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Abstract

Using the theory of pasting presentations, developed in [5], I
give a detailed description of the tensor product on w-categories, which
extends Gray’s tensor product on 2-categories and which is closely related
to Brown-Higgins’s tensor product on w-groupoids.

Immediate consequences are a general and uniform definition of higher
dimensional lax natural transformations, and a nice and transparent de-
scription of the corresponding internal homs. Further consequences will
be in the development of a theory for weak n-categories, since both tensor
products and lax structures are crucial in this.
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1 Introduction

In 1945, Eilenberg and Mac Lane invented categories [15]. In 1967, Bénabou
invented bicategories [4], and he proved that every bicategory is biequivalent
to a 2-category. In 1993, Gordon, Power and Street introduced tricategories,
and they proved that every tricategory is triequivalent not to a 3-category, but
to a Gray-category [20]. In algebraic topology, some weakening is needed in
dimension 3 as well: homotopy 2-types are classified by 2-groupoids [31, 16, 29],
but homotopy 3-types are classified not by 3-groupoids, but by Gray-groupoids
[25, 24, 6].

In order to find out what happens in higher dimensions, and to avoid doing



dimension 4, then dimension 5, etc., I propose to work w-dimensionally from
the start. I think this is the best way to get grip on the complex notion of weak
n-category.

So the first step to take is to start with something w-dimensional which is
strict and known, w-categories [35, 23], and to analyse the structure which in
the case of 2-categories leads to the concept of Gray-category. This structure,
which makes w-Cat, the category of small w-categories, into a monoidal biclosed
category, already has interesting complications, consequences and applications.
A complication is, that the machinery of pasting presentations of [5]
is needed. A consequence is, that it gives higher homotopies [10] in terms of
w-categories. An application is that “w-categories might serve as a model for
concurrency in computing, and tensor products would be important in this the-
ory” [2, 32].

This paper is connected to previous work of Brown and Higgins [10], Gray
[21] and Al-Agl and Steiner [2]. Throughout, I keep close track of the relation
between the results there and here. For one thing, the terminology is different:
what I call an w-category is termed oo-category in [2], and what is called w-
groupoid in [10] I call a cubical w-groupoid, reserving the name w-groupoid for
what [7, 8] call an co-groupoid. For the w-categories of Street [35] I agree with
Verity’s suggestion to call these wT-categories. Another source is [5], to
which the reader is referred for preliminaries on w-categories, pasting schemes
and pasting presentations.

The central idea of this paper is that the tensor product of cubes induces a
monoidal biclosed structure on w-Cat. I sketch how this follows formally from
results of Day [11, 12], the main point being that w-Cat is monoidal monadic
over the category Cub of cubical sets. Implicitly, Brown and Higgins [10] give
the same motivation for the existence of a tensor product of cubical w-groupoids.
There are two disadvantages to the formal approach, though: it doesn’t give ex-
plicit formulae, and using cubes conflicts with globes representing elements of
w-categories [35]. Therefore, the actual approach uses Johnson’s theory of past-
ing schemes [23], thereby making precise the “appropriate composites of faces”
of [2]. Concretely, I give a pasting scheme for the tensor product of two globes
as w-categories, which is used as a basic ingredient in the definition of a pasting
presentation for the tensor product. This gives the desired explicit formulae,
without the need to ever write out composites as in [34]. It also gives formu-
lae for higher dimensional lax natural transformations and for the internal homs.

This paper is organized as follows. In sections 2 and 3 cubes, cubical



sets and the adjunction between cubical sets and w-categories are treated. Sec-
tion 4 explains why the tensor product of cubes induces a monoidal biclosed
structure on w-Cat. Sections 5 and 6 describe pasting schemes for tensor
of and with globes, which are used for the pasting presentation of the tensor
product in section 7. In section 8 some properties of the tensor product
are checked. Sections 9 to 11 deal with the internal homs, and with higher
dimensional lax natural transformations. The final section is on w-Cat as an
enriched category.

Some of the ideas here were announced at the Conference on Pure Mathe-
matics of the University of Wales, 24-26 may 1993, Gregynog, UK.

2 Cubes and cubical sets

A simplicial set is usually defined as a collection of cells together with bound-
ary operations and degeneracy operations satisfying some relations [26]. A more
categorical definition is that a simplicial set is a functor A°? — Sets, where A
is the category of finite ordered sets and order preserving maps between them
[13, 19]. For cubical sets, there are two analoga of the first description, one
without and one with so-called connections [9, 36]. Perhaps for this reason
there seems to be no categorical description of cubical sets available. I intend
to fill part of this gap, by defining a category I" which is to cubical sets, without
connections, what A is to simplicial sets. In fact, I define a cubical set as a
functor I' — Sets, and I show that this definition coincides with the usual one
[9]. Analogous to the simplicial case the objects of T' are called the standard
cubes.

2.1 Cubes combinatorially

Aichison has given an extensive account on cubes [1], from which I will use the
following combinatorial definition of the n-dimensional cube.

Let n be the ordered set {1,...,n} and A = {—,0,+}. Then A, = {z :
n — A} can be thought of as the n-dimensional cube. For example, the three-
dimensional cube can be labeled with elements of A3 as in
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the interior of the cube being labeled by 000.
Some terminology: if x and y are elements of A,, then x is a subcube of y if

for every | € n, z(l) < y(I) in the partial order — < 0 > + on A. The dimension
of z € A, is #z71(0).

2.2 A model category for cubes

I will make the set {n|n € w} into a category I' by defining morphisms mirroring
the behaviour of faces and degeneracies.

Definition 2.1 A morphism f : n — m is a function f* : m — n U {+,—}
such that f*(k) < f*(k') € n implies k < k' and f*(k) = f*(k') € n implies
kE=E. O

This may look a little bit awkward, but something more complicated than
“order preserving” is expected because cubes have opposite faces instead of faces
opposite to a vertex. And this notion is relevant to cubes since a morphism
f :n — m induces a function f: A, — Ay, by

f)(k) = =(f*(k)) if f*(k) €n
= f*(k) otherwise.

This function behaves well:

Lemma 2.2 If f : n — m is a morphism then the induced function f : A, —
A, sends subcubes to subcubes.

Proof. Let x and y be subcubes of A,, and let k¥ € m. Then f(z)(k) =

z(f*(k)) < y(f*(k)) = f(y)(k) if f*(k) € n, otherwise f(z)(k) = f*(k)
f(y)(k). Thus f(zx) is a subcube of f(y). O



Composition of morphisms: let f : n — m and g : m — r. Define

(gof)*(p) = f*(g*(p)) ifg*(p) Em
= g*(p) otherwise.

With this definition, g o f is a morphism n — p: if (go f)*(p) < (9o f)*(¥') €n
then ¢g*(p) and g*(p') are in m and ¢g*(p) < ¢g*(p'), so p < p’. Similarly for
(go f)*(p) = (go f)*(p') € n. The identity on n, denoted id,, is given by

(idn)*(1) = 1.
Proposition 2.3 T is a category.

Proof. Composition of morphisms in I is associative:

(hogo f)*(q) = [f*(g*(h*(q))) ifh*(q) € r and g*(h*(q)) Em
= g*(h*(q)) if h*(q) € r and not g*(h*(q)) € m
= h*(q) otherwise

for both ways of putting in brackets. And it is easy to see that the identity
behaves as an identity should. a

2.3 Generating the model category for cubes

To relate the category T' to the usual notion of cubical sets, I will show that
every morphism is a composite of face and degeneracy morphisms.

Definition 2.4 A morphism f : n — m is surjective if for all k € m, f*(k) €
n. It is injective if for all [ € n there exists k € m with f*(k) = 1. &

An example of a surjective morphism is ¢; : n - n — 1, for 1 < ¢ < n, which is
defined by
(e)*(1) = 1 ifl <i
= 1+1 ifl >q.
An example of an injective morphism is 9 : n —1 = n, for 1 < i < n and
a = %+, which is defined by

o)1) =1 ifl <
o ifl =1
= [—-1 ifl >z

Note that there are the following relations between the ¢; and the 0



(i) 9307 =070, foralli<j<nanda, =%,
(i) eje; = ejejqpr foralli < j <n,

(iii) ;08 = 0fej1 ifi<j foralli, j <mand a =+
=0 e; ifi>j
—idg,  ifi=j,

These relations are checked easily by immediate calculation.

Proposition 2.5 FEvery morphism can be factored as a surjection followed
by an inclusion.

Proof. Given f : n — m, define r = #{k € m|f*(k) € n}. Define morphisms
g:n—randh:r— mby

g*(p) = f*(k) for k the p-th element of m for which f*(k) € n
h*(k) = p if k is the p-th element of m for which f*(k) € n
= f*(k) otherwise.

g is a morphism because if f*(k) = g*(p) < g*(p) = f*(k¥') then k < k' and
so p < p', and likewise for g*(p) = g*(p), and h is a morphism because if
p = h*(k) < h*(k') = p' then k < k' and h*(k) < h*(k') likewise, all these
cases when k the p-th element of m for which f*(k) € n. g is surjective because
for p € r, g*(p) € n, and h is injective because for p € r there exists k € m
with A*(k) = p, namely the p-th element of m. Their composite is given by
(hog)*(k) =g*(h*(k)) = g*(p) = f*(k) if k is the p-th element of m for which
f*(k) € n and (ho g)*(k) = h*(k) = f*(k) otherwise, so indeed f =hog. O

Proposition 2.6 Every surjection is composite of ¢;’s. Every injection is
composite of 05 ’s.

Proof. Suppose f : n — m is a surjection. Then n > m, and if n = m then
f is the identity. So assume n > m, and let ¢ be the first element of n which is
not f*(k) for any k € m. Define h : n —1 — m by h*(k) = f*(k) if f*(k) < i,
and h*(k) = f*(k) — 1 if f*(k) > i. h is a morphism because of the condition
on 4, it is surjective by definition, and (h o &;)*(k) = e} (h*(k)) = f*(k), which
shows that f = h o¢;. Induction on the difference of n and m finishes the proof
of the first statement.

Suppose f : n — m is an injection. Then n < m, and if n = m then f is
the identity. So assume n < m, and let ¢ be the first element of m for which




f (@) ¢ n, say f*(i) = a. Define g : n — m —1 by ¢*(p) = f*(p) if p < i and
g*(p) = f*(p +1) if p > i. Then g is an injective morphism, and f = 9 o g,
induction finishing the proof of the second statement. i

Thus, I is the category generated by the ¢; and the 05 subject to the relations
given above.

2.4 Cubical sets

Definition 2.7 A cubical set is a functor I'°? — Sets. A cubical map is a
natural transformation of such functors. &

Proposition 2.8 A cubical set K is a family of sets K, (n > 0), together
with face maps 0f : K, = K,_1 and degeneracy maps ¢; : K,_1 — Ky, for
every 1 <i¢ <n and o = %, such that

(i) 8?8,[?:35_13? foralli<j<mnanda, =42,
(1t) gicj =ejp1e;  foralli < j<nm,

(iit) Ofe; = €105 ifi <j foralli, j <n and o= =*.
= 8]'819:1 ifi >3
=idg, ifi=j

A cubical map f : K — L is a family of functions f, : K,, = L, commuting
with the face and degeneracy maps.

Proof. Because of propositions 2.5 and 2.6, and the relations between
the ¢; and the 0 in T', which are dual to the ones above. a

The category of cubical sets will be denoted by Sets' " or by Cub, depend-
ing on which viewpoint is taken.

As an example, consider the representative cubical sets, i.e., the standard
n-cubes as cubical set. Define a cubical set Z" by Z"(m) = I'(m,n). Note that
if m > n then all elements of (Z"),, are degenerate. Z" is related to A,: if
A:m — A has A(k) =0 for all kK € m, then (f : m — n) € Z" corresponds to
Ao f* eA,.

2.5 Duality

There are three forms of duality of cubical sets that will be of importance in
the sequel. The first one is the transposition functor T' considered in [10]. For



cubical set X, T(X) has the same elements as X in each dimension but has
its face and degeneracy operators numbered in reverse order. The second one
consists simply of reversing the signs in the exponents of the 9, and the third
is just the combination of these two.

3 The w-categorization of cubical sets and the cu-
bical nerve of w-categories

The standard n-simplex can be given the structure of an n-category: it is
Street’s n-th oriental [35]. This functor A — w-Cat induces, by general cate-
gorical arguments, two adjoint functors between simplicial sets and w-categories:
w-categorization and simplicial nerve.

Analogous to a description of the orientals in terms of pasting schemes [22] I
define a functor from cubes to w-categories, and I describe the induced functors
between cubical sets and w-categories. The w-categorization of a cubical set
is given by a pasting presentation, and the cubical nerve of an w-category is
expressed using realizations of pasting schemes.

3.1 Cubical complexes

To describe the orientals, Johnson [22] uses the notion of simplicial complez.

Definition 3.1 [Cubical analogue of Johnson’s simplicial complexes] A cubi-
cal complez is a finite or countably infinite set K together with a collection K of
maps K — A such that if B € K and B' : K — A satisfies B'(k) < B(k) in the
partial order — < 0 > + on A for all k € K, then B’ € K. A cubical complex is
oriented if K is linearly ordered. O

An oriented cubical complex generates a cubical set whose non degenerate
elements are the same as the elements of the complex.

An example of an oriented cubical complex is (w, Afj), where Afu consists of
the finite dimensional maps w — A. This cubical complex, and sometimes also
the cubical set generated by it, will be called the w-cube. The standard n-cubes
can also be seen as cubical sets generated by oriented cubical complexes.

3.2 Pasting schemes for the w-cube and for the n-cubes

In the simplicial case, a particular simplicial complex is made into a pasting
scheme by taking odd faces in the beginning and even faces in the end of a cell.
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In the cubical case, I will do the same, but for a different way of expressing and
positioning odd and even faces. This will be done such that the direction of the
cells is the same as in the oriented cubes of [1].

Let z be an i-dimensional element of the w-cube, and let B € A;. Define
rg(z) : w — A by

re(z)(k) = (k) ifz(k)#0
= B(l) if k is the [-th element of z~1(0).

Write bg(z) for rg(z) if for all I € i, B(I) # 0 implies B(l) = (-)!, and ep(z) if
for all | € n, B(I) # 0 implies B(I) = (—)"*1.

Consider the graded set Af. Define relations E and B on Af by (z,y) € E;-
for z € (AL); and y € (AL); if and only if there exists B : i — A such that
y = eg(z), and (z,y) € B; if and only if there exists B : i — A such that
y = bp(x).

Ai, is a loop-free pasting scheme, since it is the same pasting scheme as
considered by Kapranov-Voevodsky [27].

Taking n instead of w in the above makes A, into a well-formed loop-free
pasting scheme, because it can be viewed as a well-formed subpasting scheme
of Af. T will need domains and codomains of its cells.

L
L

Lemma 3.2 For (m + 1)-dimensional © € Ay, sm(R(z)) = U{R(rB(z))|B €
A1, dim(B) =m, rg(z) = bg(z)}, and dually.

Proof. According to [23, Proposition 7] sy (R(z)) = R(Bp(z)), which is
exactly the right hand set above. a

In figure 1, the pasting scheme Aj4.

3.3 Cubes and w-categories

The morphisms ¢; and 9 in T' induce w-functors ¢; : P(A,) — P(A,_1) and
0¥ : P(An—1) — P(A,) respectively, where P(A) denotes the w-category of
components of the pasting scheme A [23], as follows.

Define a realization (A, f;) of A, in P(An—1) by fj(z) = R(zo(e;)*). Because
P(Ap—1) is considered one sorted this could also mean an identity on this, to get
its dimension right! It is an identity exactly when z(7) = 0, because ¢; erases
the i-th entry. Assume (A,, f;) is m-appropriate, I will show it is (m + 1)-
appropriate. In case (1) = 0, $;(fm+1(2)) = $m (idr(zo(e;)+)) = R(z o (€:)*),

11
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Figure 1: The four dimensional cube as a pasting scheme
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and

f(sm(R(z))) =
= U{R(rp(z))|...} by lemma 3.2
= UWH{fm(re(z))|...} because f is the m-extension of (A,, f;)

= U{R(ra(z) o ()")] .- .}

All these are identities except when rp(x)(i) # 0, in which case it is R(z o (¢;)*).
So as elements of P(Ap_1), $m(fme1(z)) and f (sm(R(x))) are equal. In case
z(1) = £ one sees that for all B, rg(z o (¢;)*) = rp(z) o (g;)*. This, together
with lemma 3.2 and that f is the m-extension of (A, f;), proves in a similar
way that in this case sp(fm+t1()) = f (sm(R(z))) as well. Thus indeed (A,, f;)
is appropriate.

Analogously, one defines an appropriate realization (A,_1,g5) of A, in
P(An) by g5(z) = R(z o (32)°),

These induced w-functors ¢; and 95* satisfy the same identities as in I" because
of the identities there and because the induced w-functors extend (A, f;) and
(An—1,9;). Thus, there is a functor Q@ : T' — w-Cat, defined on objects by
9(n) = P(A,). Q(n) could be termed the n-th g-bical oriental, or even the n-th
qriental.

3.4 w-categorization

The functor @ induces a functor IIp from cubical sets to w-categories, which is
the left Kan-extension of Q along the Yoneda embedding T' — Sets™ = [30]. Tt

can be given by
n
- [ .- o),

where the coend is in w-Cat. A more explicit description of IIp(X) is by the
pasting presentation (Gy,Ry).

For X a cubical set, generators in Gy in dimension n will be (A, £;) for
x € X, where the elements of A, will be labeled by the corresponding faces of x,
i.e.,, B € A, will be labeled by X (B)(z), the restriction of z along B considered
as a map Agim(B) — An. Note that it is not required that z is non degenerate!
These are indeed generators because dom(A,) is a generated pasting, the cells
all being labeled by generators.

Relations in Ry in dimension n will come from degeneracies. I want to say
that a degenerate cube is equivalent to an identity, but in this I have to use
lower dimensional relations. So the approach will be inductively.

13



Consider the labeled pasting scheme (A1, £5¢), where £ is equal to £, (,)
except that the top-dimensional cell is labeled with the formal identity id,
instead of with ¢;(x). Consider also the labeled pasting scheme (Ay 1, £%),
where £¢ differs from £e,(z) in that cells labeled ¢;(z)|p with B(i) = 0 in the

latter, are labeled id””'a +5) in the former. It would make no difference to take

idx‘af(B) because of the cubical identities. So for example (A3, £3,) is

—Fp ————— ++p —tp ———> ++»
id44 idy 4
/ 300, / \\ / \d Jidos \\
id
——p ——————>+—b {idyo ++e —3% Jid—o _+e ——t+e
i \d — 00c
id\ ¢1d0, i +\ / g \ / Q /
——e > +—¢ ——e—> +—¢

where the e and b subscripts distinguish different cells with equal labels.

Lemma 3.3 Suppose that for n' < n (A, £5) is a generated pasting, that
it is defined to be related to (An’,gsi(w))7 and that_with these relations in all
dimensions up to n' both are equivalent to (Apr,L%). Then (Api1,£5) is a
generated pasting, andl if it is defined to be related to (Apy1, £¢;(z)) then both are
equivalent to (Api1,L%).

Proof. To prove that (A,11, £5) is a generated pasting, I need to show that
its domain is equivalent to (A, £;). For example,

—tp ———++p

e S

dom(Ag, 2&(00)) = ——b—> "+ tte

and

14



should be equivalent. By adding identities to A, in the right places, first high
dimensional ones, then lower dimensional ones to make the higher dimensional
ones in the form of cubes, (A,, £;) can be seen to be equivalent to a generated
pasting with pasting scheme dom(A,1). Then identities can be replaced by
degeneracies, first low dimensional ones, then higher dimensional ones, because
then the relevant subpasting schemes are correctly labeled. The result is exactly
dom(Ap41, £5') because the position of the inserted identities is such that they
end up in the same position as their corresponding degeneracies. Details, such
as full replaceability and full insertability at each stage of this process, are taken
for granted.

It is possible to define the relation as claimed since the pasting schemes are
equal and the labelings coincide in lower dimensions.

The equivalences hold since again identities can be replaced by degeneracies
from low dimensions up. O

So relations can be defined by requiring £.,(,) to be related to (Any1, £5)
for every =z € X.

Proposition 3.4 The pasting presentation (Gx,Rx) 18 a pasting presenta-
tion for IIp(X).

Proof. w(Gyx,Ryx) and IIp(X) satisfy the same universal property, as can
be seen from the coend description. a

For the representative cubical sets Z™, I will make no notational distinction
between the cubical set and its w-categorization, as usual.

3.5 Cubical nerve

The cubical nerve of an w-category C is given by

w-Cat(—,C)

ree w-CatP Set.

It is functorial in C, and this functor Nr is right adjoint to IIr. The existence of
such a right adjoint follows from Freyd’s adjoint functor theorem [30] since the
standard cubes form a generating set of objects of Sets™ *. Using the description
of Q(n) in terms of a pasting scheme,

Np(C) w-Cat(Q(n), C)

= {(An, fj)|f; is an appropriate realization of A, in C}.

15



The cubical operations on Np(C) are induced by the w-functors ¢; : P(A,) —
P(Ap—1) and 0 : P(Ap—1) — P(An). More concretely, for (Ap—1, f;) an appro-
priate realization of A,,_1 in C, (Ay,&;(f);) has ;(f);(x) = fj(x o (;)*), which
defines an appropriate realization of A, in C because of the formula for ¢; as
an w-functor P(A,) = P(Ap—1), and for (Ay, f;) an appropriate realization of
Apin C, (Ap—1,07(f);) has 02 (f);(x) = fj(x o (05)*), which defines an appro-
priate realization of A,,_; in C because of the formula for 0 as an w-functor
P(An-1) = P(Ayn). This also implies that 97*(f); = fjlox, so a face of an el-
ement of the nerve is the corresponding face of the composable diagram. For
a related approach, which also gives a description of a category of cubical sets
with structure making the adjunction an equivalence of categories, see [36].

4 Existence and uniqueness of a monoidal bi-
closed structure

That the tensor product of cubical sets induces a monoidal biclosed structure
on w-Cat was already remarked in [2], and is analogous to the case of crossed
complexes [10], which makes use of cubical w-groupoids as an intermediate stage.
As noted there, this works since “w-Gpd is an equationally defined category of
many sorted algebras in which the domains of the operations are defined by finite
limit diagrams. General theorems on such algebraic theories (see [17, 18, 28, 3])
imply that w-Gpd is complete and cocomplete and that it is monadic over the
category Cub of cubical sets”, and because presentations can be used. Although
it is the essence, this is not the whole story. Using methods of Day [11, 12], I
show that the monoidal biclosed structure on cubical sets [10] is in fact the
extension of a tensor product on I', and I sketch how pasting presentations can
be used to transfer this extension to w-categories, the main point being that
the monad for w-categories is monoidal. Details are omitted in this last step
since in sections 5 to 11 I will give a completely independent proof of the
existence of a monoidal biclosed structure on w-Cat satisfying ZP ® 77 = TP+4,
by describing it explicitly. The uniqueness of such a structure gives that my
description is indeed of the monoidal biclosed structure on w-Cat induced by
the tensor product of cubes.

4.1 Monoidal structure on T’

Addition of natural numbers gives I" the structure of a strict monoidal category:
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let mn=m+nandlet I =0 =@. To make ® into a functor I' — T', define
fRg:men—m'®@n!, for f:m—m'and g:n —n/, by

(f®g9)*@ = @ ifp<m
= g*(p—m)+n ifp>mandg*(p—m)eEn
= g*(p—m) otherwise.

It is easily checked that f ® g is indeed a morphism in T', and that id, ® id,, =
idnen-
Define two morphisms 7r1[, :ptg—pandmy:p+q—¢qginl by

[
7Tp Ep+10...0Ep4q
71'; = ¢€10...0¢q,
———
P

where the ¢; denote morphisms in I'. These will be used later.

4.2 Induced monoidal biclosed structure on cubical sets

Because of [11], the above monoidal structure on I' induces a biclosed monoidal
structure on the functor category Sets'”" = Cub.
For cubical sets X and Y, their tensor product is

XQV = /m’ﬂ(X(m) « Y (n)) - Tmn.

The unit for the tensor product is Ip(I) = Z° The internal homs can be
described by
Hom'(X,Y) = [ Sets(X(n),¥(n&-)

n

and
Hom'(X,Y) =/Sets(X(@),Y(—®ﬂ)).

n

Writing out the coend for the tensor product in elementary terms, this
gives the same description as in [10]: if K and L are cubical sets, then (K ®
L)n = (Ipy g=n Kp X Lq)/~ where ~ is the equivalence relation generated by
(ery1(z),y) ~ (z,e1(y)) for z € K,, y € L, ,_1. The equivalence class of (z,y)
will be denoted by x ® y. Define face and degeneracy maps by

Fz®y) = (z)ey f1<i<p
@07 ,(y) ifp<i<n
g(r)@y ifl1<i<p+l1
= zQ®¢c py) fp+1<i<n.

gi(lz®y)
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In particular, ep41(z) ® y =z Qe1(y) for all z € K. K ® L is a cubical set.

The description of the internal hom in [10] can be obtained by writing out
the end for the left internal hom, which fits nicely with the use of the left path
complex there.

4.3 Existence of a monoidal biclosed structure on w-categories

The category of w-categories is monadic over cubical sets, and the corresponding
monad M is the endofunctor induced by the adjunction Il 4 N, so

M) = w-Cat(Q(r), [ X+ Q)

with multiplication induced by the counit of the adjunction. The point is that
this monad is monoidal, i.e., there are cubical maps M : M(X) ® M(Y) —
M(X®Y) and M°: M(Z°) — Z° with respect to which the multiplication and
the unit of M are monoidal natural transformations [12]. To describe these maps,
however, the structure of w-categories is essential, and as such it is necessary
to make use of pasting presentations, analogous to the use of presentations of
cubical w-groupoids in [10], and analogous to the case of modules referred to
there.

To give a cubical map M(X) ® M(Y) - M(X ® Y) amounts to give an
w-functor IIp(M(X) @ M(Y)) — IIr(X ®Y). This in turn corresponds to a re-
spectable family of realizations (G y(x)ga(v), ¥i) in IIr(X ® Y) of the pasting
presentation (G (x)em(v) Bm(x)em(y)) described in section 3. To define
such a family of realizations, consider a generator ¢ = (Ap, fi) ® (Am, f}) of
(Cux)emyy Buxyomy)), so fi(z) € Ip(X) for every z € An, say repre-
sented by (Aj ., £.), and similarly for fi(2") € IIr(Y'). To describe p;(c), take
for every ay, € As, and ap , € Ap i labeled by x5, € X, and yp » € Y, a
generator (Apyq, 2xf,z®yf’,z’> in Ip(X ®Y). For fized af ., the cells ¢, @ ysr
can be composed using any way of composing Ay 4, to determine the order and
the directions of composition. The resulting composites can then be composed
using any way of composing Ay x,. The resulting composite is ¢;(c). Details,
such as what to do with identities, the exact way of composing, that this is inde-
pendent of the chosen order of composition, and that this family of realizations
is respectable, are taken for granted.

Proposition 4.1 The monoidal biclosed structure on cubical sets induces a
monotdal biclosed structure on w-Cat.
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Proof. Well, to prove this I “only” need to go through [12, §4], and check all
the requirements of the propositions there. But all of them are immediate from
either the monoidal biclosed structure on Cub or from completeness of Cub
and cocompleteness of w-Cat. Note that associativity of the tensor product and
its coherence also follow. O

4.4 Uniqueness

It is even possible to speak of the monoidal biclosed structure on w-Cat induced
by the tensor product of cubes:

Proposition 4.2 The functor ® : w-Cat x w-Cat — w-Cat is the unique
one, up to tsomorphism, for which C ® — and — ® C have right adjoints for
every w-category C and which satisfies TP @ T9 = IPYY for every p, q.

Proof. That it satisfies these properties is because it is part if a monoidal
biclosed structure induced by the tensor product on I', and that it is the unique
such is immediate from the cubes being a generating set of objects for w-Cat,
see also [2]. O

5 Globe tensor globe

Because the tensor product of w-categories is induced by the tensor product
of cubical sets, and because globes represent elements of w-categories [35], it is
clear that essential information is contained in the w-categorization of the tensor
product of two globes as cubical sets. I show that this w-categorization is the
w-category of components of a pasting scheme T'. This pasting scheme T, or
rather, its cells, will be used for the generators of a pasting presentation for the
tensor product of w-categories in section 7.

5.1 n-globes as cubical sets

Consider the cubical set G which has as non degenerate elements in dimension
n d; and d,,, with face maps defined by

() = (e1)" H(dy ).
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So the only non degenerate (n — 1)-dimensional faces are 8{’(dﬁ) =d% ;. For

example, the faces of d§ look like

back: (e1)2dg
alda“
+ 0 o+
dO dO

/ right: ald;“
+
dy dg

€1 0
dy erdd

+ —
S1d0 €1d0 ,

e1dy df df

0
dy e1dg
/ / bottom: d;“
left: e1dy dy

dT ——— d~
0 crdy 0
front: (£1)%d,

the interior of the cube being labeled by df.

Recall that IIp(G) has a pasting presentation (G, R;) which has as gen-
erators labeled pasting schemes (A,, £;) for x € G,, which is a degeneracy of
some dy,, and that its relations are that £., ;) is related to (A,41, £5F) for every
r € Gy

Lemma 5.1 In (Gg,Rg), the generated pastings dom(Amyi1, L4z ,,) and
(Am’gd?n) are equivalent. Also, dom(AmH,Sgiln_Ei ,d~,) is equivalent to

(Am, E

+1-

4o
m+1—m/ m

stil...si e
Proof. For example,

df =——

dy
- _ A
1 d2 d+ \
/ e \
dom(As,ng) = dy =————4d; | g
\ \El(dfy
dy

dy =————d,4
and
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need to be compared. In the general cases, the difference between the two is a
bunch of degeneracies, which can be added by first adding identities and then
replacing these by these degeneracies, compare the proof of lemma 3.3! a

I now claim that the w-categorization of G is free. To this end, define a
pasting scheme 2,, which is the obvious extension of 2,, i.e., it consists of two
cells in every dimension, ending and beginning in the two different cells of one
dimension less. For example, Ry (d$) looks like

0

- +
d dy dg d;‘ dy

df
Proposition 5.2 IIp(G) = P(2,).

Proof. 1 will show that both w-categories satisfy the same universal property.
Thus, that respectable families of realizations of (G4, Ry) in C correspond to
appropriate realizations of 2, in C.

Let (G, ¢;) be a respectable family of realizations in C. Define a realization
(24, fj) in C by

£i(d§) = ¢ (Aj, Laz ).

Suppose it is m-appropriate. Then

sm(fmi1(dyi1)) = sm(SDerl(Aerlan‘,’nH))
= ¢ (dom(Am+1, Ed?‘n+1)) by respectability of (G, ¢;)
= (W) by lemma 5.1
= om(Am, L4-) because ¢ extends (Gg, ¢;)
= fm(d;z)
= f(R(d;,)) because f m-extends (2., f;)
= [ (sm(R(dy11)))
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which proves that (2., f;) is (m + 1)-appropriate.
Let (2,, fj) be an appropriate realization in C. Define a family of realizations
(Gg, ¢j) in C by

SDj(Ajagsil...e,-jij, as,) = fir(dh),

where C is considered one-sorted. This family respects relations since if j' < j
then ¢; (A, Sgil...giv 3 4o ) is indeed the correct identity. Now suppose it respects
1—3" J

m-labels. Then if m' < m +1

Sm(Pm41(Ami1, £.)) =
= Sm(fm’(d%’>)
= fml (d%l)
= ¢(RmS, ) because o meextends (Govy)

= o (dom(Am+1, 2)) by lemma, 5.1,

and if m' = m + 1 then

Sm(Pm+1(Amy1,£.))) =

= Sm(fm’ (d;!n'))

= f(R(d,,)) by m-appropriateness of (2, f;)
= fm(dy,) because f m-extends (2., f;)

= Om(Am, Ed* )

= ¢ (Am Ly because ¢ m-extends (G, ;)

= o dom(AmH,Sm)) by lemma 5.1.

Thus (Gg, ¢;) respects (m + 1)-labels.
It is immediate that the above gives a bijection between respectable families
of realizations of (G4, Ry) in C and appropriate realizations of 2, in C. |

It would also be possible to take other faces degenerate in the definition of
G, but the above definition is chosen because it it gives rise to formulae similar
to ones familiar from homological algebra later on.

A notational convention for later use: in the pasting scheme 2, the top-
dimensional cell d,, can also be denoted by d;; and by d,. This convention will
avoid unneccessary splitting up in cases where one formula is clearer.
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5.2 2,®2,

Recall that IIp(G ® G) has a pasting presentation (Ggga, Ragg)- It has as

generators labeled pasting schemes (Ap.q, Leifei L d%@ey ey do ), where the
p—p' P T T
¢; denote maps in G. To describe the labeling, a face « of A,, can be considered

. . [
as a morphism r — p+¢ in I', and Egl.l,,,Eip_p,dg,(z-ggi,lmgi, a2, labels z by (7Tp )

z)*(€iy - &, d) @ (mFox) (e .. 2 dg). Thus, for example, (As, £d2_®d1_)
looks like

back: d, ®@d

dy ®d
dy ®dg df ®df

. dy®dy right: e1(d} ®d;)
top: d; ®d; Lo
d; ®dy dy ®d,

— — + —
dy ®d, dy ®d,

— o + o 7+

dy ®dy R dy ®dy

dy ®dy dy ®dg
/ / _bottom: dr@d;
left: 81((16 ®d;21 ; od do ®d,
— od- ®d-
o ®% _ o ®%
df ®d,

front: d, ®d

The relations make that degeneracies are equivalent to identities.

I claim that IIr(G ® G) is free. To this end, define a graded set 7" where
T, = {dy ® dg|oz, B = £,p+ q = n}. Define relations E and B on T by
(dy ® dg, y) € Ej- for ¢ > j if and only if one of the following:

1. y=ds®d ),

2. y=df  ®dj,
_\p
3. y=d/ ,®d ).
So Ej- is empty for j < i — 2. B; differs from E; in having — instead of +
and (—)PT! instead of (—)P. These relations can be viewed as a modified or

generalized version of the Leibnitz rule.
In figure 2, a low-dimensional part of T
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— odt
dy ®dg

/e O\

g + oqt
dy ®d \‘U/ dy ®dg
ad @dy
d; ®d23/ \3:12 ®d,
e “\
- — ot _ - _
dg @dy g ®dg _ dy @df dy@dy _do ®dg _ dy @df
Vl ®dg 4y @dy &
— od +ogt 8 — o + o gt
dy ®dg \ dy ®dg 4dy ®d, dg ®dg U dy ®dg
+ od— _ +ogt + od— _ +ogt
dy ®d, daf®d0 dy ®dy dy ®d, daf®d dy ®dy
\3 3/‘7
dg®df "\ . 7 df odl
N \
e / \ .
dgy ®dg Y dg ®dg
+ oqt
\\ dy ®dy
+ —_
af ed;

Figure 2: The faces of d§ ® dg

Proposition 5.3 T is a pasting scheme.

Proof. Pasting axiom (i) is trivial, (ii) can be forced to hold, and (iii) is
immediate.
The only non trivial case of pasting axiom (iv) is when j = i—2. But the only

possibility for either side to hold, with w = dy ® dg, is when x = d;ll ® dg:)lp,

u=ds®d)} andv=d, ®df.
For pasting axiom (v) the case j =i — 1 is trivial. If j = ¢ — 2 there are four

possibilities, with w = dy ® dg :
o 1 = d;;l ® dg:)lp: x is already at the end of w,
)p )p+1

e r=d;®d 2:takev=d1‘;‘®d((1:1 ,
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. a:—d+1®d((1) : idem,

o x=d} ,®dj: take v =d, | ®dj.
If j = ¢ — 3 there are two possibilities:

ox—d+2®d((1) : take v =d; 1®dq,

er=d  ®d ) takev=d2@d ).

For j < i — 3 the relation E;fl is empty so the condition is void. a

I will now analyse the situation a 4b in T for a = dj ® dg, p+ g =1t. Table
1 gives the possibilities for a1 and as.

a=ap Ei_1(ap)NBi—1(a1) a1 Ei—1(a1) N Bi—1(a2) as

d dﬁz
dt dﬁl q+2
; p72® q+1 ifﬂ—( )pl
d ®d:
@y .
d+ L ® d( )P _
ds ® dy
q—
da1 ®d( )p
da d( ) +1 q—1
% g 1f a=—
Qs (=)ptt
&t @d )" hra®dn
+1 - lf a1 = —
and B(a) = {d% ® dg d, | ® d dy ® dfl w , d;,l ® df;)lpﬂ}.

Table 1: a<ai<as...inT

Lemma 5.4 The pasting scheme T has no direct loops.

Proof. Since elements in E; 5(a1) always have an index p—2 or ¢—2 it follows
from the table above that E(a;)N B( ) = @. Continuing the table it follows that
a; is always of the form dgjm & dq’qEz from which follows that for all i > 2 also
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E(ai) NB(a) = @. So T has no direct loops since obviously B(a) N E(a) = {a}.
a

Before well-formedness of R(d ® dg ), its m-sources and m-targets need to
be considered. I will show that they satisfy a generalized form of the Leibnitz
rule.

Lemma 5.5 Form <n=p+gq,

sm(R(AS ® d)) = R({dY @ d)|p' +¢' =m, 0<p' <p, 0< ¢ <gq,

if p' #p then o = —,
if p =p then o = a,

if ¢ # q then B = (—)P'+1,
if ¢ = q then ' = B}),

and dually.

Proof. Downward induction on m. If m = n then sn,(R(dy ® d{f)) =R(d; ®

dg ) which agrees with the formula above. Now suppose this formula is proven
for m + 1, then T have to show that s,,(R(dy ® dg)) = dom s 41 (R(dy ® dg)) =

domR({d2 @ d |ps+qz =m+1, ...}) = R{dL ®dZ|ps+ g =m+1, ...}) —
E(R({d32 ®dgz [p2+q2 = m+1, ...})) is equal to R({d% @dJ |p'+¢' = m, ...}).

That the latter is contained in the former falls apart in two: that R(dZ‘,’ ®d§,’)
is contained in R({d5? ® d{f; lp2 + g2 =m+1, ...}), and that if dj? ® dé’; is in
E(R({dp2 ® dgf Ip2 + g2 = m +1, ...})) then it is not in R’({dg,’ ® dg, Ip' +¢ =
m, ...}). For the first part it suffices that the dZ‘,’ ® dg, are in the former.
Distinguish three cases, namely

e p=pand ¢ < ¢ then 8’ = (=Y. If ¢ = ¢ — 1 then take dg,’ ® dg, if
q' < q¢—1 then take dg,’ ® dg,’ 41 for d32 ® dg;, which in of the correct form,
and which satisfies dj? ® 2 B%“dg,’ ® dg, .

e ¢ =qgandp’ < p: thena' = —. If p’ = p—1 then take dg‘®dg, ifp' <p-1
then take dS,, ® dJ, for d32 ® dg?.

e p' <pand ¢ < ¢ then o = — and 8’ = (—)”*1. Do the same as in the
first case. Note that it is not possible to do the same as in the second case
because then 3 would not come out right.
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(—)r2

q2—1"

d+ _1 ®dgs, and d+ 1 ® dc(n)l The first one of these three is indeed not one

of the dz‘, ® dq, since 8 # ()P *1 | the second one not because o' # —, and for
the third one the requirements on either o’ or 3’ are contradictory as well.

To show that the former is contained in the latter, I have to show that
for every dp? ® dg; € R({dp? ® d{f; Ip2 + g2 = m + 1, ...}), it is either in
RU{dY @ d2|p' + ¢ =m, ...}), or in E(R{dS ® dg2lps + g2 = m + 1, ...})).
Three cases:

For the second part, there are three possibilities for d;? ®dq3 , namely dp?®d

o if g3 < g2 — 2 then one of the reasons for dj? ® dffg to be in R(dp? ® dgzz)

. (—)p2tt
must be via dg; ® dqul

the correct form. This also works if g3 = g2 — 1 and B3 = (—)P2*L.

, which can be taken for dg,’ ® dg,’ since it is of

e if pg <pp—2thenviad, ;® dqz, which also works if p3 = po — 1 and
ag3 = —.

e all other cases, namely d;? ®dq2, dy? ®d[(12 e L d+ ®dﬁ2 ord, 1®d((12)1 ,

are in E(d22 ® dg?). O

Lemma 5.6 For every dj ® dg €T, R(dy ® dg) is well formed.

Proof. Since sy, (R(dy ® dg)) and ty,(R(dy ® dg)) are both R of something,
they are subpasting schemes of R(dy ® dg ). They are also compatible: for
Bm,l(dg‘,’ ® dg,’) and Bm,l(dz,l1 ® df,ll) to have something in common one needs

1 1

p’ and p!, and ¢’ and ¢ at most one apart from each other. This leaves only
the consecutive pairs to check, and then the conditions on o/, o, 8" and B3] give

that Bp_1(d% ® d%) N Bm,l(dz,'1 ® df,'l) = @. Noting that so(R(dS ® dj)) is
1 1
always a singleton, namely {d, ® d }, finishes the proof. O

Proposition 5.7 The pasting scheme T is loop free.
Proof. Conditions (i) and (ii) of loop-freeness are lemmas 5.4 and 5.6
respectively.

For condition (iv), consider again table 1, and suppose a = u € s;(R(z)),
b=1u" € sj(R(z)), for some z € T. I will show that then also a1 € s;(R(z)),
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and then induction will do the rest. So z = d5? ® dy;, say, and j = p+¢. Then

a = — or f = (—)P or both. In all these cases, for the sequence a,aq,... to
continue til at least as one needs f; = (—)? ! or a; = —. In case f; = (—)P 1,
a; will never be in s;(R(z)) which contradicts b € s;(R(z)), and in case a; = —
indeed a1 € sj(R(z)). Thus T is loop free. O

Thus T is a loop-free pasting scheme. Furthermore, there are also pasting
schemes 2, ® 2, defined in the obvious way, which are well formed and loop free
either by direct calculation or by viewing them as R(z) for some z € T'.

Now back to the pasting presentation (Ggga, Roee)- Define a labeled past-

ing scheme (2, ® 24, £4,%4,), Where dg,’ ® dg,’ gets labeled by (Apyq, £ i adf )
' = 7d!

Lemma 5.8 In (GggarBage), dom(2, ® 24, L4,04,) 5 a generated

pasting which is equivalent to dom(Apiq, £4,0d,)- Also, if p¥ < p

or ¢ < q then dom(Apyg, £, — #£) s equivalent to
i€y, dy Z/1 1 '

(2
q—q' 9

(Ap+qflv£a-(s- g, d%@ey ey d° )) for some j.
J\=ry tp—p! Tp! 2 lq—q’ q'
Proof. The proof will be by induction on p + ¢. So to show that dom(2, ®
24, £4,04,) is a generated pasting, take a cell labeled by (Ap 44, £ ! o ). By the
q

p
induction hypothesis, its domain is indeed equivalent to the domain of its label.
To show that (dom(2, ®2,), £4,04,) is equivalent to dom(Ap ¢, £4,54,), Observe
that their difference is some identities, which can be inserted and replaced by
degeneracies as before.
- odt

i odt — L% ot
0 0 0 0

dy ®dy
S T \
= dy ®dy —dj ®dy > df ®dy di ®d}

\ Ydy ®d0_\ /doim;

dy @dy ———— df ®dy
1 0

dom(As, Ed;@dl‘)

and
df @df

dy ®dy dy ®dg

/ Ud%
dom(d, ® dy ) = dy ®d, df ®dg
\f\ /dfT@dI

df @dg~ |
dg ®dy
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For the last statement, the difference is a number of degeneracies, which can
be dealt with as in lemma 3.3. a

Proposition 5.9 IIp(G® G) = P(T).

Proof. This proof will follow the lines of the proof of proposition 5.2 closely,
I will only do the second part in some detail.

So given an appropriate realization (2, ® 2,, f;) in C, define a family of
realizations (Gggq, i) in C by

SDerq(Aerqa 251‘1 "'Eip,pl dzl®8i’1"'8i;7q, dq ) fp +q' ( ' ® d )

To show it respects (m + 1)-labels if it respects m-labels, if p' + ¢’ < m + 1 then

Sm(SOm-l—l(Am—l—l’E...@...)) =
= sm(fyiq(d5 @ d}))

= fy+e(dy p @ d 2
= gDm(Ama 2,9 (...®... )) for some j

= o (dom(Am+1, 2___®___)) by lemma, 5.8,

and if m' = m + 1 then

5m(¢m+1(Am+la£...®...)) =
Sm(fm (da ® dg ))
= f(dom(d"‘ ®d, 1)) by m-appropriateness of (2, ® 2., f;)
= Qﬁdom(d edy )(dom(do‘, ® dﬁ )) because both are the composite of the
same appropriate realization

= ¢ | dom(dy ® dg,, £ @, )) by the formula for ¢ in section 10 of [5]

= ¢ |dom(Ayy1, L by lemma 5.8.

a,04,)

p q
O

Because IIp(G) = P(2,) is the “generic” w-category, this proposition sug-

gests that P(T) is the generic tensor product of w-categories, a viewpoint that
will prove to be fruitful.
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6 Pasting scheme tensor globe

Given a p-dimensional pasting scheme A, I describe a well-formed loop-free
pasting scheme A ®2,, which could be termed its right g-th path pasting scheme.
This pasting scheme will be used in the relations of a pasting presentation for
the tensor product of w-categories in section 7.

For a well-formed loop-free pasting scheme A, the i-cells of the graded set
A ® 2, are expressions a ® dg,, where a € Ay, B==4,p'+¢ =iand ¢’ <gq. If
q = q then both d;‘ and d; are considered synonymous to d, € 2,4, as before.
The relations E;- and B;- on A ® 2,4 are such that (a ® dg,,y) € E;- if and only if
one of the following:

l.Ly=a® dg,, aEg;az,

/

2. y=a2® d((I’_—)II) , aEg;aQ.
B; is defined dually, i.e., it has Bg; instead of Eg; and (—)?'t1 instead of (—)”'

Proposition 6.1 If A is a well-formed loop-free pasting scheme, then A ® 2,
s a pasting scheme.

Proof. The proof of this will be analogous to the proof of proposition 5.3,
only somewhat more involved. The first three pasting axioms are easy.

For the “=” part of pasting axiom (iv), with w = a ® df;,, there are two
possibilities for z. If x = as ® df;, where aEg; ay then by pasting axiom (iv) in A

applied to aEg; as there are b and b’ of dimension p’ — 1 which make that b ® dg,

/

and ¥ ® dg, can be taken for v and v. If 2 = a2 ® dt(l,__)i where aEg;ag then

()
q-1
and b’ ® dg, can be taken for w and v respectively. Notice that although this

by pasting axiom (iv) in A applied to aEg;az there is a b’, and then a ® d

situation looks asymmetric it is not, since the dual situation utilizes b ® dg, and

(—)p'+1

a® dql_
For the “<” part of pasting axiom (iv), with w = a ® dg,, distinguish the

following possibilities for v and v:
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e uU=as® dg, where aE§:_1a2 and v = a3 ® dg, where aEgz_lag. Then z
must be a4 ® dg, with as E£;71a4 and a3 Bg{lazl, and application of pasting
axiom (iv) in A gives that wEg-x,

e u=ay® dg, where aE£:71a2 andv =a® dg,i)i . Then there is no z since if
the dimensions in 2, agree then the exponents are different. Compare this

with proof of proposition 5.3, where this possibility was also excluded.

’ ’

° Uy = a®d§7)i and v = a3 ®d§, where aEiLlag. Then z must be a4 ®d§72?

: P’ p'—1 i
with aEp,as (and a3Bp, as), and so wEjz.

For pasting axiom (v), with w = a ® dg,, there are four possibilities:

’

T=as® dt(l,__)i with aEg;ag: x is already at the end of w,

’

o r=ay® dt(l,i); with aEg;azz take v =a®d, )

qg-1 >
_ ! ! . ! _ ’+1
e r = a3 ® dt(l,_)i with a’Eg3 16L32 if aEg3a3 then take v = a ® df;'—)li ,
otherwise there exists, by pasting axiom (v) in A, an a4 such that
(—)p'+1

/ /
-1 _
aBZ,_1a4E£3 a, then take v =as ® d,’;

ez = a3 ® dg, with a’Eg;_lag: if aE£;a3 then z is already at the end of
w, otherwise there exists an a4 such that aBﬁ,_1a4Eg3_1a3, then take v =
a4 X df;, . |

!

I will now analyse the situation b<d’ in A®2, for b = a®d§,, dim(a)+¢' =i.
Table 2 gives the possibilities for a; and as.

Lemma 6.2 If A is a well-formed loop-free pasting scheme, then the pasting
scheme A ® 24 has no direct loops.

Proof. Consider table 2. The key to this proof are the dimensions and the
exponents in 2,. For if in b; this dimension is different from ¢’ then in later b;’s
it must be even further away from ¢’. Also compare the proof of lemma 5.4!
So the only relevant dimensions are ¢’ + 1, ¢’ and ¢’ — 1.
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b="by E;_1(bo) NB;_1(b1) by Ei—1(b1) N Bi_1(b2) by
a7 ® dﬁ,
5 with a7Bz,_1a4
aq ® d ’
with aQEg,_1a4
a4 & d§’1+1
p if B=(-)P
as X !
with as Bg,fla' ,
, —\p
az ®d ) 95 ® d‘(ll_)l
2 q—1 ith Bp/+1
5 w1 as o' as
CLI ® d ’
with aEg,_la' 5
ag ® dq’1+1
, with aoB?, " 5as
a5 @ dq:1+1
with a'E§,7;a5
as & d5’2+2
. if gy = (-1
a ® dq’+1 ’
it = (-
_y' -1
o @d Tt ® )
, with alng, a
a ® dq/ p’ p’
ag ® dt(ll__)l a1 ® d((]’_—)l
’ with CL3E§,+1(16 with a1 leﬂaﬁ
(7 p
(—)P az®d,’
a® dq’—l . qp’~1k1
with ang, a
/ - p’+1
a3 ® d(_)p ® dq’—)2
q'—2

and B(b) = {a@ ® &’ [aBL @} U{a®d., ), " |aBY a).

Table 2: b4b14b2...inA®2q
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b; of the form as @ d2',,: then an element in B(b) " E(bi) needs d -

which is impossible since at the same time 8 = (—)P,

’

b; of the form ag ® dgf)i : again, the exponent needs to be (—)? and

(—=)P'*1 at the same time,

b; of the form a7 ® dg,: then a <4 a7 and B(b) N E(b;) # @ gives a direct
loop in A,

)1

b; of the form aijp ® dt(l,_ : either the exponent is wrong, or it reduces
to a direct loop in A as well.

So A®2, has no direct loops since B(b)NE(b) = {b} because in A B(a)NE(a) =
{a}. O

I will show that the m-sources and m-targets of A ® 2, also satisfy a gener-
alized form of the Leibnitz rule.

Lemma 6.3 For A a p-dimensional well-formed loop-free pasting scheme
and m <n=p+gq,

sm(A®2) =R{a®dy|a € sy(A), p +q =m, 0< ¢ <q,
if ¢' # q then B/ = (—)P'*+1})

and dually.

Proof. Along the lines of the proof of lemma 5.5. If m = n then the
formula above gives R({a ® dg la € A}), which is indeed equal to A ® 2,.
For the first part of “2”, distinguish two cases:
e ¢ < ¢ then f = (—=)P*1 and take a ® dgora® df;”+1 for as ® dgj,
e ¢’ = gand hence p’ < p: then a € sy (A4). If a € s,y;1(A) then take a ® d,
otherwise a has an incoming cell a’ of dimension p’ +1 which can be chosen
in sp4+1(A) by lemma 4.2 of [5], and take a' ® d, for ax ® dg.f.

For the second part of “D” there are two possibilities, namely as ® dgzz or ag ®
)

q2—1"
the first case there is an o’ ® dg, then ag € R(a') and ¢ < ¢’ which implies
ag € sy (A) by well-formedness of A and py > p’ by the conditions p’ +¢' = m

with azEggag, where in the latter case ag can be equal to as. If in
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and ps + ¢ = m + 1. But ag has an incoming ps-cell as, contradiction. And
if in the second case there is an o' ® df;,’ then a3 € R(a') and ¢ — 1 < ¢ so
p2 > p'. ps > p' leads to contradiction as in the first case, and po = p' implies
¢ =q2— 1+ qso B needs to be equal to (—)”' 1, which is not the case.

For “C”, there are two cases:

o ifgs <g»—2o0rgs =g —1and B3 = (—)”"" then a3 ® dj¢ € R(as ®
(—)p2tt
dqg—l )’

e if g3 = qo — 1 and 53 = (—)P2 or g3 = g2 then a3z € R(az) which, by well-
formedness of A implies a3 € s,,(A). If a3 has an incoming ps-dimensional
cell a, € s,,(A) then a3 ® dg; € E(ab® dg.f), otherwise a3 € s,,_1(A) and
a3 ® dgs € R(ag @ dgy ). O

Proposition 6.4 For a well-formed loop-free pasting scheme A, the pasting
scheme A ® 24 s well formed.

Proof. Since sy (A ® 24) and t,,(A ® 2,)) are both R of something, they are
subpasting schemes of A ® 2,).

Compatibility: if Bp_1(a ® d) N B 1(a' ® d))) # & then Bp_1(a) N
Bm—1(a') # @ contradicting compatibility of s,(A), and if Bp_1(a ® dg,’) N
Bm-1(a’ ®d.?,,) # @ then ' needs to be (=)P"t1 and ()" at the same time.
And so(A ® 2,) is the singleton {a ® dj |a € so(A)}. O

Lemma 6.5 R,g2,(a ® dg,’) = Ra(a) ® 2.

Proof. Immediate. O

It follows that

sm(R(a ® d%)) = R({az ® dj?|az € 5p,(R(a)), p2 + g2 =m, 0< ¢ <4q,
if g # ¢' then By = (—)P2+1
if go = ¢’ then B2 = f'}).

Lemma 6.6 For all a ® dg,’ € A® 24, the subpasting scheme R(a ® dg,,) is
well formed.
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Proof. Combine the above two lemmas with proposition 6.4. a

Before loop-freeness, I need to relate well-formed subpasting schemes of A ®
24 to well-formed subpasting schemes of A. Thus suppose Y’ is a j-dimensional

well-formed subpasting scheme of A ® 2, containing a ® dg,. Define a subgraded
set Y of Aby Y = {d' € Ald ® dg,’ € Y' for some 3'}. It is p'-dimensional
because Y is j-dimensional and a € Y. It is a subpasting scheme of A because
Y’ is of A ® 2,. Before showing it is well formed, I will calculate

dom(Y) = {d € Ald'’® dg,’ €Y’ for some /',
a' having no incoming p'-cell in Y'}
= {d € Ald ® df;,’ €Y’ for some /3,
there is no as ® dg,z € Y' with ay p'-
dimensional and incoming in a}
= {d' € Ald' ®d) € dom(Y")},

where the last equality is because Y' is a subpasting scheme of A ® 2,. So
it suffices to show compatibility of ¥ for every Y'. So suppose B, _(a’) N
By_1(a2) # @ in Y, o’ being in Y because a’ ® df;, € Y’ and ay because

as ® dg,z € Y'. But these elements contradict strong compatibility of Y’ [23,
Proposition 10].

Proposition 6.7 For a well-formed loop-free pasting scheme A, the pasting
scheme A ® 24 s loop free.

Proof. Conditions (i) and (ii) of loop-freeness are lemmas 6.2 and 6.6
respectively.

For condition (iv), consider again table 2, and suppose b = u € s;(R(z)),
b =u' € s;(R(x)), for some & = ay®dy; € A®2,. Iwill show that b; € s;(R(z)).
There are three possibilities in the sequence b< b’ for ¢':

e ¢’ going up: the condition on [ forces ¢’ = g2. To get below ¢y again this
goes via an ajp ® dg,fl which is not in s;(R(z)), nor is anything further
on since the exponent is the wrong one all the time,

e ¢ going down: look at a3®d((1731; , if it is not in s;(R(z)) then az ¢ sp71+1(A).

But then there exists a§ € sp41(A) with af Bg:Ha by 4.2 of [5], so aé@déf_)i
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€ s;(R(z)) CY, soif also a3 ® d((l,i)i €Y then Y is not compatible. Thus
a3 € spyy1(A) and a3z ® d((l,__)li € s;(R(z)),

e ¢’ doesn’t change: take ' = a3 € A and the well-formed subpasting scheme
of A corresponding to Y, as constructed just before this proposition. Then

condition (iv) in A applied to a <4 a7 <44 --- in this situation gives that
az € sy(R(z')). And now f needs to be equal to (—)?'*1, otherwise Y
would’t be compatible. So a; ® dg, € s;(R(x)). O

I will also need:

Lemma 6.8 If A is a round pasting scheme then A ® 24 is round as well.

Proof. Lemma 6.3 gives that s, 1(A®2,) = R({a®d§,’|a €sy(A), p'+4¢ =
n—1, 0 < ¢ <gq, if ¢ # q then ' = (=) *1}) and t,,_1(A®2,) = R({a®d§,’|a €
tw(A), p'+¢ =n—1,0<¢ <q, if ¢ # q then ' = (—)P'}). Suppose a5 ® dj?
in their intersection, say in R(ag ® dggf‘) and in R(as ® dy;). Four cases:

e a3 € sp(A), g3 =q—1, a4 €t,(A), g4 = g—1: either a3®d§iz or a4®d§iz

must be an intermediate stage, so as ® dg; €5p 2(A®2;) Uty 2(A®2),

o a3 €5,-1(A), g3 =q, as € tp_1(A), g4 = ¢: then az € sp_1(A)Nt,_1(4) =
sp 2(A) Uty o(A). Ifin s, o(A) then ay ® do? € s, 2(A®2,) and dually,

® a3 € sp-1(4), 43 = ¢, as € tp(A), g4 = q—1 (a3 € 5p(4), ¢3 = ¢ — 1,
a4 € tp_1(A), g4 = q analogous): if via a3 ® dg:)lp then in s, 2(4A ® 24).

_\p—1
But it is always possible to do this because if via a3 ® dg_)lp then (4 is

not right so ¢ < ¢ — 1. a

Definition 6.9 A well-formed loop-free pasting scheme is globular if all m-
sources and m-targets are round. <&

Lemma 6.10 If A is globular then A ® 2, s globular.

Proof. Analogous to the proof of the previous lemma. a

36



7 A pasting presentation for the tensor product
of w-categories

This section is the central part of this paper. In it, I give a detailed
description of the tensor product of two w-categories C and ID by giving a pasting
presentation (Gcp,Rep) for it. The usefulness of this description is that the
universal property of pasting presentations makes it relatively easy to deal with
w-functors going from a tensor product. This will be used to prove associativity
and coherence of the tensor product, in section 8, and to prove the adjunctions
between the tensor product and the internal homs, in section 11. It will also
give concrete formulae for categories enriched in this monoidal category w-Cat,
an example of which is w-Cat itself, see section 12. Another point is that
working with pasting schemes is more conceptual than the approach of [2, 34].

Gray'’s tensor product of 2-categories [21] is defined using essentially the same
approach as here: it is defined by generators and relations, and a description
of the generated cells is given. Because of the restriction to dimension 2, the
tensor product of 2-categories is defined as a 2-category. It can be obtained
from the 4-category it is here by taking connected components in dimension 2,
i.e., it has the same 0- and 1-cells, and 2-cells are equivalence classes of 2-cells
in the 4-category, the equivalence relation being generated by the requirement
that two 2-cells are equivalent if there is a 3-cell in between them. This explains
all extra conditions on the 2-cells of [21]’s tensor product.

7.1 Generators

A generator in G¢p in dimension n is a labeled pasting scheme (2, ® 24, £cgq)
such that p + ¢ = n, for some p-dimensional ¢ € C and some g¢-dimensional
d € D, where d ® dg, is labeled by (2 ® 24, Logar) for ¢! = dj(c) in C and
d = dg, (d) in D. Cells z in the domain or codomain of 2, ® 2, all have R(x)
equal to a generator of lower dimension, so these labeled pasting schemes can
indeed be taken as generators. Sometimes the generator (2, ® 24, £.gq) will be
called ¢ ® d for short.

7.2 Relations

To define the relations in R, I will make use of labeled pasting schemes (A ®
24, £(4,f,)2a), for some appropriate realization (A4, f;) of A in C and some d € D,

where a ® dg, is labeled by the generator fy(a) ® dg, (d). Of course, labeled
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pasting schemes (2, ® B, £.g(B,g,)) Will also be used, but since the use of these is
completely analogous, I will concentrate on the first ones. One might think that
also something like (A® B, £4 1,)(B,g;)) could be used, but this is not the case,
because A ® B, defined in the same way as A ® 2,4, can fail to be a well-formed
loop-free pasting scheme. If A ® B is equal to the product of pasting schemes
Johnson and Street have in mind, then this failure has been observed by them as
well [22]. Here it can be seen from a table like table 2, since the dimension of
the second coordinate can go up and down, making direct loops, or to sequences
y <y’ violating condition (iv) of loop-freeness possible. But it isn’t necessary to
consider A ® B, as the sequel shows.

Now back to the relations. It is not possible to prove directly that (A, f;) ®d
is a generated pasting, because for this relations in lower dimensions will be
needed. So, as in section 11 of [5], the approach will be inductive, in fact, this
whole section is completely along the lines of the proof of section 11 of [5], only
worked out a little bit, but only a little bit, more. Some intermediate results
will be derived, which illustrate, in fact, are derived from, the intuition behind
the tensor product.

For round pasting scheme A with appropriate realization (A4, f;) in C and
d € D, define a labeled pasting scheme ((A ® 24)t, £((4,f,)24);), Which is labeled
as (4, f;) ® d except for the top-dimensional cell, which is labeled by f(4) ® d,
where f(A) denotes the composite of (4, f;).

For (p — 1)-dimensional ¢ € C and g-dimensional d € D), define a labeled
pasting scheme (2, ® 2, 2id£®d)’ which is labeled as id. ®d except for the top-
dimensional cell, which is labeled by the formal expression id_g;.

Assume:

e for every appropriate realization (A, f;) of a p-dimensional well-formed
loop-free pasting scheme A in C and every g¢-dimensional d € D with
p + q < n, the labeled pasting scheme (A, f;) ® d is a generated pasting,

e for every appropriate realization (A, f;) of a p-dimensional round pasting
scheme A in C and every g-dimensional d € D with p + ¢ < n, the labeled
pasting scheme ((4, f;) ® d); is a generated pasting,

e for every appropriate realization (A, f;) of a p-dimensional round pasting
scheme A in C and every ¢g-dimensional d € D with p+¢ < n, the generated
pasting (A, f;) ® d is fully replacable in (A4, f;) ® d,

e for every (p—1)-dimensional ¢ € C and ¢g-dimensional d € D with p+q < n,
the labeled pasting scheme id£®d is a generated pasting,
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e for every (p—1)-dimensional ¢ € C and ¢g-dimensional d € D with p+q < n,
the generated pasting id. ®d is fully replacable in id. ®d,

e for every appropriate realization (A, f;) of a p-dimensional round pasting
scheme A in C and every ¢-dimensional d € I with p + ¢ < n, there is
defined a relation between (A, f;) ® d and ((A4, f;) ® d)s,

e for every (p—1)-dimensional ¢ € C and ¢g-dimensional d € D with p+q < n,
there is defined a relation between id. ®d and id£®d,

and the same for (2, ® B, £.g(B,g;)), etc.
I will derive some consequences of these assumptions that will be used in the
next dimension.

Lemma 7.1 For every appropriate realization (A, f;) of a p-dimensional
globular pasting scheme A in C and every q-dimensional d € D with p+ q < n,
(A, fi) ® d is equivalent to f(A) ®d

Proof. The idea is to replace high dimensional pieces by their composite, so
that when continuing this for lower dimensions finally 2, ® 2, is reached. The
reason for starting with high dimensions is that this leaves not many higher
dimensional cells being able to spoil full replacability. This is implemented as
follows.

Define (A®2,)"%4 = A®2,[(A®2,):/A®24], and for 0 < j' < j < n, define

(A® 2(1)”"1 =

(482 ®d
= (A®2,)U*D 04[(3],(A)® 51);, WA i =

(A@2)H? = (A@2) [(sp(4) od ) )/sp(a) @ d) "

(A 2794 = (A© 2,09 (t5(4) @ d) ) /iy (A) © i,

(A@2)4 = (A@2)7 (A @d ), /tpa)od )]

whenever this makes sense, i.e., when 0 < j' < p and 0 < j — j' < q, otherwise
don’t replace anything, and if 5/ = p or 7 — j' = ¢ then do only two of the
four replacements. So with index j all j-dimensional pieces are replaced by
their composites, and (A ® 2,)%%* 2 2, ® 2,. The above definitions make sense
because the pasting schemes that are to be replaced can indeed be considered as
subpasting schemes of the (4 ® 2 )7 3"3"s. The pasting schemes to be replaced
are round because A is globular and because of lemma 6.8. For the rest of

full replacability, I will now describe the pasting schemes. They consist of cells
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;",’ ® dg,’ in dimensions greater than j, and of the cells of A ® 2, in dimensions
less than j, while in dimension 7 some pieces have been replaced already. The E
and B relations make that the dg‘,’ ® dg,”s relate as in 2, ® 2,4, the cells of A ® 2,
relate as in a ® 24, and their mutual relations are such that the pieces act as
low dimensional cells of 2, ® 2,. The composites are labeled by the appropriate
composites, and the cells are labeled by their old labels. Once I’ve shown full
replacability the labeled pasting schemes above are generated pastings because
this is a local property.

Now for replacability. Elementary replacability is immediate from the abobe
description of the B and E relations. There are no direct loops of dimension
j+1in (A®2,)77'7" because if there were one not meeting (...); this would be
a direct loop in the previous step as well, and if there were one meeting (...)s,
any p-dimensional z’' € X instead of it would make it into a direct loop in the
previous step. There are no direct loops of dimension j, which follows from
a combination of tables 1 and 2. There are no direct loops in dimensions
greater than j 4+ 1 and less than j since such a loop is also a loop in 2, ® 2, and
A ® 2, respectively.

Finally, condition (iv) of loop-freeness is proven as in the proof of proposition
6.7. O

Given an appropriate realization (4, f;) in C, I need an appropriate realiza-
tion of a globular pasting scheme having the same composite. Take (G1(A4), f;),
where the identities are realized by the composite of the subpasting schemes
they are identities on (see section 11 of [5]). Having defined this, a generated
pasting (4, f;) ® d gives rise to a generated pasting (Gl1(A), f;) ® d. Note that in
this latter pasting scheme all cells are labeled by actual generators, not by formal
identities!

Lemma 7.2 For every appropriate realization (A, f;) of a p-dimensional
pasting scheme A in C and every q-dimensional d € D with p+q < n, (4, f;)®d
is equivalent to (G1(A), f;) ® d.

Proof. The idea is to use the globularization procedure for A, as described
in section 8 of [5], as basis for the insertions that have to occur. For every step
of the globularization procedure for A there will be many steps here, in order
to ensure the result is of the correct form. Finally, the labeling of the formal
identities will be changed in actual labels.

Define (A®2,)( 7104 = A®2,, and for 0 < m < p = dim(A4) and ¢ > ¢’ > 0,
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define

(Ao 2)mat = MDA, g W S < g
q

( )
= (A R 2q)(m71).0.4[idsm(A)®dq_’ : Wm.q’.l] f q’ —q
(A® 2q)m'q"2 = (4® 2q)m'q"1[id5m(A)®d+ cWma'2]
! , . ql . ,
(A® Qq)m.q 3 (A® 2q)m.q '2[1dtm(A)®dq‘, . ™ma .2]
(A 2)™04 = (A8 2)"™ 0 Hid,, (g0 W™,

where if ¢ = ¢ do only two of the four replacements, and where the witnessing
specifications W™ are such that the position of the identities is the position
they are to have in GI(A)®2,. After having completed the m-th stage the pasting
scheme is an m-th globulatization of A, so (A®2,)P%* 2 Gl(A)®2,, as a pasting
scheme. The pasting schemes on which identities are inserted are round because
they have been made so in the previous steps. For elementary replacability, the
only relevant (m+q'+2)-cells are previously added higher-dimensional identities,
which indeed have the required property. And the intermediate results are
sufficiently like Gl,(A) ® 24 to prove them being well-formed loop-free pasting
schemes in the same way.

Now I need to replace the labels on the identities. I will do that along the
way, so this amount to a modification of the above process, which has been
presented nontheless for reasons of clarity. The idea is to add another bunch of
identities, so that if the label on idx is to be replaced, the subpasting scheme
X is completely surrounded by identities. Then X can be replaced by some
2,y ® 24, on which an identity can be inserted, which can then be relabeled
to some id. ®d. Then the whole thing can be undone because this relabeling
doesn’t change the pasting scheme but only a label, and finally it is ensured
that the identity which remains is the one which has been actually labeled. So
it remains to describe when and where these extra identities are inserted. To
relabel id 4 d say, other cases are analogous, steps m.q".1 and m.q".2 are

repeated for all ¢” < ¢'. So this comes down to globularizing this piece for a
second time, and then the piece in between the identities is the isolated copy
of X. Going back, there is an extra identity on X, and now the two identities
which have been inserted first can be removed, so that indeed idx remains. O

Proposition 7.3 For every appropriate realization (A, f;) of a p-dimensional
well-formed loop-free pasting scheme A in C and every q-dimensional d € DD with
p+q<n, (A f)®dis equivalent to f(A) ®d.
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Proof. Combine lemma 7.1 with lemma 7.2. a
Now I can prove all the assumptions in one dimension higher.

Lemma 7.4 Under the above assumptions, for every appropriate realization
(A, fi) of a p-dimensional well-formed loop-free pasting scheme A in C and every
q-dimensional d € D with p+ q < n + 1, the labeled pasting scheme (A, f;) ® d
1s a generated pasting.

Proof. I have to show that for every a ® df;, € A ® 2

(dom(R(a ® df;'))’S(Aafi)®d|dom(R(a®dﬂ,))> is equivalent to (dom(2y ® 24),
q
£ f(@)@ dfl ( d)|d0m(2pl®2q1))' This can be done by modifying the constructions of

the previous two lemmas in order to make it work on dom(R(a) ® 24 ), by doing
only the insertions and the replacements which take place there. This whole
construction then uses only generators, generated pastings and relations up to
dimension n. a

Lemma 7.5 Under the above assumptions, for every appropriate realization
(A, fi) of a p-dimensional round pasting scheme A in C and every q-dimensional
d € D with p+ q < n+1, the labeled pasting scheme ((A, f;) ® d); is a generated
pasting.

Proof. The only thing left to check is the labeling of the top-dimensional
cell. So the question is, whether (dom(A®2,), £(4,1,)edldom(4g2,)) is equivalent
to (dom(2p ® 2¢), £f(4)@dldom(2,02,))- For this the same modification of con-
structions of lemmas 7.1 and 7.2 as in the previous lemma works. Note, by
the way, that roundness of A is needed to make any sense out of (A ® 2,)¢, using
lemma 6.8. a

Lemma 7.6 Under the above assumptions,for every appropriate realization
(A, fi) of a p-dimensional round pasting scheme A in C and every q-dimensional
d € D with p+ q < n+ 1, the generated pasting (A, f;) ® d is fully replacable in

Proof. By lemma 5.9 of [5] only roundness needs to be checked, but this holds
because of lemma 6.8. O
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Lemma 7.7 Under the above assumptions, for every (p — 1)-dimensional ¢ €
C and q-dimensional d € D with p + q < n, the labeled pasting scheme id£®d 18
a generated pasting.

Proof. T need prove that dom(id, ®d) is equivalent to ¢ ® d. As before, this
can be done by inserting identities and relabeling them, which in this case is
easier because in relabeling there’s no need to isolate because the relevant cells
are already of the correct form. O

Lemma 7.8 Under the above assumptions, for every (p — 1)-dimensional ¢ €
C and g-dimensional d € D with p+ q < n, the generated pasting id. ®d is fully
replacable in id. ®d.

Proof. 2, ® 24 is round because 2, is. a

Thus, relations in dimension n + 1 can now be defined by:

e for every appropriate realization (A, f;) of a p-dimensional round pasting
scheme A in C and every ¢g-dimensional d € D) with p+ ¢ < n + 1, there is
a relation between (4, f;) ® d and ((4, f;) ® d),

e for every (p — 1)-dimensional ¢ € C and ¢-dimensional d € D with p+ ¢ <
n + 1, there is a relation between id, ®d and idi®d,

and the same for (2, ® B, £cg(B,g;))-

7.3 w-functoriality

Given an w-functor g : C — C', define a family of realizations (G, (9 ® D);)
of (Q(C,]D)7 E(C,]D)) in C’ QXD by

(g@D)i(c®d) =g(c)®d

where the latter is a generator hence a generated pasting, by lemma 7.3 of [5], in
the pasting presentation (G p, R p) of C' ® D. This family of realizations
respects relations:

(9@D)((4, fi)®d) =
equivalent to (go f)(4A)®d
= 9(f(A)) ®d because g is an w-functor
= (9@ D)(f(4) ®d),
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and it respects labels:

dom((g @ D)i(c@ d)) = dom(g(c)®d)
= (¢g®D)(dom(c®d)) because both are compos-
ite of the same appropriate
realization of dom(2,®2,).

Thus this defines an w-functor g@D: C D — C' @ D.

8 Associativity and other properties of the tensor
product

Various properties of the tensor product of w-categories necessary for a
monoidal structure are checked. Furthermore, there’s a brief discussion on du-
ality, the example of tensoring two standard cubes as w-categories, and a very
brief excursion into knot theory.

8.1 Associativity

For associativity of the tensor product, I need to compare C ® (D ® E) with
(C® D) ® E. To this end, define an w-category C ® D ® E by the following
pasting presentation (Gcp g, Repr): generators are labeled pasting schemes
(2, ®24®2,, £egdge) With obvious labeling, and relations are dimensionwise, as
in the pasting presentation for C ® .

Lemma 8.1 There is a canonical isomorphism between C ® (D ® E) and
CRD®E, and also between (C®D) ®E and CR D ® E.

Proof. Of course, this canonical isomorphism is the unique one which ex-
ists because both w-categories satisfy the same universal property, i.e., I will
show that respectable families of realizations of (G¢pgr, Bepgr) correspond to
respectable families of realizations of (Gep g, Repr). The other case will be
similar.

So consider a respectable family of realizations (G¢pgr,¥i) of (Gepgrs
Repgr) in F. Define a family of realizations (G¢p g, ®;) of (Gepr, Repr) in
F by

Pprgir(c®dQ€) = Ppigrr(c® (d®e)).
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To show this family of realizations respects labels, define for every ¢ € C, d € D
and e € E a generated pasting (2, ®2; ® 2y, Legdge) in (Gepgr, Bepgr), where

do © dY ® dJ, gets labeled by d% (c) ® (d5 (d) @ d}, (). Then:

dom(@y,,44r(c®d®e)) =

dom (pp+g+r(c ® (d®€)))
p(dom(c ® (d ® e)))
p(dom(2p ® 23 ® 2;, Legdge))
P(dom(c®d ® e))

because (G pgr, i) respects labels
because of proposition 7.3

because both are composite of the same
appropriate realization.

To show it respects relations, define for every ¢ € C, (B,g;) an appropriate
realization of a round pasting scheme B in D and e € [E, a generated pasting
(2p ® B® 2, £og(B,gi)2e) 0 (Gepgr, Bepgr), where dg,’ ®b® d), gets labeled

by d2 (c) @ (g (b) ® dl, (). Then:

P(c® (B,gi) ®e) =

= 90(21, ® B® 2,, £c®(B,gi)®e)

P((c® (B, gi) ®e)),

or, more conceptually,

P(c®(B,gi) ®e) =

30(217 ® B® 2, £:c®(B,g,-)®e)
30(217 ® 2q ® 2, £:c®g(B)®e)
Potq+r (c®g(B)®e)
?((c®(B,g:) ®e)t)

and

P(c®idg ®e)

s m
1dc®d®e )7

90((217 ®B® 2r)t, »Q(c@(B,g,-)@e)t)

because both are compos-
ite of the same appropriate
realization of 2, ® b ® 2,
because this is a relation
in Repgr since B ® 2, is
round

by the analog of proposition 7.3

because the latter has only one top-
dimensional cell,

by a relation in Rpp

by a relation in R pgr

2p ® 2¢41 ® 2, Ligm )

c®dRe
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and the other relations are done similarly.
Conversely, consider a respectable family of realizations (Gc¢pg,¢i) of

(Gepgr Bepg) in F. To define a family of realizations (Gepgg,®i) of

(Gepers Reper) in T, define for every ¢ € C and generated pasting (B, EI[ED’,@E)
in (Gpg, Rpy) a generated pasting (2, ® B, £ g over) in (Gep s Bepyr), where
) ) B | |

d% ®b gets labeled by d/ (¢) ©®d®e when b is labeled by d®e in (B, £5°"), and

by an identity when b is labeled by an identity in (B, £5°"). Define (Gepses i)
by

Y DREY) _

&; (c ® (B, £ )) = $(2, ® B, £ g goes).

This family of realizations is well defined because the relations in (Gpgr, Rpgr)
are componentwise. To show it respects relations, take for every appropriate
realization (B,g;) of a pasting scheme B in D ® E, say g;(b) represented by
(By, SE?E), any representative (B, £5%%) of g(B). Then:

d(c® (B,gi)) = composition of #(2p ® By, Sg?E)’s via 2, ® B
= ¢(2,®B, £c®£%®ra) because ¢ is an w-functor
— Jilcog®B)
= ¢i((c®g(B)))
and
ile @ 1G5 g5 =
= ¢(2p ® Blidp: ], £ gere= ) by definition of identity in
Blidg:2]
z W(QD,E ) ED,E )
= id¢(2p®Ba£C®aD®E) because the top-cell of 2, ® Blidg: @]
"B is labeled by an identity
= W)
— 1At
= ¢(1dc®(B,£g®E))'
That it respects labels is left to the reader. O

Lemma 8.2 The tensor product of w-categories is associative.

Proof. Compose the isomorphisms of lemma 8.1 to obtain an isomorphism
C®(D®E) = (C®D)®E. Naturality follows from the unicity in the universal
property of the w-category generated by a pasting presentation. O

46



8.2 Coherence

Lemma 8.3 The associativity of the tensor product of w-categories is coher-
ent.

Proof. Analogous to the pasting presentation (G¢p g, Repr) used in the
proof of associativity, define a pasting presentation (Gep g r, Reprr) for an
w-category CR D ® E® F. Then in the diagram

)(EF)
/ \
CD(EF)
C(D(EF)) <CJD>
= : CIDIEIE‘
C(DEIE‘) C[DIE
C((DE)F) ——> C(DE)F ~—— (C(DE))F

where the ®’s have been omitted for reasons of space, all squares commute
because of the unicity of the w-functor induced by a respectable family of real-
izations. So by Mac Lane’s coherence theorem [30] coherence of the associativity
isomorphism follows. O

Coherence could also be deduced by means of proposition 4.2, but that
wouldn’t give explicit descriptions of the associativity isomorphism and no filling
of the pentagon.



8.3 Another pasting presentation for C ® P(2,)

Because 2, is a free w-category the pasting presentation (QC,P(2q)’ E(C,P(z,)) for
C®P(24) as given above can be simplified, in that it doesn’t use all cells of P(2,)
but only generators. This is possible because the set of generators includes the
globes.

So the generators for a pasting presentation (G, ,Rcp, ) are ¢ ® dg,’ for
¢ € C and ¢' < q. For every appropriate realization (A, f;) of a round pasting
scheme A in C, there is defined a relation between (A4, f,')®df;,’ and ((A4, fi)®d§,’ )es

and for every c € C, there is defined a relation between id, ®d§,’ and id[®d3,.
C

ql
Lemma 8.4 (G, ,Rcp,) is a pasting presentation for C® P(2q).

Proof. The idea is that identities in the w-category P(2,) don’t matter
because of the relations between formal and actual identities in (QC,% R, ).
Details are left to the reader.

8.4 Unit for ®

The pasting presentation (G, Rc,) of C ® 2 is precisely the standard pre-
sentation of C. So C® 2y = C via a canonical isomorphism, and because also
20®C =2 C, 29 = Z° is the two-sided unit for the tensor product of w-categories.

Proposition 8.5 The tensor product ® and unit I° give w-Cat the structure
of a monotidal category.

Proof. Associativity and coherence of the tensor product have been done
already in lemmas 8.2 and 8.3, and the axioms for the unit are easy. a

8.5 Duality

The three different dualities of cubical sets, described in section 2, give rise to
three dualities of w-categories. This can be seen best by considering the cubical
set G and its duals, and calculating what are their respective w-categorizations.
Of course, they are all isomorphic to P(2,), but the non-trivial isomorphisms
show what changes.

The transposition duality gives rise to an even duality, which will be denoted
by °P, and which interchanges source and target of even-dimensional cells. The
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combined duality gives rise to an odd duality, which will be denoted by ¢, and
which interchanges source and target of odd-dimensional cells. There’s also °P¢°
which comes from the second duality of cubical sets and which interchanges
source and targets of all cells, and °°P, which is equal to °P .

Before comparing pasting presentations for (C® D)°P and (D°P @ C°P), I will
compare the pasting schemes (2,)°? ® (2,)°° and (2, ® 2,4)°°. The first one is
isomorphic to 2, ® 2,, but to see how the cells interact in terms of 2, and 2,
which will be important for the comparison of pasting presentations following
shortly, it will be considered to consist of symbols (dg )P @ (d5y)°P, with relations

((d9)°° ® (d2)°?,y) € Ei if and only if one of the following:

—)a+1
1oy = ()P ® (d2)r,
2. y= (dg)op ® (dz(7—_)14+p+1 )op,
—)a+1 _\at+p+1
3.y=(d) )P ),

Similarly, (2, ® 24)°P consists of symbols (dy ® dg )P with relations ((dy ®
dg)°,y) € E for i > j if and only if one of the following:

_ (_)P+q+1+P
1. y= dg ® dq_1 ,
_\p+aq+1
2. y=d) g,
_\ptaq+1 _\pta+1l+p
3.y = dCr @ dl T

And indeed, there is an obvious isomorphism given by (dg )P ® (dg)°P = (dy ®
dg )°P which preserves the relations since 2p is even.

The pasting presentation (QQD, E@,D) of C®D gives rise to a pasting presen-
tation (G, R’y ) of (C®D)*P by taking the °P-dual of the generating pasting
schemes, and by essentially keeping the same relations, only taking into account
that they are between dualized generated pastings.

Now to compare (Q]D)OD ’(C0D7E]D)OP ,Cop )a and (Q?CI,)D,E?CI,)]D))’ let (Q]D)OD ,Cop Soi) be
a respectable family of realizations of (Gpep cop, Rpep cop) in E. Define a family
of realizations (Q?CI,)D’ ®;) in E by ’ 7

Pi((c @ d)P) = @i(dP & ).

49



This family of realizations is respectable because

dom (g;((c ® d)?)) =
— dom(gi(d™ ® )
¢(dom(d°? ® c°P)) by respectability of (Gpep cop, ¥i)

= @ (dom((c® d)°P))
because the labelings on the isomorphic pasting schemes coincide:
. d= . (d°P oP) — 5. d(*)‘”l d))oP d o: Jop d(*)q op)) —
pi-1(dy 1 (dP)@cP) =9, ((c®d, } (d)) and p; 1(d°P @ d), 7 (c°P))

(,)q+p+1

Pi_1 ((dlk1 (c) ®d)°p). Conversely, by the same formula a respectable

family of realizations (Q(O:?D, p;) in E gives rise to a family of realizations
(Grep o s @i) in E which is respectable for the same reasons. Thus C°P ®@ DPP =
(C®D)°P. And also for ®°, which is proven completely analogous.

[21] also considers duality. The even (resp. odd) duality here is the extension
of the weak or vertical (resp. strong or horizontal) duality considered there.

8.6 Cube tensor cube

I will show that the tensor product of two cubes is again a cube, as expected.
For a face x of A,;,, define a labeled pasting scheme (Ap:+q:,£(,rz[)®,r5)(z)),
where a face 2’ of A4, considered as a morphism r — p + ¢, is labeled by
(2p ® 24, SR(WI[,MO%,)@R(W;OEW)), which is indeed a generator in Gzp 74: R(ﬂ'z[, o
zoz') and R(7j o x o 2') are elements of ZP and Z7 respectively.
Given well-formed subpasting schemes P and @ of ZP and Z9 respectively,
define a subgraded set of A, 1, by P®Q = {z € Apﬂ,|7rz[7 ox € P, moxe€Q}.

Lemma 8.6 P ® (Q is a well-formed subpasting scheme of Ap_,.

Proof. For z' € R(z) for z € P® Q, 71'1[70.’170561 € Pand rjozoz’ € Q
because P and ) are subpasting schemes of A, and A, respectively, so P @ @ is

a subpasting scheme of A, .

For well-formedness, first observe that s, (P& Q) = U{d, (P) & d((l,_)p o (Q)]
p' + ¢ = m}, which can be proven by induction on m. That this is a sub-
pasting scheme follows by the same argument as just given, so it remains to
show compatibility. So let y and y’ of dimension m in s,,(P @& Q) be such that
2z € Em—1(y) NEpn_1(y'). Then for dimension reasons exactly one of the equa-
7 © # holds, and also for y'. So this gives
four possibilities, two where the equalities occur on the same side, left say, two

where they occur on different sides. In the first case well-formedness of Q) gives

tionswz[)oyzwlgoz and 0y = m
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ROy =m0 y’ which implies, because of the equalities on the other side, that
y = y'. In the second case the exponents give a contradiction, precisely as in
the proof of well-formedness in lemma, 5.6. a

Define a labeled pasting scheme (P & Q,Qn;, ®Tﬂ§)’ where an element z of
P @ Q is labeled by (2, ® 2q’a£R(7r1[,ox)®R(7r;oz))- Define also a labeled past-
ing scheme (Ap,+qf,£id(7r;,)®id(7r5)), where a face z of Ay is labeled by (2, ®
2q:,£R(ﬂéox)®R(W;ox)) or by the appropriate identity.

Lemma 8.7 In (Gzp e, Rip14), for every face x of Apig, dom(Ay iy,
S(n;@n;)(x)) is a generated pasting, which is equivalent to dom(2y ® 24,

£:R(7r]f,ox)®R(7r(§oac))'

Moreover, for all well-formed subpasting schemes P and Q of IP and Z1
respectively, dom(P & Q,Q(ﬂ;@ﬂ;)) 1s a generated pasting, which is equivalent
to dom(2, ® 24,LpgQ). And dom(Ap/+q,,Eid(rlg)@id(,r;)) is a generated pasting
equivalent to dom(2y ® 24, £iq(p)gid(Q))-

Proof. Left to the reader as an exercise in manipulating generated pastings.
The following pictures indicate what needs to be done in the first case:

0t

- / 0®/ \+®+
0®\ m\ /1@0

T ore—

51(00)®+
T g
1 (00) Q@/—F-F@O

need to be equivalent, which can be proven, as before, by composing from high
dimensions downwards. a

dom(Az41, Lmson)( 000))

and

dom(22 @ 21, LR(x10000)@R(x10000))

Proposition 8.8 7P ® 79 = 7P+,
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Proof. The proof will be analogous to the proof of propositions 5.2 and
5.9, but a little more involved because the pasting presentation for 7P ® 79 has
more difficult relations, namely those induced by compositions in ZP and Z9.

Given a respectable family of realizations (Gz» 74, ;) in C, define a realiza-
tion (Apiq, fj) in C by

f](CB) = 30]'(217’ ® 2(1’7 SR(W;DE)@R(W;OE))

for = a face of A,44. Suppose this realization is m-appropriate. Then

$m(fmt1(2)) =

= Sm (Som+1(2p’ ® 24, £:R(7r1[]oac)®R(7rt§ox)))

= (dOm(2pl ® 24, ER(n;om)@)R(n;ox))) because (Gzp14,9;) re-
spects labels

= ¢ (dom(Ap:+q:, S(W,I[?®7rt§)($))) by lemma 8.7

= f(sm(R(z))) because both are compos-
ite of the same appropriate
realization of s,,(R(z)),

which proves that it is (m + 1)-appropriate.
Given an appropriate realization (Ap4g, f;) in C, define a family of realiza-
tions (Gzr 74, pj) in C by

0 (2p ® 2¢, Sia(pygid(Q)) = f(P © Q)

for subpasting schemes P and @ of ZP and Z7 respectively, where the right hand
side is defined because of lemma 8.6.

This family respects relations since the identities are allright, and for compos-
ites Soj(2p’®2q’a Q(pup/)®Q) = f((PUPI)GBQ) and ‘P((QpUQp’)®2q, EP@Q,P’@Q) =
f(P & Q) composed with f(P' @ Q) need to be equal, which is the case since f
is an w-functor and composition in P(A,44) is union.

Now suppose the family respects m-labels. Then if there are identities
around, then

sm (Pm+1(2p @ 2, Lia(p)gid(@))) =
= f(P8Q)
= (dom(Ap/+q:,Eid(ﬂé)@d(ﬂ;))) because both are compos-
ite of the same appropriate
realization of dom(Ay 4q)

= (dom(2p: [ 2ql, 2id(P)®id(Q))) by lemma 8.7.
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If there are no identities around, then

Sm(Pm+1 (2p’ ® 2q’a£P®Q)) =
= sm(f(POQ))
= f(sm(P®Q)) because f is an w-functor
= o (sm(P o Q, 2,,15®,,5)) because both are composite of the same
appropriate realization of s,,(P & Q)

= g (dom(2pl ® 2q:,£p®Q)) by lemma 8.7.

Thus it respects (m + 1)-labels. O

8.7 Triple tensor and Yang-Baxter

Now look at 27 ® 2; ® 21, which is just the 3-dimensional cube, but with an
interesting labeling:

/i ®d1®d1/ \ / \11®d1®d+\
dy ®d1 ®d1

o — > d1®d+®d1 ° ° d1®d Rdy € —— o

N AN Y,

The two-cells in this pasting scheme can now be seen as Yang-Baxter operators
on composites of 1-cells. The domain of d; ®d; ®d; then becomes one side of the
Yang-Baxter equation, and the codomain the other. Thus from the w-categorical
viewpoint, Yang-Baxter should be a cell, and not an equality.

Another way of seeing the cube above as Yang-Baxter is by taking the planar
dual of domain and codomain, resulting in

d1®d1 ®d1
33—

which is one of the Reidemeister moves of knot theory [33].
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9 Lax-¢g-transformations and quasi-w-functors of
more variables

Analogous to the quasi-natural transformations of [21], and to the m-fold
homotopies of [10], I introduce the notion of lax-g-transformation. This notion
unifies the pseudo-natural transformations, modifications and perturbations of
[20], and makes the terminology ready for higher dimensions. It answers a
suggestion of [2], that cubes can be used as domains for higher homotopies of
w-categories, negatively: it is the globes that are used as such.

Analogous to the quasi-functors of two and of n variables of [21] and to the
bimorphisms of [10], I introduce the notions of quasi-w-functor of two and of n
variables.

A1l this will be used in the description of the internal homs of w-categories
in section 10.

9.1 Lax-g-transformations

Definition 9.1 A right laz-q-transformation C — D is an w-functor C ®
P(24) — D. A left laz-q-transformation C — I is an w-functor P(2,) ® C — .
&

In other words, a right lax-¢g-transformation is a respectable family of real-
izations (G, ,¢:) of (Gepg, Rep,) in D. I will describe the data which give
rise to this explicitly.

A right lax-g-transformation (G, , i) from C to D assigns to every p'-
dimensional ¢ € C and every dg,’ € 2, with p' + ¢ =i an i-cell p;(c® dg,’) e D,
satisfying:

e (respects labels) for every ¢ € C, the composite of the realization of
dom(c ® dg,) induced by ¢;, which is appropriate because ; respects

m-labels, is equal to sp,(Pm+1(c ® dg,’)), as in section 10 of [5],

o (respects relations) for every appropriate realization (4, f;) of a round
pasting scheme A in C with composite f(A), the composite of the appro-
priate (because ¢; respects m-labels) realization of A ® dg, induced by x;
is equal to p;(f(4) ® df;,’), and for every ¢ € C, ¢;1(id, ®d§,’) is equal to

id 0.
Pi (C®d§l )
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Working out the composite in the first case the condition becomes that

! _ ’+1 !
Sm(Pms1(c® df;, )) is the composite of @, (c ® dt(l,_)ll) ) and om(sp—1(c) ® df;,)
with lower dimensional cells, i.e., is the composite of the appropriate realization
of a pasting scheme having those two m-cells as highest dimensional cells.

A particular consequence of the second case is, because for every A,
(A, fi) ® dg, is equivalent to f(A) ® dg,, that the composite of ¢y g (c ® dg,)
with @prie(c ® dg,’) according to the appropriate realization of the pasting
scheme (2, op 2,7) ® dg,’ having these as highest dimensional cells is equal
t0 Pmax{p,p'}+¢' (¢ Om c®d§, ). Because of freeness of P(A), the previous equality
and the condition on the identity also imply that ¢; respects relations!

In order to have a short notation for a composite when there is no need to
explicitly describe the realization, a composite like the one above will be denoted

by (2 om 2p) @ 4 (9 19 (c @ d5) ), i (¢ @ d))) ). Thus (A, (fi(a))aca)
would denote f(A) for appropriate realization (4, f;).

The consequence of the above observation is that:

Lemma 9.2 A right laz-q-transformation C — D consists of assignments
0¢ : Cp — Dpyq and Q’g, : Cpr — Dyyq for every q' < q, where g4 can also be
denoted by Qg, such that:

(-
q'—1

dom(2, ®2y), ie, is equal to <dom(2p1 ® 24), < gfjp +1(c), Qg,’(spfl(c))>>
and dually,

(1) dom(gg,’ (c)) is the composite of o (c) and gg,’(sp/_l(c)) according to

(ii) Qg,’(c’ om €) is the composite of gg,’(c) with gg,’(c') according to (2, om
2,1) ® 21, t.e., is equal to <(2p: om 2p1) ® 24, (Q’g, (¢), Q’g, (c’))>,

8. . .
(111) O (id.) is equal to 1dg§’/(c)_
Proof. Translate statements about ¢; into statements about Qf;,’. O

In low dimensions this looks as follows. Condition (i) for a right lax-2-
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transformation ¢ and a 1-cell ¢:

_ o7 (s0(c)) so(c)) _ @0 (s0(c))
07 (s0(c)) e 4(0)) od (¢) o1 (s0(c)) ot (¢)
o1 (o)
2o (so(e)) N o5 (to(e)) E?Ej 2o (s0(e)) ' o5 (to(e))
{ef (c)/ /\M’z 2(©)
0 (¢) 0, (€) +
0 og (to(©)) of (to(c)) 0 or (t0(<)) o7 (to(c))

Condition (ii) for a right lax-1-transformation ¢ and 2-cell ¢ and 1-cell ¢':

/Um) /%j)

1(t1(c)
%E )/ \ 01(C§OOC)> / \

9.2 Quasi-w-functors of two variables

Definition 9.3 A quasi-w-functor of two variables x : (C,D) — E consists of
a left lax-p-transformation x(c, —) : D — E for every p-dimensional ¢ € C and a
right lax g-transformation x(—,d) : C — E for every g-dimensional d € D, such
that

o X(e,=)p(d) = x(—, d)g(c) & x(e, d),

e x(c, _)gfl = X(dg”(c)a _)p’a and
o X(— ) =x(—,d5 () o

Proposition 9.4 A quasi-w-functor of two variables x : (C,D) — E corre-
sponds an w-functor CQ® D — E.

Proof. Define a family of realizations (G, vi) of (G¢p, Bep) in E by v;(c®
d) = x(c,d). Because the relations in (G¢p, Rcp) are component-wise, the fact
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that the x(c,—) and the x(—,d) are lax transformations implies respectability
of this family. Conversely, given (QQD, v;), define x by the same equation, and
respectability of the family implies that x is a quasi-w-functor of two variables.
The reader may check the details of this. a

Thus C ® D is the universal recipient of quasi-w-functors of two variables
from (C, D).

The above proposition shows that it is not a coincidence that it is not neces-
sary to look at tensor of pasting schemes in general, but that the theory forces
that the information can be broken up, so that only pasting schemes A ® 2, and
2, ® B need to be considered.

9.3 Quasi-w-functors of n variables

Contrary to the two-dimensional case [21], it is not possible to define quasi-w-
functors of more variables inductively, in fact because the 3-dimensional cube is
not a commutativity condition, but a 3-dimensional cell.

Definition 9.5 A (p1,p2,...,Pi—1, —Pit1,- - -, Pn)-lax-transformation C —
D is an w-functor P(2,, ) @P(2p,)®. . .QP(2p,_; ) RCRP(2p,,,)®. . .QP(2p,) — D.
&

With this terminology, a left lax-p-transformation is a (p, —)-lax-transforma-
tion. Note that any tensor product of globes gives a well-formed loop-free pasting
scheme by repeated application of the propositions in section 6.

Definition 9.6 A quasi-w-functor of n variables consists of a multiple lax
transformation of the right type for every (n — 1)-tuple of cells of the respective

w-categories, satisfying obvious compatibility conditions. &

Proposition 9.7 A quasi-w-functor of n variables (Cy,...,C,) — D corre-
sponds to an w-functor C; ® ... ® C, — D.

Proof. Straightforward extension of the proof of proposition 9.4. O

9.4 Associativity and coherence revisited

There’s a relation between quasi-w-functors of four variables and coherence of
the associativity of the tensor product in section 8, because in the previous
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proposition it is possible to insert brackets in the tensor product in all pos-
sible ways, without affecting its validity. On the one hand, this follows from
coherence, see proposition 8.3, on the other hand, it can be proven explicitly
analogous to the proof of proposition 9.4, and then coherence follows from this.
However, both proofs are equally difficult, since they make use of the universal
property of the same pasting presentations.

10 Internal homs

The internal hom w-categories Hom*(C,D) and Hom'(C,D) extend [21]’s
Fun and Fun, respectively. Hom'(C,D) relates to [10]’s w-GPD and CRS. I
only describe Hom®(C, D) explicitly, the second one is dual in a sense that will
be explained in section 11.

As a graded set, Hom"(C, D) consists of right lax transformations, where a
right lax-g-transformation is of dimension ¢. From here on I will omit the prefix
since it will invariably be a right one.

10.1 s, and t,,
The m-sources and m-targets of a lax-g-transformation g : C — D are given by
sm(0)i(c@dy) = tm(0)i(c®dy) = 0i(c®d])  for g<m,

oilc®dy) ifgd =m

o) = ,
sm(0)i(c®dy) {Qi(c®d§/) if ¢' <m,

and

q

' oilc@dt) ifd =m
tm(o)ilc®dy) =4~ B
Qz(c®dq/) ifg <m for ¢ > m,

which are right lax-m-transformations.

Or:
(5m(0))2(c) = (tm(0)2(c) = oly(c)  forg<m
. B (o) — Q;%(c ifm'=m
mleNipte) = { 0 S T
and

ot(c) ifm' =m
QET;,(C) ifm' <m for ¢ > m,
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which are lax-m-transformations in the terms of lemma 9.2. And the con-
ditions there are obviously satisfied since they are local in some sense. For a
lax-2-transformation ¢ and one-dimensional ¢, this looks as follows:

to(0)o(c) to(0)o(c)
K/ \\ s@w\

73%.

Jerten(d e2(0) ) \ / ]
80(@)0(}\ so(0)o(c) b

So it is not necessary that the domain of a lax-g-transformation ¢ in Hom"(C, D)
is in the domain of the cells p,(c)!

10.2 Composition

Now suppose g is a lax-g-transformation, o is a lax-¢’-transformation, and that
tm(0) = sm(0). Their m-composition is given by

"

(00m )2 (c) =

aqﬁ,’,’ (c) for ¢" <m,
om(c) if "= —
ot(c) ifpB"=+ for ¢" = m,

" "

<2p' ® (2min{g,q"} °m 2min{g’,¢"}); (Qﬁlin{q,qu}(c), Umin{q',qu}(c))> for ¢" > m.

The formula for the composition in the cartesian internal hom w-category [C, D]
in [35] is not correct because it doesn’t make [C,D] into an w-category, which
explains the different format here.

Lemma 10.1 For o a laz-q-transformation, o a laz-q'-transformation, and
tm(0) = sm(0), 0 om 0 is a laz-(max{q, ¢'})-transformation.

Proof. For condition (i),

1"

dom((c o, 0)5 (c)) =
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= dom (<2p’ X (Qqu om 2q//), (Qf;,, (C), 0'5,, (C)) >)
if ¢" # m and ¢" < min{q, ¢’}

_)p'+1 "

_ <d0m(2p/®(2qu om 2¢1)), (Qg,,_l (e), & (s -1(c)),

Ué;ﬁ“(c), Ug,’,’(spfl(c)> by condition (i) for ¢ and o

_y'+1

= <d0m(2p/ ® 2(]”)’ <(U Om Q)((IH)_I (C)a (U Om Q)g” (Spl]_(C))> >
by the formula for o o,, o,

and similar for other ¢”.
For condition (ii),
(7 om s (¢ omr @) = (27 ® (241 om 2¢7), (& (¢ o ), 03 (¢ ot ©)))
say, which needs to be

= {2y om 2) © 2, (0 0m 021 (0), (7 om 0 ()

Perhaps this could be done by using (2 0y 2) ® (247 o 241), provided it is
a well-formed loop-free pasting scheme, but I don’t want to check this. It is
not necessary, since the above composites can be obtained as the composite of
some appropriate realization in D of some pasting scheme which can be seen
as a generated pasting in the standard presentation of D and in that respect is
equivalent to the two generated pastings described above, which explains their
composites being equal. This pasting scheme is (2,7 opy 2,) @ (247 O 247)
with lots of identities inserted, but that’s not the way it is obtained: it is
2y @ (247 om 24v) with identities inserted and with cells split up, and it is
(2p omy 2p1) ® 24n with identities inserted and with cells split up. The highest
dimensional cells of this resulting pasting scheme are realized by identities and

by the cells gg,’,’(c), gg,’,’(c’ ) Ug,’,’(c) and Ug,’,’(c’ ). O

N ([
so(aoog)o&\i}gry \ °/y7
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10.3 Identity

For a lax-g-transformation p, define id, by

(idQ)erl(c) = idg’)q(c)
(id))%(e) = &fi(c) forq <gq

Lemma 10.2 For laz-q-transformation o, id, is a laz-(q + 1)-transformation.
Proof. For condition (i),
dom((idg)g+1(c)) = dom(idy,(c))

0q(c)
= <d0m(2p ® 24+1), (Qq(c)v id@q(sp'—l(c)))> ’

and for condition (ii) a similar argument as in the previous lemma works. O

10.4 w-category

Proposition 10.3 Hom"(C,D), with the above defined operations, is an w-
category.

Proof. The elementary properties of s,, and t,, are immediate because they
are already incorporated in the data for a lax-g-transformation.
For identity

(0 omidg)gr1(e) = (2 ® (2441 om 2¢), (idg, (c)» ag(c)))
= (idoo,e)q+1(c),

and similarly for other cases.

Associativity and interchange law follow because, for example, ((7 o, o) o,
0)max{q,¢',q"}(¢) and (7 om (0 om 0))max{q,q',¢"}(¢) are both equal to the compos-
ite (2 ® (24 om 2 om 2¢7), (04(¢), o4 (€), 74 (c))), and similarly for interchange.
The reader convinces herself or himself of the validity of this statement!

Finally, the other composition axioms are immediate because they are incor-
porated in the definition of composition. O
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10.5 w-functoriality

Given an w-functor g : D — I, define an w-functor g, : Hom"(C,D) —
Hom®(C,D’) by

9:(0)5 (¢) = g(dl) ().

Indeed, it is completely straightforward to show that g.(o) is a lax-g-transforma-
tion if p is, and it is only slightly less straightforward to show that g, is an
w-functor, in both cases making full use of ¢ being an w-functor, in the sense
that g commutes with composites of appropriate realizations.

Given an w-functor f : C' — C, define an w-functor f* : Hom"(C,D) —
Hom"(C', D) by

FH(0)5 (e) = & (£(c)).

And indeed, it is completely straightforward to show that f* is an w-functor, and
it is only slightly less straightforward to show that f*(p) is a lax-g-transformation
if o is.

11 The adjunctions between the tensor product
and the internal homs

I prove the adjunctions and mention some consequences, among which du-
alities relating both internal homs.

11.1 The correspondence

There are two adjunctions to consider: C ® — 4 Hom*(C,—) and — @ D -
Hom'(ID, —). I will do the first one in some detail, the second one is analogous.

Given an w-functor ¢ : C® D — E, i.e., a respectable family of realizations
(Gep, pj) in E, define an w-functor @ : D — Hom®(C, E) by

B(d)7(c) = @prg(c® 2 (d)).

Indeed, $(d) is a lax-g-transformation, for example
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dom(®(d)y (¢)) =

= dom (gop+qf (c® dg,’ (d)))

= o (dom(c ® df;,’ (d))) because (G, ;) respects labels
= édom E% ® 2, gsopﬂ,l(dom(c) @ g (d)), pprg 1(c@d) ) (@)

2,® 2, (P(d)f) (dom(e), 7@, (),

dom

so condition (i) of lemma 9.2 holds, and the other conditions are similar. And
© is an w-functor, for example

Bd om d)g () =
pig(c®dl (d o d))
= ¢ (c® (@) (d)omdj(d))) if ¢ #m

= <2p X (Qq/ Om 2q/),£

because these generated

e®d’) (d),c®d’, (d')
q q 1 1
pastings are equivalent

a7 (), c@d‘*’(d')>>
(@) (), () (e)))

= (28 (2 om 2),(c®
= (292 om2), (@
= <so(d')omso<d>)§!(c),

and the other conditions are easy.

In the other direction, given an w-functor ¢ : D — Hom"(C,E), define an
w-functor ¢ : C® D — E, i.e., a respectable family of realizations (G, #;) in
E by

$j(c®d) = @(d)q(c)-

Indeed, (Gcp, QNS]) respects labels:

sm(dmi1(c®d)) = dom(¢(d)y(c))
= (dom(2, ® 24), | ¢(d)q(dom(c)), #(d

)
= (dom(2, ©2,), (6(d)y(dom(c)), é(d} ;" )g-1(c)) )
= (dom(c®d)),

and it respects relations:
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P((4, fi) ® d)

and

é(c ® (B, g:))

(4©2, (3(fi(a) ® d))aca )

(A®2g, (8(d)g(fi(a)))gen)

o(d)q(f(A)) because ¢(d), considered
as a family of realizations,

_ respects relations

o(f(A) ®d),

because ¢ is an w-functor

and similarly for the relations with respect to identities.

11.2 Natural

The correspondence is natural in D because for g : D — I/,

D

9

D

(o (C®yg))(c®d)

w-Cat(C @ D, E) w-Cat(D, Hom*(C, E))

°(C®9)T B T—og
w-Cat(C o IV, E) w-Cat(IV, Hom*(C, E))

Figure 3: naturality in D

(hoo)c®d)



E w-Cat(C @ D, E) w-Cat(D, Hom"(C, E))

-
h hol \Lh*O—

E w-Cat(C @ D, E') w-Cat(D,Hom"(C,E'))

Figure 4: naturality in E

Note that because the correspondence is an isomorphism this also makes
natural in D and E.

Theorem 11.1 The internal homs Hom® and Hom' give the monoidal cate-
gory w-Cat the structure of a monoidal biclosed category. Moreover, this struc-
ture coincides with the monoidal biclosed structure of proposition 4.1.

Proof. The adjunctions have just been proven, and the moreover part is
immediate from propositions 4.2 and 8.8. a

11.3 Strength of the adjunctions

One of the consequences of the monoidal biclosed structure is that the natural
correspondence w-Cat(C ® D, E) = w-Cat(D, Hom*(C,E)) above is in fact the
0-dimensional reflection of a correspondence between internal Homs, see e.g.
[14]. This can also be seen directly:

Hom"(C ® D, E), w-Cat(Co D ® 24, E)
w-Cat(D ® 24, Hom*(C, E))

Hom" (DD, Hom*(C, E)),.

1111

It is left to the reader to check this indeed gives an w-functor between the two.

11.4 Mixed

It is also possible to relate both internal homs:

Hom'(C, Hom*(ID, E)), w-Cat(2, ® C,Hom"(D, )
w-Cat(D ® 2, ® C,E)
w-Cat(D ® 2,, Hom'(C, E))

Hom" (D, Hom'(C, E)),.

i1 1 1
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11.5 Duality

As a consequence of the adjunction, there are also duals of the internal homs:

w-Cat(C,Hom" (DD, E)°P) 2

w-Cat(C°? , Hom"(D, E))

w-Cat(D ® C°P,E) by the adjunction for Hom"®
w-Cat((D ® C°P)°P EP)

w-Cat(C @ DPP,[EP)

w-Cat(C, Hom'(D°P, E°P)) by the adjunction for Hom'.

11111

So one internal hom could have been defined in terms of the other by
Hom'(C,D) = Hom"(C°P,DP)°P and by Hom®(C®, D). Another conse-
quence is that Hom"(C°P ¢ DPP ) = Hom"(C, D)°P .

12 w-Cat is an (w-Cat)g-CATegory

As shown in [28], a monoidal closed structure on a category makes this cat-
egory an enriched category over itself. T describe the resulting structure for one
of the internal homs on w-Cat, namely the right one. This structure extends
the enrichment which makes 2-Cat into a (2-Cat)g-CATegory [21].

There is an w-functor x : Hom"(C,D) ® Hom* (D, E) — Hom"(C,E) which
can be considered as “horizontal” composition of lax-g-transformations. In fact,

= (idHom®(nyr)) © ((idHomr(@’D)) ® Hom" (D, E)) , and this ensures that u is an
w-functor, and that p is natural in all three variables.

To describe u, let o be a right lax-g-transformation C — D), o a right lax-r-
transformation D — E, and ¢ a p-dimensional cell of C. Then

kY _ o' vy B

we, o)y (e) = <2p @ dy (24 ©2), (UT’ (g (C>))dg,’®d:/’€dg:(2q®2r)> '
In particular, (g, 0)q4r(c) = 0r(04(c)), and the domain of this is a composition
of (Ui:)lq 0 0q)(c) and (0,00, ;)(c). Other particular instances are when ¢ = 0
in which case p(p,0) = 0*(0), and when r = 0 in which case p(p,0) = o.(0),
see section 10.

The w-functor ¢ : 29 — Hom"(C,C) corresponds, under the adjunction, to
the canonical isomorphism 2y ® C =2 C, and as such it is

U(do) = (id : C = C).
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Finally, a picture of (o, 0)4(c) and all its faces for ¢ a right lax-2-transforma-
tion, o a right lax-2-transformation, and ¢ a 2-dimensional cell of C. As it is a
realization of 29 ® 25 ® 25 in E, T will give the names of the cells in this pasting

scheme, the cell df ® d? ® d} being realized by o7 (gg (dg (c)))

A, A3
d; ® dy ® da dy ®dy @ d
Ay do ® do ® do Ay
dy ®dy @ df di ® d2 ® do
As Ag

where the A; are given by:
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Ali

dy ®df ®dy
B4 33—

Bs
dy @gy g @dé
B; Bg

B B / \, d; @d} ®d> \ o
dy ®dr8dy 4 5 d2@d5 ®d;

dy ®daPd 3
32\04A 2 2d1_®d'1"®d'1" / L By
Bys 3—> Big Big
dy ®d] ®da . _ d2®dy @df
/! \ - N
1d ®d2®d / \ Z(d2®dg ®dz
B By  Bg
\3 / \ 3/7
BN B, 4o 2d; / s
d2®df ®dy 20 s B / df ®df ®ds
o \ /
4 dy@dz@dy B26
By \ / 3 By
\ /
I . By /
\3 BIS
\3 \ 5
df @da@dy ™~ 4} ®dy ®ds
Bni 3 Bi2
df ®d; ®df
in which
Big B3
37 ~; 37 ~3
-~ d2®@dy, ®d. - d2®d, ®d
0 = 20dg
Bay —3—> By 4 Big By 4 Byg —3—~ By
\3 3/ \3 3/
N - N -
Bog Bos
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As: - "
2 dy ®df ®d;

33—

— + B4
dy ®d] ®§iy/7
/ 3

B \ B
Y AN
dy ®dz0d; B 3 3 B2 ©dy

5 w% ®do> ®d0+
\

/ 3/7 \3 / \
/ \
By Bog 3—> Byg By
\3 3/ \ /
\ / 3 3
dy ®d; ®ds Bz \ / d2®dy @
\, d; ®d; ®da
4\ Bg(ﬂi@dz da
B B3a "By Bs
\3 3/ \ /
S~ — 3 3
dy@d;f @dy Bao s Bar \ / di ®d{ ®d
4/ \ d2®da ®da
4 dy@dr@dy 3 Bae
By \ - P
\ /
\ ~ e Bas /
dy®dg @d; 3\ Baa ¥ dr0d; @df / Yaf otedf
Bio \3 B
~ \ —
d-li—®d2®da\ /di*'@do_ ®ds
11 3—> By

df®dy odf

in which
B30 B29
I @dynd _ -~ df ©dond
B3y —3— Bog 4077 = Ba 0 B s> By
3 3 3 3
N - ~ -
Blg BIS
and
Bgo B33
P 73
A} @dywd — df @dywd
By % OB —3>Bg = By —3>Biy 10 By
g 37 3 3”7
N >~ 7
Blg Bl4
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As: - -
3 dy ®df ®d;

_ By 3—B;s - .
d] @g&’ wlg @do
3 B, 6

B3 \
Ve / RN
dy ®d2®dy 3 Byr 3d2®da ®d;

// — \3\ / \
2 Bog By By
\3 " \ /
\ / 3 3
dy ®dy @da B3 \ / d2@d; ®d
A
ds®d2®dy % Bgo
By Bss Bss ¥ dy@dy ®dy By

3

3 B 3
dy®d} ®dy \ 34 \ / di ®d{ ®d
\ dr®dy ®d>

Basg 3 Bsg 3— Bg'fi\(_i@dz ds
By 3 \ el “Bis
\ /
\ Bio /
dy®d ®d} 3\ \4\‘fl+ ®d; ®d; /3 4 ®dy®d
Bio B3
df @d2@dy 4} ®dy ®ds
11 3—> D12
Fod odt
dt od; od}
in which
B3 Bog
3/ \3 3/ \3
- do®ds = ~ do®do> D=
| A2 2 — | a2 2
By 4 B3y —3— Bss By —3— Bay 4 Bss
g 37 g 37
N\ pe N e
Bss Bys
and
Bgl B20
" ~ " g
| d2 ®da _ e | da®@d> X
By —3—= By 4 By = B 4 Boy —3> B3y
3 3 g 37
N e N e
Bss By
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and in which

Bss Bys
7 \d2;i%W _ 7 \dQ;i%W
B33 —3—> B3y 4 Bys = By By —3—~ Bsg
N 8 N 8
Bsg Bsg
Ay dy ®d} ®d;
By 34— By
dy ®d0+®§1% w% ®do®d
7 \ ~~
dy ®d2@dy 3/ Y Bus \3d2®d5®d;
/ R B
B, 7N\ By

By 3——> Bys

T
~

By Bss 3\ / \ Bg
\ d2®dy ®ds idf®d2®df /
B
3 46 3
d>@df ®dy \ Ty df @d{ ®d
— S~ df @dy ®d; i
Bsg Bsg 33— 3311\04®d2 da
A

3/ By
\ /
\ Bio /
3 o 3
d@d @df \ \451 ®d; ®dz / df ®@ds@d

Bio By
~_ _

3 3
df @d2@dy ™~ 4} ®dy ®da

By 3 3 &
- 4 do@da@d
dy ®d] ®ds / df ®d} ®d; ? 0ds@d; @dT
3/

in which
B45 B41
E AN E AN
= | d2®d%—@db _ A | d2®d%—@d§
B33 4 46 —3> B4z T B33 —3> Bsg 4 12
N N
ng BS4
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As: - -
5 dy ®df ®d;

By 3—— Bs
dy ®dg ®§1V7 w% @d2®@d
/ \
Bs Bg

B B / \,d; ®d{ @ds \ -
dy ®d2®d; 4 ,428dg 8d;
/ Bl7 \

Body ®d2 da \ \ By
B15

33— B16 \ Big
o dr®dy ®d _
dg ®d; ®ds / \ 2000 ® \ dr®d; ®d
3

3

/ \/3/\\

By J Bsxo By  Bs
Byz ¥ dy@di@df -
Y%
/ \ d2®d2@d7
d2®df ®dy . 5 Bso di ®df ®ds
/ \ 3/ Y~
/ \
By Byg 3—— By By

\
d2®d+®d\+ 3 3/ \ / d{@m@rfr
0 ¥ \ / %di"@dg ®d1" / /
Bio

313
df ®da®dy ™ @ ®d ®ds
11— 3> B
df @d; ®d
in which
Byg 323
- ¥ dr @yt - ¥ d ®d o
| G2 2 — | G2 2
Bsp —3— Bs; 4 Bi4 Bsg 4 Bss —3—> B4
~ 37 ~ 37
N e N e
B52 B49
and
B19 By
3/ / \
- dy @y A Do
\ 2®d2 _ | d2®d2
Bs1 4 Bis —3>Bg = Bs1 —3> Bys 4 Bs
\3 3/ \3 3/
~~ / N /
Bso Bys
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and in which

By B
37 d—;‘;’?@d -~ 37 d‘;z:i))@d
| 2 — | 2
Big ¢ Bsi —3>Big = Big—3>DBn 4" 19
3 3 ™3 3
AN - AN -
Bsg Bos
A dy ®d} ®d;
d; ®df ®dy 7 Ba ’ > Oy ®d2@dy
2 2
1 0 3 \ 13 0
dy ®d2@dy 3/ Y Bus \3d2®dg ®d;
/ By Y dy0dt@dy T \
/ \
B, 3 N By
By 3 &
ds ®d] ®d / \ d2®d°+®‘x “tis P> 0d; od
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