1. Bulk algebra

2. Module category

3. Outlook - logarithmic conformal field theories (non-simply simple)

Recap:

\[\text{bicat: } V \text{ a v.o.a, } C = \text{Rep} V, \text{ a MTC} \]

\[C \text{ a MTC, } \Rightarrow \text{ bicategory } \quad \text{ where objects are special symm } \text{ Frob algebras, } A,B, \]

\[\text{ morphisms are } A\text{bbimodule}, \text{ defect line} \]

\[A \in \text{Rep} V \]

\[\text{Frob objects occurring elsewhere :} \]

\[A \]

\[(U, \phi \in \text{Hom}_A(A \otimes U, A)) \]

\[\Rightarrow \text{Hom}(U, A) \]

i.e. there's a space of boundary fields / open states

\[H_{A,A} = A. \text{ i.e. } A \text{ represents } U \mapsto \text{Hom}(U,A) \]
1. Bulk algebra.

2. Module category.

3. Outlook - logarithmic conformal field theories (non-semisimple).

Recaf:

Data: \(V \) a v.o.a, \(C = \text{Rep} V \), a MTC

\(C \) a MTC, bicategory - whose objects are special symm Frob algebras, \(A, B \), morphisms are Afdimodules, defect lines.

\(A \in \text{Rep} V \), Frobenius algebras occurring elsewhere.

\[
\begin{array}{c}
\sum A
\
(u, \phi \in \text{Hom}_A(A \otimes U, A))
\
\Rightarrow \text{Hom}(U, A)
\
i.e. \text{there's a space of boundary fields/open states,}
\
H_{A,A} = A. \text{ i.e. } A \text{ represents } U \mapsto \text{Hom}(U, A)
\end{array}
\]
\[\psi \in \text{Hom}_A(M \otimes U, N) \]

\[H_{MN} = M^o \otimes_A N. \]

What happens with:

\[A \]

\[\text{becomes} \]

\[\text{two marked points} \]

\[\xrightarrow{\text{inverse braiding}} \]

\[\text{inverse twist} \]

\[A \otimes C \rightarrow C \]

\[\varepsilon_{R \otimes V} \leftarrow \varepsilon_{R \otimes V \boxtimes R \otimes V} \]

expect:

1) \[C \in \mathcal{C} \otimes \mathcal{C} \]

2) \[C \text{ a commutative Frobenius algebra} \]
Functor:

\[R : C \rightarrow C_+ \otimes C_- \]

think of it as the adjoint of

\[C_+ \otimes C_- \rightarrow C \]

\[U \times V \rightarrow U \otimes V. \]

Properties:

if \(A \) is a ssFA in \(C \), then \(R(A) \) is a ssFA special sym Froh. algebra in \(C_+ \otimes C_- \).

We need to take its center to get a commutative ssFA.

\[\text{Defn. The } \wedge \text{centre of an alg. } A \text{ in } C \text{ is the maximal subobject } C_L \text{ of } \]

\[C \text{ of } A \text{ such that} \]

\[\text{we made a choice of braiding!} \]

Also have right centre \(C_R \) of \(A \). Need not have \(C_L \cong C_R \), or even Morita-equivalent.
Def. The full centre $\mathbb{Z}(A)$ of a ssFA A in C is $C_e(R(A)) \oplus C_+$ \text{ with } C_+ \otimes C_-.

Need to take left centre for later. This defn more symmetric.

Properties of $\mathbb{Z}(A)$

- $\mathbb{Z}(A)$ is commutative ssFA in $C_+ \otimes C_-$.
- $C_e(A) \times 11$ and $11 \times C_R(A)$ are subalgebras of $\mathbb{Z}(A)$.
- $\mathbb{Z}(A) = \bigoplus_{ij \in I} (U_i^* \times U_j^*) \oplus \mathbb{Z}_{ij}(A)$ the m"uller invariant matrix.

Thm. The number of iso-clases of simple A-left modules = $\text{tr}[Z_{ij}]$.

\[Z_{ij} = \dim \text{Hom}_{A/A} (U_i \otimes^+ A \otimes^+ U_j, A) \]

this links to Christopher talk.
$Z(A)$ defines a closed CFT

correlation function: multilinear map

$$Z(A) \otimes \cdots \otimes Z(A) \rightarrow \mathbb{C}.$$

What have we done

boundary (A), constructed closed CFT $Z(A)$

from unlabelled M, $M^V \otimes_A M$.

Now M and A are Manta-equivalent.

Would like to verify $Z(A)$ independent of Manta.

Thm (Kong, Runkel 07) \mathcal{C} a mod. tens. cat.,

A, B simple ssFaa. Then

$$A \sim_{\text{meq.}} B \Rightarrow Z(A) \cong Z(B) \text{ as algebras}$$

(not necessarily as Frob algebras)
eg, eg for ssFA in Vec, we have

\[Z(A) \cong \text{End}(\text{id}_{A-\text{mod}}) \]

\[\therefore \text{ Morita equivariant.} \]

The converse holds too: \(Z(A) \cong Z(B) \implies A \cong B \).

Thm (Kong, RO8) \(C \) a mod. tors. cat., \(C \) a commutative simple ssFA in \(C_+ \otimes C_- \) st. \(\dim C = \text{Dim } \mathfrak{C} \) (mod. inv.),

then:

i) exists ssFA \(A \in C \) st. \(C \cong Z(A) \).

ii) \(T(C) = \bigoplus A \mathfrak{c} \),

\[\uparrow \]

\(A \) a simple ssFA,

\(\# U \mapsto U \mathfrak{c} \)

all Morita equivalent.

Any one can be used, i.e.

\[C \cong Z(\text{all summands in } T(C)) \]

Every modular invariant CFT with left/right chiral sym given by \(\mathfrak{V} \) is part of an open/closed CFT.
2. Module categories

A ring, a right module is $M \times R \rightarrow M$

category.

Defn C, M be abelian, C-linear categories. C a tensor cat.

M is a right module category over C if:

- bilinear $\otimes : M \times C \rightarrow M$
- st. associative, $1 \in C$ acts as unit.
- up to coherent iso. (mixed pentagon, triangle)

Examples:

* $M = C$, $\otimes = \otimes$.

* A an algebra in C, A-mod is a right-module cat over C.

$$A \otimes U = A \otimes_U$$
in C.

Thm (Osmik 01) C a mtc (don't need braiding), M semisimple, indecomposable ($\neq M, \oplus M_2$). Then $M \sim A$-mod for A an algebra in C.
Get A via

\[\text{Internal homs:} \]

M a module cat over C,

$M, M, N \in M$,

$\text{Hom}_M(M, N)$ is object in C representing the functor

\[U \longrightarrow \text{Hom}_M(M \otimes U, N). \]

* associative composition

\[\text{Hom}_M(M, N) \otimes \text{Hom}_M(K, M) \longrightarrow \text{Hom}_M(K, N) \]

in part $\text{End}_M(M)$ is an algebra in C.

This is how you get A.

In fact,

\[\text{Fun}(M, N) \supseteq \text{Nat} \]

\[\uparrow \]

demand $F(M) \otimes U \Rightarrow F(M \otimes U)$

\[\text{Fun}(A\text{-mod}, B\text{-mod}) \Rightarrow B\text{-}A\text{ mod as } \otimes\text{-cat.} \]
objects are

- "good" module cat over \mathcal{C}, i.e. equiv to $A\text{-mod}$ for some $ssFa A$ in \mathcal{C}.

- morphisms are $\text{Fun}(M, N)$.

- space of boundary fields $M, N \in M = \text{collection of all boundary conditions of the given CFT compatible with } \mathcal{V}.$

$\text{Urs} \text{ want to think of, ala Ben-Zvi,}$

$$C\text{-Mod} \to \text{Mod}_C$$

\uparrow

objects are C-enriched categories, profunctors between them, ...

"C a mtc, M a "good" m"
\[\alpha^\pm : C \to \text{End}(M) \]

\[\alpha^\pm(U) : (M \to M \otimes U) \]

The \(\pm \) refers to equipping it as an endofunctor of \(M \),

(need braiding).

\[\text{End}(M) \times C \otimes C \to \text{End}(M) \]

\[F \times (U \otimes V) \to \alpha^+(U) \cdot F \cdot \alpha^-(V) \]

Statement: \(Z_M = \text{End}(\text{id}_M) \)

Theorem: \(Z_{A\text{-mod}} \cong Z(A) \).

So you can recover