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Introduction

Computational topology is the study of topological invariants of topological

spaces by the methods of algebraic topology and computer science:

computational 3–manifold theory;

computational knot theory;

computational homotopy theory;

computational homology theory;

topological data analysis.

Computational topology involves:

a wide range of applications;

formidable computational challenges.

In computational topology, many topological spaces embedded in Euclidean

spaces are analyzed by associating abstract simplicial complexes to samplings

of them mostly using the techniques of persistent simplicial homology.
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Simplicial approaches

A simplicial complex associated to a sampling (from A. Zomorodian (2010)).

In spite of their simplicity and intuitiveness, abstract simplicial complexes suffer

a number of drawbacks:

the product and quotient of two simplicial complexes are defined only

under restrictive conditions;

face identification is not possible in a simplicial complex;

the simplicial complexes usually employed (e.g Čech, Vietoris–Rips, wit-

ness, alpha, mapper etc. complexes) are characterized by an explosive

growth in the number of simplices as the size of the sampling gets large;

reduction methods to curtail the size of these complexes (e.g. Whitehead’s

simplicial contraction) have limited usefulness.
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Simplicial complexes vs. sets

It is reasonable to search for alternative simplicial approaches to computational

topology free of these shortcomings.

The limitations of abstract simplicial complex theory can be traced back to

its regarding as admissible only simplices which are non degenerate and have

distinct faces and forbidding distinct simplices to share the same set of faces.

Simplicial set theory is a generalization of simplicial complex theory which dis-

penses with this restrictions allowing for a wider range of options:

simplicial sets allow for both non degenerate and degenerate simplices and

simplices with identified faces;

distinct simplices sharing the same set of faces are allowed in simplicial

sets;

the product, quotient and identification operations are always possible for

simplicial sets;

simplicial complexes are special cases of simplicial sets.
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Simplicial complexes vs. sets

The 7 possible 2-simplices in a simplicial set. The triangle abc is the only one

allowed in a complex (from A. Zomorodian (2010)).

Two torus triangulations (from D. Bernoulli (2016))

Simplicial sets furnish streamlined simplicial models of topological spaces:

a 2d torus can be represented as a simplicial set with 1 vertex, 3 edges

and 2 triangles, while as a simplicial complex with at least 7 vertices and

many more edges and triangles;

describing 3d sphere as a simplicial complex requires 5 vertices, 10 edges,

10 triangles, 5 tetrahedrons, while as a simplicial set only 1 vertex and 1

3–simplex as non-degenerate simplices.
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Simplicial complexes vs. sets

Simplicial sets allow for simpler simplicial modelling of topological spaces in

computational topology (P. Perry (2003)).

Tidy sets, minimal simplicial sets capturing the topology of simplicial complexes,

are available (A. Zomorodian (2010)).

Incorporation of degenerate simplices, i.e. simplices with an effective dimension

smaller than the formal one, is an essential feature of simplicial sets (and also

a price to pay for having them):

degenerate simplices are hidden in topological realization;

however their indiscriminate removal may lead to incomplete and/or in-

consistent simplicial constructs;

there are ways of disposing of them.
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A quantum framework for simplicial sets

Quantum computing may provide new powerful means to speedup algorithms in

computational topology.

A quantum algorithm with exponential speedup for computing Betti numbers in

persistent homology was originally worked out by S. Lloyd et al. (2014).

This opened a new field in quantum computing, quantum topological data anal-

ysis, whose development intensified in recent years (S. Gunn and N. Kornerup

(2019); C. Gyurik et al. (2022); S. Ubaru et al. (2021); R. Hayakawa (2022); S.

McArdle et al. (2022); D. W. Berry et al. (2022); M. Black et al. (2023))

A critical evaluation of this quantum computational framework from the per-

spective of complexity theory was carried out by A. Schmidhuber and S. Lloyd

(2022).

The algorithms used apply to the simplicial complexes occurring in topological

data analysis.
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A quantum framework for simplicial sets

One may explore the possibility of adapting and extend such quantum compu-

tational approach to simplicial sets.

Idea: a given simplicial set is inscribed in a simplicial Hilbert space: simplices

turn into simplex vectors forming a distinguished orthonormal basis and the

face and degeneracy maps into face and degeneracy operators.

A foundation of a quantum computational framework for algebraic topology via

simplicial set theory is provided.

Disclaimer: no new quantum algorithms solving specific problems of algebraic

topology is presented,

Hopefully, the ground for the future development of such algorithms is pre-

pared.

The focus is on homology computation (as is customary in topological data

analysis).
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Simplicial sets

Simplicial sets generalize simplicial complexes in many ways.

A simplicial set is a combinatorial blueprint of a topological space, its topological

realization.

Homotopy and homology have a correlate in simplicial set theory.

A simplicial set X consists of a family of n–simplex sets Xn, n ∈ N, and

face and degeneracy maps dni : Xn → Xn−1, n ≥ 1, i = 0, . . . , n, and

sni : Xn → Xn+1, n ≥ 0, i = 0, . . . , n, obeying the simplicial relations

dn−1idnj = dn−1j−1dni if 0 ≤ i, j ≤ n, i < j,

dn+1isnj = sn−1j−1dni if 0 ≤ i, j ≤ n, i < j,

dn+1isnj = idn if 0 ≤ j ≤ n, i = j, j + 1,

dn+1isnj = sn−1jdni−1 if 0 ≤ i, j ≤ n+ 1, i > j + 1,

sn+1isnj = sn+1j+1sni if 0 ≤ i, j ≤ n, i ≤ j.
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Simplicial sets

A morphism φ : X → X′ of the simplicial sets X, X′ is a collection of maps

φn : Xn → X′n with n ≥ 0 obeying the simplicial morphism relations

φn−1dni = d′niφn if 0 ≤ i ≤ n,

φn+1sni = s′niφn if 0 ≤ i ≤ n.

A simplicial set X is represented by the diagram

· · ·
))
55
--11 X2kk

ssoo // ))55 X1ll rr
))
55 X0

oo ,

where the rightward/leftward arrows stand for the face/degeneracy maps. A

simplicial set morphism φ : X → X′ is a commutative diagram

· · ·
))
55
--11 X2kkssoo // ))55

φ0
��

X1llrr
))
55

φ1
��

X0
oo

φ0
��

· · ·
))
55
--11 X′2kk ssoo // ))55 X′1llrr

))
55 X′0oo

.
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Simplicial sets

The Cartesian product X ×X′ of X, X′ is the simplicial set defined by setting

X × X′n = Xn × X′n and d× d′ni = dni × d′ni and s× s′ni = sni × s′ni.

The disjoint union X t X′ of X, X′ is the simplicial set defined by setting

X t X′n = Xn t X′n and d t d′ni = dni t d′ni and s t s′ni = sni t s′ni.

With the operations of Cartesian product and disjoint union and the empty and

singleton simplicial sets D∗, D∅ as units simplicial sets and morphisms form a

bimonoidal category sSet.

The simplicial quantum computational framework involves only parafinite simpli-

cial sets.

A simplicial set X is called parafinite (not to be confused with finite) if the

n–simplex set Xn is finite for all n.

Parafinite simplicial sets form a full bimonoidal subcategory pfsSet of sSet.
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Simplicial sets

Example: the discrete simplicial set DA of a set A. If A is a finite set, DA is

parafinite.

Example: the simplicial set KS of an ordered abstract simplicial complex S. KS

obtained from S by allowing simplices with repeated vertices. If S has finitely

many vertices, KS is parafinite.

Example: the nerve NC of a category C. If If C is a finite category, NC is

parafinite.

The simplicial setK∆[p] of the standard combinatorial simplex∆[p], an instance

of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a

category, can be identified.

Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere

etc.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Simplicial sets

Example: the discrete simplicial set DA of a set A. If A is a finite set, DA is

parafinite.

Example: the simplicial set KS of an ordered abstract simplicial complex S. KS

obtained from S by allowing simplices with repeated vertices. If S has finitely

many vertices, KS is parafinite.

Example: the nerve NC of a category C. If If C is a finite category, NC is

parafinite.

The simplicial setK∆[p] of the standard combinatorial simplex∆[p], an instance

of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a

category, can be identified.

Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere

etc.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Simplicial sets

Example: the discrete simplicial set DA of a set A. If A is a finite set, DA is

parafinite.

Example: the simplicial set KS of an ordered abstract simplicial complex S. KS

obtained from S by allowing simplices with repeated vertices. If S has finitely

many vertices, KS is parafinite.

Example: the nerve NC of a category C. If If C is a finite category, NC is

parafinite.

The simplicial setK∆[p] of the standard combinatorial simplex∆[p], an instance

of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a

category, can be identified.

Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere

etc.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Simplicial sets

Example: the discrete simplicial set DA of a set A. If A is a finite set, DA is

parafinite.

Example: the simplicial set KS of an ordered abstract simplicial complex S. KS

obtained from S by allowing simplices with repeated vertices. If S has finitely

many vertices, KS is parafinite.

Example: the nerve NC of a category C. If If C is a finite category, NC is

parafinite.

The simplicial setK∆[p] of the standard combinatorial simplex∆[p], an instance

of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a

category, can be identified.

Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere

etc.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Simplicial sets

Example: the discrete simplicial set DA of a set A. If A is a finite set, DA is

parafinite.

Example: the simplicial set KS of an ordered abstract simplicial complex S. KS

obtained from S by allowing simplices with repeated vertices. If S has finitely

many vertices, KS is parafinite.

Example: the nerve NC of a category C. If If C is a finite category, NC is

parafinite.

The simplicial setK∆[p] of the standard combinatorial simplex∆[p], an instance

of a simplicial complex, and the nerve N[p] of the ordinal [p], an instance of a

category, can be identified.

Examples from topology, e.g. simplicial sets modelling a 2d torus, a 3d sphere

etc.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Simplicial objects

A simplicial object X in a general category C is a simplicial set internal to C.

A simplicial object X in C is a family of n–simplex objects Xn, n ∈ N, and

face and degeneracy morphisms dni : Xn → Xn−1, n ≥ 1, i = 0, . . . , n, and

sni : Xn → Xn+1, n ≥ 0, i = 0, . . . , n, obeying the simplicial relations ssr .

A morphism φ : X → X′ of the simplicial objects X, X′ of C is a collection

of morphisms φn : Xn → X′n with n ≥ 0 obeying the simplicial morphism

relations smr .

Example: a simplicial set X is just a simplicial object in the category Set of

sets and functions.

Example: a simplicial group G is a simplicial object in the category Grp of

groups and group morphisms.

Example: a simplicial manifold M is a simplicial object in the category Mnfd of

smooth manifolds and manifold mappings.
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Simplicial Hilbert spaces

The quantum simplicial framework uses finite dimensional simplicial Hilbert spaces.

A finite dimensional simplicial Hilbert space H is a simplicial set internal to the

category fdHilb of finite dimensional Hilbert spaces and linear maps.

H has n–simplex spaces Hn and face and degeneracy operators Fni and Sni.

The direct product of the simplicial Hilbert spaces H , H ′ is the simplicial

Hilbert space H ⊗ H ′ defined by setting H ⊗ H ′
n = Hn ⊗ H ′

n and

F ⊗ F ′ni = Fni ⊗ F ′ni and S ⊗ S′ni = Sni ⊗ S′ni.

The direct sum of the simplicial Hilbert spaces H , H ′ is the simplicial Hilbert

space H ⊕H ′ with H ⊕H ′
n = Hn ⊕H ′

n and F ⊕ F ′ni = Fni ⊕ F ′ni
and S ⊕ S′ni = Sni ⊕ S′ni.

With the operations of direct product and direct sum and the simplicial Hilbert
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Degenerate simplices of a simplicial set

A distinguishing feature of a simplicial set X when compared to a simplicial

complex is the appearance of infinitely many degenerate simplices, which are

topologically invisible.

An n–simplex σn ∈ Xn is degenerate if there is some τn−1 ∈ Xn−1 and index

i with 0 ≤ i ≤ n − 1 with σn = sn−1iτn−1. 0-simplices are regarded as non

degenerate.

The degenerate simplices of Xn form a subset sXn.

Example: in the discrete simplicial set DA of a non empty set A all positive

degree simplices are degenerate.

Example: in the simplicial set KS of an ordered abstract simplicial complex S,

all simplices with repeated vertices are degenerate.

Example: in the nerve NC of a category C, all simplices containing identity

morphisms are degenerate.
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Truncation and skeletonization

The practical implementation of algorithms of computational topology involves

a finite approximation of a simplicial set containing infinitely many simplices.

A K–truncated simplicial set X is a collection of sets Xn, 0 ≤ n ≤ K, and

maps dni : Xn → Xn−1, 1 ≤ n ≤ K, i = 1, . . . , n, and sni : Xn → Xn+1,

0 ≤ n ≤ K − 1, i = 1, . . . , n, obeying the simplicial relations ssr .

A morphism φ : X → X′ of theK–truncated simplicial setsX, X′ is a collection

of maps φn : Xn → X′n with 0 ≤ n ≤ K obeying the simplicial morphism

relations smr .

K–truncated simplicial sets form a bimonoidal category sSetK as sSet.

There is a truncation functor trK : sSet→ sSetK that discards all the simplices

of degree n > K of the simplicial sets on which it acts.

The K–truncation trK X of a simplicial set X is the K–truncated simplicial set

such that trK Xn = Xn for n ≤ K .
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Truncation and skeletonization

trK admits a left adjoint functor lkK : sSetK → sSet (left Kan extension).

The K–skeleton functor is the composite skK = lkK ◦ trK : sSet→ sSet

The K–skeleton skK X of a simplicial set X is the smallest simplicial subset of

X such that skK Xn = Xn for n ≤ K and skK Xn ⊆ sXn for n > K .

Similar notions can be introduced for simplicial objects in a category C.

An K–truncated simplicial object X in C consists of Xn, 0 ≤ n ≤ K, and

morphisms dni : Xn → Xn−1, 1 ≤ n ≤ K, i = 1, . . . , n, sni : Xn → Xn+1,

0 ≤ n ≤ K − 1, i = 1, . . . , n, obeying the simplicial relations ssr .

A morphism φ : X → X′ of the K–truncated simplicial objects X, X′ of C is a

collection of morphisms φn : Xn → X′n with 0 ≤ n ≤ K obeying the simplicial

morphism relations smr .

The truncation trK X and skeletonization skK X are defined analogously also

for a simplicial object X .
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Simplicial homology

With a simplicial set X and an Abelian group A there are associated a simplicial

Abelian group C(X,A) with n–simplex groups

Cn(X,A) = Z[Xn]⊗ A,

along with face and degeneracy morphisms dni : Cn(X,A) → Cn−1(X,A),

sni : Cn(X,A)→ Cn+1(X,A) induced by the dni, sni of X .

The boundary morphisms ∂n : Cn(X,A)→ Cn−1(X,A)

∂n =
∑

0≤i≤n
(−1)idni

obey the homological relations

∂n∂n+1 = 0.

The simplicial homology H(X,A) of X with coefficients in A is

Hn(X,A) = ker ∂n/ ran ∂n+1.
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sni : Cn(X,A)→ Cn+1(X,A) induced by the dni, sni of X .

The boundary morphisms ∂n : Cn(X,A)→ Cn−1(X,A)

∂n =
∑

0≤i≤n
(−1)idni

obey the homological relations

∂n∂n+1 = 0.

The simplicial homology H(X,A) of X with coefficients in A is

Hn(X,A) = ker ∂n/ ran ∂n+1.
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Simplicial homology

Denote by sCn(X,A) the subgroup of Cn(X,A) generated by the degenerate

simplex set sXn. The group Cn(X,A) = Cn(X,A)/sCn(X,A) is the normalized

n–chain group.

The boundary morphisms ∂n give rise to a normalized boundary morphisms

∂n : Cn(X,A)→ Cn−1(X,A) obeying

∂n∂n+1 = 0.

The normalized simplicial homology H(X,A) of X with coefficients in A is

Hn(X,A) = ker ∂n/ ran ∂n+1.

Normalization theorem (Eilenberg & Mac Lane (1953)): the isomorphism

Hn(X,A) ' Hn(X,A)

holds. Degenerate simplices are homologically irrelevant.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

The quantum simplicial set framework is the natural set–up for the analysis and

implementation of quantum algorithms of simplicial set theoretic computational

topology.

It allows also in principle the modelling of simplicial quantum computation and

circuitry.

It is an instance of quantum basis coding of classical data, where the latter are

simplicial data of a parafinite simplicial set X .

For n ∈ N, the n–simplex Hilbert space Hn is the Hilbert space generated by

the n–simplex set Xn.

Hn has thus a canonical orthonormal basis |σn〉 labelled by the n–simplices

σn ∈ Xn (n–simplex basis).

The face and degeneracy maps of X convert into face and degeneracy opera-

tors relating the Hilbert spaces Hn.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

The face operators Dni : Hn → Hn−1, i = 0, . . . , n and n ≥ 1, and degen-

eracy operators Sni : Hn → Hn+1 and i = 0, . . . , n and n ≥ 0 are

Dni =
∑

σn∈Xn
|dniσn〉〈σn|, (3.1)

Sni =
∑

σn∈Xn
|sniσn〉〈σn|. (3.2)

The simplicial relations ssr imply the exchange identities (1n ≡ 1Hn ):

Dn−1iDnj −Dn−1j−1Dni = 0 for 0 ≤ i, j ≤ n, i < j,

Dn+1iSnj − Sn−1j−1Dni = 0 for 0 ≤ i, j ≤ n, i < j,

Dn+1iSnj − 1n = 0 for 0 ≤ j ≤ n, i = j, j + 1,

Dn+1iSnj − Sn−1jDni−1 = 0 for 0 ≤ i, j ≤ n+ 1, i > j + 1,

Sn+1iSnj − Sn+1j+1Sni = 0 for 0 ≤ i, j ≤ n, i ≤ j.

These are the Hilbert simplicial identities.
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The simplicial Hilbert space of a simplicial set and the Hilbert simplicial functor

The Hilbert simplicial identities hei entail that the Hilbert data collection

{Hn, Dni, Sni} constitutes a finite dimensional simplicial Hilbert space H .

With any morphism φ : X → X′ of the parafinite simplicial sets X, X′ ssr

there is associated a morphism Φ : H → H ′ of the simplicial Hilbert spaces

H , H ′ given by the linear operators Φn : Hn → H ′
n,

Φn =
∑

σn∈Xn
|φnσn〉〈σn|,

since indeed

Φn−1Dni −D′niΦn = 0 if 0 ≤ i ≤ n,

Φn+1Sni − S′niΦn = 0 if 0 ≤ i ≤ n.

Theorem: the map X 7→ H , (φ : X → X′) 7→ (Φ : H → H ′) is a functor

ς : pfsSet→ fdsHilb of bimonoidal categories (Hilbert simplicial functor).
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The cosimplicial Hilbert structure

For a parafinite simplicial set X, the dagger structure of the Hilbert space ca-

tegory fdHilb yields the adjoints Dni+ : Hn−1 → Hn, Sni+ : Hn+1 → Hn,

Dni
+ =

∑
σn−1∈Xn−1

∑
ωn∈Dni(σn−1)

|ωn〉〈σn−1|,

Sni
+ =

∑
σn+1∈Xn+1

∑
ωn∈Sni(σn+1)

|ωn〉〈σn+1|,

where the face and degeneracy star sets Dni(σn−1), Sni(σn+1) ⊂ Xn are

Dni(σn−1) = {ωn ∈ Xn|dniωn = σn−1},

Sni(σn+1) = {ωn ∈ Xn|sniωn = σn+1}.

One has |Dni(σn−1)| ≥ 1 and |Sni(σn+1)| ≤ 1 (by the surjectivity of the dni

and the injectivity of the sni).

Via the Dni(σn−1), Sni(σn+1), the adjoint operators Dni+, Sni+ encode

special features of X not directly accessible through the operators Dni, Sni.
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The cosimplicial Hilbert structure

The exchange identities of Dni+, Sni+ stem from those of Dni, Sni hei .

They have the same form except for the reversed order of the factors. They

are therefore Hilbert cosimplicial identities.

These relations entail that the data collection {Hn, Dni
+, Sni

+} is a finite

dimensional cosimplicial Hilbert space H +.

NB Unlike fdHilb, the simplicial Hilbert space category fdsHilb is not dagger.

With any simplicial set morphism φ : X → X′ of parafinite simplicial sets X, X′

there is associated a morphism Φ+ : H ′+ → H + of the cosimplicial Hilbert

spaces H ′+, H + specified by the adjoint operators Φn+ : H ′
n → Hn,

Φn
+ =

∑
σ′n∈X′n

∑
ωn∈Xn,φnωn=σ′n

|ωn〉〈σ′n|

A simplicial and a cosimplicial Hilbert structure coexist in this way in the quantum

simplicial set–up.

NB This is a generic feature of simplicial Hilbert spaces.
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Defect results

For a parafinite simplicial set X, the mixed exchange identities involving one of

the Dni, Sni and one of the Dni+, Sni+ have the form

Dni
+Dnj −Dn+1j+1Dn+1i

+ = ∆DDnij for 0 ≤ i, j ≤ n, i ≤ j,

Dn+2i
+Snj − Sn+1j+1Dn+1i

+ = ∆DSnij for 0 ≤ i, j ≤ n, i ≤ j,

Sn−2i
+Dnj −Dn−1j−1Sn−1i

+ = ∆SDnij for 0 ≤ i, j ≤ n, i+ 1 < j,

Sni
+Snj − Sn−1j−1Sn−1i

+ = ∆SSnij for 0 ≤ i, j ≤ n, i < j.

The operators ∆DDnij , ∆DSnij , ∆SDnij , ∆SSnij are called defects.

∆DDnij , ∆DSnij , ∆SDnij , ∆SSnij arise as distinguished contributions of

analogous form to certain simplicial Hodge Laplacians.

No degeneracy defect theorem: it holds that

∆SSnij = 0 for 0 ≤ i, j ≤ n, i < j.

It follows from the simplicial identities ssr .
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Defect results

∆DDnij , ∆DSnij , ∆SDnij detect basic properties of X .

Proposition: the simplicial set KS of an ordered finite abstract simplicial com-

plex S is semi perfect:

∆DSnij = 0 for 0 ≤ i, j ≤ n, i ≤ j,

∆SDnij = 0 for 0 ≤ i, j ≤ n, i+ 1 < j.

Proposition: the nerve NC of a finite category C is quasi perfect:

∆DSnij = 0 for 0 ≤ i, j ≤ n, i ≤ j,

∆SDnij = 0 for 0 ≤ i, j ≤ n, i+ 1 < j.

∆DDnij = 0 for 0 ≤ i, j ≤ n, i < j.

If C is a groupoid, then NC is perfect: the last identity holds true also for i ≤ j.

Such results depend on the special ‘local’ nature of the face and degeneracy

maps of these simplicial sets.
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Simplicial quantum registers and circuits

The quantum simplicial register of a parafinite simplicial set X is a pre-Hilbert

space H (∞) that stores all the simplicial data of X in the same way as a

quantum register is a Hilbert space C2⊗n that stores all the configurations of

a classical n bit string.

Mathematically, H (∞) is the infinite dimensional pre-Hilbert space

H (∞) =
⊕

0≤n<∞
Hn (3.3)

(algebraic direct sum).

A simplicial quantum circuit is a quantum circuit supported on the register

H (∞) compatible with the underlying simplicial structure of X and capable

in theory of performing meaningful simplicial computations (no measurements

are assumed to be involved).

Mathematically, a simplicial quantum circuit is a unitary operator U ∈ U(H (∞))

that satisfies certain simplicial conditions.
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Simplicial quantum registers and circuits

A simple simplicial quantum circuit is a unitary simplicial automorphism of H

shm , that is a collection of unitary operators Un ∈ U(Hn) with n ≥ 0 such

that for 0 ≤ i ≤ n

Un−1Dni −DniUn = 0,

Un+1Sni − SniUn = 0.

The circuit can be thought of as a collection of simplicial quantum gates

U(n) = Un ⊕
⊕

0≤n′<∞,n′ 6=n
1n′ .

The unitary operator U ∈ U(H (∞)) corresponding to the circuit is

U =
∏

0≤n<∞
U(n) =

⊕
0≤n<∞

Un.

Simple simplicial quantum circuits form a group under degreewise multiplication

and inversion.
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Simplicial quantum registers and circuits

Simple simplicial quantum circuits can perform only computations at fixed sim-

plicial degree, an important limitation. We need more general circuits for more

general computations.

The simplicial conditions which a general simplicial quantum circuit obeys should

be an appropriate generalization of those obeyed by simple circuits.

For ∅ 6= A ⊂ N a finite subset, the simplicial A–subregister is the finite dimen-

sional Hilbert space

HA =
⊕
n∈A

Hn ⊂ H (∞)

Set Σ = {−1,+1} and Nn = {n′|n′ ∈ N, 0 ≤ n′ ≤ n}. For ∅ 6= A ⊂ N a

finite subset, α ∈ ΣA and i ∈
∏
n∈A Nn, let X(α)

Ai : HA → Hτα(A) be

X(α)
Ai =

⊕
n∈A

X(αn)
nin ,

where X(−1)
ni = Dni, X(+1)

ni = Sni and τα(A) = {n+ αn|n ∈ A}.
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Simplicial quantum registers and circuits

Let p ∈ N, p > 0. A p–ary simplicial quantum circuit consists of a collection

of unitary operators UA ∈ U(HA) with A ⊂ N and |A| = p such that for all

α ∈ ΣA and i ∈
∏
n∈A Nn

X(α)
AiUA − Uτα(A)X

(α)
Ai = 0

NB Simple simplicial quantum circuits are just 1–ary simplicial quantum circuits

ssc .

A p-ary quantum circuit can be regarded as a family of simplicial quantum gates

U(A) = UA ⊕
⊕
n6∈A

1n.

Unlike in the simple case, these gates generally do not commute (the subspaces

HA may have non trivial intersections).

The unitary operator U ∈ U(H (∞)) corresponding to the circuit is obtained

by multiplying some subset of simplicial gates in a prescribed order.
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Simplicial quantum registers and circuits

A simple simplicial quantum circuit can be constructed from the following data:

a pair of parafinite simplicial sets X, X′;

a simplicial morphism φ : X → X′;
a structure of simplicial group on X′.

With φ there is associated a simplicial morphism φ̂ : X × X′ → X × X′:

φ̂n(σn, σ
′
n) = (σn, σ

′
nφn(σn)).

φ̂ is invertible even when φ is not!

NB The simplicial group structure of X′ is a indispensable element of the con-

struction of φ̂.

Define Ûφn : H ⊗H ′
n → H ⊗H ′

n by

Ûφn|(σn, σ′n)〉 = |φ̂n(σn, σ′n)〉.

Proposition: {Ûφn} is a simple simplicial quantum circuit.
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Define Ûφn : H ⊗H ′
n → H ⊗H ′

n by
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Ûφn|(σn, σ′n)〉 = |φ̂n(σn, σ′n)〉.

Proposition: {Ûφn} is a simple simplicial quantum circuit.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Simplicial quantum registers and circuits

A simple simplicial quantum circuit can be constructed from the following data:

a pair of parafinite simplicial sets X, X′;

a simplicial morphism φ : X → X′;
a structure of simplicial group on X′.

With φ there is associated a simplicial morphism φ̂ : X × X′ → X × X′:

φ̂n(σn, σ
′
n) = (σn, σ

′
nφn(σn)).

φ̂ is invertible even when φ is not!

NB The simplicial group structure of X′ is a indispensable element of the con-

struction of φ̂.
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Simplicial quantum registers and circuits

Example: For a simplicial group G, the simplex sets Gn are groups, the mul-

tiplication and inversion maps µn : Gn × Gn → Gn and ιn : Gn → Gn

are defined at each degree n and are the components of simplicial morphisms

µ : G×G → G, and ι : G → G. With these there are associated simple simpli-

cial quantum circuits {Ûµn} and {Ûιn} of G×G×G and G×G, respectively.

If {Un} is a simple simplicial quantum circuit, the operators UA =
⊕
n∈A Un,

A ⊂ N and |A| = p, constitute a p–ary simplicial quantum circuit. This example

is however trivial.

One would like to find other more interesting examples simplicial quantum cir-

cuits, especially of simplicial quantum circuit data sets.

One would also like to find simplicial quantum circuits implementing truly quan-

tum simplicial algorithms and not just mere classical ones.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Simplicial quantum registers and circuits

Example: For a simplicial group G, the simplex sets Gn are groups, the mul-

tiplication and inversion maps µn : Gn × Gn → Gn and ιn : Gn → Gn

are defined at each degree n and are the components of simplicial morphisms

µ : G×G → G, and ι : G → G. With these there are associated simple simpli-
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Finite simplicial quantum registers and circuits

To model realistic simplicial quantum registers and circuits with finite storage

capabilities, it is necessary to set a cut-off K on the simplicial degree of the

relevant parafinite simplicial set X .

In computational topology, this is tantamount to replacingX by itsK–truncation

trK X .

trK X, however, belongs to the category of K–truncated simplicial sets, which

is related to but distinct from the category of simplicial sets.

To remain within this latter while essentially keeping the essence of the trunca-

tion operation, one uses the K–skeleton skK X of X .

Both the truncation trK X and the skeleton skK X may be viewed as a finite

approximation of X in the appropriate sense.

K–truncation and skeletonization are particularly convenient for their functo-

rial properties.
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Finite simplicial quantum registers and circuits

In the quantum simplicial framework, to X there corresponds a simplicial Hilbert

space H .

The Hilbert simplicial encoding map, which defines the simplex basis ssr , is a

simplicial set morphism κ : X → H .

The K–truncation functor trK yields a map trK κ : trK X → trK H of K–

truncated simplicial sets with components trK κn = κn for 0 ≤ n ≤ K .

The K–skeletonization functor skK yields a map skK κ : skK X → skK H of

K–skeletal simplicial sets with components skK κn = κn for 0 ≤ n ≤ K .

trK Hn = skK Hn = Hn for n ≤ K and skK Hn ⊆ sHn for n > K, where
sHn ⊂ H is the degenerate n-simplex subspace

Therefore, the operations of K–truncation and K–skeletonization of X turn

under Hilbert simplicial encoding into the corresponding operations of the as-

sociated simplicial Hilbert space H .
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Finite simplicial quantum registers and circuits

In practice, one works with trK X and trK H . In more formal considerations,

employing skK X and skK H allows to use the analysis carried out so far.

The K–skeletonized quantum simplicial register is the infinite dimensional pre-

Hilbert space (skK H )(∞) hsi .

An K–skeletonized simple simplicial quantum circuit {Un}n∈N is just a simple

simplicial quantum circuit supported on (skK H )(∞) ssc .

An K–skeletonized p–ary simplicial quantum circuit {UA}A⊂N,|A|=p is just a

p–ary simplicial quantum circuit supported on (skK H )(∞) sqc .

The theory of skeletonized simplicial quantum registers and circuits needs to

be further developed in a more articulated form.

Roberto Zucchini
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Hilbert simplicial homology

The simplicial homology of a parafinite simplicial set X with coefficients in C

shm has a realization in the associated simplicial Hilbert space H and cosim-

plicial Hilbert space H +.

The Hilbert simplicial boundary operators QDn : Hn → Hn−1, n ≥ 1, are

QDn =
∑

0≤i≤n
(−1)iDni.

By the exchange identities hei , the QDn obey the homological relations

QDn−1QDn = 0.

For n ≥ 0, there are defined the Hilbert simplicial homology spaces

HDn(H ) = kerQDn/ ranQDn+1 (here kerQD0 = H0).

The Hilbert cosimplicial coboundary operators are the adjoint operators QDn+

of QDn.
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Hilbert simplicial homology

The QDn+ obey cohomological relations by hhr ,

QDn+1
+QDn

+ = 0.

For n ≥ 0, there are defined the Hilbert cosimplicial cohomology spaces

HD
n(H +) = kerQDn+1

+/ ranQDn
+ (here ranQD0

+ = 0).

Simplicial Hodge theorem: for n ≥ 0,

Hn(X,C) ' HDn(H ) ' HD
n(H +) ' kerHDDn,

where HDDn is the simplicial Hodge Laplacian

HDDn = QDn
+QDn +QDn+1QDn+1

+.

NB This is analogous to Hodge theory of de Rham cohomology.

The computation of Hn(X,C) is reduced to that of kerHDDn. HDDn has a

simpler structure for quasi perfect simplicial sets sqp .
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Normalized Hilbert simplicial homology

Such computation may be costly, as it involves also the degenerate simplex sub-

spaces sHn of the simplex Hilbert spaces Hn
dsx , which are homologically

irrelevant by the normalization theorem nth :

sHn =
∑n−1

i=0
ranSn−1i,

The abstract non degenerate n–simplex spaces are

H n = Hn/
sHn.

As QDnsHn ⊂ sHn−1, the QDn induce an abstract normalized Hilbert sim-

plicial boundary operators QDn : H n → H n−1 obeying the homological

relations

QDn−1QDn = 0.

The abstract normalized Hilbert simplicial homology spaces are

HDn(H ) = kerQDn/ ranQDn+1 (here kerQD0 = H 0).
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Normalized Hilbert simplicial homology

Abstract Hilbert normalization theorem: for every n ≥ 0, one has

Hn(X,C) ' HDn(H ).

NB This is just the normalization theorem.

The computation of the abstract homology is not tractable with standard quan-

tum algorithmic techniques.

In fact, the abstract spaces H n are non Hilbert complex vector spaces.

A truly Hilbertian framework is required.

The orthogonal projector Πn on sHn is

Πn = 1n −
∏

0≤i≤n−1
(1n −Πni)

where the Πni are the orthogonal projectors on ranSn−1i,

Πni = Sn−1iSn−1i
+ = Sni+1

+Sni = Sni
+Sni+1.
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Normalized Hilbert simplicial homology

The concrete non degenerate n–simplex spaces are

cHn = sHn
⊥.

The QDn give rise to a concrete normalized Hilbert simplicial boundary oper-

ators cQDn : cHn → cHn−1, viz

cQDn = (1n−1 −Πn−1)QDn
∣∣
cHn

which obeys the homological relations

cQDn−1
cQDn = 0.

The concrete normalized Hilbert simplicial homology spaces are

HDn(
cH ) = ker cQDn/ ran

cQDn+1 (here ker cQD0 = cH0).

Concrete Hilbert normalization theorem: for every n ≥ 0, the isomorphism

Hn(X,C) ' HDn(
cH ).

holds.
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Normalized Hilbert simplicial homology

The verification proceeds by showing the isomorphism of the abstract and con-

crete homology spaces (not distinguished henceforth)

HDn(H ) ' HDn(
cH ).

The proof of the isomorphism is achieved by constructing a chain equivalence

of the Hilbert chain complexes (H , QD), (cH , cQD).

The chain equivalence is a sequence of chain operators In : H n → cHn,

Jn : cHn → H n, n ≥ 0, such that the composite operators JnIn, InJn are

chain homotopic to 1n, c1n, respectively.

In is the operator induced by the orthogonal projector 1n −Πn by virtue of

the fact that sHn = ker(1n−Πn). Jn is the canonical projection of cHn onto

H n.

As a matter of fact, In, Jn are reciprocally inverse.

Roberto Zucchini
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Normalized Hilbert simplicial homology

Normalized simplicial Hodge theorem: for n ≥ 0,

Hn(X,C) ' ker cHDDn,

where cHDDn is the normalized Hilbert simplicial Hodge Laplacian

cHDDn = cQDn
+cQDn + cQDn+1

cQDn+1
+.

The theorem provides a potentially more efficient way of computing the simpli-

cial homology H(X,C) of X with complex coefficients.
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Simplicial quantum circuits computing normalized simplicial homology

Homological computations can be performed using simplicial quantum circuits.

For definiteness, consider a simple simplicial quantum circuit {Un}n∈N
ssc .

The degenerate n–simplex space sHn is invariant under Un, as Πn projects

on sHn
dhs and commutes with Un.

The orthogonal complement cHn = sHn
⊥ is then also invariant under Un, as

Un is unitary.

The restriction cUn of Un to cHn is a unitary operator of cHn.

The circuit defines a unitary chain operator of the normalized Hilbert simplicial

chain complex:
cUn−1

cQDn − cQDn
cUn = 0.

As a consequence, each circuit component cUn yields an automorphism of

HDn(
cH ), hence of Hn(X,C) ' HDn(

cH ).

Roberto Zucchini
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Simplicial quantum circuits computing normalized simplicial homology

Each component cUn commute also with the normalized Hilbert simplicial Lapla-

cian cHDDn
cHDDn

cUn − cUn
cHDDn = 0.

The homology automorphism is in this way realized as an action of cUn on

ker cHDDn.
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Digital encoding a simplicial set

The digital encoding of the simplices of a given parafinite simplicial set X is

a precondition for the implementation of simplicial set based algorithms of

computational topology in a quantum computer.

The full simplex set of the K–truncation trK X of X is

X(K) =
⊔

0≤n≤K
Xn.

To encode the simplices of X(K), one needs a k–bit register with

k ≥ κXK := min
{
l
∣∣l ∈ N, |X(K)| ≤ 2l

}
.

A digital encoding of trK X in a k–bit register consists in a bijective mapping

χ : X(K) → Xχ(K), where Xχ(K) ⊆ B2
k is a k–bit string set such that

|Xχ(K)| = |X(K)|. (B2 = {0, 1} be the digital Boolean domain.) There are

altogether |X(K)|! encodings with a given range X0 ⊆ B2
k .

The viability of an encoding χ depends on the specific features of X .
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Digital encoding a simplicial set

An encoding χ creates a digitized image of the simplices and the face and

degeneracy maps of trK X in the register.

The subsets Xχn := χ(Xn) ⊆ Xχ(K) constitute a partition of Xχ(K),

Xχ
(K) =

⊔
0≤n≤K

Xχn.

The restrictions χ
∣∣
Xn

of χ to the Xn induce bijective maps χn : Xn → Xχn
and through these maps dχni : Xχn → Xχn−1, 1 ≤ n ≤ K, i = 1, . . . , n, and
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Digital encoding a simplicial set

The quantum register for the simplicial data of trK X is the Hilbert space

H (K) =
⊕

0≤n≤K
Hn.

dimH (K) = |X(K)|.

The digital encoding χ of X(K) into the k–bit register Xχ(K) yields a unitary

operator Uχ : H (K) → Hχ
(K) with Hχ

(K) ⊆ C2⊗k,

Uχ =
∑

0≤n≤K

∑
σn∈Xn

|χσn〉k〈σn|. (4.1)

(the |ξ〉k, ξ ∈ B2
k, constitute the computational basis of C2⊗k .)

Uχ creates a quantum digitized image of the simplex basis and the face and

degeneracy operators of H (K) in Hχ
(K).

With Hχn = UχHn, Hχ
(K) decomposes as

Hχ
(K) =

⊕
0≤n≤K

Hχn.
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Digital encoding a simplicial set

The restrictions Uχ
∣∣
Hn

induce unitary operators Uχn : Hn → Hχn and

through these operators Dχni : Hχn → Hχn−1, 1 ≤ n ≤ K, i = 1, . . . , n,

Sχni : Hχn → Hχn+1, 0 ≤ n ≤ K − 1, i = 1, . . . , n,

Dχni = Uχn−1DniUχn
−1,

Sχni = Uχn+1SniUχn
−1.

The Dχni, Dχni obey the exchange identities hei .

In the computational basis

Dχni =
∑

ξn∈Xχn
|dχniξn〉kk〈ξn|,

Sχni =
∑

ξn∈Xχn
|sχniξn〉kk〈ξn|.

χ should be selected judiciously in such a way to yield a simple digitized image

of the simplices and the face and degeneracy maps of X(K).
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Digital encoding a simplicial set

There is no general prescription for that and χ must be chosen on a case by

case basis.

By contrast, in the simplicial complex framework (S. Lloyd et al. (2014)) there

is a canonical encoding of the simplices of the relevant simplicial complex in

terms of which the boundary maps have a simple form.
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Counting and parametrizing simplices

Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.

For parafinite simplicial set X, let sXn, cXn = Xn \sXn ⊆ Xn be the subsets

of degenerate and non degenerate n–simplices, respectively.

Theorem (Eilenberg–Zilber (1950)): for each n ∈ N, each simplex σn ∈ Xn
has a unique representation σn = sn−1jn−m−1 · · · smj0τm, where m ≤ n,

τm ∈ cXn and 0 ≤ j0 < . . . < jn−m−1 ≤ n− 1.

By the theorem, the number |Xn| of n–simplices can be expressed in terms of

the numbers |cXm| of non degenerate m–simplices with m ≤ n as

|Xn| =
∑

0≤m≤n

(n
m

)
|cXm|.

An indicator of the incidence of degenerate n–simplices is the ratio

%Xn = |Xn|/|cXn|.

While %X0 = 1, %Xn as a rule grows very rapidly as n gets large.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Counting and parametrizing simplices

Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.

For parafinite simplicial set X, let sXn, cXn = Xn \sXn ⊆ Xn be the subsets

of degenerate and non degenerate n–simplices, respectively.

Theorem (Eilenberg–Zilber (1950)): for each n ∈ N, each simplex σn ∈ Xn
has a unique representation σn = sn−1jn−m−1 · · · smj0τm, where m ≤ n,

τm ∈ cXn and 0 ≤ j0 < . . . < jn−m−1 ≤ n− 1.

By the theorem, the number |Xn| of n–simplices can be expressed in terms of

the numbers |cXm| of non degenerate m–simplices with m ≤ n as

|Xn| =
∑

0≤m≤n

(n
m

)
|cXm|.

An indicator of the incidence of degenerate n–simplices is the ratio

%Xn = |Xn|/|cXn|.

While %X0 = 1, %Xn as a rule grows very rapidly as n gets large.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Counting and parametrizing simplices

Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.

For parafinite simplicial set X, let sXn, cXn = Xn \sXn ⊆ Xn be the subsets

of degenerate and non degenerate n–simplices, respectively.

Theorem (Eilenberg–Zilber (1950)): for each n ∈ N, each simplex σn ∈ Xn
has a unique representation σn = sn−1jn−m−1 · · · smj0τm, where m ≤ n,

τm ∈ cXn and 0 ≤ j0 < . . . < jn−m−1 ≤ n− 1.

By the theorem, the number |Xn| of n–simplices can be expressed in terms of

the numbers |cXm| of non degenerate m–simplices with m ≤ n as

|Xn| =
∑

0≤m≤n

(n
m

)
|cXm|.

An indicator of the incidence of degenerate n–simplices is the ratio

%Xn = |Xn|/|cXn|.

While %X0 = 1, %Xn as a rule grows very rapidly as n gets large.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Counting and parametrizing simplices

Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.

For parafinite simplicial set X, let sXn, cXn = Xn \sXn ⊆ Xn be the subsets

of degenerate and non degenerate n–simplices, respectively.

Theorem (Eilenberg–Zilber (1950)): for each n ∈ N, each simplex σn ∈ Xn
has a unique representation σn = sn−1jn−m−1 · · · smj0τm, where m ≤ n,

τm ∈ cXn and 0 ≤ j0 < . . . < jn−m−1 ≤ n− 1.

By the theorem, the number |Xn| of n–simplices can be expressed in terms of

the numbers |cXm| of non degenerate m–simplices with m ≤ n as

|Xn| =
∑

0≤m≤n

(n
m

)
|cXm|.

An indicator of the incidence of degenerate n–simplices is the ratio

%Xn = |Xn|/|cXn|.

While %X0 = 1, %Xn as a rule grows very rapidly as n gets large.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Counting and parametrizing simplices

Counting simplices is essential for the management of the resources of a sim-

plicial quantum computer.

For parafinite simplicial set X, let sXn, cXn = Xn \sXn ⊆ Xn be the subsets

of degenerate and non degenerate n–simplices, respectively.

Theorem (Eilenberg–Zilber (1950)): for each n ∈ N, each simplex σn ∈ Xn
has a unique representation σn = sn−1jn−m−1 · · · smj0τm, where m ≤ n,

τm ∈ cXn and 0 ≤ j0 < . . . < jn−m−1 ≤ n− 1.

By the theorem, the number |Xn| of n–simplices can be expressed in terms of

the numbers |cXm| of non degenerate m–simplices with m ≤ n as

|Xn| =
∑

0≤m≤n

(n
m

)
|cXm|.

An indicator of the incidence of degenerate n–simplices is the ratio

%Xn = |Xn|/|cXn|.

While %X0 = 1, %Xn as a rule grows very rapidly as n gets large.

Roberto Zucchini

A new quantum computational set–up for algebraic topology via simplicial sets



Introduction Simplicial sets Quantum simplicial framework Quantum simplicial implementation Conclusions

Counting and parametrizing simplices

The total number of simplices of an K–truncation of X is

|X(K)| =
∑

0≤n≤K
|Xn| =

∑
0≤m≤K

(K + 1

m+ 1

)
|cXm|.

The content of the non degenerate n–simplex sets cXm depends on the un-

derlying simplicial set X .

Example: the simplicial set KPV of a finite ordered discrete simplicial complex

PV . For every n, KnPV is the set of all n–element ordered submultiset of an

ordered vertex set V = {v0, . . . , vd}.

The non degenerate n–simplices of KnPV are the n–element ordered

submultiset of V with no repeats. Their number is

|cKnPV | =
(d+ 1

n+ 1

)
for n ≤ d,

= 0 for n > d

(the same as the number of n–simplices of the complex PV ).
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Counting and parametrizing simplices

The number of non degenerate n–simplices such that n ≤ K with K ≤ d
is found from here to be given by the expression∑
0≤n≤K

|cKnPV | = 2d+1−1−
( d+ 1

K + 2

)
2F 1(1,−d+K+1;K+3;−1).

The total number of non degenerate simplices is so 2d+1 − 1.

The number of n–simplices of KPV for n ≤ d

|KnPV | =
∑

0≤m≤n

(n
m

)
|cKmPV | =

(d+ n+ 1

n+ 1

)
.

The total to non degenerate n–simplex ratio of KPV for n ≤ d is

%KPV n = |KnPV |/|cKnPV | =
(d+ n+ 1

n+ 1

)/(d+ 1

n+ 1

)
.

and satisfies

%KPV n = 1 +O(n2/d) for 1� n� d1/2,

=
22d+1

(πd)1/2
[1 +O(d−1, (n− d) log2 d)] for 1� n→ d.
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Counting and parametrizing simplices

For K ≤ d, the number of simplices of the K–truncation trK KPV is

|K(K)PV | =
(d+K + 2

d+ 1

)
− 1

The encoding of trK KPV needs κKPV K = log2 |K(K)PV | bits, where

κKPV K

= log2

[( ed
K

)K d

(2π)1/2K3/2

]
+O(1/K,K2/d) for 1� K � d1/2,

= 2d+ 2− 1
2
log2(πd) +O(d−1, (K − d) log2 d) for 1� K → d.

To encode all the simplex data in degree n ≤ d one needs a 2(d+ 1)–bit

register for the simplicial set KPV comparable with the d+1–bit register

required for the underlying simplicial complex PV .

If S is an ordered finite simplicial complex with vertex set V = VertS ,

|cKnPV |, |KnPV | etc. constitute upper bounds for |cKnS|, |KnS| etc,
respectively.
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The encoding of trK KPV needs κKPV K = log2 |K(K)PV | bits, where

κKPV K

= log2

[( ed
K

)K d

(2π)1/2K3/2

]
+O(1/K,K2/d) for 1� K � d1/2,

= 2d+ 2− 1
2
log2(πd) +O(d−1, (K − d) log2 d) for 1� K → d.

To encode all the simplex data in degree n ≤ d one needs a 2(d+ 1)–bit

register for the simplicial set KPV comparable with the d+1–bit register

required for the underlying simplicial complex PV .

If S is an ordered finite simplicial complex with vertex set V = VertS ,

|cKnPV |, |KnPV | etc. constitute upper bounds for |cKnS|, |KnS| etc,
respectively.
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Counting and parametrizing simplices

The simplices of a truncation trK KPV of KPV can be digitally encoded in a

(d+ 1)r–bit register with r is an integer such that r ≥ log2(K + 2).

A (d+ 1)r–bit string can be represented as (x0, . . . , xd), where the xa

are r–bit strings, which one views as integers in the range 0 to 2r − 1.

For 0 ≤ a ≤ d, let ϕa :
⊔

0≤nKnPV → N be the a–th vertex counting

map: if σn ∈ KnPV , then ϕa(σn) is the number of occurrences of the

vertex va in σn.

An encoding χ of trK KPV is a bijection χ : K(K)PV → Kχ(K)PV ,

where

Kχ
(K)PV =

{
(x0, . . . , xd)

∣∣∣0 ≤ xa ≤ K + 1, 0 <
∑

0≤a≤d
xa ≤ K + 1

}
.

and for σn ∈ KnPV with n ≤ K,

χ(σn) = (ϕ0(σn), . . . , ϕd(σn)).

Notice that KχnPV = {(x0, . . . , xd)|
∑

0≤a≤d xa = n+ 1}.
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Counting and parametrizing simplices

This generalizes the bit parametrization of the simplicial complex PV .

The face and degeneracy maps dχni, sχni of the encoding read as

dχni(x0, . . . , xd) = (x0 − ϑ0i(x0, . . . , xd), . . . , xd − ϑdi(x0, . . . , xd)),

sχni(x0, . . . , xd) = (x0 + ϑ0i(x0, . . . , xd), . . . , xd + ϑdi(x0, . . . , xd)).

for (x0, . . . , xd) ∈ KχnPV , where for (x0, . . . , xd) ∈ Nd+1,

ϑai(x0, . . . , xd) = 1 if
∑

0≤b<a
xb ≤ i <

∑
0≤b≤a

xb,

0 else.
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Disposing of degenerate simplices

Disposing of degenerate simplices in a quantum simplicial algorithm reduces to

projecting the quantum register H (K) onto its subspace cH (K) spanned by

the non degenerate n–simplex spaces cHn with 0 ≤ n ≤ K,

cH (K) =
⊕

0≤n≤K

cHn.

Orthogonal projectors cannot be part of any quantum circuits, as they are not

unitary.

The projection can be achieved nevertheless compatibly with unitarity using

Grover’s quantum search algorithm (L. K. Grover (1996)) in the variant based

on amplitude amplification (G. Brassard and P. Hoyer (1997)).

The quantum computer is initialized in a state that is a uniform superposition

of all n–simp lex states |σn〉,

|ξ0n〉 =
∑

σn∈Xn
|σn〉|Xn|−1/2
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Disposing of degenerate simplices

and through the algorithm evolves unitarily toward a state which constitutes a

uniform superposition of all non degenerate n–simplex states |σn〉,

|cξ0n〉 =
∑

σn∈cXn
|σn〉|cXn|−1/2.

The algorithm comprises two stages:

i) the preparation of the state |ξ0n〉;
ii) the production of the state |cξ0n〉 from |ξ0n〉.

In stage i, the state |ξ0n〉 is yielded by the action of an appropriate unitary

operator Wn on some fiducial reference state |on〉, so that

|ξ0n〉 =Wn|on〉. (4.2)

In stage ii, the state |cξ0n〉 is generated by pn iteration of the unitary Grover

operator Gn

|cξ0n〉 = Gn
pn |ξ0n〉. (4.3)
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Disposing of degenerate simplices

The Grover operator Gn = −WnD0nWn
+Dn, where D0n = 1n − 2|on〉〈on|

is the conditional sign flip operator of the reference state |on〉 and Dn is the

(oracular) conditional sign flip operator of the non degenerate simplex states

|σn〉.

The Grover iteration number pn =
[
π
4
%Xn

1/2
]
. If the total to non degenerate

n–simplex ratio %Xn rhr is unknown, it can be determined using a quantum

counting algorithm (G. Brassard et al. (1998)), which computes the eigenvalues

e±iθn of Gn related to %Xn by sin(θn/2) = %Xn
−1/2.

The two steps contribute additively to the algorithm’s complexity.
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Computation of normalized homology

Computing the simplicial cohomologyHn(X,C) for 0 ≤ n < K in the truncation

X(K) is equivalent to determining ker cHDD
(K), where

cHDD
(K) =

∑
0≤n≤K

(cHDDn − δKncQDK+1
cQDK+1

+)

see nsl . (The subtracted term for n = K is due to the the operators
cQDK+1, cQDK+1

+ being excluded by the truncation.)

The determination of ker cHDD(K) proceeds by the quantum phase estimation

methods (D. S. Abrams and S. Lloyd (1999)).

This involves the unitary operators exp(iτcHDD(K)) for varying τ constructed

via a Hamiltonian simulation algorithm (R. P. Feynman (1982)). The algorithm’s

complexity depends inversely on the sparsity of the Hamiltonian (S. Lloyd (1996);

D. Aharonov and A. Ta-Shma (2003); D. W. Berry et al. (2014)). So, one uses

exp(iτcB(K)), with cB(K) a Hermitian operator sparser than cHDD(K) such

that ker cB(K) = ker cHDD
(K).
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Computation of normalized homology

cBD
(K) can be chosen to be the Dirac operator of cHDD(K), a distinguished

Hermitian operator obeying cBD(K)2 = cHDD
(K),

cBD
(K) =

∑
0≤n≤K−1

(
cQDn+1 + cQDn+1

+
)
.

In the quantum phase estimation algorithm, one adjoins next to the ’vector’

register cH (K) a large bt–bit ’clock’ register C2⊗bt , so that the total Hilbert

space is C2⊗bt ⊗ cH (K). States are described as density operators.

The quantum computer is initialized in the mixed state

tcρ0n = |0〉t t〈0| ⊗
cρ0n.

where cρ0n is the uniform mixture of all non degenerate n–simplex states,

cρ0n = |cXn|−1c1n =
∑

σn∈cXn
|σn〉|cXn|−1〈σn|.

(This corresponds to the initial state |cξ0n〉〈cξ0n| of the Grover algorithms for

the projection onto the non degenerate simplex subspace cH (K).)
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+
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Computation of normalized homology

The algorithm evolves unitarily the state tcρ0n in an entangled state of the

clock and vector registers.

A measurement of the clock register is carried out. The clock value 0 is found

with probability dimker cHDDKn/|cXn|.

Upon iteration of the algorithm, the clock value 0 is eventually found. The

computer is then in the mixed state

tcρDDn = |0〉t t〈0| ⊗
cρDDn,

where cρDDn is the uniform mixture of all non degenerate n–simplex states

of ker cHDDKn,

cρDDn := dimker cHDDKn
−1cPDDKn,

cPDDKn denoting the orthogonal projection operator of cHn onto ker cHDDKn.

The frequency with which 0 occurs is recorded.
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Computation of normalized homology

By the isomorphism ker cHDDn ' HDn(
cH ), the final state of the quantum

computer encodes the homology space HDn(
cH ). Further, the frequency with

which the clock value 0 occurs furnishes directly the Betti numbers βn(X,C) =

dimker cHDDKn.

The value of bt depends on number of bits and the precision desired for the

estimation of the eigenvalues of cBD(K). The algorithm involves the use of

bt–bit Welsh–Hadamard and quantum Fourier transforms with combined com-

plexity O(bt2) and one call of an oracular unitary operator UDKj computing

exp(i2jcBD
(K)) for each j with 0 ≤ j ≤ bt − 1. The complexity of the UDKj

depend on the Hamiltonian simulation algorithm employed.
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Conclusions

Our conclusions are just a wish–to–do item list.

Understand better the defect structure of the quantum simplicial set–up.

Refine the notion of simplicial quantum circuits. Find simplicial quantum circuits

implementing truly quantum simplicial algorithms.

Improve the complexity analysis of simplicial quantum algorithms.

Study the feasibility of quantum algorithms for homotopy computations.

Concrete applications (maybe ?).
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Thank you for your attention!
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