Multispans

January 24, 2009

Abstract

A definition of *multi-(co)spans* inspired by Baas' *hyperstructures* and generalizing ordinary (co)spans and Grandis' higher cubical cospans [2]. Some examples.

Idea: multi-cospans in S formalize extended cobordisms in S, generalizing [4]; multi-spans in C formalize higher linear maps via groupoidification [1], morphisms from one to the other respecting multispan composition should capture the idea of extended QFTs.

Contents

1	Multispans	2
	1.1 Composition	3
	1.2 Trace and co-trace	5
2	Extended QFT	6

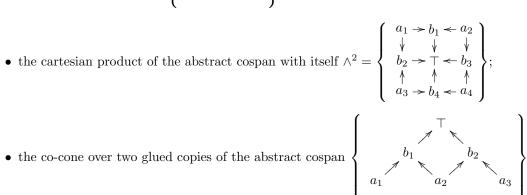
Multispans 1

We define a multi-cospan as the image of a poset in a category \mathcal{C} with finite colimits (and dually for multispans). We think of such a diagram in \mathcal{C} as a hierarchical cell complex where morphisms describe inclusion of boundary pieces.

Definition 1.1 (finite posets) A finite poset is a finite category D with D(a, b) either empty or the singleton set, for all $a, b \in Obj(D)$, *i.e.* a finite category enriched over $(\{\emptyset, pt\}, \times)$. Write Posets for the full sub-category of Categories on finite posets.

Simple posets of relevance for the following are

- the terminal poset $\{\top\}$;
- the interval $\mathcal{I} = \{a \to \top\};$
- the abstract cospan $\wedge := \left\{ \begin{array}{c} & \top \\ a_1 & \ddots \\ a_2 \end{array} \right\}$

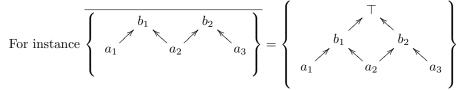


Definition 1.2 (terminal and coterminal object) A terminal object \top in a poset D is an object such that $\forall a \in \operatorname{Obj}(D) : (a, \top) \simeq \operatorname{pt.} A$ co-terminal object b is one for which $\forall a \neq b \in \operatorname{Obj}(D) : D(a, b) \simeq \emptyset$.

In the above examples the coterminal objects are the a_i .

Definition 1.3 Write $Posets_{max}$ the category whose objects are the posets that have a terminal object and whose morphisms are morphisms of posets that preserve the terminal object.

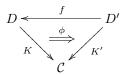
There is an obvious forgetful functor $U: \mathsf{Posets}_{\max} \to \mathsf{Posets}$ with a left adjoint (): $\mathsf{Posets} \to \mathsf{Posets}_{\max}$ which freely adjoins a terminal object to a given poset.



Definition 1.4 (multi-cospan) A multi-cospan in a category C with finite colimits is a finite poset with terminal object, $D \in \mathsf{Posets}_{\max}$, and $\overline{a \text{ functor } K} : D \to \mathcal{C}$. The category of multi-cospans in \mathcal{C} is

 $\mathsf{MultiCospans}(\mathcal{C}) := (\mathsf{Posets}_{\max} \downarrow_{\mathsf{Categories}} \mathcal{C})^{\mathrm{op}}$

whose morphisms $(f, \phi) : K \to K'$ are triangles



of natural transformations ϕ , composition is the obvious pasting of these triangles in Categories

Remark. For K a multi-cospan we think of the object $K(\top) \in C$, for \top the terminal object of D, as a single top-dimensional cell in a hierarchical complex, in that we think of any morphism $K(a \to \top)$ in C for every $a \in D$ as embedding a boundary piece K(a) labeled by a into the total space (but there is no requirement that $K(a \to \top)$ be a monomorphism) and think of each morphism $K(b \to a)$ for $b \to a$ in D as describing a boundary piece K(a).

1.1 Composition

The idea is that multi-cospans are composed by first gluing them along a common sub-multi-cospan, then forming the colimit cocone over that, and finally picking a sub-multi-cospan in that, containing the tip of the colimit cocone.

Definition 1.5 (multi-cospan closure) For $D \in \text{Posets}$ and $K : D \to C$ a functor the <u>multi-cospan closure</u> of K (or rather one of the canonically isomorphic choices) is the unique multi-cospan

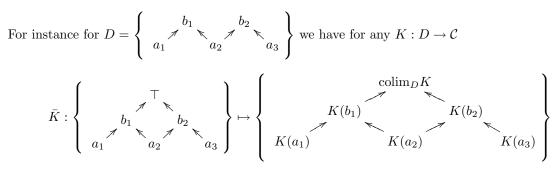
$$\bar{K}:\bar{D}\to C$$

such that

$$D \xrightarrow{\bar{K}} D \xrightarrow{\bar{K}} C$$

and

$$\{\top\} \underbrace{\overline{D} \xrightarrow{\bar{K}} \mathcal{C}}_{T \mapsto \operatorname{colim}_{\bar{D}} K}$$



Definition 1.6 (multi-cospan composition) For $K_1 : D_1 \to C$ and $K_2 : D_2 \to C$ two multi-cospans in C, and given a diagram $U(D_1) \longleftrightarrow D_{glue} \hookrightarrow U(D_2)$ in Posets of sub-poset inclusions respecting co-terminal objects, such that

$$D_{\text{glue}} \longrightarrow D_1$$

$$\downarrow \qquad \qquad \downarrow_{K_1}$$

$$D_2 \xrightarrow{K_2} \mathcal{C}$$

and given a morphism in $\text{Posets}_{\max} D_{\text{comp}} \hookrightarrow \overline{D_1 \sqcup_{\text{glue}} D_2}$ we say that <u>composition</u> of K_1 and K_2 along D_{glue} to D_{comp} is the multi-cospan (or rather any one of the canonically isomorphic choices)

$$K_{\text{comp}}: D_{\text{comp}} \longrightarrow \overline{D_1 \sqcup_{\text{glue}} D_2} \xrightarrow{\overline{K_1 \sqcup_{\text{glue}} K_2}} \mathcal{C}$$

Example: ordinary spans and cospans. We obtain ordinary cospans and their composition by taking all

multi-cospan domains to be
$$D = \left\{ \begin{array}{c} & & \top \\ a_1 & & a_2 \end{array} \right\}$$
 and $D_{\text{glue}} = \{\bullet\}$, so that $D \sqcup_{\text{glue}} D = \left\{ \begin{array}{c} & & b_1 & & b_2 \\ a_1 & & a_2 & & a_3 \end{array} \right\}$
and $\overline{D \sqcup_{\text{glue}} D} = \left\{ \begin{array}{c} & & & \\ & & & & \\ a_1 & & & a_2 & & a_3 \end{array} \right\}$ and finally taking $D_{\text{comp}} = D$ with $D_{\text{comp}} \hookrightarrow \overline{D \sqcup_{\text{glue}} D}$ given

by $a_1 \mapsto a_1$ and $a_2 \mapsto a_3$.

Dually, we get ordinary multispans in C^{op} . But already in this case we get a little more flexibility spans for handling cospans. For definiteness, consider cospans in $C = \text{Sets}^{\text{op}}$.

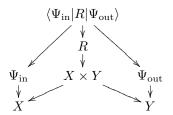
Composition of the multispan \bar{K}_1 which is the closure of

$$K_1 := \left\{ \begin{array}{ccc} \Psi_{\mathrm{in}} & & \Psi_{\mathrm{out}} \\ \psi & & \psi \\ X & & Y \end{array} \right\}$$

with

$$K_2 := \left\{ \begin{array}{c} R \\ \downarrow \\ X \times Y \\ X & & Y \\ X & & & Y \end{array} \right\}$$

along the preimages of X and Y to \top is the tip of



and describes the contraction of the matrix K with the vectors Ψ_{in} and Ψ_{out} .

Example: more general multi-cospans in Sets^{op}. Next, consider two matrices R_1 and R_2 given by the multispan \bar{K}_1 which is the closure of

$$K_1 := \left\{ \begin{array}{ccc} R_1 & R_2 \\ \downarrow & \downarrow \\ X \times Y & Y \times Z \\ \swarrow & \downarrow & \downarrow \\ X & Y & Y & Z \end{array} \right\}$$

and the consider the multispan

$$K_{2} := \left\{ \begin{array}{c} X \underbrace{\swarrow} X \times Z \underbrace{\longrightarrow} Z \\ \begin{vmatrix} & & & \\ & &$$

Then composition along the lower zig-zag to the resulting top zig-zag yields the matrix product

$$K_{\text{comp}} = \left\{ \begin{array}{c} R_1 \cdot R_2 \\ \downarrow \\ X \times Z \\ X & Z \end{array} \right\}$$

These represent \mathbb{N} -valued matrices. Somewhat more interestingly, let k be some field and

$$K_1 := \left\{ \begin{array}{ccc} R_1 & R_2 \\ \downarrow & \downarrow \\ (X \times Y) \times k & (Y \times Z) \times k \\ \swarrow & \downarrow \\ X \swarrow & Y & Y \\ X \swarrow & Y & Z \end{array} \right\}$$

two k-valued matrices to be composed with the multispan

Then the result is (after k-valued cardinality) the product of k-valued matrices.

Example: Grandis' cubical cospans. The cubical multi-cospans in [2] are reproduced by restricting the domain posets to be of the form \wedge^n , $n \in \mathbb{N}$.

1.2 Trace and co-trace

Definition 1.7 (co-trace) If for $K : D \to C$ a multi-cospan in which for a collection $\{a_i \in Obj(D)\}_i$ of coterminal objects we have $K(a_i) \simeq X$ for all i and for X a given object of C the <u>co-trace</u> of K over $\{a_i\}$ is the composition of K with the co-span

$$K_X : \left\{ \begin{array}{ccc} & & \top & \\ a_1 & a_2 & \cdots & a_i & \cdots \end{array} \right\} \stackrel{\operatorname{const}_X}{\to} \mathcal{C}$$

along the obvious identifications of the a_i to the diagram D with the a_i removed.

For spans the co-trace is called the \underline{trace} .

Examples. Let C = Categories and $\mathcal{I} := \{a \to b\}$ be the 1-globe (the (directed) interval) regarded as a co-span

then the co-trace of ${\mathcal I}$ over pt is the the colimit over

which is $\mathbf{B}\mathbb{N}$ (the (directed) circle).

Dually, let $C = \mathsf{Sets}^{\mathrm{op}}$ and consider spans of finite sets again, with

an $|X| \times |X|$ -matrix, then the trace of this is the limit over

which is $\sqcup_{x \in X} Rx, x$, as expected.

2 Extended QFT

Definition 2.1 (extended QFT) For S^{op} , \mathcal{V} categories with finite limits an <u>extended S-QFT</u> with coefficients in \mathcal{V} is a functor

 $Z:\mathsf{MultiSpans}(S^{\mathrm{op}})\to\mathsf{MultiSpans}(\mathcal{V})$

which respects composition of multispans.

For instance for S = Top this is supposed to be an *extended topological QFT*.

Definition 2.2 (σ -model QFT) If \mathcal{V} is closed monoidal and given a \mathcal{V} -enrichment of $[S^{\text{op}}, \mathcal{V}]$, for

$$B: S \to [S^{\mathrm{op}}, \mathcal{V}]$$

a functor respecting finite colimits and $(P_X \to X) \in [S^{\text{op}}, \mathcal{V}]$, the S-QFT

$$[B(-), P_X] : \mathsf{MultiSpans}(S^{\mathrm{op}}) \to \mathsf{MultiSpans}(\mathcal{V})$$

is a <u> σ -model</u> with target space X and background field P_X .

Consider S = Top, $\mathcal{V} = \text{Cat}$ and $\mathcal{C} = [S^{\text{op}}, \mathcal{V}]$. As noticed in theorem 4.5 in [3], Brown's homotopy van Kampen theorem ensures that the fundamental groupoid assignment $\Pi_1 : \text{Top} \to \text{Categories}$ extends to a functor MultiSpans(Top^{op}) $\to \text{MultiSpans}(\text{Categories}^{\text{op}})$ which respects composition of multispans.

Hence for any $C \in [S^{\text{op}}, \mathcal{V}]$ any category-valued presheaf

 $[\Pi_1(-), C]$: MultiSpans $(Top^{op}) \rightarrow MultiSpans(Categories^{op})$

respects composition of multispans.

Examples. Let S = Top, $\mathcal{V} = \text{Groupoids}$, G a finite group, then the σ -model

 $[\Pi_1(-), \mathbf{B}G]$: MultiSpans $(\mathrm{Top}^{\mathrm{op}}) \to \mathsf{MultiSpans}(\mathsf{Groupoids})$

is essentially the untwisted Dijkgraaf-Witten model.

References

- [1] J. Baez, Higher dimensional algebra VII: Groupoidification, [http://math.ucr.edu/home/baez/hda7.pdf]
- [2] Marco Grandis, Cospans in Algebraic Topology, I: Higher cospans and weak cubical categories, TAC, Vol. 18, No. 12, 2007
- [3] Marco Grandis, Cospans in Algebraic Topology, II: Collared cospans, cohomotopy and TQFT
- [4] Marco Grandis, Cospans in Algebraic Topology, III: Cubical cospans and higher cobordisms