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ABSTRACT

.The notions of abstract multi-derivatives, annihilators and imi-

tators in rings are introduced.

Rings weakly associated, associated, or compact associated with
Tl spaces are defined. It is shown that a ring which is compact asso-
ciated with a regular, locally compact T, space determines the space
and that a ring which is associated with a regular compact T space de-

termines the space;

The ring of infinitely differentiable functions on a smooth or
infinitely differentiable manifold is defined. This ring of functions
is associated with the space of the manifold while the subring of in-
finitely differentiable functions with compact supports is compact as-
sociated with the space. In the last chapter the space of the manifold
is constructed froﬁ the ring of all infinitely differentiable functions

without requiring compactness.

Covariant and contravariant tensor fields on the manifold are de-
fined in a purely algebraic way by using the ring of infinitely differ-
entiable functions. Rings of covariant poly-tensors and contravariant
poly-tensors are constructed by using the conventional notions of sum
and outer product of tensors. If the manifold is compact, it is shown
that these rings are associated with the space of the manifold and hence
determine it. The rings of poly-tensors with compact supports alse de-

termine the space of the manifold even if it is not compact.

The Lie Ring of tangent vectors on an infinitely differentiable

manifold and the Grassman rings are defined.

iii



. ALGEBRAIC STRUGTURES ASSOCTATED WITH SMOOTH MANIFOLDS

INTRODUGCTION

In”ciaséical Riemannian geometry one generally studies the local
properties.or differential invariants of a differentiable manifold.
Much of modern differential geometry, however, is concerned with re-
lations between classical differential invariants and global proper-

ties of a2 manifold.

This thesis is an initial step in the study of those global
properties of differentiable manifolds which may be obtained from the
algebraic structure of the ring of differentiable functions on the
manifold. Most of this work is concerned with infinitely differenti-
able manifoldsj since, as is shown, operators can be defined on the
ring of infinitely differentiable functions on these manifolds in a
purely algebraic manner which determine contravariant and covariant

tensor fields.

Rings are constructed from these operators, and it is shown that
their algebraic structure aetermines the topology of the manifold. In
showing that these rings of tensors determine the space, use is made of
only a limited number of the relationships which exist between the ring
and the space. In one case if these relationships exist between a ring
and a topological space, then the ring is "“associated" with the space.
In another case the ring is "compact associated" with the space. If a
ring is associated (compact associated) with a regular compact (locally
compact)Hausdorf space, then its algebraic structure determines the

topology of the space.

There are other cases of the existence of these relationships be-

tween rings and spaces. For example, the ring of all continuous



functions on a normal Hausdorf space is associated with this same space;
the ring of all infinitely differentiable functions on an infinitely
differentiable manifold is associated with the space of the manifold
and, hence, determines its topology if it is compact (as is known);

the ring of all infinitely differentiable functions with compact sup-
ports én an infinifely differentiable manifold is compact associated

with the manifold and determinesits topology ( as is also known).

By making use of some of the properties of associated rings the
space of an infinitely differentiable manifold is constructed from the
fing of all infinitely differentiable functions without requiring

compactness.

This thesis is only the beginning of a possible study of differ-
ential geometry in the large. It is shown that certain rings con-
structed on a manifold determine its topology, but no results are ob-
tained which relate partiéﬁlar algebraic invariants of these rings
with corresponding spaces. The problem of'constructing particular
topological invariants, such as the homology groups, from the ring of
infinitely differentiable functions or other rings associated or com-
pact associated with an infinitely differentiable manifold will be the

subject of later investigations.



PART I

RINGS, DERIVATIVES, AND ASSOCTATED SPACES

Chapter 1. Zero Commutative Rings and Abstract Multi-Derivatives

In this chapter we will discuss certain properties of rings and
some of their operators which we will find useful in later chapters.
In this paper a ring is assumed associative unless it is stated

otherwise.

(1.1) Definition: An “abstract derivative" d on a ring R is an oper-
tor d:R~~R such that:

(1) d(r+s)=d(r)+d(s)

(ii) d(rs)=rd(s)+d(r)s

for all r, s in R. An "abstract multi-derivative of degree n on R%,
lé n, is an operator d:RB—»R such that for any i=1l,..., n and for any
given subcollection rl,...,'gig..., r, (i.e. not including ri) the op-

Hereafter in this chapter we will write d(ryseecesTj 3stsTi4754005Tn)s
where t is an element or a subset of Ry as d(.cestyes.) Wwhen we are

discussing properties of d relating to an arbitrary fixed i.

(1.2) Lemma: If d is an abstract multi-derivative of degree n on a
ring R, then for all i and all rl,.;.,gg,...,rnz

(1) d(...50,...)=0.

(ii) d(eees=Tyeee)==A(eeey Trees)e

(iii) If R has an identity e and if m is any integer, then

d(...,me,...)=0.



The proofs follow directly from the definitions.

Since for every n, the zero operator 0:R?+0, O in R, is an abstract

multi-derivative of degree n we define:

(1.3) The zero operator is an "abstract multi-derivative of degree

infinitz“ .

(1.4) Theorem: If r is an element of the center of a ring Ry i.e. r
commutes with every element of R, and if 4 is an abstract multi-deriv-
ative of degree n on R, then for any i d(e..sTy...) is in the center
of R for every rl,...,{';,...,rn.

A -
Proof: Since the terms TyseeesT seee T, SeErve only as parameters, it

is sufficient to give the proof for n=1,
Let s be any element of R, then

d(rs)=rd(s)+d(r)s=d{(s)r+d(r)s

=d(sr) =d(s)r+sd(r).
Hence
d(r)s=sd(r)

for any s in R.

q.e.d.

(1.5) Definition: A ring R is "differentiable" if there is an abstract

derivative on R which is not the zero operator.

If R has a multi-derivative d of degree n which is not the zero

operator, then by keeping n-1 of the arguments fixed d determines a non-~

gero abstract derivative.



There are rings which are not differentiable. It is easily shown
that the ring of integers and the ring of rational numbers are not

differentiable.
We can represent any continuous real valued function f as
=n 2_ o 2
f=h, %~ g,"+a

where a is any constant in the domain of f and h, and g, are real
valued continuous functions which vanish at all points p such that
f(p)=a. Using this representation one can show that the ring of all
real valued continuous functions on a Buclidean space is not a differ-

entiable ring.

The set of all continuous functions on the real line with contine
uous derivatives of all orders is an example of a differentiable ring,
since the ordinary derivative in this case is also an abstract deriva-

tive.

Whethe or not the set of all real numbers is differentiable or not

is an open question.

(L.6) Definition: A ring R is "a zero commutative ring" if for any
r and s in Ry, rs=0 if and only if sr=0. A ring R is said to "have
no square roots of zero" if for r in Ry, rr=0 if and only if r=0.

L]

If R is a zero commutative ring and if r is an element of R, then
by the "annihilator of r", written A(r), we mean the set of all s in R
such that rs=0, i.e. sr=0., If S is a subset of R, we define

A(S)=" A(s).

seS

(1L.7) Theorem: If r is an element of a zero commutative ring R, then

A(r) is an ideal in R. If 8 is a subset of R, A(S) is an ideal in R.



Proof: Let s be any element of A(r) and t any element of R, then
r(st)={(rs)t=0

and
O=t(sr)={ts)r=r(ts).

Hence (st) and (ts) are in A(r). If t and s are in A(r), then

r{t - s)=0and t - s is in A(r). Hence A(r) is an ideal.
Since A(S) is an intersection of ideals, it is an ideal.
q.e.d.

_(1.8) Theorem: If r is an element of a zero commutative ring R with-

out square roots of zero, then A(r)=R if and only if r=0.

Proof: If r=0, then obviously A{r)=R. If A(r)=R, thenr is in

A(r) and rr=0. Since R has no square roots of zero, then r is zero.
qne.do

(1.9) Theorem: Let d be a multi-derivative of degree n on a zero
commutative ring. If s is in A(ri) for any r;, then ss is in

A
A(d(rl,...,rn)) for any ryseees Tyseees Tpe
Proof: If s is in A(rj), then

d(...,I‘iS,...)—‘:d(...,0,...)‘-':0=I‘i d(o-o’S,ooo)“'d(rl,.c-,rn)s-

Since sr;=0, then after substituting in the above equation for zero we

have:

0=s-0=(s)(d(r1,.. .,rn)s) =(d(rl, ...,rn)s)(s) =d(rl,...,rn)(ss),



q.e.d.

(1L.10) Theorem: Let d be a multi-derivative of degree n on a zero
commutative ring R without square roots of zero, then:
£i) For any r and s in R, ssr=0 only if sr=0 and rss=0 only
if I'S-":O.
(1i) If s is in A(ri), then s is in A(d(rl,...,rn)) for any
\
rl’q.q’ri’ooo’rno“

(i3i) If S is a subset of R, then A(S) is contained in
A(A(e..s8500s)).

Proof: (i) If ssr=0, then
O=s(.sr)=(sr‘)‘s |

and
0=0.r =(sr)(sr).

Since R has no square roots of zero, then sr=0. In the same way
rss=0 implies rs=0.

(ii) If s is in A(r;), then by (1.9),
d(rl,...,rn)‘SS':O.

By (i) above d(rl,...,r )s=0 and s is in A(A(r_,...,r )).
n 1 n
(iii) Proposition (iii) is a direct consequence of (ii).

q.e.d.

(1.11) Definition: If r is any element of a zero commutative ring R,

then by I(r), “the imitator of r", we mean the set of all s in R whose

annihil,ators contain the annihilator of r.



{(1.12) Theorem: If > is any element of a zero commutative ring R,
then I(r) is an ideal in R. If R has no square roots of zero, then

I(r) is the zero ideal, (0), if and only if r=0.

Proof: (a) If t is in R and s is in I(r), then A(s) contains A(r)

and ws=gw=0 for all w in A(r). Hence
0= (ws)t=w(st) =t(ws)=t(sw) = (ts)w=w(ts)

for all w in A(r). Therefore A(ts) and A(st) contain A(r), i.e. ts
and st are in I(r).

If ¢t and 8 are in I(r), then wt=tw=0 and sw=ws=0 for all w in
A(r). Hence w(t-s)=(t-s)w=0 for all w in A(r). Therefore A(t-s)

contains A(r) or (t-s) is in I(r). Therefore I{(r) is an ideal.

(b) Let R be without square roots of zero. If r=0, then by
(1.8) A(r)=R, but there is no non-zero s such that A(s)=R, hence
I{r)=(0). If r#0, then A(r)=2A(r). Therefore r is in I{(r) and
I{r) is not a zero ideal.

qe.e.d.

(1.13) Theorem: If d is a multi-derivative of degree n on a zero com-

mutative ring R without square roots of zero and if r; is an element of

> - A
I(s), then d(rl,...,rn) is in I(s) for every TyseeesTisenesT o

Proof: If r; is in I(s), then A(ri) contains A(s) and by (1.10, ii),

A(d(rl,...,rn)) contains A(s). Hence d(rl,...,rn) is in I(s).
g.e.d.

(1.1h) Definition: If d is a multi-derivative of degree: n and 4!

is a multi-derivative of degree n', we define the "product", dd!', as -



an operator d* en R'*®' suech that

)

)= d(rl’ see ’rn).d’(rn‘tl’ eo eyl

d"(rl,..., n+nt

T an?
nen

fOI‘ all I‘l,..., in R.

rn+n '

If n=n', we define the "sum", d+d', as an operator d" on R'= ro!

and the "difference®, d - d'=d¥* as an operator on RP such that
d"(rl,...,rn)zd(rl,...,rn) +d'(rl,...,rn)
d*(rl,’...,rn)=d(r1,...,rn) -d‘(rl,...,rn)

for all rys...,r, in R.

We define the "product®, rd, for r in R as an operator d" on RP

such that
d“(rl, .e .,rn) =rd(rl, o .,rn)

for all Tyss+-sT, in R. We define dr=rd (not to be confused with

a(r)).
If d is a multi-derivative and O is the zZero operator, we define:
d * 0=0-d=0,
d+0=0+d=4d,
and for any r in R
re+«0=0-+r=0.:

(1.15) Theorem: Let d be a multi-derivative of degree n on a ring R,
let 4' be a multi-derivative of degree n' on R, and let r be an element

of R.



. (1) - If m=n'; then d+d' and d - d' are multi-derivatives of degree
a=n' on R..
(ii) If R is commutative, then dd' (or d'd) is a multi-derivative
of degree n+n' on R.
(iii) If r is in the center of R (or if R is commutative), then

rd=dr is a malti-derivative 6f degree n on R.

The proofs follow immediately from the definition of multi-

derivabives.

(1.16) Definition: Let R be a commutative differentiable ring. We
define any non-zero element r of R as a "multi-derivative of degree
zZero®, The zero element which we identify with the zero operator is a

*multi-derivative of degree infinity".

L
t o - 3 4 3. F 1
A "poly-derivative" on R is a formal sum “éodn where d, is either
a multi-derivative of degree n or the zero operator and almost all of

the d,'s are zero operators.

If %: d, and %d'n are two poly-derivatives on R, we define the

Bsum
(Z dp)+ (2 a0 )= Z(a +dry)
where d,+d', is defined as in (1.1L) and the "product"
(3 an)(Z a'p) =(dgd'o) + (dgd 'y + dyd'o) +(dod! p+dpd’ g+ dpdty)

+ ' ' +
(dod g dgdl Fadrtta

3 0 )4"00.,

1
24"y
where the expressions in the parenthesis are given by (1.1L).

(1.17) Theorem: If R is a commutative differentiable ring, then the

sum or product of two poly-derivatives is a poly-derivative . The set

10



of all poly-derivatives en R with the operationssum and product defined
in (1.16) form a ring, the ring of poly-derivatives on R, which we de-

note by (R). The proof follows directly from the definitions.

(1.18) Definition: The "lower degree of a poly-derivative" % d, is
the degree of the d, having the lowest degree. The "upper degree" is
the degree of the non-sero term having the highest degree. By (R, n)
we mean the set of all poly-derivatives in R with lower degree greater

than or equal to n. Under this definition (R)=(R,0).

(1.19) Theorem: If R is a commutative differentiable ring, then
(R, n) is an ideal in(R)Jand is therefore a subring of(R)for any

n=0, ly¢ee « Also (Ry n) is an ideal in (R, m), if m<n.

(1.20) Definition: If B is any subset of a commutative differentiable
ring R, then a multi-derivative d of degree n is said to "vanish on B"

A\

if for every i=1,..., n and for every subcollection TyseeesTyseeesly

the operator Q(e..sr'y...):R-+R sends B into the zero of R.

We define (R; B, m) as all poly-derivatives 3 d, from (R, m) such

that dn'va.nishes on B for n>0.

(L.21) Theorem: If R is a commutative differentiable ring, then

(R; B, m) is a subring in (R; k) if 04k <m.

11
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Chapter 2. Rings Associated with Topological Spaces

(2.1) Definition: A ring R is said to be "weakly associated with a
21 ‘topological space X" if for every r in R, there is a closed set
&(r) in X such that:

(1) r=0  if and only if Z(r)=X

(ii) rs=0 if and only if Z(r)uv 2(s)=X.

(iii) If the point x is not in a closed set F, then there is an

r in R such that F is contained in Z(r) but x is not in Z(r).

In the above definition, if we assume the ring R has no square roots
of zero, then axiom (ii) implies axiom (i). Also, the space X is reg-
ular (i.e. a closed set F and a point x not in F have disjoint neigh-
borhoads) if and only if there is an r in R such that F is contained
in Int Z(r) but x is not in Z(r).

We will later add other axioms. In the following discussion we
will study the relationship between annihilators of elements of R and

the sets Int Z(r) and C1L Int Z(r).

(2.2) Theorem: 1If a ring R is weakly associated with a Ty space X,

then R is a zero commutative ring without square roots of zero.

Proof: PFrom (2.1,ii), if rs=0, then Z(r)uZ(s)=X. Hence
Z(s)u 2(r)=X, and sr=0. Likewise if sr=0, then rs=0, hence R is

zero commutative.,

If rr= 0, then X=2(r)v Z(r)=2(r) and r=0. Hence R has no
square roots of zero.

q.e.d.

(2.3) Theorem: (i) If a ring R is weakly associated with a space con-

sisting of one point, then the ring R has no divisors of zero.



(ii) Any rinmg without divisors of zero may be weakly associated with

a space consisting of only one point.

Proof: (i) If r and s are both different from zero, then both Z(r)
and Z(s) are empty. Hence Z(r)u Z(s) is empty and rs is not zero.
(ii) If a ring R is without divisors of zero, we let Z(0)=p and let
2(r) be the empty set if r is not zero. It is easily shown that R is
weakly associated with the space of the point p.

qe.e.d.

Since a ring R, weakly associated with a space X, is zero commuta-
tive without square roots of zero, we can make use of the annihilator
and the imitator in studying these rings and their weakly associated

Spaces.

(2.4) Theorem: If r and s are any two elements in a ring R which is

weakly associated with a Tl space X, then:

(i) Int Z(r)& Int Z(s) if and only if A(r)=A(s)
(ii) Int Z(r)=1Int Z(s) if and only if A(r)=A(s)
(iii) Int 2(r) =/\. if and only if  A(r)=1(0)

where /\ is the empty set and (0) is the Zero ideal.

Proof: (i) Assume Int Z(s) does not contain Int Z(r), then a(s)

does not contain Int Z(r) and there is a point x' in Int Z(r) which is
not in (X-Int Z(r))v 2(s). By axiom (iii), there is an element t in
R such that Z(t) contains (X-Int 2Z(r))u Z(s), but x' is not in Z(t).
Since

Z(L)v zZ(r)= X%,
then tr=rt=0 and t is in A(r).

Since x' is not in Z(t) or in Z(s), then

13



- 2(L)uE(s)A X

and ts# 0 and st#0, i.e. t is not in A(s). Therefore A(s) does not

contain A(r).

Assume A(s) does not contain A(r), then there is an element t in

R such that rt=tr=0 but st#0 and ts# 0. Therefore
Z(t)u 2{(r)=X,

but
Z(t) v 2(s)#X.

The non-empty open set X-(Z(t)u Z(s)) is in Int Z(r), but does not

intersect Int Z(s). Hence Int Z(s) does not contain Int Z(r).
Therefore
Int Z{(r)= Int 2(s) if and only if A(r)e A(s).

(ii) Proposition (ii) is a direct consequence of (i).

(iii) 1If Int Z(r) contains a point x', then there is an element t in
R such that x' is not in Z(t), but Z(t) contains (X-Int Z(r)). There-
fore t is not zero, but Z(r)uz(t)=X, i.e. rt=tr=0. Hence t is in

A(r), and A(r) is not the zero ideal.

If A(r) is not the zero ideal, there is a non-zero s in R such
that rs=sr=0, i.e. 2(s)uv Z(r)=X. The open set X~Z(s) is non-empty
and is contained in Int Z(r). Therefore Int Z(r) is not empty.

q.e.d.

We observe that in the results of (2.L4), the words Int may be re-

placed by C1l Int.

14
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(2.5) Theorem: If TyseeesTy is any finite collection of elements

from a ring R which is weakly associated with a T, space X, then
n - n
i(} Int Z(ri)=A. if and only if .nIA(ri)= (o).
= . ) 1‘
n

Proof:s If q Int Z(ri) is not empty, there is a point x' which is in
1= ‘

every Int Z(ri). ‘There is an s in R such that x' is not in Z(s), but

n
Z(s)2X - nllnt 2%(ry).
1=

Then s is not zero, but Z(s)u Z(ry) =X, i.e. sry=rys=0 for all i.
n

Hence s is in A(ri) for all i and .ﬂ A(ri) is not the zero ideal.
1=
n

If q A(ri) is not the zZero ideal, then there is a non-gero ele-
1=
ment s in R such that sry=r;s=0 for all i. Then Z(s)uZ(ri)=X
for all i, but Z(s) is not X. The open set X~Z(s) is not empty and is

contained in every Int Z(r;). Hence / \1 Int 2(r;) is not empty.
_ i=
q."e.d.

(2.6) Definition: If r is an element of a ring R which is weakly

assoclated with a Ty space X, then we define the closed set
S(r)=01(X-2Z(r))

as the "support" or "closed support of r". The set Int S(r) is the "open

support of rv,

(2.7) Lemma: If r is any element of é ring R which is weakly associated
with a space X, then:

(i) s(r)=X-Int Z(r)

(ii) Int S(r)=X-Cl Int 2(r)

(i4i) S(r)=Cl Int s(r).

The proof readily follows from the fact that for any subset Y of



a space X,
X-CL(Y) = Int(X-Y).

(2.8) Lemma: If r and s are any two elements of a ring R weakly
a.ssociated with a Tl space X, then
(1) Int s(r)< Int S(s) if and only if Int Z(r)2Int 2(s)
(ii) (r)e I(s) if and only if A(r)2A(s).

The proof of this lemma is by a direct application of the def-

initions of the sets involved. As a direct consequence we have:

(2.9) Theorem: Under the hypothesis of (2.8)
(i) Int S(r)& Int S(s) if and only if I(r)e I(s)
(ii) Int s(r)=Int S(s) if and only if I(r)=1I(s).

(2.10) Theorem: If r is any element of a ring R weakly associated

with a Ty space X, then
Int S(r) =4\ if and only if  r=O0.

Proof: If Int S(r)=Cl(X~Z(r)) is empty, then Z(r)=X and r=0.
If r=0, then 2{(r)=X=Cl Int 2(r) and Int S(r)=/\.

q.e.d.
By theorem (1.12) r=0 if and only if I(r)=(0). Hence:
(2.11) Corollary: Under the hypothesis of (2.10)
Tt S(r)=/\  if and onmly if  I(r)=(0).

(2.12) Theorem: If Tysesesr, is any finite subset of a ring R, weakly

associated with a Ty space X, then

TN n
iQInt S(ri)=A if and only if ﬂix(ri) =(0).
= 1=
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Proof: If (\1 I(ri) is not the zero ideal, then there is a non-zero S

in R such that A(s) comtains all A(r;). Hence Cl1 Int Z(s) contains
all C1 Int Z{r.); but 2Z(s) is not X. Therefore

n n
'ﬂint s(r;)= ﬂ(x-a Int Z(r,))2X-C1 Int Z(s) #/\
i=1 i j=1

e
and _nilnt S(r) is not empty.
1‘_’

n
n  If the open set f\ Int S(ry) is not empty, then the set

U101 Int Z(ri)# X. Let X' be in .nilnt S(r ), then there is a non-
31
Zero s in R such that Z(s) contains Cl Int Z(r ) for ewery i but not

x'. Hence Int Z(s) contains Int Z(r;) for every i, and A(s) contains

every A(r; ), i.e. 8°is a non-zero element of ,('\ I(r;) and ﬂ I(r Y#£(0).

q.e.d.

(2.13) Definition: Let R be a zero commutative ring without square
roots of gzero. We say two elements r and r' in R are "disjunct® if for
every pair of elements s and s' in R, there is an element ¢ in R such

that (t-s) is in A(r) and (t-s') is in A(r').

(2.114) Theorem: Let R be a zero commutative ring without square roots

of zero. If two elements r and r' in R are disjunct, then
Wr)N1i(rt)=(0).

Proof: Let s be any element in I(r)N I(r'), then A(s) contains A(r)
and A(r'). There is an element t in R such that (t-s) is in A(r) and

(t-0)=1% is in A(r?').
Since t is in A(r') and hence in A(s), then

st=ts=0.

17
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Since (t-s) is in A{r) and hence in A(s), then

0 =(M}$.st ;sssa.—ass.

Since R has no square roots of zero, then s=0 and the intersection of

I{r) and I(r') is the zero ideal.

g.e.d.

(2.15) GCorollary: If r and r!' are two disjunct elements of a ring R
weakly associated with a T, space X, then Int S(r) and IntsS(r') are

disjoint.

(2.16) Definition: Let R be a ring which is weakly associated with a
Tl space S. Consider the following axioms:

(iv) Two elements r and r!' in R are disjunct if and only if the
closed sets S(r) and S(r') are disjoint.

(vya) If a point x of X is not in a closed set F of X, then there
is an element r in R such that F is contained in S(r) but
X is not.

(v5b) The closed set S(r) is compact for every r in R; and if x
in X is not in a closed compact set F, then there is an ele-

ment s in R such that F is contained in S(s) but x is not.

If axioms (iv) and (v,a) are satisfied, then the ring R is said to
be "associated with the space X". If axioms (iv) and (v,b) are satis-

fied, the ring R is said to be "compact associated with the space X".

We observed in (2.3) that any ring without divisors of zero may
be weakly associated with a space consisting of only one point. Since
the amnihilator of any non-zero element of a ring without divisors of
gero is the zero ideal, no two non-zero elements of such a ring are dis-

junct. Since A(O)=R, the zero and any non-zero element are disjunct.



Consequently we have: '

(2.17) Theorem: (i) If a ring R is associated or compact associated
with a space of oné point, then the ring has no divisors of zero.

(ii) Any ring without divisors of zero may be associated or compact
associated with a space consisting of one point. (iii) No ring with-
out divisors of zero can be weakly associated, compact associated, or

associated with a Hausdorf space consisting of more than one point.

(2.18) Theorem: If a ring R is associated with a space X, then every
closed set in X can be formed by the intersection of sets of the form
S(r). If R is compact. associated with X, then every compact closed

set can be formed by the intersection of sets of the form S(r).
The proof follows directly from axiom (v,a) and (v, b).

We will now show that if the ring R is associated or compact
associated with a space X, then under certain conditions the algebraic

structure of R determines the topological structure of X.

(2.19) Definition: If R is a zero commutative ring without square

roots of zero, then a subset B of R is said to have the "finite inter-
section property" if for every finite subcollection ry,...,r, of B,

the intersection of the ideals I(ri) is not the zero ideal.

(2.20) lgggggz If a ring R is associated with a regular Ty space or is
compact associated with a locally compact, regular Ty space, then:
(i) 1If the point x is not in the closed set F, then there is an
r in R such that Int Z(r) contains F but x is not in Z(r).
(ii) If x and x' are distinet points of X, then there is an r' in

R such that x' is in Int S(r'), but x is not in S(r').
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(ii1) - If x and x' are distinet points of X, then there are ele-
. ﬁan£s~r and r! of R such that x is in Int S(r), x' is in
Int.S(r'), but S(r) and S(r') do not meet, i.e. r and r!
are disjunct.
(iv) Let R(x) be all elements r of R such that the point x of X
is in Int S(r). If S(r') intersects S(r) for every r in
R(x), then x is in S(r?').

Proef: (i) If x is not in F and if X is regular, then there is an open

set U(x) containing x, such that Cl(U(x)) does not intersect F. There
is an element r in R such that 4(r) contains (X-U(x)) but not x.

Since F is contained in Int(X-U(x)), then r is the desired element of R.
(ii) The point x is a closed set. The point X' has a neighborhood U
wﬁdsé closure does not contain x. If X is locally compact, U may be
selected so that Cl(U) is compact. There is an x!' in R such that S(r?')
contains C1(U) but not x. Hence x' is in Int S(r'), and r' is the de-
sired element.

(1ii) We select r! as in (ii), then x' is in Int S(r!'), but x is not
in 8(r'). By (i) there is an r in R such that x is not in Z(r) but

Int Z(r) contains S(r'). Since S(r)=(X-Int Z(r)) and Int S(r)=

X-Cl Int Z(r), then x is in Imt S{r), but S(r?!) and S(r) do not in-
tersect.

(iv) Suppose the point x of X is not in S(r'), then by (i) there is an
element r in R such that Int Z(r) contains S(r'), but x is not in Z(r).
Then S(r)=(X-Int Z(r) does not meet S{r'), but x is in Int S(r)=
(X-Cl Int Z(r)) and r is in R(x). Hence S(r') does not meet S(r) for
every r in R(x).

g.e.d.
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(2.21) Definitions If R and R' are isomorphic zero commutative rings
withoutfsquare’rooﬁsfof zero, we will denote the elements of R by
rsSs;... and their isomorphic images by r', s',... . We will denote the
amnihilators in R' by A'(r') and the imitators by I'(r').

(2.22) EEEE%‘ If R and R! are isomorphic zero commutative rings with-
out square roots of zero, then the isomorphic image of I(r) is I'(r!)
(and conversely), and the isomorphic image of A(r) is A'(r') ( and con-
versely). Also all set-theoretic relationships between these ideals
are preserved by the isomorphism. If r and s are disjunct elements of

R, then r!' and s' are disjunct elements of R'.

(2.23) Lemma: A subset F of a locally compact Hausdorf space X is
closed if and only if P intersects every compact subset of X in a com-

pact subset.
The proof has been given by David Galel[2]},

(2.24) Theorem: If the rings R and R' are compact associated with the
regular, locally compact Ty (hence Hausdorf) spaces X and X', respec-
tively, and if R and R' are isomorphic under an isomorphism f:R-R?',

then the spaces X and X' are homeomorphic.

Proof: As indicated in definition (2.21) we will write r'= f(r),

At(rt)=£(A(r)), etc.

From (2.22) we observe that for any pair of elements r and s in R,

that S(r) meets S(s) in X if and only if S'(r') meets S'(s') in X',

For any point x in X, let R(x) be the set of all elements r of R

1f Numbers in brackets refer to the bibliography.
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such that x is in Int S(r). The collection of open sets

{Int S(r), r in R(x)} has the finite intersection property, hence the
subset R(x) 6f R has the finite intersection property. From lemma
(2.22) the subset f(R(x)) of R' has the finite intersection property,
and {Int St(rt), r' in f(R(x))} has the finite intersection property,

Since every S'(r') is compact, then the set,

Fx)=[ Vst (r'),
ref(Rx)

is not empiy.

This set F(x) contains exactly one point. If F(x) contained at
least two points x' and y', then there would be two elements r! and s!
in R' such that Int S'(r') and Int S'(s') would contain x!' and y!,
respectively, but S'(r') and S'(s') would be disjoint. But for every
t' in £(R(x)), S'(t') meets S'(r') and S'(s'). Hence for every
$=f~1(t£') in R(x), S(t) meets S(r) and S(s). By (2.20, iv) the point
x is in S(r) and S(s). But we have chosen r!' and s', so that S(r) and
S8(s) do not meet which is a contradiction. Therefore F(x) contains

exactly one point.

We will now show that the single valued transformation F:X—X' is
a one-one transformation of X onto X'. We construct a single valued
transformation F!':X'—>X in the same way that we constructed the trans-

formation F:X-—=X!,

We will show that F'F(x)=x for all x in X. For any x in X sup-
pose F(x)=x' is in Int S'(r'), then S'(r') meets S'(t') for every t! in
£(R(x)). Accordingly S(r) meets S(t) for every t in R(x) and by
(2.20, iv) S(r) contains x. Therefore x is in 3(f~}(r')) for every rt

in R“(x' ), i-eo



=F'F(x),
for every x in X. Likewise
X! =FF'(x')

for every x' in X', and F maps X onto X'. Since F is single valued
and has a single valued inverse F', then F and F' are one-one trans-

formations.

We will now shoﬁ that the transformation F sends every compact set
onto a compact set. If F(x) is in S'(r') where X' is any element of
R', then S'(r') meets S'(t') for every t' in £(R(x)) and S(r) meets
3(t) for every t in R(x). By (2.20, iv) x is in S(r). Since F' is

the inverse map of F, we have.
F1(s'(r')) = s(r)
for every r'=Ff(r) in R'. Likewise
F(s(r)) =s'(x'").
Since FF'(S'(r'))=5S'(r') and since F and F' are one-one, then
Fr(5'(r*))=s(r)
and
F(s(r))=s8'(r').

By (2.18) any compact set in X can be formed by an intersection of sets
of the form S(r) which are compact. Applying the above results, the

images of compact sets under the transformations F and F'! are compact

sets,
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Since the spaces X and X' are regular Ty (hence Hausdorf) spaces
which are locally compact, then by lemma (2.23) it is easily shown that

F and F' are closed mappings and hence are homeomorphisms.

qec.d.

(2.25) Corollary: If the rings R and R' are associated with the reg-
ular, compact Ty spaces X and X', respectively, and if R and R' are

isomorphic, then X and X' are homeomorphic.

The corollary immediately follows from (2.24) for if R is associ-

ated with a compact space X, then R is compact associated with X which

is also locally compact.

The converses to (2.25) and (2.2L) do not hold for we have shown
‘that any tﬁo rings without divisors of zero may be associated or com-

pact associated with the same space.

A ring may be associated with a non-compact space and still de-
‘termine its topology. For example, the ring of all continuous functions
over a normal T; space is associated with this spacej but Hewitt [3]
has shown %hatlif such a space satisfies the second axiom of countabil-

ity, then the ring of all continuous functions determines the space.



PART II
RINGS ASSOCIATED WITH INFINITELY DIFFERENTIABLE MANIFOLDS

Chapter 3. Infinitely Differentiable Functions on Euclidean Space.

Tn this chapter we will show that if f(x*,..., ¥1) is a continuous
function which is infinitely differentiable and is continuous in all

derivatives of all orders everywhere on a Buclidean space R®, then
f(}(]"oot, Xn) = f(xlo,cocg xno)

T
4+ 2 Qf(xly,..., x85)/Ixt)(xi- xig)
i=1

n s . = . .
n n i y
..Zgij(XJ-,..., X ; x]-O’oo.’ X O)’(X —Xlo)(XJ-XJO'),
ij=1
wher'e the gij's are continuous functions of the x1l's which are infinitely
differentiable and are continuous in all derivatives of all orders
everywhere on R and where the numbers (xlo,..., xno) are coordinates of

an arbitrary fixed point. Without loss of generality we may assume the

point (xlo,..., x0,) to be the origin (0s..., 0).

(3.1) Definition: By “Cim(Rp)" we mean the set of all continuous func-
tions on RV such that all derivatives not involving the coordinate xi
and all derivatives involving x1 at most m times exist and are continu-
ous on RP, By "Ci,om(Rn)" we mean all functions in C;™(RM) which vanish
on the hyperplane x1=0 with all derivatives not involving xil or in-

volving xt at most m times.

By "D;®(R)" we mean the set of all functions on R’ such that all
derivatives not involving x1 and all derivatives involving xi at most
m times exist and are finite everywhere on R". By "Di,om(Rn)" we mean
all functions in D;™(R™) which vanish on the hyperplane x1=0 with all

derivatives not involving x} or involving xl at most m times.

1
The results of this cﬁapfcr follow rcdg///:, from
Class/cal amnalysis;but they were rnot found in the

25
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We have:
(3.2) (a) DA(ER) D DR(F) D ... D DMER) D ... »
®) o rE) D ¢,2@) D..o DOMED D .ot .
() b, JMEH D py @) D ... Dy MEDD ... .
@ ¢, JMEY D g 2@ D... Doy MEHD ... .
(3.3) If £ is in D;™(&"), hence in D;}(R™), then f is continuous in x

at every point of R".

In this chapter we will use the following notation: by £(... ,gi,...),
where gl is any expression, we mean f(xl,..., xi'l,gi,xi+1,..., x?). By

£(e0es0s00e) we mean £(xtyeees x+-1,0, x+¥1,..., x0).
By the mean value theorem for functions of one variable:

(3.4) If fis in Dil(Rn), there is a function }Zi(xl,..., ) such that
£tsees ¥ = £(e0as0,0. ) + DGl l, x),000)

for all xl 2000 X" where we define

nelfhn = 9%e/5 h*

and where

L Aty e, ) <0 for xt< 0
0 <,ﬁi(xl,..., xn)<xi for 0 £ xi
gl(xl,oo., Jin'):‘-o for xi= O.

(3.5) Definition: We will denote f(}.a(...,ﬂi,‘...) as Mi(f), i.e.



((Etyenns T)=L(eers0se0n))/xt for x1£ 0

M; (£)=
f%)(...,o,...) for xi= 0.

(3.6) Theorem: If f is in Dim(Rn), then for xiaé O,(Mi(f))(lic.) exists and
(i (£) %) =2, £ /(D)L 4o by (D /e w o (M, £)/(xD)K
for k€ m where aj’k':-‘(—l)j(};).

Proof: From Leibnitz's rule for successive differentiation of a product

we obtain
Q.0 aEN® =ag £/ ra o o(HGhHE
Bige (F=£(esss0,.00))/ ()Y L,
Substituting from definition (3.L) we obtain the desired result.
qecede

(3.8) Theorem: If f is in Di’om(Rn), then there are functions

¢im(x1,..., x*) and Bim(xl,.._., x?) defined on R® such that:

xlg ¢im(x1,.. .y X1)<0 for x1< 0
(i) 0 <K ¢im(x1,..., xn) ¢ xi for 0< xi
im(xl,..., x1)=0 for xi=0

(11) | el (dyee., @)|£12 for all (xl,..., x?)
(iii) f/(xi)m= Bim f(rjl})(o.o’¢im’o.o) for Xi;‘:O.

Proof: If we take eim'-:l and {611: $p1, the theorem has been established

for m=1.

Assume the proposition holds for m=k. Consider any f in Di’ok+1(R )>
then f is in Dj o (R?). For x1#0



Since f is in Dy o¥*1(E), then £(5) has a finite derivative with respect

to xi everywhere and f(l{) is continuous with respect to x at every

point of R®, By the mean value theorem for functions of one variable

there is a function ¢*(x1,..., x1) such that

xi< ¢*(x1,..., ¥)<¢ 0 for xi<O
0 L P*(xtyeee, xP)¢xi  for 0¢xi
¢*(:c]',;.., X)=0 for x1=0

and

B, e, D)=ty £, )
for all (xl,..., x?) in RB, Hence

£ (et o) =Y £ ¥ st e s a)e
By substitution

£/ = ol () gt eI (¥t )l

Set
f i . . R
o ¢1k/xl for x'# 0
i =
)
1 for xi-—_- 0
and

i -
By =8 st )

. i i
It is easily verified that 6%, and ¢ el

The proof follows by induction.

satisfy (i), (ii), and (iii).

q.e.d.
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(3.9) Corellary: If f is im D, k m(gn), then there are functions
C 3

. - Q
ﬁs;k,m.{md Qlk,ﬁ which satisfy conditions (i) and (ii) of (3.8) respec-

tively and such that

k s »
i?(,)/(xl)"“=el glbm) g ).

1 kym i s
(3.10) Lemma: Let x=(x',..., ) and x0=(xlo,..., xno) be points

of R%, 1If F(x) is a function on R such that

Lim F(x)=o0,

x-'r.xO
a(x) is any function on R" which is bounded in some neighborhood of X0
and b(x) is defined on Rn such that in some neighborhood of Xo for some

i:

xt <-b(xl,..., xn)<xio for xi< xio
xio< b(xt,e.., X¥yxt for xio<xi
b(xi’.o., Xn)=xio fOI‘ ch-:xio’

then

Lim F(ooa’b(x)’..’) =0

X» Xq

Lim a(x)F(x) =0
x-—xo

Lim  a(X)F(eeesb{X)sees) =0
x> X,

The proof of this lemma is an immediate consequence of the defin-
ition of a limit, for if x is in a given rectangular neighborhood of

Xy»> then the point (eeesb(X)s...) is also in that neighborhood.
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(3.11) Lemma: (i) If £ is in D; ,™®%) and if the coordinates
. D Sme— . s
xly.-h-,xi'l,xi*l,...,xn are fixed, then
Lim £/(xly@=0
0
and

Lim f(»k)/(xi)m'k=0 for 0<k<m.
xt-0
(ii) If £ is in G, ™(RD), x is any point of R and x_=(xL ,...,x7 )
i,0 ’ 0 0 0
is a fixed point of R® such that x10=0, and if we define

£/(x1)m for x1#£0

0 for x1=0
and for O<Zk4<n

f(lzf)/(x-”-)m“k for x*#0

0 for x1=0 s
then

Lim  F=Lim F =0.
X=X

0 *¥%0
Proof: (i) Proposition (i) is a special case of a well-known theorem,

but we will give a proaf.
From (3.8)

f/(xi)m-.—_'f/(xi)m-l(xi)
= (eim—]_) (xi)_l(¢im-1)f(m;l)( ot ’¢im—l’ ot )/¢im'l.

s e .
Smce f is in Di,om(Rn)’ then for xl,-ot,xl 1,)C1 l’ooo’}crl f]-'xed
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Lin  glol)/xi=o,
xtep o
and by (3.10)

n}m' f/(xi)m =0.

31

0
By (3.9)
] f(:)/(xi)m'k
—(al iy=Lg g (m-1) i i .
—(elk,fn—(k+1))('x1)' wlk,m-(kﬁ))f m; (""¢lk,m—k+1"")/¢ Kom=(lc+1)

(_ii)' If £ is in Ci,,om(Rn)’ then
EV{CSOLET I A VT QU WY
Since
ot f(niﬂ)(...,¢im(...,o,...),...)=o
then

F:@im f(‘;)(...,sbim,...)

for xiqé O.

for x1=0,

for all x.

By (3.10), since f(g_l) is continuous and vanishes for x}=0, then

Lim F=0.
X -»X()

Likewise

. 1 (m) i
Fk—e k,m—k f i (obo,¢ k,m—k"'.)’

and as before



Lim P, =0. -
X—X, k
ge.e.de.

(3.12) Lemma: (1) If £ is in D, m+1(Rn), then the first m derivatives
of Mi(f) with respect to xi exist and are finite everywhere and vanish
for xi=o,

(11) If £ is in C; ™ 1(R?), then M (f) and the first m deriva-

tives of Mi(f) with respect to x1 are continuous on RR,

Proof: (i) Set Mi(f)=F(xl,..., *®). If m=1, then for f in
Di’0m+l=Di’02 we have F(o.o, xi=0,..o)=f(})(-.o, xi= O’co.)':Oo

Hence

(F(x yeeesy ¥0) = Flaee, x1=0,...))/(xi- 0)=F/xi=£/(x1)2,

By (3.11) the right term goes to zero with xi, hence F(gf_') exists and is

zero for x1=0.

For x1#0, F=£/x1 and is differentiable with respect to x1 for
all (xl,..., x?) such that xi¢ 0. Therefore if f is in Di 02, then
]
F(i‘) exists everywhere and vanishes for x1=0, The proposition is wvalid

for m=1.

Assume the proposition is valid for m=k. Consider f in Di,o(kﬂ'}*l,

then £ is in D; {¥*1) and the first k partial derivatives of F with
3

respect to x1 exist everywhere and vanish for xi=0. From (3.7)
FU (.., @)FE) (..., x1=20,...))/(xi- 0)

=ay, f(g)/(xi)h ety s D/ va /G2,

Since f is in Dy 0k+2(Rn)’ then by (3.11) the terms on the right go to
k]
zero with xi and F (k;:l) exists and is zero for xi=0. For xizo0, F(kzl)

exists according to (3.6).
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The proposition follews by induction.
(i1) If f is in ci*',om*'l, then f is in ci,ol and it is easily shown
that F=M,(f) is continuous. From (i) F has the first m derivatives
Wwith respect to xi and they vanish for x1=0. From (3.7) for k< m and

for xi#o0,
F(g) =ag f(lj‘_)/(xi)l +oeot Y1,k f(%)/(xi)k +ay, f/(xi)k"'l,

and F(li{_) is continuous for xi#:O. Applying (3.11) to the above equa-
tion we find that F(l;) is continuous for xi-.-- 0.

q - e [ ] d L ]
From definition (3.1) it immediately follows that:

(3.13) If f is in G; ™(R™) and j#1i, then 3f/dxJ exists everywhere

and _:J;§ __’_L_n_ Ci’om(Rn)o

(3.14) Lemma: If £ is in C; o "™(®") and j#1i, then (M (£))/Ix) exists

and is continuous everywhere and
oM (£))/dxI=m (d £/9 x3).
Proof: Since for f in G, B(R®)

£/x1 for xi£0
u;(£) =

0] for xi= 0,

then B(Mi(f))/ 2xJ exists and is continuous everywhere and

£ (?]:)éci for x1#0
oM. (£))/dxI=
0 for xi=0
-‘-‘Mj_(af/axj) .

qe.c.d.
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(3.15) Lemmas (i) If all first derivatives ¢ba functionf exist
eVerywhere and if 02£/9x19 xJ exists and is continuous everywhere,

then 22£/23xJ9x1 exists everywhere and
d2c/9xtoxi= 225/ xI 9 xt.

(ii) If all k-th derivatives of f exist everywhere and if
ok le/a i1, D xi kPxlw+1 exists and is continuous everywhere, then
KL e/axit,., Ixiet Iyt k1 xdk exists everywhere and

QKL £/3 xb1,..., Ixin-1 Ixtret Pxin= Il £/g b1, 9 xikdximn

(ii1) 1f all partial derivatives of f not involving xi exist and are
continuous everywhere, then we can permute the order of differentiation

of these derivatives without changing their value.
The proof of this lemma is well known. See for example | L},pp262-268__!.
(3.16) Lemma: If £ is in C. ®H(RM), then M,(f) is in C, (R").
—_——— i,0 i 1,0

Proof: For n=1, the theorem follows immediately from (3.12). For
nZ2 set F= M;(f) and consider 2P( ¥ ¥/ xt1...D) x3x)/ 3 (x1)P where
i j:f:i and 0 p< m. Then by repeated application of (3.1L)

(3% 7/93 xi1,. .9 xix)= Mi(ak £/3 xi1 ... 9 x1K),

which exists and is continuous everywhere. By (3.13) 9K f/@xii...9xix
is in G; o™, hence by (3.12) 9% ok r/axi1...9x1n/ 9 (xH)P

exists and is continuous everywhere for all p<m and vanishes for xi=o0,
This result holds for all il""’ilg’ k=1,25..+ such that ij#-'i for

all j and for all p such that 0<p< m.

.We will now show that 211 derivatives involving xi at most m times

exist and are continuous everywhere. We consider derivatives of the
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form F(‘}i. . .(}l)c (g) = ’ap( ‘ak F/gxii e x1k)/9 (x1)P and show that

We may permute the order of differentiation.

For k=1 and p=1, the proposition follows immediately from (3.15),

hence for any p=lj,...,m

P (=p() ) (1),

Now by inductive argument on p one can show that
#1) (P)=p(t) (1) (p-t)
j 1 i 3 i
for all t<p<m.
Assume the proposition holds for k=q. Since F(}) ces (1) H

1 igv1

F(i)i ...(%)q (%); and F(?‘-.)l ..'(}c)y-j(g‘:) exist and are continuous

everywhere, then by (3.15)
p(1) (1) @)@ ) ) (W),
ii ig 1 igy 1y 1g+1 i
But since the proposition holds for k=g and since in F(%) ...(})
1 q+1
the indices may be permuted, the indices il""iq-l-l’i may be permuted

arbitrarily. As for k=1, we may now show the proposition for all p.

The validity of the proposition for all k and for p=0,...,m follows
by induction.

Since all derivatives not involving x1 and all derivatives involy-

ing x* at most m times exist and are continuous everywhere, then

F=M;(f) is in C; o™R").

q.e.do
(3.17) Theorem: If f is in cim"l(an), then I, (£) is in C,™&D).

Proof: We will give a proof for n >1 which must be modified slightly



f.c-z_j n=l. For f in cif‘*l(al?) set
E=f-r(ext=0,.00)-(xb)1 £ (L0 xt=0,...)/10
=eea=(xl)ml pf(mel)(,,, ,xi=0,...)/(ne1)?
: 1

Every term on the right is in Cim+1. Also f and all partial deriva-

tives of f not involving x! vanish for xi=0.,

Consider a partial derivative involving xi P times where p¢ m+l.

Since f is in Cimﬂ, the differentiations with respect to xi may be

performed first as in the proof of (3.16). We obtain
£(§)-)= f(g)—f(g)( ce s ’xl= O’oo o)-(xi) f(p.:{l)(o -‘,xiz 0’0_‘.)/1!
—eeo—(xi)mfl-p f(mg:l) (eeosxi=0,...)/(m+1-p)! .

Hence _:E‘_(I;_) vanishes for x1=0 and any partial derivative of f-(ln?.) not
involving x! vanishes for x}1=0. Therefore f and all partial derivatives
of £ inwiolving x1 at most m+l times vanish at xi=0, and f is in

Ci,0m+l(Rn) .

Set F=M;(f), then £ =(x1) F. Set F=M;(f), then (x1)F=
f—f(ooo’xi-—':o,ooo) and

HF=GhHE +3) £ (L. xd=0,..0)/20 +
- 1
cee F(xi)m¥l f(m?)(.. Lxi=0,...)/(ms1)?
For xi=0, F=f(i)(...,xi=0,...), hence for all xi

P+ xl=0,0 )/ r Ghm sm a2 0,000 /()
Since £ is in ci’om"l, then F is in G, ™ which is in C ™. Since

+1

()3 f(;i;:l)(m,xi__. 05...)/(34)1 is in C;™"", then F is in C,",

g.e.d.
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(3.18) Definition: In this chapter by c™(R®) we mean the set of con-

tinuous functions on R® all of whose derivatives exist everywhere and

are continuous, i.e. C“(Rn) is the intersection of Cim(Rn) for all

m=l’2,3,-n. L]
o0 :
The set C (R™) as defined above is independent of i.
> w n r) oo n
(3.19) Lemma: If £ is in C (R™), then M.l(f) is in ¢ (R") for any i.

(3.20) Lemma: If f is in C° (B®) and if F, =M, (£), then

f(xl,...,xn)=f(0,...,0)+ (x1~)F1(x3;...,xn)
+ (X )F, (0537 v s x™) + o H (IF, (0500 +50,xE, 0 px)
+ (F_(05...,0,%).
Proof: For n=1, the lemma is immediate. For n>1l, since
(X)F (050 ers0,x 500 ey @) =05 0005055, 000 y20)
-f(O,...,O,xi+1,...,xn);

the result is easily obtained by substitution.

q.e.d.

The functions Fi(O,...,O,xi,...,xn), given above, are in G~ (RP).
If we apply (3.19) to each Fi(O,...,O,xi,...,xn), since Fi(O,...,O)=
0 £(05...50)/3 x1, we obtain:

(3.21) Theorem: If f is in CM(R"), there are functions gij in Coo(Rn)

such that

n n
£2£(0,...00F 2 (x1)9£(0,...,0)/Qxi+ 2 (h)(xd)g,,
i=1 i J=1

b
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for a¥i-styi s iin BN
ks a éénéfaiiiétibntof‘(j.él)‘we have:

{;.gg)_ Theorem: If f is in Coo(HP) and if (x;o,...,xno) is any
fixed point of R™, then there are functions g53 in COO(RP) such that
n

2 (xiext ) 320, .nusx)/ It

i=1

n
+ :z_ (xixi )(xj-xj')g..,
. 0 07/°=1ij
_ i,3=1
for all xt,...,x® in R®. (The g;3's in this theorem are not necessarily

£= f(xlo,.‘.,,xno)-c—

the same functions as in (3.21), since they depend on the point

(xlO, se e ,xno) c)
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Chapter h. - Infinitely Biffsrentisbile Manifolds

"In this chapter we will define infinitely differentiable manifolds
and the rings of infinitely diffe}entiable -functions on these manifolds.
We will show that this ring is associated with the underlying space of

the manifold. -

(L.1) Definitions m open covering{ Val of a topological space X is
gaid to be "nmeighborhood finite" if every point x of X has a neighbor-

hood U (x) which meets at most finitely many of the covering sets v,.

If a covering is star finite, thenit is neighborhood finite. If

it is neighborhood finite, them it is point finite.

(4.2) Lemma: If { Va‘ is a neighborhood finite open covering of a space
X, and :Li‘ each Va has a neighborhood finite open covering { Uabg’ then

the set of all Uab is a neighborhood finite open covering of X.

Proof: TLet x be any point of X. The point x has a neighborhood W (x)
which meets only the sets ViseessVy of {Va.g. In each V;,i=1,...,n,
which conté.ins x, the point x has a neighborhood Wy (x) which meets

only finite]_.y many U;,. Let G be th intersection of W and all Wy for
which x is _in Vi, then G ié a neighborhood of x which meets only finitely
many U,,. Hence {Uabl is a neighborhood finite covering for X.

q.e.d.

In this chapter we will use the following special notation: X is
a connected Hausdorf space, R is the set of real numbers, R® is the n-
dimensional Euclidean space, R(X) is the set of all real-valued contin-
uous functions, and C ( I") is the set of all infinitely differentiable

functions on open subintervals of R®. In this chapter by an infinitely

differentiable function we mean a continuous function whose derivatives
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Vanishes at every point of the set.

(4.3) 'Definition: A subring GOO(X) of R (X) is a "ring of infinitely
differentiable functions on X%, if:
(i) X has a countable, neighborhood finite open covering {Ua, a in A}.
For each U, there are n functions x,1l,...,x,0 in Coo(X) such that

for any £ in GOO(X), there is an £* in Cca(In) such that

£(q)= £a(x, q5 seee3%x,0(q))

for-all q in U, and for all U,.
(ii) The mapping h,:U, —» R® defined by h,(q)= (xal(q), ceesx,"(q))
is a homeomorphism onto an open interval |ri-r,i|<b,i of R,
i oes
(ra fixed).
.(iii) If a function f in R (X) can be represented at every point

p in X as in (i), then f is in C9°(X).

(L.4) Definition: If a ring COO(X), as defined in (L.3), exists on a
connected. Hausdorf space X, then the space X with the ring C(X) is
an "infinitely differentiable" or "smooth manifold". The space X is
the "underlying space of the manifold". The covering{‘Ua} is a %"co-
ordinate covering for X", and the set of n-systems of functions

{ (xal,...,xan)} constitute a "coordinate system" or "system of co-

1
ordinate functions for X",

From the definition it immediately follows that an infinitely

‘differentiable manifold is a topological manifold.

The ring ¢ (x) is not unique. Let X be the real line. Let the
identity function X be the coordinate function, obtaining a ring
Coﬂl(x)- If we let (X)> be a coordinate function, obtaining a ring

IT”N'S definition (s oimilar fo thaet 7/'fv’e/'7 by
C/nova//ej [11 for ana/7 t'e mratfolds.
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o0 . oo o
c —3(‘)(), “then we e that the rings G~ 1(X) and C 3(X) are not the same.

The hypothesis that the coverlng {U 1 is neighborhood finite is
not actually necessary. Assume {Ua, a in A} satisfies all other con-
ditions of (l.3). We can cover X with a countable covering {Va-, a'in A'}
such that every V_, is contained in some U, where a=@P(a'), and
hﬁ(a.)(va.) is a closed (i.e. compact) subinterval of Uﬂ(a')' Wilder
[ 5, pp. 130 and 169] has shown that the covering{Va.}, has a countable,
‘gbar finite refinement of open sets {Gb, b in B} . Since every Gy, is
contained in some Vg(y,) where © (b)=a', then G can be covered by a
countable, star finite collection of open sets{Wb.b} such that
Qﬂb(bj(wb'b) is a subinterval of Eﬁé(b) (Uﬁé(b) }. The set of all
{'Wb.b, b in B} is a countable, neighborhood finite covering for X. If
we take the functions ;gg(b)i as coordinates for each of the open sets
Worpo ‘l;hen the covering { wb'b} is a coordinate covering for X, and the
‘fing of infinitely differentiable functions generated will be the same

as will be generated if {U,} is the coordinate covering.

(4.5) Theorem: Let X be an infinitely differentiable manifold. If
fl,...,fMM is a set of functions in C (X) and U is an open set in X

such that for every f in C (X) there is an £¥ in C cx) such that
£(p) = £*(£1(p), .. . ,£™(p))

for all p in U, then

(i) m=n

and
(ii) in every U, which meets U, the Jacobian D(fl’a,...,f“’a)/

D(Xal,---,xan)7£0 everywhere in UNU,.



Frqoef: Letia be fixed. #For any p in UnU, we may write 1 (p) =
fl’a;(xal(p))o eey Ksn(p)) where i= l’ coey I Also Xaj(P) =xaj*(f1(P)’ L

coey fm(P)) Where j»zlglaoo, Ny i.e.
fi,a(xa]_*i(ul,“!, uﬂ)’;.." xaﬂ*('ul’..o, um))=ui i'-:l’-oo’ ms
23 (gL, L, ),..., £, L, P)) =0 J=1lseees n;

for all (ul,..., uM) in RM such that uwl= £3(p), p in UnUa, and for all

(r]fs_---: ) in R® such that rj__—.,xaj(p), p in UnU,.

- For all such values of ul and rJ we have

n
(1) 21(9 153 23)(9 x, I Puk) = §1, i, k=1,..., m,
and J:n '*
(i) Z](Bxai*/a ul)(3 £1s3/9 £f)= §J J» k=1,..., n.
Lo 1=

Let A ‘be, ‘the m by n matrix with elements Aij':-'(? fi’a/ o rd )s and let B
be the n by m matrix with the elements Bj;= @xz9%/3 ut). From (i) we
have AB=Em where E™ is the m by n identity matrix. From (ii) we have
BA= E'. Then,

n=m

for otherwise either ‘det(AB) =0 which implies AB# EM or det(BA)= 0 which
implies BAF E .

Since det (AB)= 1=det(A) det(B) everywhere in UnU,, we have
det(a)=detfei22/9 rI)=D(£122,..., £722)/D(xYs.00sxR)# 0
for all p in UnU,.

q.e.d.
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(L.6) “€orollary: If a#a' and if U, meets U,,, then D(xal,..., xan)/

D(xa‘:lf,v"..“’, xa.‘n) *O on Uaﬂ Ua' -

(L.7) The underlying space X of an infinitely differentiable manifold

is a second countable Tychenoff space, i.e. X is separable metric.

The proof immediately follows from the fact that X has a countable

covering of open sets homeomorphic to Euclidean space.

(4L.8) Definition: Let {U‘, a in A} be a coordinate covering for an

a
infinitely differentiable manifold with an underlying space X. A
covering {Vb, b in B} is an "“admissable refinement of {Ua, a in AB“
if it is a countable, neighborhood finite open covering of X and if
there is a single-valued map @:B —A such that :
(1) ¥, is contained in Uﬁ(b)
(ii) hﬁ(b)(v ) is an open interval in ;zS(b)( ¢(b)
(4i4) The union of all V;, such that #(b)=a covers U,
(We do not require that sets Vb with distinct subscripts be distinct.)
An admlssable refinement is said to be "completely admissable" if

)(Cl(V )) is a closed 'subinterval contained in ) for all

¢(b !?5( ) !3( )
b in B, i.e. Cl(Vb) is compact and is contalned in Uﬁ(b)

(L.9) - Theorem: If {Ua, a in A} is a coordinate covering for an in-
finitely differentiable manifold, then there exists a completely ad-

missable refinement of { U,s ain AE.

Proof: Let h, (U, )_, where I_ is an open Euclidean interval. Every
Ig has a countable, star finite open covering by subintervals
{IB‘,a’ b! in B'(a)} such that Gl(Ib' ) is a closed (compact) subin-

A

terval in I for all b' in B'(a).
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" 8et

B={(b',a)}= |UB'(a)xa,
E '
then B is countable. Let # be the "projection" of B onto A, i.e.
g(b' ,a.):: ae

We denote the elements of B by b and set

T={P in V() [y (@) s in 1= I(b',.at)}’

then { Vs b in B} is a completely admissable refinement of{ Uss a in A}.
q.e.d.

(L.10) Theorem: If {Ua’ a in A‘}is a coordinate covering for an in-
finitely differentiable maniféié, then {Ua’ a in A} hés compietely
adnissable refinements {V,, b in B} and {W,, b in B} such that C1(V)

is contained in W, for every b.

Proof: We can construct {Vb} as in theorem (4.9), but so that given
Ib',a we can find an open subinte?val Jb‘,a'of’la such that Cl(Ib',a)
is contained in J, a’ the Jy4 a's form a star finite open covering of
) b4 . : :
I,, and Cl(Jb',a) is a closed subinterval, contained in I,. The inverse

images of the Jp1,q's form the W, 's.

g.e.d,

(4.11) The index set B of a completely admissable refinemcnt{v s b in B}

ig never finite.

(L.12) Theorem: If{ U, a in A} is a coordinate covering for an in-
finitely differentiable manifold, then~{Ua, a in A} is an admissable

(but not completely admissable) refinement of itself.

(L.13) Theorem: Let I be an open bounded interval in Euclidean space

R™ and let I' be an open interval in RE® such that C1(I') is compact and



4is conbained in I, then there is an infinitely differentiable function
F(I, I') on R® such that

(1)  F(II)=1 onT*

(i1)  F(I,I')>0Q on I

(ii1) F(I,I')=0 on R-I.

Proof: It is well kmown that the function which is O for x=a and
‘oxp(-1/(x~a)?) for x3£a ds infinitely differentiable and vanishes with
all of its derivatives at x=a. We will denote this function hy g(x,a).

Also the function

g(x,a) for x7&
F(x,a)=
0 for x€4

is infinitely differentiable everywhere, since at x=@ the right and

1eft derivatives of all orders exist and are equal.

If ada'¢ b'<{b, then the function F(—x,a')+ F(x,a)F(=x,b)+F(x,b")

is infinitely differentiable -and is positive e\}'erywhere. Define
F(x;a,a‘ sbiyb)= F(X,E)F(-xab)/é(-x’a' ) +F(x,2)F(-x,b) +F(x,b* )) >

then the function F(x3a,a',b',b) is one on a'$x£€b', zero on x£a and

b<$x, and is positive on asx‘S‘a' and b'< x<b.
Ii' the coordinates of points of R® are (rl,...,r1), set
{(rl,...,fn‘)'\‘ai<f1‘<bi§ = 1,

2

{(rl,...,rn)\ a'i<ri<b'i} = I,
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The function

n ;
F(I,I')=ﬂ F(ri; ai, a'i, bti, bi)
1=1

is the desired function.

q.e.do

(4.1L) Corollary: If {Ua, é in A} is a coordinate covering for an in-
finitely differentiable manifold and if {’Vb s b in B} and {Wb’ b in B‘;
are completely admissable in {U,, a in A } such that C1(Vy) is contained
in W, for every b, then there are functions u in Coo(X) such that

=1 on Vb

W, >0 on Wb
=0 on X—Wb.

(4.15) Theorem: If {Ua, a in A} is a coordinate covering for an in-
finite;l.y differentiable manifold, if»{ Vps b in B} is admissable in
{Ua’ a in A}, and if for every b there is a function g, in ¢ (%)
which vanishes on X—Vb, then the function Z % is properly defined
oo bel

and is in C (X).
Proof: Let p be any point of X. A neighborhood G(p) meets finitely

many Vb: Vl,ooo, Ve In G we have

be B

The sum on the right gives a properly defined infinitely differentiable
function. Sincel2. gp 1s a properly defined infinitely differentiable

. . be B oo
function in some neighborhood of every point, then it is in C (X).

q.e.d.

(L.16) ' Corollary: Let u, be defined as in (L.1L), then Zb Uyps
l/zbub, and u.b,/ Z’b“b= v, are in CM(X). Also
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=0 on X - Wb-
vb'
20 on Wb'

and 2 v, =1 on all X.

(14.17) Theorem: If F in C°°(I™) is an infinitely differentiable func-
o<
tion on h,+(U,s), a' in A, and if a function g in C (X) vanishes on

X-W where C1l(W) is contained in U,1» then the function

1
F(xa'—,'-o, xa'n)‘»g on Ua'

0 on X-—Ua,
is in G (X).

Proof: The furc tion f is in CW(X) if for every a in A there is a func-

Tion f%, infinitely differentiable on h (U ), such that
£(p)= £2(x, 1 (p) s 005 x,(p))

on U . We need only to show this for a#a' and such that U, meets U_,.

We may set

0 on ha(Ua—Cl(W))

Flx,122,..., x ,™3)«(g?) on h (U NT_,).

The function f2 is infinitely differentiable, since the zero function is
infinitely differentiable on the open set h,(U,—CL(W)) and
F(xa,l’a,..., xa,n’a) is infinitely differentiable on the open set

ha(Ua'nUa.)’ _The union of these two open sets is ha,(Ua)°



Hence

F(xa.l(pr),---, x,,"(p))-g(p) on U 0T,
fa(x 1(13‘)’0--’ Xn(p))z |
a a

o on U,—U,,

and f‘-‘-‘fa(xal,..., xan) on Us. Therefore f is in Cw(x)-

g.e.d.

Some authors define infinitely differentiable manifolds in a diff-
erent way than we have., They assume X is eovered by a finite number of
coordinate neighborhoods Wi, such that there exist homeomorphic maps hy
which map W; onto an interval I,. The maps h'ihj-‘-lz I j-'n hj(winwj) —
Iin hi(Wiﬂ Wj) are assumed to be infinitely differentiable with non-
zero Jacobians. A continuous function f on X will be infinitely diff-

erentiable on X if for every W; there is an £ which is infinitely diff-

erentiable on I; such that f:fi(hj_) on W,.

We can show that if a space X satisfies the above conditions, then
it is an infinitely differentiable manifold in the sense of definition
(L.L) and the infinitely differentiable functions in the above sense
are the elements of c°°(x). We first construct two coverings { Uia} and
{ via} for X which are completely admissable in {W,} and such that
Cl(Uia) is in via' The construction is similar to that used in theorem
(L.10). As in corollary (lh.ll) we construct functions uiawhich are one
on Uia’ wvanish on X - via and are infinitely differentiable in the above
sense. Let Efij be the projection of Ii onto the j~coordinate of I:i.' - We

now define

0 on X - wi
X, “](p)"-ﬁ
ia

uia(p) .}D’ij(hi(p)) on W’i.
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The covering { Uy QS is a coordinate covering for X and the functions
xiaj(p) form a system of Qoordinate functions for X. A function f on
ﬁlwill be infinitely differentiable in the above sense if and only if

it is in C%°(X). =

(L.18) Lemma: If F and F' are disjoint closed sets in the underlying
Space X of an infinitely differentiable manifold, then:
(i) There is a function f in C°°(X) which is one on F and zero on
Fr,
(ii) The sets F and F! have disjoint neighborhoods, U(F) and
.U(F'), with disjoint closures, hence X is normal.
(iii) There is a function g in COO(X) which is one on a neigh-

borhood of F and is zero on a neighborhood of F!t.

Proof': (’i) Let { Vb’ b in B} be a completely admissable refinement of

the coordinate covering of X. Since h¢(b)Cl(Vb) is compact, the distance
between thg. closed sets hg(bfc:l.(vb)f\ F) and h¢(b)(Cl(Vb)n F') (if both
sets are non-empty) is positive. We will denote this distance by d(b)
and the subset of B for which Gl'(Vb) meets both F and F' by B'. As in
theorem (L.10) we can construct completely admissable refinements

{Wys © 1n c}anafw, ¢ in cforf vy, b in B},with a transformation

Y :C~B such that hyyrc)W'e 1is a subinterval of hy, W) and

Cl(Wc) is contained in W'c. In addition these refinements can be so

constructed that ‘for}?(c) in Bt
diameter(hyjy/( o )wc)< diameter(h¢mc )W'c)é 2d(b).

Hence the closure of no element of the refinementsi Wc} and { we c’g'inter—

sects both F and F?'.

Let C' be the set of all elements of C such that C1l(W',) meets F.

Hence CL(W' ) does not meet F' if ¢ is in C'.
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‘s Prom (L.lk) for all.c i G there are functions v, in ¢®(X) which
are one on W and wvanish on .X«W'!;, Since the covering { W'c } is neigh-

. oo
Rorhood finite, the funetions - Zrywc and chc are in ¢ {X) and are

ceC CE
equal on F, and Zv,ic vanishes on F'. Since 2 v, is different from
CE ce o0
#ero everywhere, the function f= 2 wc/' ch is in ¢ (X), vanishes on
ceC CE

F'y and is one on F.

(ii) Using the function f constructed above we set
)= {p in x | 20) >3/}
U(F'):ip in x| £(p)< 1/1;}.

These open sets are the desired neighborhoods.
(iii) Applying proposition (i) to CL(U(F)) and CL(U(F')) we obtain
proposition (iii).

q.e.d.

(L.19) Corollary: If F is a closed set of the underlying space X of
an infinitely differentiable manifold and p is any point of (X-F),

then there is a function f in COO(X) which is zero on a neighborhood of
F and is one on a neighborhood of p. The function (1-f), which is also
in Cw(X) ,:‘ is one .on a neighborhood of F and is zero on a neighborhood

of p.

(h.éo) Eggég:l If F and F' are disjoint closed sets in the underlying
space X of an infinitely differentiable manifold and if F is compact,
then: —
(i) The closed sets F and F' have neighborhoods V(F) and V(E')
with disjoint closures such that CL(V(F)) is compact.
(ii) There is a function f in d°°(x) which is one on F and zero
on F' such that the subset pf X on which f is different

from zero has a compact closure which does not meet F'.



Proofs (i) Let { Vus' b in B’S be a completely admissable refinement of
the coordinate covering:of X. Since F is compact, there is a finite
subcollection of {V, } whosé union, G, contains F. Since CL(¥,) is com-
pact for all b, then CL{G) is compact. Let U(F) and U(F') be defined
as in (L.18,ii). Set -

W(F)=U(F)ng

V(F')=U(F'),

then V(F) and V(F!) are the desired neighborhoods.
(ii) Prom (4.18,i) there is a function f in C°°(X) which one on F

and vanishes on (X-V(F}). This function is the desired function.
q.e.d.

(4.21) Theorem: Let X be the underlying space of an infinitely diff-
erentiable manifold.

(é) If for any f in C°°(X) we define
2(£)={p in X| £(p)= 0},

then in the sense of definition (2.16) the ring Cco(K) is associated
with the space X.

(-]
(b) Also, the subring of C (X) consisting of all functions in C™° (X)

with compac£ supports is compact associated with X.

Proof: (a) Axioms (i) and (ii) of (2.1) are obviously satisfied. From

(L.19) axiom (iii) of (2.1) and axiom(v,a) of (2.16) follows immediately.

co
We now consider axiom (iv) of (2.16). For any f in C (X), a(D)
consists of all g in C°°(X) which vanish on X~-Z(f). But g vanishes on

px;i(f)‘if and only if it vanishes on CL(X-Z(f))= X-Int Z(f)=3S(f),
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i.e. A(f) consists of all functions which vanish on S(f). If the
functions £ andff' areAdisjunct, then for every g and g' in Cco(X)
there is a function h in C°°(X) such that (h-g) vanishes on S(f) and
(h-gt) vanisheshéﬁ‘s(f'). If we consider g to be the zero function
and g' to be one éverywhere, we see that such a function h does not
exist if the sets SCf) and S(f!') meet. Hence if S(f) and S(f') are
not disjoint; then f and f' are not disjunct.

Suppose S(f) and S(f') are disjoint, then there is a function w
which vanishes on S(f) but is one on S(f'). Consider any pair g and

g' in CT(X). Set
h=(g)(1-w)+(g*)(w),

then h is equal to g on S(f) and is equal to g' on S(f'). Hence (h-=g)
is in A(£), while (h-g') is in A(£'). Therefore if S(f£) and S(£')

are disjoint, then f and f' are disjunct.

(b) Axioms (i), (ii), and (iii) of (2.1) are shown as in (a) above.
Axiom (v,b) of (2.16) follows from (L.20) since a point of X is a

closed set.

We will now show that for any two functions f and f' in c°°(x)
with compact supports the sets S(f) and S(f') are disjoint if and only

if £ and f' are disjunct.

From (L4.20) there is a function g with compact support which is
one on S{(f). As in (a) if S(f) and S(f!') meet, then there is no func-
tion h in G (X) such that (h-g) is in A(f) and (h-0) is in A(£').
Hence if S(f) and S(f') are not disjoint, then f and f' are not dis-
junct. If S(f) and S(f'!') are disjoint, then there are functions w and
w! in G°°(X) with compact supports such that w is one on S(f) and van-

ishes on S(f') while w' is one on S(f') and vanishes on S(f). Given
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any two g and g' in c®°(x), set

h=(g)(w) +(g')w'),

then h is in ch(x) and has a compact support. Also (h-g) vanishes on
S(f) and is in A(f), while (h-g') vanishes on S(f') and is in A(f').
Hence if S(f) and S(f') are disjoint, then £ and £' are disjunct.
Th;fefore axiom (iv) of (2.16) is satisfied and the ring of all func-
tions in C°°(X) ﬁith compact supports is compact associated with the
space X. .

qoe-do

(L4.22) Corollary: If the underlying space X of an infinitely differ-
entiable manifold is compact, then the ring C° (X) determines the top-
ology of X. If X is the underlying space of any infinitely differen-

tiable manifold, then the ring of all functions in € °(X) with compact

supports determines the topology of X.
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Chaptéé 5. Contravariant and Covariant Tensors on Infinitely

~ Differentiable Manifolds

(5.1) Definjition: A multi-derivative L of degree m on c¢™°(X) is a
"tangent operator of order m on c®®(X)" if for any constant function

ey
a and for any collection fl,...,fi,...,fm of m~1 functions from

o0
Cc (X),
L(g}, .. .,01t,a,p 1% fM=0

over all X for any izﬁl,...,m. A tangent operator of order one is a

“tangent vector'
As in Chapter 1 and Chapter 2 we will write

L(fl’...,fi-l’g‘i’fi“‘l,.'.’fm)’ as L(...,gi,...), iee. if we say a

N
certain proposition holds for L(...,gt,...) for all fl,.,,,fl,...,fm,
we mean this proposition holds for L(fi,...,fi“l,gi,fi+l,...,fm) for

1 7N
allf ,.Oogfl,o.o,f‘no

We may easily show that the sum, difference, and product of any
two tangent operators is a tangent operator, and the product of a

tangent operator with a function is a tangent operator.

(5.2) Theorem: If L is a tangent operator of order m on (%),
thens
(1) L is linear with respect to R in each of its variables, i.e.

if ai and bi are constants, then

L(.-o,ai fl"_bigl’ooo)': aiL(.o.,fi,ooo)""biL(too’gi,oco)o
,(ii)L If a function g vanishes on an open set G, then L(..csgZ5.0.)

vanishes on G for any collection fl,...,fl,...,fm from

- CT2(x).
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o0
(i11) For all £',...,£™ and gls...,g™ in G (X)
1 :' - . n | - - - i+1
L(flji‘. .,fm)_L(gl’...,gm);‘_'ZL(gl’...’gl"‘l,fl_gl’f ,.o.’fn)
i<l
(lV) 1f i gl on an open set G for all i=1,...,m, then

L(ft, ..., 6= L(gl,...,gm) on G.

Proof: (i) The validity of (i) follows in the obvious manner from
the definition of a multi-derivative and from definition (5.1).

(ii) In (1.10) we showed that
ﬁ(g‘)gAgL‘p...,g,...)).l
. oo
Since ¢ (X) is assoesiated with X, then
Int Z(g) S Int Z(L(eeesZseee))n
(1ii) . Expanding the member on the right we obtain

m B -
ZL(g:L’ L ,gi‘-l’fi—gi’fl“-l,o .e ,fnl)

i""l .

_E L(gls-on’gl.l fi,.“,fm) Z:I.L(gl,...,gi,fl lw.,.,fm)
1’ .

—L(f ,...,f"‘)+Z (g, ... ogi L, ..., o)

i=2
-ZL(g ,...,g'j 1 j’.“,fm)_L(gl’“.’gm)
il

=L(f1’0¢ .,_fm)"‘L(gl.’--O,gm)'

(iv) From (ii) and (iii) we have (iv). g.e.d.
(5.3) Theorem: There exist . -tangent operators of every order on

c"i_(x);’ thich are not the zero operator.

Proof: Let{Vy, b in B} and{W_, b in B} be completely admissable
refinements df{Ué_, a in A} such that Cl(Vb) is contained in Wb and
let w, be defined as in (L.1Lh). For a fixed b' in B, set a'=@(b')

and define



@D /3%, 1)+ (2689 Ix, 1) on U,
L(fl,,.,‘,fm)::. .
0 | on X-U_:,

. oo
then Il(“fl,c.-,fm) is in CN(X) for fl’ooo’fnl in C (X). By sub-
stitution of a constant a, fi+-gi, and fi. gi for i i¢ immediately
follows that L is a non-trivial tangent operator of order m.

g.e.d.

One may define a contravariant tensor T of order m as an operator

T2(C” (X)) ™~C{X) such that

(¢l ,...,fm)"'i(afl/axa1)-"(9fm/axa YT 5. n.px, im)
ll 1
on Uao
It is easily shown that such an operator T is a tangent operator
qf order m. We will now show that any tangent operator of order m is

a contravariant tensor of order m in the above sense.

(5.4) Theorem: If L is a tangent operator of order 1 on G?O(X), i.e.
is a tangent vector, then for any f in COO(X)
n o
L(f)= Z (9£/dxi,)L(xi,)

i=1

on the coordinate neighborhood Ua'

Proof' Let {VB, b in B}'and {Wb, b in B} be completely admissable re-

finements of {U , a in ~A}3uch that Gl(Vb) is in W,, and let w be

a
dgfined_as_inv(h.lh),t_Let p be any fixed point in U,. There is a b!
in B such that p is in Vb1 and a=@(b'). There is an £& in G (IN)

such that f(q)==fa(xal(q),...,xa!tq)) for all q in U, - From Chapter 3

we can write



23 Ha)y s ox Ma)) = 23x M) ook H(P))
& Z Qe 10)s ey (22)/9 1, 1) (x, M), 1))

>3 g5 50,1 (a)s 00 5%, ()0 (x, 1(q)-x, 1(p))- (x,3(q)=x_I(p))
‘ iJ
where 833 is infinitely differentiable on ha(Ua)‘ We define the follow-

ing functions on X:

gij(xal(q) seee ,xan(q) )ub on Ua
G‘j_j(Q)= ' ’
0 on X-U,_,

then the Gij‘s are in c°°=(,x)_ and
£ou= £(p) u,*+ _591‘/92:3 ok, %, 1) ) vy,
+2. Gy 300, o, H(p)) * (x5 9%, 3(p))

1J
on X. Since p is fixed and f(p), Df/axai

. p
constants, we have

L(£+up) = gl £) L) = £(p) L) +Z 1/ 9 x| (L, 1) wy + 2, 0(w, )

+ 2 16y 5) (3,12, 3(p) ) (3% 3(p))
iJ

+Z Gy jL(x, 1) (x, 3% J(p)>+ZciJ(x 1o, 3p) ) Lx, ).
id )

On Vy, the function w, is one, hence L(ub) is zero on V_ and

L(f-ub)lp=L(f) lp= Z (J£/9 xai)\g"(xai)\p°
’ 1

foa

Since this equation is valid for any p in U, we have
1(£) = 2 (I £/9 x,1) Lix,D)
i a

on Ua." h

qoeodo
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(5.5) Cerollary: If L is a tangent operator of order m on ¢ (x),

then for any collection fl,... »f® of m functions in C”°(X) we have

L(fls---:fm):_Z(’a-le/a‘xail:)“" (2 /9 xaim)L(xéil ,...,xa:i"“)

177 im
on the coordinate neighborhood U,.

Proof: 1If all but one variable of L is held fixed, then L is a tangent

vector in that variablé“ and weé have

L(f ,oo.,f’n)‘Z(Dfl/;x 11)L(X 11,f2,""fm)

i=1 :
_Z (9 fl/ax 11)(3 f2/9x lz)L(x 1y X, iz f.‘3,...,fm)
11112
=z (9f1/axi1>---cafn/a xImeeda . x Im),
ipri

q-@bdg

Since we have now shown that a contravariant tensor. (or contra-
variant tensor field) defined as an operator is a tangent operator and
viece versa, we will henceforth use the terms contravariant tensor and

tangent operator interchangeably.:

(5.6) Definition: We define an operator Nbil. . ’im by the equation

(9 fl/g xail Yeoo (3 fm/a‘xaim)(ub)m on U,
Nbllmlm(f yeuesiM)=

0 on X-U,

Where‘{Ua, a‘il.‘l A‘ is a coordinate covering of X, { Vb’ b in B—!'and
{‘ W,» b in B} are completely admissable refinements of { U, a in A}
such that W, contains CL(V), a= @(b), and w, are the functions of
C™(X) described in (L.1l) which are one on Vi, and vanish on X-W_.

is a tangent operator of order m.

b
It is easily shown that N 1 Loeeiy 22
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(5.7 Leémma: If Nbii':;%m and ijl"'jm', are defined as in (5.6),
then

‘o] L e
N il...l Jl...Jm, (N il.-.l )(ijl...a )e

The proof follows dlrectly from (5.6).

(5.8) Definition: If t is a contravariant tensor of order m, then the
function L(Xail,...,x;"“) is the " ij... iy coordinate of L on Uy in the

coordinate system xa;...xém'

(5.9) Definition: I¥f X is the underlying space of an infinitely diff-
eér¥entiable manifeld and if Y is a subset of X, then the contravariant
tensor L %vanishes on YW if’L(fl,...,fm) vanishes at every point of Y
for every,fl,...,fﬁ}iniCéQ(X)._ Two contravariant tensors of the same

order "are equal on Y" if their difference vanishes on Y.

(5.10) Lémma: If 1. is a contravariant tensor of order m on an infin-

itely differentiable manlfold and- if the tensors Nbll-..im are defined
as in (5.6), then the contravarlant tensor,:iiL(xﬁ(b)l ,...,xﬁ(b)'")'
b 11.1. 1m
N¥, is equal to L on V.

11-ocj-mf q b

The proof follows from (5.5) and the definition of NP,

:  since
11..-1m

(ub)m is one on V.

(5.11) Lemmas: A contravariant tensor L vanishes at a point p:
(1) if and only if all coordinates of L in some coordinate system
x.1,...,%x, 7 such that U, contains p vanish at p.
(i1) 4if and only if all coordinates of L in all coordinate systems

X ly..05% M such that U, contains p vanish at p.

(5.12) Lemma: If F is any compact subset of the underlying space X
of an infinitely differentiable manifold and if k is any positive in-

teger, then there is a contravariant tensor of order 2k which does not



vanish at, any: pojnt of F.
Egééﬁé LetLNbl b§>the tangent vector described in (5.6) and let
Vi;;};,V£'beba f{ﬁiﬁe covering of Enpy sets fromA{Vb, b in B}.
Consider the contravariant tensor Z (Nil)Zk =L. Any p in F is in
some Vps where b' is in {l,...,t}<i=£hen for xal where a=@#(b'),a 1t P
(Nii)Zk(xal) 20 and (ij:_)2k(xal)=l. Hence L does not vanish at any
pbint*bf F.

g.e.d.

Since the covering {Vb, b in B} is neighborhood finite we can
show that there is a contravariant tensor given by :E: Nbl)zk which
a S be

does not vanish at any point of X..
" We will now define covariant tensors.

(5.13) Definition: A "covariant tensor T of order m" on an infinitely
differentiable manifold X is a transformation of the set of all contra-
variant tensors of order m into COO(X) which is linear with respect to

¢™(X), i.e. L) is in C (X) and
T(£L+ L) =£T(L) + £1T(L")

for all f and .f' in COQ(X) and for all contravariant tensors T and L!

of order m on the manifold.

The zZero operator, which satisfies the above conditions for every

m, is a "covariant tensor of order infinity".

(5.14) Lemma: If T is a covariant tensor of order m on an infinitely
differentiable manifold X and if L is a contravariant tensor of order
mnon X'which«vanishes at every point of an open set G, then the function
T(L) vanishes at every point of G. If L and L' are contravariant ten-
sors of order m which are equal on G, then the functions T(L) and T(L!)

are equal on G.



Prooft’ "If.p~is [4hy point in the open set G, then from (L.19) there is

a fungﬁibg‘f(iﬁ‘B?Q(XY‘which is one on X-G but vanishes at p. Since
L=fL, ‘then T(L) =fT(L) vanishes at p. Hence T(L) vanishes on G.

‘If L and L' are equal on G, then their difference L-L!' vanishes

on G, and
(L) - T(LY)=T(L-L')

vanishes on G, hence T(L) equals T(L') on G.

g.e.d.

(5.15) Definition: If fl,...,f™ are any m functions in C° (X), then
the gradient of fl,...,fM is the transformation G of the set of all

contravariant tensors of order m into c“’(x) given by
o(L)=L(f},...,£m)
for every contravariant tensor L or order m.

If xal,... ,xan are coordinates of a coordinate neighborhood Ua s

then we write the gradient of xfl ,...,x;'m as Gall" 'im.

(5.16) Lemma: If fl,...,fm are any m functions from c°°(x), then the

gradient of fl,...,i‘m is a covariant tensor of order m on COO(X).
The proof is straight forward and need not be given here.

(5.17) Definition and Lemma: If T and T' are covariant tensors of the

same order m on an infinitely differentiable manifold with underlying
co
space X and if f and f' are from C (X), then we define the operators

£1=Tf, T+1', and T - I' by
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(ED(@)=ENLY + . ..
(T+T)(L)=T(L)+T* (L)
(T - T')(L)=1(L) - 2'(L)

for al1 caﬁ‘ﬁ%ﬁé’a;fiant tensors L of order m. These operators are co-

variant tensors of order m.

The proof that these operators are covariant tensors of order m

follows directly from the definitions.

(5.18) Definition: A covariant tensor T of order m on an infinitely
differentiable manifold with underlying space X "vanishes on a subset
Y of X wif _‘??'(L) vanishes at every point of Y for every contravariant

tensor L or order m.

Two covariant tensors of the same order "are equal on Y " if their

difference vanishes on Y.

(5.19) Theorem: If T is a covariant tensor of order m on an infinitely
differentiable manifold with completely admissable coverings { Vb s b in B;
and { Wb s b in B} such that W, contains Cl(Vb) and if the contravariant

tensors Nbi .

1--in
and T' given by

are defined as in (5.6), then the covariant tensors T

T' _-:3 T(Nb )G il'-.im
- . — il.ocjm Q,(b)
iy im=1

are equal on Vb.

Proof: Let L be any contravariant tensor of order m, then L is equal

to Z I..(:scai'1 ,...,x:m)l\]bil iy on V,, where a=@(b). Therefore
iyim
] Ty i i
... ) o= 1,...,xim b
EZL(X& 3 QXa )N 11..‘ m ZL(xa 3 ,xa ) :I'— (N il..oim)
=2 0% e f1im =iy

--olm



is equal to T(L) on V, for every L. Therefore T is equal to T' on V.
g.e.d.

(5.20) iCoroliary: Under the hypothesis of (5.19) for any contravariant
tensor L of order m the functions T(L) and 2 (%, im)L(x¢(b) seee

m 11 3 1---
...,X¢(b) ) are eq\lal on Vbo

(5.21) Definition: We call the functions E(Nbil...im) as given in
theorem (5.19) the "‘il...im'coordinates of T in the coordinate system

xd(b)l"°~’X¢(b)n on the meighborhood Vi, ".
(5.22) Theorem: Under‘ﬁﬁe hypothesis of (5.19)

Iy, )= Z<ax.°1/ax e @my M iz
. h 3111 Jyiseedpy

on the intersection of ¥ andVVb. where a=#(b) and a'= g(b').

Proof: Set

3 3 ' 3 i m
, (D xa0 2/ %7 1) (3 %, ™/ x, ™ (wp) on Uy
Sy Im
ila-cim-‘
0 on X-W,,
then £97 0™ ig in ¢"O(X). Set
i1°lm
L = 2 f ’Jm th. ) R

.1 lm 31..
‘11 Jm 1 1 Im

then on the intersection of v, and Vb,
L, e 8= (9 £1/I x11 )+ (D £/d xIm),

s b ) : = b .
Hence L is equal to N i1-+im on VpAVy,s i.e. T(L)= T(N 11“,1n1) on

V.

n
b bef ‘but on Vbn Vv

bt
20)= Z (xg(pry 2/ xgpil 1o (g ™/ mgpp iz ;

37 9 1 im

qe.e.d.

).
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(5.23) THeorém: Let {Vb,binB} and-['ﬁ'b, b in B} be completely ad-
missable coverings of an infinitely differentiable manifold with under-
lying space X. If to‘evéry coordinate system xﬂ(b)l""’xﬁ(b)n we
assign (n)? functions fb ..1, from ™2 (X) such that

b =5 bt J1 1
1= 2? S vt (9ﬂ¢<bv /9 540051 V(D g0y ™/ xgy ™

917" Im :
on Vbr\Vb,, then there is a covariant tensor T on X such that, for
every b in B, T is equal to :i_f iqeeeiy Q¢(b) “Im o on Ve

i7-4m 1

Proof: Let L be any céntfavariapt tensor of order m. If p is any point
of X and if Vy is any element of {Vb’ b in B} which contains p, then we

assign to p and b the value r(p,b) which is the value of the function

2.

11 '.lm
then the function r(p,b) on ¥ is equal on Vi, to a function from C (X)

im . .
ig.eaig L(x¢(b) TERFLI)) ) evaluated at p. If b is fixed,
It is easily shown that r(p,b) has the same value for every b such that
p is in Vi, i.e. r(p,b) determines a single valued function r(p) on X.
Since r(p) is equal to some element of COQ(X) on every V,, then r(p)

[~}
is in C (X).

The transformation L-~r(p) is a covariant tensorj for if

L'—r'(p), then we see from above that (fL+f' L')—~>f r(p)t £' r'(p).

q.e.d.

(5.2l4) Lemma: A covariant temsor T on an infinitely differentiable
manifold with an underlying space X vanishes at a point p of X:
(i) if and only if p is in some completely admissable neighbor-
hood Vb such that all coordinates of T in the coordinate sys-
tem xﬁ(b)l""’xﬁ(b)n vanish at p.
(11) 4if and only if all coordinates of T in all coordinate sys—

tenms xﬁ(b)l”"’%ﬁ(b)n such that Vb contains p vanish at p.



(5429). kemma: If F is:a _gompacht subset of the underlying space X of

an infinitely differentiable manifold and if k is any positive integer,
then there is a covari;n£ ténsdf of order 2k which does not wvanish aﬁ

any'point of F.

Proof: Let {V,, b in B} and {W_, b in B} be completely admissable re-
finements of the coordinate covering'{Ua, a in A} of X such that Wy
contains CL(Vy). Letiﬁg be the functions defined in (L.14). Let
Gple++1 be the gradient of xgy)' taken 2k times. Let Vi,...,V, be a

finite covering of f;vthen'2}=' u.Gil"‘l

i=1

is a covariant tensor of

order 2k.

If p is any point of F in some Vivs then at the point p

a3y 2k~ it ,
W)= u e

Simce the first term is one at p, then T does not vanish at p. Hence

F
it follows that T does not vanish at any point of .

)1))2k-k(non—negative terms).

gq.e.d.

Since the covering {W%, b in B} is neighborhood finite, we can show

thatj%gm&&bl-'°1 determines a covariant tensor of order 2k which does
vanish at any point of X.
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Chapter. 6. Rings of P'e;y,;gna‘aoms

o In th:Ls chapter we w:.ll construct rings from the covariant and con-
travarlant tensors over an 1nf1n1tely dlfferentlable manifold and show
that these rings under certa:.n conditions determine the underlying space
of the manifold. %

(6.1) Definition: "The ring of contravariant poly-tensors" over an in-
finitely differentiaﬁie manifold with an underlying space X is the ring
(¢™(X); R,0) as defined in (1.20) where R is the set of all real num-
bers. The elements of this ring are t?fxe forms n%—- oLm where L, is either

a contravariant tensor of order m or the zZero operator, a tensor of
order O is r;:y,pzfe;;nt of G (X), and almost all L are the zero oper-
ator. The ring (C (X); R,k) is known as "the k-section of the ring of

contravariant poly-tensors". We observe that these rings are not com-

mutative.,

A poly-tensor Zrn L, is sald "to vanish on the subset Y of X " if

every Lm vanishes on Y.

In this chapter a contravériantr tensor L of order m will be ident-
ified with the poly—tensorzklnk for which I, is the zero operator for
all k#m and for which L = L,

(6.2) Theorem: If the product of two contravariant poly-tensors in
(c°°(x); R, O) vanishes at a point p of X, then at least one of the
i‘aci}ors must vanish at the point p. If one of two poly-tensors van-

ishes at p, then their prodﬁcts vanish at p.

Proof: If L and L' are two contravariant tensors of order m and m‘
respectively neither of which vanish at the point p, then their product

LL' does not vanish at p. For if L and L' do not vanish at p, then
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there @re: functions £3, .1 ,£® and £, ., #™0' guch that L(fl,...,")

aind B, fRYY gb not vanish at p. Hence LL'(fL,...,f™M') does
not vanish at p and LL' does not vanish at p. If one or both of the two
tensors is of order zero, i.e. is a function from COQ(X), then the pro-

duct still does not vanish at the point p.

If one of two tensors of any order vanishes at p, then obviously

their product vanishes at p.

Suppose i;k Ly and Zk L'y are poly-tenosrs neither of which van-
ishes at p. Let L, and L' Dbe the tensors of lowest order in the respec-—
’ (e tensor of order m+m’)
tive poly-tensors which do not vanish at p, then the m#m' term,of the
poly-tensor (ka L(Z | L') consists of the product LgL',, plus pro-
ducts which vanish at p. Therefore the m+m!' term of the product does

not vanish at p, and the product itself does not vanish at p.

If both ¥ ) Ly and 2y L'y vanish at p, then every Ly and L'y van-—
ishes at p and every term of the product of the two poly-tensors van-
ishes at p. Hence the product of these two poly-tensors vanishes at
the point p. This statement still holds if we change the order of
multiplication.

q.e.d.

Since for k Z0, the ring (C°(X); R,k) is a subring of {C°°(X); R,0)
we have:
(6.3) Corollary: The product of two contravariant poly-tensors in
(> (X)5 R,k) vanishes at a point p of X if and only if at least one of

the factors vanishes at the point p.

{(6.4) Theorem: Let X be the underlying space of an infinitely diff-
erentiable manifold, If for any poly-tensor :?m Lm in (CGO(X); R,yk),

we define Z(Efm Lm) as the set of all points on which the poly-tensor



vanishes and the support S(:Em}m) as the closure of the complement of
z(2 mbp)> then the set of all poly-tensors in (c®2(X); R,k) with com—
pact supports will be a subring (C (X); R,k)* of (C (X); R,k) and

will be compact associated with the space X.

Proof: We first observe that (C°°(X); R,k)¥ is a subring of

w . ~

(C 7 (X); Ryk). It is easily shown that if two poly-tensors vanish at
a point, then their difference wvanishes at that point. Therefore we
can show that the support of the difference is contained in the union
of the supborts of the two given poly-tensors, i.e. the support of the

difference of two poly-tensors with compact supports is compact.

From (6.3) we can éasiiy show that the support of the product of
two poly—tenéors is in the intersection of the supports of the two
giVen poly-tensors. Therefore {;he product of two poly-tensors with

oo
compact supports has a compact support. Therefore (C (X); R,k)*

is a subring of (CT(X); R,k).
oo * .
We will now show that (C ‘(X); R,k)" is compact associated with X.

(2.1,1) The zero, 0, of (C%°(X); R,k)* (or of (C7°(X); R,k)) is
the poly-tensor, 2 Lo all of‘whose térms Ly are the zero tensor. If
ZmLm'-' 0, then every L vanishes on all: X,lhence 2(0)=X. Likewise if
Z(f ﬁim) =X, then every L must vanish on all X and L is the zero ten-
“sor, i.e. Zml&n": O.

('2 .1,ii) From (6.3) we have that the product of two poly-tensors
vanishes at a point if and only if at least one of the factors vanishes

at this point. Therefore for two poly-tensors iml‘m and ZmL' n e have

20(7 gl Z plt'p)) = 2(Z L) v 2(Z (L ).
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From €2.%,%) we hawe - 7+: -

A

‘(Eégﬁ)(imm‘r;);“d? L'ilf and only if Z(F L )Va(Z, L) =X

{2.1,1i1) From (5.12) for any positive integer m and any point
P of X there is contravariant tensor of order 2m which does not vanish
at p. If F is any clased .set of X and if p is a point of X - F, then
there is function f with a compact support which vanishes everywhere
on F but not at p. If L,y is a contravariant tensor of order 2k which
does not vanish at p, then fLy is in (GOO(X); R,k)* and F is in Z(fLoy)

but_p is not,

(2.16,iv) let r =§mLm and r! =2mL‘m be any two poly-tensors in
(c°°(x); R,k)*. The ideals A(r) and A(r') consist of all poly-tensors
with compact supports which vanish on S(r) and S(r') respectively.
Suppose the ééﬁs S(r) and S(r') are not disjoint. Since S(r), S(r?'),
and their union are compact, there is a poly-tensor in (CDO(X); R,k)
which does not vanish at any point of the union of S(r) and S(r').
Multiplying this poly-tensor with a function in C°°(X) with a compact
support which does not vanish at any point of S(r) or S{(r'), we obtain
a poly-tensor s in (COO(X); R,k)*'which does not vanish at any point of
S(r) or S(r'). Since S(r) and S(r!') intersect, there is no poly-tensor
t such that (t-é) vanishes on S(r) and (t-0)=t vanishes on S(r*').

Hence r and r' are not disjunct.

Suppose S(r) and S(r') are disjoint. There is a function f in
C°°(X) which is one on S(r) and vanishes on S(r*). If s and 8' are any
two poiy—tensors in (d’o(X); R,k)¥, then the poly-tensor t=fs +(1-f)s®
is also in this ring. But (t-s) vanishes on S(r), i.e. (t-s) is in
A(r), and (t-s') vanishes on S(r'), i.e. (t-s') is in A(r'). Thereforse

r and r' are disjunct.



.7 (2i163v,b) By definition the support of every element of
(qu(x)i R,k)¥* is compact. If P is any compact subset of X and if p is
& point in X-F, then there is a function f in c°°(x) with a compact
support S(f) such that S(f) contains F but not p. From (5.12) there
is a contravariant tensor Lo of order 2k which do;§f§anish at any point
of F, i.e. F is in S(L is in (CT°(X);5 R,k)%,

The poly-tensor sz

2k)' k

and S(ngk) contains F but not P.

ge.€.d.

{6.5) Cofﬁliagz: If the underlying space X of an infinitely differ-
entiable manifold is compact, then the ring (CaD(X); R,k) is associated

with the space ¥ for any k=0, ly.ae. «

This corollary follows immediately; since if X is compact, then

(COO(X); R,k)==(C°a(X); R,k)* and compact association is association.

As an immediate consequence of (6.h), (6.5), (2.2h), and (2.25)

we have:

(6.6) Theorem: (a) If X and Y are the underlying spaces of two infin-
itely differentiable manifolds and if the rings (GOO(X); R,k)¥* and
(COQ(Y); R,k)* of poly-tensors with compact supports are isomorphic for
any k=0,1,2,+... » then the spaces X and Y are homeomorphic.

(b) If X and Y are compact and if the rings (C™(X); R,k) and

(Cm (Y); R,k) are isomorphic for any k=0,1,2,... » then the spaces X

and Y are homeomorphic.

Tt should be noted here, that if k »0, then the rings (COO(X); Ryk),

oo oo
and (C (X); R,k)¥ do not contain any elements of the ring C (X).

We will now construct rings of covariant poly-tensors and show that

for such rings that a theorem similar to (6.6) holds.



(6.7)- Definition and 'Lemmat If T and T' are covariant tensors of order

m-and m', respectively, on an infinitely differentiable manifold with
underlying space X, thén"":tﬁere is exactly one covariant tensor Q of

order m+m' such' that
Q(LL' )= (T(L) )(T')L*))

for every contravariant tensor L of order m and L' of order m'. TWe

define Q to be the "product T T' of T and T' *®.

Proof: Let Q{Vb’ b in B}and {Wb, b in B}be completely admissable re-
finemer;ts of the coordinate covering of X such that W, contains Cl(Vb).

Let the coordinates of T in Wy be given by the functions £o and

il L ] im
the coordinates of T' be given by the functions gbim tleeeimamt® To

every b we assign the (m+ m')2 functions

b

b. . ;=
hll"‘im-i-m' f

. . gb
llooolm g im"‘l‘_. .il'n"' m!
From (5.722) we can show that on Vi Vgt

B0 g = 2, O xpp1) /D Xy )

. ji"]m

) ‘.m-l- ! i
e (Ixgory /D X ()

m+m’y | b!
h™~ . . .
) Jleeedmem?

From (5.23) there is a covariant tensor Q such that

_.b i Imem?
S=m"y oy, o0 %)

on Vi, for every b in B. By using (5.19) and the definition of the

gradient tensor one can show that
ALL') = T(L)- T (L)
for every contravariant tensor L of order m and L' of order m'.

We will now show that this tensor Q is unique.
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. Let the contravariant tensors ND . be defined as in (5.6).

i iy
l..o
From (5.7) and (S 10) any contravar:.ant tensor L" of order m+m' is
1memt b :
equal to th n 2 e x Iy P . N°, .
qQ e tenso;' L_ L(Xa seeesXy ) 19 eeedn G sessdgen!

T g lgeme
on Vb where a= ¢(b). Suppose Q and Q‘ are covariant tensors of order

m+m' such that
Q(LL')= Q'(LL") |

for every L of order m and L' of order m', then it follows that
= 3t L

for every b, i.e. Q=Q' on every V, i.e. Q=Q' on all X.
g.e.d.

We observe that the product of two covarianttensors is not

always commutative.

(6.8) Definition: We define a covariant poly-tensor on an infinitely

differentiable manifold with underlyihg space X to be a formal sum
oo

2. T where T is either a covariant tensor of order m or the zero oper-
m=-o~a -mn .

ator and almost all T, are the zero operator. By a covariant tensor of
I‘Ioh Zero

order zero we mean amnyglement of C (X) Vie define the sum of two co-

variant poly-tensors Zm T ma.ndfm T''.n to be the poly-tensor 2_,."(3“+_‘]_2‘_'m).

The product (Z m_‘I_‘m)(i nl'y) of these two poly-tensors is the poly-tensor

§m I"m such that:

L. 1T 4 1
I+ T TIHT, T



By T £ we mean f T.-

M By ‘the lower degree of a covariant poly-tensor Zm'_r.m we mean the

order of the non-zero T of lowest order.

' Wen aehbte the set of all covariant poly-tensors on X by T(X,0)
and the set of all covariant poly-tensors whose lower degree is not

less than k by T(X,k).

{6.9) Theorem: If X is the underlying space of an infinitely diff-
erentiable manifold, then t he sets E(X,k) for kx=0,1,.. are rings. If
k£ k', then T(X,k') is an ideal in T(X,k).

The proof follows directly from the definitions.

(6.10) Definition: Let X be the underlying space of an infinitely
differentiable manifold X. We say that a covariant poly-tensor (2 mzm)
"vanishes at a point p of X" if every T, vanishes at p. By Z(2 T ) we

mean the set of all p at which (Z T ) vanishes.

(6.11) Theorem: The product of two covariant poly-temsors 2 and

T
, , m—-m
_ Tt of T(X,0) vanishes at a point p of X if and only if at least

one‘oit‘ the”two given poly-tensors vanishes at p. Hence
2 Z g (T T )= 2(2 T )T T ).

Proof: Suppose T and T' are covariant tensors of orders m and m' which
do pot vanish at p, then for some contravariant tensors L and L' the
functions T(L) and T'(L') do not vanish at p. Hence (T T')(LL') does

not vanish at p-and T T' does not vanish at p.

If neither of two functioms vanish at p, then their product does
not. If neither a function nor a covarianttensor wvanish at p, then

their product does not. On the other hand if a covariant tensor or a

13
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f§n¢tiah vanishes at p, thénhitﬁis:eaéily shown that its product with

b :
a function or a covariant tensor must vanish at p.

) Suppose neither of two covariant poly-tensors 2 T and 5 T'
vanish at p. Let Ty and TY,, be the terms of lowest order which do
not vanish at p, then the k+k' term of the product (2 T )(Z T' ) is
Iy T'y1 plus terms which vanish at p. Hence the k+k' term of the pro-
duct does not vanish at p and the product of these two poly-tensors does

not vanish at p.

On the other hand if one of the two poly-tensors vanishes at p.
then the product will alse.

q.e.d.

Since for every compact subset of the underlying space of a man-
ifold there is a covariant tensor of order 2k which does not vanish on
this set, then using (6.11) we can show in the same manner as we did

for contravariant poly-tensors that:

(6.12) Theorem: If X is the underlying space of an infinitely diff-
erentiable manifold, then for every k the set T(X,k) of all elements
of I(X,k)”with compact supports is a ring and is compact associated

with X, If X is compact, then T(X,k) is associated with X.
(5;13)} Theorem: If X and Y are the underlying spaces of two infinitely

differentiable manifolds and if for some k the rings T(X,k)* and

T(Y¥,k)* are isomorphic, then the spaces X and Y are homeomorphic.

If X and Y are compact and if T(X,k) and T(Y,k) are isomorphic for

some k, then the spaces X and Y are homeomorphic.
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Again we observe that 1£ k is greater than zero, then the rings

1'* ]31' \?

I(x,x) and T(X k) do mot contaln elements of C%°(X).

In an mpdifferentiable manifold a contravariant vector (or vector

field) may be defined as a transformation L:CT-»C™~ -1 such that

L(f)-—--iz (2 £/ 9x1)L(xi)

in every coordinate neighborhood where Ck, (k€ m), is the ring of

k-fold continuously differentiable functions on the manifold. Higher
order tensors may be defined in a similar way. One may show that eVery
pa;r of disjoint closed sets has a characteristic function in C™. One
may also show that for every compact set and every positive integer k
there is a contravariant tensor of order 2k which does not vanish on this

set,

After defining the rings of contravariant poly-tensors, then one
can show that for any k the ring of all poly-tensors with lower degree
not less than k and with compact supports determines the topology of
the manifold. If the manifold is compact, then its topology is deter-~
mined by the ring of all poly-tensors of lower degree not less than k

for any k.

A similar theorem for covariant tensors on an m-differentiable

manifold can be given.
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Chapter 7. The Lie Rimg of Tangent Vectors and The Grassman Rings

If L and L' are tangéﬁt vectors (i.e. contravariant tensors of
order one) on an infinitely differentiable manifold with underlying

space X, then the transformation L¥L': C  (X)=C (X) defined by
L¥L'(£)=1L(L'(£))

is not a tangent vector, but the operator L#L'-L!# I which we denote
by (L', L) is a tangent vector. We call (L', L) the "Lie product" of
L and Lt,

This product is not associative, but it is distributive with re-

spect to addition and satisfies the following identities:
(L,L)=0,
((L,L'),Lv)+((L*,L"),L)+ ((1",L),L')=0,

and
(L,L1)=(L',L).

These results are proved by CheValley'Ll, PpP. 83-8h] for analytic
manifolds. The proofs are the same for infinitely differentiable man-

ifolds.

The set of all tangent vectors with the operations of addition and
Lie multiplication form a non-associative ring, "the Lie ring of tangent

vectors®.

The question of whether or not this ring determines the topology

of the underlying space is now being investigated.

Another algebraic object constructed on an infinitely differenti-

able manifold is the Grassman ring of contravariant tensors. In the



remainder of the chdpter by Lo L"m',“‘ €tc. we mean contravariant tensors

of order m. By P(n)we mean ‘the’ Bet of all permutations of the first n

By W we meanr W aeting on
integers. By w we mean a representatlve of P(n).n The function e(w)
1s a function on P(n) wh:.ch is 1 if w is an even permutation and -1 if
w is an odd pemutatlon, then e(ww!) =e(w)e(w!). We also define the

following operatorsi -

(7.1) Definition: The operator AW is a transformation of the set of

all contravariant temnsors of order m into itself such that if L'y =

Ap"L,.> then
L (e, .. emy=g (ew(1),,, gwlm)),

It is easily shown that L'y is actually a contravariant tensor. The
operator A, which we call the "alternator" is a transformation of the
set of all m-~order contravariant tensors into itself such that

Am“(l/m')z o(w) Am
we P(n)

The operator A is a transformation of the ring (C“(X); R,1) of
all poly-tensors of lower degree not less than one into itself such

that

A(Z mLm) = Z mAmLm‘

We observe that if m is one, then A is the identity operator.

One may also show that:

)

(7.2) Theorem: The set J of all poly-tensors Z pL, in (C (X); R,1)
. o0

such that A(Z L )0 is an ideal in (C (X); R,1).

For a proof see Chevalley[ 1, pp. lh2-1h3]. The objects which

Chevalley discusses are not contravariant poly-tensors in our sense,

7
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but the proof is valid since it depends-onthe theory of permutation

groups and not on -the gbjects being permuted.

(7.3) ' Definition: ..The residue class ring (C° (X); R,1)/J is the

"Grassman ring of contravariant tensors on X".

If T is a covariant tensor of order m, then the operator

A, "(T)=T' defined by

Tt (L) = T(A" (Ly))

is a covariant tensor of order m. In a manner similar to that used
for contravariant tensors one obtains the "Grassman ring of covariant
tensors" as the ring I(X,l)/J where J is the ideal consisting of all

T su ‘
2 such that A(jfmgm) vanishes

Whether or not the Grassman rings on an infinitely differentiable

manifold determine the underlying space has not been determined.
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Chapter 8. Construction of the Underlying Space of a Manifold from the

Ring of Infinitely Differentiable Functions on the Manifold

In chapter | we showed that the ring of infinitely differentiable
functions on a”maﬁifdid‘ié associated with underlying space; consequently
this ring determines: the underlying space if it is compact. In this
chapter we will 'show that the underlying space of a manifold can be
constructed from the ring of infinitely differentiable functions even if

the space is not compact.

In this chapter by X we will mean the underlying space of some in-

finitely differentiable manifold unless we specify otherwise.

(8.1) Definition: If J is any ideal in the ring C (X), then by
“Z(J)" we mean the intersections of all sets Z(f) for which f is in J.
An ideal J is a "fixed ideal" if the set Z(J) is not empty. An ideal

which is not fixed is a "free ideal".

If the space X is compact, then all proper ideals in G°°(X) are
fixed ideals, and the ideal J is maximal if and only if the set Z(J)
consists of a single point. If the space X is not compact, then there
are free prOpéf ideals. However, we will be able to determine alge-
braically the fixed ideals in 5x°(X). From these fixed ideals we will

construct the space.

(8.2) Lemma: If p is any point of the space X, there is a function f

in C°°(X) which vanishes at p and only at p.

Proof: In (L.13) we showed that if I is a bounded interval in Buclidean
space and if I' is an interval whose closure is contained in I; then
there is an infinitely differentiable function F with continuous deriv-

atives of all orders which is one on I' but vanishes on the complement
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of T.' The function which was constructed is also less than one on I-I'.
The construction of this function is still valid if the interval I' is
replaced by a single point p in I, thenthe function F is 1 at p, less

than 1 at any other point, and vanishes on the complement of I.

With this function F, given any point p in X, we can construct a
function g in C°°(X) which is 1 at p but is less that 1 at all other

points.

The function f=(1l-g) is the desired function.

q.e.d.

(8.3) Lemma: If a function f in G- (X) does not vanishat any point
of a closed set F, then there is a function g in CZ(X) such that feg is

equal tp 1l onF,

E{gg£: Since the space X is normal (L.18), the disjoint sets F and

Z(f) have disjoint neighborhoods U(F) and U(Z2(f)) with disjoint clo-
sures. By kh.lS), there is a function h which is 1 on CL(U(F)) and van-
ishes on CL(U(Z(f))). Define a function g on X by:

(1/f)n on X-Z(f)

o on CL(U(Z(£))).

oo
It is easily shown that g is in C (X), and f-g is one on F.

q.e.d.

(8.4) Lemma: If f and g are functions in ¢®°(X), then f does not van-
ish at any point of S(g), i.e. Z(f) and S(g) are disjoint, if and only if
the residue class f-A(g) has an inverse in the residue class ring

O
C (X)-A(g) where A(g) is the annihilator of g.
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Proof:  The ideal A(g) consists of all functions which vanish on
X+Z(g) hence on S(g). If f does not vanish at anj point of S(g), then
there is a function h in COO(X) such that f+h is 1 on S(g), i.e.

(fen-1) 1s in A(g). Therefore f-A(g) has an inverse in C™° (X)-A(g).

Conversely, if f-A(g) has an inverse in C°°(X)-A(g), then there is
a function h in G®?(X) such'that (feh-1) is in A(g), i.e. £eh~1 vanishes

at every point of S(g). Therefore f does not vanish at any point of S(g).
q.e.d.

(8.5) Definition: If f is in C®°(X), then by H(f) we mean the set of
all functions g in C®°(X) such that f-A(g) has an inverse in the ring

CoO(X)—A(g). 'Wg ordgr‘the functionsof C°°(X) as follows:
£f<Lh if and only if H(£)=2H(h).
We say then that "f precedes h".
‘This ordering is refleXive but is not proper as we will see later.

If an element of C°°(X) has an inverse, then in any residue class

ring its residue class has an inverse. Hence:

(8.6) Lemmas: If £ is a unit (i.e. has an inverse) in C°°(X), then
, oo
H(f)=C (X) and f precedes every g in C“°(X). Since C°?(X) has more

than one unit, the ordering,<, is not a proper ordering.

(8.7) Definition: An ideal J in COO(X) is said to be "bounded" if
there is a function £ in C°C(X) without an inverse in C° (X) such that
f precedes every element h of J. By K(X) we mean the set of all bounded
ideals in C°°(X). An ideal is a "bounded maximal ideal" if it is in

K(X) and is not properly contained by another ideal in K(X).
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By X!-we mean the space (which might be empty) whose points are
the bounde& maximal ideals of K(X). A set F' in X' is closed if there
is an ideal J in K(X) such that every ideal in F' contains J, but no

bounded maximal ideal not in F' contains J.

The space X' which we defined above is determined solely by the

algebraic structure of Cc?(X), hence:

(8.8) Lemma: If X and Y are the underlying spaces of two infinitely
differentiable manifolds and if the rings C°°(X) and ¢®(Y) are iso-

morphic, then the spaces X' and Y! are homeomorphic.
We will now show that the Spaces X and X' are homeomorphic.
(8.9) Lemma: If f and g are two functions in C°°(X); then
Z(£)e 2(g) if and only if f<g.

Proof: From lemma (8.4) and definition (8.5) we see that H(f) is the
set of all functions h in Cao(X) such that Z(f) and S(h) are disjoint.

If 2(£)€ 2(g), then H(f)2H(g) and £f<g.

Suppose there is a point p in Z(f) but not in Z(g), then there is
a function h in G°°(X) which is one at p but which vanishes on a neigh-
borhood of Z(g). For this function h, Z(f) meets S(h)} but Z(g) does
not; hence h is in H(g) but not in H(f) and f does not precede g.
Therefore if f precedes g, then Z(g) contains Z(f). -

q.e.d.

A function £ in C°°(X) has no inverse in G °(X) if and only if

Z(f) is not empty. Hence as a consequence of (8.9) we have:

(8.10) Lemma: The fixed ideals of the ring d’O(X) are the bounded

(=)
ideals. Since there are functions in C (X) which vanish only at a



given point, a bourided maximal ideal is the set of all functions which

vanish at a point.

(8.11) Theorem: TIf X is the underlying space of an infinitely diff-
erentiable manifold, then the space X and the space X' as defined in

(8.7) are homeomorphic.

Ezgg{: The transformation T:X —» X' which assigns to each point p of

X the ideal consisting of all functions which vanish at p is one to one
and onto. If F is a closed set of X and if I is the ideal consisting
of all functions which vanish on F, then Z(I)=F and T(F) is the set of
all bounded maximal ideals which contain I. Hence T(F) is closed and

the transformation T is closed.

Suppose F!' is a closed set in X'. The set P! consists of all
bounded maximal ideals which contain a bounded ideal I, then

Z(I)==T'1(F') which is closed. Therefore Tt is a closed transformation.
q.e.d.
As a consequence of (8;8) and (8.11),

(8.12) Theorem: If X and Y are the underlying spaces of two infinitely
differentiable manifolds such that C°°(X) and COQ(Y) are isomorphic,

then X and Y are homeomorphic.

Suppose X is the underlying space of an m—-differentiable manifold
and CB(X) is the set of all continuous functions on X which have all
derivatives with respect to the admissable coordinates of X up to and
including the m—th order and such that all of these derivatives are
continuous. By methods essentially the same as we used for infinitely

differentiable functions one can show that:
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(i) Every pair of disjoint closed sets in X has a characteristic
function in C™(X).

(i1) The ring CM(X}-4s-associated with the space X.

(1i1) Given any point p of X, there is a function in CM(X)

which vanishes at p and only at p.

With these propertieé’wé can, as we did above for infinitely diff-

erentiable manifolds, show thats:

(8.13) Theorem: If X is the underlying space of an m-differentiable

manifold, then the ring C™(X) determines the space X.

We have observed that if X is a normal Tl space, then the ring
R(X) of all continuous functions on X is associated with X. The first
countable spaces are the normal Tl spaces which have the property that
given any point p of X there is a continuous function on X which vanishes
at p and only at p. By the same method of proof as we used for infin-

itely differentiable manifolds one can show:

(8.1L4) Theorem: If X is a first countable normal Ty (hence Hausdorf)
space, then the ring R(X) of continuous real functions on X determines

the space.

Hewitt [ 3] has defined a hyper-real ideal as a maximal ideal I in
R(X) such that the residue class ring R(X)-I is not isomorphic to the
real numbers R but contains R as a proper subring. He defines a Q
space as completely regular space X such that evéry maximal free ideal
is hyper-real. He then shows that the ring R(X) determines the com-
pletely regular: space X if and only if X is a Q space. He also shows
that any second countable completely regular space is a Q space. From

(8.14) we obtain:

(8.15) Theorem: Any first countable normal Tl space is a Q space in

the sense of Hewitt.
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