mathscr{H}^{(\infty)}$$

Set $\Sigma = \{-1, +1\}$ and $\mathbb{N}_n = \{n' | n' \in \mathbb{N}, 0 \leq n' \leq n\}$. For $\emptyset \neq A \subset \mathbb{N}$ a finite subset, $\alpha \in \Sigma^A$ and $i \in \prod_{n \in A} \mathbb{N}_n$, let $X^{(\alpha)}{}_{Ai} : \mathscr{H}_A \to \mathscr{H}_{\tau_\alpha(A)}$ be

$$X^{(\alpha)}{}_{Ai} = \bigoplus_{n \in A} X^{(\alpha_n)}{}_{ni_n},$$

Quantum simplicial framework

Quantum simplicial implementation

Conclusions

Simplicial quantum registers and circuits

- Simple simplicial quantum circuits can perform only computations at fixed simplicial degree, an important limitation. We need more general circuits for more general computations.
- The simplicial conditions which a general simplicial quantum circuit obeys should be an appropriate generalization of those obeyed by simple circuits.
- For $\emptyset \neq A \subset \mathbb{N}$ a finite subset, the simplicial A-subregister is the finite dimensional Hilbert space

$$\mathscr{H}_A = \bigoplus_{n \in A} \mathscr{H}_n \subset \mathscr{H}^{(\infty)}$$

Set $\Sigma = \{-1, +1\}$ and $\mathbb{N}_n = \{n' | n' \in \mathbb{N}, 0 \le n' \le n\}$. For $\emptyset \neq A \subset \mathbb{N}$ a finite subset, $\alpha \in \Sigma^A$ and $i \in \prod_{n \in A} \mathbb{N}_n$, let $X^{(\alpha)}{}_{Ai} : \mathscr{H}_A \to \mathscr{H}_{\tau_\alpha(A)}$ be

$$X^{(\alpha)}{}_{Ai} = \bigoplus_{n \in A} X^{(\alpha_n)}{}_{ni_n},$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

• Let $p \in \mathbb{N}$, p > 0. A p-ary simplicial quantum circuit consists of a collection of unitary operators $U_A \in U(\mathscr{H}_A)$ with $A \subset \mathbb{N}$ and |A| = p such that for all $\alpha \in \Sigma^A$ and $i \in \prod_{n \in A} \mathbb{N}_n$

$$X^{(\alpha)}{}_{Ai}U_A - U_{\tau_\alpha(A)}X^{(\alpha)}{}_{Ai} = 0$$

NB Simple simplicial quantum circuits are just 1-ary simplicial quantum circuits

A p-ary quantum circuit can be regarded as a family of simplicial quantum gates

$$U^{(A)} = U_A \oplus \bigoplus_{n \notin A} 1_n.$$

Unlike in the simple case, these gates generally do not commute (the subspaces \mathscr{H}_A may have non trivial intersections).

■ The unitary operator U ∈ U(ℋ^(∞)) corresponding to the circuit is obtained by multiplying some subset of simplicial gates in a prescribed order.

オロトス団トス ヨトメヨト 一度 ろんぐ
Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

Let $p \in \mathbb{N}$, p > 0. A p-ary simplicial quantum circuit consists of a collection of unitary operators $U_A \in U(\mathscr{H}_A)$ with $A \subset \mathbb{N}$ and |A| = p such that for all $\alpha \in \Sigma^A$ and $i \in \prod_{n \in A} \mathbb{N}_n$

$$X^{(\alpha)}{}_{Ai}U_A - U_{\tau_\alpha(A)}X^{(\alpha)}{}_{Ai} = 0$$

NB Simple simplicial quantum circuits are just 1-ary simplicial quantum circuits

A *p*-ary quantum circuit can be regarded as a family of simplicial quantum gates

$$U^{(A)} = U_A \oplus \bigoplus_{n \not\in A} 1_n.$$

Unlike in the simple case, these gates generally do not commute (the subspaces \mathscr{H}_A may have non trivial intersections).

■ The unitary operator U ∈ U(ℋ^(∞)) corresponding to the circuit is obtained by multiplying some subset of simplicial gates in a prescribed order.

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

Let $p \in \mathbb{N}$, p > 0. A p-ary simplicial quantum circuit consists of a collection of unitary operators $U_A \in U(\mathscr{H}_A)$ with $A \subset \mathbb{N}$ and |A| = p such that for all $\alpha \in \Sigma^A$ and $i \in \prod_{n \in A} \mathbb{N}_n$

$$X^{(\alpha)}{}_{Ai}U_A - U_{\tau_\alpha(A)}X^{(\alpha)}{}_{Ai} = 0$$

NB Simple simplicial quantum circuits are just 1-ary simplicial quantum circuits

A *p*-ary quantum circuit can be regarded as a family of simplicial quantum gates

$$U^{(A)} = U_A \oplus \bigoplus_{n \not\in A} 1_n.$$

Unlike in the simple case, these gates generally do not commute (the subspaces \mathscr{H}_A may have non trivial intersections).

The unitary operator $U \in U(\mathscr{H}^{(\infty)})$ corresponding to the circuit is obtained by multiplying some subset of simplicial gates in a prescribed order.

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

- A simple simplicial quantum circuit can be constructed from the following data:
 - a pair of parafinite simplicial sets X, X';
 - a simplicial morphism $\phi: X \to X'$;
 - \blacksquare a structure of simplicial group on X'.

With ϕ there is associated a simplicial morphism $\hat{\phi}: X \times X' \to X \times X'$:

$$\hat{\phi}_n(\sigma_n, \sigma'_n) = (\sigma_n, \sigma'_n \phi_n(\sigma_n)).$$

 ϕ is invertible even when ϕ is not!

NB The simplicial group structure of X' is a indispensable element of the construction of $\hat{\phi}.$

• Define $\hat{U}_{\phi n}: \mathscr{H} \otimes \mathscr{H'}_n \to \mathscr{H} \otimes \mathscr{H'}_n$ by

$$\hat{U}_{\phi n}|(\sigma_n,\sigma'_n)\rangle = |\hat{\phi}_n(\sigma_n,\sigma'_n)\rangle.$$

医浓度医尿度医炎

Proposition: { U_{φn} } is a simple simplicial quantum circuit.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit can be constructed from the following data:

- a pair of parafinite simplicial sets X, X';
- a simplicial morphism $\phi: X \to X'$;
- \blacksquare a structure of simplicial group on X'.

• With ϕ there is associated a simplicial morphism $\hat{\phi}: X \times X' \to X \times X'$:

$$\hat{\phi}_n(\sigma_n, \sigma'_n) = (\sigma_n, \sigma'_n \phi_n(\sigma_n)).$$

 $ar{\phi}$ is invertible even when ϕ is not!

NB The simplicial group structure of X' is a indispensable element of the construction of $\hat{\phi}.$

• Define $\hat{U}_{\phi n}: \mathcal{H} \otimes \mathcal{H'}_n \to \mathcal{H} \otimes \mathcal{H'}_n$ by

$$\hat{U}_{\phi n}|(\sigma_n,\sigma'_n)\rangle = |\hat{\phi}_n(\sigma_n,\sigma'_n)\rangle.$$

(4) 直(を)(4) 直(を)(-)

Proposition: { U_{φn} } is a simple simplicial quantum circuit.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit can be constructed from the following data:

- a pair of parafinite simplicial sets X, X';
- a simplicial morphism $\phi: X \to X'$;
- a structure of simplicial group on X'.

• With ϕ there is associated a simplicial morphism $\hat{\phi}: X \times X' \to X \times X'$:

$$\hat{\phi}_n(\sigma_n, \sigma'_n) = (\sigma_n, \sigma'_n \phi_n(\sigma_n)).$$

 $ar{\phi}$ is invertible even when ϕ is not!

NB The simplicial group structure of X' is a indispensable element of the construction of $\hat{\phi}.$

• Define $\hat{U}_{\phi n}: \mathcal{H} \otimes \mathcal{H'}_n \to \mathcal{H} \otimes \mathcal{H'}_n$ by

$$\hat{U}_{\phi n}|(\sigma_n,\sigma'_n)\rangle = |\hat{\phi}_n(\sigma_n,\sigma'_n)\rangle.$$

(4) 直(を)(4) 直(を)(-)

Proposition: { U_{φn} } is a simple simplicial quantum circuit.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit can be constructed from the following data:

- a pair of parafinite simplicial sets X, X';
- a simplicial morphism $\phi: X \to X'$;
- a structure of simplicial group on X'.

• With ϕ there is associated a simplicial morphism $\hat{\phi}: X \times X' \to X \times X'$:

$$\hat{\phi}_n(\sigma_n,\sigma'_n) = (\sigma_n,\sigma'_n\phi_n(\sigma_n)).$$

 $ar{\phi}$ is invertible even when ϕ is not!

NB The simplicial group structure of X' is a indispensable element of the construction of $\hat{\phi}.$

• Define $\hat{U}_{\phi n}: \mathcal{H} \otimes \mathcal{H'}_n \to \mathcal{H} \otimes \mathcal{H'}_n$ by

$$\hat{U}_{\phi n}|(\sigma_n,\sigma'_n)\rangle = |\hat{\phi}_n(\sigma_n,\sigma'_n)\rangle.$$

(4) 臣(ト)(4) 臣(ト)(-)

.....

Proposition: $\{\hat{U}_{\phi n}\}$ is a simple simplicial quantum circuit.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit can be constructed from the following data:

- a pair of parafinite simplicial sets X, X';
- a simplicial morphism $\phi: X \to X'$;
- a structure of simplicial group on X'.

• With ϕ there is associated a simplicial morphism $\hat{\phi} : X \times X' \to X \times X'$:

$$\hat{\phi}_n(\sigma_n, \sigma'_n) = (\sigma_n, \sigma'_n \phi_n(\sigma_n)).$$

 $\hat{\phi}$ is invertible even when ϕ is not!

NB The simplicial group structure of X' is a indispensable element of the construction of $\hat{\phi}$.

• Define $\hat{U}_{\phi n}:\mathscr{H}\otimes \mathscr{H'}_n o \mathscr{H}\otimes \mathscr{H'}_n$ by

 $\hat{U}_{\phi n}|(\sigma_n,\sigma'_n)\rangle = |\hat{\phi}_n(\sigma_n,\sigma'_n)\rangle.$

吉卜 不良トー

Proposition: $\{\hat{U}_{\phi n}\}$ is a simple simplicial quantum circuit.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit can be constructed from the following data:

- a pair of parafinite simplicial sets X, X';
- a simplicial morphism $\phi: X \to X'$;
- a structure of simplicial group on X'.

• With ϕ there is associated a simplicial morphism $\hat{\phi} : X \times X' \to X \times X'$:

$$\hat{\phi}_n(\sigma_n, \sigma'_n) = (\sigma_n, \sigma'_n \phi_n(\sigma_n)).$$

 $\hat{\phi}$ is invertible even when ϕ is not!

NB The simplicial group structure of X' is a indispensable element of the construction of $\hat{\phi}$.

• Define $\hat{U}_{\phi n}: \mathscr{H} \otimes \mathscr{H'}_n \to \mathscr{H} \otimes \mathscr{H'}_n$ by

$$\hat{U}_{\phi n}|(\sigma_n,\sigma'_n)\rangle = |\hat{\phi}_n(\sigma_n,\sigma'_n)\rangle.$$

ヨト 不良トー

.....

Proposition: $\{U_{\phi n}\}$ is a simple simplicial quantum circuit.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

A simple simplicial quantum circuit can be constructed from the following data:

- a pair of parafinite simplicial sets X, X';
- a simplicial morphism $\phi: X \to X'$;
- a structure of simplicial group on X'.

• With ϕ there is associated a simplicial morphism $\hat{\phi} : X \times X' \to X \times X'$:

$$\hat{\phi}_n(\sigma_n, \sigma'_n) = (\sigma_n, \sigma'_n \phi_n(\sigma_n)).$$

 $\hat{\phi}$ is invertible even when ϕ is not!

NB The simplicial group structure of X' is a indispensable element of the construction of $\hat{\phi}$.

• Define $\hat{U}_{\phi n}: \mathscr{H} \otimes \mathscr{H'}_n \to \mathscr{H} \otimes \mathscr{H'}_n$ by

$$\hat{U}_{\phi n}|(\sigma_n,\sigma'_n)\rangle = |\hat{\phi}_n(\sigma_n,\sigma'_n)\rangle.$$

ヨトイヨトー

Proposition: $\{\hat{U}_{\phi n}\}$ is a simple simplicial quantum circuit.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
		000000000000000000000000000000000000000		

- Example: For a simplicial group G, the simplex sets G_n are groups, the multiplication and inversion maps $\mu_n : G_n \times G_n \to G_n$ and $\iota_n : G_n \to G_n$ are defined at each degree n and are the components of simplicial morphisms $\mu : G \times G \to G$, and $\iota : G \to G$. With these there are associated simple simplicial quantum circuits $\{\hat{U}_{\mu n}\}$ and $\{\hat{U}_{\iota n}\}$ of $G \times G \times G$ and $G \times G$, respectively.
- If $\{U_n\}$ is a simple simplicial quantum circuit, the operators $U_A = \bigoplus_{n \in A} U_n$, $A \subset \mathbb{N}$ and |A| = p, constitute a *p*-ary simplicial quantum circuit. This example is however trivial.
- One would like to find other more interesting examples simplicial quantum circuits, especially of simplicial quantum circuit data sets.
- One would also like to find simplicial quantum circuits implementing truly quantum simplicial algorithms and not just mere classical ones.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- Example: For a simplicial group G, the simplex sets G_n are groups, the multiplication and inversion maps $\mu_n : G_n \times G_n \to G_n$ and $\iota_n : G_n \to G_n$ are defined at each degree n and are the components of simplicial morphisms $\mu : G \times G \to G$, and $\iota : G \to G$. With these there are associated simple simplicial quantum circuits $\{\hat{U}_{\mu n}\}$ and $\{\hat{U}_{\iota n}\}$ of $G \times G \times G$ and $G \times G$, respectively.
- If $\{U_n\}$ is a simple simplicial quantum circuit, the operators $U_A = \bigoplus_{n \in A} U_n$, $A \subset \mathbb{N}$ and |A| = p, constitute a *p*-ary simplicial quantum circuit. This example is however trivial.
- One would like to find other more interesting examples simplicial quantum circuits, especially of simplicial quantum circuit data sets.
- One would also like to find simplicial quantum circuits implementing truly quantum simplicial algorithms and not just mere classical ones.

オロトス値 トスヨトメヨト 油 のべつ

0000000 000000000 0000000000000000000	

- Example: For a simplicial group G, the simplex sets G_n are groups, the multiplication and inversion maps $\mu_n : G_n \times G_n \to G_n$ and $\iota_n : G_n \to G_n$ are defined at each degree n and are the components of simplicial morphisms $\mu : G \times G \to G$, and $\iota : G \to G$. With these there are associated simple simplicial quantum circuits $\{\hat{U}_{\mu n}\}$ and $\{\hat{U}_{\iota n}\}$ of $G \times G \times G$ and $G \times G$, respectively.
- If $\{U_n\}$ is a simple simplicial quantum circuit, the operators $U_A = \bigoplus_{n \in A} U_n$, $A \subset \mathbb{N}$ and |A| = p, constitute a *p*-ary simplicial quantum circuit. This example is however trivial.
- One would like to find other more interesting examples simplicial quantum circuits, especially of simplicial quantum circuit data sets.
- One would also like to find simplicial quantum circuits implementing truly quantum simplicial algorithms and not just mere classical ones.

オロトス値 トスヨトメヨト 油 のべつ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- Example: For a simplicial group G, the simplex sets G_n are groups, the multiplication and inversion maps $\mu_n : G_n \times G_n \to G_n$ and $\iota_n : G_n \to G_n$ are defined at each degree n and are the components of simplicial morphisms $\mu : G \times G \to G$, and $\iota : G \to G$. With these there are associated simple simplicial quantum circuits $\{\hat{U}_{\mu n}\}$ and $\{\hat{U}_{\iota n}\}$ of $G \times G \times G$ and $G \times G$, respectively.
- If $\{U_n\}$ is a simple simplicial quantum circuit, the operators $U_A = \bigoplus_{n \in A} U_n$, $A \subset \mathbb{N}$ and |A| = p, constitute a *p*-ary simplicial quantum circuit. This example is however trivial.
- One would like to find other more interesting examples simplicial quantum circuits, especially of simplicial quantum circuit data sets.
- One would also like to find simplicial quantum circuits implementing truly quantum simplicial algorithms and not just mere classical ones.

・ロト ・回 ト ・ヨト ・ヨト ・ 思 ・ のんぐ

- To model realistic simplicial quantum registers and circuits with finite storage capabilities, it is necessary to set a cut-off K on the simplicial degree of the relevant parafinite simplicial set X.
- In computational topology, this is tantamount to replacing X by its K-truncation $\operatorname{tr}_K X$.
- $\operatorname{tr}_K X$, however, belongs to the category of K-truncated simplicial sets, which is related to but distinct from the category of simplicial sets.
- To remain within this latter while essentially keeping the essence of the truncation operation, one uses the K-skeleton $sk_K X$ of X.
- Both the truncation $tr_K X$ and the skeleton $sk_K X$ may be viewed as a finite approximation of X in the appropriate sense.
- K-truncation and skeletonization are particularly convenient for their functorial properties.

- To model realistic simplicial quantum registers and circuits with finite storage capabilities, it is necessary to set a cut-off K on the simplicial degree of the relevant parafinite simplicial set X.
- In computational topology, this is tantamount to replacing X by its K-truncation $\operatorname{tr}_K X$.
- $\operatorname{tr}_K X$, however, belongs to the category of K-truncated simplicial sets, which is related to but distinct from the category of simplicial sets.
- To remain within this latter while essentially keeping the essence of the truncation operation, one uses the K-skeleton $sk_K X$ of X.
- Both the truncation $tr_K X$ and the skeleton $sk_K X$ may be viewed as a finite approximation of X in the appropriate sense.
- K-truncation and skeletonization are particularly convenient for their functorial properties.

- To model realistic simplicial quantum registers and circuits with finite storage capabilities, it is necessary to set a cut-off K on the simplicial degree of the relevant parafinite simplicial set X.
- In computational topology, this is tantamount to replacing X by its K-truncation $\operatorname{tr}_K X$.
- $tr_K X$, however, belongs to the category of K-truncated simplicial sets, which is related to but distinct from the category of simplicial sets.
- To remain within this latter while essentially keeping the essence of the truncation operation, one uses the K-skeleton sk_K X of X.
- Both the truncation $tr_K X$ and the skeleton $sk_K X$ may be viewed as a finite approximation of X in the appropriate sense.
- K-truncation and skeletonization are particularly convenient for their functorial properties.

- To model realistic simplicial quantum registers and circuits with finite storage capabilities, it is necessary to set a cut-off K on the simplicial degree of the relevant parafinite simplicial set X.
- In computational topology, this is tantamount to replacing X by its K-truncation $\operatorname{tr}_K X$.
- $tr_K X$, however, belongs to the category of K-truncated simplicial sets, which is related to but distinct from the category of simplicial sets.
- To remain within this latter while essentially keeping the essence of the truncation operation, one uses the K-skeleton $sk_K X$ of X.
- Both the truncation $tr_K X$ and the skeleton $sk_K X$ may be viewed as a finite approximation of X in the appropriate sense.
- K-truncation and skeletonization are particularly convenient for their functorial properties.

- To model realistic simplicial quantum registers and circuits with finite storage capabilities, it is necessary to set a cut-off K on the simplicial degree of the relevant parafinite simplicial set X.
- In computational topology, this is tantamount to replacing X by its K-truncation $\operatorname{tr}_K X$.
- $tr_K X$, however, belongs to the category of K-truncated simplicial sets, which is related to but distinct from the category of simplicial sets.
- To remain within this latter while essentially keeping the essence of the truncation operation, one uses the K-skeleton $sk_K X$ of X.
- Both the truncation $tr_K X$ and the skeleton $sk_K X$ may be viewed as a finite approximation of X in the appropriate sense.
- K-truncation and skeletonization are particularly convenient for their functorial properties.

- To model realistic simplicial quantum registers and circuits with finite storage capabilities, it is necessary to set a cut-off K on the simplicial degree of the relevant parafinite simplicial set X.
- In computational topology, this is tantamount to replacing X by its K-truncation $\operatorname{tr}_K X$.
- $tr_K X$, however, belongs to the category of K-truncated simplicial sets, which is related to but distinct from the category of simplicial sets.
- To remain within this latter while essentially keeping the essence of the truncation operation, one uses the K-skeleton $sk_K X$ of X.
- Both the truncation $tr_K X$ and the skeleton $sk_K X$ may be viewed as a finite approximation of X in the appropriate sense.
- K-truncation and skeletonization are particularly convenient for their functorial properties.

- In the quantum simplicial framework, to X there corresponds a simplicial Hilbert space \mathscr{H} .
- The Hilbert simplicial encoding map, which defines the simplex basis → →, is a simplicial set morphism ≈ : X → ℋ.
- The K-truncation functor tr_K yields a map $\operatorname{tr}_K \varkappa : \operatorname{tr}_K X \to \operatorname{tr}_K \mathscr{H}$ of K-truncated simplicial sets with components $\operatorname{tr}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- The K-skeletonization functor sk_K yields a map $\operatorname{sk}_K \times : \operatorname{sk}_K X \to \operatorname{sk}_K \mathscr{H}$ of K-skeletal simplicial sets with components $\operatorname{sk}_K \times_n = \times_n$ for $0 \le n \le K$.
- $\operatorname{tr}_K \mathscr{H}_n = \operatorname{sk}_K \mathscr{H}_n = \mathscr{H}_n$ for $n \leq K$ and $\operatorname{sk}_K \mathscr{H}_n \subseteq {}^{s} \mathscr{H}_n$ for n > K, where ${}^{s} \mathscr{H}_n \subset \mathscr{H}$ is the degenerate *n*-simplex subspace
- Therefore, the operations of K-truncation and K-skeletonization of X turn under Hilbert simplicial encoding into the corresponding operations of the associated simplicial Hilbert space *H*.

- In the quantum simplicial framework, to X there corresponds a simplicial Hilbert space \mathscr{H} .
- The Hilbert simplicial encoding map, which defines the simplex basis $\xrightarrow{\bullet}$ sor, is a simplicial set morphism $\varkappa : X \to \mathscr{H}$.
- The K-truncation functor tr_K yields a map $\operatorname{tr}_K \varkappa : \operatorname{tr}_K X \to \operatorname{tr}_K \mathscr{H}$ of K-truncated simplicial sets with components $\operatorname{tr}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- The K-skeletonization functor sk_K yields a map $\operatorname{sk}_K \varkappa : \operatorname{sk}_K X \to \operatorname{sk}_K \mathscr{H}$ of K-skeletal simplicial sets with components $\operatorname{sk}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- $\operatorname{tr}_K \mathscr{H}_n = \operatorname{sk}_K \mathscr{H}_n = \mathscr{H}_n$ for $n \leq K$ and $\operatorname{sk}_K \mathscr{H}_n \subseteq {}^{s} \mathscr{H}_n$ for n > K, where ${}^{s} \mathscr{H}_n \subset \mathscr{H}$ is the degenerate *n*-simplex subspace
- Therefore, the operations of K-truncation and K-skeletonization of X turn under Hilbert simplicial encoding into the corresponding operations of the associated simplicial Hilbert space *H*.

- In the quantum simplicial framework, to X there corresponds a simplicial Hilbert space \mathscr{H} .
- The Hilbert simplicial encoding map, which defines the simplex basis $\stackrel{\text{w ssr}}{\longrightarrow}$, is a simplicial set morphism $\varkappa : X \to \mathcal{H}$.
- The K-truncation functor tr_K yields a map $\operatorname{tr}_K \varkappa : \operatorname{tr}_K X \to \operatorname{tr}_K \mathscr{H}$ of K-truncated simplicial sets with components $\operatorname{tr}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- The K-skeletonization functor sk_K yields a map $\operatorname{sk}_K \times : \operatorname{sk}_K X \to \operatorname{sk}_K \mathscr{H}$ of K-skeletal simplicial sets with components $\operatorname{sk}_K \times_n = \times_n$ for $0 \le n \le K$.
- $\operatorname{tr}_{K} \mathscr{H}_{n} = \operatorname{sk}_{K} \mathscr{H}_{n} = \mathscr{H}_{n}$ for $n \leq K$ and $\operatorname{sk}_{K} \mathscr{H}_{n} \subseteq {}^{s} \mathscr{H}_{n}$ for n > K, where ${}^{s} \mathscr{H}_{n} \subset \mathscr{H}$ is the degenerate *n*-simplex subspace
- Therefore, the operations of K-truncation and K-skeletonization of X turn under Hilbert simplicial encoding into the corresponding operations of the associated simplicial Hilbert space *H*.

- In the quantum simplicial framework, to X there corresponds a simplicial Hilbert space \mathscr{H} .
- The Hilbert simplicial encoding map, which defines the simplex basis $\xrightarrow{\bullet}$ sor, is a simplicial set morphism $\varkappa : X \to \mathcal{H}$.
- The K-truncation functor tr_K yields a map $\operatorname{tr}_K \varkappa : \operatorname{tr}_K X \to \operatorname{tr}_K \mathscr{H}$ of K-truncated simplicial sets with components $\operatorname{tr}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- The K-skeletonization functor sk_K yields a map $\operatorname{sk}_K \varkappa : \operatorname{sk}_K X \to \operatorname{sk}_K \mathscr{H}$ of K-skeletal simplicial sets with components $\operatorname{sk}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- $\operatorname{tr}_K \mathscr{H}_n = \operatorname{sk}_K \mathscr{H}_n = \mathscr{H}_n$ for $n \leq K$ and $\operatorname{sk}_K \mathscr{H}_n \subseteq {}^s \mathscr{H}_n$ for n > K, where ${}^s \mathscr{H}_n \subset \mathscr{H}$ is the degenerate *n*-simplex subspace
- Therefore, the operations of K-truncation and K-skeletonization of X turn under Hilbert simplicial encoding into the corresponding operations of the associated simplicial Hilbert space *H*.

- In the quantum simplicial framework, to X there corresponds a simplicial Hilbert space \mathscr{H} .
- The Hilbert simplicial encoding map, which defines the simplex basis $\xrightarrow{\bullet}$ sor, is a simplicial set morphism $\varkappa : X \to \mathcal{H}$.
- The K-truncation functor tr_K yields a map $\operatorname{tr}_K \varkappa : \operatorname{tr}_K X \to \operatorname{tr}_K \mathscr{H}$ of K-truncated simplicial sets with components $\operatorname{tr}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- The K-skeletonization functor sk_K yields a map $\operatorname{sk}_K \varkappa : \operatorname{sk}_K X \to \operatorname{sk}_K \mathscr{H}$ of K-skeletal simplicial sets with components $\operatorname{sk}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- $\operatorname{tr}_K \mathscr{H}_n = \operatorname{sk}_K \mathscr{H}_n = \mathscr{H}_n$ for $n \leq K$ and $\operatorname{sk}_K \mathscr{H}_n \subseteq {}^s \mathscr{H}_n$ for n > K, where ${}^s \mathscr{H}_n \subset \mathscr{H}$ is the degenerate *n*-simplex subspace
- Therefore, the operations of K-truncation and K-skeletonization of X turn under Hilbert simplicial encoding into the corresponding operations of the associated simplicial Hilbert space *H*.

- In the quantum simplicial framework, to X there corresponds a simplicial Hilbert space \mathscr{H} .
- The Hilbert simplicial encoding map, which defines the simplex basis $\xrightarrow{\bullet}$ sor, is a simplicial set morphism $\varkappa : X \to \mathcal{H}$.
- The K-truncation functor tr_K yields a map $\operatorname{tr}_K \varkappa : \operatorname{tr}_K X \to \operatorname{tr}_K \mathscr{H}$ of K-truncated simplicial sets with components $\operatorname{tr}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- The K-skeletonization functor sk_K yields a map $\operatorname{sk}_K \varkappa : \operatorname{sk}_K X \to \operatorname{sk}_K \mathscr{H}$ of K-skeletal simplicial sets with components $\operatorname{sk}_K \varkappa_n = \varkappa_n$ for $0 \le n \le K$.
- $\operatorname{tr}_K \mathscr{H}_n = \operatorname{sk}_K \mathscr{H}_n = \mathscr{H}_n$ for $n \leq K$ and $\operatorname{sk}_K \mathscr{H}_n \subseteq {}^s \mathscr{H}_n$ for n > K, where ${}^s \mathscr{H}_n \subset \mathscr{H}$ is the degenerate *n*-simplex subspace
- Therefore, the operations of K-truncation and K-skeletonization of X turn under Hilbert simplicial encoding into the corresponding operations of the associated simplicial Hilbert space *H*.

- In practice, one works with $\operatorname{tr}_K X$ and $\operatorname{tr}_K \mathscr{H}$. In more formal considerations, employing $\operatorname{sk}_K X$ and $\operatorname{sk}_K \mathscr{H}$ allows to use the analysis carried out so far.
- The K-skeletonized quantum simplicial register is the infinite dimensional pre-Hilbert space $(\operatorname{sk}_{K} \mathscr{H})^{(\infty)}$
- An K-skeletonized simple simplicial quantum circuit $\{U_n\}_{n\in\mathbb{N}}$ is just a simple simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)}$
- An K-skeletonized p-ary simplicial quantum circuit $\{U_A\}_{A \subset \mathbb{N}, |A|=p}$ is just a p-ary simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)}$.
- The theory of skeletonized simplicial quantum registers and circuits needs to be further developed in a more articulated form.

- In practice, one works with $\operatorname{tr}_K X$ and $\operatorname{tr}_K \mathscr{H}$. In more formal considerations, employing $\operatorname{sk}_K X$ and $\operatorname{sk}_K \mathscr{H}$ allows to use the analysis carried out so far.
- The K-skeletonized quantum simplicial register is the infinite dimensional pre-Hilbert space $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{} \operatorname{ks}$.
- An K-skeletonized simple simplicial quantum circuit $\{U_n\}_{n\in\mathbb{N}}$ is just a simple simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)}$
- An K-skeletonized p-ary simplicial quantum circuit $\{U_A\}_{A \subset \mathbb{N}, |A|=p}$ is just a p-ary simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)}$
- The theory of skeletonized simplicial quantum registers and circuits needs to be further developed in a more articulated form.

- In practice, one works with $\operatorname{tr}_K X$ and $\operatorname{tr}_K \mathscr{H}$. In more formal considerations, employing $\operatorname{sk}_K X$ and $\operatorname{sk}_K \mathscr{H}$ allows to use the analysis carried out so far.
- The K-skeletonized quantum simplicial register is the infinite dimensional pre-Hilbert space $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{} \operatorname{ks}$.
- An K-skeletonized simple simplicial quantum circuit $\{U_n\}_{n\in\mathbb{N}}$ is just a simple simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{\mathfrak{sc}}$.
- An K-skeletonized p-ary simplicial quantum circuit $\{U_A\}_{A \subset \mathbb{N}, |A|=p}$ is just a p-ary simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)}$.
- The theory of skeletonized simplicial quantum registers and circuits needs to be further developed in a more articulated form.

- In practice, one works with $\operatorname{tr}_K X$ and $\operatorname{tr}_K \mathscr{H}$. In more formal considerations, employing $\operatorname{sk}_K X$ and $\operatorname{sk}_K \mathscr{H}$ allows to use the analysis carried out so far.
- The K-skeletonized quantum simplicial register is the infinite dimensional pre-Hilbert space $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{} \operatorname{hs}$.
- An K-skeletonized simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}}$ is just a simple simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{\mathfrak{sc}}$.
- An K-skeletonized p-ary simplicial quantum circuit $\{U_A\}_{A \subset \mathbb{N}, |A|=p}$ is just a p-ary simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{}$ sec.
- The theory of skeletonized simplicial quantum registers and circuits needs to be further developed in a more articulated form.

- In practice, one works with $\operatorname{tr}_K X$ and $\operatorname{tr}_K \mathscr{H}$. In more formal considerations, employing $\operatorname{sk}_K X$ and $\operatorname{sk}_K \mathscr{H}$ allows to use the analysis carried out so far.
- The K-skeletonized quantum simplicial register is the infinite dimensional pre-Hilbert space $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{} \operatorname{ks}$.
- An K-skeletonized simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}}$ is just a simple simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)} \xrightarrow{\mathfrak{sc}}$.
- An K-skeletonized p-ary simplicial quantum circuit $\{U_A\}_{A \subset \mathbb{N}, |A|=p}$ is just a p-ary simplicial quantum circuit supported on $(\operatorname{sk}_K \mathscr{H})^{(\infty)}$ $\xrightarrow{\text{sec}}$.
- The theory of skeletonized simplicial quantum registers and circuits needs to be further developed in a more articulated form.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- The simplicial homology of a parafinite simplicial set X with coefficients in C sum has a realization in the associated simplicial Hilbert space *H* and cosimplicial Hilbert space *H*⁺.
- **The Hilbert simplicial boundary operators** $Q_{Dn}:\mathscr{H}_n o \mathscr{H}_{n-1}$, $n \geq 1$, are

$$Q_{Dn} = \sum_{0 \le i \le n} (-1)^i D_{ni}.$$

lacksquare By the exchange identities lacksquare , the Q_{Dn} obey the homological relations

$$Q_{Dn-1}Q_{Dn}=0.$$

For $n \ge 0$, there are defined the Hilbert simplicial homology spaces

$$H_{Dn}(\mathcal{H}) = \ker Q_{Dn} / \operatorname{ran} Q_{Dn+1} \quad (\text{here } \ker Q_{D0} = \mathcal{H}_0).$$

The Hilbert cosimplicial coboundary operators are the adjoint operators Q_{Dn}+ of Q_{Dn}.

イロト イボト イヨト 一度

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- The simplicial homology of a parafinite simplicial set X with coefficients in C
 sim has a realization in the associated simplicial Hilbert space *H* and cosimplicial Hilbert space *H*⁺.
- The Hilbert simplicial boundary operators $Q_{Dn}: \mathscr{H}_n \to \mathscr{H}_{n-1}$, $n \geq 1$, are

$$Q_{Dn} = \sum_{0 \le i \le n} (-1)^i D_{ni}.$$

By the exchange identities \bigcirc $(\bigcirc$), the Q_{Dn} obey the homological relations

$$Q_{Dn-1}Q_{Dn}=0.$$

For $n \ge 0$, there are defined the Hilbert simplicial homology spaces

$$H_{Dn}(\mathscr{H}) = \ker Q_{Dn} / \operatorname{ran} Q_{Dn+1} \quad (\text{here } \ker Q_{D0} = \mathscr{H}_0).$$

The Hilbert cosimplicial coboundary operators are the adjoint operators Q_{Dn}+ of Q_{Dn}.

イロト イボト イヨト 一度

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- The simplicial homology of a parafinite simplicial set X with coefficients in C
 sim has a realization in the associated simplicial Hilbert space *H* and cosimplicial Hilbert space *H*⁺.
- The Hilbert simplicial boundary operators $Q_{Dn}: \mathscr{H}_n \to \mathscr{H}_{n-1}$, $n \geq 1$, are

$$Q_{Dn} = \sum_{0 \le i \le n} (-1)^i D_{ni}.$$

By the exchange identities $\stackrel{\text{\tiny hel}}{\longrightarrow}$, the Q_{Dn} obey the homological relations

$$Q_{Dn-1}Q_{Dn} = 0.$$

For $n \ge 0$, there are defined the Hilbert simplicial homology spaces

$$H_{Dn}(\mathcal{H}) = \ker Q_{Dn} / \operatorname{ran} Q_{Dn+1} \quad (\text{here } \ker Q_{D0} = \mathcal{H}_0).$$

The Hilbert cosimplicial coboundary operators are the adjoint operators Q_{Dn}+ of Q_{Dn}.

イロト イボト イヨト 一度

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- The simplicial homology of a parafinite simplicial set X with coefficients in C
 sim has a realization in the associated simplicial Hilbert space *H* and cosimplicial Hilbert space *H*⁺.
- The Hilbert simplicial boundary operators $Q_{Dn}:\mathscr{H}_n\to\mathscr{H}_{n-1}$, $n\geq 1$, are

$$Q_{Dn} = \sum_{0 \le i \le n} (-1)^i D_{ni}.$$

By the exchange identities $\stackrel{\text{whell}}{\longrightarrow}$, the Q_{Dn} obey the homological relations

$$Q_{Dn-1}Q_{Dn} = 0.$$

For $n \ge 0$, there are defined the Hilbert simplicial homology spaces

$$\mathrm{H}_{Dn}(\mathscr{H}) = \ker Q_{Dn} / \operatorname{ran} Q_{Dn+1} \qquad (\text{here } \ker Q_{D0} = \mathscr{H}_0).$$

The Hilbert cosimplicial coboundary operators are the adjoint operators Q_{Dn}+ of Q_{Dn}.

オロトス値 トスヨトメヨト 一張 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

- The simplicial homology of a parafinite simplicial set X with coefficients in C
 sim has a realization in the associated simplicial Hilbert space *H* and cosimplicial Hilbert space *H*⁺.
- The Hilbert simplicial boundary operators $Q_{Dn}: \mathscr{H}_n \to \mathscr{H}_{n-1}$, $n \geq 1$, are

$$Q_{Dn} = \sum_{0 \le i \le n} (-1)^i D_{ni}.$$

By the exchange identities $\stackrel{\text{\tiny prime}}{\longrightarrow}$, the Q_{Dn} obey the homological relations

$$Q_{Dn-1}Q_{Dn} = 0.$$

For $n \ge 0$, there are defined the Hilbert simplicial homology spaces

$$H_{Dn}(\mathscr{H}) = \ker Q_{Dn} / \operatorname{ran} Q_{Dn+1} \quad (\text{here } \ker Q_{D0} = \mathscr{H}_0).$$

The Hilbert cosimplicial coboundary operators are the adjoint operators Q_{Dn}^+ of Q_{Dn} .

イロト 不得下 不良下 不良下 一度

0000000 000000000 00000000000000000000	Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000		

The Q_{Dn}^+ obey cohomological relations by $\stackrel{\text{\tiny{\tiny{}}}}{\longrightarrow}$ har,

$$Q_{Dn+1}{}^+Q_{Dn}{}^+ = 0.$$

lacksquare For $n\geq 0$, there are defined the Hilbert cosimplicial cohomology spaces

$$H_D^n(\mathscr{H}^+) = \ker Q_{Dn+1}^+ / \operatorname{ran} Q_{Dn}^+ \quad (\text{here } \operatorname{ran} Q_{D0}^+ = 0).$$

■ Simplicial Hodge theorem: for n ≥ 0,

 $\mathrm{H}_n(X,\mathbb{C})\simeq\mathrm{H}_{Dn}(\mathscr{H})\simeq\mathrm{H}_D{}^n(\mathscr{H}^+)\simeq\ker H_{DDn},$

where H_{DDn} is the simplicial Hodge Laplacian

$$H_{DDn} = Q_{Dn}^{+} Q_{Dn} + Q_{Dn+1} Q_{Dn+1}^{+}.$$

NB This is analogous to Hodge theory of de Rham cohomology.

The computation of $H_n(X, \mathbb{C})$ is reduced to that of ker H_{DDn} . H_{DDn} has a simpler structure for quasi perfect simplicial sets .

オロトス値 トスヨトメヨト 一張 ののの
Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

Hilbert simplicial homology

The Q_{Dn}^+ obey cohomological relations by $\xrightarrow{}$ hhr,

$$Q_{Dn+1}{}^+Q_{Dn}{}^+ = 0.$$

For $n \geq 0$, there are defined the Hilbert cosimplicial cohomology spaces

$$H_D^n(\mathscr{H}^+) = \ker Q_{Dn+1}^+ / \operatorname{ran} Q_{Dn}^+ \quad (\text{here } \operatorname{ran} Q_{D0}^+ = 0).$$

■ Simplicial Hodge theorem: for n ≥ 0,

 $\mathrm{H}_n(X,\mathbb{C})\simeq\mathrm{H}_{Dn}(\mathscr{H})\simeq\mathrm{H}_D{}^n(\mathscr{H}^+)\simeq\ker H_{DDn},$

where H_{DDn} is the simplicial Hodge Laplacian

 $H_{DDn} = Q_{Dn}^{+} Q_{Dn}^{+} + Q_{Dn+1}^{-} Q_{Dn+1}^{+}.$

NB This is analogous to Hodge theory of de Rham cohomology.

The computation of $H_n(X, \mathbb{C})$ is reduced to that of ker H_{DDn} . H_{DDn} has a simpler structure for quasi perfect simplicial sets .

イロトス値 トス ヨトス ヨトー 恵

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

Hilbert simplicial homology

The Q_{Dn}^+ obey cohomological relations by $\xrightarrow{}$ hhr,

$$Q_{Dn+1}{}^+Q_{Dn}{}^+ = 0.$$

For $n \ge 0$, there are defined the Hilbert cosimplicial cohomology spaces

$$H_D^n(\mathscr{H}^+) = \ker Q_{Dn+1}^+ / \operatorname{ran} Q_{Dn}^+ \quad (\text{here } \operatorname{ran} Q_{D0}^+ = 0).$$

Simplicial Hodge theorem: for $n \ge 0$,

 $\mathrm{H}_n(X,\mathbb{C})\simeq \mathrm{H}_{Dn}(\mathscr{H})\simeq \mathrm{H}_D{}^n(\mathscr{H}^+)\simeq \ker H_{DDn},$

where H_{DDn} is the simplicial Hodge Laplacian

$$H_{DDn} = Q_{Dn}^{+} Q_{Dn} + Q_{Dn+1} Q_{Dn+1}^{+}.$$

NB This is analogous to Hodge theory of de Rham cohomology.

The computation of $H_n(X, \mathbb{C})$ is reduced to that of ker H_{DDn} . H_{DDn} has a simpler structure for quasi perfect simplicial sets $\mathbb{P}^{-\alpha}$.

|御を 御田を |田を

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

Hilbert simplicial homology

The Q_{Dn}^+ obey cohomological relations by $\xrightarrow{}$ hhr,

$$Q_{Dn+1}{}^+Q_{Dn}{}^+ = 0.$$

For $n \ge 0$, there are defined the Hilbert cosimplicial cohomology spaces

$$H_D^n(\mathscr{H}^+) = \ker Q_{Dn+1}^+ / \operatorname{ran} Q_{Dn}^+ \quad (\text{here } \operatorname{ran} Q_{D0}^+ = 0).$$

Simplicial Hodge theorem: for $n \ge 0$,

 $\mathrm{H}_n(X,\mathbb{C})\simeq \mathrm{H}_{Dn}(\mathscr{H})\simeq \mathrm{H}_D{}^n(\mathscr{H}^+)\simeq \ker H_{DDn},$

where H_{DDn} is the simplicial Hodge Laplacian

$$H_{DDn} = Q_{Dn}^{+} Q_{Dn} + Q_{Dn+1} Q_{Dn+1}^{+}.$$

NB This is analogous to Hodge theory of de Rham cohomology.

The computation of $H_n(X, \mathbb{C})$ is reduced to that of ker H_{DDn} . H_{DDn} has a simpler structure for quasi perfect simplicial sets $(\mathcal{P} \text{ sup})$.

国家 不良家 二

troduction	Simplicial sets	Quantum simplicial fran
		000000000000000000000000000000000000000

Quantum simplicial implementation

Conclusions

Normalized Hilbert simplicial homology

Such computation may be costly, as it involves also the degenerate simplex subspaces ${}^{s}\mathcal{H}_{n}$ of the simplex Hilbert spaces $\mathcal{H}_{n} \xrightarrow{\text{wdsx}}$, which are homologically irrelevant by the normalization theorem $\xrightarrow{\text{wdsx}}$:

$${}^{s}\mathscr{H}_{n} = \sum_{i=0}^{n-1} \operatorname{ran} S_{n-1i},$$

The abstract non degenerate n-simplex spaces are

$$\overline{\mathscr{H}}_n = \mathscr{H}_n/{}^s \mathscr{H}_n.$$

As $Q_{Dn}{}^{s}\mathscr{H}_{n} \subset {}^{s}\mathscr{H}_{n-1}$, the Q_{Dn} induce an abstract normalized Hilbert simplicial boundary operators $\overline{Q}_{Dn} : \overline{\mathscr{H}}_{n} \to \overline{\mathscr{H}}_{n-1}$ obeying the homological relations

$$\overline{Q}_{Dn-1}\overline{Q}_{Dn}=0.$$

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) = \ker \overline{Q}_{Dn} / \operatorname{ran} \overline{Q}_{Dn+1} \qquad (\text{here } \ker \overline{Q}_{D0} = \overline{\mathscr{G}}_{D0} =$$

Introduction	Simplicial sets	Quantum simplicial framework
		000000000000000000000000000000000000000

Quantum simplicial implementation

Normalized Hilbert simplicial homology

Such computation may be costly, as it involves also the degenerate simplex subspaces ${}^{s}\mathcal{H}_{n}$ of the simplex Hilbert spaces $\mathcal{H}_{n} \xrightarrow{\text{order}}$, which are homologically irrelevant by the normalization theorem $\xrightarrow{\text{order}}$:

$${}^{s}\mathcal{H}_{n} = \sum_{i=0}^{n-1} \operatorname{ran} S_{n-1i},$$

■ The abstract non degenerate *n*-simplex spaces are

$$\overline{\mathscr{H}}_n = \mathscr{H}_n/{}^s \mathscr{H}_n.$$

As $Q_{Dn} * \mathscr{H}_n \subset * \mathscr{H}_{n-1}$, the Q_{Dn} induce an abstract normalized Hilbert simplicial boundary operators $\overline{Q}_{Dn} : \overline{\mathscr{H}}_n \to \overline{\mathscr{H}}_{n-1}$ obeying the homological relations

$$\overline{Q}_{Dn-1}\overline{Q}_{Dn}=0.$$

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) = \ker \overline{Q}_{Dn} / \operatorname{ran} \overline{Q}_{Dn+1} \qquad (\text{here } \ker \overline{Q}_{D0} = \overline{Q}_{D0$$

Introduction	Simplicial sets	Quantum simplicial framework
		000000000000000000000000000000000000000

Quantum simplicial implementation

Conclusions

Normalized Hilbert simplicial homology

Such computation may be costly, as it involves also the degenerate simplex subspaces ${}^{s}\mathcal{H}_{n}$ of the simplex Hilbert spaces $\mathcal{H}_{n} \xrightarrow{\text{order}}$, which are homologically irrelevant by the normalization theorem $\xrightarrow{\text{order}}$:

00

$${}^{s}\mathcal{H}_{n} = \sum_{i=0}^{n-1} \operatorname{ran} S_{n-1i},$$

• The abstract non degenerate n-simplex spaces are

$$\overline{\mathscr{H}}_n = \mathscr{H}_n/{}^s \mathscr{H}_n.$$

• As $Q_{Dn}{}^{s}\mathscr{H}_{n} \subset {}^{s}\mathscr{H}_{n-1}$, the Q_{Dn} induce an abstract normalized Hilbert simplicial boundary operators $\overline{Q}_{Dn} : \overline{\mathscr{H}}_{n} \to \overline{\mathscr{H}}_{n-1}$ obeying the homological relations

$$\overline{Q}_{Dn-1}\overline{Q}_{Dn}=0.$$

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) = \ker \overline{Q}_{Dn}/\operatorname{ran} \overline{Q}_{Dn+1} \qquad (\text{here } \ker \overline{Q}_{D0} =$$

Introduction	Simplicial sets	Quantum simplicial framework
		000000000000000000000000000000000000000

Quantum simplicial implementation

Conclusions

Normalized Hilbert simplicial homology

Such computation may be costly, as it involves also the degenerate simplex subspaces ${}^{s}\mathcal{H}_{n}$ of the simplex Hilbert spaces $\mathcal{H}_{n} \xrightarrow{\text{w} \text{ dss}}$, which are homologically irrelevant by the normalization theorem $\xrightarrow{\text{w} \text{ oth}}$:

$${}^{s}\mathcal{H}_{n} = \sum_{i=0}^{n-1} \operatorname{ran} S_{n-1i},$$

• The abstract non degenerate n-simplex spaces are

$$\overline{\mathscr{H}}_n = \mathscr{H}_n/{}^s \mathscr{H}_n.$$

As $Q_{Dn} {}^s \mathscr{H}_n \subset {}^s \mathscr{H}_{n-1}$, the Q_{Dn} induce an abstract normalized Hilbert simplicial boundary operators $\overline{Q}_{Dn} : \overline{\mathscr{H}}_n \to \overline{\mathscr{H}}_{n-1}$ obeying the homological relations

$$\overline{Q}_{Dn-1}\overline{Q}_{Dn} = 0.$$

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) = \ker \overline{Q}_{Dn} / \operatorname{ran} \overline{Q}_{Dn+1} \qquad (\text{here } \ker \overline{Q}_{D0} = \overline{\mathscr{H}}_0).$$

Quantum simplicial implementation

イロトス値 トス ヨトメ ヨトー

1

Conclusions

Normalized Hilbert simplicial homology

Abstract Hilbert normalization theorem: for every $n \ge 0$, one has

$$\operatorname{H}_n(X, \mathbb{C}) \simeq \operatorname{H}_{Dn}(\overline{\mathscr{H}}).$$

NB This is just the normalization theorem.

- The computation of the abstract homology is not tractable with standard quantum algorithmic techniques.
- In fact, the abstract spaces $\overline{\mathscr{H}}_n$ are non Hilbert complex vector spaces.
- A truly Hilbertian framework is required.
- lacksquare The orthogonal projector \varPi_n on ${}^s\!\mathscr{H}_n$ is

$$\Pi_n = 1_n - \prod_{0 \le i \le n-1} (1_n - \Pi_{ni})$$

$$\Pi_{ni} = S_{n-1i}S_{n-1i}^{+} = S_{ni+1}^{+}S_{ni} = S_{ni}^{+}S_{ni+1}.$$

Introduction	Simplicial sets

Quantum simplicial implementation

イロト 不得下 イヨト イヨト

æ

Conclusions

Normalized Hilbert simplicial homology

Abstract Hilbert normalization theorem: for every $n \ge 0$, one has

$$\operatorname{H}_n(X, \mathbb{C}) \simeq \operatorname{H}_{Dn}(\overline{\mathscr{H}}).$$

NB This is just the normalization theorem.

- The computation of the abstract homology is not tractable with standard quantum algorithmic techniques.
- In fact, the abstract spaces \mathcal{H}_n are non Hilbert complex vector spaces.
- A truly Hilbertian framework is required.
- lacksquare The orthogonal projector \varPi_n on ${}^s\!\mathscr{H}_n$ is

$$\Pi_n = 1_n - \prod_{0 \le i \le n-1} (1_n - \Pi_{ni})$$

$$\Pi_{ni} = S_{n-1i}S_{n-1i}^{+} = S_{ni+1}^{+}S_{ni} = S_{ni}^{+}S_{ni+1}.$$

ntroduction	Simplicial sets

Quantum simplicial implementation

Conclusions

Normalized Hilbert simplicial homology

Abstract Hilbert normalization theorem: for every $n \ge 0$, one has

$$\operatorname{H}_n(X, \mathbb{C}) \simeq \operatorname{H}_{Dn}(\overline{\mathscr{H}}).$$

NB This is just the normalization theorem.

- The computation of the abstract homology is not tractable with standard quantum algorithmic techniques.
- In fact, the abstract spaces $\overline{\mathscr{H}}_n$ are non Hilbert complex vector spaces.
- A truly Hilbertian framework is required.
- lacksquare The orthogonal projector \varPi_n on ${}^s\!\mathscr{H}_n$ is

$$\Pi_n = 1_n - \prod_{0 \le i \le n-1} (1_n - \Pi_{ni})$$

$$\Pi_{ni} = S_{n-1i}S_{n-1i}^{+} = S_{ni+1}^{+}S_{ni} = S_{ni}^{+}S_{ni+1}.$$

ntroduction	Simplicial sets

Quantum simplicial implementation

下 化原 医不良 医

Conclusions

Normalized Hilbert simplicial homology

Abstract Hilbert normalization theorem: for every $n \ge 0$, one has

$$\operatorname{H}_n(X, \mathbb{C}) \simeq \operatorname{H}_{Dn}(\overline{\mathscr{H}}).$$

NB This is just the normalization theorem.

- The computation of the abstract homology is not tractable with standard quantum algorithmic techniques.
- In fact, the abstract spaces $\overline{\mathscr{H}}_n$ are non Hilbert complex vector spaces.
- A truly Hilbertian framework is required.
- **The orthogonal projector \Pi_n on {}^s\!\mathscr{H}_n is**

$$\Pi_n = 1_n - \prod_{0 \le i \le n-1} (1_n - \Pi_{ni})$$

$$\Pi_{ni} = S_{n-1i}S_{n-1i}^{+} = S_{ni+1}^{+}S_{ni} = S_{ni}^{+}S_{ni+1}.$$

ntroduction	Simplicial sets

ヨト イヨト

Normalized Hilbert simplicial homology

Abstract Hilbert normalization theorem: for every $n \ge 0$, one has

$$\operatorname{H}_n(X, \mathbb{C}) \simeq \operatorname{H}_{Dn}(\overline{\mathscr{H}}).$$

NB This is just the normalization theorem.

- The computation of the abstract homology is not tractable with standard quantum algorithmic techniques.
- In fact, the abstract spaces $\overline{\mathscr{H}}_n$ are non Hilbert complex vector spaces.
- A truly Hilbertian framework is required.
- The orthogonal projector Π_n on ${}^s\mathscr{H}_n$ is

$$\Pi_n = 1_n - \prod_{0 \le i \le n-1} (1_n - \Pi_{ni})$$

$$\Pi_{ni} = S_{n-1i}S_{n-1i}^{+} = S_{ni+1}^{+}S_{ni} = S_{ni}^{+}S_{ni+1}.$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

The concrete non degenerate n-simplex spaces are

$$^{c}\mathcal{H}_{n} = {}^{s}\mathcal{H}_{n}^{\perp}.$$

The Q_{Dn} give rise to a concrete normalized Hilbert simplicial boundary operators ${}^{c}Q_{Dn}: {}^{c}\mathcal{H}_{n} \rightarrow {}^{c}\mathcal{H}_{n-1}$, viz

$${}^{c}Q_{Dn} = (1_{n-1} - \Pi_{n-1})Q_{Dn} |_{c_{\mathscr{H}_{n}}}$$

which obeys the homological relations

$$^{c}Q_{Dn-1}^{c}Q_{Dn}=0.$$

The concrete normalized Hilbert simplicial homology spaces are

 $H_{Dn}(^{c}\mathscr{H}) = \ker^{c} Q_{Dn} / \operatorname{ran}^{c} Q_{Dn+1} \qquad (\text{here } \ker^{c} Q_{D0} = {}^{c}\mathscr{H}_{0}).$

Concrete Hilbert normalization theorem: for every $n \ge 0$, the isomorphism

$$\mathrm{H}_n(X,\mathbb{C})\simeq\mathrm{H}_{Dn}(^c\mathscr{H}).$$

オロトス値 トスヨトメヨト 一張 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

The concrete non degenerate n-simplex spaces are

$$^{c}\mathcal{H}_{n} = {}^{s}\mathcal{H}_{n}^{\perp}.$$

The Q_{Dn} give rise to a concrete normalized Hilbert simplicial boundary operators ${}^{c}Q_{Dn}: {}^{c}\mathcal{H}_{n} \rightarrow {}^{c}\mathcal{H}_{n-1}$, viz

$${}^{c}Q_{Dn} = (1_{n-1} - \Pi_{n-1})Q_{Dn}\big|_{c_{\mathscr{H}_{n}}}$$

which obeys the homological relations

$$^{c}Q_{Dn-1}{}^{c}Q_{Dn}=0.$$

The concrete normalized Hilbert simplicial homology spaces are

 $H_{Dn}(^{c}\mathscr{H}) = \ker^{c}Q_{Dn}/\operatorname{ran}^{c}Q_{Dn+1} \quad \text{(here } \ker^{c}Q_{D0} = {}^{c}\mathscr{H}_{0}\text{)}.$

Concrete Hilbert normalization theorem: for every $n \ge 0$, the isomorphism

$$\mathrm{H}_n(X,\mathbb{C})\simeq\mathrm{H}_{Dn}(^c\mathscr{H}).$$

オロトス値 トスヨトメヨト 一張 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

The concrete non degenerate n-simplex spaces are

$$^{c}\mathcal{H}_{n} = {}^{s}\mathcal{H}_{n}^{\perp}.$$

The Q_{Dn} give rise to a concrete normalized Hilbert simplicial boundary operators ${}^{c}Q_{Dn}: {}^{c}\mathscr{H}_{n} \to {}^{c}\mathscr{H}_{n-1}$, viz

$${}^{c}Q_{Dn} = (1_{n-1} - \Pi_{n-1})Q_{Dn}\big|_{c_{\mathscr{H}_{n}}}$$

which obeys the homological relations

$$^{c}Q_{Dn-1}{}^{c}Q_{Dn}=0.$$

The concrete normalized Hilbert simplicial homology spaces are

$$\mathrm{H}_{Dn}({}^{c}\mathscr{H}) = \ker {}^{c}Q_{Dn}/\operatorname{ran}{}^{c}Q_{Dn+1} \qquad (\text{here } \ker {}^{c}Q_{D0} = {}^{c}\mathscr{H}_{0}).$$

• Concrete Hilbert normalization theorem: for every $n \ge 0$, the isomorphism

 $\mathrm{H}_n(X,\mathbb{C})\simeq\mathrm{H}_{Dn}(^c\mathscr{H}).$

オロトス値 トスヨトメヨト 一張 ののの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

 \blacksquare The concrete non degenerate n-simplex spaces are

$${}^{c}\mathcal{H}_{n} = {}^{s}\mathcal{H}_{n}^{\perp}.$$

The Q_{Dn} give rise to a concrete normalized Hilbert simplicial boundary operators ${}^{c}Q_{Dn}: {}^{c}\mathscr{H}_{n} \to {}^{c}\mathscr{H}_{n-1}$, viz

$${}^{c}Q_{Dn} = (1_{n-1} - \Pi_{n-1})Q_{Dn}\big|_{c_{\mathscr{H}_{n}}}$$

which obeys the homological relations

$$^{c}Q_{Dn-1}^{\ c}Q_{Dn}=0.$$

The concrete normalized Hilbert simplicial homology spaces are

$$\mathrm{H}_{Dn}({}^{c}\mathscr{H}) = \ker{}^{c}Q_{Dn}/\operatorname{ran}{}^{c}Q_{Dn+1} \qquad (\text{here } \ker{}^{c}Q_{D0} = {}^{c}\mathscr{H}_{0}).$$

Concrete Hilbert normalization theorem: for every $n \ge 0$, the isomorphism

$$\operatorname{H}_n(X, \mathbb{C}) \simeq \operatorname{H}_{Dn}({}^c\mathscr{H}).$$

オロトス値 トスヨトメヨト 一頭 ののの

Normalized Hilbert simplicial homology

The verification proceeds by showing the isomorphism of the abstract and concrete homology spaces (not distinguished henceforth)

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H}).$$

- The proof of the isomorphism is achieved by constructing a chain equivalence of the Hilbert chain complexes $(\overline{\mathscr{H}}, \overline{Q}_D)$, $({}^{c}\mathscr{H}, {}^{c}Q_D)$.
- The chain equivalence is a sequence of chain operators $I_n : \mathscr{H}_n \to \mathscr{CH}_n$, $J_n : \mathscr{H}_n \to \widetilde{\mathscr{H}}_n$, $n \ge 0$, such that the composite operators $J_n I_n$, $I_n J_n$ are chain homotopic to \overline{I}_n , c_{1n} , respectively.
- In is the operator induced by the orthogonal projector $1_n \Pi_n$ by virtue of the fact that ${}^s\mathcal{H}_n = \ker(1_n \Pi_n)$. J_n is the canonical projection of ${}^c\mathcal{H}_n$ onto $\overline{\mathcal{H}}_n$.
- As a matter of fact, I_n , J_n are reciprocally inverse.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
		000000000000000000000000000000000000000		

The verification proceeds by showing the isomorphism of the abstract and concrete homology spaces (not distinguished henceforth)

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H}).$$

- The proof of the isomorphism is achieved by constructing a chain equivalence of the Hilbert chain complexes $(\overline{\mathscr{H}}, \overline{Q}_D)$, $({}^c\mathscr{H}, {}^cQ_D)$.
- The chain equivalence is a sequence of chain operators $I_n : \mathscr{H}_n \to \mathscr{CH}_n$, $J_n : \mathscr{H}_n \to \overline{\mathscr{H}}_n$, $n \ge 0$, such that the composite operators $J_n I_n$, $I_n J_n$ are chain homotopic to \overline{I}_n , c_{1n} , respectively.
- In is the operator induced by the orthogonal projector $1_n \Pi_n$ by virtue of the fact that ${}^s\mathscr{H}_n = \ker(1_n \Pi_n)$. J_n is the canonical projection of ${}^c\mathscr{H}_n$ onto $\overline{\mathscr{H}}_n$.

イロト 不得 トイヨト イヨト 二度 二

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

The verification proceeds by showing the isomorphism of the abstract and concrete homology spaces (not distinguished henceforth)

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H}).$$

- The proof of the isomorphism is achieved by constructing a chain equivalence of the Hilbert chain complexes $(\overline{\mathscr{H}}, \overline{Q}_D)$, $({}^c\mathscr{H}, {}^cQ_D)$.
- The chain equivalence is a sequence of chain operators $I_n : \overline{\mathscr{H}}_n \to {}^c\mathscr{H}_n$, $J_n : {}^c\mathscr{H}_n \to \overline{\mathscr{H}}_n$, $n \ge 0$, such that the composite operators $J_n I_n$, $I_n J_n$ are chain homotopic to $\overline{1}_n$, c1_n , respectively.
- In is the operator induced by the orthogonal projector $1_n \Pi_n$ by virtue of the fact that ${}^s\mathscr{H}_n = \ker(1_n \Pi_n)$. J_n is the canonical projection of ${}^c\mathscr{H}_n$ onto $\overline{\mathscr{H}}_n$.

・ロト ・回 ト ・ ヨト ・ ヨー うんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

 The verification proceeds by showing the isomorphism of the abstract and concrete homology spaces (not distinguished henceforth)

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H}).$$

- The proof of the isomorphism is achieved by constructing a chain equivalence of the Hilbert chain complexes $(\overline{\mathscr{H}}, \overline{Q}_D)$, $({}^c\mathscr{H}, {}^cQ_D)$.
- The chain equivalence is a sequence of chain operators $I_n : \overline{\mathscr{H}}_n \to {}^c\mathscr{H}_n$, $J_n : {}^c\mathscr{H}_n \to \overline{\mathscr{H}}_n$, $n \ge 0$, such that the composite operators $J_n I_n$, $I_n J_n$ are chain homotopic to $\overline{1}_n$, c1_n , respectively.
- In is the operator induced by the orthogonal projector $1_n \prod_n$ by virtue of the fact that ${}^s\mathcal{H}_n = \ker(1_n \prod_n)$. J_n is the canonical projection of ${}^c\mathcal{H}_n$ onto $\overline{\mathcal{H}}_n$.

イロト 不問 トイヨト イヨト 三度 しのへの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
		000000000000000000000000000000000000000		

 The verification proceeds by showing the isomorphism of the abstract and concrete homology spaces (not distinguished henceforth)

$$\mathrm{H}_{Dn}(\overline{\mathscr{H}}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H}).$$

- The proof of the isomorphism is achieved by constructing a chain equivalence of the Hilbert chain complexes $(\overline{\mathscr{H}}, \overline{Q}_D)$, $({}^c\mathscr{H}, {}^cQ_D)$.
- The chain equivalence is a sequence of chain operators $I_n : \overline{\mathscr{H}}_n \to {}^c\mathscr{H}_n$, $J_n : {}^c\mathscr{H}_n \to \overline{\mathscr{H}}_n$, $n \ge 0$, such that the composite operators $J_n I_n$, $I_n J_n$ are chain homotopic to $\overline{1}_n$, c1_n , respectively.
- In is the operator induced by the orthogonal projector $1_n \prod_n$ by virtue of the fact that ${}^s\mathcal{H}_n = \ker(1_n \prod_n)$. J_n is the canonical projection of ${}^c\mathcal{H}_n$ onto $\overline{\mathcal{H}}_n$.

・ロト ・回 ト ・ ヨト ・ ヨー うんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial i
		000000000000000000000000000000000000000	

nplementation

소리에 소문에 소문에 소문에 다

Normalized Hilbert simplicial homology

• Normalized simplicial Hodge theorem: for $n \ge 0$,

 $\operatorname{H}_n(X, \mathbb{C}) \simeq \ker{}^c H_{DDn},$

where ${}^{c}H_{DDn}$ is the normalized Hilbert simplicial Hodge Laplacian

 ${}^{c}H_{DDn} = {}^{c}Q_{Dn} + {}^{c}Q_{Dn+1} {}^{c}Q_{Dn+1}^{+}.$

■ The theorem provides a potentially more efficient way of computing the simplicial homology H(X, C) of X with complex coefficients.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implemer
		000000000000000000000000000000000000000	

夏 のへで

イロトメ 同ト イヨトメ ヨトー

Normalized Hilbert simplicial homology

• Normalized simplicial Hodge theorem: for $n \ge 0$,

 $\operatorname{H}_n(X, \mathbb{C}) \simeq \ker^c H_{DDn},$

where ${}^{c}H_{DDn}$ is the normalized Hilbert simplicial Hodge Laplacian

 ${}^{c}H_{DDn} = {}^{c}Q_{Dn} + {}^{c}Q_{Dn+1} {}^{c}Q_{Dn+1} + .$

■ The theorem provides a potentially more efficient way of computing the simplicial homology H(X, C) of X with complex coefficients.

Quantum simplicial implementation

オロトス値 トスヨトメヨト 一頭 ののの

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- \blacksquare For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n\in\mathbb{N}}$ $\overset{ ext{sec}}{\longrightarrow}$
- The degenerate n-simplex space ^sℋ_n is invariant under U_n, as Π_n projects on ^sℋ_n → ^s and commutes with U_n.
- The orthogonal complement ${}^{c}\mathscr{H}_{n} = {}^{s}\mathscr{H}_{n}^{\perp}$ is then also invariant under U_{n} , as U_{n} is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}(\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C})\simeq\mathrm{H}_{Dn}(\mathscr{H})$.

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n\in\mathbb{N}}$ $\overset{\mathrm{sec}}{\longrightarrow}$.
- The degenerate n-simplex space ^sℋ_n is invariant under U_n, as Π_n projects on ^sℋ_n → ^{so} and commutes with U_n.
- The orthogonal complement ${}^{c}\mathscr{H}_{n} = {}^{s}\mathscr{H}_{n}^{\perp}$ is then also invariant under U_{n} , as U_{n} is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}({}^{c}\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H})$.

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}} \xrightarrow{}$.
- The degenerate n-simplex space ^sℋ_n is invariant under U_n, as Π_n projects on ^sℋ_n → ^{sh} and commutes with U_n.
- The orthogonal complement ${}^{c}\mathscr{H}_{n} = {}^{s}\mathscr{H}_{n}^{\perp}$ is then also invariant under U_{n} , as U_{n} is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}({}^{c}\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C})\simeq\mathrm{H}_{Dn}({}^{c}\mathscr{H})$.

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}} \xrightarrow{}$.
- The degenerate *n*-simplex space ${}^{s}\mathcal{H}_{n}$ is invariant under U_{n} , as Π_{n} projects on ${}^{s}\mathcal{H}_{n} \xrightarrow{} dhs$ and commutes with U_{n} .
- The orthogonal complement ${}^{c}\mathscr{H}_{n} = {}^{s}\mathscr{H}_{n}^{\perp}$ is then also invariant under U_{n} , as U_{n} is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}({}^{c}\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C})\simeq\mathrm{H}_{Dn}({}^{c}\mathscr{H})$.

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}} \xrightarrow{}$.
- The degenerate n-simplex space ${}^{s}\mathcal{H}_{n}$ is invariant under U_{n} , as Π_{n} projects on ${}^{s}\mathcal{H}_{n} \xrightarrow{} dn$ and commutes with U_{n} .
- The orthogonal complement ${}^c\mathcal{H}_n = {}^s\mathcal{H}_n^{\perp}$ is then also invariant under U_n , as U_n is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}({}^{c}\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H})$.

Quantum simplicial implementation

オロトス団トス ヨトメヨト 一度 ろんぐ

Conclusions

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}} \xrightarrow{}$.
- The degenerate n-simplex space ^sℋ_n is invariant under U_n, as Π_n projects on ^sℋ_n → dns and commutes with U_n.
- The orthogonal complement ${}^{c}\mathcal{H}_{n} = {}^{s}\mathcal{H}_{n}^{\perp}$ is then also invariant under U_{n} , as U_{n} is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}({}^{c}\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C})\simeq\mathrm{H}_{Dn}({}^{c}\mathscr{H})$.

<ロト < 個 ト < 注 ト < 注 ト 、 注 ・ の へ ()</p>

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}} \xrightarrow{}$.
- The degenerate n-simplex space ${}^{s}\mathcal{H}_{n}$ is invariant under U_{n} , as Π_{n} projects on ${}^{s}\mathcal{H}_{n} \xrightarrow{} dn$ and commutes with U_{n} .
- The orthogonal complement ${}^{c}\mathcal{H}_{n} = {}^{s}\mathcal{H}_{n}^{\perp}$ is then also invariant under U_{n} , as U_{n} is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}({}^{c}\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H})$.

オロトス団トス ヨトメヨト 一度 ろんぐ

Simplicial quantum circuits computing normalized simplicial homology

- Homological computations can be performed using simplicial quantum circuits.
- For definiteness, consider a simple simplicial quantum circuit $\{U_n\}_{n \in \mathbb{N}} \xrightarrow{}$.
- The degenerate n-simplex space ${}^{s}\mathcal{H}_{n}$ is invariant under U_{n} , as Π_{n} projects on ${}^{s}\mathcal{H}_{n} \xrightarrow{} dn$ and commutes with U_{n} .
- The orthogonal complement ${}^{c}\mathcal{H}_{n} = {}^{s}\mathcal{H}_{n}^{\perp}$ is then also invariant under U_{n} , as U_{n} is unitary.
- The restriction ${}^{c}U_{n}$ of U_{n} to ${}^{c}\mathcal{H}_{n}$ is a unitary operator of ${}^{c}\mathcal{H}_{n}$.
- The circuit defines a unitary chain operator of the normalized Hilbert simplicial chain complex:

$${}^{c}U_{n-1}{}^{c}Q_{Dn} - {}^{c}Q_{Dn}{}^{c}U_{n} = 0.$$

As a consequence, each circuit component ${}^{c}U_{n}$ yields an automorphism of $\mathrm{H}_{Dn}({}^{c}\mathscr{H})$, hence of $\mathrm{H}_{n}(X,\mathbb{C}) \simeq \mathrm{H}_{Dn}({}^{c}\mathscr{H})$.

オロトス団トス ヨトメヨト 一度 ろんぐ

Simplicial quantum circuits computing normalized simplicial homology

 $\hfill\blacksquare$ Each component $^{c}U_{n}$ commute also with the normalized Hilbert simplicial Laplacian $^{c}H_{DDn}$

$${}^cH_{DDn}{}^cU_n - {}^cU_n{}^cH_{DDn} = 0.$$

The homology automorphism is in this way realized as an action of $^{c}U_{n}$ on $\ker{^{c}H_{DDn}}.$

オロトス団トス ヨトメヨト 一度 ろんぐ

Simplicial quantum circuits computing normalized simplicial homology

 $\hfill\blacksquare$ Each component $^{c}U_{n}$ commute also with the normalized Hilbert simplicial Laplacian $^{c}H_{DDn}$

$$^{c}H_{DDn}^{\ c}U_{n} - ^{c}U_{n}^{\ c}H_{DDn} = 0.$$

The homology automorphism is in this way realized as an action of $^{c}U_{n}$ on $\ker{^{c}H_{DDn}}.$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
			••••••	

Digital encoding a simplicial set

- The digital encoding of the simplices of a given parafinite simplicial set X is a precondition for the implementation of simplicial set based algorithms of computational topology in a quantum computer.
- The full simplex set of the K-truncation $\operatorname{tr}_K X$ of X is

$$X^{(K)} = \bigsqcup_{0 \le n \le K} X_n.$$

To encode the simplices of $X^{(K)}$, one needs a k-bit register with

$$k \ge \kappa_{XK} := \min\left\{l \mid l \in \mathbb{N}, |X^{(K)}| \le 2^l\right\}.$$

A digital encoding of $\operatorname{tr}_K X$ in a k-bit register consists in a bijective mapping $\chi : X^{(K)} \to X_{\chi}^{(K)}$, where $X_{\chi}^{(K)} \subseteq B_2{}^k$ is a k-bit string set such that $|X_{\chi}^{(K)}| = |X^{(K)}|$. $(B_2 = \{0, 1\}$ be the digital Boolean domain.) There are altogether $|X^{(K)}|!$ encodings with a given range $X_0 \subseteq B_2{}^k$.

・ロト (個)ト (語)・ (語)・ (語)・ のへで

lacksquare The viability of an encoding χ depends on the specific features of X.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusior
			•0000000000000000	

Digital encoding a simplicial set

- The digital encoding of the simplices of a given parafinite simplicial set X is a precondition for the implementation of simplicial set based algorithms of computational topology in a quantum computer.
- The full simplex set of the K-truncation $tr_K X$ of X is

$$X^{(K)} = \bigsqcup_{0 \le n \le K} X_n.$$

 \blacksquare To encode the simplices of $X^{(K)}$, one needs a k-bit register with

$$k \ge \kappa_{XK} := \min\left\{l \mid l \in \mathbb{N}, |X^{(K)}| \le 2^l\right\}.$$

A digital encoding of $\operatorname{tr}_K X$ in a k-bit register consists in a bijective mapping $\chi : X^{(K)} \to X_{\chi}^{(K)}$, where $X_{\chi}^{(K)} \subseteq B_2{}^k$ is a k-bit string set such that $|X_{\chi}^{(K)}| = |X^{(K)}|$. $(B_2 = \{0, 1\}$ be the digital Boolean domain.) There are altogether $|X^{(K)}|!$ encodings with a given range $X_0 \subseteq B_2{}^k$.

・ロト ・回 ト ・ ヨト ・ ヨー うんの

lacksquare The viability of an encoding χ depends on the specific features of X.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			•0000000000000000	

Digital encoding a simplicial set

- The digital encoding of the simplices of a given parafinite simplicial set X is a precondition for the implementation of simplicial set based algorithms of computational topology in a quantum computer.
- The full simplex set of the K-truncation $tr_K X$ of X is

$$X^{(K)} = \bigsqcup_{0 \le n \le K} X_n.$$

To encode the simplices of $X^{(K)}$, one needs a k-bit register with

$$k \ge \kappa_{XK} := \min \left\{ l \left| l \in \mathbb{N}, |X^{(K)}| \le 2^l \right\}.$$

A digital encoding of $\operatorname{tr}_K X$ in a k-bit register consists in a bijective mapping $\chi : X^{(K)} \to X_{\chi}^{(K)}$, where $X_{\chi}^{(K)} \subseteq B_2{}^k$ is a k-bit string set such that $|X_{\chi}^{(K)}| = |X^{(K)}|$. $(B_2 = \{0, 1\}$ be the digital Boolean domain.) There are altogether $|X^{(K)}|!$ encodings with a given range $X_0 \subseteq B_2{}^k$.

▶ ▲週 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ � �

lacksquare The viability of an encoding χ depends on the specific features of X.
- The digital encoding of the simplices of a given parafinite simplicial set X is a precondition for the implementation of simplicial set based algorithms of computational topology in a quantum computer.
- The full simplex set of the K-truncation $tr_K X$ of X is

$$X^{(K)} = \bigsqcup_{0 \le n \le K} X_n.$$

To encode the simplices of $X^{(K)}$, one needs a k-bit register with

$$k \ge \kappa_{XK} := \min\left\{l \left| l \in \mathbb{N}, |X^{(K)}| \le 2^l\right\}.\right.$$

• A digital encoding of $\operatorname{tr}_K X$ in a k-bit register consists in a bijective mapping $\chi : X^{(K)} \to X_{\chi}^{(K)}$, where $X_{\chi}^{(K)} \subseteq B_2{}^k$ is a k-bit string set such that $|X_{\chi}^{(K)}| = |X^{(K)}|$. $(B_2 = \{0, 1\}$ be the digital Boolean domain.) There are altogether $|X^{(K)}|!$ encodings with a given range $X_0 \subseteq B_2{}^k$.

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

I The viability of an encoding χ depends on the specific features of X.

- The digital encoding of the simplices of a given parafinite simplicial set X is a precondition for the implementation of simplicial set based algorithms of computational topology in a quantum computer.
- The full simplex set of the K-truncation $tr_K X$ of X is

$$X^{(K)} = \bigsqcup_{0 \le n \le K} X_n.$$

To encode the simplices of $X^{(K)}$, one needs a k-bit register with

$$k \ge \kappa_{XK} := \min\left\{l \left| l \in \mathbb{N}, |X^{(K)}| \le 2^l\right\}.\right.$$

• A digital encoding of $\operatorname{tr}_K X$ in a k-bit register consists in a bijective mapping $\chi : X^{(K)} \to X_{\chi}^{(K)}$, where $X_{\chi}^{(K)} \subseteq B_2{}^k$ is a k-bit string set such that $|X_{\chi}^{(K)}| = |X^{(K)}|$. $(B_2 = \{0, 1\}$ be the digital Boolean domain.) There are altogether $|X^{(K)}|!$ encodings with a given range $X_0 \subseteq B_2{}^k$.

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

The viability of an encoding χ depends on the specific features of X.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

- An encoding χ creates a digitized image of the simplices and the face and degeneracy maps of tr_K X in the register.
- The subsets $X_{\chi n} := \chi(X_n) \subseteq X_{\chi}^{(K)}$ constitute a partition of $X_{\chi}^{(K)}$,

$$X_{\chi}^{(K)} = \bigsqcup_{0 \le n \le K} X_{\chi n}.$$

The restrictions $\chi|_{X_n}$ of χ to the X_n induce bijective maps $\chi_n : X_n \to X_{\chi n}$ and through these maps $d_{\chi ni} : X_{\chi n} \to X_{\chi n-1}, 1 \le n \le K, i = 1, ..., n$, and $s_{\chi ni} : X_{\chi n} \to X_{\chi n+1}, 0 \le n \le K - 1, i = 1, ..., n$, can be defined,

$$d_{\chi ni} = \chi_{n-1} d_{ni} \chi_n^{-1},$$

$$s_{\chi ni} = \chi_{n+1} s_{ni} \chi_n^{-1}.$$

The $d_{\chi n i}$, $s_{\chi n i}$ obey the simplicial relations 🕛 🔤

When X is replaced by its K-truncation tr_K X, the simplicial Hilbert space of ℋ of X is replaced by its K-truncation tr_K ℋ.

御をするとするとい

漫 のへの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

- An encoding χ creates a digitized image of the simplices and the face and degeneracy maps of tr_K X in the register.
- The subsets $X_{\chi n} := \chi(X_n) \subseteq X_{\chi}^{(K)}$ constitute a partition of $X_{\chi}^{(K)}$,

$$X_{\chi}^{(K)} = \bigsqcup_{0 \le n \le K} X_{\chi n}.$$

The restrictions $\chi|_{X_n}$ of χ to the X_n induce bijective maps $\chi_n : X_n \to X_{\chi n}$ and through these maps $d_{\chi ni} : X_{\chi n} \to X_{\chi n-1}, 1 \le n \le K, i = 1, ..., n$, and $s_{\chi ni} : X_{\chi n} \to X_{\chi n+1}, 0 \le n \le K - 1, i = 1, ..., n$, can be defined,

$$d_{\chi ni} = \chi_{n-1} d_{ni} \chi_n^{-1},$$

$$s_{\chi ni} = \chi_{n+1} s_{ni} \chi_n^{-1}.$$

The $d_{\chi ni}$, $s_{\chi ni}$ obey the simplicial relations \bigcirc >

When X is replaced by its K-truncation tr_K X, the simplicial Hilbert space of ℋ of X is replaced by its K-truncation tr_K ℋ.

▶ 4 恵▶ 4 恵▶ - 恵 - ∽ Q.@

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

- An encoding χ creates a digitized image of the simplices and the face and degeneracy maps of tr_K X in the register.
- The subsets $X_{\chi n} := \chi(X_n) \subseteq X_{\chi}^{(K)}$ constitute a partition of $X_{\chi}^{(K)}$,

$$X_{\chi}^{(K)} = \bigsqcup_{0 \le n \le K} X_{\chi n}.$$

The restrictions $\chi|_{X_n}$ of χ to the X_n induce bijective maps $\chi_n : X_n \to X_{\chi n}$ and through these maps $d_{\chi ni} : X_{\chi n} \to X_{\chi n-1}$, $1 \le n \le K$, i = 1, ..., n, and $s_{\chi ni} : X_{\chi n} \to X_{\chi n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, can be defined,

$$d_{\chi ni} = \chi_{n-1} d_{ni} \chi_n^{-1},$$

$$s_{\chi ni} = \chi_{n+1} s_{ni} \chi_n^{-1}.$$

The $d_{\chi ni}$, $s_{\chi ni}$ obey the simplicial relations \rightarrow ssr.

When X is replaced by its K-truncation tr_K X, the simplicial Hilbert space of ℋ of X is replaced by its K-truncation tr_K ℋ.

原ト イ 原トー

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

- An encoding χ creates a digitized image of the simplices and the face and degeneracy maps of tr_K X in the register.
- The subsets $X_{\chi n} := \chi(X_n) \subseteq X_{\chi}^{(K)}$ constitute a partition of $X_{\chi}^{(K)}$,

$$X_{\chi}^{(K)} = \bigsqcup_{0 \le n \le K} X_{\chi n}.$$

The restrictions $\chi|_{X_n}$ of χ to the X_n induce bijective maps $\chi_n : X_n \to X_{\chi n}$ and through these maps $d_{\chi ni} : X_{\chi n} \to X_{\chi n-1}$, $1 \le n \le K$, i = 1, ..., n, and $s_{\chi ni} : X_{\chi n} \to X_{\chi n+1}$, $0 \le n \le K - 1$, i = 1, ..., n, can be defined,

$$d_{\chi ni} = \chi_{n-1} d_{ni} \chi_n^{-1},$$

$$s_{\chi ni} = \chi_{n+1} s_{ni} \chi_n^{-1}.$$

The $d_{\chi ni}$, $s_{\chi ni}$ obey the simplicial relations \rightarrow ssr.

When X is replaced by its K-truncation $\operatorname{tr}_K X$, the simplicial Hilbert space of \mathscr{H} of X is replaced by its K-truncation $\operatorname{tr}_K \mathscr{H}$.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

The quantum register for the simplicial data of $\operatorname{tr}_K X$ is the Hilbert space

$$\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_n.$$

 $\dim \mathscr{H}^{(K)} = |X^{(K)}|.$

The digital encoding χ of $X^{(K)}$ into the k-bit register $X_{\chi}^{(K)}$ yields a unitary operator $U_{\chi}: \mathscr{H}^{(K)} \to \mathscr{H}_{\chi}^{(K)}$ with $\mathscr{H}_{\chi}^{(K)} \subseteq \mathbb{C}^{2 \otimes k}$,

$$U_{\chi} = \sum_{0 \le n \le K} \sum_{\sigma_n \in X_n} |\chi \sigma_n\rangle_k \langle \sigma_n|.$$
(4.1)

オロトス値 トスヨトメヨト 一頭 ののの

(the $\ket{\xi}_k,\,\xi\in B_2{}^k$, constitute the computational basis of $\mathbb{C}^{2\,\otimes\,k}$.)

- U_{χ} creates a quantum digitized image of the simplex basis and the face and degeneracy operators of $\mathscr{H}^{(K)}$ in $\mathscr{H}_{\chi}^{(K)}$.
- With $\mathscr{H}_{\chi n} = U_{\chi} \mathscr{H}_{n}$, $\mathscr{H}_{\chi}^{(K)}$ decomposes as

$$\mathscr{H}_{\chi}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_{\chi n}.$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

The quantum register for the simplicial data of $tr_K X$ is the Hilbert space

$$\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_n.$$

 $\dim \mathscr{H}^{(K)} = |X^{(K)}|.$

The digital encoding χ of $X^{(K)}$ into the k-bit register $X_{\chi}^{(K)}$ yields a unitary operator $U_{\chi}: \mathscr{H}^{(K)} \to \mathscr{H}_{\chi}^{(K)}$ with $\mathscr{H}_{\chi}^{(K)} \subseteq \mathbb{C}^{2 \otimes k}$,

$$U_{\chi} = \sum_{0 \le n \le K} \sum_{\sigma_n \in X_n} |\chi \sigma_n\rangle_k \langle \sigma_n|.$$
(4.1)

メロトメ劇 トメヨトメヨト 一度 ろんの

(the $|\xi\rangle_k$, $\xi\in B_2{}^k$, constitute the computational basis of $\mathbb{C}^{2\otimes k}$.)

- U_{χ} creates a quantum digitized image of the simplex basis and the face and degeneracy operators of $\mathscr{H}^{(K)}$ in $\mathscr{H}_{\chi}^{(K)}$.
- With $\mathscr{H}_{\chi n} = U_{\chi} \mathscr{H}_n$, $\mathscr{H}_{\chi}^{(K)}$ decomposes as

$$\mathscr{H}_{\chi}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_{\chi n}.$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

The quantum register for the simplicial data of $tr_K X$ is the Hilbert space

$$\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_n.$$

 $\dim \mathscr{H}^{(K)} = |X^{(K)}|.$

The digital encoding χ of $X^{(K)}$ into the k-bit register $X_{\chi}^{(K)}$ yields a unitary operator $U_{\chi}: \mathscr{H}^{(K)} \to \mathscr{H}_{\chi}^{(K)}$ with $\mathscr{H}_{\chi}^{(K)} \subseteq \mathbb{C}^{2 \otimes k}$,

$$U_{\chi} = \sum_{0 \le n \le K} \sum_{\sigma_n \in X_n} |\chi \sigma_n \rangle_k \langle \sigma_n|.$$
(4.1)

オロトス値 トスヨトメヨト 一頭 ののの

(the $|\xi\rangle_k$, $\xi\in B_2{}^k$, constitute the computational basis of $\mathbb{C}^{2\,\otimes\,k}$.)

U_{χ} creates a quantum digitized image of the simplex basis and the face and degeneracy operators of $\mathscr{H}^{(K)}$ in $\mathscr{H}_{\chi}^{(K)}$.

• With $\mathscr{H}_{\chi n} = U_{\chi} \mathscr{H}_n$, $\mathscr{H}_{\chi}^{(K)}$ decomposes as

$$\mathscr{H}_{\chi}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_{\chi n}.$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

The quantum register for the simplicial data of $tr_K X$ is the Hilbert space

$$\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_n.$$

 $\dim \mathscr{H}^{(K)} = |X^{(K)}|.$

The digital encoding χ of $X^{(K)}$ into the k-bit register $X_{\chi}^{(K)}$ yields a unitary operator $U_{\chi}: \mathscr{H}^{(K)} \to \mathscr{H}_{\chi}^{(K)}$ with $\mathscr{H}_{\chi}^{(K)} \subseteq \mathbb{C}^{2 \otimes k}$,

$$U_{\chi} = \sum_{0 \le n \le K} \sum_{\sigma_n \in X_n} |\chi \sigma_n\rangle_k \langle \sigma_n|.$$
(4.1)

オロトス値 トスヨトメヨト 一頭 ののの

(the $|\xi\rangle_k$, $\xi\in B_2{}^k$, constitute the computational basis of $\mathbb{C}^{2\otimes k}$.)

- U_{χ} creates a quantum digitized image of the simplex basis and the face and degeneracy operators of $\mathscr{H}^{(K)}$ in $\mathscr{H}_{\chi}^{(K)}$.
- With $\mathscr{H}_{\chi n} = U_{\chi} \mathscr{H}_{n}$, $\mathscr{H}_{\chi}^{(K)}$ decomposes as

$$\mathscr{H}_{\chi}^{(K)} = \bigoplus_{0 \le n \le K} \mathscr{H}_{\chi n}.$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000	

The restrictions $U_{\chi}|_{\mathscr{H}_n}$ induce unitary operators $U_{\chi n} : \mathscr{H}_n \to \mathscr{H}_{\chi n}$ and through these operators $D_{\chi ni} : \mathscr{H}_{\chi n} \to \mathscr{H}_{\chi n-1}, 1 \le n \le K, i = 1, ..., n,$ $S_{\chi ni} : \mathscr{H}_{\chi n} \to \mathscr{H}_{\chi n+1}, 0 \le n \le K - 1, i = 1, ..., n,$

$$D_{\chi ni} = U_{\chi n-1} D_{ni} U_{\chi n}^{-1},$$

$$S_{\chi ni} = U_{\chi n+1} S_{ni} U_{\chi n}^{-1}.$$

The $D_{\chi ni}$, $D_{\chi ni}$ obey the exchange identities $\stackrel{\text{\tiny Phi}}{\longrightarrow}$.

In the computational basis

$$\begin{split} D_{\chi ni} &= \sum_{\xi_n \in X_{\chi n}} |d_{\chi ni} \xi_n \rangle_{kk} \langle \xi_n|, \\ S_{\chi ni} &= \sum_{\xi_n \in X_{\chi n}} |s_{\chi ni} \xi_n \rangle_{kk} \langle \xi_n|. \end{split}$$

χ should be selected judiciously in such a way to yield a simple digitized image
 of the simplices and the face and degeneracy maps of X^(K).

・ロト ・回 ト ・ ヨト ・ ヨー うんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000	

The restrictions $U_{\chi}|_{\mathscr{H}_n}$ induce unitary operators $U_{\chi n} : \mathscr{H}_n \to \mathscr{H}_{\chi n}$ and through these operators $D_{\chi ni} : \mathscr{H}_{\chi n} \to \mathscr{H}_{\chi n-1}, 1 \leq n \leq K, i = 1, ..., n,$ $S_{\chi ni} : \mathscr{H}_{\chi n} \to \mathscr{H}_{\chi n+1}, 0 \leq n \leq K - 1, i = 1, ..., n,$ $D_{\chi ni} = U_{\chi n-1} D_{ni} U_{\chi n}^{-1},$

$$S_{\chi ni} = U_{\chi n+1} S_{ni} U_{\chi n}{}^{-1}$$

The $D_{\chi ni}$, $D_{\chi ni}$ obey the exchange identities $\stackrel{\text{\tiny Phi}}{\longrightarrow}$.

In the computational basis

$$D_{\chi ni} = \sum_{\xi_n \in X_{\chi n}} |d_{\chi ni} \xi_n \rangle_{kk} \langle \xi_n|,$$
$$S_{\chi ni} = \sum_{\xi_n \in X_{\chi n}} |s_{\chi ni} \xi_n \rangle_{kk} \langle \xi_n|.$$

• χ should be selected judiciously in such a way to yield a simple digitized image of the simplices and the face and degeneracy maps of $X^{(K)}$.

トメ虚ト ふきトメ きトー 度

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000	

The restrictions $U_{\chi}|_{\mathscr{H}_n}$ induce unitary operators $U_{\chi n} : \mathscr{H}_n \to \mathscr{H}_{\chi n}$ and through these operators $D_{\chi ni} : \mathscr{H}_{\chi n} \to \mathscr{H}_{\chi n-1}, 1 \leq n \leq K, i = 1, ..., n,$ $S_{\chi ni} : \mathscr{H}_{\chi n} \to \mathscr{H}_{\chi n+1}, 0 \leq n \leq K-1, i = 1, ..., n,$ $D_{\chi ni} = U_{\chi n-1} D_{ni} U_{\chi n}^{-1},$

$$S_{\chi ni} = U_{\chi n+1} S_{ni} U_{\chi n}{}^{-1}$$

The $D_{\chi ni}$, $D_{\chi ni}$ obey the exchange identities \rightarrow hei

In the computational basis

$$D_{\chi ni} = \sum_{\xi_n \in X_{\chi n}} |d_{\chi ni} \xi_n \rangle_{kk} \langle \xi_n|,$$
$$S_{\chi ni} = \sum_{\xi_n \in X_{\chi n}} |s_{\chi ni} \xi_n \rangle_{kk} \langle \xi_n|.$$

• χ should be selected judiciously in such a way to yield a simple digitized image of the simplices and the face and degeneracy maps of $X^{(K)}$.

ヨト ★ ヨト …

イロトス値 トス ヨトメ ヨトー

漫 のへの

Digital encoding a simplicial set

- There is no general prescription for that and χ must be chosen on a case by case basis.

イロトス値 トイヨト イヨト

夏 のへで

Digital encoding a simplicial set

- There is no general prescription for that and χ must be chosen on a case by case basis.
- By contrast, in the simplicial complex framework (S. Lloyd et al. (2014)) there is a canonical encoding of the simplices of the relevant simplicial complex in terms of which the boundary maps have a simple form.

オロトス値 トスヨトメヨト 一頭 ののの

Counting and parametrizing simplices

- Counting simplices is essential for the management of the resources of a simplicial quantum computer.
- For parafinite simplicial set X, let ${}^{s}X_{n}$, ${}^{c}X_{n} = X_{n} \setminus {}^{s}X_{n} \subseteq X_{n}$ be the subsets of degenerate and non degenerate *n*-simplices, respectively.
- Theorem (Eilenberg–Zilber (1950)): for each $n \in \mathbb{N}$, each simplex $\sigma_n \in X_n$ has a unique representation $\sigma_n = s_{n-1j_{n-m-1}} \cdots s_{mj_0} \tau_m$, where $m \leq n$, $\tau_m \in {}^cX_n$ and $0 \leq j_0 < \ldots < j_{n-m-1} \leq n-1$.
- By the theorem, the number $|X_n|$ of n-simplices can be expressed in terms of the numbers $|{}^cX_m|$ of non degenerate m-simplices with $m \le n$ as

$$|X_n| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c X_m|.$$

An indicator of the incidence of degenerate n-simplices is the ratio

$$\varrho_{Xn} = |X_n| / |^c X_n|.$$

- Counting simplices is essential for the management of the resources of a simplicial quantum computer.
- For parafinite simplicial set X, let ${}^{s}X_{n}$, ${}^{c}X_{n} = X_{n} \setminus {}^{s}X_{n} \subseteq X_{n}$ be the subsets of degenerate and non degenerate *n*-simplices, respectively.
- Theorem (Eilenberg–Zilber (1950)): for each $n \in \mathbb{N}$, each simplex $\sigma_n \in X_n$ has a unique representation $\sigma_n = s_{n-1j_{n-m-1}} \cdots s_{mj_0} \tau_m$, where $m \leq n$, $\tau_m \in {}^cX_n$ and $0 \leq j_0 < \ldots < j_{n-m-1} \leq n-1$.
- By the theorem, the number $|X_n|$ of n-simplices can be expressed in terms of the numbers $|{}^cX_m|$ of non degenerate m-simplices with $m \le n$ as

$$|X_n| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c X_m|.$$

An indicator of the incidence of degenerate n-simplices is the ratio

$$\varrho_{Xn} = |X_n|/|^c X_n|.$$

・ロト ・回 ト ・ ヨト ・ ヨー うんの

- Counting simplices is essential for the management of the resources of a simplicial quantum computer.
- For parafinite simplicial set X, let ${}^{s}X_{n}$, ${}^{c}X_{n} = X_{n} \setminus {}^{s}X_{n} \subseteq X_{n}$ be the subsets of degenerate and non degenerate *n*-simplices, respectively.
- Theorem (Eilenberg–Zilber (1950)): for each $n \in \mathbb{N}$, each simplex $\sigma_n \in X_n$ has a unique representation $\sigma_n = s_{n-1j_{n-m-1}} \cdots s_{mj_0} \tau_m$, where $m \leq n$, $\tau_m \in {}^cX_n$ and $0 \leq j_0 < \ldots < j_{n-m-1} \leq n-1$.
- By the theorem, the number $|X_n|$ of n-simplices can be expressed in terms of the numbers $|{}^cX_m|$ of non degenerate m-simplices with $m \le n$ as

$$|X_n| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c X_m|.$$

An indicator of the incidence of degenerate n-simplices is the ratio

$$\varrho_{Xn} = |X_n|/|^c X_n|.$$

・ロト ・回 ト ・ ヨト ・ ヨー うんの

- Counting simplices is essential for the management of the resources of a simplicial quantum computer.
- For parafinite simplicial set X, let ${}^{s}X_{n}$, ${}^{c}X_{n} = X_{n} \setminus {}^{s}X_{n} \subseteq X_{n}$ be the subsets of degenerate and non degenerate *n*-simplices, respectively.
- Theorem (Eilenberg–Zilber (1950)): for each $n \in \mathbb{N}$, each simplex $\sigma_n \in X_n$ has a unique representation $\sigma_n = s_{n-1j_{n-m-1}} \cdots s_{mj_0} \tau_m$, where $m \leq n$, $\tau_m \in {}^cX_n$ and $0 \leq j_0 < \ldots < j_{n-m-1} \leq n-1$.
- By the theorem, the number $|X_n|$ of *n*-simplices can be expressed in terms of the numbers $|{}^cX_m|$ of non degenerate *m*-simplices with $m \le n$ as

$$|X_n| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c X_m|.$$

An indicator of the incidence of degenerate n-simplices is the ratio

$$\varrho_{Xn} = |X_n| / |^c X_n|.$$

・ロト ・回 ト ・ ヨト ・ ヨー うんの

- Counting simplices is essential for the management of the resources of a simplicial quantum computer.
- For parafinite simplicial set X, let ${}^{s}X_{n}$, ${}^{c}X_{n} = X_{n} \setminus {}^{s}X_{n} \subseteq X_{n}$ be the subsets of degenerate and non degenerate *n*-simplices, respectively.
- Theorem (Eilenberg–Zilber (1950)): for each $n \in \mathbb{N}$, each simplex $\sigma_n \in X_n$ has a unique representation $\sigma_n = s_{n-1j_{n-m-1}} \cdots s_{mj_0} \tau_m$, where $m \leq n$, $\tau_m \in {}^cX_n$ and $0 \leq j_0 < \ldots < j_{n-m-1} \leq n-1$.
- By the theorem, the number $|X_n|$ of *n*-simplices can be expressed in terms of the numbers $|{}^cX_m|$ of non degenerate *m*-simplices with $m \le n$ as

$$|X_n| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c X_m|.$$

An indicator of the incidence of degenerate n-simplices is the ratio

$$\varrho_{Xn} = |X_n|/|^c X_n|.$$

・ロト ・回 ト ・ ヨト ・ ヨー うんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			00000000000000000	

■ The total number of simplices of an *K*-truncation of *X* is

$$|X^{(K)}| = \sum_{0 \le n \le K} |X_n| = \sum_{0 \le m \le K} {\binom{K+1}{m+1}} |^c X_m|.$$

The content of the non degenerate n-simplex sets ^cX_m depends on the underlying simplicial set X.

Example: the simplicial set KP_V of a finite ordered discrete simplicial complex P_V. For every n, K_nP_V is the set of all n-element ordered submultiset of an ordered vertex set V = {v₀,...,v_d}.

The non degenerate n-simplices of K_n𝒫_V are the n-element ordered submultiset of V with no repeats. Their number is

$$|{}^{c}K_{n}\mathcal{P}_{V}| = {d+1 \choose n+1}$$
 for $n \leq d$,

$$= 0$$
 for $n > d$

医トイ 医トー

(the same as the number of n-simplices of the complex \mathcal{P}_V)

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			00000000000000000	

The total number of simplices of an K-truncation of X is

$$|X^{(K)}| = \sum_{0 \le n \le K} |X_n| = \sum_{0 \le m \le K} {\binom{K+1}{m+1}} |^c X_m|.$$

The content of the non degenerate n-simplex sets ^cX_m depends on the underlying simplicial set X.

■ Example: the simplicial set K𝒫_V of a finite ordered discrete simplicial complex 𝒫_V. For every n, K_n𝒫_V is the set of all n-element ordered submultiset of an ordered vertex set V = {v₀,...,v_d}.

The non degenerate n-simplices of K_n𝒫_V are the n-element ordered submultiset of V with no repeats. Their number is

$$|{}^{c}K_{n}\mathscr{D}_{V}| = {d+1 \choose n+1}$$
 for $n \leq d$,

$$= 0$$
 for $n > d$

(the same as the number of n-simplices of the complex \mathcal{P}_V)

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			00000000000000000	

The total number of simplices of an K-truncation of X is

$$|X^{(K)}| = \sum_{0 \le n \le K} |X_n| = \sum_{0 \le m \le K} {\binom{K+1}{m+1}} |^c X_m|.$$

The content of the non degenerate n-simplex sets ^cX_m depends on the underlying simplicial set X.

Example: the simplicial set KPV of a finite ordered discrete simplicial complex PV. For every n, KnPV is the set of all n-element ordered submultiset of an ordered vertex set V = {v0,...,vd}.

The non degenerate n-simplices of K_n𝒫_V are the n-element ordered submultiset of V with no repeats. Their number is

$$|{}^{c}K_{n}\mathcal{P}_{V}| = {d+1 \choose n+1}$$
 for $n \leq d$,

$$= 0$$
 for $n > d$

(the same as the number of n-simplices of the complex \mathcal{P}_V)

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			00000000000000000	

The total number of simplices of an K-truncation of X is

$$|X^{(K)}| = \sum_{0 \le n \le K} |X_n| = \sum_{0 \le m \le K} {\binom{K+1}{m+1}} |^c X_m|.$$

The content of the non degenerate n-simplex sets ^cX_m depends on the underlying simplicial set X.

Example: the simplicial set KPV of a finite ordered discrete simplicial complex PV. For every n, KnPV is the set of all n-element ordered submultiset of an ordered vertex set V = {v0,...,vd}.

The non degenerate n-simplices of K_n 𝒫_V are the n-element ordered submultiset of V with no repeats. Their number is

$$|{}^{c}\mathcal{K}_{n}\mathcal{P}_{V}| = \binom{d+1}{n+1} \quad \text{for } n \leq d,$$
$$= 0 \quad \text{for } n > d$$

(the same as the number of n-simplices of the complex \mathscr{P}_V).

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

The number of non degenerate n-simplices such that $n \le K$ with $K \le d$ is found from here to be given by the expression

$$\sum_{0 \le n \le K} |{}^c K_n \mathcal{P}_V| = 2^{d+1} - 1 - \binom{d+1}{K+2} 2F_1(1, -d+K+1; K+3; -1).$$

The total number of non degenerate simplices is so $2^{d+1} - 1$.

• The number of n-simplices of $K \mathscr{P}_V$ for $n \leq d$

$$|\mathcal{K}_n\mathcal{P}_V| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c\mathcal{K}_m\mathcal{P}_V| = \binom{d+n+1}{n+1}.$$

lacksquare The total to non degenerate n-simplex ratio of \mathcal{KP}_V for $n\leq d$ is

$$\varrho_{\mathcal{K}\mathcal{P}_{V}n} = |\mathcal{K}_{n}\mathcal{P}_{V}|/|^{c}\mathcal{K}_{n}\mathcal{P}_{V}| = {\binom{d+n+1}{n+1}}/{\binom{d+1}{n+1}}.$$

and satisfies

$$\begin{split} \varrho_{\mathcal{K}\mathcal{P}_{V}n} &= 1 + O(n^{2}/d) \quad \text{for } 1 \ll n \ll d^{1/2}, \\ &= \frac{2^{2d+1}}{(\pi d)^{1/2}} [1 + O(d^{-1}, (n-d)\log_{2}d)] \quad \text{for } 1 \ll n \to d. \end{split}$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

The number of non degenerate n-simplices such that $n \le K$ with $K \le d$ is found from here to be given by the expression

$$\sum_{0 \leq n \leq K} |{}^c K_n \mathcal{P}_V| = 2^{d+1} - 1 - {d+1 \choose K+2} 2F_1(1, -d+K+1; K+3; -1).$$

The total number of non degenerate simplices is so $2^{d+1} - 1$.

 \blacksquare The number of n-simplices of \mathcal{KP}_V for $n\leq d$

$$|\mathcal{K}_n \mathcal{P}_V| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c \mathcal{K}_m \mathcal{P}_V| = \binom{d+n+1}{n+1}.$$

 \blacksquare The total to non degenerate $n ext{-simplex}$ ratio of \mathcal{KP}_V for $n\leq d$ is

$$\varrho_{\mathcal{K}\mathcal{P}_V n} = |\mathcal{K}_n \mathcal{P}_V| / {|}^c \mathcal{K}_n \mathcal{P}_V| = {\binom{d+n+1}{n+1}} / {\binom{d+1}{n+1}}.$$

and satisfies

$$\begin{split} \varrho_{\mathcal{K}\mathcal{P}_V n} &= 1 + O(n^2/d) \quad \text{for } 1 \ll n \ll d^{1/2}, \\ &= \frac{2^{2d+1}}{(\pi d)^{1/2}} [1 + O(d^{-1}, (n-d)\log_2 d)] \quad \text{for } 1 \ll n \to d. \end{split}$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

The number of non degenerate n-simplices such that $n \le K$ with $K \le d$ is found from here to be given by the expression

$$\sum_{0 \leq n \leq K} |{}^c K_n \mathcal{P}_V| = 2^{d+1} - 1 - {d+1 \choose K+2} 2F_1(1, -d+K+1; K+3; -1).$$

The total number of non degenerate simplices is so $2^{d+1} - 1$.

 \blacksquare The number of n-simplices of \mathcal{KP}_V for $n\leq d$

$$|\mathcal{K}_n \mathcal{P}_V| = \sum_{0 \le m \le n} \binom{n}{m} |{}^c \mathcal{K}_m \mathcal{P}_V| = \binom{d+n+1}{n+1}.$$

The total to non degenerate *n*-simplex ratio of \mathcal{KP}_V for $n \leq d$ is

$$\varrho_{\mathcal{K}\mathcal{P}_V n} = |\mathcal{K}_n \mathcal{P}_V|/|^c \mathcal{K}_n \mathcal{P}_V| = {\binom{d+n+1}{n+1}} / {\binom{d+1}{n+1}}.$$

and satisfies

$$\begin{split} \varrho_{\mathcal{K}\mathcal{P}_{V}n} &= 1 + O(n^{2}/d) \quad \text{for } 1 \ll n \ll d^{1/2}, \\ &= \frac{2^{2d+1}}{(\pi d)^{1/2}} [1 + O(d^{-1}, (n-d)\log_{2}d)] \quad \text{for } 1 \ll n \to d. \end{split}$$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000	

For $K \leq d$, the number of simplices of the K-truncation $\operatorname{tr}_K \mathcal{K} \mathcal{P}_V$ is

$$|\mathcal{K}^{(K)}\mathcal{P}_V| = \binom{d+K+2}{d+1} - 1$$

• The encoding of $\operatorname{tr}_K K \mathscr{P}_V$ needs $\varkappa_{K \mathscr{P}_V K} = \log_2 |K^{(K)} \mathscr{P}_V|$ bits, where

 $\varkappa_{K \mathcal{P}_V K}$

$$= \log_2 \left[\left(\frac{ed}{K}\right)^K \frac{d}{(2\pi)^{1/2} K^{3/2}} \right] + O(1/K, K^2/d) \quad \text{for } 1 \ll K \ll d^{1/2},$$
$$= 2d + 2 - \frac{1}{2} \log_2(\pi d) + O(d^{-1}, (K - d) \log_2 d) \quad \text{for } 1 \ll K \to d.$$

To encode all the simplex data in degree $n \leq d$ one needs a 2(d+1)-bit register for the simplicial set $K\mathcal{P}_V$ comparable with the d+1-bit register required for the underlying simplicial complex \mathcal{P}_V .

If \mathcal{S} is an ordered finite simplicial complex with vertex set $V = \operatorname{Vert}_{\mathcal{S}}$, $|{}^{c}K_{n}\mathcal{P}_{V}|$, $|K_{n}\mathcal{P}_{V}|$ etc. constitute upper bounds for $|{}^{c}K_{n}\mathcal{S}|$, $|K_{n}\mathcal{S}|$ etc. respectively.

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000	

For $K \leq d$, the number of simplices of the K-truncation $\operatorname{tr}_K \mathcal{K} \mathcal{P}_V$ is

$$|\mathcal{K}^{(K)}\mathcal{P}_V| = \binom{d+K+2}{d+1} - 1$$

The encoding of $\operatorname{tr}_K \mathcal{K} \mathcal{P}_V$ needs $\varkappa_{\mathcal{K} \mathcal{P}_V K} = \log_2 |\mathcal{K}^{(K)} \mathcal{P}_V|$ bits, where

$$\begin{aligned} & \approx_{K \mathscr{P}_V K} \\ &= \log_2 \left[\left(\frac{\mathrm{e}d}{K} \right)^K \frac{d}{(2\pi)^{1/2} K^{3/2}} \right] + O(1/K, K^2/d) \quad \text{for } 1 \ll K \ll d^{1/2}, \\ &= 2d + 2 - \frac{1}{2} \log_2(\pi d) + O(d^{-1}, (K - d) \log_2 d) \quad \text{for } 1 \ll K \to d. \end{aligned}$$

To encode all the simplex data in degree $n \leq d$ one needs a 2(d+1)-bit register for the simplicial set \mathcal{KP}_V comparable with the d+1-bit register required for the underlying simplicial complex \mathcal{P}_V .

If S is an ordered finite simplicial complex with vertex set $V = \text{Vert}_S$, $|{}^{c}K_n \mathcal{P}_V|$, $|K_n \mathcal{P}_V|$ etc. constitute upper bounds for $|{}^{c}K_n S|$, $|K_n S|$ etc. respectively.

|小園 ト 小臣 ト 小臣 ト 三臣 一

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000	

For $K \leq d$, the number of simplices of the K-truncation $\operatorname{tr}_K \mathcal{K} \mathcal{P}_V$ is

$$|\mathcal{K}^{(K)}\mathcal{P}_V| = \binom{d+K+2}{d+1} - 1$$

The encoding of $\operatorname{tr}_K \mathcal{K} \mathcal{P}_V$ needs $\varkappa_{\mathcal{K} \mathcal{P}_V K} = \log_2 |\mathcal{K}^{(K)} \mathcal{P}_V|$ bits, where

$$\begin{split} & = \log_2 \left[\left(\frac{\mathrm{e}d}{K}\right)^K \frac{d}{(2\pi)^{1/2} K^{3/2}} \right] + O(1/K, K^2/d) \quad \text{for } 1 \ll K \ll d^{1/2}, \\ & = 2d + 2 - \frac{1}{2} \log_2(\pi d) + O(d^{-1}, (K - d) \log_2 d) \quad \text{for } 1 \ll K \to d. \end{split}$$

To encode all the simplex data in degree $n \leq d$ one needs a 2(d+1)-bit register for the simplicial set \mathcal{KP}_V comparable with the d+1-bit register required for the underlying simplicial complex \mathcal{P}_V .

If S is an ordered finite simplicial complex with vertex set $V = \text{Vert}_S$, $|{}^cK_n\mathcal{P}_V|$, $|K_n\mathcal{P}_V|$ etc. constitute upper bounds for $|{}^cK_nS|$, $|K_nS|$ etc., respectively.

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

- The simplices of a truncation $\operatorname{tr}_K \mathcal{KP}_V$ of \mathcal{KP}_V can be digitally encoded in a (d+1)r-bit register with r is an integer such that $r \ge \log_2(K+2)$.
 - A (d+1)r-bit string can be represented as (x_0, \ldots, x_d) , where the x_a are r-bit strings, which one views as integers in the range 0 to $2^r 1$.
 - For $0 \le a \le d$, let $\varphi_a : \bigsqcup_{0 \le n} K_n \mathscr{P}_V \to \mathbb{N}$ be the *a*-th vertex counting map: if $\sigma_n \in K_n \mathscr{P}_V$, then $\varphi_a(\sigma_n)$ is the number of occurrences of the vertex v_a in σ_n .
 - An encoding χ of $\operatorname{tr}_K K \mathscr{P}_V$ is a bijection $\chi: K^{(K)} \mathscr{P}_V \to K_{\chi}^{(K)} \mathscr{P}_V$, where

$$K_{\chi}^{(K)}\mathscr{P}_{V} = \Big\{ (x_0, \dots, x_d) \Big| 0 \le x_a \le K+1, 0 < \sum_{0 \le a \le d} x_a \le K+1 \Big\}.$$

and for $\sigma_n \in K_n \mathcal{P}_V$ with $n \leq K$,

$$\chi(\sigma_n) = (\varphi_0(\sigma_n), \dots, \varphi_d(\sigma_n)).$$

Notice that $K_{\chi n} \mathcal{P}_V = \{(x_0, \dots, x_d) | \sum_{0 \le a \le d} x_a = n+1 \}.$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

- The simplices of a truncation $\operatorname{tr}_K \mathcal{KP}_V$ of \mathcal{KP}_V can be digitally encoded in a (d+1)r-bit register with r is an integer such that $r \ge \log_2(K+2)$.
 - A (d+1)r-bit string can be represented as (x_0, \ldots, x_d) , where the x_a are r-bit strings, which one views as integers in the range 0 to $2^r 1$.
 - For $0 \le a \le d$, let $\varphi_a : \bigsqcup_{0 \le n} K_n \mathscr{P}_V \to \mathbb{N}$ be the *a*-th vertex counting map: if $\sigma_n \in K_n \mathscr{P}_V$, then $\varphi_a(\sigma_n)$ is the number of occurrences of the vertex v_a in σ_n .
 - An encoding χ of $tr_K K \mathscr{P}_V$ is a bijection $\chi: K^{(K)} \mathscr{P}_V \to K_{\chi}^{(K)} \mathscr{P}_V$, where

$$\mathcal{K}_{\chi}(K)\mathcal{P}_{V} = \Big\{ (x_0, \dots, x_d) \Big| 0 \le x_a \le K+1, 0 < \sum_{0 \le a \le d} x_a \le K+1 \Big\}.$$

and for $\sigma_n \in K_n \mathcal{P}_V$ with $n \leq K$,

$$\chi(\sigma_n) = (\varphi_0(\sigma_n), \dots, \varphi_d(\sigma_n)).$$

イロト 不問 ト 不良 ト 不良 ト 一度

Notice that $\mathcal{K}_{\chi n} \mathcal{P}_V = \{(x_0, \dots, x_d) | \sum_{0 \le a \le d} x_a = n+1 \}.$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
			000000000000000000000000000000000000000	

- The simplices of a truncation $\operatorname{tr}_K \mathcal{KP}_V$ of \mathcal{KP}_V can be digitally encoded in a (d+1)r-bit register with r is an integer such that $r \ge \log_2(K+2)$.
 - A (d+1)r-bit string can be represented as (x₀,...,x_d), where the x_a are r-bit strings, which one views as integers in the range 0 to 2^r 1.
 - For $0 \leq a \leq d$, let $\varphi_a : \bigsqcup_{0 \leq n} K_n \mathscr{P}_V \to \mathbb{N}$ be the *a*-th vertex counting map: if $\sigma_n \in K_n \mathscr{P}_V$, then $\varphi_a(\sigma_n)$ is the number of occurrences of the vertex v_a in σ_n .
 - An encoding χ of $\operatorname{tr}_K K \mathscr{P}_V$ is a bijection $\chi : K^{(K)} \mathscr{P}_V \to K_{\chi}^{(K)} \mathscr{P}_V$, where

$$K_{\chi}^{(K)}\mathcal{P}_{V} = \Big\{ (x_0, \dots, x_d) \Big| 0 \le x_a \le K+1, 0 < \sum_{0 \le a \le d} x_a \le K+1 \Big\}.$$

and for $\sigma_n \in K_n \mathscr{P}_V$ with $n \leq K$,

$$\chi(\sigma_n) = (\varphi_0(\sigma_n), \dots, \varphi_d(\sigma_n)).$$

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨー ぺんぐ

Notice that $K_{\chi n} \mathcal{P}_V = \{(x_0, \dots, x_d) | \sum_{0 \le a \le d} x_a = n+1 \}.$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
			000000000000000000	

- The simplices of a truncation $\operatorname{tr}_K \mathcal{KP}_V$ of \mathcal{KP}_V can be digitally encoded in a (d+1)r-bit register with r is an integer such that $r \ge \log_2(K+2)$.
 - A (d+1)r-bit string can be represented as (x₀,...,x_d), where the x_a are r-bit strings, which one views as integers in the range 0 to 2^r 1.
 - For $0 \le a \le d$, let $\varphi_a : \bigsqcup_{0 \le n} K_n \mathscr{P}_V \to \mathbb{N}$ be the *a*-th vertex counting map: if $\sigma_n \in K_n \mathscr{P}_V$, then $\varphi_a(\sigma_n)$ is the number of occurrences of the vertex v_a in σ_n .
 - An encoding χ of $\operatorname{tr}_K K \mathscr{P}_V$ is a bijection $\chi: K^{(K)} \mathscr{P}_V \to K_{\chi}^{(K)} \mathscr{P}_V$, where

$$\mathcal{K}_{\chi}{}^{(K)}\mathcal{P}_{V} = \Big\{ (x_0, \dots, x_d) \Big| 0 \le x_a \le K+1, 0 < \sum_{0 \le a \le d} x_a \le K+1 \Big\}.$$

and for $\sigma_n \in K_n \mathscr{P}_V$ with $n \leq K$,

$$\chi(\sigma_n) = (\varphi_0(\sigma_n), \dots, \varphi_d(\sigma_n)).$$

Notice that $\mathcal{K}_{\chi n}\mathcal{P}_V = \{(x_0, \dots, x_d) | \sum_{0 \le a \le d} x_a = n+1 \}.$

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000	

- \blacksquare This generalizes the bit parametrization of the simplicial complex $\mathcal{P}_V.$
- The face and degeneracy maps $d_{\chi ni}$, $s_{\chi ni}$ of the encoding read as

$$d_{\chi ni}(x_0,\ldots,x_d) = (x_0 - \vartheta_{0i}(x_0,\ldots,x_d),\ldots,x_d - \vartheta_{di}(x_0,\ldots,x_d)),$$

$$s_{\chi ni}(x_0,\ldots,x_d) = (x_0 + \vartheta_{0i}(x_0,\ldots,x_d),\ldots,x_d + \vartheta_{di}(x_0,\ldots,x_d)).$$

for
$$(x_0,\ldots,x_d)\in {\sf K}_{\chi n}{\mathscr P}_V$$
 , where for $(x_0,\ldots,x_d)\in {\mathbb N}^{d+1}$,

$$\vartheta_{ai}(x_0,\ldots,x_d) = 1 \quad \text{if} \quad \sum_{0 \leq b < a} x_b \leq i < \sum_{0 \leq b \leq a} x_b,$$

イロトス値 トス ヨトス ヨトー

漫 のへの

0 else.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000	

- \blacksquare This generalizes the bit parametrization of the simplicial complex $\mathcal{P}_V.$
- \blacksquare The face and degeneracy maps $d_{\chi ni}$, $s_{\chi ni}$ of the encoding read as

$$\begin{split} &d_{\chi ni}(x_0,\ldots,x_d) = (x_0 - \vartheta_{0i}(x_0,\ldots,x_d),\ldots,x_d - \vartheta_{di}(x_0,\ldots,x_d)), \\ &s_{\chi ni}(x_0,\ldots,x_d) = (x_0 + \vartheta_{0i}(x_0,\ldots,x_d),\ldots,x_d + \vartheta_{di}(x_0,\ldots,x_d)). \\ &\text{for } (x_0,\ldots,x_d) \in \mathcal{K}_{\chi n} \mathscr{P}_V, \text{ where for } (x_0,\ldots,x_d) \in \mathbb{N}^{d+1}, \end{split}$$

$$\vartheta_{ai}(x_0,\ldots,x_d) = 1 \quad \text{if} \quad \sum_{0 \leq b < a} x_b \leq i < \sum_{0 \leq b \leq a} x_b,$$

漫 のへの

イロトメ 同ト イヨトメ ヨトー

0 else.
Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			00000000000000000	

Disposing of degenerate simplices in a quantum simplicial algorithm reduces to projecting the quantum register $\mathscr{H}^{(K)}$ onto its subspace ${}^{c}\mathscr{H}^{(K)}$ spanned by the non degenerate n-simplex spaces ${}^{c}\mathscr{H}_{n}$ with $0 \le n \le K$,

$${}^{c}\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} {}^{c}\mathscr{H}_{n}.$$

- Orthogonal projectors cannot be part of any quantum circuits, as they are not unitary.
- The projection can be achieved nevertheless compatibly with unitarity using Grover's quantum search algorithm (L. K. Grover (1996)) in the variant based on amplitude amplification (G. Brassard and P. Hoyer (1997)).
- The quantum computer is initialized in a state that is a uniform superposition of all n-simp lex states |σ_n⟩.

$$|\xi_{0n}\rangle = \sum_{\sigma_n \in X_n} |\sigma_n\rangle |X_n|^{-1/2}$$

|御を 御田を |田を

Introduction Sim	nplicial sets (Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			00000000000000000	

Disposing of degenerate simplices in a quantum simplicial algorithm reduces to projecting the quantum register $\mathscr{H}^{(K)}$ onto its subspace ${}^{c}\mathscr{H}^{(K)}$ spanned by the non degenerate n-simplex spaces ${}^{c}\mathscr{H}_{n}$ with $0 \le n \le K$,

$${}^{c}\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} {}^{c}\mathscr{H}_{n}.$$

- Orthogonal projectors cannot be part of any quantum circuits, as they are not unitary.
- The projection can be achieved nevertheless compatibly with unitarity using Grover's quantum search algorithm (L. K. Grover (1996)) in the variant based on amplitude amplification (G. Brassard and P. Hoyer (1997)).
- The quantum computer is initialized in a state that is a uniform superposition of all n-simp lex states $|\sigma_n\rangle$.

$$|\xi_{0n}\rangle = \sum_{\sigma_n \in X_n} |\sigma_n\rangle |X_n|^{-1/2}$$

医浓度医尿度医炎

0000000 000000000 00000000000000000000	Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
				00000000000000000	

Disposing of degenerate simplices in a quantum simplicial algorithm reduces to projecting the quantum register $\mathscr{H}^{(K)}$ onto its subspace ${}^{c}\mathscr{H}^{(K)}$ spanned by the non degenerate n-simplex spaces ${}^{c}\mathscr{H}_{n}$ with $0 \le n \le K$,

$${}^{c}\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} {}^{c}\mathscr{H}_{n}.$$

- Orthogonal projectors cannot be part of any quantum circuits, as they are not unitary.
- The projection can be achieved nevertheless compatibly with unitarity using Grover's quantum search algorithm (L. K. Grover (1996)) in the variant based on amplitude amplification (G. Brassard and P. Hoyer (1997)).
- The quantum computer is initialized in a state that is a uniform superposition of all n-simp lex states |σ_n⟩.

$$|\xi_{0n}\rangle = \sum_{\sigma_n \in X_n} |\sigma_n\rangle |X_n|^{-1/2}$$

トイヨトイヨト 屈

0000000 000000000 00000000000000000000	Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
				00000000000000000	

Disposing of degenerate simplices in a quantum simplicial algorithm reduces to projecting the quantum register $\mathscr{H}^{(K)}$ onto its subspace ${}^{c}\mathscr{H}^{(K)}$ spanned by the non degenerate n-simplex spaces ${}^{c}\mathscr{H}_{n}$ with $0 \le n \le K$,

$${}^{c}\mathscr{H}^{(K)} = \bigoplus_{0 \le n \le K} {}^{c}\mathscr{H}_{n}.$$

- Orthogonal projectors cannot be part of any quantum circuits, as they are not unitary.
- The projection can be achieved nevertheless compatibly with unitarity using Grover's quantum search algorithm (L. K. Grover (1996)) in the variant based on amplitude amplification (G. Brassard and P. Hoyer (1997)).
- The quantum computer is initialized in a state that is a uniform superposition of all *n*-simp lex states $|\sigma_n\rangle$,

$$|\xi_{0n}\rangle = \sum_{\sigma_n \in X_n} |\sigma_n\rangle |X_n|^{-1/2}$$

(注意を予定す) 語 のんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

and through the algorithm evolves unitarily toward a state which constitutes a uniform superposition of all non degenerate n-simplex states $|\sigma_n\rangle$,

$$|{}^{c}\xi_{0n}\rangle = \sum_{\sigma_n \in {}^{c}X_n} |\sigma_n\rangle|{}^{c}X_n|^{-1/2}.$$

The algorithm comprises two stages:

• i) the preparation of the state $|\xi_{0n}
angle$;

• ii) the production of the state $|^{c}\xi_{0n}
angle$ from $|\xi_{0n}
angle$.

In stage *i*, the state $|\xi_{0n}\rangle$ is yielded by the action of an appropriate unitary operator W_n on some fiducial reference state $|o_n\rangle$, so that

$$|\xi_{0n}\rangle = W_n |o_n\rangle. \tag{4.2}$$

In stage ii, the state $|{}^c\xi_{0n}\rangle$ is generated by p_n iteration of the unitary Grover operator G_n

$$|^{c}\xi_{0n}\rangle = G_{n}^{p_{n}}|\xi_{0n}\rangle.$$
 (4.3)

イロトス値 トス ヨトス ヨトー

康

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

and through the algorithm evolves unitarily toward a state which constitutes a uniform superposition of all non degenerate n-simplex states $|\sigma_n\rangle$,

$$|{}^{c}\xi_{0n}\rangle = \sum_{\sigma_{n}\in{}^{c}X_{n}} |\sigma_{n}\rangle|{}^{c}X_{n}|^{-1/2}.$$

The algorithm comprises two stages:

lacksquare i) the preparation of the state $|\xi_{0n}
angle;$

lacksquare ii) the production of the state $|^{c}\xi_{0n}
angle$ from $|\xi_{0n}
angle$.

In stage *i*, the state $|\xi_{0n}\rangle$ is yielded by the action of an appropriate unitary operator W_n on some fiducial reference state $|o_n\rangle$, so that

$$|\xi_{0n}\rangle = W_n |o_n\rangle. \tag{4.2}$$

In stage ii, the state $|{}^c\xi_{0n}\rangle$ is generated by p_n iteration of the unitary Grover operator G_n

$$|^{c}\xi_{0n}\rangle = G_{n}^{p_{n}}|\xi_{0n}\rangle.$$
 (4.3)

イロト 不得 トイヨト イヨト 三張

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

and through the algorithm evolves unitarily toward a state which constitutes a uniform superposition of all non degenerate n-simplex states $|\sigma_n\rangle$,

$$|{}^{c}\xi_{0n}\rangle = \sum_{\sigma_{n}\in{}^{c}X_{n}} |\sigma_{n}\rangle|{}^{c}X_{n}|^{-1/2}.$$

The algorithm comprises two stages:

• *i*) the preparation of the state $|\xi_{0n}\rangle$;

lacksquar ii) the production of the state $|^c \xi_{0n}
angle$ from $|\xi_{0n}
angle$.

In stage *i*, the state $|\xi_{0n}\rangle$ is yielded by the action of an appropriate unitary operator W_n on some fiducial reference state $|o_n\rangle$, so that

$$|\xi_{0n}\rangle = W_n |o_n\rangle. \tag{4.2}$$

In stage ii, the state $|{}^c\xi_{0n}\rangle$ is generated by p_n iteration of the unitary Grover operator G_n

$$|^{c}\xi_{0n}\rangle = G_{n}^{p_{n}}|\xi_{0n}\rangle. \tag{4.3}$$

イロト 不得 トイヨト イヨト 三張

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

and through the algorithm evolves unitarily toward a state which constitutes a uniform superposition of all non degenerate n-simplex states $|\sigma_n\rangle$,

$$|{}^{c}\xi_{0n}
angle = \sum_{\sigma_{n}\in{}^{c}X_{n}} |\sigma_{n}
angle|{}^{c}X_{n}|^{-1/2}.$$

The algorithm comprises two stages:

■ *i*) the preparation of the state $|\xi_{0n}\rangle$;

■ *ii*) the production of the state $|^{c}\xi_{0n}\rangle$ from $|\xi_{0n}\rangle$.

In stage *i*, the state $|\xi_{0n}\rangle$ is yielded by the action of an appropriate unitary operator W_n on some fiducial reference state $|o_n\rangle$, so that

$$|\xi_{0n}\rangle = W_n |o_n\rangle. \tag{4.2}$$

In stage ii, the state $|^c\xi_{0n}\rangle$ is generated by p_n iteration of the unitary Grover operator G_n

$$|^{c}\xi_{0n}\rangle = G_{n}^{p_{n}}|\xi_{0n}\rangle. \tag{4.3}$$

イロト 不得 トイヨト イヨト 三張

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

and through the algorithm evolves unitarily toward a state which constitutes a uniform superposition of all non degenerate n-simplex states $|\sigma_n\rangle$,

$$|{}^{c}\xi_{0n}\rangle = \sum_{\sigma_{n}\in{}^{c}X_{n}} |\sigma_{n}\rangle|{}^{c}X_{n}|^{-1/2}.$$

The algorithm comprises two stages:

■ *i*) the preparation of the state $|\xi_{0n}\rangle$;

■ *ii*) the production of the state $|^{c}\xi_{0n}\rangle$ from $|\xi_{0n}\rangle$.

In stage *i*, the state $|\xi_{0n}\rangle$ is yielded by the action of an appropriate unitary operator W_n on some fiducial reference state $|o_n\rangle$, so that

$$|\xi_{0n}\rangle = W_n |o_n\rangle. \tag{4.2}$$

In stage ii, the state $|c\xi_{0n}\rangle$ is generated by p_n iteration of the unitary Grover operator G_n

$$|^{c}\xi_{0n}\rangle = G_{n}^{p_{n}}|\xi_{0n}\rangle. \tag{4.3}$$

イロトス値とく思わる思わった。

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000	

and through the algorithm evolves unitarily toward a state which constitutes a uniform superposition of all non degenerate n-simplex states $|\sigma_n\rangle$,

$$|{}^{c}\xi_{0n}\rangle = \sum_{\sigma_{n}\in{}^{c}X_{n}} |\sigma_{n}\rangle|{}^{c}X_{n}|^{-1/2}.$$

The algorithm comprises two stages:

■ *i*) the preparation of the state $|\xi_{0n}\rangle$;

■ *ii*) the production of the state $|^{c}\xi_{0n}\rangle$ from $|\xi_{0n}\rangle$.

In stage *i*, the state $|\xi_{0n}\rangle$ is yielded by the action of an appropriate unitary operator W_n on some fiducial reference state $|o_n\rangle$, so that

$$|\xi_{0n}\rangle = W_n |o_n\rangle. \tag{4.2}$$

In stage ii, the state $|^{c}\xi_{0n}\rangle$ is generated by p_{n} iteration of the unitary Grover operator G_{n}

$$|^{c}\xi_{0n}\rangle = G_{n}^{p_{n}}|\xi_{0n}\rangle.$$
 (4.3)

メロトメ劇 トメヨトメヨト 一度 ろんの

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
	00000000000		000000000000000000000000000000000000000	

- The Grover operator $G_n = -W_n D_{0n} W_n^+ D_n$, where $D_{0n} = 1_n 2|o_n\rangle\langle o_n|$ is the conditional sign flip operator of the reference state $|o_n\rangle$ and D_n is the (oracular) conditional sign flip operator of the non degenerate simplex states $|\sigma_n\rangle$.
- The Grover iteration number $p_n = \left[\frac{\pi}{4}\varrho_{Xn}^{1/2}\right]$. If the total to non degenerate n-simplex ratio ϱ_{Xn} \bullet m is unknown, it can be determined using a quantum counting algorithm (G. Brassard *et al.* (1998)), which computes the eigenvalues $e^{\pm i\theta_n}$ of G_n related to ϱ_{Xn} by $\sin(\theta_n/2) = \varrho_{Xn}^{-1/2}$.

- 4 週 ト 4 恵 ト 4 恵 ト - 恵 - めんゆ

The two steps contribute additively to the algorithm's complexity.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
			000000000000000000000000000000000000000	

- The Grover operator $G_n = -W_n D_{0n} W_n^+ D_n$, where $D_{0n} = 1_n 2|o_n\rangle\langle o_n|$ is the conditional sign flip operator of the reference state $|o_n\rangle$ and D_n is the (oracular) conditional sign flip operator of the non degenerate simplex states $|\sigma_n\rangle$.
- The Grover iteration number $p_n = \left[\frac{\pi}{4}\varrho_{Xn}^{1/2}\right]$. If the total to non degenerate n-simplex ratio ϱ_{Xn} is unknown, it can be determined using a quantum counting algorithm (G. Brassard *et al.* (1998)), which computes the eigenvalues $e^{\pm i\theta_n}$ of G_n related to ϱ_{Xn} by $\sin(\theta_n/2) = \varrho_{Xn}^{-1/2}$.

御下 4 唐下 4 唐下 三唐 - わえで

The two steps contribute additively to the algorithm's complexity.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
			000000000000000000000000000000000000000	

- The Grover operator $G_n = -W_n D_{0n} W_n^+ D_n$, where $D_{0n} = 1_n 2|o_n\rangle\langle o_n|$ is the conditional sign flip operator of the reference state $|o_n\rangle$ and D_n is the (oracular) conditional sign flip operator of the non degenerate simplex states $|\sigma_n\rangle$.
- The Grover iteration number $p_n = \left[\frac{\pi}{4}\varrho_{Xn}^{1/2}\right]$. If the total to non degenerate n-simplex ratio ϱ_{Xn} is unknown, it can be determined using a quantum counting algorithm (G. Brassard *et al.* (1998)), which computes the eigenvalues $e^{\pm i\theta_n}$ of G_n related to ϱ_{Xn} by $\sin(\theta_n/2) = \varrho_{Xn}^{-1/2}$.

御下 4 唐下 4 唐下 三唐 - のんゆ

The two steps contribute additively to the algorithm's complexity.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

Computing the simplicial cohomology $\mathrm{H}^n(X, \mathbb{C})$ for $0 \le n < K$ in the truncation $X^{(K)}$ is equivalent to determining $\ker^c H_{DD}^{(K)}$, where

$${}^{c}H_{DD}{}^{(K)} = \sum_{0 \le n \le K} ({}^{c}H_{DDn} - \delta_{Kn}{}^{c}Q_{DK+1}{}^{c}Q_{DK+1}{}^{+})$$

see \bigcirc resp. (The subtracted term for n = K is due to the the operators ${}^{c}Q_{DK+1}$, ${}^{c}Q_{DK+1}$ ⁺ being excluded by the truncation.)

- The determination of ker ^cH_{DD}^(K) proceeds by the quantum phase estimation methods (D. S. Abrams and S. Lloyd (1999)).
- This involves the unitary operators $\exp(i\tau^c H_{DD}^{(K)})$ for varying τ constructed via a Hamiltonian simulation algorithm (R. P. Feynman (1982)). The algorithm's complexity depends inversely on the sparsity of the Hamiltonian (S. Lloyd (1996); D. Aharonov and A. Ta-Shma (2003); D. W. Berry *et al.* (2014)). So, one uses $\exp(i\tau^c B^{(K)})$, with ${}^c B^{(K)}$ a Hermitian operator sparser than ${}^c H_{DD}^{(K)}$ such that $\ker^c B^{(K)} = \ker^c H_{DD}^{(K)}$.

オロトス団トス ヨトメヨト 一度 ろんぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

Computing the simplicial cohomology $\mathrm{H}^n(X, \mathbb{C})$ for $0 \le n < K$ in the truncation $X^{(K)}$ is equivalent to determining $\ker^c H_{DD}^{(K)}$, where

$${}^{c}H_{DD}{}^{(K)} = \sum_{0 \le n \le K} ({}^{c}H_{DDn} - \delta_{Kn}{}^{c}Q_{DK+1}{}^{c}Q_{DK+1}{}^{+})$$

see \bigcirc rsl. (The subtracted term for n = K is due to the the operators ${}^{c}Q_{DK+1}$, ${}^{c}Q_{DK+1}$ ⁺ being excluded by the truncation.)

- The determination of ker ^cH_{DD}^(K) proceeds by the quantum phase estimation methods (D. S. Abrams and S. Lloyd (1999)).
- This involves the unitary operators $\exp(i\tau^c H_{DD}^{(K)})$ for varying τ constructed via a Hamiltonian simulation algorithm (R. P. Feynman (1982)). The algorithm's complexity depends inversely on the sparsity of the Hamiltonian (S. Lloyd (1996); D. Aharonov and A. Ta-Shma (2003); D. W. Berry *et al.* (2014)). So, one uses $\exp(i\tau^c B^{(K)})$, with ${}^c B^{(K)}$ a Hermitian operator sparser than ${}^c H_{DD}^{(K)}$ such that ker ${}^c B^{(K)} = \ker^c H_{DD}^{(K)}$.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			000000000000000000000000000000000000000	

Computing the simplicial cohomology $\mathrm{H}^n(X, \mathbb{C})$ for $0 \le n < K$ in the truncation $X^{(K)}$ is equivalent to determining $\ker^c H_{DD}^{(K)}$, where

$${}^{c}H_{DD}{}^{(K)} = \sum_{0 \le n \le K} ({}^{c}H_{DDn} - \delta_{Kn}{}^{c}Q_{DK+1}{}^{c}Q_{DK+1}{}^{+})$$

see \bigcirc rsl. (The subtracted term for n = K is due to the the operators ${}^{c}Q_{DK+1}$, ${}^{c}Q_{DK+1}$ ⁺ being excluded by the truncation.)

- The determination of ker ^cH_{DD}^(K) proceeds by the quantum phase estimation methods (D. S. Abrams and S. Lloyd (1999)).
- This involves the unitary operators $\exp(i\tau^c H_{DD}^{(K)})$ for varying τ constructed via a Hamiltonian simulation algorithm (R. P. Feynman (1982)). The algorithm's complexity depends inversely on the sparsity of the Hamiltonian (S. Lloyd (1996); D. Aharonov and A. Ta-Shma (2003); D. W. Berry *et al.* (2014)). So, one uses $\exp(i\tau^c B^{(K)})$, with ${}^c B^{(K)}$ a Hermitian operator sparser than ${}^c H_{DD}^{(K)}$ such that ker ${}^c B^{(K)} = \ker^c H_{DD}^{(K)}$.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000	

• ${}^{c}B_{D}{}^{(K)}$ can be chosen to be the Dirac operator of ${}^{c}H_{DD}{}^{(K)}$, a distinguished Hermitian operator obeying ${}^{c}B_{D}{}^{(K)2} = {}^{c}H_{DD}{}^{(K)}$,

$${}^{c}B_{D}{}^{(K)} = \sum_{0 \le n \le K-1} \left({}^{c}Q_{Dn+1} + {}^{c}Q_{Dn+1} \right).$$

In the quantum phase estimation algorithm, one adjoins next to the 'vector' register ^cℋ^(K) a large b_t−bit 'clock' register C^{2⊗b_t}, so that the total Hilbert space is C^{2⊗b_t} ⊗ ^cℋ^(K). States are described as density operators.

The quantum computer is initialized in the mixed state

 ${}^{tc}\rho_{0n} = |0\rangle_{t\,t} \langle 0| \otimes {}^c\rho_{0n}.$

where $^c
ho_{0n}$ is the uniform mixture of all non degenerate n-simplex states,

$${}^{c}\rho_{0n} = |{}^{c}X_{n}|^{-1c} \mathbf{1}_{n} = \sum_{\sigma_{n} \in {}^{c}X_{n}} |\sigma_{n}\rangle|{}^{c}X_{n}|^{-1}\langle\sigma_{n}|.$$

(This corresponds to the initial state $|{}^{c}\xi_{0n}\rangle\langle{}^{c}\xi_{0n}|$ of the Grover algorithms for the projection onto the non degenerate simplex subspace ${}^{c}\mathscr{H}^{(K)}$.)

<ロト < 個 ト < 注 ト < 注 ト 、 注 ・ の へ ()</p>

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000	

• ${}^{c}B_{D}{}^{(K)}$ can be chosen to be the Dirac operator of ${}^{c}H_{DD}{}^{(K)}$, a distinguished Hermitian operator obeying ${}^{c}B_{D}{}^{(K)2} = {}^{c}H_{DD}{}^{(K)}$,

$${}^{c}B_{D}{}^{(K)} = \sum_{0 \le n \le K-1} \left({}^{c}Q_{Dn+1} + {}^{c}Q_{Dn+1} \right).$$

In the quantum phase estimation algorithm, one adjoins next to the 'vector' register ${}^{c}\mathscr{H}^{(K)}$ a large b_{t} -bit 'clock' register $\mathbb{C}^{2 \otimes b_{t}}$, so that the total Hilbert space is $\mathbb{C}^{2 \otimes b_{t}} \otimes {}^{c}\mathscr{H}^{(K)}$. States are described as density operators.

The quantum computer is initialized in the mixed state

 ${}^{tc}\rho_{0n} = |0\rangle_{t\,t} \langle 0| \otimes {}^{c}\rho_{0n}.$

where ${}^{c}
ho_{0n}$ is the uniform mixture of all non degenerate n-simplex states,

$${}^{c}\rho_{0n} = |{}^{c}X_{n}|^{-1c} \mathbf{1}_{n} = \sum_{\sigma_{n} \in {}^{c}X_{n}} |\sigma_{n}\rangle|{}^{c}X_{n}|^{-1}\langle\sigma_{n}|.$$

(This corresponds to the initial state $|{}^{c}\xi_{0n}\rangle\langle{}^{c}\xi_{0n}|$ of the Grover algorithms for the projection onto the non degenerate simplex subspace ${}^{c}\mathscr{H}^{(K)}$.)

・ロト ・ 週 ト ・ 恵 ト ・ 恵 ・ のへぐ

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusions
			000000000000000000000000000000000000000	

• ${}^{c}B_{D}{}^{(K)}$ can be chosen to be the Dirac operator of ${}^{c}H_{DD}{}^{(K)}$, a distinguished Hermitian operator obeying ${}^{c}B_{D}{}^{(K)2} = {}^{c}H_{DD}{}^{(K)}$,

$${}^{c}B_{D}{}^{(K)} = \sum_{0 \le n \le K-1} \left({}^{c}Q_{Dn+1} + {}^{c}Q_{Dn+1} \right).$$

In the quantum phase estimation algorithm, one adjoins next to the 'vector' register ${}^{c}\mathscr{H}^{(K)}$ a large b_{t} -bit 'clock' register $\mathbb{C}^{2 \otimes b_{t}}$, so that the total Hilbert space is $\mathbb{C}^{2 \otimes b_{t}} \otimes {}^{c}\mathscr{H}^{(K)}$. States are described as density operators.

The quantum computer is initialized in the mixed state

$${}^{tc}\rho_{0n} = |0\rangle_{t\,t} \langle 0| \otimes {}^{c}\rho_{0n}.$$

where ${}^{c}\rho_{0n}$ is the uniform mixture of all non degenerate *n*-simplex states,

$${}^c\rho_{0n} = |{}^cX_n|^{-1c} \mathbf{1}_n = \sum_{\sigma_n \in {}^cX_n} |\sigma_n\rangle|{}^cX_n|^{-1} \langle \sigma_n|.$$

(This corresponds to the initial state $|{}^{c}\xi_{0n}\rangle\langle{}^{c}\xi_{0n}|$ of the Grover algorithms for the projection onto the non degenerate simplex subspace ${}^{c}\mathscr{H}^{(K)}$.)

▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ のへ⊙

オロトス団トス ヨトメヨト 一度 ろんぐ

Computation of normalized homology

- The algorithm evolves unitarily the state ${}^{tc}\rho_{0n}$ in an entangled state of the clock and vector registers.
- A measurement of the clock register is carried out. The clock value 0 is found with probability dim ker ${}^{c}H_{DDKn}/|{}^{c}X_{n}|$.
- Upon iteration of the algorithm, the clock value 0 is eventually found. The computer is then in the mixed state

 ${}^{tc}\rho_{DDn} = \left|0\right\rangle_{t\,t} \left<0\right| \otimes {}^{c}\rho_{DDn},$

where ${}^c
ho_{DDn}$ is the uniform mixture of all non degenerate n-simplex states of $\ker{}^cH_{DDKn}$,

$${}^c \rho_{DDn} := \dim \ker {}^c H_{DDKn} {}^{-1c} P_{DDKn},$$

 ${}^{c}P_{DDKn}$ denoting the orthogonal projection operator of ${}^{c}\mathscr{H}_{n}$ onto $\ker{}^{c}H_{DDKn}$. The frequency with which 0 occurs is recorded.

オロトス値 トスヨトメヨト 一頭 ののの

Computation of normalized homology

- The algorithm evolves unitarily the state ${}^{tc}\rho_{0n}$ in an entangled state of the clock and vector registers.
- A measurement of the clock register is carried out. The clock value 0 is found with probability dim ker ${}^{c}H_{DDKn}/|{}^{c}X_{n}|$.
- Upon iteration of the algorithm, the clock value 0 is eventually found. The computer is then in the mixed state

 ${}^{tc}\rho_{DDn} = \left|0\right\rangle_{t\,t} \left<0\right| \otimes {}^{c}\rho_{DDn},$

where ${}^c
ho_{DDn}$ is the uniform mixture of all non degenerate n-simplex states of ker ${}^cH_{DDKn},$

$${}^c \rho_{DDn} := \dim \ker {}^c H_{DDKn} {}^{-1c} P_{DDKn},$$

 ${}^{c}P_{DDKn}$ denoting the orthogonal projection operator of ${}^{c}\mathscr{H}_{n}$ onto $\ker{}^{c}H_{DDKn}$. The frequency with which 0 occurs is recorded.

<ロト < 個 ト < 注 ト < 注 ト 、 注 ・ の へ ()</p>

Computation of normalized homology

- The algorithm evolves unitarily the state ${}^{tc}\rho_{0n}$ in an entangled state of the clock and vector registers.
- A measurement of the clock register is carried out. The clock value 0 is found with probability dim ker ${}^{c}H_{DDKn}/|{}^{c}X_{n}|$.
- Upon iteration of the algorithm, the clock value 0 is eventually found. The computer is then in the mixed state

$${}^{tc}\rho_{DDn} = |0\rangle_{t\,t} \langle 0| \otimes {}^{c}\rho_{DDn},$$

where ${}^c
ho_{DDn}$ is the uniform mixture of all non degenerate *n*-simplex states of ker $^{c}H_{DDKn}$

$${}^c\rho_{DDn} := \dim \ker {}^c H_{DDKn} {}^{-1c} P_{DDKn},$$

 $^{c}P_{DDKn}$ denoting the orthogonal projection operator of $^{c}\mathcal{H}_{n}$ onto ker $^{c}H_{DDKn}$. The frequency with which 0 occurs is recorded.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			0000000000000000000	

- By the isomorphism ker ${}^{c}H_{DDn} \simeq H_{Dn}({}^{c}\mathscr{H})$, the final state of the quantum computer encodes the homology space $H_{Dn}({}^{c}\mathscr{H})$. Further, the frequency with which the clock value 0 occurs furnishes directly the Betti numbers $\beta_n(X, \mathbb{C}) = \dim \ker {}^{c}H_{DDKn}$.
- The value of b_t depends on number of bits and the precision desired for the estimation of the eigenvalues of ${}^{c}B_{D}{}^{(K)}$. The algorithm involves the use of b_t -bit Welsh-Hadamard and quantum Fourier transforms with combined complexity $O(b_t{}^2)$ and one call of an oracular unitary operator U_{DKj} computing $\exp(i2^{j\,c}B_{D}{}^{(K)})$ for each j with $0 \le j \le b_t 1$. The complexity of the U_{DKj} depend on the Hamiltonian simulation algorithm employed.

御をふぼをすぼとい

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	
			00000000000000000000	

- By the isomorphism ker ${}^{c}H_{DDn} \simeq H_{Dn}({}^{c}\mathscr{H})$, the final state of the quantum computer encodes the homology space $H_{Dn}({}^{c}\mathscr{H})$. Further, the frequency with which the clock value 0 occurs furnishes directly the Betti numbers $\beta_n(X, \mathbb{C}) = \dim \ker {}^{c}H_{DDKn}$.
- The value of b_t depends on number of bits and the precision desired for the estimation of the eigenvalues of ${}^cB_D{}^{(K)}$. The algorithm involves the use of b_t -bit Welsh-Hadamard and quantum Fourier transforms with combined complexity $O(b_t{}^2)$ and one call of an oracular unitary operator U_{DKj} computing $\exp(i2^{j\,c}B_D{}^{(K)})$ for each j with $0 \le j \le b_t 1$. The complexity of the U_{DKj} depend on the Hamiltonian simulation algorithm employed.

▶ 4 唐 ▶ 4 唐 ▶ - 唐 - ���

Introduction	Simplicial sets

オロトス値 トスヨトメヨト 一頭 ののの

Conclusions

- Our conclusions are just a wish-to-do item list.

Introduction	Simplicial sets	Quantum simplicial framework	Quantum simplicial implementation	Conclusion
				•0

- Our conclusions are just a wish-to-do item list.
- Understand better the defect structure of the quantum simplicial set-up.
- Refine the notion of simplicial quantum circuits. Find simplicial quantum circuits implementing truly quantum simplicial algorithms.
- Improve the complexity analysis of simplicial quantum algorithms.
- Study the feasibility of quantum algorithms for homotopy computations.
- Concrete applications (maybe ?).

イロトス値 トス ヨトメ ヨトー

Introduction 0000000	Simplicial sets 00000000000	Quantum simplicial framework	Quantum simplicial implementation	Conclusions ●O

- Our conclusions are just a wish-to-do item list.
- Understand better the defect structure of the quantum simplicial set-up.
- Refine the notion of simplicial quantum circuits. Find simplicial quantum circuits implementing truly quantum simplicial algorithms.
- Improve the complexity analysis of simplicial quantum algorithms.
- Study the feasibility of quantum algorithms for homotopy computations.
- Concrete applications (maybe ?).

|御を 御屋を |屋を

Introduction 0000000	Simplicial sets 000000000000	Quantum simplicial framework 000000000000000000000000000000000000	Quantum simplicial implementation	Conclusions ●O

- Our conclusions are just a wish-to-do item list.
- Understand better the defect structure of the quantum simplicial set-up.
- Refine the notion of simplicial quantum circuits. Find simplicial quantum circuits implementing truly quantum simplicial algorithms.
- Improve the complexity analysis of simplicial quantum algorithms.
- Study the feasibility of quantum algorithms for homotopy computations.
- Concrete applications (maybe ?).

Introduction 0000000	Simplicial sets 000000000000	Quantum simplicial framework 000000000000000000000000000000000000	Quantum simplicial implementation	Conclusions ●O

- Our conclusions are just a wish-to-do item list.
- Understand better the defect structure of the quantum simplicial set-up.
- Refine the notion of simplicial quantum circuits. Find simplicial quantum circuits implementing truly quantum simplicial algorithms.
- Improve the complexity analysis of simplicial quantum algorithms.
- Study the feasibility of quantum algorithms for homotopy computations.
- Concrete applications (maybe ?).

・ロト (過)ト (ほ)ト (ほ)トー

夏 のへの

Introduction 0000000	Simplicial sets 00000000000	Quantum simplicial framework	Quantum simplicial implementation	Conclusions ●O

- Our conclusions are just a wish-to-do item list.
- Understand better the defect structure of the quantum simplicial set-up.
- Refine the notion of simplicial quantum circuits. Find simplicial quantum circuits implementing truly quantum simplicial algorithms.
- Improve the complexity analysis of simplicial quantum algorithms.
- Study the feasibility of quantum algorithms for homotopy computations.
- Concrete applications (maybe ?).

夏 のへの

Introduction	Simplicial sets

Quantum simplicial framework

Quantum simplicial implementatio

Conclusions

Thank you for your attention!

オロトオ樹トオミトオミト 法 のべの