Then (Hill, H. Ravenel)

If M is a stably framed manifold of Kervaire invariant 1,
then $\dim M$ is

2, 6, 14, 30, 62, 126.

Don't know what's going on!
Should be 6 !
(God made one every day)

The story of the problem

W- We start off by thinking about
h. classes of maps

$$S^{n+k} \to S^n$$

Pontryagin asked: what if we have more variables?
Pontryagin set up an amazing relationship between geometry and homotopy theory:

1930's \(\Omega \text{framed } S^n = \text{cobordism group of framed } k\text{-manifolds} \)

He used the classification of manifolds to understand in dim 0, 1, 2 homotopy groups of spheres!
\[k = 0 \]

- point
- point

reproduces degree of a map,

\[\text{so} \quad \mathbb{T}^{n} S^{n} = \mathbb{Z} \]

\[k = 1 \]

Nice story: generalized notion of degree of a map

\[M \rightarrow \text{Sphere} \]

Thinking about maps

\[M^{n+1} \rightarrow S^{n} \]

was due to Steenrod. This one extra case.
led to the development of all htpy theory!

$k=2$ Pontyagin made a mistake!

\[g=0 \]

bounds a disc.

\[
\text{change of framing} = \text{map into} \quad \text{general graph} \\
\uparrow \\
\Pi_2(\cdots) = 0
\]

so if genus = 0, must be trivial.

\[g=1 \]

Brilliant idea

cut ?+ open here

\[
\text{sew in 2 discs to form sphere.}
\]
But obstruction!
\[\phi : \mathbb{H}_1(\Sigma, \mathbb{Z}) \rightarrow \mathbb{Z}/2. \]

Pontryagin said dim is even, so...

\[\nabla \nu \]

So always something in kernel, so you can lower genus. Therefore concluded

\[\pi_{n+2} S^n = 0. \]

Mistake!

Mid 1930s.

1940s Whitehead calculated cyclic of order two.

Andrew Ranicki: Took 5 years.

The mistake is the map \(\phi \) is nonlinear in general!
Codd 60 surgery

weird loop.

Somehow makes ϕ not linear.

In fact, ϕ is quadratic!

$$\phi(xy) - \phi(x) - \phi(y) = \text{I}(x,y)$$

intersection pairing

In our example

$$\begin{array}{ccc}
\mathbb{Z}/2 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\mathbb{Z}/2 &
\end{array}$$

2 quadratic refinements.

Beautiful invariant of a quadratic function:

$$\text{Arf}(\phi) \in \mathbb{Z}/2$$

there are two framed Riemann surfaces
so $\mathbb{T}_{n+2} S^n = \mathbb{Z}/2$.

In modern terms, Pontryagin was trying to use surgery to convert mfd into sphere.

Q. In which dimension does every framed cobordism class contain a homotopy sphere? (in dim > 5, this is homeomorphic to sphere)

Answer: In every dim except those six!

Pontryagin only had a $1/\infty$ chance of making a mistake!

Invariants of quadratic forms/functions are deep and subtle!
1956: Milnor showed there were exotic 7-spheres.
A completely amazing thing!

1960: Kervaire studied Pontryagin's mistake.
Defined a quadratic refinement
\[\phi : H_n(M^n, \mathbb{Z}/2) \rightarrow \mathbb{Z}/2 \]
when \(n \) is an odd number, and
\(M \) stably framed.

Kervaire: \(\Phi(M) = \text{Arf}(\phi) \).

Kervaire did two things:

- Showed
 \[\Phi(M^{10}) = 0 \]

- Showed it could be defined when \(M \) not smooth
 constructed from PL manifold \(N \), and found
 \[\Phi(N') \neq 0 \].
So an example of a PL manifold that couldn't be smoothed! Beautiful homotopy theory ideas.

At this point:

Question: In which dimensions can $\Phi(M)$ be nonzero?

Kervaire–Milnor (announced at international congress 1958) published 1963

(Nathaniel argues).

This is a beautiful paper. Introduced group

$$\Theta_n = \text{group of smooth structures on } S^n$$

under connected sum.

Related to hopy groups of spheres, Bernoulli numbers, ... great differential topology.

When n even: signature \rightarrow Bernoulli
don n odd: \rightarrow Kervaire invariant
Determined in terms of $\Theta_n S^0$ up to a factor of 2^n, which depended on the Kervaire invariant!

So now we know: most of the time there are twice as many exotic spheres as we used to know!

There were 2 papers that approached this via stable theory.

1966 Brown-Peterson

\[\Phi(M^{8k+2}) = 0 \quad k > 1 \]

used spin structures and techniques of K-theory.

Design a cohomology theory which produces an arithmetic sequence... then eliminate it! We used the same technique.

1969 Browder ... very deep

\[\Phi(M^n) = 0 \text{ unless } n = 2^{j+1} - 2 \]
\[\exists M^{2^{i+1}-2} \quad \text{with} \quad \Phi(M) \neq 0 \]

\[\iff \exists \Theta_0 \in \Pi_2^{2^{i+1}-2} S^0 \]

representing an \(h_j^2 \) in the \underline{Adams spectral sequence}.

\[
\begin{align*}
h_j & \leftrightarrow \text{Hopf} \quad \text{m valued 1 class} \\
h_1 & \leftrightarrow S^3 \quad \Theta_1 = S^1 \times S^2 \\
h_2 & \leftrightarrow S^3 \quad \Theta_2 = S^2 \times S^2 \\
h_3 & \leftrightarrow S^1 \\
\end{align*}
\]

By relating it to Adams spectral sequence, this was a game-changer.

André: Is it conceivable you could use some techniques to eliminate 126?

M. Hopkins: We might be able to \underline{eliminate it},

but we couldn't verify its existence.
1968, 1984

\[Θ_4 \text{ exists} \leftarrow \text{geometric construction (Jones)} \]

\[Θ_5 \text{ exists}. \]

Very far from geometry, algebraic, you calculate the Adams spectral sequence and eliminate things.

The mindset was that those all exist.

It's a real game changer to say:

"we're looking for some construction which works in dim 2^i-2 and it's beautiful"

No response.

But if you say,

"we're looking for 6 things,"

it's psychologically different! Lie groups, etc.
E_6, E_7, E_8.

Exciting question:

2, 6, 14, 30, 62, 126

\[D_4, D_5, E_6, E_7, E_8 \]

Hans Duistermaat: said he'd seen those numbers pop up in Painlevé theory and they correspond to D_4, D_5, E_6, E_7 and E_8!

James (localize at 2)

\[E \]

\[\pi_k(S^n) \to \pi_{k+1}(S^{n+1}) \]

$\Phi \rightarrow \bigcirc$
Toda used this sequence to calculate first 14 homotopy groups of spheres. Showed Hopf invariant didn't exist.

Must come to grips with first place the S^{2n+1} term is nonzero.

$\pi_{2n+1} S^{2n+1} \to \pi_{2n-1} S^n$

$1 \to [\ast i, i] \cdots$ Whitehead product.

Write $S^n \times S^n = S^n \vee S^n \cup e^{2n}$.

Contains the tangent bundle of the sphere.

Think as an exact couple. Two questions:

a) Is Whitehead product divisible by 2?

b) For which j is $[i_n, i_n]$ in the image of E^k?

This breaks into three separate problems.
Question b) is equivalent to the vector fields on spheres problem. (15) (solved in 60's by Adams using K-theory).

a) When \(n \) is even \(\iff \) Hopf invariant one problem
\(n \) odd \(\iff \) Kervaire problem

Amazing that

So three fundamental problems in homotopy theory have

Consider following space:

\[V_2(S^n) = \text{space of points } (a,b), a, b \in S^n \]

st: \(a \neq b, a \neq -b \)

\[\text{homology } \cong \text{orthonormal 2-frames in } (S^{n-1}) \]?

Map from

\[V_2(S^n) \]

\((a,b) \mapsto (b,a) \).
Question: Is this map homotopic to the identity?

→ Like asking to divide Whitehead product by two.

eg dim 2:

2-sphere

rotate 180°

average them → midpoint

Can do this every time sphere has complex structure.

so at least $S^2, S^6 = \mathcal{O} G_2 / SU(3)$

has complex structure because

So an exceptional Lie group comes up. I don't know, may be something to this!

Ronicki: Pontryagin and Whitehead both got it independently in 1950. Defined quadratic formula geometrically. See webpage!
Mark's guess now is that 126 exists, possibly.

Something about Θ_5^2.

In Turkey, has banknote with Arf invariant!