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I l l

The notions of abstract multi-derivatives, annihilators and imi­
tators in rings are introduced*

Rings weakly associated, associated, or compact associated with 
T^ spaces are defined. It is shown that a ring which is compact asso­
ciated with a regular, locally compact T^ space determines the space 
and that a ring which is associated with a regular compact T^ space de­
termines the space.

The ring of infinitely differentiable functions on a smooth or 
infinitely differentiable manifold is defined. This ring of functions 
is associated with the space of the manifold while the subring of in­
finitely differentiable functions with compact supports is compact as­
sociated with the space. In the last chapter the space of the manifold 
is constructed from the ring of all infinitely differentiable functions 
without requiring compactness.

Covariant and contravariant tensor fields on the manifold are de­
fined in a purely algebraic way by using the ring of infinitely differ­
entiable functions. Rings of covariant poly-tensors and contravariant 
poly-tensors are constructed by using the conventional notions of sum 
and outer product of tensors. If the manifold is compact, it is shown 
that these rings are associated with the space of the manifold and hence 
determine it. The rings of poly-tensors with compact supports also de­
termine the space of the manifold even if it is not compact.

The Lie Ring of tangent vectors on an infinitely differentiable 
manifold and the Grassman rings are defined.



^RUCTUEES ASSOCIATED "WITH SMOOTH MANIFOLDS 

INTRODUCTION

In classical Riemannian geometry one generally studies the local 
properties or differential invariants of a differentiable manifold. 
Much of modern differential geometry, however, is concerned with re­
lations between classical differential invariants and global proper­
ties of a manifold.

This thesis is an initial step in the study of those global 
properties of differentiable manifolds which may be obtained from the 
algebraic structure of the ring of differentiable functions on the 
manifold. Most of this work is concerned with infinitely differenti­
able manifolds; since, as is shown, operators can be defined on the 
ring of infinitely differentiable functions on these manifolds in a 
purely algebraic manner which determine contravariant and covariant 
tensor fields.

Rings are constructed from these operators, and it is shown that 
their algebraic structure determines the topology of the manifold. In 
showing that these rings of tensors determine the space, use is made of 
only a limited number of the relationships which exist between the ring 
and the space. In one case if these relationships exist between a ring 
and a topological space, then the ring is "associated" with the space. 
In another case the ring is "compact associated" with the space. If a 
ring is associated (compact associated) with a regular compact (locally 
compact)Hausdorf space, then its algebraic structure determines the 
topology of the space.

There are other cases of the existence of these relationships be­
tween rings and spaces. For example, the ring of all continuous



functions on a normal Hausdorf space is associated with this same space; 
the ring of all infinitely differentiable functions on an infinitely 
differentiable manifold is associated with the space of the manifold 
and, hence, determines its topology if it is compact (as is known); 
the ring of all infinitely differentiable functions with compact sup­
ports on an infinitely differentiable manifold is compact associated 
with the manifold and determines its topology ( as is also known).

By making use of some of the properties of associated rings the 
space of an infinitely differentiable manifold is constructed from the 
ring of all infinitely differentiable functions without requiring 
compactness.

This thesis is only the beginning of a possible study of differ­
ential geometry in the large. It is shown that certain rings con­
structed on a manifold determine its topology, but no results are ob­
tained which relate particular algebraic invariants of these rings 
with corresponding spaces. The problem of constructing particular 
topological invariants, such as the homology groups, from the ring of 
infinitely differentiable functions or other rings associated or com­
pact associated with an infinitely differentiable manifold will be the 
subject of later investigations.



PART I

RINGS, DERIVATIVES, AND ASSOCIATED SPACES

Chapter 1. Zero Gonaaautative Rings and Abstract Multi-Derivatives

In this chapter we will discuss certain properties of rings and 
some of their operators which we will find useful in later chapters.
In this paper a ring is assumed associative unless it is stated 
otherwise.

(1.1) Definition: An "abstract derivative" d on a ring R is an oper-
tor d:R-*-R such that:

(i) d(r-h s)“ d(r)-f* d(s)
(ii) d(rs) = rd(s)-f-d(r)s

for all r, s in R. An "abstract multi-derivative of degree n on R",
16 n, is an operator d:R̂ -*-R such that for any i— 1,..., n and for any 
given subcollection r^,..., "r̂ ,..., r^ (i.e. not including r̂ ) the op­
erator d(r^,..., r, r^^^,..., r^):R-^R is an abstract derivative.

Hereafter in this chapter we will write d(r2̂, ... ,rĵ _2̂,t,rj|̂4.Q̂, .., ,r̂ ) , 
where t is an element or a subset of R, as d(...,t,...) when we are 
discussing properties of d relating to an arbitrary fixed i.

(1.2) Lemma: If d is an abstract multi-derivative of degree n on a
ring R, then for all i and all . . . ,r^,...

(i) d( .. .,0, ...)'»« 0.
(ai) d(...,—r,...)— —d ( r ,...).
(iii) If. R has an identity e and if m is any integer, then 

d( ... ,me ,...) — 0.



The proofs follow directly from the definitions.

Since for every n, the zero operator 0:R̂ -*-0, 0 in R, is an abstract 
multinderivative of degree n we defines

(1.3) The zero operator is an "abstract multi-derivative of degree 
infinity".

(l.U) Theorem; If r is an element of the center of a ring R, i.e. r 
commutes with every element of R, and if d is an abstract multi-deriv­
ative of degree n on R, then for any i d(...,r,...) is in the center 
of R for every r^,...,1̂ ,...,r̂ .

Proofs Since the terms r^,...,r^,...,r  ̂serve only as parameters, it 
is sufficient to give the proof for n= 1.

Let 8 be any element of R, then

d(rs)‘= rd(s) + d(r)s-=d(s)r+ d(r)s 
-d(sr) =d(s)r-|-sd(r).

Hence

d(r)s = sd(r) 

for any s in R.
q.6.d•

(1*5) Definitions A ring R is "differentiable" if there is an abstract 
derivative on R which is not the zero operator.

If R has a multi-derivative d of degree n which is not the zero 
operator, then by keeping n-1 of the arguments fixed d determines a non­
zero abstract derivative.



There are rings which are not differentiable* It is easily shown 
that the ring of integers and the ring of rational numbers are not 
differentiable.

We can represent any continuous real valued function f as

f=h^2_

where a is any constant in the domain of f and ĥ  ̂and ĝ  ̂are real 
valued continuous functions which vanish at all points p such that 
f(p)ss a. Using this representation one can show that the ring of all 
real valued continuous functions on a Euclidean space is not a differ­
entiable ring.

The set of all continuous functions on the real line with contin­
uous derivatives of all orders is an example of a differentiable ring, 
since the ordinary derivative in this case is also an abstract deriva­
tive.

Whe’thar or not the set of all real numbers is differentiable or not 
is an open question.

(1.6) Definition; A ring R is "a zero commutative ring" if for any 
r and s in R, rs*0 if and only if sr = 0. A ring R is said to "have 
no square roots of zero" if for r in R, rr -= 0 if and only if r=0.

If R is a zero commutative ring and if r is an element of R, then 
by the "annihilator of r", written A(r), we mean the set of all s in R 
such that rs = 0, i.e. sr = 0. If S is a subset of R, we define

A(S)= D  A(s),
seS

(1.7) Theorem: If r is an element of a zero commutative ring R, then
A(r) is an ideal in R. If 3 is a subset of R, A(S) is an ideal in R.
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Pgéoft Let s bé any element of A(r) and t any element of R, then 

r(st)= (rs)t=0

and

05=t(sr)=*(ts)r=ir(ts).

Hence (st) and (ts) are in A(r). If t and s are in A(r), then 
r(t - s)-0 and t - s is in A(r). Hence A(r) is an ideal.

Since A(S) is an intersection of ideals, it is an ideal.

q.e.d.

(1.8) Theorem; If r is an element of a zero commutative ring R with­
out square roots of zero, then A(r)— R if and only if r = 0.

Proof; If r =r0, then obviously A(r) — R. If A(r) = R, then r is in
A(r) and rr=0. Since R has no square roots of zero, then r is zero.

q.e.d.

(1.9) Theorem; Let d be a multi-derivative of degree n on a zero 
commutative ring. If s is in A(r^) for any r̂ , then ss is in
A(d(r^..,r^)> for any r^,..., r\,..., r .̂

Proof; If s is in A(rĵ ), then

d( ... ,r ĵs , ... ) s d( ...,0,...)— 0 ™^i b.(.*.,s,»..)'̂ ” d( r^,..., r^ ) s.

Since srj^=0, then after substituting in the above equation for zero we 
have;

0 =r s-0 = (s)(d(r-| ,.. .,r̂ )s) = (d(r, , . . .,r_)s) (s) = d(r_ , ... ,r_)(ss),



àÉLd âs is in A(d(r^j • • • ) •
q.e.d#

(I.IO) Theorem; Let d be a multi-derivative of degree n on a zero 
commutative ring R without square roots of zero, then;

(i) For any r and s in R, ssr=r 0 only if sr=sO and rs8= 0 only 
if rs = 0.

(ii) If s is in A(r^), then s is in A(d(r^,...,r^)) for any
/\

(iii) If S is a subset of R, then A(S) is contained in 
A(d(.•. , S ,...)).

Proof; (i) If ssr=0, then

0 — s(sr)=: (sr)s

and

0 = 0*r =(sr)(sr) •

Since R has no square roots of zero, then sr— 0. In the same way 
rss =  0 implies rs =  0.
(ii) If s is in A(rĵ ), then by (1.?),

d( r̂  ,.., ,1̂  ) ss — 0.

By (i) above d(r^, .. .,r^)s = 0 and s is in A(d(r^, ...,r̂ ) ).
(iii) Proposition (iii) is a direct consequence of (ii).

q.e.d,

(i'll) Definition; If r is any element of a zero commutative ring R, 
then by I(r), «the imitator of r", we mean the set of all s in R whose 
annihilators contain the annihilator of r.
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(1.12) Theorems Tf' t is any element of a zero commutative ring R,
then I(r) is an ideal in R. If R has no square roots of zero, then
I(r) is the zero ideal, (O), if and only if r = 0.

Proofs (a) If t is in R and s is in I(r), then A(s) contains A(r)
and ws=sw=-0 for all w in A(r). Hence

0= (ws)t-w(st) =t(ws)=t(sw) ■= (ts)w = w(ts)

for all w in A(r). Therefore A(ts) and A(st) contain A(r), i.e. ts 
and st atre in I(r).

If t and s are in I(r), then wt =tw = 0 and sw=ws = 0 for all w in 
A(r). Hence w(t-s)= (t-s)w= O for all w in A(r). Therefore A(t-s) 
contains A(r) or (t-s) is in I(r). Therefore I(r) is an ideal.

(b) Let R be without square roots of zero. If r = 0, then by
(1.8) A(r) — R, but there is nO non-zero s such that A(s) =  R, hence 
l(r)=(0). If r;6 0, then A(r)2A(r). Therefore r is in I(r) and 
I(r) is not a zero ideal.

q.e.d.

(1.13) Theorem; If d is a multi-derivative of degree n on a zero com­
mutative ring R without square roots of zero and if r^ is an element of 
I(s), then d(r^,...,r̂ ) is in I(s) for every r^,...,r^,.*.,r̂ .

Proof: If r^ is in I(s), then A(r^) oontàins A(s) and by (l.lO, ii),
A(d(r^,...,r̂ )) contains A(s). Hence d(r^,...,r^) is in I(s).

q.e.d.

(l.lU) Definition: If d is a multi-derivative of degree: n and d*

is a multi—dérivâtive of degree n*, we define the "product", dd*, as



an operator d" en ' ench that

d"{r^,. . . d(r^...., r ^ ) )

for all r^,...,r^^^, in R.

If nsrnS we define the "eum", d+d*, as an operator d" on R^=
and the "difference", d - d* = d* as an operator on RP such that

d"(r^, • a « ,r̂ ) — d(r^, • • • ,r̂ ) 4"d* (r̂  ̂• • • ̂ r̂ )

d (r̂ ,̂• • • ,r̂ )̂ — d(r^,• • • ,r̂ ) —d*(r^,• • #,r̂ )

for all ... ,r^ in R.

We define the "product", rd, for r in R as an operator d" on R^ 
such that

d"(r^,...,r^)= rd(r^,...,r̂ )

for all r^,. in R. We define dr = rd (not to be confused with
d(r)).

If d is a multi-derivative and 0 is the zero operator, we define: 

d • 0 = 0- d =s 0, 

d+-0-0 + d= d, 

and for any r in R

r • 0 =■ 0 • Ts; O.

(l*l5) Theorem; Let d be a multi-derivative of degree n on a ring R, 
let d’ be a multi-derivative of degree n* on R, and let r be an element 
of R.
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(i) If thon di-d* and d - d* are multi-derivatives of degree
on R«

(ii) If R is commutative, then dd* (or d*d) is a multi-derivative 
of degree n+n* on R*

(iii) If r is in the center of R (or if R is commutative), then 
rd* dr is a multi-derivative of degree n on R.

The proofs follow immediately from the definition of multi- 
derivatives.

(1.16) Definition: Let R be a commutative differentiable ring. We
define any non-̂ aero element r of R as a "multi-derivative of degree 
aero". The zero element which we identify with the zero operator is a 
"multi-derivative of degree infinity".

oo
A "poly-derivative" on R is a formal sum where is either

a multi-derivative of degree n or the zero operator and almost all of 
the dĵ *s are aero operators.

If £  d. and Z.d*_ are two poly-derivatives on R, we define the f) n n
"sum"

where d̂ 4- d^^ is defined as in (l.lU) and the "product"

( ^  dn)( Z  a>n)=(dod'o)-t-(dod'i-t-did'o) +  (dod'2+ d 2d>o+d3̂ d>3̂)

<-(dod*3+-d^d'o+-d^d'2+-d2d'^)4-

where the expressions in the parenthesis are given by (l.lh).

(l»I7) Theorem; If R is a commutative differentiable ring, then the 
sum or product of two poly-derivatives is a poly-derivative . The set
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of all poly-derivatiyes on R with the operations sum and product defined 
in (1.16) form a ring, the ring of poly-derivatives on R, which we de­
note by (R). The proof follows directly from the definitions.

(1.18) Definition: The "lower degree of a poly-derivative" ^  d^ is
the degree of the d^ having the lowest degree. The "upper degree" is 
the degree of the non-zero term having the highest degree. By (R, n) 
we mean the set of all poly-derivatives in R with lower degree greater
than or equal to n. Under this definition (R) = (R,0).

(1.19) Theorem: If R is a commutative differentiable ring, then
(R, n) is an ideal in(R)and is therefore a subring of(R)for any 
n — 0, 1,... • Also (R, n) is an ideal in (R, la), if m6^n.

(1.20) Definition: If B is any subset of a commutative differentiable 
ring R, then a multi-derivative d of degree n is said to "vanish on B" 
if for every i= 1,..., n and for every subcollection r^, ... ,r^,... ,r̂  
the operator d(...,r,...):R-^R sends B into the zero of R.

We define (R; B, m) as all poly-derivatives d^ from (R, m) such 
that d^ vanishes on B for n>0.

(1.21) Theorem: If R is a commutative differentiable ring, then
(R; B, la) is a subring in (R; k) if O^k^m.
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Chapter 2. Bjngs Associated with Topological Spaces

(2.1) Definition; A ring R is said to be "weakly associated with a 
T]_ topological space X" if for every r in R, there is a closed set 
Z(r) in X such that:

(i) r=*0 if and only if Z(r) =  X
(ii) rs=rO if and only if Z(r)uZ(s)==X.
(iii) If the point x is not in a closed set F, then there is an 

r in R such that F is contained in Z(r) but x is not in Z(r).

In the above definition, if we assume the ring R has no square roots 
of zero, then axiom (ii) implies axiom (i). Also, the space X is reg­
ular (i.e. a closed set F and a point x not in F have disjoint neigh­
borhoods) if and only if there is an r in R such that F is contained 
in Int Z(r) but x is not in Z(r).

We will later add other axioms. In the following discussion we 
will study the relationship between annihilators of elements of R and 
the sets Iht Z(r) and G1 Int Z(r).

(2.2) Theorem; If a ring R is wealcly associated with a Tj_ space X, 
then R is a zero commutative ring without square roots of zero.

Proofs From (2.1,ii), if rs*^0, then Z(r)uZ(s) = X. Hence 
Z(s)uZ(r)— X, and sr=0. Likewise if sr*0, then rs*0, hence R is 
zero commutative.

If rr= 0, then X= Z(r) u Z(r) = Z(r) and r —0. Hence R has no 
square roots of zero.

q.e.d.

(2.3) Theorems (i) If a ring R is weakly associated with a space con­
sisting of one point, then the ring R has no divisors of zero.
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(H) Any ring without divisors of zero may be weakly associated with 
a space consisting of only one point.

Proof; (i) if r and s are both different from zero, then both Z(r) 
and Z(s) are empty. Hence Z(r)uZ(s) is empty and rs is not zero.
(ii) If a ring R is without divisors of zero, we let Z(0)=p and let 
Z(r) be the empty set if r is not zero. It is easily shown that R is 
weakly associated with the space of the point p.

q.e.d,

Since a ring R, weakly associated with a space X, is zero commuta­
tive without square roots of zero, we can make use of the annihilator 
and the imitator in studying these rings and their weakly associated 
spaces.

(2.U) Theorem; If r and s are any two elements in a ring R which is 
weakly associated with a T^ space X, then;

(i) Int Z(r)G Int Z(s) if and only if A(r)^A(s)
(ii) Int Z(r) =  Int Z(s) if and only if A(r) =  A(s)
(iii) Int Z(r) if and only if A(r)=(0)

where J\. is the empty set and (0) is the zero ideal.

Proof; (i) Assume Int Z(s) does not contain Int Z(r), then Z(s) 
does not contain Int Z(r) and there is a point x* in Int Z(r) which is 
not in (X-Int Z(r))u Z(s). axiom (iii), there is an element t in 
R such that Z(t) contains (X-Int Z(r))u Z(s), but x* is not in Z(t). 
Since

Z(t)u Z(r)= X, 

then tr*rt«-0 and t is in A(r).

Since x* is not in Z(t) or in Z(s), then
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ï Z( t) u Z( s ) X

and ts^ 0 and st^O, i.e. t is not in A(s). Therefore A(s) does not 
contain A(r).

Assume A(s) does not contain A(r), then there is an element t in
R such that rt = tr = 0 but st^^O and ts^O. Therefore

2(t)u 2(r)=X,

but

Z(t)oZ(s)9fcX.

The non-empty open set X-(Z(t) u Z(s) ) is in Int Z(r), but does not 
intersect Int Z(s). Hence Int Z(s) does not contain Int Z(r).

Therefore

Int Z(r)G Int Z(s) if and only if A(r)^A(s).

(ii) Proposition (ii) is a direct consequence of (i).
(iii) If Int 2(r) contains a point x', then there is an element t in
R such that x* is not in Z(t), but Z(t) contains (X-Int Z(r) ). There­
fore t is not zero, but Z(r) v Z(t) =  X, i.e. rt=tr= 0. Hence t is in 
A(r), and A(r) is not the zero ideal.

If A(r) is not the zero ideal, there is a non-zero s in R such 
that rs = sr = 0, i.e. Z(s)u2(r) — X. The open set X-Z(s) is non-empty 
and is contained in Int Z(r). Therefore Int 2(r) is not empty.

q.e.d.

We observe that in the results of (2.U), the words Int may be re­
placed by Cl Int.
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(2.5) Theorem; If r]̂ ,...,r̂  is any finite collection of elements 
from a ring R which is weakly associated with a T-ĵ space X, then

.Mint Z(r. ) = A  if and only if M  A(r. ) = (O).1»! ^ i ^
Proof : If f \ Int Z(r. ) is not empty, there is a point x’ which is in

i=l
every Int Z(r^), There is an s in R such that x* is not in Z(s), but 

n
Z(s)3X - Mint Z(r.).

Then s is not zero, but Z(s) u Z(r̂  ) =  X, i.e. sr^=rjs = 0 for all i.
Hence s is in A(r^) for all i and M  A(r^) is not the zero ideal,

n
If C] A(rĵ ) is not the zero ideal, then there is a non-ssero ele-

ment s in R such that srr^^s = 0 for all i. Then Z(s)uZ(r^)=X 
for all i, but Z(s) is not X. The open set X-Z(s) is not empty ar 
contained in every Iht Z(rĵ ). Hence M^Int Z(r^) is not empty.

(2.6) Definition: If r is an element of a ring R which is weakly
associated with a T  ̂space X, then we define the closed set

S(r) = Cl(X-Z(r))

as the "support" or "closed support of r". The set Int S(r) is the "open 
support of r".

(2.7) Lemma; If r is any element of a ring R which is weakly associated 
with a space X, then;

(i) S(r) = X-Int Z(r)
(ii) Int S(r) =  X-Cl Iht Z(r)
(iii) S(r)=Cl Int S(r).

The proof readily follows from the fact that for any subset Y of
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a space X,

X-Cl(Y) =  Int(X-Y).

(2.8) Lemma: If r and s are any two elements of a ring R weakly
associated with a T̂_ space X, then

(i) Iht S(r)S Iht S(s) if and only if Int Z(r)2Int 2(s)
(ii) I(r) G I(s) if and only if A(r)PA(s).

The proof of this lemma is by a direct application of the def­
initions of the sets involved. As a direct consequence we have:

(2.9) Theorem; Under the hypothesis of (2.8)
(i) Int 8(r) G Int S(s) if and only if l(r)^l(s)
(ii) Int S(r)=?Int S(s) if and only if I(r)=l(s).

(2.10) Theorem: If r is any element of a ring R weakly associated 
with a T^ space X, then

Int 3(r) =y\_ if and only if r =0.

Proof: If Int S(r) = Cl(X-Z(r-)) is empty, then Z(r) = X and r = 0.
If r = 0, then Z(r) = X=Cl Int Z(r) and Iht S(r) =- A  .

q.e.d.

By theorem (1.12) r = 0 if and only if l(r)=(0). Hence:

(2.11) Corollary: Under the hypothesis of (2.10)

Iht S(r)=y\. if and only if I(r)=-(0).

(2.12) Theorem; If r̂ ,...,Tĵ  is any finite subset of a ring R, weakly 
associated with a T^ space X, then

^ A ^/I S(rĵ ) if and only if /^l(r^) = (0).1*1 1=1
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Proof: If A  I(r.) is not the zero ideal, then there is a non-zero s' " ' '' ' ' 1=1 i
in R such that A(s) contains all A(r^). Hence Cl Int Z(s) contains
all Cl Int Z(r£^j but Z(s) is not X. Therefore 

r> n
A  Iht 3(r.)» A(X-C1 m t  Z(r.))2X-Cl Int Z(s)

and (I Int S(r) is not empty.

If the open set M  Int 8(r< ) is not empty, then the set 1=1 n
\J Cl Int Z(r. X. Let x* be in A  Int S(r. ), then there is a non-3=1 i 1-1 i
zero s in R such that Z(s) contains Cl Int Z(rĵ ) for every 1 but not 
X». Hence Int Z(s) contains Int Z(rj) for every i, and A(s) contains 
every A(rj_), i.e. s is a non-zero element of 0  l(rĵ ) and ri I(rĵ ):̂  (O)i=l

q.e.d.

(2.13) Definition? Let R be a zero commutative ring without square 
roots of zero. We say two elements r and r* in R are "disjunct" if for 
every pair of elements s and s* in R, there is an element t in R such 
that (t-s) is in A(r) and (t-s*) is in A(r*).

(2.ill.) Theorem: Let R be a zero commutative ring without square roots
of zero. If two elements r and r* in R are disjunct, then

i(r)ni(r*)-(0).

Proof: Let s be any element in I(r) A l(r* ), then A(s) contains A(r)
end A(r * ). There is an element t in R such that (t-s) is in A(r) and 
(t-0) = t is in A(r*).

Since t is in A(r*) and hence in A(s), then

st = ts = 0.
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Since (t—s) is in A(r) and hence in A(s), then

0 =s(t-a)̂ sc st —ss^^ss.

Since R has no square roots of zero, then 8 = 0 and the intersection of 
I(r) and I(r*) is the zero ideal.

q.e.d.

(2.15) Corollary: If r and r* are two disjunct elements of a ring R
weakly associated with a space X, then Int S(r) and IntS(r*) are 
disjoint.

(2.16) Definition; Let R be a ring which is weakly associated with a 
space S. Consider the following axioms:
(iv) Two elements r and r* in R are disjunct if and only if the 

closed sets 3(r) and S(r*) are disjoint.
(v,a) If a point x of X is not in a closed set F of X, then there

is an element r in R such that F is contained in S(r) but
X is not.

(v,b) The closed set S(r) is compact for every r in R; and if x
in X is not in a closed compact set F, then there is an ele­
ment s in R such that F is contained in S(s) but x is not.

If axioms (iv) and (y,a) are satisfied, then the ring R is said to 
be "associated with the space X". If axioms (iv) and (v,b) are satis­
fied, the ring R is said to be "compact associated with the space X".

We observed in (2.3) that any ring without divisors of zero may 
be weakly associated with a space consisting of only one point. Since 
the annihilator of any non—zero element of a ring without divisors of 
zero is the zero ideal, no two non-zero elements of such a ring are dis­
junct. Since A(0) =  R, the zero and any non—zero element are disjunct.
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Consequéô'fely we haMTô :

(2.17) Theorems (i) If a ring R is associated or compact associated 
with a space of one point, then the ring has no divisors of zero.
(ii) Any ring without divisors of zero may be associated or compact 
associated with a space consisting of one point, (iii) No ring with­
out divisors of zero can be weakly associated, compact associated, or 
associated with a Hausdorf space consisting of more than one point.

(2.18) Theorem: If a ring R is associated with a space X, then every 
closed set in X can be formed by the intersection of sets of the form 
S(r). If R is compact̂  associated with X, then every compact closed 
set can be formed by the intersection of sets of the form S(r).

The proof follows directly from axiom (v,a) and (v, b).

We will now show that if the ring R is associated or conpact 
associated with a space X, then under certain conditions the algebraic 
structure of R determines the topological structure of X.

(2.19) Definition; If R is a zero commutative ring without square 
roots of zero, then a subset B of R is said to have the "finite inter­
section property" if for every finite subcollection r̂ ,̂... ,r̂  ̂of B, 
the intersection of the ideals I(r̂ ) is not the zero ideal.

(2.20) Lemma: If a ring R is associated with a regular Tq_ space or is
compact associated with a locally compact, regular T̂  space, then:

(i) If the point x is not in the closed set F, then there is an 
r in R such that Int Z(r) contains F but x is not in Z(r).

(ii) If X and x* are distinct points of X, then there is an r* in 
R such that x* is in Int S(r*), but x is not in S(r’)*
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(iil) X X* are distinct points of X, then there are ele­
ments r and r* of R such that x is in Iht S(r), x* is in
3nt S(r*)j but 3(r) and S(r*) do not meet, i.e. r and r*
are disjunct.

(iv) Let R(x) be all elements r of R such that the point x of X 
is in Int S(r). If S(r*) intersects S(r) for every r in 
R(x), then x is in S(r*).

Frpdf* (i) If X is not in F and if X is regular, then there is an open
set U(x) containing x, such that Gl(U(x)) does not intersect F. There 
is an element r in R such that 2(r) contains (X-U(x)) but not x.
Since F is contained in lht(X-U(x)), then r is the desired element of R.
(ii) The point x is a closed set. The point x* has a neighborhood U 
whose closure does not contain x. If X is locally compact, U may be 
selected so that C1(U) is compact. There is an r* in R such that S(r*) 
contains G1(U) but not x. Hence x* is in Int S(r*), and r' is the de­
sired element.
(iii) We select r* as in (ii), then x' is in Int S(r*), but x is not 
in S(r*). By (i) there is an r in R such that x is not in 2(r) but
Int Z(r) contains S(r'). Since S(r)— (X-Int Z(r)) and Int S(r) =
X-Cl Int Z(r), then x is in Int S(r), but S(r') and S(r) do not in­
tersect,
(iv) Suppose the point x of X is not in S(r*), then by (i) there is an 
element r in R such that Int Z(r) contains S(r*)> but x is not in Z(r). 
Then S(r)=(X-Ênt Z(r) does not meet S(r'), but x is in Int S(r)—
(X-Cl Iht Z(r)) and r is in R(x). Hence S(r̂  ) does not meet S(r) for 
every r in R(x) *

q.e.d.
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(2.21) Définitions If R and R* are isomorphic zero commutative rings 
Without square roots of zero, we will denote the elements of R by

and their isoiAorphic images byr», s',... . We will denote the 
annihilators in R* by A'(r') and the imitators by X'(r').

(2.22) Lemma; If R and R' are isomorphic zero commutative rings with­
out square roots of zero, then the isomorphic image of l(r) is I'(r') 
(and conversely), and the isomorphic image of &(r) is A'(r') ( and con­
versely) • Also all set-theoretic relationships between these ideals 
are preserved by the isomorphism. If r and s are disjunct elements of 
R, then r* and s* are disjunct elements of R'.

(2.23) Lemma: A subset F of a locally compact Hausdorf space X is 
closed if and only if F intersects every compact subset of X in a com­
pact subset.

The proof has been given by David GaleLzll,

(2.2U) Theorem: If the rings R and R' are compact associated with the
regular, locally compact T^ (hence Hausdorf) spaces X and X', respec­
tively, and if R and R* are isomorphic under an isomorphism f:R-»-R*, 
then the spaces X and X* are homeomorphic.

Proof : As indicated in definition (2.21) we will write r'=f(r),
A»(r* ) =f(A(r) ), etc.

From (2.22) we observe that for any pair of elements r and s in R, 
that S(r) meets S(s) in X if and only if S*(r*) meets S'(s') in X'.

For any point x in X, let R(x) be the set of all elements r of R 

1. Numbers in brackets refer to the bibliography.
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such that X is in Int S(r). The collection of open sets 
'̂ Int S(r), r in R(x)^ has the finite intersection property, hence the 
subset R(x) of R has the finite intersection property. From lemma
(2.22) the subset f(R(x)) of R* has the finite intersection property, 
and ^Int S*(r*), r* in f(R(x))^ has the finite intersection property» 
Since every S*(r*) is compact, then the set,

r' e f ( R  (»)
is not empty.

This set F(x) contains exactly one point. If F(x) contained at 
least two points x' and y', then there would be two elements r' and s' 
in R* such that Int S'(r') and Int S'(s') would contain x' and y ', 
respectively, but S'(r') and S'(s') would be disjoint. But for every 
t' in f(R(x)), S'(t') meets S'(r') and S'(s'). Hence for every 
t— f""̂ (t*) in R(x), S(t) meets S(r) and S(s). ^  (2.20, iv) the point
X is in S(r) and S(s). But we have chosen r' and s', so that S(r) and 
S(s) do not meet which is a contradiction. Therefore F(x) contains 
exactly one point.

We will now show that the single valued transformation F:X-^X' is 
a one-one transformation of X onto X'. We construct a single valued 
transformation F*:X*-^X in the same way that we constructed the trans­
formation F:X-*X'.

We will show that F'F(x)— x for all x in X. For any x in X sup­
pose F(x)-=x' is in Int S'(r'), then S'(r') meets S'(t') for every t* in 
f(R(x)). Accordingly S(r) meets S(t) for every t in R(x) and by 
(2.20, iv) S(r) contains x. Therefore x is in 3(f“̂ (r')) for every r' 
in R*(x'), i.e.
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x=F*F(x), 

for every x in X. Likewise 

x'=FF*(x*)

for every x* in X’, and F maps X onto X*. Since F is single valued 
and has a single valued inverse F*, then F and F' are one-one trans­
formations .

We will now show that the transformation F sends every compact set 
onto a compact set. If F(x) is in S'(r') where r' is any element of 
R', then S'(r’) meets S*(t*) for every t* in f(R(x)) and S(r) meets 
S(t) for every t in R(x). By (2.20, iv) x is in S(r). Since F* is 
the inverse map of F, we have

F'(S'(r')) SS(r)

for every r ' cz.f(r) in R*. Likewise

F(S(r)) SS'(r').

Since FF* (S*(r * ) ) — S'(r' ) and since F and F» are one-one, then

F*(S*(r»))=S(r)

and

F(S(r))=S'(r*>.

By (2.18) any compact set in X can be formed by an intersection of sets 
of the form S(r) which are compact. Applying the above results, the 
images of compact sets under the transformations F and F* are compact 
sets.
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Since the spaces X and X* are regular (hence Hausdorf) spaces 
which ,ai:e, locally compact^ tjien by leinnia (2.23) it is easily shown that 
F and F* are closed mappings and hence are homeomorphisms.

q.e.d,

(2.25) Corollary; If the rings R and R* are associated with the reg­
ular, compact T]_ spaces X and X*, respectively, and if R and R* are
isomorphic, then X and X* are homeomorphic.

The corollary immediately follows from (2.2U) for if R is associ­
ated with a compact space X, then R is compact associated with X which 
is also locally compact.

The converses to (2.25) and (2.2U) do not hold for we have shown 
that any two rings without divisors of zero may be associated or com­
pact associated with the same space.

A ring may be associated with a non-compact space and still de­
termine its topology. For example, the ring of all continuous functions 
over a normal space is associated with this spacê  but Hewitt [3] 
has shown that if such a space satisfies the second axiom of countabil- 
ity, then the ring of all continuous functions determines the space.
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PART I I

RINGS ASSOCIATED WITH INFINITELY DIFFERENTIABLE MANIFOLDS

Chapter 3* Infinitely Differentiable Functions on Euclidean Space.̂

In this chapter we will show that if f(x^,..., 3̂ )̂ is a continuous 
function which is infinitely differentiable and is continuous in all 
derivatives of all orders everywhere on a Euclidean space R̂ , then

f(x^,..., x^) =  f(x^Q,..., X^q)
V-

+  %  Qf(x^Q,..., x^q)/3 x^)(x^- X^q)

^  X 5 X^Q,..., X q) • (x —X q )  (x^—X*̂ q) ,

where the ' s are continuous functions of the x^*s which are infinitely 
differentiable and are continuous in all derivatives of all orders 
everywhere on R and where the numbers (x^q,..., are coordinates of
an arbitrary fixed point. Without loss of generality we may assume the 
point to be the origin (0,..., O).

(3*1) Definitions 'By "Cĵ (̂R̂ )" we mean the set of all continuous func­
tions on R^ such that all derivatives not involving the coordinate x^ 
and all derivatives involving x^ at most m times exist and are continu­
ous on BP. By "G^^q’̂(RP)" we mean all functions in Ĉ '̂CRP) which vanish 
on the hyperplane x^ — 0 .with all derivatives not involving x^ or in­
volving x^ at most m times.

By "Dĵ (̂RP)" we mean the set of all functions on R^ such that all 
derivatives not involving x^ and all derivatives involving xX at most 
m times exist and are finite everywhere on R^. By "Dĵ Q̂"*(R̂ )" we mean 
all functions in Dĵ ™(R̂ ) which vanish on the hyper plane x^-=0 with all 
derivatives not involving x^ or involving x^ at most m times.

The K e 9u s o f  fhis f o l l o w  c a V/ ftom
Cî ss/'ca/ s / j h Lx fhej wet'g nof foâ nc/ /n the
I l i e e ^ f u / ' C .  d n J  v ^ e t c  ^ / v e t ?  h ^ e c  f o ) -  do m  p  ! e 'I'e  n €
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We haves

(3.2) (a) Dĵ l(Kn) 3  Dj^2(m) 3  ... D  Dj™(R“) 3

(b) 3  3  ... 3  ... .

(c) 3  d^,o^(r“) 3  ... 3 d^^q“(r“) 3  ... .

(d) gi(ip) 3  °i,o^(R“) 3  ... 3 Cj^̂q“(r“) 3  ... .

(3.3) ^  ^  to Dj™(^), hence to Dĵ (̂BP), then f to conttouous to
at every point of R^.

In this chapter we will use the following notations by f(...,g^,...), 
where is any expression, we mean f(x^,..., x^”^,g^,x^*^^,.•., x^). By 
f(...,0,..e) we mean f(x^,*.., x^”̂ ,0, x^"*"^,x*^).

By the mean value theorem for functions of one variables

(3*U) ^  f in D^^(R^), there is a function 0\:sP',. •., x̂ ) such that

f(x^,..., x^) =  f(...,O,.e.)4-(x^)f^^)(...,0^(x^,..., xP),...)

for all x^, • * •, xP where we define

*'f̂ >̂" = 9^f/3 (x^)^

and where

x̂ Z. 0^(x^, ... , x^) ̂  0 for x^^ 0
0 < 0^(x^, * .., x^) < x^ for 0 ̂  xP

0 ^ ( x P " x P ) = 0  for x^= 0.

(3.5) Definitions We will denote f^^)(...,f)^,...) as M^(f), i.e.
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TCfCx?-,..., aP)-f(...,0,...))/x^ forx^i^O 
%(f)= -<

for x^= 0.L i
(3.6) Theorem; If f is in D^”̂ (R̂ ), then for x^^ 0,(Mĵ (f))̂ ^̂  exists and

for k6m where (-1)^^^ j.

Proofs From Leibnitz's rule for successive differentiation of a product 
we obtain

(3.7) (Mj^(f))(k)=aQ^ f(^)/(%b^ +  ...+ak-l,k

(f-f( ... ,0, ... ) )/(x^)^^

Substituting from definition (3.U) we obtain the desired result.

q.e.d.

(3.8) Theorems If f is in D^ q̂’̂(R^), then there are functions
ÿ̂ ĝ (x̂ ,..., xP) and 9^^(x^,..., xP) defined on Rp such that:

x^< 0̂ jĵ (xl, ..., x^) < 0 for x^< O
(i) 0 < 0̂ jĵ (x̂ ,... , x^) < x^ for 0< x^

0̂ jjj(x̂ ,..., x^)=0 for x^= 0

(ii) I 0̂ jjj(x̂ ,..., xP)|^l for all (x^,..., xP)

(iii) f/(x^)™=: f(^)(...,^^g^,...) for x^#0.

Proof: If we take 6^^— 1 and 0^, the theorem has been established
for m -1.

Assume the proposition holds for m=fk. Consider any f in D̂ q̂̂ '*’̂(R ), 
then f is in D^.q^(RP). For x4-̂  0
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(x^)=e\

Since f is in Dĵ then has a finite derivative with respect
to everywhere and f is continuous with respect to x^ at every 
point of By the mean value theorem for functions of one variable
there is a function 0*(x^,*.., xP) such that

x̂ <C 0*(x^,..., xP)< 0 for x^< 0
0 4. 0 * ( x ^ x P )  < x^ for 0< x^

0̂ (x"̂ ,. . xP):=;0 for x^ = 0

and

f^^^(x^,..., xP) =  (x̂ ) 

for all (x^,..., xP) in R'̂ . Hence

By substitution

f/(x^)^^^ = (. •. ,0*C.. .

Set

e\' 0\/x^ for x V  0

for x̂ =: 0

and

It is easily verified that 6^^^^ and 0^^^^ satisfy (i), (ii), and (iii). 

The proof follows by induction.
q . e . d .
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(3.9) CorW,lary: If f is in D, ^  ®(S^), then there are functions
®^k,m Satisfy conditions (i) and (ii) of (3.8) respec­

tively and such that

f p V u b “ =0^3. k,m i k,ni
(3.10) Lemma: Let x=r(x^,..., x^) and Xq = (x q̂,..., xP^) be points
of RP. If F(x ) is a function on R such that

Lim F(x)-0,

a(x) is any function on R^ which is bounded in some neighborhood of Xq, 
and b(x) is defined on R*̂ such that in some neighborhood of Xq for some 
i:

x^ < b(x\..., x”)<x^Q for x^Cx^Q
x^Q< b(x^,..., xP)<x^ for x^Q< xP

b(x^,..., x^) = xpQ for x^=rx^p.

then

Lim F(...,b(x),...) = oX^Xq

Lim a(x)F(x) =0X^X q
Lim a(x)F(...,b(x),...) =0X^X q
The proof of this lemma is an immediate consequence of the defin­

ition of a limit, for if x is in a given rectangular neighborhood of 
Xq , then the point ( ...,b(x),...) is also in that neighborhood.



30

(3.11) Lemma; (i) If f is in q"̂ (R̂ ) and if the coordinates
...,xP are fixed, then

Lim f/(x^)™ = 0 
x^O

amd

Lim f C ^ ) / = 0 for 0 k -c m.

(ii) If f is in q’̂(R^), x is any point of R^^and x^ = (x^^,...
is a fixed point of R^ such that x q̂ = 0, and if we define

for x^^O

for x^ = O 

and for 0<k^m

f/(x^)^

Fk=
0 for x^= 0,

then

Lim F=Lim F̂ =̂ 0.
X-^Xq X--Xq

Proof; (i) Proposition (i) is a special case of a well-known theorem, 
but we will give a proof*

From (3.8)

f/ (x^)^ = f/(x^)^“̂ (x^)

... ,0Li' • • •
Since f is in Dĵ Q̂™(Rp), then for x̂ , ... ,x̂ "̂ ,x̂ "̂ ,̂ .. . ,xP fixed
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Lim f 0,

and by (3.10)

Lim- f/(x^)®=0. 
X^-^0

(3*9)

- jp(k)ŷ î̂ m—k

(ii) If f is in C. “(R"), then1,U

f/(xi)“ = ei^ f(“) { . . . . . . )  for xi,60.

Since

0i f(m)(,,,^0i (...gO,...),...)=0 for x^=0,m i m

then

F f(™)(...,0^^,...) for all X.

By (3.10), since f(?) is continuous and vanishes for x̂  = 0, then

Lim F= 0. x->X(3
Likewise

and as before
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Liift F . = 0 .

q • 0 »d#

(3.12) Lemma: (i) If f is in q '̂̂ (̂R̂ ), then the first m derivatives
of M^(f) with respect to exist and are finite everywhere and vanish 
for x^-0.

(ii) If f is id C^^q’®'*"̂ (R̂ ), then M^{f) and the first m deriva­
tives of M^(f) with respect to x^ are continuous on RP.

Proofs (i) Set M^(f ) = F(x^, ..,, xP). If m —1, then for f in
" ̂ i,0^ have F(.. x^= 0, .. .)= f (̂ )( • • •> x^=0,..#)=0.

Hence
(F(x^,..., x^) - F(..., x̂ =* 0,...))/(x^- 0) = F/x  ̂= f/(x^)2.

By (3.11) the right term goes to zero with x^, hence F^^^ exists and is 
zero for x̂ -=:0.

For xi 9̂ 0, F = f/xi and is differentiable with respect to x^ for 
all (x?*,..., xP) such that x^^O. Therefore if f is in D. then3-,U
F^^' exists everywhere and vanishes for x̂ -=s-0. The proposition is valid 
for m = l.

Assume the proposition is valid for m =  k. Consider f in
then f is in D. ^(k+1) and the first k partial derivatives of F with i,u
respect to x^ exist everywhere and vanish for x^=0. From (3*7) 

(F̂ ^̂ CxP-,..., xP)-p(^)(..., x^ = 0,...))/(x^- 0)

Since f is in D^^Q^‘''2(Rn)̂  then by (3.11) the terras on the right go to 
zero with x^ and f(^JI) ex; 
exists according to (3.6),
zero with x^ and f(^ Î) exists and is zero for x^=0. For x^^O, f (̂ L̂)
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The proposition follows by induction.
(ii) If f is in then f is in and it is easily shown
that F = M^(f) is continuous. From (i) F has the first m derivatives 
with respect to and they vanish for x^= 0. From (3.7) for m and 
for xiÿkO,

+." + =k_l,k

and f (̂ ) is continuous for x^^O. Applying (3.11) to the above equa­
tion we find that F^^^ is continuous for x^a 0.

q.e.d.

From definition (3.1) it immediately follows that:

(3.13) If f i^ in Cĵ Q̂™(RP) and j«̂ i, then 3 f/9 xÔ exists everywhere 
and is in Cĵ Q̂̂ (RP).

(3.lit) Lemma: If f is in ^ ̂ (R^) and ĵ î, then (M^(f ) )/9x^ exists
and is continuous everywhere and

3(Mĵ (f))/ ) xj = Mĵ ( 3 f/3 xi ).

Proof: Since for f in C^^q^(R^)

for x^^ 0
Mĵ (f ) —

for x^=:0,

then 9(M^(f))/9x3 exists and is continuous eveiywhere and

f f  ̂ for x^^ 0
3(M^(f ) )/9 xj= \

\ 0 for xX^ 0
— %( 9 f/9 x^),

q . e . d .
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Lemma; (i) If all first derivatives ôf̂ a functionf exist 
byerywrhere and if exists and is continuous everywhere,
then 3 2f/3 3 x^ exists everywhere and

9 ̂ f/3 x^9 x^ = 3^f/9x^9x^.

(ii) If all k-th derivatives of f exist everywhere and if
3 ... 3 xpK^x^ exists and is continuous everywhere, then

3 ^ ^  f/3x^^,.. 3x̂ *̂ '̂  3 x^ 3 x^exists everywhere and

5k+-l 3x^X-l 3x^K+l f/9x^l...3 X^K3x^K+i,

(iii) If all partial derivatives of f not involving x^ exist and are 
continuous everywhere, then we can permute the order of differentiation 
of these derivatives without changing their value.

The proof of this lemma is well known. See for example f 4,pp262-2683,

(3.16) Lemma: If f is in then M^(f) is in G^^Q^(lP).

Proof: For n = l, the theorem follows immediately from (3.12). For
n= 2 set F— Mjî(f) and consider 3^(9^ F/3 x^i.. .'J x̂ f̂ )/9 (x^)P where 
ij:;6 i and 0< p< m. Then by repeated application of (3.1L)

( 9^ F/9 x^i... 9 x^k)= M̂ ( 3 ̂  f/9x^i ...9x^k),

which exists and is continuous everywhere. By (3.13) 9^ f/9x^i... 9x^k 
is in hence by (3.12) 9^( 9^ F/3 x^^.. .9x^F)/ $ (x^)P
exists and is continuous everywhere for all p^m and vanishes for x^=0. 
This result holds for all iĝ ,. ..,i.|̂  k =1,2,... such that ij9̂  i for 
all j and for all p such that O^p^m.

We will now show that all derivatives involving xi at most m times 
exist and are continuous everywhere. We consider derivatives of the
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form , .(1^ (g)5 F/^x^^ • • •9 x^k)/9 (x^)F and show that
We may permute the order of differentiation#

For k=l and p =1, the proposition follows immediately from (3.15), 
hence for any p=l,.,.,m

p(l) (p )=tf(I) (l) (p—1) j i i j i •

Now by inductive argument on p one can show that

p(3) (p) =  p(t) (l) (p-t)
3 i i 3 i

for all t < p :5 m.

Assume the proposition holds for k=q. Since F^^^ ... ; ̂i +̂'1
F^^) ; and f(}̂  ...(}) exist and are continuous
everywhere, then by (3.15)

5.(1) (1) (1) (1) _p(l) (1) (1)-Î -Î A 4 .... J .

But since the proposition holds for k=rq and since in p(̂ ) ...(3)
the indices may be permuted, the indices î ,̂.. .i^^^,i may be permuted 
arbitrarily. As for k =1, we may now show the proposition for all p.

The validity of the proposition for all k and for p-=0,...,m follows 
by induction.

Since all derivatives not involving x^ and all derivatives involv­
ing x^ at most m times exist and are continuous everywhere, then 
F=M^(f) is in Gĵ Q̂̂ (R̂ ).

q.e.d.

(3.17) Theorem: If f is in Gj^^^(R^), then M^(f) is in C^^(R’̂).

Proof: We will give a proof for n >1 which must be modified slightly
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for n=l. For f in set

f = f-f( .. #,xl= 0,.. •)-(x^)3 f(l)( , *.,x̂ %=0, .. •)/lî

 --- (xi)®^-l fU+l)(,.,,xi= 0,...)/(nH-l)l
1

Every term on the right is in Also f and all partial deriva­
tives of f not involving x^ vanish for x^ = 0.

Consider a partial derivative involving x^ p times where m+1. 
Since f is in the differentiations with respect to x^ may be
performed first as in the proof of (3.16)• We obtain

  (xi)m̂ -l-p f(m^l) (..,,xi-0,...)/(m+l-p)l .

Hence f(g) vanishes for xi = 0 and any partial derivative of f n o t
involving x^ vanishes for x^ = 0. Therefore f and all partial derivatives 
of f involving x^ at most m+-l times vanish at x^-=0, and f is in

Set £ = %(£)> then f =(x^) F. Set F = Mĵ (f), then (x^)F =  
f—f ( ... ,xL= 0, .. . ) and

(x^)F = (x̂ )F-v-(x̂ ) f^^^...,x^=0,...)/li 4- — i
... f(®+l)(...,xi=0,...)/(m+l)I

For x^ - O, F =f(^) ( ... ,x̂  = 0,... ) , hence for all x^

F = F 4-f(1)( .,.,x^= 0, ...)/li 4-... + (xi)^ f(m^l)( . ..,x^ = 0, ..,)/(m+l) l - i 1
Since f is in C. then F is in G ® which is in C Since— i,0 — 1,0 1
(x^)^ ...,x^= 0,...)/( j+1)! is in then F is in C.™.

q . e . d .
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(3.18) Definitions In this chapter by C**̂ (R̂ ) we mean the set of con­
tinuous functions on all of whose derivatives exist everywhere and 
are continuous, i.e. C^(R^) is the intersection of Gĵ”̂ (R̂ ) for all 
^ “1>2,3,... •

The set C as defined above is independent of i.

(3.19) Lemma; If f is in C^(R^), then M^(f) is in C (R?̂ ) for any i.

(3*20) Lemmas If f is in G (R̂ ) and if F^=Mj^(f), then

f(x^,...,xP)=f(0,...,0)-+- ...,x")

+{x^)F„(0,x^,...,x")+...+(x^)Fj(0,...,0,x^,...,xp)1

+- (xP)F^(O,...,0,x^).

Proofs For n= 1, the lemma is immediate. For n>l, since 

(x )f^(o , •. • ,0,x* , . « • ,xF̂ ) — f (0, * * « ,0,x , ... ,xF̂ )

—f(0,...,0,X ,̂..*,3î ),

the result is easily obtained by substitution.
q.e.d.

The functions F^(0, ... ,0,x̂ , ... ,x̂ ), given above, are in C^(R?^),
If we apply (3.19) to each F^(0, • •. ,0,x^,... ,x̂ ) , since F^(0,...,0) =

9 f (0, ... ,0)/9 x^, we obtain:

(3.21) Theorems If f is in C*^(R^), there are functions in C^(R^) 
such that

n M
f=f(0 ,...0) +  Z  (xi)9 f(0,...,0)/9 xi+ 2 . (xi)(x3)g

i=l = ï
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Âs a generalization of (3.21) we have:

W  .%2) TtQore#: f is in G^(hP) and if (x q̂, ... ,x *̂q ) is any
fi^e^ point of R̂ , then there are functions g. . in ) such that1J

n.
£~ £{x?-q , .., -t- 1  (x^-x^q) 3f(xp-Q,...,:!^Q)/9x^

n 1=1
■*■ X  (xl-xlg) (x3-xig)gĵ  ,

1, j =1
for all x^,...,xP in R*'. (The g. .'s in this theorem are not necessarilyJ-J
the same functions as in (3.21), since they depend on the point
(x Q, . . * ,X g) . )
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Qhapter I&ffareritiaWLe IWiifolds

Li this chapter we will define infinitely differentiable manifolds
wl'>and the riiigp of infinitely differentiable functions bn these manifolds.

Will show that this ring is associated with the underlying space of 
the manifold*

(U.l) Definition: An open covering{ of a topological space X is
said to be "neighborhood finite" if every point x of X has a neighbor­
hood U (x) which meets at most finitely many of the covering sets

If a covering is star finite, thenit is neighborhood finite. If 
it is neighborhood finite, then it is point finite.

(U.Z) Lemma: Ifj  ̂is a neighborhood finite open covering of a space
X, and if each has a neighborhood finite open covering J then
the set of all is a neighborhood finite open covering of X.

Proof: Let x be any point of X. The point x has a neighborhood W (x)
which meets only the sets each ,i= 1,...,n,
which contains x, the point x has a neighborhood (x) which meets 
only finitely many Let G be th intersection of W and all for
which X is in then G is a neighborhood of x which meets only finitely 
many Hence j is a neighborhood finite covering for X.

* G * d *

In this chapter we will use the following special notation: X is 
a connected Hausdorf space, R is the set of real numbers, is the n- 
dimensional Euclidean space, R(X) is the set of all real-valued contin­
uous functions, and C (Î ) is the set of all infinitely differentiable 
functions on open sub intervals of R .̂ ^  this chapter by an infinitely
differentiable function we mean a continuous function whose derivatives
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of all orders are ocMftlauouà • A function "vanishes on a set" if it 
vanishes at every point of the set.

eo(li.3) Definition: A subring G (X) of R (X) is a "ring of infinitely
differentiable functions on X", if:

(i) X has a countable, neighborhood finite open covering {Uĝ , a in 
For each there are n functions Xgl,...,Xgn in G^(X) such that 
for any f in G^(X), there is an in C^(I^) such that

f(q)= f^(Xgl(q),...,Xgn(q)) 

for all q in Ug and for all TJg.
(ii) The mapping hg:TJg—^  defined by hg(q) = (Xgl(q),... ,x^ (̂q) ) 
is a homeomorphism onto an open interval | rl-rgL |<bgl of R̂ ,
(r^^ fixed).
(iii) If a function f in R (X) can be represented at every point
p in X as in (i), then f is in C^(X).

(U.U) Definition: If a ring C*^(X), as defined in (U*3), exists on a
connected Hausdorf space X, then the space X with the ring C^(X) is
an "infinitely differentiable" or "smooth manifold". The space X is 
the "underlying Space of the manifold". The covering { is a "co­
ordinate covering for X", and the set of n—systems of functions 
I (Xgl,... ,Xĝ )  ̂constitute a "coordinate system" or "system of co­
ordinate functions for X"

From the definition it immediately follows that ^  infinitely 
differentiable manifold is a topological manifold.

The ring G^(X) ^  not unique. Let X be the real line. Let the 
identity function % be the coordinate function, obtaining a ring 
G q(X). If we let (x)̂  be a coordinate function, obtaining a ring

 ̂ T h t 3  i s  s i t T j i f o h  j o  f h a f  ^  i  e h

C va / r 1 7 f-Q t n i e t h  i
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-COG. ^(‘X), dîhen we that the rings C û (X) and. C ure not the same.

The hypothesis that the covering { is neighborhood finite is 
not actually necessary. Assume fUa> a in à] satisfies all other con­
ditions of (.iÿ.3)# We can cover X with a countable covering , a’in A'| 
such that every is contained in some where a= 0(a*), and 
hĵ (g,)(Vat) is a closed (i.e. compact) subinterval of ). Wilder
[ 5, pp. 130 and I69I has shown that the covering^Vg,j, has a countable, 
star finite refinement of open sets j Gy, b in . Since every Gy is 
contained in some Vg^y^ where 0 (b) = a*, then Gy can be covered by a 
countable, star finite collection of open setS^Wyiy^ such that

Ve(b)^^b*b^ ^ subinterval of îye(b) (^0e(b) set of all
{ ̂ b*b^ ^ in BI is a countable, neighborhood finite covering for X. If 
we take the functions 35jgf0(y)̂  as coordinates for each of the open sets 
Wyiy, then the covering ̂ Wy iy| is a coordinate covering for X, and the 
ring of infinitely differentiable functions generated will be the same 
as will be generated if | is the coordinate covering.

(ii.5) Theorem: Let X be an infioit€ly differentiable manifold. If
fL, ...,fm is a set of functions in G*^(X) and U is an open set in Xjrn
such that for every f in G (X) there is an f* in G (5c) such that

f(p)=f*{fMp),...,f”(p))

for all p in U, then
(i) m = n

and
(ii) in every Ug which meets U, the Jacobian D(f^^^, .. .,f^»^)/

D(x , ,xj^)^ 0 everywhere in U n U„.
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: W t  à be fiX6d* any p in ÜAlîg we may write (p) =
f^*^(Xg^(p),.. 3̂ ®*(p>) where 1 = 1,..#, m. Also Xg^(p) =Xgj*(f^(p), . #. 
*••9 T®̂ (p)) Where j =1,.#., n, i.e.

u®) gé.. J Xa®*(u^> , U®) ) = u^ 1=1,#.., m;

Xa^*(f^*^(r^,..#, r^),..., f^'^(r\..., r^)) = r^ j =1,.#., n;

for all (u3^..., u®) in RP such that u^-f^(p), p in UnUa, and for all 
(r^>..., r®) in such that r^= Xg^(p), p in UnTJg.

For a ^  such values of u^ and r^ we have
(i) Z  (9f^>VJrj)Oxg^y9u^)-é\ i, k = l,..., m,

j=land ^
(ii) Z  (Sxg^V^ u^)(9 fi»V3 r^)= j» k=l,.#., n.

Let A be the m by n matrix with elements A^j"(9f^*^/3 r )̂, and let B 
be the n by m matrix with the elements OxgJ*/3 û ) # From (i) we
have AB = ̂  where E® is the m by n identity matrix. From (ii) we have 
BA=#. Then,

n=: m

for otherwise either det(AB) = 0 which implies AB^ EP or det(BA)=0 which 
implies BÂ^îP.

Since det (AB) = !=■ det( A) det(B) everywhere in U AUg, we have 

det ( A);=- detff ̂ *^/9r^) = D(f^^^,..., f^»^)/D(Xg^, ... ,Xg’̂)^ 0 

for all p in UAUg.

q . e . d .
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(U.ô) Gorollarys If a^a* and if meets 1%̂ ,̂, then x^)/

D(x ,1,..., X ,n):^0 on u A U 3- a* a a*
(U.7) The underlying space X of w  infinitely differentiable manifold 
is a second countable Tychonoff space, i.e. X 1̂  separable metric.
The proof imnediately follows from the fact that X has a countable 
covering of open sets homeomorphic to Euclidean space.

(U.8) Definitions let ̂  a in a} be a coordinate covering for an 
infinitely differentiable manifold with an underlying space X. A 
covering b in bJ is an "acfeiissable refinement of ̂  a in
if it is a countable, neighborhood finite open covering of X and if 
there is a single—valued map 0sB -*-A such that :

(i) Vy is contained in
(ii) L0^y (̂Vy) is an open interval in
(iii) The union of all Vy such that 0(b)=. a covers Ug*

(We do not require that sets Vy with distinct subscripts be distinct.)
An admissable refinement is said to be "completely admissable" if

Bv/,\(Cl(V )) is a closed sub interval contained in h  ̂(U., .) for all 0(h) b 0(b) 0(b)
b in B, i.e. Cl(Vy) is compact and is contained in D^^y^.

(L.9) Theorem: If a in A^ is a coordinate covering for an in­
finitely differentiable manifold, then there exists a completely ad­
missable refinement of J U ,̂ a in A^.

Proof s Let hg(Bĝ )=: where is an open Euclidean interval. Every
I^ has a countable, star finite open covering by sub intervals
’tr , , b* in B*(a)( such that Gl(I ) is a closed (compact) subin-D ,a J b* ,a
terval in 1̂  for all b* in B*(a).



B*{(bSa)}=r UBHa)xa^
*l€ A

■then B is countable, let ̂  be the "projection" of B onto A, i.e.

0ïb* >a)=: a.

We denote the elements of B by b and set

\ = { P  In ̂ 0(b)K(b)^P^ ^  b̂“ I(b',a)]'

then I V̂ , b in B^ is a completely admis sable refinement of a in a} .

q.e.d.

(U.IO) Theorem: If a in A*} is a coordinate covering for an in­
finitely differentiable xaanifold̂  then a in A^ has completely
admis sable refinements b in sjr and b in bJ such that Cl(V^)
is contained in 11% for every b.

Proof: We can construct as in theorem (b.9), but so that given
^b* "vre can find an open subinterval of such that 01(1^,^^)
is contained in J, , , the J, , *s form a star finite open covering of0 f a D j a

and Cl( is a closed subinterval, contained in Î .̂ The inverse
Images of the s form the Wy's.

q.e.d.

(U-ll) The index set B of a completely admissable refinement|v , b in b} 
is never finite.
(U.12) Theorem: If | Uĝ , a in A^ is a coordinate covering for an in­
finitely differentiable manifold, then|^Ug, a in A^ is an admissable 
(but not completely admissable) refinement of itself.

(U*13) Theorem: Let I be an open bounded interval in Euclidean space
and let I* be an open interval in such that Gl(I’) is compact and



is eççntalned in I, then there is an infinitely differentiable function 
1*) on such that
(i) F(I,I*)=1 on I*
(ii) F(I,I*)>q on I
(iii) F(I,I»)=0 on R-I.

Proof: It is well knoTiim that the function which is 0 for x=:a and
expC-l/Cx-a)^) for is infinitely differentiable and vanishes with
all of its derivatives at X” a. We will denote this function by g(x,a). 
Also the function

!g(x,a) for xyBL

0 for x^ ̂

is infinitely differentiable everywhere, since at xzr@, the right and 
left derivatives of all orders exist and are equal.

If a<a*<b*<b, then the function F(-x,a* )"*“ F(x,a)F(-ix,b)-rf-F(x,b* ) 
is infinitely differentiable and is positive everywhere. Define

F(xja,a* ,b*,b) = F(x,a)F(-x,b)y^(-x,a* ) +'F(x,a)F(-x,b) +-F(x,b* )) >

then the function F{x>a,a* ,b* ,b) is one on a* < x ̂ b*, zero on x < a and 
b < x, and is positive on a < x < a * and b * < x < b.

If the coordinates of points of R^ are (r^,...,r^), set

 ̂(r^,.*.,^^) 1 â  <ri<bi^ — I,

and

^(r^,...,i^)\ a*^<r^< b*^ j zr I*.
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The function
n

1=1
is the desired function*

q • 6 • d I

(U.lU) Corollary: If a in A^is a coordinate covering for an in­
finitely differentiable manifold and if  ̂Vy, b in and b in b\
are completely admissable in a in A j such that Ol(V^) is contained
in for every b, then there are functions u^ in G^(X) such that

%

r= 1 on
>0 on

I =0 on X-Wy.

Theorem: If K ,
finitely differentiable manifold, if ĵ V̂ , b in is admissable in 
^üa> a in A^, and if for every b there is a function in C^(X)
which vanishes on then the function 21 gy is properly defined

oo . be 5*and is in C (X) •

Proofs Let p be any point of X. A neighborhood G(p) meets finitely 
many V̂ s . . . , In G we have

Zsb=Sl+ '•••*■ Sja'bfB
The sum on the right gives a properly defined infinitely differentiable 
function. Since Z  gy is a properly defined infinitely differentiable 
function in some neighborhood of every point, then it is in C (X),

q.e.d.

(U.l6) Corollary: Let û  ̂be defined as in (U.lU), then Zly u^,
and u^|/ Vy' are in C (X). Also
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and Z^Vy=l on all X.

(U.17) Theorem: If F in G (l̂ ) is an infinitely differentiable func­
tion on bgt(U^i), a* in A, and if a function g in C*^(X) vanishes on 
X-W where G1(W) is contained in then the function

F(x X ri).g on Ua* a* a*

on X— U , a*

is in C^(X).

Proof ; The fuze tion f is in C* (̂X) if for every a in A there is a func­
tion f®", infinitely differentiable on h^(U^), such that

f(p)=f3'(x^^(p),..., Xg^(p)) 

on We need only to show this for a# a* and such that meets .

We may set

fo on h^(U -C1(W))a' a

, x^,"»a).(ga) h^(U^n U^,).

The function f^ is infinitely differentiàble, since the zero function is
infinitely differentiable on the open set bg(Ug— G1(W) ) and

is infinitely differentiable on the open set
h^(U The union of these two open sets is h (IT )*a a a a 3>
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Hence

0 on

and f = fa(x^^,*.., x^^) on Ug. Therefore f is in c"”(X).
q * e # d«

Some authors define infinitely differentiable manifolds in a diff­
erent way than we have* They assume X is covered by a finite number of 
coordinate neighborhoods such that there exist homeomorphic maps h^
which map W. onto an interval I.* The maps h.h.“*̂ : I./lh (W AW ) ̂ i J J j i Ô
liHh^CW^nw^) are assumed to be infinitely differentiable with non­
zero Jacobians* A continuous function f on X will be infinitely diff­
erentiable on X if for every there is an f^ which is infinitely diff­
erentiable on Ijĵ such that f =f̂ (hĵ ) on

We can show that if a space X satisfies the above conditions, then
it is an infinitely differentiable manifold in the sense of definition
(U.U) and the infinitely differentiable functions in the above sense
are the elements of G°°(X)* We first construct two coverings { and

for X which are completely admissable in and such that
G1(U. ) is in V. , The construction is similar to that used in theorem la la
(I}.*10). As in corollary (U*lU) we construct functions u^^which are one 
on Vanish on X - and are infinitely differentiable in the above
sense. Let 0^^ be the projection of onto the j-coordxnate of Î . We 
now define

on X - Wj.
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The covering I As a coordinate covering for X and the functions
*ia form a system of coordinate functions for X* k function f on
X will be infinitely differentiable in the above sense if and only if 
it is in C®^(X). “

(U.18) Lemma; If F and F* are disjoint closed sets in the underlying 
space X of an infinitely differentiable manifold, then;

(i) There is a function f in C**̂ (X) which is one on F and zero on 
F*.

(ii) The sets F and F* have disjoint neighborhoods, IT(F) and 
D(F*), with disjoint closures, hence X is normal.

(iii) There is a function g in G*^(X) which is one on a neigh­
borhood of F and is zero on a neighborhood of F*.

Proof; (i) Let b in be a completely admissable refinement of
the coordinate covering of X. Since h^^y^Cl(V^) is compact, the distance
between the closed sets h0^̂ j[Gl(Vy)A F) and h0^̂ (̂Cl(V̂ )/l F» ) (if both
sets are non-empty) is positive. We will denote this distance by d(b)
and the subset of B for which Ci(V^) meets both F and FV by B'. As in
theorem (U.IO) we can construct completely admissable refinements

c in G J andj^Wg, c in G j of j V̂ , b in B j with a transformation
such that ^j^c)^*c ^ sub interval of 0̂ĵ (̂c)̂ (c)

C1(W ) is contained in W  . In addition these refinements can be so c c
constructed that forjp'(c) in B*

diameter(t^^^^W^)< diameter(h0^^^W'^)<id(b).
Hence the closure of no element of the refinements^ and W * i n t e r ­
sects both F and F*.

Let C* be the set of all elements of C such that G1(W*q) meets F. 
Hence Gl(W*g) does not meet F* if c is in O’.
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From for allrc 0 there are functions in W  which
are one on and vanish cm JĈ W*c • Since the covering yw*^ | is neigh­
borhood finite, the functions % w  and Z  w^ are in C (X) and are

_  ceC ceC
equal on F, and 2-w„ vanishes on F*. Since Z. w  is different from

ceC ^  ST oo.zero everywhere, the function f = Z  w_/ Z  is in C (X), vanishes on
cfQ,' c CF*, and is one on F.

(ii) Using the function f constructed above we set 

U(F)={p in X 1 f(P)>3A]

U(F«)=Jp izi X I f(p)< 1/u}.

These open sets are the desired neighborhoods.
(iii) Applying proposition (i) to Cl(U(F)) and C1(U(F*)) we obtain
proposition (iii)•

q.e.d,

Cii.l9) Gorollary: If F is a closed set of the underlying space X of
^  infinitely differentiable manifold and p is any point of (X-F),
then there is a function f in C^(X) which is zero on a neighborhood of
F and is one on a neighborhood of p. The function ( 1-f), which is also 

ooin C (X), is one on a neighborhood of F and is zero on a neighborhood 
of p .

(U.20) Lemma; If F and F' are disjoint closed sets in the underlying 
space X of an infinitely differentiable manifold and if F is compact, 
then;

(i) The closed sets F and F ' have neighborhoods V(F) and V(^^ ) 
with disjoint closures such that Gl(7(F)) is contact.

(ii) There is a function f in cf̂ (X) which is one on F and zero 
on F* such that the subset of X on which f is different 
from zero has a compact closure which does not meet F*.



Proof s (i) Let V y b  in fl̂  be a completely admissable refinement of 
the coordinate coveidmg of X. Since F is compact, there is a finite 
subcollection of whose union, G, contains F. Since Gl(V^) is com­
pact for all b, then Cl(G) is conçiaet. Let U(F) and U(F’) be defined 
as in (l+.l8,ii). Set

7(F) = U(F)n G

and

7(F» )=r Ü(F*)>

then V(F) and V(F*) are the desired neighborhoods.
(ii) From (U*l8,i) there is a function f in G^(X) which one on F 
and vanishes on (X-V(P)). This function is the desired function.

q.e.d.

(U*2l) Theorems Let X be the underlying space of an infinitely diff­
erentiable manifold.
(a) If for any f in C* (̂X) we define

2(f)-[p in X I f(p)= OJ,

then in the sense of definition (2.16) the ring C (X) is associated 
with the space X.

oO OO(b) Also, the subring of C (X) consisting of all functions in G (X) 
with compact supports is compact associated with X.

Proof; (a) Axioms (i) and (ii) of (2.1) are obviously satisfied. From 
(U.19) axiom (iii) of (2.1) and axiom(v,a) of (2.16) follows immediately.

We now consider axiom (iv) of (2.16). For any f in C (X), A(f) 
consists of all g in (X) which vanish on X-Z(f). But g vanishes on 
X-Z(f) if and only if it vanishes on Gl(X—Z(f)) = X-3ht Z(f) = 3(f),
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i.e. A(f) consists of all functions which vanish on S(f). If the 
functions f and f* are disjunct, then for every g and g* in C^(X) 
there is a function h in C**̂ (X) such that (h-g) vanishes on S(f) and 
(h-g*) vanishes oh S(f'). If we consider g to be the zero function 
and g* to be one everywhere, we see that such a function h does not 
exist if the sets Stf) and S(f*) meet. Hence if S(f) and S(f*) are 
not disjoint, then f and f* are not disjunct.

Suppose S(f) and S(f*) are disjoint, then there is a function w 
which vanishes on S(f) but is one on S(f*)* Consider any pair g and 
g* in G^(X). Set

b - (g) (1-w)-t-(g • ) (w) ,

then h is equal to g on S(f) and is equal to g* on S(f'). Hence (h-g) 
is in A(f), while (h-g*) is in A(f*). Therefore if S(f) and S(f*) 
are disjoint, then f and f* are disjunct.
(b) Axioms (i), (ii), and (iii) of (2.1) are shown as in (a) above. 
Axiom (v,b) of (2.16) follows from (U*20) since a point of X is a 
closed set.

We will now show that for any two functions f and f * in G*^(X) 
with compact supports the sets 3(f) and S(f*) are disjoint if and only 
if f and f* are disjunct.

From (U*20) there is a function g with compact support which is 
one on S(f). As in (a) if 3(f) and S(f*) meet, then there is no func­
tion h in C^(X) such that (h-g) is in A(f) and (h-O) is in A (f * ) .  

Hence if S(f) and S(f’) are not disjoint, then f and f* are not dis­
junct. If 3(f) and S(f*) are disjoint, then there are functions w and 
w* in g'^(X) with compact supports such that w is one on 3(f) and van­
ishes on 3(f*) while w* is one on S(f') and vanishes on 3(f). Given
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any two g and g« in C*^(X), set 

b = (g) (w) * )(w* ) ,

then h is in G*^(X) and has a compact support. Also (h-g) vanishes on 
S(f) and is in A(f), while (h-g*) vanishes on S(f * ) and is in A( f * ). 
Hence if S(f) and S(f*) are disjoint, then f and f* are disjunct. 
"Rierefore axiom (iv) of (2.16) is satisfied and the ring of all func­
tions in G^(X) with corgpact supports is compact associated with the 
space X.

q.e.d.

(U*22) Corollary; If the underlying space X of an infinitely differ­
entiable manifold is compact, then the ring G^(X) determines the top­
ology of X. If X is the underlying space of any infinitely differen­
tiable manifold, then the ring of all functions in C****(X) with compact 
supports determines the topology of X.
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Chapter 5* Contravariant and Covariant Tensors on Infinitely 
PAfferentiable Manifolds

(^,1) Definition: A multi-derivative L of degree m on c'^(X) is a
"tangent operator of order m on G°^(X)" if for any constant function 
a and for any collection f^,... ,f^,... ,f^ of m-1 functions from

over all X for any i = 1,...,m. A tangent operator of order one is a 
“tangent vector'.*

As in Chapter 1 and Chapter 2 we will write

L(fl,...,f^”l,g ,̂f '̂̂ ^,,.,,f̂ ), as L( .. ...), i.e. if we say a
. . ys

certain proposition holds for L(...,g ,...) for all f ,..., f ...,f̂ , 
we mean this proposition holds for L(f^,.. .,f^”̂ ,ĝ ,f̂ '*'̂ , .. .,f”̂) for 
all f-̂ ,...,f̂ ,...,f®.

We may easily show that the sum, difference, and product of any 
two tangent operators is a tangent operator, and the product of a 
tangent operator with a function is a tangent operator.

(5.2) Theorem; If L is a tangent operator of order m on 0°^(X), 
then;

(i) L is linear with respect to R in each of its variables, i.e. 
if a^ and b^ are constants, then

1*( ...,â  ̂f t" bĵ g ,#..)— â Ij( ...,f^,... ) t" b̂ I»( ..., g^ ,...).

(ii) If a function g vanishes on an open set G, then L(.,,,g,...) 
vanishes on G for any collection f ,...,f^,. . . from 
c"^(X).
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(iii) For all ... ,g™ in C (X)

L ( # , v . . , f *® ) -L (g l ,  . . . ,g " ^ ) = Z L ( g l ,  . . .  . . .  , f® )
i=l

(iv) If f̂ =r gi on an open set G for all i=-l,...,m, then 
Ii(f̂ , .. .,f®) =  L(^, .. .,g”̂) on G.

I^QQf: (i) The validity of (i) follows in the obvious manner from 
the definition of a multi-derivative and from definition (5.1)»
(ii) In (1.10) we showed that

A(g)^ A(L( • • « ,g,...)).

Since G^(X) is associated with X, then

Int Z(g)Glnt Z(L(...,g,...)).

(iü) - Ebq>anding the member on the right we obtain 
m ... ,f®) 

m
= Z  L(gl. • . . . . .  ,f”)- Z  L(gl, . . .,gi,fi*'l*... ,f”)
W  ni
= ,f”) +-Z  L(g^> .• •
TD i'Z

- Z  Wg^,. i  ...,f”)-L(g^,... Jg®)
3=4.

^ liCdj » • • • • )ĝ ) •
(iv) From (ii) and (iii) we have (iv). q.e.d,

(5.3) Theorems There exist tangent operators of every order on 
c‘̂ (X)^ which are not the zero operator.

Proof ; Let { V^, b in andjw^, b in be completely admissable 
Refinements Of{Uĝ , a in such that Gl(V^) is contained in and 

Uy be defined as in (U.lU). For a fixed b* in B, set a’— 0(b*) 
and define
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L 0 on X-Uĝ , ,

then Ii(f̂ ,...,f”i) is in G®**(X) for f̂ , in C*^(X). By sub­
stitution of a constant a, f^4-g^, and for f^ it immediately
follows that L is a non-trivial tangent operator of order m,

q.e.d,

One may define a contravariant tensor T of order ra as an operator 
T:(C (X))*'î-̂ cfX) such that

T(fl,... ,fm)= Z  (  ̂)• • • ( 9 f®/9xj”' )T(x^^ ,... ,x^"’)
il" Im

It is easily shown that such an operator T is a tangent operator 
of order m. We will now show that any tangent operator of order m is 
a contravariant tensor of order m in the above sense.

(5.U) Theorem; If L is a tangent operator of order 1 on 0°^(X), i.e. 
is a tangent vector, then for any f in G^(X)

n
L(f)= Z  (3f/3xi^)L(x\) 

i=l
on the coordinate neighborhood Ug.

Proof; Let ^Vy, b in and ̂ Wy, b in bJ be completely admissable re­
finements of ftJg, a in a } such that Gl(Vy) is in Wy, and let Uy be 
defined as in (U.lU). Let p be any fixed point in Ug. There is a b* 
in B such that p is in Vb* and a=r0(b*). There is an f& in G^(I^) 
such that f(q)— f®-(x -̂ -Cq),.. .,x^tq)) for all q in U . From Chapter 3O' a 2L
we can write
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• . >*a“(p) )
+  %  (9f^{x^l(p),...,Xg^"(p))/9x^^)*(x^^(q)-x^^(p))

* Z ,...»x̂ ’̂(q))• (x^i(q)-x^^(p) )• (x^J(q)-x^j(p))
ij

where gjj_̂ is infinitely differentiable on hg(Ug). We define the follow­
ing functions on X:

( »• • • »Xa"(q) )% °n
%3(q)=1

I 0 on X—IJg,
oothen the G..*s are in G (X) and

f-11̂ = f(p)-Tib̂  pf/">Xa^|p(x/-x^i(p))-Up 

+2 Qlj(Xa^-Xa^(p))' Cxa-’-Xa^(p) )
i  j  . 1 .

on X. Since p is fixed and f(p), 3 f / 3 L  and x^^(p) are 
constants, we have

L(f-Uy)= UyL(f) -FfL(Uy) - f(p)L(Uy) Z  ̂  f / 3 X^^ |p(L(Xgi ) ' Uy Xg^L(Uy

+■ Z  L(G^j)(xgi-Xgi(p))(Xgd-Xgj(p))
: j
+Z GijL(Xgi)(XgJ-Xgj(p) ) +ZG^j(Xgi-XgT(p))L(XgJ).
i j  i j

On Vy the function Uy is one, hence L(uy) is zero on 7y and 

L(f.Ub))p’L(f)|p=I O  f/3 x̂ i)|jL(x̂ i)|p.

Since this equation is valid for any p in Ug, we have

Uf) = L  (9 f/9 x^i) L(x^i)

on Ug.
q . e . d .
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(5.5) Corollary; If L i§ a tangent operator of order m on C^(X), 
then for any collection f^,...,f® of m functions in C^(X) we have

On the coordinate neighborhood Ug.

Proof: If all but one variable of L is held fixed, then L is a tangent
vector in that variable and we ha1re

h
L(fl,... ,f®)-2 ( 9 f V 9  X il)L(x . .. ,f®)

= 2  O  f^/9 ) 0  f2/9 x/2)L(x^^l,x^l2 ,f3,... ,f®)
V z  . '
=,,,= T  (9i^/9x^i)---(9f“/9 x^"»)L(x^i ,...,x/>").a

In. q.e.d.

Since we have now shown that a contravariant tensor, (or contra— 
variant tensor field) defined as an operator is a tangent operator and 
vice versa, we will henceforth use the terms contravariant tensor and 
tangent operator interchangeably.

(5.6) Definition: We define an operator Ĥ î ...ijĵ  by the equation

r (3 fV3 Xg^l )' • * ( 3 f^/ 3 Xĝ Tfh) (Uy )H1 on Ug

^0 on X-Ug

where *[Ug, a in k\ is a coordinate covering of X, f Vy, b in s"} and
1'^, b in B j are completely admissable refinements of j Ug, a in
such that Wy contains Cl(Vy), a=0(b), and Uy are the functions of
c'**(X) described in (U.lU) which are one on Vy and vanish on X-Wĵ .

It is easily shown that . is a tangent operator of order m,—  -----— ^   -̂--------------------
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(5.?7̂  Lèmffiétï If #. —  ̂ and Nb̂ . . , are defined as in (5.6),
then

The proof follows directly from (5.6).

(5.8) Definition: If L is a contravariant tensor of order m, then the
function l(xgii, •. ,,x̂ '*’̂) is the " i]̂ ... i^ coordinate of L on Ug in the 
coordinate system Xg^...Xg^"#

(5*9) Definition: If X is the underlying space of an infinitely diff­
erentiable manifold ahd if Y is a subset of X, then the contravariant 
tensor L “vanishes on Y*> if L(f^,. • .,f®) vanishes at every point of Y 
for every f ,f^ in C^(X). Two contravariant tensors of the same 
order “are equal on Y" if their difference vanishes on Y.

(5.10) Lemma: If L is a contravariant tensor of order m on an infin­
itely differentiable manifold and if the tensors Rb are defined1̂*•
as in (5.6) , then the contravariant tensor, Z  L(x0 ŷ̂ l̂ , . •. ,X0 .̂ŷ ^̂  )
Nb. . , is equal to L on VI.

The proof follows from (5.5) and the definition of  ̂ since
^ 1 • • •

(uy)^ is one on Vy.

(5.11) Lemma: A contravariant tensor L vanishes at a point p:
(i) if and only if all coordinates of L in some coordinate system 

Xgl, .. ,Xgii such that Ug contains p vanish at p.
(ii) if and only if all coordinates of L in all coordinate systems 

XgT,,..,Xg^ such that Ug contains p vanish at p.

(5.12) Lemma: If P is any compact subset of the underlying space X 
of an infinitely differentiable manifold and if k is any positive in­
teger, then there is a contravariant tensor of order 2k which does not
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at, po4nt qf

Proof; Let be the tangent vector described in (5*6) and let
V̂ ,...,iTt be a finite covering of P̂ b̂y sets from ̂  Vy, b in sj'.
Consider the contravariant tensor ^  (N% =L. Any p in F is in

* S»1Spme Vyi where b* is in  ̂1,... ,t][ , then for where a=jZf(b* ),4. t p 
(N^^)^^(Xg^) ̂  0 and (N^^)^^(Xgl) — 1, Hence L does not vanish at any 
point of F.

q.e.d.

Since the covering ̂ V^, b in is neighborhood finite we can
show that there is a contravariant tensor given by which

be Bdoes not vanish at any point of X.

We will now define covariant tensors.

(5.13) Definition: A "covariant tensor T of order m" on an infinitely
differentiable manifold X is a transformation of the set of all contra­
variant tensors of order m into C^(X) which is linear with respect to 
C^(X), i.e. T(L) is in c'^(X) and

T(fL-+-f *L') =  fT(L)4-f*T(L* )

for all f and f* in C*^(X) and for all contravariant tensors 1 and L* 
of order m on the manifold.

The zero operator, which satisfies the above conditions for every 
ni, is a "covariant t^sor of order infinity".

(5.lU) Lemma: If T is a covariant tensor of order m on an infinitely
differentiable manifold X and if L is a contravariant tensor of order 
m on X which vanishes at every point of an open set G, then the function 
T(L) vanishes at every point of G. If L and L' are contravariant ten­
sors of order m which are equal on G, then the functions T(L) and T(L*) 
are equal on G.
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Proof 8 'If point in the open set G, then from (U.19) there is
a funetibn which is one on X-G but vanishes at p. Since
L = fL, ; then'T(L)— fT(L) vanishes at p. Hence T(L) vanishes on G.

If L and L* are equal on G, then their difference L-L* vanishes 
on G, and

T(L) - T(L*)= T(L-L») 

vanishes on G, hence T(L) equals T(L*) on G.
q • e « d*

(5*15) Definition; If fl, ••.,f® are any m functions in G*^(X), then 
the gradient of fl,...,f^ is the transformation G of the set of all 
contravariant tensors of order m into C^(X) given by

0(L) =  L(fI,.,.,f“)

for every contravariant tensor L or order m.

If Xg^,...,Xg^ are coordinates of a coordinate neighborhood Ug, 
then we write the gradient of Xg 1 , •.. as Gg^l

(5*16) Lemma; If f^,... ,f^ are any m functions from G^(X), then the 
gradient of f^,...,f® is a covariant tensor of order m on G^(X).

The proof is straight forward and need not be given here.

(5*17) Definition and Lemma; If T and T* are covariant tensors of the
same order in on an infinitely differentiable manifold with underlying 
space X and if f and f* are i 
fT =Tf, T + T S  and T - T* by

oospace X and if f and f* are from G (X), then we define the operators
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(T4-T* ) (L) =-T(L)-H T* (L)
(T - T*)(L)=T(L) - T»(L)

Tor all cohTRavâriant tensors L of order lu. These operators are co­
variant tensors of order m.

The proof that these operators are covariant tensors of order m 
follows directly from the definitions#

(5.18) Definition: A covariant tensor T of order m on an infinitely
differentiable manifold with underlying space X "vanishes on a subset 
Y of X "if T(L) vanishes at every point of Y for every contravariant 
tensor L or order m#

Two covariant tensors of the same order "are equal on Y " if their 
difference vanishes on Y.

(5.19) Theorem: If T is a covariant tensor of order m on an infinitely
differentiable manifold with completely admissable coverings /Vy, b in B ̂ 
and^TYy, b in bJ such that Wy contains Gl(Vy) and if the contravariant 
tensors  ̂ are defined as in (5.6), then the covariant tensors T
and T* given by

are equal on Vy

Proof; Let L be any contravariant tensor of order m, then L is equal
to ̂  L(x^^ , .., ,x̂ Dl)îjb on V, where a- 0̂ (b) . Therefore

i]  in,
T Z  L(x^l , . . . = Z  L(x .,xim) T (Nb )

= 2  T(Hb . ) (L)=T'(L)
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is equal t ÇL) on Vy for every L* Therefore T is equal to T* on Vy

q.e.d.

(5.20) Gorollary: Under the hypothesis of (5.19) for any contravariant
tensor L of order m the functions T(L) andZ  ̂ ,i^)b(%^^y^^

are equal on Vy.  ̂ ^

(5.21) Definition: We call the functions  ̂ ) as given in--------------------  — -*-1 • • • -4n
theorem (5.19) the " il« *.î  coordinates of T in the coordinate system 
^0(b)^' * * • ’̂ 0(0)̂  ̂on the neighborhood Vy **.

(5.22) Theorem: Under the hypothesis of (5.19)

2.(9 xjl )•• • )
h'^m ^  ^

on the intersection of V, and V, . where a-J2î (b) and a*= )Zf(b* ).

Proof: Set

f(9 Xa.1̂ /̂3 Xg^^)" ' (3 Xg,̂ ”̂ /3 Xg^^)(uyf^ on U,

( 0 on X-Wjj,

then f?̂  is in G (X). Setii-im 

''I Jjn
then on the intersection of Vy and Vy,

L(f^,...,f®)= (9 f V 9 x U  )'"(Pf^/^x^b^).

Hence L is equal to bn , , i.e. T(L) = T(Nb^ , ) on
but on

T(L)= 2  ( )•• • (3^(b')^’”/3^(b)^’")2(Nbj i^)
q.e.d.
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(5.23) iRèorèm: Let ̂ Vy, b Irt and jllSy, b in b} be completely ad­
missable coverings of ari Infinitely differentiable manifold with under- 
lyihg space X. If to every cbordinate system x^^y^l,.. we
assign (m)^ functions f̂ < a from cT° (X) such that1̂* *

on VyOVy,, then there is a cova^iant tensor T on X such that, for 
every b in B, T is equal to %  f̂ ĵ  • • •% b̂*

Proof: Let L be any contravariant tensor of order m. If p is any point
of X and if Vy is any element of j Vy, b in b]; which contains p, then we
assign to p and b the value r(p,b) which is the value of the function

•••!« ^^^(b)^^ ,... ) evaluated at p. If b is fixed,1 "bn. oo
then the function r(p,b) on Vy is equal on Vy to a function from G (X).
It is easily shown that r(p,b) has the same value for every b such that
p is in Vy, i.e. r(p,b) determines a single valued function r(p) on X.
Since r(p) is equal to some element of C*^(X) on every Vy, then r(p)
is in d^{X).

The transformation L -*-r(p) is a covariant tensor; for if 
L* r* (p), then we see from above that (fLi-f * L*)-^f r(p)+* f * r'(p).

q.e.d.

(5.2U) Lemma: A covariant tensor T on an infinitely differentiable
manifold with an underlying space X vanishes at a point p of X:

(i) if and only if p is in some completely admissable neighbor­
hood Vy such that all coordinates of T in the coordinate sys­
tem ->^(y)^ vanish at p.

(ii) if and only if all coordinates of T in all coordinate sys­
tems x ^ ^ y s u c h  that Vy contains p vanish at p.
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: Lenima: If F ^a.«̂ qmpaçt subset of the underlying space X of
an infinitely differentiable manifold and if k is any positive integer, 
then there is a covariant tensor of order 2k which does not vanish at 
any point of F.

Proof : Let / Vy, b in bJ and j Wy, b in be completely admissable re­
finements of the coordinate covering | Ug, a in A^ of X such that Wy 
contains Cl(Vy), Let Uy be the functions defined in (U.lU). Let

be the gradient of taken 2k times. Let ^
finite covering of F, then T - Z  u,G.^***^ is a covariant tensor of- i«l 1 3.
order 2k.

If p is any point of F in some V̂ i, then at the point p

T((N^*^)^^)= u^^(N^' 1^^(i* )^^^^^4-(non-negative terms).

Since the first terra is one at p, then T does not vanish at p. Hence 
it follows that T does not vanish at any point of #.

q.e .d.

Since the covering fWy, b in is neighborhood finite, we can show 
that %  u>,Gt.̂ -**̂  determines a covariant tensor of order 2k which does 
vanish at any point of X.
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6% Itogs of PblyrtehsQrs

In this chapter we will construct rings from the covariant and con­
travariant tensors over an infinitely differentiable manifold and show 
that these rings under certain conditions determine the underlying space 
of the manifold.

(6.1) Definition; "The ring of contravariant poly-tensors" over an in­
finitely differentiable manifold with an underlying space X is the ring 
(C^(X); E,0) as defined in (1.20) where R is the set of all real num-oo
bars. The elements of this ring are the forms Z  Ll_ where L_ is eitherir»»o
a contravariant tensor of order m or the zero operator, a tensor of 
order 0 is an^lement of C (X), and almost all are the zero oper­
ator. The ring (G*^(X); R,k) is known as "the k-sec tion of the ring of 
contravariant poly—tensors". We observe that these rings are not com­
mutative .

A poly-tensor is said "to vanish on the subset Y of X " if
every vanishes on Y.

In this chapter a contravariant tensor L of order m will be ident­
ified with the poly-tensor for which is the zero operator for
all k?6 m and for which — L.

(6.2) Theorem: If the product of two contravariant poly-tensors in
(G^(X) ; R, 0) vanishes at a point p of X, then at least one of the
factors must vanish at the point p. If one of two poly-tensors van­
ishes at p, then their products vanish at p.

Proof: If L and L* are two contravariant tensors of order m and m*
respectively neither of which vanish at the point p, then their product 
LL* does not vanish at p. For if L and L* do not vanish at p, then
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tKèRe functions • iyf®,and f®+®' such that L ( ...,f™)
s W  (f B + l ^ ^ t )  ab not vanish at p. Hence LL* (f^,... ) does
not vanish at p and LL* does hot vanish at p. If one or both of the two
tensors is of order aero, i.e. is a function from C*^{X), then the pro­
duct still does not vanish at the point p.

If one of two tensors of any order vanishes at p, then obviously 
their product vanishes at p.

Suppose Z jç, Ljç and % ^ L*^ are poly-tenosrs neither of which van­
ishes at p. Let L_. and L*„»be the tensors of lowest order in the re spec—

Ct,e-f'€n̂ or /??
tive poly-tensors which do not vanish at p, then the nH-m* termî of the 
poly-tensor L^)(Z ̂  L*ĵ ) consists of the product Lĝ L*̂  ̂ plus pro­
ducts which vanish at p. Therefore the m+m* term of the product does 
not Vanish at p, and the product itself does not vanish at p.

If both Z  Ljç and L*^ vanish at p, then every Lĵ and L'̂  ̂van­
ishes at p and every teim of the product of the two poly-tensors van­
ishes at p. Hence the product of these two poly-tensors vanishes at 
the point p. This statement still holds if we change the order of 
multiplie ation.

q.e.d#

Since for k —0, the ring (G^(X); R,k) is a subring of (G^(X) ; R,0) 
we have:
(6.3) Corollary: The product of two contravariant poly-tensors in
(C^(X); R,k) vanishes at a point p of X if and only if at least one of 
the factors vanishes at the point p.

(6.U) Theorem: Let X be the underlying space of an infinitely diff­
erentiable manifold. If for any poly-tensor L^ in (C (X) ; R,k), 
we define Z(Z^ L )̂ as the set of all points on which the poly-tensor
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vanishes and the support S ( Z t h e  closure of the complement of 
Z(ZbjLĵ ), then the set of all poly-tensors in (C^(X); R,k) with com­
pact supports will be a subring (C (X); R,k)* of (C (X) 5 R,k) and 
will be compact associated with the space X.

Proof: We first observe that (G°^(X); R,k)^ is a subring of
00(G (X); R,k). It is easily shown that if two poly-tensors vanish at 

a point, then their difference vanishes at that point. Therefore we 
can show that the support of the difference is contained in the union 
of the supports of the two given poly-tensors, i.e. the support of the 
difference of two poly-tensors with compact supports is compact.

From (6.3) we can easily show that the support of the product of 
two poly-tensors is in the intersection of the supports of the two 
given poly-tensors. Therefore the product of two poly-tensors with 
compact supports has a compact support. Therefôre (C (X); R,k)* 
is a subring of (G^(X); R,k).

We will now show that (C (X) ; R,k)* is compact associated with X.

(2.1,1) The zero, 0, of (C®®(X); R,k)* (or of (C°®(X); R,k)) is
the poly-tensor, %  m^' all of whose terms are the zero tensor. If 

then every vanishes on all X, hence Z(0)==X. Likewise if 
Z(Y ̂ Lĝ ) - X, then every Ljg must vanish on all X and is the zero ten­
sor, i.e. Z  jgLgj- 0.

(2.1,ii) From (6.3) we have that the product of two poly-tensors 
vanishes at a point if and only if at least one of the factors vanishes 
at this point. Therefore for two poly-tensors and Zj^L*^ we have
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From we haspe ■ • f : r ~

j =  0 ' if and only if Z(Y v Z(Z^L\) = X

(2*l,lii) From (^•12) for any positive integer m and any point
p of X there is contravariant tensor of order 2m which does not vanish 
at p. If F is any closed set of X and if p is a point of X - F, then 
there is function f with a compact support which vanishes everywhere 
on F but not at p. If is a contravariant tensor of order 2k which 
does not vanish at p, then fL2k ^  (G (X); R>k)* and F is in ZCfLg^) 
but p is not.

(2*l6,iv) Let r and r* = 2  be any two poly-tensors in
(C (X); R,k)*. The ideals A(r) and A(r*) consist of all poly—tensors
with compact supports which vanish on S(r) and S(r*) respectively.
Suppose the sets S(r) and S(r*) are not disjoint. Since S(r), S(r*),
and their union are compact, there is a poly-tensor in (G^(X) ; R,k)
which does not vanish at any point of the union of S(r) and S(r').
Multiplying this poly-tensor with a function in (X) with a compact
support which does not vanish at any point of S(r) or S(r'), we obtain

oo *a poly—tensor s in (C (X); R,k) which does not vanish at any point of 
S(r) or S(r*)* Since S(r) and S(r*) intersect, there is no poly—tensor 
t such that (t-s) vanishes on S(r) and (t-0)= t vanishes on S(r').
Hence r and r* are not disjunct.

Suppose S(r) and S(r*) are disjoint. There is a function f in 
G^(X) which is one on S(r) and vanishes on S(r*). If s and a* are any 
two poly-tensors in {(f̂  (X); R,k)*, then the poly-tensor t « fs(1-f )s* 
is also in this ring. But (t-s) vanishes on S(r), i.e. (t-s) is in 
A(r), and (t-s*) vanishes on S(r*), i.e. (t-s*) is in A(r'). Therefore 
r and r* are disjunct.
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. (2^é;v,b) %  def^ltlon the support of every element of
(C (X); R,k)* is compact. If F is any compact subset of X and if p is

oo
a point in X—F, then there is a function f in C (X) with a compact
support 8(f) Such that S(f) contains F but not p. From (5.12) there

notis a contravariant tensor l2k order 2k which does^vanish at any point 
of F, i.e. F is in (̂Lgĵ ). The poly-tensor fL^^ is in (C^(X) ; R,k)^, 
and 8(fL2k) oontains F but not p.

q.e.d.

(6.5) Corollary: If the underlying space X of an infinitely differ­
entiable manifold is compact, then the ring (G^(X); R,k) is associated 
with the space for any k = 0> 1,... .

This corollary follows immediately; since if X is compact, then 
(G (X); R,k) ■= (G (X); R,k)* and compact association is association.

As an immediate consequence of (6.U), (6.5)» (2.2U), and (2.25) 
we have:

(6.6) Theorem: (a) If X and Y are the underlying spaces of two infin­
itely differentiable manifolds and if the rings (C (X); R,k)* and
oo „(G (Y); R,k) of poly-tensors with compact supports are isomorphic for 

any k= 0,1,2,... , then the spaces X and Y are homeomorphic.
(b) If X and Y are compact and if the rings (G***’(X); R,k) and
(cT̂  (Y); R,k) are isomorphic for any k —0,1,2,... , then the spaces X
and Y are homeomorphic.

It should be noted here, that if k >0, then the rings (C*^(X); R,k), 
and (G^(X); R,k)* do not contain any elements of the ring G (X).

We will now construct rings of covariant poly-tensors and show that 
for such rings that a theorem similar to (6.6) holds.
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(6.7) Definition' and Lemmas If T and T* are covariant tensors of order 
m and m*, respectively, on an infinitely differentiable manifold with 
Underlying space X, then there is exactly one covariant tensor Q of 
order m-f-m* such that

Q(LL»)=(T(L))(T*)L*))

for every contravariant tensor L of order m and L* of order m'. We 
define Q to be the "product T T* of T and T’ ".

Proof : Let b in B^and jwy, b in B j be completely admis sable re­
finements of the coordinate covering of X such that Wĵ contains Cl(V^).
Let the coordinates of T in be given by the functions f »im
the coordinates of T* be given by the functions  ̂ To
every b we assign the (mtm*)^ functions

^l***^ + m* ^l***^ ^ + m*
From (5*22) we can show that on #

From (5*23) there is a covariant tensor Q such that

on Vy for every b in B. By using (5*19) and the definition of the 
gradient tensor one can show that

Q(LL') = T(L)*T*(L*)

for every contravariant tensor L of order m and L* of order m*.

We will now show that this tensor Q is unique.
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3 u Let the contrtavariant tensors  ̂ be defined as in (5*6) •- • • • -L̂
From (5*7) and (5.10) any contravariant tensor L" of order m-vm* is 
equal to the tensor L*V= 2  L(x«^̂  ,... ) N̂ .  ̂ .
on Vy where a=i0(b). Suppose Q and Q* are covariant tensors of order 
rn-fm’ such that

Q(LL*)= Q*(LL*)

for every L of order m and L* of order m*, then it follows that 

Q* L"^

for every b, i.e. on every 7̂ , i.e. Q = Q' on all X.
q.e.d.

We observe that the product of two c ovariant tens or s is not 
always commutative.

(6.8) Definition: We define a covariant poly-tensor on an infinitely
differentiable manifold with underlying space X to be a formal sumC90
21 where T is either a covariant tensor of order m or the zero oper- m=-o—HI —m ^
ator and almost all ^  are the zero operator. By a covariant tensor of

ffoh-Id'o ooorder zero we mean any^lement of C (X). We define the sum of two co­
variant poly-tensors ^^^and^ T'iyi "to be the poly-tensor 2/,,(]̂ T*̂ ). 
The product (% mZ'm^ of these two poly-tensors is the poly-tensor

”m that:

lol'o 

r i = i o r i + i i i  ’o 

i»2=ïor2̂ iiri+Î2ï’o
ft
etc.
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%  2 A 4 I #

By the lower degree of a covariant poly-tensor Z  we mean the 
order of the non—zero of lowest order.

We denote the set of all covariant poly-tensors on X by T(X,0) 
and the set of all covariant poly-ten sors whose lower degree is not 
less than k by T(X,k).

(6^9) Theorems If X is the underlying space of an infinitely diff­
erentiable manifold, then t he sets T(X,k) for k =0,1, .. are rings. If 
k^ k*, then T(X,k*) is an ideal in T(X,k).

The proof follows directly from the definitions.

(6.10) Definition: Let X be the underlying space of an infinitely
differentiable manifold X. We say that a co variant poly-tensor (% 
"vahishes at a point p of X" if every ̂  vanishes at p. By 2(^ we
mean the set of all p at which (2 vanishes.■ * ■ IB—m

(6.11) Theorem: The product of two covariant poly-tensors 2. ̂ T„ and'' " ' ' '-k" ' ' - . . X V  m—m
2  iftîV vanishes at a point p of X if and only if at least
one of the two given poly-tensors vanishes at p. Hence

Proof: Suppose T and T* are covariant tensors of orders m and m* which
dp not vanish at p, then for some contravariant tensors L and L* the 
functions ^(L) and JC*(L*) do not vanish at p. Hence (T T*)(LL*) does 
not vanish at p and T T* does not vanish at p.

If neither of two functions vanish at p, then their product does 
not. If neither a function nor a covarianttensor vanish at p, then 
their product does not. On the other hand if a covariant tensor or a
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function vanishes at p, then it is easily shown that its product with 
a function or a covariant tensor must vanish at p.

Suppose neither of two covariant poly-tensors ̂ a n d  Zmî*m 
vanish at p. Let and be the terms of lowest order which do
not vanish at p, then the k-|-k* term of the product ( is
2k 2'k* terms which vanish at p. Hence the k-#-k' term of the pro­
duct does not vanish at p and the product of these two poly-tensors does 
not vanish at p.

On the other hand if one of the two poly-tensors vanishes at p. 
then the product will also.

q.e.d.

Since for every compact subset of the underlying space of a man­
ifold there is a covariant tensor of order 2k which does not vanish on 
this set, then using (6.11) we can show in the same manner as we did 
for contravariant poly-tensors that:

(6.12) Theorem: If X is the underlying space of an infinitely diff-
erentiable manifold, then for every k the set T(X,k) of all elements 
of T(X,k) with compact supports is a ring and is compact associated 
with X* If X is compact, then T(X,k) is associated with X.

(6.13) Theorem: If X and Y are the underlying spaces of two infinitely

differentiable manifolds and if for some k the rings T(X,k)* and 
T(Y,k)^ are isomorphic, then t he spaces X and Y are homeomorphic.

If X and Y are compact and if T(X,k) and T(Y,k) are isomorphic for 
some k, then the spaces X and Y are homeomorphic.
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Agàin we observe that if k is greater than zero, then the rings 
2(^,k) and T(X,kdo mot contain elements of C (X).

In an m-differentiable manifold a contravariant vector (or vector 
field) may be defined as a transformation such that

L(f )=-Z ( Pf/3xi)L(x^)1
in every coordinate neighborhood where Ĉ , (k< m), is the ring of 
k-fold continuously differentiable functions on the manifold. Higher 
order tensors may be defined in a similar way. One may show that every 
pair of disjoint closed sets has a characteristic function in CF. One 
may also show that for every compact set and every positive integer k 
there is a contravariant tensor of order 2k which does not vanish on this 
set.

After defining the rings of contravariant poly-tensors, then one 
can show that for any k the ring of all poly-tensors with lower degree 
not less than k and with compact supports determines the topology of 
the manifold. If the manifold is compact, then its topology is deter­
mined by the ring of all poly-tensors of lower degree not less than k 
for any k.

A similar theorem for covariant tensors on an m-differentiable 
manifold can be given.
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7. The LÈ# Rimg of Tangent Vectors and The Grassman Rings

If L and L* are tangent vectors (i.e. contravariant tensors of 
order one) on an infinitely differentiable manifold with underlying 
space X, then the transformation C^(X)”̂ C*^(X) defined by

L*L»(f)— L(L*(f))

is not a tangent vector, but the operator L*L*— which we denote 
by (L*, L) is a tangent vector. We call (L*, L) the "Lie product" of 
L and L*.

This product is not associative, but it is distributive with re­
spect to addition and satisfies the following identities:

(L,L)='0,

((L,L*),L")-H((L*,L"),L)4-((L",L),L*)=0,

and

(L,L*) =  -(L*,L).

These results are proved by Chevalley [l, pp. 83-8Ul for analytic 
manifolds. The proofs are the same for infinitely differentiable man­
ifolds .

The set of all tangent vectors with the operations of addition and 
Lie multiplication form a non-associative ring, "the Lie ring of tangent 
vectors"•

The question of whether or not this ring determines the topology 
of the underlying space is now being investigated.

Another algebraic object constructed on an infinitely differenti­
able manifold is the Grassman ring of contravariant tensors. In the
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rWainder of the éhai]éter by 1 ,̂ etc. we mean contravariant tensors
  a\rOf*-i*or order m. By P(ri) -we mean the -set of all permutations of the first n

gy w/i) w e  m r a r »  vv or*
integers. By w we mean a representative of P(n).A The function e(w)
is a function on P(n) which is 1 if w is an even permutation and —1 if 
w is an odd permutation, then e(ww*) =e(w)e(w* ). We also define the 
following operators'! ’

(7.1) Definition! The operator Aj^ is a transformation of the set of 
all contravariant tensors of order ra into itself such that if —  
V^m> then

L'Jfl, . . . . . .  ,fw(m)).

It is easily shown that is actually a contravariant tensor. The 
operator which we call the "alternator" is a transformation of the
set of all m-order contravariant tensors into itself such that

Ajn=(l/m!)Z e(w) A^.
We PCn)

The operator A is a transformation of the ring (C*^(X); R,l) of 
all poly-tensors of lower degree not less than one into itself such 
that

^ ^  m\î :m'

We observe that if m is one, then is the identity operator. 
One may also show that:

oo
(7.2) Theorem: The set J of all poly-tensors X  m^m (G (X); R,l)
such that (̂ is an ideal in (C (X); R,l).

For a proof see Chevalley [ 1, pp. iLZ-lW] * The objects which 
Chevalley discusses are not contravariant poly-tensors in our sense.
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but tbe proof is valid sioce it depends on the theory of permutation 
groups and not on the:Objects being permuted.

(7.3) Definition! The residue class ring (C (X); R,l)/J is the 
"Qrassman ring of contravariant tensors on X".

If T is a covariant tensor of order m, then t he operator 
2* defined by

is a covariant tensor of order m. In a manner similar to that used
for contravariant tensors one obtains the "Grassman ring of covariant
tensors" as the ring T(X,l)/j where J is the ideal consisting of all
2  _T such that A(Z I ) vanishes, m—m ■̂rarTn

Whether or not the Grassman rings on an infinitely differentiable 
manifold determine the underlying space has not been determined.
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Chapter 8. Construction of the Underlying Space of a Manifold from the 
Ripg of Infinitely Differentiable Functions on the Manifold

In chapter h we showed that the ring of infinitely differentiable 
functions on a manifold is associated with underlying space; consequently 
this ring determines the underlying space if it is compact. 3n this 
chapter we will show that the underlying space of a manifold can be 
constructed from the ring of infinitely differentiable functions even if 
the space is not compact.

In this chapter by X we will mean the underlying space of some in­
finitely differentiable manifold unless we specify otherwise.

(8.1) Definition: If J is any ideal in the ring C^(X), then by
J)" we mean the intersections of all sets Z(f) for which f is in J.

An ideal J is a "fixed ideal" if the set Z(J) is not empty. An ideal
which is not fixed is a "free ideal".

If the space X is compact, then all proper ideals in G^(X) are 
fixed ideals, and the ideal J is maximal if and only if the set 2(J) 
consists of a single point. If the space X is not compact, then there 
are free proper ideals. However, we will be able to determine alge­
braically the fixed ideals in (X). From these fixed ideals we will 
construct the space.

(8.2) Lemma: If p is any point of the space X, there is a function f 
in C^^(X) which vanishes at p and only at p.

Proof: In (U*13) we showed that if I is a bounded interval in Euclidean
space and if I’ is an interval whose closure is contained in I, then
there is an infinitely differentiable function F with continuous deriv­
atives of all orders which is one on I' but vanishes on the complement
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of. X, Thë function which was constructed is also less than one on I—I* • 
The construction of this function is still valid if the interval I* is 
replaced by a single point p in I, then the function F is 1 at p, less 
than 1 at any other point, and vanishes on the complement of I.

With this function F, given any point p in X, we can construct a 
function g in G^(X) which is 1 at p but is less that 1 at all other 
points.

The function f = (1-g) is the desired function.
q. e .d *

(8.3) Lemma : If a function f in C^(X) does not vanish at any point
of a closed set F, then there is a function g in G^(X) such that f»g is 
equal to 1 on F.

Proof : Since the space X is normal (U-lS), the disjoint sets F and
2(f) have disjoint neighborhoods U(F) and U(Z(f)) with disjoint clo­
sures. By (I4.I8), there is a function h which is 1 on Gl(U(F)) and van­
ishes on Gl(U(Z(f))). Define a function g on X by:

on X-Z(f) 

on Cl(U(Z(f))).

It is easily shown that g is in C^(X), and f-g is one on F.
q.e.d.

(8.U) Lemma: If f and g are functions in C^(X), then f does not van­
ish at any point of S(g), i.e. Z(f) and S(g) are disjoint, if and only if 
the residue class f-A(g) has an inverse in the residue class ring 
C (X)-A(g) where A(g) is the annihilator of g.

(l/f)h
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Proof i ideal A(g) consists of all functions which vanish on
X*̂ Z(g) hence on S{g)* If f does not vanish at any point of S(g), then 
there is a function h in G^^(X) such that f-h is 1 on S(g), i.e.
(I*h-1) is in A(g). Therefore f-A(g) has an inverse in C^(X)-A(g).

Conversely, if f-A(g) has an inverse in G^(X)-A(g), then there is 
a function h In G^(X) such that (f*h-l) is in A(g), i.e. f*h-l vanishes 
at every point of S(g). Therefore f does not vanish at any point of S(g).

q.e.d.

(8-5) Definition; If f is in c'^(X), then by H(f) we mean the set of 
all functions g in C*®(X) such üiat f-A(g) has an inverse in the ring 
C (X)-A(g). We order the funetionsof G^(X) as follows:

f^h if and only if H(f)"2 H(h).

We say then that "f precedes h".

This ordering is reflexive but is not proper as we will see later.

If an element of (f°(X) has an inverse, then in any residue class
ring its residue class has an inverse. Hence:

(8.6) Lemmas If f is a unit (i.e. has an inverse) in C^(X), then 
H(f)” C (X) and f precedes every g in C^(X). Since C^(X) has more
than one unit, the ordering,, is not a proper ordering.

(8.7) Definition: An ideal J in G (X) is said to be "bounded” if
there is a function f in C^(X) without an inverse in G*^(X) such that
f precedes every element h of J. By K(X) we mean the set of all bounded 
ideals in C°°(X). An ideal is a "bounded maximal ideal" if it is in 
K(X) and is not properly contained by another ideal in K(X).
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By X*'^e jâ aaa the space (which might be empty) whose points are 
the bounded ©aximal ideals of K(X). A set F* in X' is closed if there 
is an ideal J in K(X) such that every ideal in F* contains J, but no 
bounded maximal ideal hot in F' contains J,

The space X* which we defined above is determined solely by the 
algebraic structure of C^(X), hence:

(8.8) Lemma: If X and Y are the underlying spaces of two infinitely
differentiable manifolds and if the rings G^(X) and C^(Y) are iso­
morphic, then the spaces X' and Y* are homeomorphic.

We will now show that the spaces X and X* are homeomorphic,

(8.9) Lemma; If f and g are two functions in C^(X), then 

Z(f)Ê 2(g) if and only if f< g.

Proof : From lemma (8.U) and definition (8.5) we see that H(f) is the
set of all functions h in G^(X) such that 2(f) and S(h) are disjoint.

If Z(f)SZ(g), then H(f)2H(g) and f<g.

Suppose there is a point p in Z(f) but not in Z(g), then there is 
a function h in G°̂  ( X) which is one at p but which vanishes on a neigh­
borhood of 2(g). For this function h, 2(f) meets S(h) but Z(g) does 
not; hence h is in H(g) but not in H(f) and f does not precede g.
Therefore if f precedes g, then Z(g) contains 2(f).

q.e.d.

A function f in G*^(X) has no inverse in G* (̂X) if and only if 
2(f) is not empty. Hence as a consequence of (8.9) we have:

(8.10) Lemma: The fixed ideals of the ring CP^(X) are the bounded
ideals. Since there are functions in G^(X) which vanish only at a
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given point, a bounded maximal ideal is the set of all functions which 
vanish at a point.

(8.11) Theorem; If X is the underlying space of an infinitely diff­
erentiable manifold, then the space X and the space X' as defined in
(8.7) are homeomorphic •

P̂ ĝof: The transformation T;X-^X* which assigns to each point p of
X the ideal consisting of all functions which vanish at p is one to one 
and onto. If F is a closed set of X and if I is the ideal consisting 
of all functions which vanish on F, then 2(1)=F and T(F) is the set of 
all bounded maximal ideals which contain I. Hence T(F) is closed and 
the transformation T is closed.

Suppose F* is a closed set in X*. The set F' consists of all 
bounded maximal ideals which contain a bounded ideal I, then 
2(1)— T"^(F*) which is closed. Therefore T“̂  is a closed transformation

q.e,d.

As a consequence of (8.8) and (8*11),

(8.12) Theorem : If X and Y are the underlying spaces of two infinitely
differentiable manifolds such that (X) and G^(Y) are isomorphic, 
then X and Y are homeomorphic.

Suppose X is the underlying space of an m—differentiable manifold 
and C®(X) is the set of all continuous functions on X which have all 
derivatives with respect to the admis sable coordinates of X up to and 
including the m—th order and such that all of these derivatives are 
continuous. By methods essentially the same as we used for infinitely 
differentiable functions one can show that:
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(i) Every pair of disjoint closed sets in X has a characteristic 
function in C®(X).

(ii) The ring C™(X} is associated with the space X,
(iii) Given any point p of X, there is a function in G^(X) 

which vanishes at p and only at p.

With these properties we can, as we did above for infinitely diff­
erentiable manifolds, show thati

(8.13) Theorem; If X is the underlying space of an m-differentiable 
manifold, then the ring G (̂X) determines the space X.

We have observed that if X is a normal T  ̂space, then the ring 
R(X) of all continuous functions on X is associated with X* The first 
countable spaces are the normal T^ spaces which have the property that 
given any point p of X there is a continuous function on X which vanishes 
at p and only at p. By the same method of proof as we used for infin­
itely differentiable manifolds one can show:

(8,111) Theorem; If X is a first countable normal T]_ (hence Hausdorf) 
space, then the ring R(X) of continuous real functions on X determines 
the space.

Hewitt r 3 ] has defined a hyper-real ideal as a maximal ideal I in 
R(X) such that the residue class ring R(X)-I is not isomorphic to the 
real numbers R but contains R as a proper subring. He defines a Q 
space as completely regular space X such that every maximal free ideal 
is hyper—real. He then shows that the ring R(X) determines the com­
pletely regular space X if and only if X is a Q space. He also shows 
that any second countable completely regular space is a Q space. From 
(8.1#) we obtain:

(8.15) Theorem: Any first countable normal T^ space is a Q space in
the sense of Hewitt,
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