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What is a quantum channel?

Definition (Quantum channel)

A quantum channel is anything that can be modeled as a completely
positive, trace preserving map between spaces of operators on
Hilbert spaces,

Φ : Mat(n × n,C) → Mat(m × m,C)

Quantum channels can carry both quantum and classical
information.

Quantum channels have a Kraus decomposition

Φ(A) =
∑

i∈I

Ei AE†
i .

where the {Ei} are the Kraus operators.
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Categories

Definition (Category)

A category is a mathematical structure that consists of Objects:
A, B, C, . . . and Arrows: f , g, h, . . . (more formally called morphisms)
where

each arrow has a domain and codomain;

the arrows exhibit compositeness, associativity, and a unit
law; and

for each object there is an associated identity arrow.

Definition (Functor)

A functor F : C → D between categories C and D is a mapping from
objects to objects and arrows to arrows such that the functors exhibit
compositeness, associativity, and a unit law.
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Dagger categories

Definition (Dagger category)

A dagger category is a category C together with an involutive,
identity-on-objects, contravariant functor † : C → C, i.e. to every
morphism f : A → B we associate a morphism f † : B → A, called the
adjoint of f , such that for all f : A → B and g : B → C, id†A = idA,
(g ◦ f )† = f † ◦ g†, and f †† = f .

Definition (Unitary and self-adjoint maps)

In a dagger category, a morphism f : A → B is called unitary if it is an
isomorphism and f−1 = f †. A morphism f : A → A is called
self-adjoint or Hermitian if f = f †.

Note that this formalism encapsulates various quantum processes
and protocols including no-cloning, teleportation and so on as
detailed in the work of Coecke, Selinger, and others.
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Defining QChan

We define the category of all quantum channels QChan ⊂
VectC (where VectC is the category of complex vector spaces)
whose

objects are the vector spaces Mat(n × n,C) for all n ∈ N;

morphisms are completely positive and trace-preserving
linear maps Φ : Mat(n × n,C) → Mat(m × m,C);

composition of morphisms is, of course, the composition in
Vect, i.e. the ordinary composition of linear maps.

Any category equipped with some notion of a ‘tensor product’ is
known as a monoidal category.
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Properties of QChan

We can form subcategories out of QChan fairly easily. For
example,

QChan2 whose object is the vector space Mat(2 × 2,C).
QChan4 whose object is the vector space Mat(4 × 4,C).

Notice that the mapping from QChan2 to QChan4 is, of course,
the normal tensor product which is a functor:

−⊗− : QChan2 → QChan4

Any category whose morphisms are of the form

Φ : Mat(n × n,C) → Mat(n × n,C)

is a monoid. Note that the input and output Hilbert spaces have
the same dimension, but are not necessarily the same space.
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Properties of QChan

Call the input to QChan2 ρ and its output T (ρ). QChan2 and QChan4

thus form an arrow category QChan→ of QChan that has a
morphism, F = (F , F ′) that is a commutative square

ρ
F

- ρ ⊗ ρ

T

f

? F ′

- T ⊗ T

f ′

?
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Properties of QChan

This can be easily generalized to tensoring over n,

ρ
F

- ρ ⊗ ρ
F
- ρ ⊗ ρ ⊗ ρ

F
- · · ·

F
- ρ

⊗n

T

f0

? F ′

- T ⊗ T

f1

? F ′

- T ⊗ T ⊗ T

f2

? F ′

- · · ·
F ′

- T⊗n

fn

?

which represents a cumulative hierarchy.
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Birkhoff’s theorem

Theorem (Birkhoff-von Neumann)

Doubly stochastic matrices of order n are said to form the convex hull
of permutation matrices of the same order where the latter are the
vertices (extreme points) of the former, i.e. doubly stochastic matrices
are convex combinations of permutation matrices.

In the quantum context, doubly stochastic matrices become doubly
stochastic channels, i.e. completely positive maps preserving both
the trace and the identity. Quantum mechanically we understand the
permutations to be the unitarily implemented channels. That is, we
expect doubly stochastic quantum channels to be convex
combinations of unitary channels.
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Unfortunately, it is known that some quantum channels violate this
extension of Birkhoff’s theorem.

Possible approaches to resolving this issue:

One approach that has been suggested by A. Winter is based on
the idea that large tensor powers of a channel may be easier to
represent as a convex hull of permutation matrices, because one
need not use only product unitaries in the decomposition.

A purely categorical approach.

Some mixture of the two.

Solutions presently exist for all qubit channels and all invertible
channels including those that are invertible with environmental
assistance.
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A categorical approach to Birkhoff’s theorem

Thus we define a (dagger) category of unitarily implemented
channels, QChanU ⊂QChan. The main thrust of a purely
categorical approach to this problem is to examine the
difference between QChan and QChanU with the aim of
identifying some structure-preserving map QChan → QChanU.

A mixed approach to solving this problem would examine
whether the cumulative hierarchy of commutative squares in
the limit of large n describes a category that is equivalent to
QChanU.
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Identifying QChanU
Note that QChanU consists of channels that are invertible.

Definition (Invertible maps)

We say a map ε(ρ) is invertible if and only if there exists some
operator, D, such that

D (ε(ρ)) = ρ.

Categorically, this means that ε(ρ) is an isomorphism.

Definition

In any category C, an arrow f : A → B is called an isomorphism if
there is an arrow g : B → A in C such that

g ◦ f = 1A and f ◦ g = 1B

Since inverses are unique, we have that g = f−1 and thus A is
isomorphic to B.
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Preliminary results

For all subcategories of QChan that are monoids of
finite-dimensionality:

Apply Cayley’s theorem which states that every group is
isomorphic to a permutation group.

Any representation (e.g. a set of operators) of a finite and
compact permutation group may be considered unitary. Note
that compact permutation groups are closed subgroups of direct
products of finite groups and that their compactness is trivial in
this case.

Thus any quantum channel that preserves the size of the
(finite-dimensional) Hilbert space has a unitary representation,
even if it is not reversible.

Extending this to non-monoid subcategories of QChan may be
possible via Yoneda’s lemma and will constitute further work. It
remains to be seen how non-finite channels can be handled.
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Summary

We have developed a categorical representation of
quantum channels.

We have shown that all channels whose input and output
Hilbert spaces have the same dimension ( i.e. those that
are monoids) have a unitary representation. This greatly
extends the types of channels that can be shown to obey
Birkhoff’s theorem.

We propose using Yoneda’s lemma to potentially extend
our results to all non-monoid subcategories of QChan thus
achieving a completely general solution.

Thank you!
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