Alternative to yesterday's axioms:

Replace $B(M)$ by embeddings (\overline{D}^n, M)

$$\sim \quad \text{Embeddings} \left(\overline{D}^n, M \right) \times \text{Emb} \left(\overline{D}^n \cup \cdots \cup \overline{D}^n, \overline{D}^n \right)_{k \text{ times}}$$

Basic idea

Factorization algebras form a symmetric monoidal category.

If F, F' are factorization algebras, then

$$(F \otimes F')(B) = F(B) \otimes F'(B^*)$$

Def. A classical factorization algebra is a commutative algebra in the category of factorization algebras.

[Recall, an E_{∞} object in E_n algebras is an E_{∞}-algebra.]

Idea: We want to associate a classical fact. alg to a classical field theory as follows:
Suppose we have a classical field theory, e.g. space of fields is sections of vector bundle $E \rightarrow M$

$$S : \Pi(M, E) \rightarrow \mathbb{R}$$

is the classical action.

S is local: obtained by \int of a Lagrangian.

If $B \subset M$ is a ball, let

$$\text{EL}(B) = \left\{ \phi \in \Pi(\text{Interior } B, E) \right\}$$

which satisfy the Euler-Lagrange Equations

Don Freed: You're working in Euclidean signature?

Costello: Yes. We hope we can Wick rotate later.

Rough idea

The classical \mathfrak{f} algebra F_S associated to S assigns to B the algebra of functions on the set of solutions to EL.

$\Theta(\text{EL}(B))$.
We want maps

\[F_s(B_1) \otimes \cdots \otimes F_s(B_n) \rightarrow F_s(B_{n+1}) \]

if \(B_1 \perp \cdots \perp B_n \subseteq B_{n+1} \).

We have a map

\[\text{EL}(B_{n+1}) \rightarrow \text{EL}(B_1) \times \cdots \times \text{EL}(B_n) \]

This yields a map

\[\Theta(\text{EL}(B_1)) \otimes \cdots \otimes \Theta(\text{EL}(B_n)) \rightarrow \Theta(\text{EL}(B_{n+1})) \]

as desired.

Simple example:

Fields are \(C^\infty \)-functions on \(M \).

\[S(\phi) = \int_M \phi \Delta \phi \]

Euler-Lagrange eq. \(\Delta \phi = 0 \)

\(\text{EL}(B) = \) Harmonic functions on \(\text{Int} B \)

\[\Theta(\text{EL}(B)) := \bigoplus_{n>0} \text{Hom}(\text{EL}(B) \otimes \mathbb{R}^n, \mathbb{R}) S_n \]

i.e. formal power series.
where Hom means continuous linear maps, \otimes is composition.

Later, we'll see we really need to take the derived space of EL solns.

Why does this classical factorization algebra want to become just a fact. algebra?

Fact. algebras form a symmetric monoidal category.

The \mathbb{E}_0 operad is defined by $\mathbb{E}_0(n) = \emptyset$ if $n > 1,$ and $\mathbb{E}_0(1) = \text{pt}.$

An \mathbb{E}_0-algebra in vector spaces is just a vector space with an element.

Forgot to mention that fact. algebras need to have a unit, a section of F on $B(M),$ which is a unit for the product.

So: an \mathbb{E}_0-algebra in Fact. alg. is just a Fact. algebra!
Beilinson + Drinfeld define an operad over the ring $\mathbb{R}[[[t]]]$ as follows:

- generated by \cdot, a comm. product
- $\{\{\}_3\}$, a Poisson bracket of degree +1
- with differential $d(\cdot) = t \cdot \{\{\}_3\}$.

Call this the BD operad.

$$\frac{BD}{hBD} = \text{operad of comm. algebras } \{\{\}_3\} \text{ deg. } +1.$$

$$H_* \left(\frac{BD(n) \otimes \mathbb{R}[[h]]}{\mathbb{R}[h]} \right) = 0.$$
So, $BD \otimes \mathbb{R}(\hbar) \cong E_0$.

[Aside: BV operad if framed E_2.
But this has nothing to do with the Batalin-Vilkovisky formalism.
The BV operad is really the BD operad!]

Def\textsuperscript{\textnormal{\textdagger}}. The P_0 (or $Poisson_0$) operad is the operad of \textup{\textquotesingle\textquotesingle} Poisson algebras with \mathcal{E} of degree -1.

so, $P_0 = BD/\hbar$.

General fact

Let M be a manifold, $f: M \to \mathbb{R}$.

Then $\Theta(\text{Derived critical locus of } f)$ is a P_0-algebra.

The critical locus = $Z(df)$.

So $\Theta(\text{critical locus}) = \Theta(M) / \text{image } (\Gamma(M, TM)^\vee \to C^\infty(M))$.
The derived critical locus has functions the dga

\[\cdots \rightarrow \Gamma(M, \wedge^k TM) \rightarrow \Gamma(M, TM) \rightarrow \Theta(M) \]

If \(f \) is Morse, this is equiv. to usual setup.

In general captures more info.

This is the same as polyvector fields \(\Gamma(M, \wedge TM) \)

\[\wedge^k TM \text{ is in deg } -k \]

with \(\text{diff} \ \nu df \).

Now,

\[\Gamma(M, \wedge TM) \]

has Schouten bracket, which is of deg +1.

This "wants" to become \(E_0 \).

\[T^*M \quad \text{graph of } df \]

\[\text{Crit}(f) = \Gamma(df) \wedge M \]

Derived critical locus = derived intersection.
Observation:

If M has a measure, then $\Theta (\text{Crit } \circ (f))$

has a canonical quantization to an E_0-algebra. algebra over BD

The quantization is

\[
\left(\Gamma (M, \Lambda TM), \nu \text{df } + \hbar \Delta \right)
\]

the BV operator arises whenever M

has a measure.

\[
\Delta X = \text{Div} X \quad \text{if } X \text{ is a vector field}
\]
This is also done by Kevin Walker (blob homology) or Jacob Lurie (topological chiral homology).

Lemma For a massive scalar field,

\[CH_*(M, \mathcal{F}) \cong \mathbb{R}[[h]] \]

≠ very exciting!

In general,

\[CH_*(M, \mathcal{F}) \]

looks like measures on the space of critical points of the classical action.

If we perturb around isolated critical point,

\[CH_*(M, \mathcal{F}) \cong \mathbb{R}[[h]] \]

In this situation, correlation functions exist and are unique.

General program: Correlation functions define a measure on space of classical solutions which we perturb around.

It's strange: we don't really perform the path integral, we "quantize", and this does it "automatically".
Q: Where's the propagator?
A: Some QME's written down,
 something about renormalization.
So far: The derived critical locus of a function is a P_0-algebra, so it wants to quantize to E_0.

If we have a classical field theory, the derived space of solutions to EL yields a P_0 algebra in factorization algebras. So it wants to become a factorization algebra.

Example: $\phi \in C^\infty(M)$, $S(\phi) = \int \phi \Delta \phi$,

Derived space of solutions to EL is the complex

\[C^\infty(M) \xrightarrow{\Delta} C^\infty(M) \]

0 1

If $B \subseteq M$ is a ball, then

$\Theta(\text{EL}_{\text{derived}}(B)) = \text{symmetric algebra on dual}$

\[
\prod_{n \geq 0} \text{Hom}(C^\infty(M), C^\infty(\text{int } B))
\]
This is a commutative algebra, and defines a commutative factorization algebra.

If \(S(\phi) = \int \phi \Delta \phi + \phi^3 \)

we get the same algebra of functions, but the differential changes.

Yon- Mills: first consider the appropriate derived quotient of \(\Omega^*(M) \otimes g \) by \(\Omega^0(M) \otimes g \) , and then take derived critical locus of YM action.

In physics literature, this is called the BV formalism.

What we get, when linearized, looks like

\[
E = \Omega^0(M) \otimes g \xrightarrow{d} \Omega^1(M) \otimes g \xrightarrow{\frac{d}{d\theta}} \Omega^2(M) \otimes g \xrightarrow{d} \Omega^4(M) \otimes g
\]

\(-1 \quad 0 \quad 1 \quad 2\)

The algebra of functions is \(\bigoplus_1 \text{Hom}(E^{\otimes n}, IR)^{S_n} \)

with differential including YM action.