A new quantum computational set-up for algebraic

topology via simplicial sets

(based on arXiv:2309.11304)

Roberto Zucchini

Physics and Astronomy Department,

Alma Mater Studiorum University of Bologna, INEN

INFN, Bologna division, Italy

Tatitute Mazionale di Fisi

Quantum Colloquium,
CQTS at NYU Abu Dhabi
Abu Dhabi, May 6 2024

Roberto Zucchini



Summary

0 Infroduction

Roberto Zucchini



Summary

0 Infroduction

e Simplicial sets

Roberto Zucchini



Summary

0 Introduction
e Simplicial sets

e Quantum simplicial framework

Roberto Zucchini



Summary

0 Introduction
e Simplicial sets
e Quantum simplicial framework

0 Quantum simplicial implementation

Roberto Zucchini



Summary

0 Introduction

e Simplicial sets

e Quantum simplicial framework

0 Quantum simplicial implementation

e Conclusions

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

m computational 3-manifold theory;

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

m computational 3-manifold theory;

m computational knot theory;

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

m computational 3-manifold theory;
m computational knot theory;

m computational homotopy theory;

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

m computational 3-manifold theory;
m computational knot theory;
m computational homotopy theory;

m computational homology theory;

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

computational 3-manifold theory;

computational knot theory;

]
]
m computational homotopy theory;
m computational homology theory;
]

topological data analysis.

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

computational 3-manifold theory;

computational knot theory;

]
]
m computational homotopy theory;
m computational homology theory;
]

topological data analysis.

m Computational topology involves:

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

computational 3-manifold theory;

computational knot theory;

]
]
m computational homotopy theory;
m computational homology theory;
]

topological data analysis.

m Computational topology involves:

B a wide range of applications;

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

computational 3-manifold theory;

computational knot theory;

]
]
m computational homotopy theory;
m computational homology theory;
]

topological data analysis.

m Computational topology involves:

B a wide range of applications;

m formidable computational challenges.

Roberto Zucchini



Introduction
®000000

Introduction

m Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic tfopology and computer science:

computational 3-manifold theory;

computational knot theory;

]
]
m computational homotopy theory;
m computational homology theory;
]

topological data analysis.

m Computational topology involves:
B a wide range of applications;

m formidable computational challenges.

m In computational tfopology, many fopological spaces embedded in Euclidean
spaces are analyzed by associating abstract simplicial complexes to samplings

of them mostly using the fechniques of persistent simplicial homology.
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A simplicial complex associated to a sampling (from A. Zomorodian (2010)).

m In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer

a number of drawbacks:

m the product and quotient of two simplicial complexes are defined only
under restrictive conditions;

m face identification is not possible in a simplicial complex;

m the simplicial complexes usually employed (e.g Cech, Vietoris—Rips, wit-
ness, alpha, mapper etc. complexes) are characterized by an explosive
growth in the number of simplices as the size of the sampling gets large;

m reduction methods to curtail the size of these complexes (e.g. Whitehead's

simplicial contraction) have limited usefulness.
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m Ifis reasonable to search for alternative simplicial approaches fo computational

topology free of these shortcomings.

m The limitations of abstract simplicial complex theory can be traced back to
its regarding as admissible only simplices which are non degenerate and have

distinct faces and forbidding distinct simplices to share the same set of faces.

m Simplicial set theory is a generalization of simplicial complex theory which dis-
penses with this restrictions allowing for a wider range of options:

m simplicial sets allow for both non degenerate and degenerate simplices and
simplices with identified faces;

m distinct simplices sharing the same set of faces are allowed in simplicial
sets;

m the product, quotient and identification operations are always possible for
simplicial sets;

m simplicial complexes are special cases of simplicial sets.
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The 7 possible 2-simplices in a simplicial set. The triangle abc is the only one

allowed in a complex (from A. Zomorodian (2010)).

Two torus triangulations (from D. Bernoulli (2016))
m Simplicial sets furnish streamlined simplicial models of fopological spaces:

m a 2d torus can be represented as a simplicial set with 1 vertex, 3 edges
and 2 friangles, while as a simplicial complex with at least 7 vertices and
many more edges and triangles;

m describing 3d sphere as a simplicial complex requires 5 vertices, 10 edges,
10 triangles, 5 tefrahedrons, while as a simplicial set only 1 vertex and 1

3-simplex as non-degenerate simplices.
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m Simplicial sefs allow for simpler simplicial modelling of topological spaces in

computational topology (P. Perry (2003)).

m Tidy sets, minimal simplicial sets capfuring the topology of simplicial complexes,
are available (A. Zomorodian (2010)).

m Incorporation of degenerate simplices, i.e. simplices with an effective dimension
smaller than the formal one, is an essential feature of simplicial sets (and also

a price to pay for having them):

m degenerate simplices are hidden in topological realization;
m however their indiscriminate removal may lead to incomplete and/or in-
consistent simplicial constructs;

m there are ways of disposing of them.
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computational topology.

m A quantum algorithm with exponential speedup for computing Betti numbers in

persistent homology was originally worked out by S. Lloyd et al. (2014).

m This opened a new field in quantum computing, quantum topological data anal-
ysis, whose development intensified in recent years (S. Gunn and N. Kornerup
(2019); C. Gyurik et al. (2022); S. Ubaru et al. (2021); R. Hayakawa (2022); S.
McArdle et al. (2022); D. W. Berry et al. (2022); M. Black et al. (2023))

m A critical evaluation of this quantum computational framework from the per-
spective of complexity theory was carried out by A. Schmidhuber and S. Lloyd
(2022).

m The algorithms used apply to the simplicial complexes occurring in topological

data analysis.
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m One may explore the possibility of adapting and extend such quantum compu-

tational approach to simplicial sets.

m Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices
turn info simplex vectors forming a distinguished orthonormal basis and the

face and degeneracy maps into face and degeneracy operators.

m A foundation of a quantum computational framework for algebraic topology via

simplicial set theory is provided.

m Disclaimer: no new quantum algorithms solving specific problems of algebraic

topology is presented,

m Hopefully, the ground for the future development of such algorithms is pre-

pared.

m The focus is on homology computation (as is customary in topological data

analysis).
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Simplicial sets

m Simplicial sets generalize simplicial complexes in many ways.

m A simplicial set is a combinatorial blueprint of a topological space, its topological

realization.
m Homotopy and homology have a correlate in simplicial set theory.

m A simplicial set X consists of a family of n-simplex sets X,, n € N, and

face and degeneracy maps dp; : Xn — Xp—1,n > 1,4 = 0,...,n, and
Sni : Xn = Xng1.m>0,7=0,...,n, obeying the simplicial relations
dp—1idnj = dn—1j—1dn; if 0<4,7<m,1<j,
dny1iSnj = Sn—1j—1dn; if 0<4,j<n, i<j,
dnt1i8n; =idn if 0<j<mn, i=j7j+1,
dni1iSnj = Sn—15dni—1 if 0<é4,5<n+1,i>5+1,
Sp41iSnj = Sn+1j+15ni if 0<4,57<n,1<j.
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m A morphism ¢ : X — X' of the simplicial sets X, X’ is a collection of maps

On : Xn — X'n with n > 0 obeying the simplicial morphism relations
Pn—1dn; = dlnz'(z)n if 0<i<mn,
Pnt18ni = 8" nidn if 0<i<n.
m A simplicial set X is represented by the diagram
P — X
. X Z/—= X X
@ === "0

where the rightward/leftward arrows stand for the face/degeneracy maps. A

simplicial set morphism ¢ : X — X’ is a commutative diagram

EEeESNT X .
~— ~—
l/¢>0 l/dﬁ \L¢0
— —

2 X'y X'o
= —
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m The Cartesian product X x X' of X, X' is the simplicial set defined by setting

XX Xp=XnxXpnanddxdp; =dpi X d'ni and s X s'ni = spi X 8" ni.

m The disjoint union X L X' of X, X' is the simplicial set defined by setting
XUX'p=X,UX'panddUd y; =dp; Ud' ni and s U s' s = sy U S s

m With the operations of Cartesian product and disjoint union and the empty and
singleton simplicial sets D, D) as units simplicial sets and morphisms form a

bimonoidal category sSet.

m The simplicial quantum computational framework involves only parafinite simpli-

cial sets.

m A simplicial set X is called parafinite (not to be confused with finite) if the

n-simplex set X, is finite for all n.

m Parafinite simplicial sets form a full bimonoidal subcategory pfsSet of sSet.
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m Example: the discrete simplicial set DA of a set A. If A is a finite set, DA is

parafinite.

m Example: the simplicial set K& of an ordered abstract simplicial complex §. KS§
obtained from & by allowing simplices with repeated vertices. If & has finitely

many vertices, K& is parafinite.

m Example: the nerve NC of a category C. If If C is a finite category, NC is

parafinite.

m The simplicial set K A[p] of the standard combinatorial simplex A[p], an instance
of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a

category, can be identified.
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Simplicial sets

m Example: the discrete simplicial set DA of a set A. If A is a finite set, DA is

parafinite.

m Example: the simplicial set K& of an ordered abstract simplicial complex §. KS§
obtained from & by allowing simplices with repeated vertices. If & has finitely

many vertices, K& is parafinite.

m Example: the nerve NC of a category C. If If C is a finite category, NC is

parafinite.

m The simplicial set K A[p] of the standard combinatorial simplex A[p], an instance
of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a

category, can be identified.

m Examples from topology, e.g. simplicial sets modelling a 2d forus, a 3d sphere

efc.

Roberto Zucchini



Simplicial sets
O000@000000

Simplicial objects

m A simplicial object X in a general category C is a simplicial set infernal to C.
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m A simplicial object X in a general category C is a simplicial set infernal to C.

m A simplicial object X in C is a family of n-simplex objects X,, n € N, and
face and degeneracy morphisms d,; : Xp, = Xp—1, n>1,i=0,...,n, and

Sni : Xn = Xnge1.,n>0,4=0,...,n, obeying the simplicial relations
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m A simplicial object X in a general category C is a simplicial set infernal to C.

m A simplicial object X in C is a family of n-simplex objects X,, n € N, and
face and degeneracy morphisms d,; : Xp, = Xp—1, n>1,i=0,...,n, and

Sni : Xn = Xnge1.,n>0,4=0,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the simplicial objects X, X’ of € is a collection
of morphisms ¢, : X, — X', with n > 0 obeying the simplicial morphism

relations
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Simplicial objects

m A simplicial object X in a general category C is a simplicial set infernal to C.

m A simplicial object X in C is a family of n-simplex objects X,, n € N, and
face and degeneracy morphisms d,; : Xp, = Xp—1, n>1,i=0,...,n, and

Sni : Xn = Xnge1.,n>0,4=0,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the simplicial objects X, X’ of € is a collection
of morphisms ¢, : X, — X', with n > 0 obeying the simplicial morphism
relations

m Example: a simplicial set X is just a simplicial object in the category Set of

sets and functions.
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Simplicial objects

m A simplicial object X in a general category C is a simplicial set infernal to C.

m A simplicial object X in C is a family of n-simplex objects X,, n € N, and
face and degeneracy morphisms d,; : Xp, = Xp—1, n>1,i=0,...,n, and

Sni : Xn = Xnge1.,n>0,4=0,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the simplicial objects X, X’ of € is a collection
of morphisms ¢, : X, — X', with n > 0 obeying the simplicial morphism
relations

m Example: a simplicial set X is just a simplicial object in the category Set of
sets and functions.

B Example: a simplicial group G is a simplicial object in the category Grp of

groups and group morphisms.
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Simplicial objects

m A simplicial object X in a general category C is a simplicial set infernal to C.

m A simplicial object X in C is a family of n-simplex objects X,, n € N, and
face and degeneracy morphisms d,; : Xp, = Xp—1, n>1,i=0,...,n, and
Sni : Xn = Xnge1.,n>0,4=0,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the simplicial objects X, X’ of € is a collection
of morphisms ¢, : X, — X', with n > 0 obeying the simplicial morphism
relations

m Example: a simplicial set X is just a simplicial object in the category Set of
sets and functions.

B Example: a simplicial group G is a simplicial object in the category Grp of
groups and group morphisms.

m Example: a simplicial manifold 771 is a simplicial object in the category Mnfd of

smooth manifolds and manifold mappings.
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B The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.
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B The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.

m A finite dimensional simplicial Hilbert space 7 is a simplicial set internal to the

category fdHilb of finite dimensional Hilbert spaces and linear maps.
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B The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.

m A finite dimensional simplicial Hilbert space 7 is a simplicial set internal to the

category fdHilb of finite dimensional Hilbert spaces and linear maps.

B 7 has n-simplex spaces 7%, and face and degeneracy operators F; and Sy;.
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Simplicial Hilbert spaces

B The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.

m A finite dimensional simplicial Hilbert space 7 is a simplicial set internal to the

category fdHilb of finite dimensional Hilbert spaces and linear maps.
B 7 has n-simplex spaces 7%, and face and degeneracy operators F; and Sy;.

m The direct product of the simplicial Hilbert spaces 7, s#’ is the simplicial
Hilbert space 7 ® ' defined by setting 2 ® #', = s, ® ', and
F F/nz' =Fni ® F/ni and S ® Slni = Snz ® S/ni»
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Simplicial Hilbert spaces

B The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.

m A finite dimensional simplicial Hilbert space 7 is a simplicial set internal to the

category fdHilb of finite dimensional Hilbert spaces and linear maps.
B 7 has n-simplex spaces 7%, and face and degeneracy operators F; and Sy;.

m The direct product of the simplicial Hilbert spaces 7, s#’ is the simplicial
Hilbert space 7 ® ' defined by setting 2 ® #', = s, ® ', and
FQF pi=Fni®F n;and S® S pi = Sni @ S i

m The direct sum of the simplicial Hilbert spaces 7, ' is the simplicial Hilbert
space @ H' with H# S Ay = 7, @ H ' and F O F'; = Fy © F' oy
and S ® S i = Sni O S i
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Simplicial Hilbert spaces

B The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.

m A finite dimensional simplicial Hilbert space 7 is a simplicial set internal to the

category fdHilb of finite dimensional Hilbert spaces and linear maps.

B 7 has n-simplex spaces 7%, and face and degeneracy operators F; and Sy;.

m The direct product of the simplicial Hilbert spaces 7, s#’ is the simplicial
Hilbert space 7 ® ' defined by setting 2 ® #', = s, ® ', and
F F/nz' =Fni ® F/ni and S ® Slni = Snz ® S/ni»

m The direct sum of the simplicial Hilbert spaces 7, ' is the simplicial Hilbert
space @ H' with H# S Ay = 7, @ H ' and F O F'; = Fy © F' oy
and S @ S' i = Sni S i

m With the operations of direct product and direct sum and the simplicial Hilbert

spaces DC, DO as units simplicial Hilbert spaces and maps form a bimonoidal

category fdsHilb.
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Degenerate simplices of a simplicial set

m A distinguishing feature of a simplicial set X when compared to a simplicial
complex is the appearance of infinitely many degenerate simplices, which are

topologically invisible.

Roberto Zucchini



Simplicial sets
O00000@0000

Degenerate simplices of a simplicial set

m A distinguishing feature of a simplicial set X when compared to a simplicial
complex is the appearance of infinitely many degenerate simplices, which are
topologically invisible.

B An n-simplex o, € Xy, is degenerate if there is some 7,1 € X,,—1 and index
iwith 0 < ¢ < n —1with o, = sp—1iTn—1. 0-simplices are regarded as non

degenerate.
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m A distinguishing feature of a simplicial set X when compared to a simplicial
complex is the appearance of infinitely many degenerate simplices, which are

topologically invisible.

B An n-simplex o, € Xy, is degenerate if there is some 7,1 € X,,—1 and index
iwith 0 < ¢ < n —1with o, = sp—1iTn—1. 0-simplices are regarded as non

degenerate.

m The degenerate simplices of X,, form a subset *X,,.
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m A distinguishing feature of a simplicial set X when compared to a simplicial
complex is the appearance of infinitely many degenerate simplices, which are

topologically invisible.

B An n-simplex o, € Xy, is degenerate if there is some 7,1 € X,,—1 and index
iwith 0 < ¢ < n —1with o, = sp—1iTn—1. 0-simplices are regarded as non

degenerate.
m The degenerate simplices of X,, form a subset *X,,.

B Example: in the discrete simplicial set DA of a non empty set A all positive

degree simplices are degenerate.
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Degenerate simplices of a simplicial set

m A distinguishing feature of a simplicial set X when compared to a simplicial
complex is the appearance of infinitely many degenerate simplices, which are

topologically invisible.

B An n-simplex o, € Xy, is degenerate if there is some 7,1 € X,,—1 and index
iwith 0 < ¢ < n —1with o, = sp—1iTn—1. 0-simplices are regarded as non

degenerate.
m The degenerate simplices of X,, form a subset *X,,.

B Example: in the discrete simplicial set DA of a non empty set A all positive

degree simplices are degenerate.

m Example: in the simplicial set K& of an ordered abstract simplicial complex &,

all simplices with repeated vertices are degenerate.
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Degenerate simplices of a simplicial set

m A distinguishing feature of a simplicial set X when compared to a simplicial
complex is the appearance of infinitely many degenerate simplices, which are

topologically invisible.

B An n-simplex o, € Xy, is degenerate if there is some 7,1 € X,,—1 and index
iwith 0 < ¢ < n —1with o, = sp—1iTn—1. 0-simplices are regarded as non

degenerate.
m The degenerate simplices of X,, form a subset *X,,.

B Example: in the discrete simplicial set DA of a non empty set A all positive

degree simplices are degenerate.

m Example: in the simplicial set K& of an ordered abstract simplicial complex &,

all simplices with repeated vertices are degenerate.

m Example: in the nerve NC of a category C, all simplices containing identity

morphisms are degenerate.
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Truncation and skeletonization

m The practical implementation of algorithms of computational fopology involves

a finite approximation of a simplicial set containing infinitely many simplices.
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Truncation and skeletonization

m The practical implementation of algorithms of computational fopology involves

a finite approximation of a simplicial set containing infinitely many simplices.

m A K-fruncated simplicial set X is a collection of sets X,, 0 < n < K, and
maps dp;i : Xn = Xn—1, 1 <n < K, i=1,...,n,and sp; : Xn — Xn41.

0<n<K-—-11t=1,...,n, obeying the simplicial relations
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m The practical implementation of algorithms of computational fopology involves

a finite approximation of a simplicial set containing infinitely many simplices.

m A K-fruncated simplicial set X is a collection of sets X,, 0 < n < K, and
maps dp;i : Xn = Xn—1, 1 <n < K, i=1,...,n,and sp; : Xn — Xn41.
0<n<K-—-11t=1,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the K-tfruncated simplicial sets X, X’ is a collection

of maps ¢n : Xn — X'n, with 0 < n < K obeying the simplicial morphism

relations
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Truncation and skeletonization

m The practical implementation of algorithms of computational fopology involves

a finite approximation of a simplicial set containing infinitely many simplices.

m A K-fruncated simplicial set X is a collection of sets X,, 0 < n < K, and
maps dp;i : Xn = Xn—1, 1 <n < K, i=1,...,n,and sp; : Xn — Xn41.
0<n<K-—-11t=1,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the K-tfruncated simplicial sets X, X’ is a collection
of maps ¢n : Xn — X'n, with 0 < n < K obeying the simplicial morphism

relations

m K -truncated simplicial sets form a bimonoidal category sSet - as sSet.
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Truncation and skeletonization

m The practical implementation of algorithms of computational fopology involves

a finite approximation of a simplicial set containing infinitely many simplices.

m A K-fruncated simplicial set X is a collection of sets X,, 0 < n < K, and
maps dp;i : Xn = Xn—1, 1 <n < K, i=1,...,n,and sp; : Xn — Xn41.
0<n<K-—-11t=1,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the K-tfruncated simplicial sets X, X’ is a collection
of maps ¢n : Xn — X'n, with 0 < n < K obeying the simplicial morphism

relations
m K -truncated simplicial sets form a bimonoidal category sSet - as sSet.

m There is a fruncation functor tr : sSet — sSet - that discards all the simplices

of degree n > K of the simplicial sets on which it acts.
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Truncation and skeletonization

m The practical implementation of algorithms of computational fopology involves

a finite approximation of a simplicial set containing infinitely many simplices.

m A K-fruncated simplicial set X is a collection of sets X,, 0 < n < K, and
maps dp;i : Xn = Xn—1, 1 <n < K, i=1,...,n,and sp; : Xn — Xn41.
0<n<K-—-11t=1,...,n, obeying the simplicial relations

m A morphism ¢ : X — X’ of the K-tfruncated simplicial sets X, X’ is a collection
of maps ¢n : Xn — X'n, with 0 < n < K obeying the simplicial morphism

relations
m K -truncated simplicial sets form a bimonoidal category sSet - as sSet.

m There is a fruncation functor tr : sSet — sSet - that discards all the simplices

of degree n > K of the simplicial sets on which it acts.

m The K-fruncation trg X of a simplicial set X is the K—truncated simplicial set
such that trg X, = X, forn < K.
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Truncation and skeletonization

m try admits a left adjoint functor lkx : sSet - — sSet (left Kan extension).
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B The K-skeleton functor is the composite sk = Ik otrgi : sSet — sSet
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Truncation and skeletonization

m try admits a left adjoint functor lkx : sSet - — sSet (left Kan extension).
B The K-skeleton functor is the composite sk = Ik otrgi : sSet — sSet

B The K-skeleton sk X of a simplicial set X is the smallest simplicial subset of
X such that skx X, = X, forn < K and skg X, C X, forn > K.
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m try admits a left adjoint functor lkx : sSet - — sSet (left Kan extension).
B The K-skeleton functor is the composite sk = Ik otrgi : sSet — sSet

B The K-skeleton sk X of a simplicial set X is the smallest simplicial subset of
X such that skx X, = X, forn < K and skg X, C X, forn > K.

m Similar notions can be introduced for simplicial objects in a category C.
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Truncation and skeletonization

m try admits a left adjoint functor lkx : sSet - — sSet (left Kan extension).
B The K-skeleton functor is the composite sk = Ik otrgi : sSet — sSet

B The K-skeleton sk X of a simplicial set X is the smallest simplicial subset of
X such that sk Xy, = X, for n < K and skg X, C X, for n > K.

m Similar notions can be introduced for simplicial objects in a category C.

m An K-truncated simplicial object X in C consists of X,, 0 < n < K, and
morphisms dp; : Xn = Xp—1, 1 <n <K, i=1,...,n, sp; : Xn = Xnt1,
0<n<K-—-11=1,...,n, obeying the simplicial relations
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Truncation and skeletonization

m try admits a left adjoint functor lkx : sSet - — sSet (left Kan extension).
B The K-skeleton functor is the composite sk = Ik otrgi : sSet — sSet

B The K-skeleton sk X of a simplicial set X is the smallest simplicial subset of
X such that sk Xy, = X, for n < K and skg X, C X, for n > K.

m Similar notions can be introduced for simplicial objects in a category C.

m An K-truncated simplicial object X in C consists of X,, 0 < n < K, and
morphisms dp; : Xn = Xp—1, 1 <n <K, i=1,...,n, sp; : Xn = Xnt1,

0<n<K-—-11=1,...,n, obeying the simplicial relations

B A morphism ¢ : X — X’ of the K-truncated simplicial objects X, X’ of Cis a
collection of morphisms ¢, : X, — X’p, with 0 < n < K obeying the simplicial

morphism relations
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Truncation and skeletonization

m try admits a left adjoint functor lkx : sSet - — sSet (left Kan extension).
B The K-skeleton functor is the composite sk = Ik otrgi : sSet — sSet

B The K-skeleton sk X of a simplicial set X is the smallest simplicial subset of
X such that sk Xy, = X, for n < K and skg X, C X, for n > K.

m Similar notions can be introduced for simplicial objects in a category C.
m An K-truncated simplicial object X in C consists of X,, 0 < n < K, and

morphisms dp; : Xn = Xp—1, 1 <n <K, i=1,...,n, sp; : Xn = Xnt1,
0<n<K-—-11=1,...,n, obeying the simplicial relations

B A morphism ¢ : X — X’ of the K-truncated simplicial objects X, X’ of Cis a
collection of morphisms ¢, : X, — X’p, with 0 < n < K obeying the simplicial

morphism relations

B The fruncation trx X and skeletonization sk X are defined analogously also

for a simplicial object X.
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Simplicial homology

m With a simplicial set X and an Abelian group A there are associated a simplicial

Abelian group C(X, A) with n-simplex groups
Cn(X,A) = Z[Xn] ® A,

along with face and degeneracy morphisms dy; : Cn(X,A) = Cn—1(X,A),
Sni t Cn(X,A) = Cnt1(X, A) induced by the dp;, spi of X.
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Simplicial homology

m With a simplicial set X and an Abelian group A there are associated a simplicial

Abelian group C(X, A) with n-simplex groups
Cn(X,A) = Z[Xn] ® A,

along with face and degeneracy morphisms dy; : Cn(X,A) = Cn—1(X,A),
Sni t Cn(X,A) = Cnt1(X, A) induced by the dp;, spi of X.

® The boundary morphisms 9y, : Cn(X,A) = Cn—1(X,A)
an = Z (_1)Zdnz
0<i<n

obey the homological relations

anan+1 =0.
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Simplicial homology

m With a simplicial set X and an Abelian group A there are associated a simplicial

Abelian group C(X, A) with n-simplex groups
Cn(X,A) = Z[Xn] ® A,

along with face and degeneracy morphisms dy; : Cn(X,A) = Cn—1(X,A),
Sni t Cn(X,A) = Cnt1(X, A) induced by the dp;, spi of X.

® The boundary morphisms 9y, : Cn(X,A) = Cn—1(X,A)
an = Z (_1)Zdnz
0<i<n
obey the homological relations
anan+1 =0.
® The simplicial homology H(X, A) of X with coefficients in A is

H, (X,A) = ker 8,/ ran Op 1.
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m With a simplicial set X and an Abelian group A there are associated a simplicial

Abelian group C(X, A) with n-simplex groups
Cn(X,A) = Z[Xn] ® A,

along with face and degeneracy morphisms dy; : Cn(X,A) = Cn—1(X,A),
Sni t Cn(X,A) = Cnt1(X, A) induced by the dp;, spi of X.

® The boundary morphisms 9y, : Cn(X,A) = Cn—1(X,A)
an = Z (_1)Zdnz
0<i<n
obey the homological relations
anan+1 =0.
® The simplicial homology H(X, A) of X with coefficients in A is

H, (X,A) = ker 8,/ ran Op 1.
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Simplicial homology

m Denote by $Cp (X, A) the subgroup of C, (X, A) generated by the degenerate
simplex set 5 X,,. The group Cy, (X, A) = Cqo(X,A)/3Cn(X, A) is the normalized

n—chain group.
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Simplicial homology

m Denote by $Cp (X, A) the subgroup of C, (X, A) generated by the degenerate
simplex set 5 X,,. The group Cy, (X, A) = Cqo(X,A)/3Cn(X, A) is the normalized
n—chain group.

m The boundary morphisms 9, give rise to a normalized boundary morphisms

On : Cn(X,A) = Cr_1(X,A) obeying

OnOn+t1 = 0.
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Simplicial homology

m Denote by $Cp (X, A) the subgroup of C, (X, A) generated by the degenerate
simplex set 5 X,,. The group Cy, (X, A) = Cqo(X,A)/3Cn(X, A) is the normalized

n—chain group.

m The boundary morphisms 9, give rise to a normalized boundary morphisms
On : Cn(X,A) = Cr_1(X,A) obeying

OnOn+t1 = 0.

m The normalized simplicial homology ﬁ(X7 A) of X with coefficients in A is

ﬁn(X7 A) = kergn/ran5n+1.
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Simplicial homology

m Denote by $Cp (X, A) the subgroup of C, (X, A) generated by the degenerate
simplex set 5 X,,. The group Cy, (X, A) = Cqo(X,A)/3Cn(X, A) is the normalized

n—chain group.
m The boundary morphisms 9, give rise to a normalized boundary morphisms
On : Cn(X,A) = Cr_1(X,A) obeying
OnOn+t1 = 0.
m The normalized simplicial homology ﬁ(X7 A) of X with coefficients in A is
H, (X, A) = ker O,/ ran Op41.
m Normalization theorem (Eilenberg & Mac Lane (1953)): the isomorphism

H,(X,A) ~ H,(X,A)

holds. Degenerate simplices are homologically irrelevant.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The quantum simplicial set framework is the natural set-up for the analysis and
implementation of quantum algorithms of simplicial set theoretic computational

topology.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The quantum simplicial set framework is the natural set-up for the analysis and

implementation of quantum algorithms of simplicial set theoretic computational
topology.

m IT allows also in principle the modelling of simplicial quantum computation and
circuitry.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The quantum simplicial set framework is the natural set-up for the analysis and
implementation of quantum algorithms of simplicial set theoretic computational

topology.

m IT allows also in principle the modelling of simplicial quantum computation and

circuitry.

m Ifis an instance of quantum basis coding of classical data, where the latter are

simplicial data of a parafinite simplicial set X.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The quantum simplicial set framework is the natural set-up for the analysis and
implementation of quantum algorithms of simplicial set theoretic computational

topology.

m IT allows also in principle the modelling of simplicial quantum computation and

circuitry.

m Ifis an instance of quantum basis coding of classical data, where the latter are

simplicial data of a parafinite simplicial set X.

B For n € N, the n-simplex Hilbert space .74, is the Hilbert space generated by

the n—simplex set X,,.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The quantum simplicial set framework is the natural set-up for the analysis and
implementation of quantum algorithms of simplicial set theoretic computational

topology.

m IT allows also in principle the modelling of simplicial quantum computation and

circuitry.

m Ifis an instance of quantum basis coding of classical data, where the latter are

simplicial data of a parafinite simplicial set X.

B For n € N, the n-simplex Hilbert space .74, is the Hilbert space generated by

the n—simplex set X,,.

m %, has thus a canonical orthonormal basis |0y, ) labelled by the n-simplices

on € Xn (n-simplex basis).
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The quantum simplicial set framework is the natural set-up for the analysis and
implementation of quantum algorithms of simplicial set theoretic computational

topology.

m IT allows also in principle the modelling of simplicial quantum computation and

circuitry.

m Ifis an instance of quantum basis coding of classical data, where the latter are

simplicial data of a parafinite simplicial set X.

B For n € N, the n-simplex Hilbert space .74, is the Hilbert space generated by

the n—simplex set X,,.

m %, has thus a canonical orthonormal basis |0y, ) labelled by the n-simplices

on € Xn (n-simplex basis).

m The face and degeneracy maps of X convert into face and degeneracy opera-

tors relating the Hilbert spaces J7,.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial fun

m The face operators Dy, : 6, — Hp—1,1=0,...,nand n > 1, and degen-
eracy operators Sy; : H, — Hp+1 andi=0,...,nand n > 0 are
Dpi= 2. l|dnion){(onl, (3.1)
on€Xn
Shni = Z [snion) (on. (32)
on€Xn
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The face operators Dy, : 6, — Hp—1,1=0,...,nand n > 1, and degen-
eracy operators Sy; : H, — Hp+1 andi=0,...,nand n > 0 are
Dpi= 2 l|dnion)(onl, 3.1
on€Xn
Shni = Z [snion) (on. (32)
on€Xn
m The simplicial relations imply the exchange identities (1, = 1, ):

Dp—1iDpj — Dn—1j-1Dp; =0 for 0<i,j <n,i<j,
Dit1iSnj — Sn—1j-1Dni =0 for 0<i,5 <n, i<,
Dpt1iSnj — 1n =0 for 0<j<mi=3j j+1,
Dyy1iSnj — Sn—1jDni—1 =0 for 0<¢,j<n+1,i>j+1,
Sn+1iSnj — Snt1j+1Sni =0 for 0<4,57<m, i<j.

These are the Hilbert simplicial identities.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The Hilbert simplicial identities entail that the Hilbert data collection

{3, Dni, Sp;} constitutes a finite dimensional simplicial Hilbert space .77
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The Hilbert simplicial identities entail that the Hilbert data collection

{3, Dni, Sp;} constitutes a finite dimensional simplicial Hilbert space .77

m With any morphism ¢ : X — X’ of the parafinite simplicial sets X, X’
there is associated a morphism & : 37 — ' of the simplicial Hilbert spaces
H, A given by the linear operators &y, : 5, — ' 4,
b = Z |pnon)(onl,
on€Xn
since indeed
@, 1Dp; — D' i =0 if 0<4<n,

Dpt1Sni — S ni®Pn =0 if 0<i<n.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

m The Hilbert simplicial identities entail that the Hilbert data collection

{3, Dni, Sp;} constitutes a finite dimensional simplicial Hilbert space .77

m With any morphism ¢ : X — X’ of the parafinite simplicial sets X, X’
there is associated a morphism & : 37 — ' of the simplicial Hilbert spaces
H, A given by the linear operators &y, : 5, — ' 4,

D= D, |non)onl,

on€Xn
since indeed
q’sn—anifD/niQSn:O if OSZSTL7
Dpt1Sni — S ni®Pn =0 if 0<i<n.

m Theorem: the map X — , (¢ : X — X') — (@ : 2 — ') is a functor

s : pfsSet — fdsHilb of bimonoidal categories (Hilbert simplicial functor)
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The cosimplicial Hilbert structure

m For a parafinite simplicial set X, the dagger structure of the Hilbert space ca-

tegory fdHilb yields the adjoints Dyt : 1 — 5, Spit 2 Hopy1 — K,

Dnt= > > |wn) {on—1l,

on—1€EXn—1 wn€Dpi(opn_1)

S’n.i+ = Z Z |wn> <U'Vl+1|7

On+1€Xn+1 Wn€Spi(opnt1)

where the face and degeneracy star sets Dyi(opn—1). Spi(on+1) C Xn are
Dni(o'n—l) = {wn S Xn‘dnzwn = Un—l}v

Sni(0n+1) = {Wn € ansniwn = UnJrl}-
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The cosimplicial Hilbert structure

m For a parafinite simplicial set X, the dagger structure of the Hilbert space ca-
tegory fdHilb vyields the adjoints Dy; T : 1 — Hin, Sni™T - Fo1 — I,

Dnt= > > |wn) {on—1l,

on—1€EXn—1 wn€Dpi(opn_1)

S’n.i+ = Z Z |wn> <U'Vl+1|7

On+1€Xn+1 Wn€Spi(opnt1)

where the face and degeneracy star sets Dyi(opn—1). Spi(on+1) C Xn are
Dni(o'n—l) = {wn S Xn‘dnzwn = Un—l}v
Sni(0n+1) = {Wn € ansniwn = Un+l}-

® One has |Dypi(on—1)| > 1 and |Spi(on+1)| < 1 (by the surjectivity of the dy,;
and the injectivity of the s,;).
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The cosimplicial Hilbert structure

m For a parafinite simplicial set X, the dagger structure of the Hilbert space ca-
tegory fdHilb vyields the adjoints Dy; T : 1 — Hin, Sni™T - Fo1 — I,

Dnt= > > |wn) {on—1l,

on—1€EXn—1 wn€Dpi(opn_1)

S’n.i+ = Z Z |wn> <U'Vl+1|7

On+1€Xn+1 Wn€Spi(opnt1)

where the face and degeneracy star sets Dyi(opn—1). Spi(on+1) C Xn are
Dni(o'n—l) = {wn S Xn‘dnzwn = Un—l}v
Sni(0n+1) = {Wn € ansniwn = Un+l}-

® One has |Dypi(on—1)| > 1 and |Spi(on+1)| < 1 (by the surjectivity of the dy,;
and the injectivity of the s,;).

m Via the Dpi(on—1), Sni(on+1). the adjoint operators D,;t, S,; T encode

special features of X not directly accessible through the operators D,,;, Sn;.
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The cosimplicial Hilbert structure

m The exchange identities of D,,; 1, Sy,; T stem from those of D,;, Sps
They have the same form except for the reversed order of the factors. They

are therefore Hilbert cosimplicial identities.
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The cosimplicial Hilbert structure

m The exchange identities of D,,; 1, Sy,; T stem from those of D,;, Sps
They have the same form except for the reversed order of the factors. They

are therefore Hilbert cosimplicial identities.

m These relations entail that the data collection {s%,, Dpi T, Spi 1} is a finite

dimensional cosimplicial Hilbert space 2.

NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.
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The cosimplicial Hilbert structure

m The exchange identities of D,,; 1, Sy,; T stem from those of D,;, Sps
They have the same form except for the reversed order of the factors. They

are therefore Hilbert cosimplicial identities.

m These relations entail that the data collection {s%,, Dpi T, Spi 1} is a finite
dimensional cosimplicial Hilbert space 2.

NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.

m With any simplicial set morphism ¢ : X — X’ of parafinite simplicial sets X, X’
there is associated a morphism &+ : J#'t — 7+ of the cosimplicial Hilbert
spaces '+, s+ specified by the adjoint operators &, 1 : #",, — ;.

o, t = ) > |wn){0"n]

’ ’ —o/
o'n€X'p wn€Xn,ppwn=0'n
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The cosimplicial Hilbert structure

m The exchange identities of D,,; 1, Sy,; T stem from those of D,;, Sps
They have the same form except for the reversed order of the factors. They

are therefore Hilbert cosimplicial identities.

m These relations entail that the data collection {s%,, Dpi T, Spi 1} is a finite
dimensional cosimplicial Hilbert space 2.

NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.

m With any simplicial set morphism ¢ : X — X’ of parafinite simplicial sets X, X’
there is associated a morphism &+ : J#'t — 7+ of the cosimplicial Hilbert
spaces '+, s+ specified by the adjoint operators &, 1 : #",, — ;.

ot = D 2 jwn) (0" n]
o/ EX y wn €EXp,Ppnwn=0"p

m A simplicial and a cosimplicial Hilbert structure coexist in this way in the quantum

simplicial set-up.

NB This is a generic feature of simplicial Hilbert spaces.
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Defect results

m For a parafinite simplicial set X, the mixed exchange identities involving one of
the Dy;, Sps and one of the D,; T, S,; T have the form
DpitDpj — Dpy1jy1Dngr ™ = APP i for 0<id,j<n, i<y,

t=APS ;0 for 0<4,5<n. i<},

Dpi2itSnj — Snt1j+1Dnt1i
Sn—2itDpj — Dn_1j_18n—1.T = AP ;5 for 0<4,j<n,i+1<j,
SnitSnj — Sn_1j-15n—1sT = A5 5 for 0<4i,j<n i<j.

The operators APD .., APS .. ASD, .. ASS, .. are called defects.
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Defect results

m For a parafinite simplicial set X, the mixed exchange identities involving one of
the Dy;, Sps and one of the D,; T, S,; T have the form

T = ADD’ML

DyitDpj — Dypg1j11Dny1i j  for 0<4,5<m i<y,

t=APS ;0 for 0<4,5<n. i<},

Dpi2itSnj — Snt1j+1Dnt1i

Sp—2iTDpj— Dyp—1j-1Sn—1sT = AP i for 0<i,j<n, i+1<j,

SpitTSnj — Sn—1j—18n—1.+T = A5 4, for 0<i,j<m i<j.
The operators APD .., APS .. ASD, .. ASS, .. are called defects.

m APD i APS, i ASD s ASS, s arise as distinguished contributions of

analogous form to certain simplicial Hodge Laplacians.
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Defect results

m For a parafinite simplicial set X, the mixed exchange identities involving one of
the Dy;, Sps and one of the D,; T, S,; T have the form

DpitDpj — Dpy1jy1Dngr ™ = APP i for 0<id,j<n, i<y,

t=APS ;0 for 0<4,5<n. i<},

Dpi2itSnj — Snt1j+1Dnt1i

Sp—2iTDpj— Dyp—1j-1Sn—1sT = AP i for 0<i,j<n, i+1<j,

SpitTSnj — Sn—1j—18n—1.+T = A5 4, for 0<i,j<m i<j.
The operators APD .., APS .. ASD, .. ASS, .. are called defects.

m APD i APS, i ASD s ASS, s arise as distinguished contributions of

analogous form to certain simplicial Hodge Laplacians.
m No degeneracy defect theorem: it holds that
ASS =0 for 0<i,j<m, i<j.
It follows from the simplicial identities
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Defect results

m ADPD, . ADS i ASD, . detect basic properties of X.

Roberto Zucchini



Quantum simplicial framework
O00000@0000000000O0000000

Defect results

m ADPD, . ADS i ASD, . detect basic properties of X.

m Proposition: the simplicial set K& of an ordered finite abstract simplicial com-

plex & is semi perfect:
APS =0 for 0<1i,j<mn, i<]j,

ASD =0 for 0<i,j<m i+1<j.
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Defect results

m ADPD, . ADS i ASD, . detect basic properties of X.

m Proposition: the simplicial set K& of an ordered finite abstract simplicial com-

plex & is semi perfect:
APS =0 for 0<1i,j<mn, i<]j,
ASD =0 for 0<i,j<m i+1<j.

m Proposition: the nerve NC of a finite category C is quasi perfect:

A/m’m/ =0 for 0<i4,7<mn, 1<}y,
ASD =0 for 0<i,j<n, i+1<j.
APD =0 for 0<4,j<m, i<]j.

If Cis a groupoid, then NC is perfect: the last identity holds true also for i < j
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Defect results

m ADPD, . ADS i ASD, . detect basic properties of X.

m Proposition: the simplicial set K& of an ordered finite abstract simplicial com-

plex & is semi perfect:
APS =0 for 0<1i,j<mn, i<]j,
ASD =0 for 0<i,j<m i+1<j.

m Proposition: the nerve NC of a finite category C is quasi perfect:

A/m’m/ =0 for 0<i4,7<mn, 1<}y,
ASD =0 for 0<i,j<n, i+1<j.
APD =0 for 0<4,j<m, i<]j.

If Cis a groupoid, then NC is perfect: the last identity holds true also for i < j

m Such results depend on the special ‘local’ nature of the face and degeneracy

maps of these simplicial sefts.
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Simplicial quantum registers and circuits

m The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert
space (%) that stores all the simplicial data of X in the same way as a
quantum register is a Hilbert space C2®™ that stores all the configurations of

a classical n bit string.
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Simplicial quantum registers and circuits

m The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert
space (%) that stores all the simplicial data of X in the same way as a
quantum register is a Hilbert space C2®™ that stores all the configurations of

a classical n bit string.
m Mathematically, () is the infinite dimensional pre-Hilbert space

w2 = P (3.3)

0<n<oco
(algebraic direct sum).
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Simplicial quantum registers and circuits

m The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert
space (%) that stores all the simplicial data of X in the same way as a
quantum register is a Hilbert space C2®™ that stores all the configurations of

a classical n bit string.

m Mathematically, () is the infinite dimensional pre-Hilbert space
w2 = P (3.3)
0<n<oco
(algebraic direct sum).
m A simplicial quantum circuit is a quantum circuit supported on the register
() compatible with the underlying simplicial structure of X and capable
in theory of performing meaningful simplicial computations (no measurements

are assumed to be involved).
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Simplicial quantum registers and circuits

m The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert
space (%) that stores all the simplicial data of X in the same way as a
quantum register is a Hilbert space C2®™ that stores all the configurations of

a classical n bit string.
m Mathematically, () is the infinite dimensional pre-Hilbert space

w2 = P (3.3)

0<n<oco
(algebraic direct sum).
m A simplicial quantum circuit is a quantum circuit supported on the register
() compatible with the underlying simplicial structure of X and capable
in theory of performing meaningful simplicial computations (no measurements

are assumed to be involved).

m Mathematically, a simplicial quantum circuit is a unitary operator U € U(Jﬂm))

that satisfies certain simplicial conditions.
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Simplicial quantum registers and circuits

B A simple simplicial quantum circuit is a unitary simplicial automorphism of J#
, that is a collection of unitary operators U, € U(J4,) with n > 0 such
that for0 <i¢<n

Un—1Dpni — DypiUp =0,

Un+1sni - SniU'n =0.
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Simplicial quantum registers and circuits

B A simple simplicial quantum circuit is a unitary simplicial automorphism of J#
, that is a collection of unitary operators U, € U(J4,) with n > 0 such
that for0 <i¢<n

Unlen'L - Dann = 0:
Un+1sni - SniU'n =0.
m The circuit can be thought of as a collection of simplicial quantum gates

v =u, @ . 1.
0<n’/<oo,n’#n
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Simplicial quantum registers and circuits

B A simple simplicial quantum circuit is a unitary simplicial automorphism of J#
, that is a collection of unitary operators U, € U(J4,) with n > 0 such
that for0 <i¢<n

Unlen'L - Dann = 0:
Un+1sni - SniU'n =0.
m The circuit can be thought of as a collection of simplicial quantum gates

v =u, @ . 1.
0<n’/<oo,n’#n

m The unitary operator U & U(jf(‘x’)) corresponding to the circuit is

v= Il vmw= @ uv.

0<n<oo 0<n<oco
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Simplicial quantum registers and circuits

B A simple simplicial quantum circuit is a unitary simplicial automorphism of J#
, that is a collection of unitary operators U, € U(J4,) with n > 0 such
that for0 <i¢<n
Unlen'L - Dann = 0:

Un+1sni - SniU'n =0.
m The circuit can be thought of as a collection of simplicial quantum gates

v =u, @ . 1.
0<n’/<oo,n’#n

m The unitary operator U & U(jf(‘x’)) corresponding to the circuit is

v= Il vmw= @ uv.

0<n<oo 0<n<oco

m Simple simplicial quantum circuits form a group under degreewise multiplication

and inversion.
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Simplicial quantum registers and circuits

m Simple simplicial quantum circuits can perform only computations at fixed sim-
plicial degree, an important limitation. We need more general circuits for more

general computations.
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Simplicial quantum registers and circuits

m Simple simplicial quantum circuits can perform only computations at fixed sim-
plicial degree, an important limitation. We need more general circuits for more

general computations.

m The simplicial conditions which a general simplicial quantum circuit obeys should

be an appropriate generalization of those obeyed by simple circuits.
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Simplicial quantum registers and circuits

m Simple simplicial quantum circuits can perform only computations at fixed sim-
plicial degree, an important limitation. We need more general circuits for more

general computations.

m The simplicial conditions which a general simplicial quantum circuit obeys should

be an appropriate generalization of those obeyed by simple circuits.

m For @ # A C N afinite subset, the simplicial A-subregister is the finite dimen-

sional Hilbert space

s = D s, c o=
neA
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Simplicial quantum registers and circuits

m Simple simplicial quantum circuits can perform only computations at fixed sim-
plicial degree, an important limitation. We need more general circuits for more

general computations.

m The simplicial conditions which a general simplicial quantum circuit obeys should

be an appropriate generalization of those obeyed by simple circuits.

m For @ # A C N afinite subset, the simplicial A-subregister is the finite dimen-
sional Hilbert space
oy = D 4 c >
neA
m Set ¥ ={-1,+1} and N, = {n'|n € N,0 < n’ <n}. For) # AC Na
finite subset, v € X4 and i € [, c 4 Nn, let X (@) 45 0 A — A, () be
x@ = @ xten) .
neA
where X(=1) v = Dy, XD = 8,0 and 74 (A) = {n + an|n € A}.
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Simplicial quantum registers and circuits

m letp e N, p> 0 A p-ary simplicial quantum circuit consists of a collection
of unitary operators Uy € U(s#4) with A C N and |A| = p such that for all
a€ XA andi€[],cqNn

X 4Us = Ury 4y X 45 =0

NB Simple simplicial quantum circuits are just 1-ary simplicial quantum circuits
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Simplicial quantum registers and circuits

m letp e N, p> 0 A p-ary simplicial quantum circuit consists of a collection
of unitary operators Uy € U(s#4) with A C N and |A| = p such that for all
a€ XA andi€[],cqNn

X 4Us = Ury 4y X 45 =0

NB Simple simplicial quantum circuits are just 1-ary simplicial quantum circuits

m A p-ary quantum circuit can be regarded as a family of simplicial quantum gates

U =0 D 1..
n¢A
Unlike in the simple case, these gates generally do hot commute (the subspaces

24 may have non trivial intersections).
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Simplicial quantum registers and circuits

m letp e N, p> 0 A p-ary simplicial quantum circuit consists of a collection
of unitary operators Uy € U(s#4) with A C N and |A| = p such that for all
a€ XA andi€[],cqNn

X 4Us = Ury 4y X 45 =0

NB Simple simplicial quantum circuits are just 1-ary simplicial quantum circuits

m A p-ary quantum circuit can be regarded as a family of simplicial quantum gates

U =0 D 1..
n¢A
Unlike in the simple case, these gates generally do hot commute (the subspaces

24 may have non trivial intersections).

m The unitary operator U € U(jf("o)) corresponding to the circuit is obtained

by multiplying some subset of simplicial gates in a prescribed order.
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Simplicial quantum registers and circuits

m A simple simplicial quantum circuit can be constructed from the following data:
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Simplicial quantum registers and circuits

m A simple simplicial quantum circuit can be constructed from the following data:

m a pair of parafinite simplicial sets X, X’;
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Simplicial quantum registers and circuits

m A simple simplicial quantum circuit can be constructed from the following data:
m a pair of parafinite simplicial sets X, X’;

m a simplicial morphism ¢ : X — X’;
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Simplicial quantum registers and circuits

m A simple simplicial quantum circuit can be constructed from the following data:
m a pair of parafinite simplicial sets X, X’;
m a simplicial morphism ¢ : X — X’;

m a structure of simplicial group on X'.
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Simplicial quantum registers and circuits

m A simple simplicial quantum circuit can be constructed from the following data:
m a pair of parafinite simplicial sets X, X’;
m a simplicial morphism ¢ : X — X’;

m a structure of simplicial group on X'.
m With ¢ there is associated a simplicial morphism q@ X X X = X x X

(Z)n(o'n, JITL) = (0n7 O'/nd)n(o'n))'

¢3 is invertible even when ¢ is notl

NB The simplicial group structure of X’ is a indispensable element of the con-
struction of (Z)
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Simplicial quantum registers and circuits

m A simple simplicial quantum circuit can be constructed from the following data:
m a pair of parafinite simplicial sets X, X’;
m a simplicial morphism ¢ : X — X’;
m a structure of simplicial group on X'.
m With ¢ there is associated a simplicial morphism q@ X X X = X x X
(Z)n(o'n: Uln) = (0n7 O'/nd)n(o'n))'
¢3 is invertible even when ¢ is not!

NB The simplicial group structure of X’ is a indispensable element of the con-

struction of (Z)
m Define Uy, : @ H'n — H @ H'r, by

Upnl(0n,0"n)) = |6n(om,o'n)).
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Simplicial quantum registers and circuits

m A simple simplicial quantum circuit can be constructed from the following data:
m a pair of parafinite simplicial sets X, X’;
m a simplicial morphism ¢ : X — X’;

m a structure of simplicial group on X'.
m With ¢ there is associated a simplicial morphism q@ X X X = X x X
(Z)n(o'n:gln) = (onvo'/nd)n(o'n))'
¢3 is invertible even when ¢ is notl

NB The simplicial group structure of X’ is a indispensable element of the con-
struction of (Z)

m Define Uy, : @ H'n — H @ H'r, by
U¢n|(0'n7 Uln)) = |(Z>n(0'n7 Jln))-

m Proposition: {Uy, } is a simple simplicial quantum circuit.
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Simplicial quantum registers and circuits

m Example: For a simplicial group G, the simplex sets G, are groups, the mul-
tiplication and inversion maps pyn : Gn X G, — Gn and ¢, @ G — Gp
are defined at each degree n and are the components of simplicial morphisms
pn:GxG— G, and ¢ : G — G. With these there are associated simple simpli-

cial quantum circuits {Uyr} and {U,n} of G x G x G and G x G, respectively.
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Simplicial quantum registers and circuits

m Example: For a simplicial group G, the simplex sets G, are groups, the mul-
tiplication and inversion maps pyn : Gn X G, — Gn and ¢, @ G — Gp
are defined at each degree n and are the components of simplicial morphisms
pn:GxG— G, and ¢ : G — G. With these there are associated simple simpli-
cial quantum circuits {Uyr} and {U,n} of G x G x G and G x G, respectively.

m If {Up} is a simple simplicial quantum circuit, the operators Ua = @,,c 4 Un.
A C Nand |A| = p, constitute a p—ary simplicial quantum circuit. This example

is however frivial.
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Simplicial quantum registers and circuits

m Example: For a simplicial group G, the simplex sets G, are groups, the mul-
tiplication and inversion maps pyn : Gn X G, — Gn and ¢, @ G — Gp
are defined at each degree n and are the components of simplicial morphisms
pn:GxG— G, and ¢ : G — G. With these there are associated simple simpli-

cial quantum circuits {Uyr} and {U,n} of G x G x G and G x G, respectively.

m If {Up} is a simple simplicial quantum circuit, the operators Ua = @,,c 4 Un.
A C Nand |A| = p, constitute a p—ary simplicial quantum circuit. This example

is however frivial.

m One would like to find other more interesting examples simplicial quantum cir-

cuits, especially of simplicial quantum circuit data sefts.
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Simplicial quantum registers and circuits

m Example: For a simplicial group G, the simplex sets G, are groups, the mul-
tiplication and inversion maps pyn : Gn X G, — Gn and ¢, @ G — Gp
are defined at each degree n and are the components of simplicial morphisms
pn:GxG— G, and ¢ : G — G. With these there are associated simple simpli-

cial quantum circuits {Uyr} and {U,n} of G x G x G and G x G, respectively.

m If {Up} is a simple simplicial quantum circuit, the operators Ua = @,,c 4 Un.
A C Nand |A| = p, constitute a p—ary simplicial quantum circuit. This example

is however frivial.

m One would like to find other more interesting examples simplicial quantum cir-

cuits, especially of simplicial quantum circuit data sefts.

m One would also like to find simplicial quantum circuits implementing fruly quan-

tum simplicial algorithms and not just mere classical ones.
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Finite simplicial quantum registers and circuits

m To model realistic simplicial quantum registers and circuits with finite storage
capabilities, it is necessary to set a cut-off K on the simplicial degree of the

relevant parafinite simplicial set X.
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Finite simplicial quantum registers and circuits

m To model realistic simplicial quantum registers and circuits with finite storage
capabilities, it is necessary to set a cut-off K on the simplicial degree of the

relevant parafinite simplicial set X.

m In computational fopology, this is fantamount to replacing X by its K-truncation
trg X.
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Finite simplicial quantum registers and circuits

m To model realistic simplicial quantum registers and circuits with finite storage
capabilities, it is necessary to set a cut-off K on the simplicial degree of the

relevant parafinite simplicial set X.

m In computational fopology, this is fantamount to replacing X by its K-truncation
trg X.

m trx X, however, belongs to the category of K-truncated simplicial sets, which
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Finite simplicial quantum registers and circuits

m To model realistic simplicial quantum registers and circuits with finite storage
capabilities, it is necessary to set a cut-off K on the simplicial degree of the

relevant parafinite simplicial set X.

m In computational fopology, this is fantamount to replacing X by its K-truncation
trg X.

m trx X, however, belongs to the category of K-truncated simplicial sets, which

is related to but distinct from the category of simplicial sets.

m To remain within this latter while essentially keeping the essence of the trunca-

tion operation, one uses the K -skeleton skg X of X.

m Both the truncation trg X and the skeleton skx X may be viewed as a finite

approximation of X in the appropriate sense.

m K -truncation and skelefonization are particularly convenient for their functo-

rial properties.
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Finite simplicial quantum registers and circuits

m In the quantum simplicial framework, to X there corresponds a simplicial Hilbert
space 7.
m The Hilbert simplicial encoding map, which defines the simplex basis Lis a

simplicial set morphism s : X — 7.

m The K-truncation functor trg yields a map trg s : trg X — trg € of K-

truncated simplicial sets with components trg e, = sy, for 0 < n < K.

B The K -skeletonization functor sk yields a map sk s : skxg X — skg 2 of

K -skeletal simplicial sets with components sk s, = 2, for 0 < n < K.

B try S, = sk I, = H;, for n < K and sk ;, C 574, for n > K, where

S, C A is the degenerate n-simplex subspace

m Therefore, the operations of K-truncation and K -skeletonization of X turn
under Hilbert simplicial encoding into the corresponding operations of the as-

sociated simplicial Hilbert space 7.
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m In practice, one works with trg X and trx 5. In more formal considerations,

employing sk X and sk 7 allows to use the analysis carried out so far.
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Finite simplicial quantum registers and circuits

m In practice, one works with trg X and trx 5. In more formal considerations,

employing sk X and sk 7 allows to use the analysis carried out so far.

m The K-skeletonized quantum simplicial register is the infinite dimensional pre-
Hilbert space (sk g #)(°°)

m An K -skeletonized simple simplicial quantum circuit {Up } nen is just a simple

simplicial quantum circuit supported on (sk g jf)(‘x’)

m An K-skeletonized p-ary simplicial quantum circuit {Ua} acw,jaj=p is Just a

p-ary simplicial quantum circuit supported on (skz .7#)(°)

B The theory of skeletonized simplicial quantum registers and circuits needs to

be further developed in a more articulated form.

Roberto Zucchini



Quantum simplicial framework
0000000000000 000eO0000000

Hilbert simplicial homology

m The simplicial homology of a parafinite simplicial set X with coefficients in C
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plicial Hilbert space 1.
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Hilbert simplicial homology

m The simplicial homology of a parafinite simplicial set X with coefficients in C
has a realization in the associated simplicial Hilbert space . and cosim-
plicial Hilbert space 1.

m The Hilbert simplicial boundary operators Qp,, : #5 — Hn—1, n > 1, are

QDn = Z (_1)7Dnz

0<i<n
B By the exchange identities , the Q@ p,, obey the homological relations
Qpn-1Qpn =0.
m For n > 0, there are defined the Hilbert simplicial homology spaces

Hpn () =kerQpn/ranQpni1  (here ker Qpo = H#p).

m The Hilbert cosimplicial coboundary operators are the adjoint operators Qp,,
of QDn-
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m The Qp, T obey cohomological relations by
Qpn1TQprT =0.
B For n > 0, there are defined the Hilbert cosimplicial cohomology spaces
Hp™(#") =ker Qpni1t/ranQpn™ (here ran Qpot = 0).
m Simplicial Hodge theorem: for n > 0,
Hy,(X,C) ~ Hpy, () ~ Hp™ (") ~ ker Hppn,
where Hp p., is the simplicial Hodge Laplacian
Hppn = Qpn " Qpn + QDn+1QDnt1™
NB This is analogous to Hodge theory of de Rham cohomology.

m The computation of Hy (X, C) is reduced to that of ker Hppn. Hppyn has a

simpler structure for quasi perfect simplicial sets
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m Such computation may be costly, as it involves also the degenerate simplex sub-
spaces 7, of the simplex Hilbert spaces 77, , which are homologically

irrelevant by the normalization theorem

. n—1
Hn = Ei:O ran Sp—14,
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m Such computation may be costly, as it involves also the degenerate simplex sub-
spaces 7, of the simplex Hilbert spaces 77, , which are homologically

irrelevant by the normalization theorem
SHy = Z?;()l ran S, _1;,
B The abstract non degenerate n-simplex spaces are
Hon = Ko |59,

B As QpnS#;, C S#;,—1, the Qp,, induce an abstract normalized Hilbert sim-
plicial boundary operators Qp,, : #»n — #n—_1 obeying the homological
relations

Qpn-1Q@p, = 0.

m The abstract normalized Hilbert simplicial homology spaces are

Hpn(H) =kerQp,/ranQp, 41 (here ker Qpg = #0).
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m Abstract Hilbert normalization theorem: for every n > 0, one has

H, (X, C) ~ Hpn, (72).

NB This is just the normalization theorem.
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m Abstract Hilbert normalization theorem: for every n > 0, one has
H, (X,C) ~ Hp, (7).
NB This is just the normalization theorem.

m The computation of the abstract homology is not fractable with standard quan-

tum algorithmic techniques.
m In fact, the abstract spaces ##,, are non Hilbert complex vector spaces.

m A fruly Hilbertian framework is required.
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Normalized Hilbert simplicial homology

m Abstract Hilbert normalization theorem: for every n > 0, one has
H,(X,C) ~ Hp, ().
NB This is just the normalization theorem.

m The computation of the abstract homology is not fractable with standard quan-

tum algorithmic techniques.
m In fact, the abstract spaces ##,, are non Hilbert complex vector spaces.

m A fruly Hilbertian framework is required.

m The orthogonal projector I, on S, is
Hn = 171 - H (1n - H'n'i)
0<i<n—1

where the I1,,; are the orthogonal projectors on ran Sy, _1;,

Hpi = Sn-1iSn—1:" = Spit1 1 Sni = Snit Snit1.
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Normalized Hilbert simplicial homology

m The concrete non degenerate n—simplex spaces are
. o L
o = A

B The Qp, give rise o a concrete normalized Hilbert simplicial boundary oper-

ators “Qpn, : 4, — “Hp—_1, Viz
CQDn = (177.—1 - Hn—l)QDn|c%h
which obeys the homological relations

CQanlCQDn =0.
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m The concrete non degenerate n—simplex spaces are
. o L
o = A

B The Qp, give rise o a concrete normalized Hilbert simplicial boundary oper-

ators “Qpn, : 4, — “Hp—_1, Viz
‘Qon = (In-1 = Mn-1)QDn|cyy,
which obeys the homological relations
‘Qpn-1°Qpn = 0.
m The concrete normalized Hilbert simplicial homology spaces are
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Normalized Hilbert simplicial homology

m The concrete non degenerate n—simplex spaces are
A, =" .

B The Qp, give rise o a concrete normalized Hilbert simplicial boundary oper-

ators “Qpn, : 4, — “Hp—_1, Viz

‘Qon = (In-1 = Mn-1)QDn|cyy,
which obeys the homological relations
‘Qpn-1°Qpn = 0.
m The concrete normalized Hilbert simplicial homology spaces are
Hpn(“9€) = ker “Qpn/ran “Qpn+1 (here ker “Qpo = “%).
m Concrete Hilbert normalization theorem: for every n. > 0, the isomorphism
H, (X,C) ~ Hp, (7).

holds
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crete homology spaces (not distinguished henceforth)

HDn(?) = HDn(C%)
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Normalized Hilbert simplicial homology

m The verification proceeds by showing the isomorphism of the abstract and con-

crete homology spaces (not distinguished henceforth)

HDn(’;f) = HDn(C;f)
m The proof of the isomorphism is achieved by constructing a chain equivalence
of the Hilbert chain complexes (47, Qp). (°%7,°Qp).

m The chain equivalence is a sequence of chain operators I, : S, — S,
Jn 1 oy — > 0, such that the composite operators J,In, InJy are

chain homotopic to 1., €1, respectively.

m [, is the operator induced by the orthogonal projector 1,, — II,, by virtue of
the fact that %77, = ker(1,, — I1y,). Jy, is the canonical projection of <7, onto

m As a matter of fact, I,,, J,, are reciprocally inverse.
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m Normalized simplicial Hodge theorem: for n > 0,
Hy, (X,C) ~ker “Hppn,
where “H p py, iS the normalized Hilbert simplicial Hodge Laplacian

“Hppn = “Qpn " “Qpn + “QDnt1°Qpnt1 -
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Normalized Hilbert simplicial homology

m Normalized simplicial Hodge theorem: for n > 0,
Hy, (X,C) ~ker “Hppn,
where “H p py, iS the normalized Hilbert simplicial Hodge Laplacian
“Hppn = “QpntQpn + “QDn+1°Qoni1 -

m The theorem provides a potentially more efficient way of computing the simpli-

cial homology H(X, C) of X with complex coefficients.
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Simplicial quantum circuits computing hormalized simplicial homology

m Homological computations can be performed using simplicial quantum circuits.
m For definiteness, consider a simple simplicial quantum circuit {Un }nen

B The degenerate n-simplex space ®7#, is invariant under U, as I, projects

on 53, and commutes with U, .

m The orthogonal complement <7, = s+ is then also invariant under U,,, as

Uy, is unitary.
m The restriction U, of U, to %, is a unitary operator of <7,.

B The circuit defines a unitary chain operator of the normalized Hilbert simplicial
chain complex:
C(]n—lcchn - CQDncUn =0.
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Simplicial quantum circuits computing hormalized simplicial homology

m Homological computations can be performed using simplicial quantum circuits.
m For definiteness, consider a simple simplicial quantum circuit {Un }nen

B The degenerate n-simplex space ®7#, is invariant under U, as I, projects

on 53, and commutes with U, .

m The orthogonal complement <7, = s+ is then also invariant under U,,, as

Uy, is unitary.
m The restriction U, of U, to %, is a unitary operator of <7,.

B The circuit defines a unitary chain operator of the normalized Hilbert simplicial
chain complex:
C(]n—lcchn - CQDncUn =0.

B As a consequence, each circuit component €U, yields an automorphism of
Hpn (%), hence of Hy, (X, C) ~ Hp,, (9F).

Roberto Zucchini



Quantum simplicial framework
0000000000000 0O000O0000000e

Simplicial quantum circuits computing hormalized simplicial homology

m Each component <U,, commute also with the normalized Hilbert simplicial Lapla-
cian *“Hppn

‘Hppn°Un — “UnHppn = 0.
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Simplicial quantum circuits computing hormalized simplicial homology

m Each component <U,, commute also with the normalized Hilbert simplicial Lapla-
cian *“Hppn

‘Hppn°Un — “UnHppn = 0.

® The homology automorphism is in this way realized as an action of U, on

kerHppp.
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Digital encoding a simplicial set

m The digital encoding of the simplices of a given parafinite simplicial set X is
a precondition for the implementation of simplicial set based algorithms of

computational topology in a quantum computer.

Roberto Zucchini



Quantum simplicial implementation
000000000000 000000

Digital encoding a simplicial set

m The digital encoding of the simplices of a given parafinite simplicial set X is
a precondition for the implementation of simplicial set based algorithms of

computational topology in a quantum computer.

B The full simplex set of the K -fruncation trg X of X is

X = || Xa.
0<n<K

Roberto Zucchini



Quantum simplicial implementation
000000000000 000000

Digital encoding a simplicial set
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Digital encoding a simplicial set

m The digital encoding of the simplices of a given parafinite simplicial set X is
a precondition for the implementation of simplicial set based algorithms of

computational topology in a quantum computer.

B The full simplex set of the K -fruncation trg X of X is

X = || Xa.
0<n<K

m To encode the simplices of X(X), one needs a k-bit register with
k> kxx :=min{l|l € N,[XF)| < 2!}
m A digital encoding of trx X in a k-bit register consists in a bijective mapping
x : XE) 5 X, (K) where X, (K) C Bok is a k-bit string set such that

Xy )| = | XE)|. (B = {0,1} be the digital Boolean domain.) There are
altogether | X (K)|! encodings with a given range Xo C Bok.
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m The digital encoding of the simplices of a given parafinite simplicial set X is
a precondition for the implementation of simplicial set based algorithms of

computational topology in a quantum computer.

B The full simplex set of the K -fruncation trg X of X is

X = || Xa.
0<n<K

m To encode the simplices of X(X), one needs a k-bit register with
k> kxx :=min{l|l € N,[XF)| < 2!}
m A digital encoding of trx X in a k-bit register consists in a bijective mapping
x : XE) 5 X, (K) where X, (K) C Bok is a k-bit string set such that

Xy )| = | XE)|. (B = {0,1} be the digital Boolean domain.) There are
altogether | X (K)|! encodings with a given range Xo C Bok.

m The viability of an encoding x depends on the specific features of X.
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Digital encoding a simplicial set

B An encoding x creates a digitized image of the simplices and the face and

degeneracy maps of trx X in the register.
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Digital encoding a simplicial set

B An encoding x creates a digitized image of the simplices and the face and

degeneracy maps of trx X in the register.
B The subsets Xyn := x(Xn) C Xy (&) constitute a partition of X, (F),

XX(K> = l_l Xxn-
0<n<K
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Digital encoding a simplicial set

B An encoding x creates a digitized image of the simplices and the face and

degeneracy maps of trx X in the register.
B The subsets Xyn := x(Xn) C Xy (&) constitute a partition of X, (F),

X B = ] Xyn.
0<n<K

m The restrictions x X, of x to the X, induce bijective maps xn : Xn — Xxn
and through these maps dyn; : Xyn =+ Xyn—-1, 1<n < K,i=1,...,n,and
Syni : Xxyn =+ Xyn+1, 0<n < K —1,i=1,...,n, can be defined,

dxni = Xn—ldnan71:
Sxni = Xn+15nan71-

The dyni, syni Obey the simplicial relations
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Digital encoding a simplicial set

B An encoding x creates a digitized image of the simplices and the face and

degeneracy maps of trx X in the register.
B The subsets Xyn := x(Xn) C Xy (&) constitute a partition of X, (F),

X B = ] Xyn.
0<n<K

m The restrictions x X, of x to the X, induce bijective maps xn : Xn — Xxn
and through these maps dyn; : Xyn =+ Xyn—-1, 1<n < K,i=1,...,n,and
Syni : Xxyn =+ Xyn+1, 0<n < K —1,i=1,...,n, can be defined,

dxni = Xn—ldnan71:
Sxni = Xn+15nan71-
The dyni, syni Obey the simplicial relations

m When X is replaced by its K-truncation trg X, the simplicial Hilbert space of
 of X is replaced by its K-fruncation try 7.
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Digital encoding a simplicial set

B The quantum register for the simplicial data of trx X is the Hilbert space

0<n<K

dim #27(K) = | X(K)|.
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Digital encoding a simplicial set

B The quantum register for the simplicial data of trx X is the Hilbert space

0<n<K

dim #27(K) = | X(K)|.

m The digital encoding x of X(X) into the k-bit register X, (%) yields a unitary
operator Uy, : #/F) — 75, with 74,5 C C2®F,

Uy = Z Z |X‘7n>k<‘7n|- (4.1)
0<n<K op€Xn

(the |€),,. € € B2¥, constitute the computational basis of C2®%.)
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Digital encoding a simplicial set

B The quantum register for the simplicial data of trx X is the Hilbert space

0<n<K
dim 7 (F) = | X ()|,

m The digital encoding x of X(X) into the k-bit register X, (%) yields a unitary
operator Uy, : #/F) — 75, with 74,5 C C2®F,

Uy = Z Z |X‘7n>k<‘7n|- (4.1)
0<n<K op€Xn

(the |€),,. € € B2¥, constitute the computational basis of C2®%.)

m U, creates a quantum digitized image of the simplex basis and the face and

degeneracy operators of s#) in s, (O,
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Digital encoding a simplicial set

B The quantum register for the simplicial data of trx X is the Hilbert space

0<n<K
dim s2) = | x(F)|.

m The digital encoding x of X(X) into the k-bit register X, (%) yields a unitary
operator Uy, : #/F) — 75, with 74,5 C C2®F,

Uy = Z Z |X‘7n>k<‘7n|- (4.1)
0<n<K op€Xn

(the |€),,. € € B2¥, constitute the computational basis of C2®%.)

m U, creates a quantum digitized image of the simplex basis and the face and

degeneracy operators of s#) in s, (O,
B With %, = Uy, 74,5 decomposes as

H,E) = D A
0<n<K
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Digital encoding a simplicial set

m The restrictions Ux!,;.f induce unitary operators Uypn : 5 — Hn and
through these operators Dy : Hn = HBm—1,. 1 <n < K, i=1,...,n,
ani Zﬂxn %%n+1,0SHSK—1,i:1,...,7L,

-1
Dxni = anlenian ’

-1
ani an+1Snian .

The Dyni, Dyn; Obey the exchange identities
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Digital encoding a simplicial set

m The restrictions Ux!,;.f induce unitary operators Uypn : 5 — Hn and
through these operators Dy : Hn = HBm—1,. 1 <n < K, i=1,...,n,
ani Zﬂxn %%n+1,0SHSK—1,i:1,...,7L,

Dxni = anlenian_l:
ani = an+1SniUX'n71-
The Dyni, Dyn; Obey the exchange identities

m In the computational basis

Dyni= 2. ldyni€n)yp(€nl,

En€Xxn

Sx’m’ = Z |5)(ni€n)kk<§’n"

&n€Xxn
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Digital encoding a simplicial set

m The restrictions Uy induce unitary operators Uypn : 5 — Hn and

|z
through these operators Dy : Hn = HBm—1,. 1 <n < K, i=1,...,n,

Syni : Hxn = Hym1, 0<n<K—-11i=1,...,n,
Dyni = Uxn—1DniUxn ™,
Syni = Uxn+1SniUxn "
The Dyni, Dyn; Obey the exchange identities

m In the computational basis

Dyni= 2. ldyni€n)yp(€nl,

En€Xxn

S)('m' = Z |5)(ni€n)kk<§’n"

&n€Xxn

m x should be selected judiciously in such a way to yield a simple digitized image

of the simplices and the face and degeneracy maps of X (5.
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Digital encoding a simplicial set

m There is no general prescription for that and x must be chosen on a case by

case basis.
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Digital encoding a simplicial set

m There is no general prescription for that and x must be chosen on a case by
case basis.

m By contrast, in the simplicial complex framework (S. Lloyd et al. (2014)) there
is a canonical encoding of the simplices of the relevant simplicial complex in
terms of which the boundary maps have a simple form.
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Counting and parametrizing simplices

m Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.
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Counting and parame

m Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.

m For parafinite simplicial set X, let $X,,, X, = Xy, \ * Xy, C X, be the subsets

of degenerate and non degenerate n-simplices, respectively.
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Counting and parametrizing simplices

m Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.

m For parafinite simplicial set X, let $X,,, X, = Xy, \ * Xy, C X, be the subsets

of degenerate and non degenerate n-simplices, respectively.

m Theorem (Eilenberg-Zilber (1950)): for each n € N, each simplex o,, € X,

has a unique representation o, = Sp—1j, _,. 1 SmjoTm, where m < n,
Tm € Xnand 0 < jo < ...<jn-m—-1<n—1
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Counting and parame

m Counting simplices is essential for the management of the resources of a sim-
plicial quantum computer.

m For parafinite simplicial set X, let $X,,, X, = Xy, \ * Xy, C X, be the subsets
of degenerate and non degenerate n-simplices, respectively.

m Theorem (Eilenberg-Zilber (1950)): for each n € N, each simplex o,, € X,

has a unique representation o, = Sp—1j, _,. 1 SmjoTm, where m < n,
Tm € Xnand 0 < jo < ...<jn-m—-1<n—1

m By the theorem, the number |X,,| of n-simplices can be expressed in terms of

the numbers |©X,,| of non degenerate m-simplices with m < n as

Xal= 2 (%)X,

0<m<n M
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Counting and parametrizing simplices

m Counting simplices is essential for the management of the resources of a sim-
plicial quantum computer.

m For parafinite simplicial set X, let $X,,, X, = Xy, \ * Xy, C X, be the subsets
of degenerate and non degenerate n-simplices, respectively.

m Theorem (Eilenberg-Zilber (1950)): for each n € N, each simplex o,, € X,

has a unique representation o, = Sp—1j, _,. 1 SmjoTm, where m < n,
Tm € Xnand 0 < jo < ...<jn-m—-1<n—1

m By the theorem, the number |X,,| of n-simplices can be expressed in terms of

the numbers |©X,,| of non degenerate m-simplices with m < n as

Xal= 2 (%)X,

0<m<n M

B An indicator of the incidence of degenerate n-simplices is the ratio
OXn = |X7L|/‘6Xn‘-

While oxg = 1, oxn, Gs a rule grows very rapidly as n gets large.
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Counting and parame

m The total number of simplices of an K-truncation of X is

K+1
XE = 3 IXal = (121l
0<n<K o<m<k \m+1
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Counting and parametrizing simplices

m The total number of simplices of an K-truncation of X is

K+1
XE = x| = N
K

(e
0<n< o<m<k \m+1

m The confent of the non degenerate n-simplex sets ¢X,, depends on the un-

derlying simplicial set X.
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Counting and parametrizing simplices

m The total number of simplices of an K-truncation of X is
K+1
XUO1= 3 Xal= >3 (7 )IXml.
0<n<K o<m<k \m+1
m The confent of the non degenerate n-simplex sets ¢X,, depends on the un-
derlying simplicial set X.
m Example: the simplicial set K®y, of a finite ordered discrete simplicial complex
Py . For every n, K, Py is the set of all n-element ordered submultiset of an

ordered vertex set V = {vo,...,vq}.
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Counting and parametrizing simplices

m The total number of simplices of an K-truncation of X is
K+1
XUO1= 3 Xal= >3 (7 )IXml.
0<n<K 0<m<K sm+1
m The confent of the non degenerate n-simplex sets ¢X,, depends on the un-

derlying simplicial set X.

m Example: the simplicial set K®y, of a finite ordered discrete simplicial complex
Py . For every n, K, Py is the set of all n-element ordered submultiset of an

ordered vertex set V = {vo,...,vq}.

m The non degenerate n-simplices of K,,®y are the n-element ordered

submultiset of V' with no repeats. Their number is

d+1

¢ Iy = <

1 Kn Py | (n+1) for n < d,
=0 forn>d

(the same as the number of n-simplices of the complex Py, ).
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Counting and parametrizing simplices

m The number of hon degenerate n-simplices such that n < K with K <d
is found from here to be given by the expression

d+1
R

p 2)2F1(1,—d+K+1;K+3; ~1).
0<n<K

The total humber of non degenerate simplices is so 241 — 1.
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Counting and parametrizing simplices

m The number of hon degenerate n-simplices such that n < K with K <d

is found from here to be given by the expression

d+1
R

p 2)2F1(1,—d+K+1;K+3; ~1).
0<n<K

The total humber of non degenerate simplices is so 241 — 1.

m The number of n-simplices of K@y for n < d

n d+n-+1
Knovl= 3 (")1ekmoy| = ( ):
0<m<n m. n-+1
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Counting and parametrizing simplices

m The number of hon degenerate n-simplices such that n < K with K <d
is found from here to be given by the expression

d+1
Z |CK7L<(/)V| :2d+1—1—< +
0<n<K K+2

)2F1(1,—d+K+1;K+3; ~1).
The total humber of non degenerate simplices is so 241 — 1.
m The number of n-simplices of K@y for n < d
n d+n-+1
Knovl= 3 (")1ekmoy| = ( ):
0<m<n m. n-+1
B The fotal fo non degenerate n-simplex ratio of K®y for n < d is

ocoyn = IKnv |/ Huv = (VTN (00,

and satisfies

ekoyn =1+0(n?/d) for 1 <n<d'l?
22d+1

= W[l +0(d™ 1, (n—d)logyd)] for 1< n —d.
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Counting and parametrizing simplices

m For K < d, the number of simplices of the K—truncation trx K®y is

d+K+2>7

Koy = ( d+1
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Counting and parametrizing simplices

m For K < d, the number of simplices of the K—truncation trx K®y is

d+K+2>7

Koy = ( d+1

m The encoding of trxg KPy needs xkgp,, k = log, |K(K>(ﬁv\ bits, where
HKpy K
_ ed\ K d 2 1/2
= log, [(?) W} 1 O(1/K,K?/d) forl< K < d'/?,
=2d+ 2 — 1 logy(md) + O(d™', (K — d)logyd) for 1 < K —d.

To encode all the simplex data in degree n < d one needs a 2(d + 1)-bit
register for the simplicial set K%y, comparable with the d + 1-bit register

required for the underlying simplicial complex &Py, .
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Counting and parametrizing simplices

m For K < d, the number of simplices of the K—truncation trx K®y is

d+K+2>7
d+1

m The encoding of trxg KPy needs xkgp,, k = log, |K(K>(ﬁv\ bits, where

|KE) gy | = (

KKy K

_ ed K d 2 1/2
= log, [(?) W}JrO(l/K,K Jd) for 1< K < d'/?,

=2d+ 2 — 1 logy(md) + O(d™', (K — d)logyd) for 1 < K —d.

To encode all the simplex data in degree n < d one needs a 2(d + 1)-bit
register for the simplicial set K%y, comparable with the d + 1-bit register
required for the underlying simplicial complex &Py, .

m If & is an ordered finite simplicial complex with vertex set V' = Verty,
[°Kn®Pv|. |KnPy| etc. constitute upper bounds for [°K, S|, |[KnS| etfc,

respectively.

Roberto Zucchini



Quantum simplicial implementation
000000000 e00000000

Counting and parametrizing simplices

m The simplices of a truncation trx K%y of K%y, can be digitally encoded in a
(d + 1)r-bit register with r is an integer such that r > logs (K + 2).
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Counting and parametrizing simplices

m The simplices of a truncation trx K%y of K%y, can be digitally encoded in a
(d + 1)r-bit register with r is an integer such that r > logs (K + 2).

m A (d+ 1)r-bit string can be represented as (zo, ..., zq). Where the x4

are r-bit strings, which one views as integers in the range 0 to 2" — 1.
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Counting and parametrizing simplices

m The simplices of a truncation trx K%y of K%y, can be digitally encoded in a

(d + 1)r-bit register with r is an integer such that r > logs (K + 2).

m A (d+ 1)r-bit string can be represented as (zo, ..., zq). Where the x4
are r-bit strings, which one views as integers in the range 0 to 2" — 1.
mFor0<a<dlety,: I—|O<n Kn®yv — N be the a—th vertex counting

map: if on € Kn®Py, then pq(on) is the number of occurrences of the
vertex vq in op,.
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Counting and parametrizing simplices

m The simplices of a truncation trx K%y of K%y, can be digitally encoded in a
(d + 1)r-bit register with r is an integer such that r > logs (K + 2).

m A (d+ 1)r-bit string can be represented as (zo, ..., zq). Where the x4
are r-bit strings, which one views as integers in the range 0 to 2" — 1.
mFor0<a<dlety,: I—|O<n Kn®yv — N be the a—th vertex counting
map: if o, € Kn®Py, then ;a(an) is the number of occurrences of the

vertex vg in on.
B An encoding x of trx K®y is a bijection x : K Py — K, )@y,
where
KOy, = {(:co,...,xd) 0<2. <K+1,0< Y 4 §K+1}.
0<a<d
and for oy, € KnPy withn < K,

x(on) = (po(on), .-, palon)).

Notice that Kyn®Py = {(20,...,%d)| D g<qcqg®a =1+ 1}
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Counting and parametrizing simplices

m This generalizes the bit parametrization of the simplicial complex ®y,.
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Counting and parame

m This generalizes the bit parametrization of the simplicial complex ®y,.

m The face and degeneracy maps dyn;i. syni Of The encoding read as

dyni(®o,...,%q) = (ro — Foi(®0,...,%q), .-, Tq — Fai(20, ..., %a)),
Sxni(Zo, -+ xq) = (zo +Joi(z0, -+, Ta), -, xq + Vai(zo, ..., 2q))-
for (zg,...,xq) € Kyn Py, where for (zq,...,zq) € N+,

Vai(z0,. . mg) =1 if D, wp<i< D ap,
0<b<a 0<b<a

0 else.
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Disposing of degenerate simplices

m Disposing of degenerate simplices in a quantum simplicial algorithm reduces to
projecting the quantum register 5 onto its subspace <2 (¥) spanned by

the non degenerate n-simplex spaces <7, with 0 < n < K,

B = P .

0<n<K
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Disposing of degenerate simplices

m Disposing of degenerate simplices in a quantum simplicial algorithm reduces to
projecting the quantum register 5 onto its subspace <2 (¥) spanned by

the non degenerate n-simplex spaces <7, with 0 < n < K,

B = P .

0<n<K
m Orthogonal projectors cannot be part of any quantum circuits, as they are not

unitary.
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Disposing of degenerate simplices

m Disposing of degenerate simplices in a quantum simplicial algorithm reduces to
projecting the quantum register 5 onto its subspace <2 (¥) spanned by
the non degenerate n-simplex spaces <7, with 0 < n < K,

B = P .
0<n<K
m Orthogonal projectors cannot be part of any quantum circuits, as they are not

unitary.

m The projection can be achieved nevertheless compatibly with unitarity using
Grover's quantum search algorithm (L. K. Grover (1996)) in the variant based

on amplitude amplification (G. Brassard and P. Hoyer (1997)).
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Disposing of degenerate simplices

m Disposing of degenerate simplices in a quantum simplicial algorithm reduces to
projecting the quantum register 5 onto its subspace <2 (¥) spanned by
the non degenerate n-simplex spaces <7, with 0 < n < K,

B = P .
0<n<K
m Orthogonal projectors cannot be part of any quantum circuits, as they are not

unitary.

m The projection can be achieved nevertheless compatibly with unitarity using
Grover's quantum search algorithm (L. K. Grover (1996)) in the variant based

on amplitude amplification (G. Brassard and P. Hoyer (1997)).

m The quantum computer is initialized in a state that is a uniform superposition

of all n—simp lex states |oy),

léon) = D lom)|Xn|"1/2

on€Xn
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Disposing of degenerate simplices

and through the algorithm evolves unitarily toward a state which constitutes a

uniform superposition of all non degenerate n-simplex states |oy,),

[on) = D lown)|Xn] 712

on€°Xn
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Disposing of degenerate simplices

and through the algorithm evolves unitarily toward a state which constitutes a

uniform superposition of all non degenerate n-simplex states |oy,),

[on) = D lown)|Xn] 712

on€°Xn

m The algorithm comprises two stages:
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Disposing of degenerate simplices

and through the algorithm evolves unitarily toward a state which constitutes a

uniform superposition of all non degenerate n-simplex states |oy,),

[on) = D lown)|Xn] 712

on€°Xn
m The algorithm comprises two stages:

m i) the preparation of the state |y );
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Disposing of degenerate simplices

and through the algorithm evolves unitarily toward a state which constitutes a

uniform superposition of all non degenerate n-simplex states |oy,),

[on) = D lown)|Xn] 712

on€°Xn
m The algorithm comprises two stages:

m i) the preparation of the state |y );

m i) the production of the state |°£o,,) from [£on).
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Disposing of degenerate simplices

and through the algorithm evolves unitarily toward a state which constitutes a

uniform superposition of all non degenerate n-simplex states |oy,),

[on) = D lown)|Xn] 712

on€°Xn
m The algorithm comprises two stages:
m i) the preparation of the state |£on);

m i) the production of the state |°£o,,) from [£on).

m In stage 4, the state |£oy) is yielded by the action of an appropriate unitary

operator W, on some fiducial reference state |0y}, so that

‘£On> = Wn‘0n>~ (4.2)
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Disposing of degenerate simplices

and through the algorithm evolves unitarily toward a state which constitutes a

uniform superposition of all non degenerate n-simplex states |oy,),

[on) = D lown)|Xn] 712

on€°Xn
m The algorithm comprises two stages:
m i) the preparation of the state |£on);

m i) the production of the state |°£o,,) from [£on).

m In stage 4, the state |£oy) is yielded by the action of an appropriate unitary

operator W, on some fiducial reference state |0y}, so that
‘£On> = Wn‘0n>~ (4.2)

m In stage ii, the state |°£o,,) is generated by p,, iteration of the unitary Grover
operator G,
[“€on) = GnP™[€on)- (43)
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Disposing of degenerate simplices

m The Grover operator Gy, = —Wy Don Wyt Dy, where Doy, = 1y, — 2|0 ) (0n)|
is the conditional sign flip operator of the reference state |o,) and D, is the

(oracular) conditional sign flip operator of the non degenerate simplex states

lon).
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Disposing of degenerate simplices

m The Grover operator Gy, = —Wy Don Wyt Dy, where Doy, = 1y, — 2|0 ) (0n)|
is the conditional sign flip operator of the reference state |o,) and D, is the
(oracular) conditional sign flip operator of the non degenerate simplex states
lon).

m The Grover iteration number p,, = [%gxnl/ﬂ. If the total to non degenerate
n-simplex ratio oxn is unknown, it can be determined using a quantum
counting algorithm (G. Brassard et al. (1998)), which computes the eigenvalues
e*0n of G, related to px, by sin(6n/2) = oxn /2.
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Disposing of degenerate simplices

m The Grover operator Gy, = —Wy Don Wyt Dy, where Doy, = 1y, — 2|0 ) (0n)|
is the conditional sign flip operator of the reference state |o,) and D, is the
(oracular) conditional sign flip operator of the non degenerate simplex states
lon).

m The Grover iteration number p,, = [%gxnl/ﬂ. If the total to non degenerate
n-simplex ratio oxn is unknown, it can be determined using a quantum
counting algorithm (G. Brassard et al. (1998)), which computes the eigenvalues

e*0n of G, related to px, by sin(6n/2) = oxn /2.

m The fwo steps contribute additively to the algorithm’'s complexity.

Roberto Zucchini



Quantum simplicial implementation
000000000000 00e000

Computation of normalized homology

m Computing the simplicial cohomology H™ (X, C) for 0 < n < K in the truncation

X(E) js equivalent to determining ker Hp p ), where

“HppT) = Y. (“Hppn —kn°Qpr+1°QpK+17)
0<n<K
see . (The subtracted term for n = K is due to the the operators

‘QDK+1. CQDK+1+ being excluded by the truncation.)
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Computation of normalized homology

m Computing the simplicial cohomology H™ (X, C) for 0 < n < K in the truncation

X(E) js equivalent to determining ker Hp p ), where

“HppT) = Y. (“Hppn —kn°Qpr+1°QpK+17)
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m Computing the simplicial cohomology H™ (X, C) for 0 < n < K in the truncation

X(E) js equivalent to determining ker Hp p ), where

“HppT) = Y. (“Hppn —kn°Qpr+1°QpK+17)
0<n<K
see . (The subtracted term for n = K is due to the the operators

‘QDK+1. CQDK+1+ being excluded by the truncation.)

m The determination of ker H p p (K) proceeds by the quantum phase estimation
methods (D. S. Abrams and S. Lloyd (1999)).

m This involves the unitary operators exp(z‘TCHDD(K)) for varying T constructed
via a Hamiltonian simulation algorithm (R. P. Feynman (1982)). The algorithm's
complexity depends inversely on the sparsity of the Hamiltonian (S. Lioyd (1996);
D. Aharonov and A. Ta-Shma (2003); D. W. Berry et al. (2014)). So, one uses
exp(iT¢BU)), with ¢ BUS) q Hermitian operator sparser than ¢HppK) such
that ker € B(E) = ker ©Hpp ().
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m <Bp &) can be chosen to be the Dirac operator of *Hpp (¥, a distinguished

Hermitian operator obeying ¢Bp ()2 = cHp (),

Bp®) = (“QDn+1+Qpnt1 ™).
0<n<K-1

m In the quantum phase estimation algorithm, one adjoins next to the 'vector’
register <2(K) a large by—bit 'clock’ register C2®%t so that the total Hilbert

space is C2®bt @ <(K)_ States are described as density operators.
® The quantum computer is initialized in the mixed state
% pon = [0} (0] ® ®pon.-
where ©pgy, is the uniform mixture of all non degenerate n-simplex states,

“on = "Xl Tl = 3 fon)lXnl"Hol.
on€°Xn
(This corresponds to the initial state [°£on)(€on | Of the Grover algorithms for

the projection onfo the non degenerate simplex subspace e (K))
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Computation of normalized homology

m The algorithm evolves unitarily the state ““pg,, in an entangled state of the

clock and vector registers.

m A measurement of the clock register is carried out. The clock value 0 is found
with probability dimker “Hpp g /| Xn|.

m Upon iteration of the algorithm, the clock value 0 is eventually found. The

computer is then in the mixed state

“pppn =10),4{0| ® “PDDn;

where €pppy is the uniform mixture of all non degenerate n-simplex states

of kerCHDDKn,
€oppn :=dimker “Hpprn 1°PppKn,
¢ Pp p xn denoting the orthogonal projection operator of <7, ontoker “Hp p k.

The frequency with which 0 occurs is recorded.
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m By the isomorphism ker Hp p,, ~ Hp, (%), the final state of the quantum
computer encodes the homology space Hp,, (%5¢). Further, the frequency with
which the clock value 0 occurs furnishes directly the Betti numbers 3, (X, C) =

dimkerCHDDKn.
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Computation of normalized homology

m By the isomorphism ker Hp p,, ~ Hp, (%), the final state of the quantum
computer encodes the homology space Hp,, (%5¢). Further, the frequency with
which the clock value 0 occurs furnishes directly the Betti numbers 3, (X, C) =
dimker “Hppgn.

m The value of by depends on number of bits and the precision desired for the

estimation of the eigenvalues of ¢Bp ).

The algorithm involves the use of
bt -bit Welsh-Hadamard and quantum Fourier transforms with combined com-
plexity O(b:2) and one call of an oracular unitary operator Upk; computing
exp(i29¢Bp () for each j with 0 < j < by — 1. The complexity of the Up

depend on the Hamiltonian simulation algorithm employed.
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m Our conclusions are just a wish-to—do item list.
m Understand better the defect structure of the quantum simplicial set-up.

m Refine the notion of simplicial quantum circuits. Find simplicial quantum circuits

implementing truly quantum simplicial algorithms.
m Improve the complexity analysis of simplicial quantum algorithms.
m Study the feasibility of quantum algorithms for homotopy computations.

m Concrete applications (maybe ?).
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Thank you for your attention!
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