Here is the highly referenced seminar handout notes by Lawvere, 1962. The pen markings are mine; in
several places my initial thoughts are incorrect (e.g., P has products therefore... In fact P does not have
products or equalizers -only weak products and weak equalizers). Rather than “correcting them” by more
markings I left them incorrect; we have a rather detailed analysis of this category as we were trying to
determine if it had equalizers (we proved it doesn’t). Attached to his notes is a recent email exchange I had
with him concerning “probabilistic relations” using this category.
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THE CATEGORY OF PROBABILISTIC MAPPINGS

— With Applications to Stochastic Processes,
Statistics, and Pattern Recognition

- by F. W. Lawvere

1. Objects and Maps in the Category of Probabilistic Mappings

1.1 Measurable Spaces

1.1.1 The objects which we consider are nueasurable spaces 8. That is,

0= <S,B> will be an ordered pair in which S is any set and B is any
o -algebra of subsets of S. This means that: A a%e S, By
(0) Every member of B is a subset of S. Gews 2 Borlen deghre-

’")\3,,&’(1) The empty set 9 and the ""whole space' 5 are members of B.""{‘; U
§,AR,® Bl U B2

o (S NB) 8 B. 3"“-*“ ?;fh;( srd oy

(VA < =2 _C,:

/p:" 5 \<(3) HB., 1= i ; i -

- ‘.J?"‘ﬁ&(b Q(Z) IfBE€ B (i.e., if Bis a menber of B) then the coruplement

; 2 o =0,1,2,--- is any countable family of members of B,
~afLety g oo Tee fop st
o X then the union iyoBi is also a member of B. <=5

; fhom | =
We also say that B is the class of measurable sets of Q. b T

Ak a=2lc. 15 (€0 c.wp(-b'{f
1.2 1f = <S, B> is any measurable space and if { is a function deténe on »ls
sc e Mate € P‘“"l

.. A4 S with values in a partially ordered set /\, then f is said to be ~/\ nm.easur-
-2 by s \l’iw\w"Yi X\3
V‘f“”}u able if for each Ag /\ we have Iulf (w) < k\r ¢ B; that is, if the set {of all
W "' we $7 (4N S0 2o2ls. is 3 L
g‘ 9l € O whose_value under f prer.{e es a o(xvg Ais m easurable for each A, 5w
locals.
U“Umg"z-For example, we will use this notion when /= R, the redl number, JU"

1.3 More generally, if Q= <S, B> and @ = <S', B'> are any measurable
spaces, and 1f,g is any function defined on S with values in S', theng is

/
S —F said to be a measurable mapping if and only if £ (B )¢ B for every B'¢ B',

where f-l(B') denotes the set of all x ¢ S for which f(x) ¢ B'. The foregoing
paragraph is seen to be a special case of this by considering Q' =</, B(A)>
where B(/\) is the smallest o -algebra containing all sets of the form

{A‘!x < x} for all L5 A,

q() 2
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If Q= <S, B> is a measurable space, then by a probability nieasure on {I

is meant a function P which assigns to every measurable set Bt B a real

number P(B), in such a way that:

(0) 0L P(B)<1 for every BE B

(1) P(S)=1

(2) 1f Biﬁ B fori=1,2,-.- and if BinBj =0fori#j(i.e., Bi are pair-
wise disjoint measurable sets) then

o z
P B)= P(B.
(,9B)=F PB)

i=

In case S is a countable set and B consists of all subsets of 5, then for any

——

probability measure P on <S, B> and any B § B, we have
PB)= T P({x
(B) xEB ({=x})

where {x} is the "singleton' subset of S whose only member is %, for each

x £ B, Thus, in this case, a probability measure is already determined by
1S~ (6.1 Pid—>rgo, ]

a function p(x) = P({x}) of members of S; this function is arbitrary, save

for the two conditions 0 < p(x) <1, x}gs p(x) = 1.

If S is not countable, then probability measures on {lare not determined by
their values at singletons, For example, if S = {xl 0<x < 1} = the "unit
interval"”, and if B = the smallest o--algebra containing all closed subinter-

vals = the class of '""Borel sets'', then there are a great many probability

e

measures P on {}= <S5, B> for which P({x}) = 0 for all x. For example,
in this case P = L.ebesque measure = (generalized) length is a probability

measure but every singleton has zero probability,

1.6 If 8= <S, B> and Q' = <S', B'> are measurables spaces, if { is a

measurable mapping (1.3) from Qto ', and if P is a probability measure

on £} then the probability measure Pf induced on ! by P via f is defined

by .
(pe)B') & pie )

for every B'tB'. Note Kot @;ut /C'Pr'el;. r—-zﬂouasl

— " il F 5T Tt .
P5 15 e semrllost wmenle At "f b the 8 e 5\?;&,'“#( %)
fane wiich P Gches Smse 1 B (x.0) —> *:8)
2. T
‘ v‘F' “ml g‘“"h’hﬂ.

li!g;.l) R =t g . "\Vf - So q 15 Tl reyy
< and sv ) Tl
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To verify that Pf is probability measure (i.e., satisfies the conditions
0, 1, 2 of 1.4) note that the mapping f-l from B' to B is a o -homomorphism;
i.e., that .

f'l(s'NB') = s~f’1(B') for B'¢ B’

f’l(m B')= e f‘I(B') for B¢ B'

U B , if T By
i=1 i=1

f_l(S')‘—'S

From this it is obvious that Pf is a probability n.easure if P is, in fact,
any mapping fron: B' to B which satisfies the above conditions (whether
induced by a mapping from S to S' or not) will induce a mapping from

probability measures on Qto those on ¥,
If &= <S, B> is a nieasurable space and, if x£ S, then Px defined by

_(lif x¢B
PABY= 10 if x¢B

for any B€ B, is a probability measure on {I, known as a "one-point' or

"Dirac' measure.

Let 3= <5, B> be a measurable space, Pa probability measure on §,

f a bounded measurable n.apping from Q to R = the space of real numbers
with Borel sets as the measurable sets (""Bounded' means that for some
positive real number M, l’f(x)! X Mforall x£S). Such an fis often called

a bounded random variable. We now wish to define the P-expectation of f,

also called the integral of f with respect to P, denoted by either

E\‘G)}fﬂfdP

or by f f(x)P(dx)
0



7 E\‘Pccbw s Q d;_sS]Cez Cwiu(:f!, e(-eﬁr.x/ ou(a fp,- “r o verabl® ("’lf‘wa(«{j
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L This can be done by considering approximations to the integral based on
doubly infinite increasing sequences ) o
K—-——)s— w ) Pk & &t' £ cal fonbass
N vee <g < <a < < K oo
= L B e e T dage,
[*FS_O, -27 N Y - a4 a e .

%  of real numbers. Given any such sequence a, define the upper approxima-
tion M bstlud’(z' el -~
55 =2
. (& -l J (i, P,a)= S a )P ,a
g S— AP :9“%? G‘ 'P('.;(Gf))} ( ) -w= <n<col'£/n) fén,,l n]
£ w0 Lot

" and the lower approximation W ’i s G sudend
e Hewy are ot .,:-1:4:2'[7\
_.;I; {(f,P,a) = \4 . ﬁan) o Pf(an'an*'l}
~co<n <o d

Here Pf(a,b} =P {x a<f(x)<b } as defined in 1. The upper integral

is defined by
T (f, P) = inf J (f, P,a)
and the lower integral by

1 (f,P) = sup J (f, P,a)

where the infimum and supremum are taken over all doubly infinite increas-
ing sequences a. IfI ({,P)= T (f, P), then the function f is said to be integrable

with respect to P, and the integral is defined to be the common value

I (f,P)=J P =T ({,P) .
)

It can be shown that every bounded measurable function (on €3 is integrable
with respect to every probability measure (on {2). For each individual P,
there will ordinarily be many unbounded functions which are integrable with

respect to P.

1.9 If S is a countable set, B the family of all subsets of S, f any bounded

measurable function on 1= <S, B>, and P any probability measure on I,

5
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then

~ | fetax) = B txiptx)
x€S
Q
where p(x) = P{ {x} ) as defined in 1.5,
1.10 Let {,g be any two bounded measurable functions on a measurable space {,
and let P be any probability measure on 2. Then
| (f+g)dp:f fdp+f gdP .
Q 2 Q
If a is any real number, then
j af(x) P(dx) = a Jf f(x) P(dx) .
PR | N
If fn is any sequence of bounded measurable functions such that fn is uniform.ly
b ded (lf < 1 i i =
ounde q n(x)l_‘ M for all x,n) and if nl.lfl_,}m fn{x) f(x) for each x £ S,
then Jim [t ap={ wp.
. R e’ 9]
1.11 1f 0 <6 <1 and if Pl’ P2 are any two probability measures on the measurable
space £}, then P = 9P1 + (l--G)P2 is also a probability measure, and
[ tap=+ [ [P +(1-6) f fap,
a Q ¢
for any bounded measurable function f on Q.
1.2 Probabilistic Mappings
2.1 Let & =<5, B> and Q' =<', B"> be any measurable spaces. We say T is
a probabilistic mapping from Qto Q' and write Q—T-;Q' if and only if T assigns,
to each point in {, a probability measure on ', and does so in a2 measurable
way. More precisely, T is a function of two variables x £ 5, B'£ B' having the
properties
Tha ﬁ«{:—f Semdbesf (0) 0 < T(x,B') <1 for all x& S, B's B'
e~ v ek - -
< (1) T(x,8")=1 for all x& S
‘ ( (7\\‘) wa o 6
et e “‘Q
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[s 3] a0
(2) T(x,UlB; )= E T(x.B]) for each x ¢S and for each disjoint
1= 1=

rl")

@, By (3, ‘E'"(&@&fﬁl‘.nce B! of measurable sets of {,
T(.‘g)§ —> (e} i

Rz, : (3) {x\T(x,B')S_ a}aB for each 0<a <1 and each B'E B’
fleNeacs

We will refer to T(x,B') as the (conditional) T-probability of the event

T\ (5) W‘J /»"1"(“
e (@8 "BY in Q' given the elementary event x in ), or as the T-probability that

x i8 mapped into B'. In case S'is countable and B! consists of all subsets)w

s . T o s . . )=
of S', then a probabilistic mapping Q— Q' is entirely detern.ined by a Tix, U‘tx 9=
1
function t of two pointvariables x£ S, x'e S'. (See 1.5) i Tl4x7) = i -t(x, )
2.2 Every measurable mapping f from { to Q' (the%e being measurable Spat.e::) D-*QE':ELA.
may be regarded as a probabilistic mapping Q-—f—-—) Q' as follows:
: - olene 1v\€¥- :
=X X—>Y Y gy ((Fem
x ' ¥ & (8D} 7
\ (x B ) 1 fé ;EB, . @r 0 ottwnore
e t #B durze (el nersure — (Y @')
\__»(X,(b) — (x.®) >
X That is, T_ assigns to x the one-point measure (on ') which 1s concentrated

f
2Lk, B)/S\ ﬁtb at f(x). Probabilistic mappings of this special sort we call deterministic,

S’ 203 Let O—T-;G -U--> Q" be probabilistic mappings, We define the composition

ToU. t
0-——3 Q' to be the probabilistic mapping defined by
bkod s e Note “Tlese are_

Yy = 1 “ N Sm‘r‘]—\ﬁi& BlS’f‘H-lehy
(ToU}x,B') JT(x,dx) U(x',B )’(L S Gl &") dﬁ(x«

ao 'Pl‘ﬁh eKure. o ‘cL
Ik}at 15, (I U)(XDB )18 tkle I(i(l ) BXPECtEﬂ.IDH Of U( IB )'

This is the correct law for composition of conditional probabilities in
physical and other situations,

2.4 If 1 is a countable space is 2,3, then (ToU)(x,B") = t(x,x'). U(x',B") .

x'¢ st
1f Q" is also countable, then

(TOU)(X,ix'?) - :4;5' t(x, x') u(x',x") . T:(B') éU{x z§

xeg’
\{
\, -

S ADIORP N - T2 Tix, #%)
: xC8' (o
(eoeYen et = v -

i tix, x9)
xeB'

b=




2.5
2.6

2.7
o

§

1f gf;.; ' £5 Q" are measurable mappings then

Tfog=Tfo Tg

where fog is the usual composition of functions (thus the deterministic

n.appings constitute a subcategory (2.7) of the category of all probabilis-
k.. [ 3 - ‘k ®
tic n;appirﬁg, (L'S %0“?"3 det has o‘-,u—(s = mersurzble Slnus Mea;
2rrovs s seatvnbls fchat .  —
A probabilistic mapping 1 —E) 0, where 1 is a one-point space, is just a

probability nieasure on 2, If Q-'-I-;Q is a probabilistic n.apping, then

Po T is the induced distribution on §'. This is familiar in case ' is bt
_“M's WwW2s bt e {le 4_;@»_3&_»2-‘_ N doed distriboafion gpr 2 ‘Mi ‘)r—v(odu(ti'h‘ u—oppwa T. o
Euclidean space and T a detern.inistic mapping {(i.e., T is a "random T is dbrmashe
s iwdoces to
variable'). Another special case is that where 0= <§, B>, Q' =<§,B'>, 1% bl
Lok

and B' is a sub-U-algebra of B, while T is the "identity'" n.apping; then __ "
g y pping P(x,8) = Phsls)
(

Y 4
PoT is the restriction of P from B to B!

" @(a,.)]((‘mf

then

To(UoV)=(ToU)oV.

Also, if iQ denotes the probabilistic mapping defined by the (deterministic)

identity map on §2, then

T
whenever Q- 0', Thus, the class P of all probabilistic mappings between

measurable spaces, together with our notion of com.position, is a category

in the sense of Filenberg-MacLane. Thus, the notions of functor, natural

transformation, and adjoint functor have a well-defined meaning in connec-

:«\tion with # . |The "objects" of P are arbitrary measurable spacesl

Let, for each object Bin P, £ () = the set of all probability measures

on 3, equipped with the sniallest 0-algebra such that for each nrsacurable

o
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L

Lk

Q-={5,®7
Ae®
A8, the evaluation D (0)—> [0,1] at A is n.easurable. Thus, D (0)

T P
is also an object in # . For any 0> Q' in P , define the deterministic

map D (Q)Méb (') by

B (THPNA) =| [ P(dw) T (e, A)
| Q

for every Pg © () and every pr.easurable A' < Q'. Thus, S (THP)= PoT

for Pg £ (Q); i.e., viewed as|a probabilistic mapping, \1"’_9—1*[ '
1 PoTg
YW=
PIMP.AN=1, por3q

g
for every element P of £ ({)), and for every measurable set A’ of proba-

/ &>
bility measures on o O g Hg(,;&
(X2
Define also the probabilistic mapping ] wluzh"“ :Qi:zw”"‘“ N A - Y
Py € Y iy b 07 e ¢
9@ -0 gy

for each object ©in P by the formula

Po(P A} = P(A) 1o POXA) |—>0-

for each element P of £ (Q) and each measurable AC Q. Then for any

Q—FI—‘; Q' in P, the diagram

8, ol @——"6’
50 —2 500 ‘s Tha K

D (Qy——\@!
? o 6)
TS
is commutative, so that p is a natural transformation of the functor ﬁ
into the identity functor on‘@.

9 Actually § is co-adjoint to the inclusion of the deterministic subcategory

into 0 ; i.e. ,m%,—ﬁ%mif QL 0' is any probabilistic

mapping then there is a unique deterministic n.apping f such that the

Qe .

The '*"-‘* . Ba\:
'\"Hpu;—?

Lovat™

g1 oo —>dedp



(b , 2

: K ‘ (,O\L“.SD‘
/ E( @d/\, Qéob@) L@Lr 6 2 Lustocﬂ‘?? 2w o P""( O::;%\,\\c‘k SE
feom Ehe fusche Lok O C)@.‘@’d"

diagran. oo \\\O
— pay BEMTRl
- (0 1
TT '[ T £ > . o) iBl@)=0
Q *(‘Q) 5(9') ----)Q' Q L T '{‘L’J)/:\
&Qu-f e @ o i)

is cornmutative. (In particular, there is a deterministic inclusion

W(;(Q))Q_'}g 00— B () and this is actually a retract with associated retraction ©®

o)
) : . e ’
k’“efj:-’g It is expected that this adjointness observation will aid in the analysis
p o'.ﬁ') — T of various n.ethodological problems such as Bohm's questions about
o

quantum n.echanics,
I.3 Stochastic Processes and Decision Maps
3.1 A fairly general class of decision problems may be formulated as follows,
There is a basic space 0 and a measurable partition A of ‘Qd elements

determinstic w L(o/g

of A being called '"patterns' or ''decisions". We denote the quotient

n.apping 8—> A by f. (Actually, for the formulation of the problem we
could allow f itself to be "fuzzy';i.e,, probabilistic.) There is also a
space T of "observable states" and a probabilistic miapping Q——gl‘
expressing the conditional probability F(w, A) that the observed state lies
in any A & T, given that the basic state is we . The problen: is then

to find a "best" completion 8 of the diagram

One of the "virtues'" of probability theory (and hence of the cate-
gory -P ) is that this general proHen., when properly explicated, has a

solution in many cases in which the corresponding detern:inistic problen:

T ‘does not; a basic reason for this is the possibility in P of forming convex
—;F? con.binations of maps, whereas there is no corresponding operation which
M produces detern.inistic n.aps, Of course, if there exists 8 such that
A8 a "
fle—"""

w ‘ -9-
> (O Tt L-0¥T) (x-) = 0T ) « (O Tty ) + B —IR
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Fod =f, we would choose such 8 as the solution to our problen.; unfortun-
ately, this is not possible for many F, f of interest. One popular schen.e
for making definite the criterion for choosing 8 is to work with a given

P
distribution 1 —> & on {} and to choose 8§ so as to maxin.ize the quantity
w‘ﬂfj >"""‘(’1 %)1&_,_} % B ?

] bord 50 SL(:U‘)2‘ Moz
\'635( Y_?(x)]) A(,P(X, )J j (Fob)(x, {f(x)} ) P (dx) §wooa Pz(hwa s f(?: (o] wlech
% < A s

P Ve

which represents the average (with respect to P) of the probability of
making the correct decision by first making the observation F and then
following the decision rule 8, The probability measure P clearly expresses
the relative importance attached to various basic states xt¢? when evaluat-
ing the decision rule 8. In the absence of any such P, one could choose 8§
so as to n.aximize
inf (Fo8)x, E(xﬂ)
x£8
The existence of solutions § to these optin.ization problen.s can be

established in very great generality by topological arguruents,

3.2 We consider stochastic processes with discrete tinie. Let N be the cate-
gory with countably many objects and no non-identity maps, and let ‘PN
denote the category whose objects are sequences QO' Ql' -« of objects

in ® . We define a functor ‘,ﬁ

k. b7
N (i) ,ﬂ)N ) \é(?»

b 7
SR 41, .

for each sequence 2 of n.easurable spaces, where kT<T Ql denotes the
n k

n.easurable space whose elements are all n-t uples <x

by

O,---.xn_1> with

xis Qi, equipped with the smallest 0-algebra which n.akes each projection

ﬂ Qk —> Qj measurable, If «Q'n is thought of as the space of all possible
k<n

11
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histories of the systen: up to time n. We define a general ten.porall

states of a system at tin.e n, then (ﬁ(Q)n is the space of all possible

discrete stochastic processin { to be any map v

Pz

o) s 0 €

' s EQURBT
in PV, Given any two processes SHo ’(q(s (.S EQ;«JZ\
A To “fhe GASY =

b0, oo Y%

f :
the general theory of categories indicates that a map P —> P' of stochastic

processes should be defined as a sequence

f
0 2o
- n ol 4ot
- > Hc"l" [ oshe
of maps in , such that for each tin.e nE,N the d1agran ( 2 §/_Pr/vu,$.’—-
‘ o [ A
_‘..’ r.):ytk .S c\? 2(-(1" &wm—&“é
@ (Q) @ (f)n @ (Q'
r{}——? @N P >
P it ¢ R
n d s
8
Qn —rp——— Q'n 9‘, st 3% 5(33% 3
n

ad 779 2 1) Lg
S \SJC,GN &é‘;
is commutative. Since there is also an obvious notion of con posxtxon 1‘/7}3
such maps, all stochastic processes and all n.aps of such detern:ine a

category N o Kt ot WSL\((’P}\WD—:\
(¢, ¢ L% \

which we call the category of temporally discrete stochastic processes, 4 O \Y}\"
All the machinery developed in the general theory of categories, as well
as that which can be developed for the particular category @, can thus
be applied to formulate, explicate, and solve many methodological

problemn.s within the category (@ 5 0’ N),

-3 If N denotes the additive monoid of non-negative integers, considered

as a category with one object 0, then the functor category
12 N
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is the category of temporally discrete Markov processes. Explicitly,

an object in ® ! is just a measurable space {2 together with a probabilis-

tic n.apping Q-——T—>Q » and maps finf W satisfy a commn.utative diagram

e | £

Q—— o

W;Zfr*d 2! Tl f lT'

G’ Q" 0

If we are I%ivsm a Markov process <{2, T> together with an initial

distribution 1 —>Q, we can view our situation as a general stochastic
process in which

1. Qn= Q forallneg N
2, @(Q)O —>Q_ is just P
3. (@ (Q}n ——)Qn is just the coruposition

T
— 0 -0
kl—{n ‘%( n-1

where the first is the projection; i.e., the dependence on the past is
really only on the preceding moment and, furthermore, the law of
transition fron: one tin.e to the next does not change with tin e,

If we denote by (1, N) the category of Markov processes augmn.ented

with initial distributions, then the foregoing discussion detern.ines a functor

1LPN— 3,0V,

This assertion carries the additional information that the various n.appings
n.atch up properly, and also raises the question of whether the above
functor has an adjoint (or co-adjoint). That is, is it possible to extend

any process to a Markov process in a fashion which is universal with

respect to maps to (or from) Markov processes? ?

13
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Inbox (3) - kirksturtz@universalmath.com - Register.com Webmail 8/5/11 4:26 PM

From: wlawvere@buffalo.edu
Subject: Re: Probabilistic Relations
Date: 07/19/2011 08:23 AM

To: kirksturtz@universalmath.com

Dear Dr. Sturtz

For this and many other constructions,

for example an internal Hom, it seems

that one needs to consider the category of

all convex spaces and not just its full subcategory P.
That is, the whole Eilenberg-Moore category of

the commutative pr monad, not only the Kleisli
category of free algebras (="simplices" in this case).

In group theory one deals with actual groups not only
their presentations (= maps in the Kleisli category).

The most obvious property of this monad that most
do not have is that the free on 1 is 1, with the result
that the tensor product has projections ("marginals")
which however do not have the universal property of
the associated cartesian product.

The commutativity of the monad means that all sorts of
diagram categories arising in statistics can be enriched.

Thanks for your interest and | look forward to your
further comments.

Best wishes
Bill Lawvere

On Tue 07/19/11 9:39 AM, "kirksturtz@universalmath.com" kirksturtz@universalmath.com sent:
> Dear Prof. Lawvere, | have been trying to develop the concept of

> probabilistic relations using the Category of Probabilistic Mappings,

> P, via Rel(P). Such an approach requires P be regular - it is not.

> It only has weak equalizers; given a parallel pair f,g: X--—->Y,

> the weak equalizer is the extreme set of the set of all probability

> measures P on X which satisfy f P = g P, along with the evaluation

> map. (Choquet Theory) In P arrows to 2 with the powerset

> algebra correspond to measurable functions, and seemingly the

> apparent alternative to the Rel(P) approach is to define a

> probabilistic relation as either a P map X x Y -----—--—-> 2, which

> for finite spaces correspond directly to fuzzy relations, or as a P

>map X x Y ------>[0,1] . Defining composition is the challenge.

> | am familiar with the current literature - it falls short of

> capturing this critical concept. Any thoughts are greatly

> appreciated. Respectfully,
> Kirk Sturtz, Ph.D.

> Universal Mathematics
> Dayton, OH

> 937-610-8704

>
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