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commutative for every ¢ such that 7sn(i) € v;1(A). Next for every f € S°n we

define
¥ 2 T (On(f) — J5(f)
using stalk-construction in the obvious way.
Clearly; (ﬁ: :Y) : (’LU, ﬁ) — (7-’:7) . B
The fact that the functor associated to the morphism (#,%) preserves ultra-
products follows directly from Lemma 4.1.
The proof is complete.
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REMARKS ON REPRESENTATIONS OF UNIVERSAL
ALGEBRAS BY SHEAVES OF QUOTIENT ALGEBRAS

MICHAEL JOHNSON AND SHU-HAO SUN

ABSTRACT. In this paper, we give a sheaf representation for any universal alge-
bra whose congruence lattice contains a particular type of subframe. This rep-
resentation yields the following known representation theorems: Wolf-Maddana
Swamy’s representations for those algebras whose congruence lattices are dis-
tributive; Koh-Simmons’ representation theorem for strongly harmonic rings
which includes Mulvey’s representations of Gelfand rings; and Georgescu and
Voiculescu’s representations of normal unital quantales which include Keimel’s
representations of F'-rings and Cornish’s representations of normal lattices.

1. INTRODUCTION

There are many sheaf representation theorems for a wide variety of algebras.
One might hope to establish a unified proof of the sheaf representation theorems
by searching for a sheaf representation of universal algebras. Non-trivial sheaf rep-
resentation theorems are known for the class of algebras whose congruence lattices
are distributive (see [16],[10]) and the class whose congruence lattices are normal
commutative unital quantales (see [4]). Unfortunately such results do not include
the sheaf representation theorems for rings with identity.

We present a sheaf representation for a class of universal algebras which spe-
cializes to give some of the known representation theorems including some repre-
sentations of non-commutative rings. This solves the problem posed by Wolf [16],
but it does not yield Grothendieck representations, nor some of the representa-
tions of Lambek [8]. This paper will not explore the applications of the individual
representations, nor will we yet consider general categorical treatments.

For basic terminology the reader is referred to [5] and [1].

2. PRELIMINARIES

Let L be a complete lattice. Then £ C L is called a subframe of L if £ is
closed under infinite joins and finite meets and £ is itself a locale. Equivalently,
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L is a subframe of L if it is a frame and the inclusion preserves finite meets and
arbitrary joins (including the top and bottom elements).

For such an L let P#(L) denote the set of all prime elements of £ endowed
with the usual hull-kernel topology in which the open sets have the form d(8) =
{me Pt(L) |8 L}, for L.

Unless the context indicates otherwise, suppose henceforward that A is a univer-
sal algebra, that C'A is its congruence lattice, and that £ is a compact subframe
of CA.

Let w be the smallest (diagonal) congruence on A and write for each § € £

0" =\/{¢eLllonb=w}.
Then 6* € £ and 6*N# =w. For each m € P(L), let
r(r)=| J{6" |6 £ 7}
Notice that = D r(w) and 6* C {r(x) | 7 € d(8)}.
Lemma 1. Foreach 6 € L, 0 =({{r |7 € Pi(L) and 0 C w}.
Proof. See Cornish [3] Proposition 2.1. [
Lemma 2. For each 0 € £, 6" = \{x | 7 € d(0)}.

Proof. Notice that

o (N{r|med®)})

00 (\{r e PHL) |6 £ })
L

Nr e PtL) |6 <ayn A{re PiL)| 6 £ x}
L Y

= W

(using Lemma 1). Thus we have 6* > A{m | # € d(#)}. The reverse inequality is
L
straightforward. O

Recall that an element z of a lattice L is said to be compact if for each family
of elements of L whose join is above z there 1s a finite subfamily whose join is
above z, and that a complete lattice I is called algebraic if each element z of
L can be expressed as the join of a family of compact elements. For example any
ideal lattice (two-sided or one-sided) of a ring is an algebraic complete lattice.

Lemma 3. Let L be an algebraic complete lattice and £ a subframe of L. Then
L s a spatial locale.

Proof. Let a,b € £ with a £ b. Then there is a compact ¢ < a with ¢ £ b since
L is algebraic. Consider the set Q(c) = {z € L | c L z, b < z}. Then Qfc) is
non-empty since b € Q(c) and Q(c) is closed under joins of chains in @(c) because
¢ is compact. Hence by Zorn’s Lemma there is a maximal element m € Q(c) with
b<m. Of course, ¢ £ m.

It remains to show that m is a prime element in £. Let y;,y2 € £ with y; £ m;
then ¢ < y; Vm by the maximality of m. Furthermore, ¢ < (31 Vm) A(y2Vm) =
y1 AyaVm, and hence yy Ay £€m. O
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Remark 4. Let z and y be elements of a lattice L. We say that z is way below
y if for any family of L whose join is above y there is a finite subfamily whose join
is above z. A lattice L is called continuous if each element of L can be expressed
as the join of those elements which are way below it. It is clear that every algebraic
lattice is continuous.

The hypotheses of Lemma 3 are actually stronger than is required. Using our
argument and a well-known characterization of continuous lattices, Lemma 3 holds
for L a continuous complete lattice. We thank D.S. Zhao (Cambridge) for bringing
this to our attention.

Corollary 5. Every continuous locale is spatial.
We will use the following Chinese Remainder Theorem [16].

Theorem 6. (CRT): Let 6;, ¢ = 1,2,...,n be mutually permutable congruences
on A which generate a distributive sublattice L of CA. If a;, i=1,2,...,n are
elements of A such thal (a;,ax) € 0; VO for all i,k = 1,2,...,n, then there is
an element a € A such that (a,a;) €8; forall i=1,2,... n.

Lemma 7. Let 6; € £, i = 1,2,...,n be mutually permutable with join A x A;
and a; € A,i=1,2,...,n such that (a;,a;) € (6; N6;)* forall 4,5 =1,2,...,n.
Then there erists a € A such that (a,a;) € 0] forall i<n.

Proof. Since §* is the largest element in £ with the property that 6 N 8* = w,
we have (0 N¢)*Né < ¢~ forall 6,6 € L. Now let 7,5 = 1,2,...,n and
0 = e {(6; NOx)* V(6 NG;)*} and notice that (a;,a;) € 8. Then

0N0, C((0:Nk)" NOE)V((:NE;)" NOE) C O VT

for 1 < k < n, which implies that 0 = 6N (\;_,0:) = Vi, (6N8) C o7 vV o5 .

On the other hand, 67 V8 C (6; N0x)* V(0 N8;)" for 1 <k < n and hence
0; v@; C 0;so that @ = 07 v 0;. Therefore, we have (ai,a;) € 67 V 8 for
1< 14,7 <n. Note that each 7 € £ and £ is distributive. The lemma now follows
from CRT (Theorem 6). O

3. A SHEAF REPRESENTATION

We will construct the sheaf F in the usual way: for each 7« € Pt(L), we denote
by A, the quotient algebra A/r(w).

Let E be the disjoint union of the algebras A., = € Pt(£). Each a € A
determines a Gelfand function @: P{(L) — E by defining a(m) = [a]r(x) for all
© € Pi(L).

We endow E with the finest topology for which all the maps @ are continuous.

Proposition 8. The sets of the form @(d(0)) for a€ A and 6 € L form a basis of
the topology on E and n: E — Pt(L) is a sheaf F of universal algebras. For each
a € A the function @ is a global section and a +— a is an algebra homomorphism.
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Proof. First we show that the set
V ={re Pt(L)]| (a,b) € r(m)}
is open for all a,b€ A: If # € V, then (a,b) € 0* for some § € L with 6 £ 7.
Now 7 C d(f) C V is easily seen. Next we see that for each a,b€ A,
bL(@(d(8))) = {x € Pt(L) | (a,b) € r(x)} Nd(B)
)

since = € b-1(@(d(8))) if and only if b(
occurs if and only if (a,b) € @ and =
straightforward. O

= a(x') for some 7’ € d(f) but this
7' € d(#). The rest of the proof is

We will require £ to satisfy the following property (*):
For each finite set {0;}7 of £ with \/6; = A x A, there exists a finite set {¢:}]
of £ such that \/¢; = Ax A, ¢; <8, i<n and

(3: 0 ¢;)" D {r(x) € PUL) | = € d(6:) N d(6;)}
forall i,j <n. '

Theorem 9. Let A be a universal algebra with congruence lattice CA and let
L be a compact subframe of CA which satisfies property (*) and is permutable.
Then a v @ is an isomorphism from A onto the algebra of all sections of the sheaf
F over PU(L) constructed above.

Proof. The injectivity follows from Lemma 1. Now we show the surjectivity: Let
o be a section of F. For each w € P#(L), there is an a, € A with o(7) =
@r(m). Then o~ !(@x(Pt(L)) is a neighbourhood of = which contains some basic
neighbourhood d(6;) of m, where 0, € L, so that o|d(6:) = @r|d(fx) since they
are sections. Thus {d(8,) | 7 € Pt(L£)} is an open cover of Pt(L) and hence, since
Pt(L) is compact, there are 8;,6,,...,0, € £ whose joinis A x A, and elements
ay,as, ..., a, € A such that

old(9;) = @:]d(8:)

for i=1,2,...,n. Furthermore, there exist {¢;}7 satisfying (*).

Now for i,k = 1,2,...,n we claim that (a;,ax) € (¢ N ¢x)*: indeed, for all
© € d(6;N0y) = d(6;)Nd(8x) we have @;(r) = o(r) = @x(m), whence (a;, ax) € r(r)
since ay € [a;]r(7); and hence (a;,ax) € N{r(7) | 7 € d(6: N Ox)} C (¢i O d)”
by (*). Now by Lemma 7, there is a € A such that (a,q;) € ¢;" , and hence in
(Mr(x) | # € d(¢:)} for i =1,2,...,n (using the definition of r(r)). Furthermore,
ald(¢;) = s|d(¢:) = old(é:). As |, d(¢;) = d(A x A) = Pt(L), we conclude
that a=0c. [

Theorem 9 can be generalized as follows:

Theorem 10. Let A be a universal algebra with congruence lattice CA and let
L be a sublattice of CA satisfying (0) £ and CA have the same top and botlom
elements; (1) L itself is a compact spatial locale; (2) w = ({7 | # € Pi(L)};
(3) property (*) holds; (4) L is permutable. Then a — a is an isomorphism from
A onto the algebra of all sections of the sheaf F over PU(L).
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4. (QUANTALES

To apply our sheaf representation to ring theory, we need the following notions
(see [12] and [11]). Recall that a quantale L is a complete lattice with an associative
binary operator - satisfying the infinite distributive law:

a-(\/S):\/{a-sIsES};(\/S)-a:\/{s-a!sES}

for any a€ L and S C L. We will often write as for a-s.

A unital quaniale is one in which the top element is also an identity with respect
to - (a similar setting was called an integral cl-groupoid in [1]).

Let L be a unital quantale. An element p < 1 is called m-prime if for any
a,b € L then a-b < p implieseither a < p or b < p, while p <1 is called mazimal
if p<aimpliesa=pora=1.

Then for any element z of a unital quantale, # maximal implies & m-prime
which implies that z is prime (in the lattice-theoretic sense).

Following Simmons([14]), a unital gquantale which is an upper continuous lattice
will be called a carrier. Examples of carriers include complete Heyting algebras,
the ideal lattices of bounded distributive lattices and the 2-sided ideal lattices of
rings, as well as the congruence lattice of any universal algebra with distributive
congruences,

Note that subframes £ of a carrier L correspond to order-preserving and top-
preserving maps ¢ : L — L by defining for any a € L

gla)=\/{zeL|z<a}.

The following are basic examples of quantales with chosen subframes.

Example 11. Let Id R be the set of 2-sided ideals of R. Following Borceux et al
(see [2]), a 2-sided ideal I is called pure if IV a* = R for each a € I, where a”
denotes the right annihilator of a. The set of all pure ideals of R is a subframe of
IdR.

Example 12. Let Id R be the set of 2-sided ideals of R. Following Simmons
([13]), a 2-sided ideal I is called uniform wvirginal if IV (aR)* = R where (aR)"
is the right annihilator of the right ideal a®. Then the set of all uniform virginal
ideals of R is a subframe of Id R.

Example 13. More generally, let L be any 2-sided quantale which is an upper
continuous lattice. An element a € L is called right regular if « = \/{x € L |
z*Va=1}, where z* =\/{y € L | 2y = 0}. Define w: L — L by sending each
a € L to the join of all the right regular elements less than a. Then w(L) is a
subframe of L.

It is shown in [4] that, if L is a commutative continuous unital normal quantale,
then w restricts to an isomorphism between Maz(L) and Pt(w(L)). Their proof
does not appear to use commutativity but does make use of continuity. The scope
of this result has been extended by Simmons [14] for 2-sided normal carriers with
a compact top. It can also be extended to include 1-sided cases, see [15].
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Example 14. Let R be aring and E(R) the set of all idempotent central elements
of R;then E(R) is boolean with respect to aAb=ab, aVb=a+b— ab. Define
g:IdR— IdR by g(A) =(ANE(R))R. Then g(Id R) is a subframe of Id R .

Now we record some examples of subframes which satisfy property (*).

Example 15. Let A be a universal algebra with distributive congruence lattice

CA then £ = CA satisfies (*).

Example 16. Let A be an algebraic normal unital quantale with a compact top 7.
For example, A could be the 2-sided ideal lattice of a strongly harmonic ring. Then
L = w(A) as defined in Example 13 satisfies (*).

Proof. We will prove that for any finite open cover {d(a;)}} of P#(L) there exists
a finite open cover {d(b;)}} such that each d(b;) C d(a;) and (b; Ab;)* D (= €
PYHL) | m € d(a; Aaj)}. To do this, define p : 4 — A by assigning to each
a € A the join of those elements = below a such that z* Ve = 7. Write #
for the unique maximal element containing x. It is known that p(#) = =, that
p=w and that p(A) is a compact regular subframe of A (which implies Pt(()
1s a compact Haudorff space). So for any open cover of Pt(L) there is a finite
refinement {d(a;)}} . By regularity, there is a finite open cover {d(b;)}? such that
for each i < n, the closure d(b;) C d(a;), and hence

d(b1 N b_f) = d(b,) n d(b_.,) C d(b;) N d(bj.) C d(ag) n d(aj) = d(ﬂ.;‘ A (lj;) ;

Now:

(a) € d(a) if and only if # € d(a), where the d(z), « € £, are the open sets
for the usual topology on the space of maximal elements of A.

Proof of (a): If a £ «, then a £ #. Otherwise a < 7 implies a = p(a) <
p(7) = m which is a contradiction. The converse is trivial.

(b) # € d(a) implies p(7%) € d(a).

Proof of (b): Consider any neighbourhood d(b) of = = p(7),i.e., b € £ with b &
7. By (a), d(b) is a neighbourhood of #. So there exists m € d(b)Nd(a) = d(bAa)
which implies p(m) € d(b A a) using (a) again. That is to say d(a) N d(b) # 0.
Thus 7 € d(a).

Now write b; ; for b; Ab; and a;; for a; Aa;. We will first show that

(V| 7w €dbi )} € p(( {7 | 7 € dbij))).

It suffices to show that for each compact element ¢ < ({7 |7 € d(b; 5},

c* Vm{ﬁ' | 7 & (i(b”,)} =T.

If not, there is a maximal element mg containing ¢* V({7 | 7 € M} since 7T is
wct. In particular, mo O ({7 | # € d(b; ;)} which implies that mo € {7 | 7 €
d(b; ;)} since ci(bw) is closed. Hence p(mg) € d(b; ;) by (b) above. On the other
ha.nd, ¢ <({m|me€d(bi;)} and so ¢ < p(my) which implies ¢* vV my = 7 (since
¢ is compact) and my = 7 which is a contradiction.
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Now the proof is completed as follows:

(M | w € d(bi)} C p((V{F | 7 € dlbi)})

= w(( {7 | # € d(b:;)}) C w(({{w(#) | 7 € d(bs;)})

= w(( [ | = €d(b;;)}) = (bi;)" by Lemma 2.

Finally, we have
{7 | = €d(ai;)} C({r |7 edbiz)}C (bij) . O

Remark 17. In this example, we can weaken the assumption that the lattice is
algebraic to require just that the lattice is continuous. The proof of the more general
case is similar to that given above. Using results from [15] we can also weaken the
assumption that the quantale is unital to require only that it be 1-sided.

5. APPLICATIONS

We now use Theorem 9 to derive several known sheaf representation theorems.
We begin by applying Lemma 2 to obtain the following Corollary.

Corollary 18. Let A be a universal algebra whose congruence lattice s distribu-
tive. Put CA = L. Then we have Swamy-Wolf’s sheaf representation theorem

[9],[16].

Corollary 19. . Lel A be an universal algebra of some type with the following
properties:

(i) the congruence lattice CA 1is a normal unital quantale with a compact top
element.

(i1) the virginal elements of CA permute.

Then A is isomorphic to the algebra of global sections of a sheaf on the compact
Hausdorff space Maz(CA).

The proof of Corollary 19 follows from Theorem 9 and Example 16. Once again
the result may be extended to 1-sided quantales.

This Corollary unifies the following representation theorems: Georgescu and
Voiculescu’s representation of normal unital quantales [4], Keimel’s sheaf represen-
tations for F -rings [6], Koh-Simmons’s representations for strongly harmonic rings
[7], including Mulvey’s representations for Gelfand rings [10], and Cornish’s sheaf
representations for normal lattices [3].

Finally, if we restrict our attention to representations of rings (rather than gen-
eral universal algebras) we can eliminate property (*).

Let R be a ring (with an identity). Write Id R for the set of all 2-sided
ideals of R. A subset £ C IdR is sald to be a subframe of Id R if for any
I,Je £, 1J=1InJ and £ is closed under arbitrary sums and finite intersections.
A subframe £ of Id R is called small if for each maximal ideal M of R, L(M) =
S{lef|ICcM}CY {LAnn<ae>|a ¢ M}, where <a> is the principal ideal
generated by @ and LAnn <a> denotes the left annihilator ideal of <a>. Then
we have the following:
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Theorem 20. Let R be any ring with identity and L be a small subframe of Id .
Then R is isomorphic 1o the ring of global sections of a sheaf F whose base space

is Pt(L).

Proof. The sheaf is built by taking as each stalk a quotient R/, where ©# € Pt(L).
The smallness condition ensures that the canonical projection is a local homeomor-
phism. The injectivity follows from Lemma 1. Now we show the surjectivity: Let
o be a section of F. For each 7 € Pt(L), there is an ar € A with o(7) =dr(m).
Then o~ (@, (Pt(L)) is a neighbourhood of # which contains some basic neigh-
bourhood d(I) of m, where I, € L, so that o|d(Ir) = dr|d(I;) since they are
sections. Thus {d(I;) | = € Pt(L£)} is an open cover of Pt(£) and hence there are
Ii,Is, ..., I, € L whose join is R, and elements ay,as,...,a, € I such that

G’Id(f,;) = Ei,|d(1,)

for i =1,2,...,n. Furthermore, there exist e; € I; satisfying e;+es+---+e, = 1.
Let @ = "7 a;e; . Weclaim @ = o. In fact, for each i <n and each = € Pt(L),
if # ¢ d(I;), e, I; C m, then

[(o — @)&(r) C &(r) € L/ C /7 = 0;
if # €d(L), then o(7) = @;(w) which implies
[(¢ —@;)e](x) = 0.

Thus we have shown that
> (e —a@)a](r) =0,

thatis, a=¢. 0O
Generalizations and applications of Theorem 20 will be taken up elsewhere.
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