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tionIn 1945, Eilenberg and Ma
 Lane invented 
ategories [15℄. In 1967, B�enabouinvented bi
ategories [4℄, and he proved that every bi
ategory is biequivalentto a 2-
ategory. In 1993, Gordon, Power and Street introdu
ed tri
ategories,and they proved that every tri
ategory is triequivalent not to a 3-
ategory, butto a Gray-
ategory [20℄. In algebrai
 topology, some weakening is needed indimension 3 as well: homotopy 2-types are 
lassi�ed by 2-groupoids [31, 16, 29℄,but homotopy 3-types are 
lassi�ed not by 3-groupoids, but by Gray-groupoids[25, 24, 6℄.In order to �nd out what happens in higher dimensions, and to avoid doing3



dimension 4, then dimension 5, et
., I propose to work !-dimensionally fromthe start. I think this is the best way to get grip on the 
omplex notion of weakn-
ategory.So the �rst step to take is to start with something !-dimensional whi
h isstri
t and known, !-
ategories [35, 23℄, and to analyse the stru
ture whi
h inthe 
ase of 2-
ategories leads to the 
on
ept of Gray-
ategory. This stru
ture,whi
h makes !-Cat, the 
ategory of small !-
ategories, into a monoidal bi
losed
ategory, already has interesting 
ompli
ations, 
onsequen
es and appli
ations.A 
ompli
ation is, that the ma
hinery of pasting presentations of [5℄is needed. A 
onsequen
e is, that it gives higher homotopies [10℄ in terms of!-
ategories. An appli
ation is that \!-
ategories might serve as a model for
on
urren
y in 
omputing, and tensor produ
ts would be important in this the-ory" [2, 32℄.This paper is 
onne
ted to previous work of Brown and Higgins [10℄, Gray[21℄ and Al-Agl and Steiner [2℄. Throughout, I keep 
lose tra
k of the relationbetween the results there and here. For one thing, the terminology is di�erent:what I 
all an !-
ategory is termed 1-
ategory in [2℄, and what is 
alled !-groupoid in [10℄ I 
all a 
ubi
al !-groupoid, reserving the name !-groupoid forwhat [7, 8℄ 
all an 1-groupoid. For the !-
ategories of Street [35℄ I agree withVerity's suggestion to 
all these !+-
ategories. Another sour
e is [5℄, towhi
h the reader is referred for preliminaries on !-
ategories, pasting s
hemesand pasting presentations.The 
entral idea of this paper is that the tensor produ
t of 
ubes indu
es amonoidal bi
losed stru
ture on !-Cat. I sket
h how this follows formally fromresults of Day [11, 12℄, the main point being that !-Cat is monoidal monadi
over the 
ategory Cub of 
ubi
al sets. Impli
itly, Brown and Higgins [10℄ givethe same motivation for the existen
e of a tensor produ
t of 
ubi
al !-groupoids.There are two disadvantages to the formal approa
h, though: it doesn't give ex-pli
it formulae, and using 
ubes 
on
i
ts with globes representing elements of!-
ategories [35℄. Therefore, the a
tual approa
h uses Johnson's theory of past-ing s
hemes [23℄, thereby making pre
ise the \appropriate 
omposites of fa
es"of [2℄. Con
retely, I give a pasting s
heme for the tensor produ
t of two globesas !-
ategories, whi
h is used as a basi
 ingredient in the de�nition of a pastingpresentation for the tensor produ
t. This gives the desired expli
it formulae,without the need to ever write out 
omposites as in [34℄. It also gives formu-lae for higher dimensional lax natural transformations and for the internal homs.This paper is organized as follows. In se
tions 2 and 3 
ubes, 
ubi
al4



sets and the adjun
tion between 
ubi
al sets and !-
ategories are treated. Se
-tion 4 explains why the tensor produ
t of 
ubes indu
es a monoidal bi
losedstru
ture on !-Cat. Se
tions 5 and 6 des
ribe pasting s
hemes for tensorof and with globes, whi
h are used for the pasting presentation of the tensorprodu
t in se
tion 7. In se
tion 8 some properties of the tensor produ
tare 
he
ked. Se
tions 9 to 11 deal with the internal homs, and with higherdimensional lax natural transformations. The �nal se
tion is on !-Cat as anenri
hed 
ategory.Some of the ideas here were announ
ed at the Conferen
e on Pure Mathe-mati
s of the University of Wales, 24-26 may 1993, Gregynog, UK.2 Cubes and 
ubi
al setsA simpli
ial set is usually de�ned as a 
olle
tion of 
ells together with bound-ary operations and degenera
y operations satisfying some relations [26℄. A more
ategori
al de�nition is that a simpli
ial set is a fun
tor �op ! Sets, where �is the 
ategory of �nite ordered sets and order preserving maps between them[13, 19℄. For 
ubi
al sets, there are two analoga of the �rst des
ription, onewithout and one with so-
alled 
onne
tions [9, 36℄. Perhaps for this reasonthere seems to be no 
ategori
al des
ription of 
ubi
al sets available. I intendto �ll part of this gap, by de�ning a 
ategory � whi
h is to 
ubi
al sets, without
onne
tions, what � is to simpli
ial sets. In fa
t, I de�ne a 
ubi
al set as afun
tor �! Sets, and I show that this de�nition 
oin
ides with the usual one[9℄. Analogous to the simpli
ial 
ase the obje
ts of � are 
alled the standard
ubes.2.1 Cubes 
ombinatoriallyAi
hison has given an extensive a

ount on 
ubes [1℄, from whi
h I will use thefollowing 
ombinatorial de�nition of the n-dimensional 
ube.Let n be the ordered set f1; : : : ; ng and � = f�; 0;+g. Then �n = fx :n ! �g 
an be thought of as the n-dimensional 
ube. For example, the three-dimensional 
ube 
an be labeled with elements of �3 as in5



��+ �0+0�+
ba
k: 00+top: �00 �++0++right: 0+0�����0 �0�0��left: 0�0 �+��+00+�+�+ +0+ +++bottom: +00+�� +0�+�0front: 00� ++� ++0 ;

the interior of the 
ube being labeled by 000.Some terminology: if x and y are elements of �n then x is a sub
ube of y iffor every l 2 n, x(l) � y(l) in the partial order � < 0 > + on �. The dimensionof x 2 �n is #x�1(0).2.2 A model 
ategory for 
ubesI will make the set fnjn 2 !g into a 
ategory � by de�ning morphisms mirroringthe behaviour of fa
es and degenera
ies.De�nition 2.1 A morphism f : n ! m is a fun
tion f� : m ! n [ f+;�gsu
h that f�(k) � f�(k0) 2 n implies k � k0 and f�(k) = f�(k0) 2 n impliesk = k0. 3This may look a little bit awkward, but something more 
ompli
ated than\order preserving" is expe
ted be
ause 
ubes have opposite fa
es instead of fa
esopposite to a vertex. And this notion is relevant to 
ubes sin
e a morphismf : n! m indu
es a fun
tion f : �n ! �m byf(x)(k) = x(f�(k)) if f�(k) 2 n= f�(k) otherwise.This fun
tion behaves well:Lemma 2.2 If f : n ! m is a morphism then the indu
ed fun
tion f : �n !�m sends sub
ubes to sub
ubes.Proof. Let x and y be sub
ubes of �n, and let k 2 m. Then f(x)(k) =x(f�(k)) � y(f�(k)) = f(y)(k) if f�(k) 2 n, otherwise f(x)(k) = f�(k) =f(y)(k). Thus f(x) is a sub
ube of f(y). 26



Composition of morphisms: let f : n! m and g : m! r. De�ne(g Æ f)�(p) = f�(g�(p)) if g�(p) 2 m= g�(p) otherwise.With this de�nition, g Æ f is a morphism n! p: if (g Æ f)�(p) � (g Æ f)�(p0) 2 nthen g�(p) and g�(p0) are in m and g�(p) � g�(p0), so p � p0. Similarly for(g Æ f)�(p) = (g Æ f)�(p0) 2 n. The identity on n, denoted idn, is given by(idn)�(l) = l:Proposition 2.3 � is a 
ategory.Proof. Composition of morphisms in � is asso
iative:(h Æ g Æ f)�(q) = f� (g�(h�(q))) if h�(q) 2 r and g�(h�(q)) 2m= g�(h�(q)) if h�(q) 2 r and not g�(h�(q)) 2 m= h�(q) otherwisefor both ways of putting in bra
kets. And it is easy to see that the identitybehaves as an identity should. 22.3 Generating the model 
ategory for 
ubesTo relate the 
ategory � to the usual notion of 
ubi
al sets, I will show thatevery morphism is a 
omposite of fa
e and degenera
y morphisms.De�nition 2.4 A morphism f : n ! m is surje
tive if for all k 2 m, f�(k) 2n. It is inje
tive if for all l 2 n there exists k 2 m with f�(k) = l. 3An example of a surje
tive morphism is "i : n! n� 1, for 1 � i � n, whi
h isde�ned by ("i)�(l) = l if l < i= l + 1 if l � i:An example of an inje
tive morphism is ��i : n� 1 ! n, for 1 � i � n and� = �, whi
h is de�ned by(��i )�(l) = l if l < i= � if l = i= l � 1 if l > i:Note that there are the following relations between the "i and the ��i :7



(i) ��j ��i = ��i ��j�1 for all i < j � n and �, � = �,(ii) "j"i = "i"j+1 for all i � j � n,(iii) "j��i = ��i "j�1 if i < j= ��i�1"j if i > j= idKn if i = j; for all i, j � n and � = �These relations are 
he
ked easily by immediate 
al
ulation.Proposition 2.5 Every morphism 
an be fa
tored as a surje
tion followedby an in
lusion.Proof. Given f : n! m, de�ne r = #fk 2 mjf�(k) 2 ng. De�ne morphismsg : n! r and h : r! m byg�(p) = f�(k) for k the p-th element of m for whi
h f�(k) 2 nh�(k) = p if k is the p-th element of m for whi
h f�(k) 2 n= f�(k) otherwise:g is a morphism be
ause if f�(k) = g�(p) � g�(p) = f�(k0) then k � k0 andso p � p0, and likewise for g�(p) = g�(p), and h is a morphism be
ause ifp = h�(k) � h�(k0) = p0 then k � k0 and h�(k) � h�(k0) likewise, all these
ases when k the p-th element of m for whi
h f�(k) 2 n. g is surje
tive be
ausefor p 2 r, g�(p) 2 n, and h is inje
tive be
ause for p 2 r there exists k 2 mwith h�(k) = p, namely the p-th element of m. Their 
omposite is given by(h Æ g)�(k) = g�(h�(k)) = g�(p) = f�(k) if k is the p-th element of m for whi
hf�(k) 2 n and (h Æ g)�(k) = h�(k) = f�(k) otherwise, so indeed f = h Æ g. 2Proposition 2.6 Every surje
tion is 
omposite of "i's. Every inje
tion is
omposite of ��i 's.Proof. Suppose f : n ! m is a surje
tion. Then n � m, and if n = m thenf is the identity. So assume n > m, and let i be the �rst element of n whi
h isnot f�(k) for any k 2 m. De�ne h : n� 1 ! m by h�(k) = f�(k) if f�(k) < i,and h�(k) = f�(k) � 1 if f�(k) > i. h is a morphism be
ause of the 
onditionon i, it is surje
tive by de�nition, and (h Æ "i)�(k) = "�i (h�(k)) = f�(k), whi
hshows that f = h Æ "i. Indu
tion on the di�eren
e of n and m �nishes the proofof the �rst statement.Suppose f : n ! m is an inje
tion. Then n � m, and if n = m then f isthe identity. So assume n < m, and let i be the �rst element of m for whi
h8



f�(i) =2 n, say f�(i) = �. De�ne g : n ! m� 1 by g�(p) = f�(p) if p < i andg�(p) = f�(p + 1) if p � i. Then g is an inje
tive morphism, and f = ��i Æ g,indu
tion �nishing the proof of the se
ond statement. 2Thus, � is the 
ategory generated by the "i and the ��i subje
t to the relationsgiven above.2.4 Cubi
al setsDe�nition 2.7 A 
ubi
al set is a fun
tor �op ! Sets. A 
ubi
al map is anatural transformation of su
h fun
tors. 3Proposition 2.8 A 
ubi
al set K is a family of sets Kn (n � 0), togetherwith fa
e maps ��i : Kn ! Kn�1 and degenera
y maps "i : Kn�1 ! Kn, forevery 1 � i � n and � = �, su
h that(i) ��i ��j = ��j�1��i for all i < j � n and �, � = �,(ii) "i"j = "j+1"i for all i � j � n,(iii) ��i "j = "j�1��i if i < j= "j��i�1 if i > j= idKn if i = j for all i, j � n and � = �.A 
ubi
al map f : K ! L is a family of fun
tions fn : Kn ! Ln 
ommutingwith the fa
e and degenera
y maps.Proof. Be
ause of propositions 2.5 and 2.6, and the relations betweenthe "i and the ��i in �, whi
h are dual to the ones above. 2The 
ategory of 
ubi
al sets will be denoted by Sets�op or by Cub, depend-ing on whi
h viewpoint is taken.As an example, 
onsider the representative 
ubi
al sets, i.e., the standardn-
ubes as 
ubi
al set. De�ne a 
ubi
al set In by In(m) = �(m;n). Note thatif m > n then all elements of (In)m are degenerate. In is related to �n: ifA : m ! � has A(k) = 0 for all k 2 m, then (f : m ! n) 2 In 
orresponds toA Æ f� 2 �n.2.5 DualityThere are three forms of duality of 
ubi
al sets that will be of importan
e inthe sequel. The �rst one is the transposition fun
tor T 
onsidered in [10℄. For9




ubi
al set X, T (X) has the same elements as X in ea
h dimension but hasits fa
e and degenera
y operators numbered in reverse order. The se
ond one
onsists simply of reversing the signs in the exponents of the ��i , and the thirdis just the 
ombination of these two.3 The !-
ategorization of 
ubi
al sets and the 
u-bi
al nerve of !-
ategoriesThe standard n-simplex 
an be given the stru
ture of an n-
ategory: it isStreet's n-th oriental [35℄. This fun
tor � ! !-Cat indu
es, by general 
ate-gori
al arguments, two adjoint fun
tors between simpli
ial sets and !-
ategories:!-
ategorization and simpli
ial nerve.Analogous to a des
ription of the orientals in terms of pasting s
hemes [22℄ Ide�ne a fun
tor from 
ubes to !-
ategories, and I des
ribe the indu
ed fun
torsbetween 
ubi
al sets and !-
ategories. The !-
ategorization of a 
ubi
al setis given by a pasting presentation, and the 
ubi
al nerve of an !-
ategory isexpressed using realizations of pasting s
hemes.3.1 Cubi
al 
omplexesTo des
ribe the orientals, Johnson [22℄ uses the notion of simpli
ial 
omplex.De�nition 3.1 [Cubi
al analogue of Johnson's simpli
ial 
omplexes℄ A 
ubi-
al 
omplex is a �nite or 
ountably in�nite set K together with a 
olle
tion K ofmaps K ! � su
h that if B 2 K and B0 : K ! � satis�es B0(k) � B(k) in thepartial order � < 0 > + on � for all k 2 K, then B0 2 K. A 
ubi
al 
omplex isoriented if K is linearly ordered. 3An oriented 
ubi
al 
omplex generates a 
ubi
al set whose non degenerateelements are the same as the elements of the 
omplex.An example of an oriented 
ubi
al 
omplex is (!;�f!), where �f! 
onsists ofthe �nite dimensional maps ! ! �. This 
ubi
al 
omplex, and sometimes alsothe 
ubi
al set generated by it, will be 
alled the !-
ube. The standard n-
ubes
an also be seen as 
ubi
al sets generated by oriented 
ubi
al 
omplexes.3.2 Pasting s
hemes for the !-
ube and for the n-
ubesIn the simpli
ial 
ase, a parti
ular simpli
ial 
omplex is made into a pastings
heme by taking odd fa
es in the beginning and even fa
es in the end of a 
ell.10



In the 
ubi
al 
ase, I will do the same, but for a di�erent way of expressing andpositioning odd and even fa
es. This will be done su
h that the dire
tion of the
ells is the same as in the oriented 
ubes of [1℄.Let x be an i-dimensional element of the !-
ube, and let B 2 �i. De�nerB(x) : ! ! � byrB(x)(k) = x(k) if x(k) 6= 0= B(l) if k is the l-th element of x�1(0):Write bB(x) for rB(x) if for all l 2 i, B(l) 6= 0 implies B(l) = (�)l, and eB(x) iffor all l 2 n, B(l) 6= 0 implies B(l) = (�)l+1.Consider the graded set �f!. De�ne relations E and B on �f! by (x; y) 2 Eijfor x 2 (�f!)i and y 2 (�f!)j if and only if there exists B : i ! � su
h thaty = eB(x), and (x; y) 2 Bij if and only if there exists B : i ! � su
h thaty = bB(x).�f! is a loop-free pasting s
heme, sin
e it is the same pasting s
heme as
onsidered by Kapranov-Voevodsky [27℄.Taking n instead of ! in the above makes �n into a well-formed loop-freepasting s
heme, be
ause it 
an be viewed as a well-formed subpasting s
hemeof �f!. I will need domains and 
odomains of its 
ells.Lemma 3.2 For (m + 1)-dimensional x 2 �n, sm(R(x)) = SfR(rB(x))jB 2�m+1; dim(B) = m; rB(x) = bB(x)g, and dually.Proof. A

ording to [23, Proposition 7℄ sm(R(x)) = R(Bm(x)), whi
h isexa
tly the right hand set above. 2In �gure 1, the pasting s
heme �4.3.3 Cubes and !-
ategoriesThe morphisms "i and ��i in � indu
e !-fun
tors "i : P(�n) ! P(�n�1) and��i : P(�n�1) ! P(�n) respe
tively, where P(A) denotes the !-
ategory of
omponents of the pasting s
heme A [23℄, as follows.De�ne a realization (�n; fj) of �n in P(�n�1) by fj(x) = R(xÆ("i)�). Be
auseP(�n�1) is 
onsidered one sorted this 
ould also mean an identity on this, to getits dimension right! It is an identity exa
tly when x(i) = 0, be
ause "i erasesthe i-th entry. Assume (�n; fj) is m-appropriate, I will show it is (m + 1)-appropriate. In 
ase x(i) = 0, sm(fm+1(x)) = sm �idR(xÆ("i)�)� = R(x Æ ("i)�),11
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Figure 1: The four dimensional 
ube as a pasting s
heme12



andf (sm(R(x))) == SfR(rB(x))j : : :g by lemma 3.2= Sffm(rB(x))j : : :g be
ause f is the m-extension of (�n; fj)= SfR(rB(x) Æ ("i)�)j : : :g:All these are identities ex
ept when rB(x)(i) 6= 0, in whi
h 
ase it is R(xÆ ("i)�).So as elements of P(�n�1), sm(fm+1(x)) and f (sm(R(x))) are equal. In 
asex(i) = � one sees that for all B, rB(x Æ ("i)�) = rB(x) Æ ("i)�. This, togetherwith lemma 3.2 and that f is the m-extension of (�n; fj), proves in a similarway that in this 
ase sm(fm+1(x)) = f (sm(R(x))) as well. Thus indeed (�n; fj)is appropriate.Analogously, one de�nes an appropriate realization (�n�1; gj) of �n�1 inP(�n) by gj(x) = R(x Æ (��i )�).These indu
ed !-fun
tors "i and ��i satisfy the same identities as in � be
auseof the identities there and be
ause the indu
ed !-fun
tors extend (�n; fj) and(�n�1; gj). Thus, there is a fun
tor Q : � ! !-Cat, de�ned on obje
ts byQ(n) = P(�n). Q(n) 
ould be termed the n-th q-bi
al oriental, or even the n-thqriental.3.4 !-
ategorizationThe fun
tor Q indu
es a fun
tor �� from 
ubi
al sets to !-
ategories, whi
h isthe left Kan-extension of Q along the Yoneda embedding �! Sets�op [30℄. It
an be given by ��(X) = Z nXn � Q(n);where the 
oend is in !-Cat. A more expli
it des
ription of ��(X) is by thepasting presentation (GX ; RX).For X a 
ubi
al set, generators in GX in dimension n will be (�n;Lx) forx 2 Xn, where the elements of �n will be labeled by the 
orresponding fa
es of x,i.e., B 2 �n will be labeled by X(B)(x), the restri
tion of x along B 
onsideredas a map �dim(B) ! �n. Note that it is not required that x is non degenerate!These are indeed generators be
ause dom(�n) is a generated pasting, the 
ellsall being labeled by generators.Relations in RX in dimension n will 
ome from degenera
ies. I want to saythat a degenerate 
ube is equivalent to an identity, but in this I have to uselower dimensional relations. So the approa
h will be indu
tively.13



Consider the labeled pasting s
heme (�n+1;L"ix ), where L"ix is equal to L"i(x)ex
ept that the top-dimensional 
ell is labeled with the formal identity idxinstead of with "i(x). Consider also the labeled pasting s
heme (�n+1;Lix),where Lix di�ers from L"i(x) in that 
ells labeled "i(x)jB with B(i) = 0 in thelatter, are labeled idxj�+i (B) in the former. It would make no di�eren
e to takeidxj��i (B) be
ause of the 
ubi
al identities. So for example (�3;L100) is�+b ++b id++��bid�� 00bid0�+�bid+� id+0 ++e��e +�e id003 �+bid�+ id0+++b id++��bid�� id�0 �+e ++e��e 00e+�e ;where the e and b subs
ripts distinguish di�erent 
ells with equal labels.Lemma 3.3 Suppose that for n0 � n (�n0 ;L"ix ) is a generated pasting, thatit is de�ned to be related to (�n0 ;L"i(x)), and that with these relations in alldimensions up to n0 both are equivalent to (�n0 ;Lix). Then (�n+1;L"ix ) is agenerated pasting, and if it is de�ned to be related to (�n+1;L"i(x)) then both areequivalent to (�n+1;Lix).Proof. To prove that (�n+1;L"ix ) is a generated pasting, I need to show thatits domain is equivalent to (�n;Lx). For example,dom(�3;L"1(00)) = �+b ++b "1(++)��b"1(��) 00b"1(0�)+�b"1(+�) "1(+0)++e��e +�eand (�2;L00) = �+�� 00 +++�14



should be equivalent. By adding identities to �n in the right pla
es, �rst highdimensional ones, then lower dimensional ones to make the higher dimensionalones in the form of 
ubes, (�n;Lx) 
an be seen to be equivalent to a generatedpasting with pasting s
heme dom(�n+1). Then identities 
an be repla
ed bydegenera
ies, �rst low dimensional ones, then higher dimensional ones, be
ausethen the relevant subpasting s
hemes are 
orre
tly labeled. The result is exa
tlydom(�n+1;L"ix ) be
ause the position of the inserted identities is su
h that theyend up in the same position as their 
orresponding degenera
ies. Details, su
has full repla
eability and full insertability at ea
h stage of this pro
ess, are takenfor granted.It is possible to de�ne the relation as 
laimed sin
e the pasting s
hemes areequal and the labelings 
oin
ide in lower dimensions.The equivalen
es hold sin
e again identities 
an be repla
ed by degenera
iesfrom low dimensions up. 2So relations 
an be de�ned by requiring L"i(x) to be related to (�n+1;L"ix )for every x 2 X.Proposition 3.4 The pasting presentation (GX ; RX) is a pasting presenta-tion for ��(X).Proof. !(GX ; RX) and ��(X) satisfy the same universal property, as 
anbe seen from the 
oend des
ription. 2For the representative 
ubi
al sets In, I will make no notational distin
tionbetween the 
ubi
al set and its !-
ategorization, as usual.3.5 Cubi
al nerveThe 
ubi
al nerve of an !-
ategory C is given by�op Q !-Catop !-Cat(�;C ) Set:It is fun
torial in C , and this fun
tor N� is right adjoint to ��. The existen
e ofsu
h a right adjoint follows from Freyd's adjoint fun
tor theorem [30℄ sin
e thestandard 
ubes form a generating set of obje
ts of Sets�op . Using the des
riptionof Q(n) in terms of a pasting s
heme,N�(C )n = !-Cat(Q(n); C )= f(�n; fj)jfj is an appropriate realization of �n in C g:15



The 
ubi
al operations on N�(C ) are indu
ed by the !-fun
tors "i : P(�n) !P(�n�1) and ��i : P(�n�1)! P(�n). More 
on
retely, for (�n�1; fj) an appro-priate realization of �n�1 in C , (�n; "i(f)j) has "i(f)j(x) = fj0(x Æ ("i)�), whi
hde�nes an appropriate realization of �n in C be
ause of the formula for "i asan !-fun
tor P(�n) ! P(�n�1), and for (�n; fj) an appropriate realization of�n in C , (�n�1; ��i (f)j) has ��i (f)j(x) = fj0(x Æ (��i )�), whi
h de�nes an appro-priate realization of �n�1 in C be
ause of the formula for ��i as an !-fun
torP(�n�1) ! P(�n). This also implies that ��i (f)j = fjj��i , so a fa
e of an el-ement of the nerve is the 
orresponding fa
e of the 
omposable diagram. Fora related approa
h, whi
h also gives a des
ription of a 
ategory of 
ubi
al setswith stru
ture making the adjun
tion an equivalen
e of 
ategories, see [36℄.4 Existen
e and uniqueness of a monoidal bi-
losed stru
tureThat the tensor produ
t of 
ubi
al sets indu
es a monoidal bi
losed stru
tureon !-Cat was already remarked in [2℄, and is analogous to the 
ase of 
rossed
omplexes [10℄, whi
h makes use of 
ubi
al !-groupoids as an intermediate stage.As noted there, this works sin
e \!-Gpd is an equationally de�ned 
ategory ofmany sorted algebras in whi
h the domains of the operations are de�ned by �nitelimit diagrams. General theorems on su
h algebrai
 theories (see [17, 18, 28, 3℄)imply that !-Gpd is 
omplete and 
o
omplete and that it is monadi
 over the
ategory Cub of 
ubi
al sets", and be
ause presentations 
an be used. Althoughit is the essen
e, this is not the whole story. Using methods of Day [11, 12℄, Ishow that the monoidal bi
losed stru
ture on 
ubi
al sets [10℄ is in fa
t theextension of a tensor produ
t on �, and I sket
h how pasting presentations 
anbe used to transfer this extension to !-
ategories, the main point being thatthe monad for !-
ategories is monoidal. Details are omitted in this last stepsin
e in se
tions 5 to 11 I will give a 
ompletely independent proof of theexisten
e of a monoidal bi
losed stru
ture on !-Cat satisfying Ip 
 Iq �= Ip+q,by des
ribing it expli
itly. The uniqueness of su
h a stru
ture gives that mydes
ription is indeed of the monoidal bi
losed stru
ture on !-Cat indu
ed bythe tensor produ
t of 
ubes.4.1 Monoidal stru
ture on �Addition of natural numbers gives � the stru
ture of a stri
t monoidal 
ategory:16



let m
 n = m+ n and let I = 0 = ?. To make 
 into a fun
tor �! �, de�nef 
 g : m
 n! m0 
 n0, for f : m! m0 and g : n! n0, by(f 
 g)�(p) = f�(p) if p � m= g�(p�m) + n if p > m and g�(p�m) 2 n= g�(p�m) otherwise:It is easily 
he
ked that f 
 g is indeed a morphism in �, and that idn
 idm =idn
n.De�ne two morphisms �lp : p+ q ! p and �rq : p+ q ! q in � by�lp = "p+1 Æ : : : Æ "p+q�rq = "1 Æ : : : Æ "1| {z }p ;where the "i denote morphisms in �. These will be used later.4.2 Indu
ed monoidal bi
losed stru
ture on 
ubi
al setsBe
ause of [11℄, the above monoidal stru
ture on � indu
es a bi
losed monoidalstru
ture on the fun
tor 
ategory Sets�op = Cub.For 
ubi
al sets X and Y , their tensor produ
t isX 
 Y = Z m;n(X(m)� Y (n)) � Im
n:The unit for the tensor produ
t is ��(I) = I0. The internal homs 
an bedes
ribed by Homr(X;Y ) = Zn Sets(X(n); Y (n
�))and Homl(X;Y ) = Zn Sets(X(n); Y (�
 n)):Writing out the 
oend for the tensor produ
t in elementary terms, thisgives the same des
ription as in [10℄: if K and L are 
ubi
al sets, then (K 
L)n = (`p+q=nKp � Lq)=� where � is the equivalen
e relation generated by("r+1(x); y) � (x; "1(y)) for x 2 Kr, y 2 Ln�r�1. The equivalen
e 
lass of (x; y)will be denoted by x
 y. De�ne fa
e and degenera
y maps by��i (x
 y) = ��i (x)
 y if 1 � i � p= x
 ��i�p(y) if p < i � n"i(x
 y) = "i(x)
 y if 1 � i � p+ 1= x
 "i�p(y) if p+ 1 � i � n:17



In parti
ular, "p+1(x)
 y = x
 "1(y) for all x 2 Kp. K 
 L is a 
ubi
al set.The des
ription of the internal hom in [10℄ 
an be obtained by writing outthe end for the left internal hom, whi
h �ts ni
ely with the use of the left path
omplex there.4.3 Existen
e of a monoidal bi
losed stru
ture on !-
ategoriesThe 
ategory of !-
ategories is monadi
 over 
ubi
al sets, and the 
orrespondingmonad M is the endofun
tor indu
ed by the adjun
tion �� a N�, soM(X)(r) = !-Cat(Q(r);Z nXn � Q(n));with multipli
ation indu
ed by the 
ounit of the adjun
tion. The point is thatthis monad is monoidal, i.e., there are 
ubi
al maps fM : M(X) 
 M(Y ) !M(X 
 Y ) and M0 :M(I0)! I0 with respe
t to whi
h the multipli
ation andthe unit ofM are monoidal natural transformations [12℄. To des
ribe these maps,however, the stru
ture of !-
ategories is essential, and as su
h it is ne
essaryto make use of pasting presentations, analogous to the use of presentations of
ubi
al !-groupoids in [10℄, and analogous to the 
ase of modules referred tothere.To give a 
ubi
al map M(X) 
M(Y ) ! M(X 
 Y ) amounts to give an!-fun
tor ��(M(X)
M(Y ))! ��(X 
 Y ). This in turn 
orresponds to a re-spe
table family of realizations (GM(X)
M(Y ); 'i) in ��(X 
 Y ) of the pastingpresentation (GM(X)
M(Y ); RM(X)
M(Y )) des
ribed in se
tion 3. To de�nesu
h a family of realizations, 
onsider a generator 
 = (�n; fi) 
 (�m; f 0j) of(GM(X)
M(Y ); RM(X)
M(Y )), so fi(z) 2 ��(X) for every z 2 �n, say repre-sented by (Af;z;Lf;z), and similarly for f 0j(z0) 2 ��(Y ). To des
ribe 'i(
), takefor every af;z 2 Af;z and af 0;z0 2 Af 0;z0 labeled by xf;z 2 Xp and yf 0;z0 2 Yq agenerator (�p+q;Lxf;z
yf 0;z0 ) in ��(X 
 Y ). For �xed af;z, the 
ells xf;z 
 yf 0;z0
an be 
omposed using any way of 
omposing Af 0;�m to determine the order andthe dire
tions of 
omposition. The resulting 
omposites 
an then be 
omposedusing any way of 
omposing Af;�n . The resulting 
omposite is 'i(
). Details,su
h as what to do with identities, the exa
t way of 
omposing, that this is inde-pendent of the 
hosen order of 
omposition, and that this family of realizationsis respe
table, are taken for granted.Proposition 4.1 The monoidal bi
losed stru
ture on 
ubi
al sets indu
es amonoidal bi
losed stru
ture on !-Cat.18



Proof. Well, to prove this I \only" need to go through [12, x4℄, and 
he
k allthe requirements of the propositions there. But all of them are immediate fromeither the monoidal bi
losed stru
ture on Cub or from 
ompleteness of Cuband 
o
ompleteness of !-Cat. Note that asso
iativity of the tensor produ
t andits 
oheren
e also follow. 24.4 UniquenessIt is even possible to speak of the monoidal bi
losed stru
ture on !-Cat indu
edby the tensor produ
t of 
ubes:Proposition 4.2 The fun
tor 
 : !-Cat � !-Cat ! !-Cat is the uniqueone, up to isomorphism, for whi
h C 
 � and � 
 C have right adjoints forevery !-
ategory C and whi
h satis�es Ip 
 Iq �= Ip+q for every p, q.Proof. That it satis�es these properties is be
ause it is part if a monoidalbi
losed stru
ture indu
ed by the tensor produ
t on �, and that it is the uniquesu
h is immediate from the 
ubes being a generating set of obje
ts for !-Cat,see also [2℄. 25 Globe tensor globeBe
ause the tensor produ
t of !-
ategories is indu
ed by the tensor produ
tof 
ubi
al sets, and be
ause globes represent elements of !-
ategories [35℄, it is
lear that essential information is 
ontained in the !-
ategorization of the tensorprodu
t of two globes as 
ubi
al sets. I show that this !-
ategorization is the!-
ategory of 
omponents of a pasting s
heme T . This pasting s
heme T , orrather, its 
ells, will be used for the generators of a pasting presentation for thetensor produ
t of !-
ategories in se
tion 7.5.1 n-globes as 
ubi
al setsConsider the 
ubi
al set G whi
h has as non degenerate elements in dimensionn d+n and d�n , with fa
e maps de�ned by��i (d�n) = ("1)i�1(d�n�i):19



So the only non degenerate (n � 1)-dimensional fa
es are ��1 (d�n) = d�n�1. Forexample, the fa
es of d�3 look liked+0 "1d+0
"1d+0

ba
k: ("1)2d+0top: d�2 d+0"1d+0right: "1d+1d�0 d�1 "1d�0"1d�0left: "1d�1
d�0 d+1"1d�0d+0 "1d+0 d+0bottom: d+2d�0 "1d�0d�1front: ("1)2d�0 d�0 d+1 ;

the interior of the 
ube being labeled by d�3 .Re
all that ��(G) has a pasting presentation (GG; RG) whi
h has as gen-erators labeled pasting s
hemes (�n;Lx) for x 2 Gn, whi
h is a degenera
y ofsome d�n0 , and that its relations are that L"i(x) is related to (�n+1;L"ix ) for everyx 2 Gn.Lemma 5.1 In (GG; RG), the generated pastings dom(�m+1;Ld�m+1) and(�m;Ld�m) are equivalent. Also, dom(�m+1;L"i1 :::"im+1�m0 d�m0 ) is equivalent to(�m;L��1 "i1 :::"im+1�m0 d�m0 ).Proof. For example,
dom(�3;Ld�3 ) = d+0 d+0d�0d�1 d�2d�0 d+1 "1(d+1 ) d+0d�0 d�0 d+1and 20



(�2;Ld�2 ) = d+0d�0d�1 d�2 d+0d�0 d+1need to be 
ompared. In the general 
ases, the di�eren
e between the two is abun
h of degenera
ies, whi
h 
an be added by �rst adding identities and thenrepla
ing these by these degenera
ies, 
ompare the proof of lemma 3.3! 2I now 
laim that the !-
ategorization of G is free. To this end, de�ne apasting s
heme 2! whi
h is the obvious extension of 2n, i.e., it 
onsists of two
ells in every dimension, ending and beginning in the two di�erent 
ells of onedimension less. For example, R2!(d�3 ) looks liked�0 d�1d+1d�3d�2 d+2 d+0 :Proposition 5.2 ��(G) �= P(2!).Proof. I will show that both !-
ategories satisfy the same universal property.Thus, that respe
table families of realizations of (GG; RG) in C 
orrespond toappropriate realizations of 2! in C .Let (GG; 'j) be a respe
table family of realizations in C . De�ne a realization(2!; fj) in C by fj(d�j ) = 'j(�j ;Ld�j ):Suppose it is m-appropriate. Thensm(fm+1(d�m+1)) = sm('m+1(�m+1;Ld�m+1))= '�dom(�m+1;Ld�m+1)� by respe
tability of (GG; 'j)= '��m;Ld�m� by lemma 5.1= 'm(�m;Ld�m) be
ause ' extends (GG; 'j)= fm(d�m)= f(R(d�m)) be
ause f m-extends (2!; fj)= f �sm(R(d�m+1))� ;21



whi
h proves that (2!; fj) is (m+ 1)-appropriate.Let (2!; fj) be an appropriate realization in C . De�ne a family of realizations(GG; 'j) in C by 'j(�j ;L"i1 :::"ij�j0 d�j0 ) = fj0(d�j0);where C is 
onsidered one-sorted. This family respe
ts relations sin
e if j0 < jthen 'j(�j ;L"i1 :::"ij�j0 d�j0 ) is indeed the 
orre
t identity. Now suppose it respe
tsm-labels. Then if m0 < m+ 1sm('m+1(�m+1;L:::)) == sm(fm0(d�m0))= fm0(d�m0)= 'm(�m;L��1 :::)= '��m;L��1 :::� be
ause ' m-extends (GG; 'j)= '�dom(�m+1;L:::)� by lemma 5.1;and if m0 = m+ 1 thensm('m+1(�m+1;L:::)) == sm(fm0(d�m0))= f(R(d�m)) by m-appropriateness of (2! ; fj)= fm(d�m) be
ause f m-extends (2!; fj)= 'm(�m;Ld�m)= '��m;Ld�m� be
ause ' m-extends (GG; 'j)= '�dom(�m+1;L:::)� by lemma 5.1:Thus (GG; 'j) respe
ts (m+ 1)-labels.It is immediate that the above gives a bije
tion between respe
table familiesof realizations of (GG; RG) in C and appropriate realizations of 2! in C . 2It would also be possible to take other fa
es degenerate in the de�nition ofG, but the above de�nition is 
hosen be
ause it it gives rise to formulae similarto ones familiar from homologi
al algebra later on.A notational 
onvention for later use: in the pasting s
heme 2n the top-dimensional 
ell dn 
an also be denoted by d�n and by d+n . This 
onvention willavoid unne

essary splitting up in 
ases where one formula is 
learer.22



5.2 2! 
 2!Re
all that ��(G 
 G) has a pasting presentation (GG
G; RG
G). It has asgenerators labeled pasting s
hemes (�p+q;L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 ), where the"i denote maps in G. To des
ribe the labeling, a fa
e x of �p+q 
an be 
onsideredas a morphism r ! p+ q in �, and L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 labels x by (�lp Æx)�("i1 : : : "ip�p0d�p0)
 (�r Æx)�("i01 : : : "i0q�q0d�q0). Thus, for example, (�3;Ld�2 
d�1 )looks like d�0 
d+0 d�1 
d+0ba
k: d�2 
d+0top: d�1 
d�1 d+0 
d+0right: "1(d+0 
d�1 )d�0 
d�0d�0 
d�1 d�1 
d�0
left: "1(d�0 
d�1 )

d+0 
d�0 d+0 
d�0d�0 
d+0 d+1 
d+0 d+0 
d+0bottom: d+1 
d�1d�0 
d�0 d+1 
d�0d�0 
d�1 front: d�2 
d�0 d+0 
d�0 d+0 
d�1 :
The relations make that degenera
ies are equivalent to identities.I 
laim that ��(G 
 G) is free. To this end, de�ne a graded set T whereTn = fd�p 
 d�q j�; � = �; p + q = ng. De�ne relations E and B on T by(d�p 
 d�q ; y) 2 Eij for i > j if and only if one of the following:1. y = d�p 
 d(�)pq�1 ,2. y = d+p�1 
 d�q ,3. y = d+p�1 
 d(�)pq�1 .So Eij is empty for j < i � 2. Bij di�ers from Eij in having � instead of +and (�)p+1 instead of (�)p. These relations 
an be viewed as a modi�ed orgeneralized version of the Leibnitz rule.In �gure 2, a low-dimensional part of T .23



d�0 
d+0d�0 
d�0 d�1 
d�1 d+0 
d+0d+0 
d�0 d�2
d�13d�0 
d+0 d�1 
d+0d�0 
d�0d�0 
d�1d+1 
d�0 d�1 
d+1 d+0 
d+0d+0 
d�0 d+0 
d+1
d�1 
d�23
d�2
d+13 d�2
d�24 d�0 
d+0 d�1 
d+0d�0 
d�0d�0 
d�1d+1 
d�0 d+1 
d�1 d+0 
d+0d+0 
d�0 d+0 
d+1d�0 
d+0d�0 
d�0 d+1 
d+1 d+0 
d+0d+0 
d�0

d+1 
d�23
Figure 2: The fa
es of d�2 
 d�2Proposition 5.3 T is a pasting s
heme.Proof. Pasting axiom (i) is trivial, (ii) 
an be for
ed to hold, and (iii) isimmediate.The only non trivial 
ase of pasting axiom (iv) is when j = i�2. But the onlypossibility for either side to hold, with w = d�p 
 d�q , is when x = d+p�1 
 d(�)pq�1 ,u = d�p 
 d(�)pq�1 and v = d+p�1 
 d�q .For pasting axiom (v) the 
ase j = i� 1 is trivial. If j = i� 2 there are fourpossibilities, with w = d�p 
 d�q :� x = d+p�1 
 d(�)pq�1 : x is already at the end of w,� x = d�p 
 d(�)pq�2 : take v = d�p 
 d(�)p+1q�1 ,24



� x = d+p�1 
 d(�)p�1q�1 : idem,� x = d+p�2 
 d�q : take v = d�p�1 
 d�q .If j = i� 3 there are two possibilities:� x = d+p�2 
 d(�)p+1q�1 : take v = d�p�1 
 d�q ,� x = d+p�1 
 d(�)pq�2 : take v = d�p 
 d(�)p+1q�1 .For j < i� 3 the relation Ei�1j is empty so the 
ondition is void. 2I will now analyse the situation a / b in T for a = d�p 
 d�q , p+ q = i. Table1 gives the possibilities for a1 and a2.a = a0 Ei�1(a0) \ Bi�1(a1) a1 Ei�1(a1) \ Bi�1(a2) a2d+p�2 
 d�1q+1 d�p�2 
 d�2q+2if �1 = (�)p�1d+p�1 
 d�q d+p�1 
 d�1q+1if � = (�)p d+p�1 
 d(�)p�1q �d�p 
 d�q d+p 
 d(�)pq�1 �d�p 
 d(�)pq�1 d�1p+1 
 d(�)pq�1if � = � d�1p+1 
 d(�)p+1q�2 d�2p+2 
 d(�)p+1q�2if �1 = � ;and B(a) = fd�p 
 d�q ; d�p�1 
 d�q ; d�p 
 d(�)p+1q�1 ; d�p�1 
 d(�)p+1q�1 g.Table 1: a / a1 / a2 : : : in TLemma 5.4 The pasting s
heme T has no dire
t loops.Proof. Sin
e elements in Ei�2(a1) always have an index p�2 or q�2 it followsfrom the table above that E(a1)\B(a) = ?. Continuing the table it follows thatai is always of the form d�ip�i 
 d�iq�i from whi
h follows that for all i � 2 also25



E(ai) \ B(a) = ?. So T has no dire
t loops sin
e obviously B(a) \ E(a) = fag.2 Before well-formedness of R(d�p 
 d�q ), its m-sour
es and m-targets need tobe 
onsidered. I will show that they satisfy a generalized form of the Leibnitzrule.Lemma 5.5 For m � n = p+ q,sm(R(d�p 
 d�q )) = R(fd�0p0 
 d�0q0 jp0 + q0 = m; 0 � p0 � p; 0 � q0 � q;if p0 6= p then �0 = �;if p0 = p then �0 = �;if q0 6= q then �0 = (�)p0+1;if q0 = q then �0 = �g);and dually.Proof. Downward indu
tion on m. If m = n then sm(R(d�p 
 d�q )) = R(d�p 
d�q ) whi
h agrees with the formula above. Now suppose this formula is provenfor m+ 1, then I have to show that sm(R(d�p 
 d�q )) = dom sm+1(R(d�p 
 d�q )) =domR(fd�2p2 
d�2q2 jp2+ q2 = m+1; : : :g) = R(fd�2p2 
d�2q2 jp2+ q2 = m+1; : : :g)�E(R(fd�2p2 
d�2q2 jp2+q2 = m+1; : : :g)) is equal to R(fd�0p0 
d�0q0 jp0+q0 = m; : : :g).That the latter is 
ontained in the former falls apart in two: that R(d�0p0 
d�0q0 )is 
ontained in R(fd�2p2 
 d�2q2 jp2 + q2 = m+ 1; : : :g), and that if d�3p3 
 d�3q3 is inE(R(fd�2p2 
 d�2q2 jp2 + q2 = m + 1; : : :g)) then it is not in R(fd�0p0 
 d�0q0 jp0 + q0 =m; : : :g). For the �rst part it suÆ
es that the d�0p0 
 d�0q0 are in the former.Distinguish three 
ases, namely� p0 = p and q0 < q: then �0 = (�)p0+1. If q0 = q � 1 then take d�0p0 
 d�q , ifq0 < q� 1 then take d�0p0 
d�0q0+1 for d�2p2 
d�2q2 , whi
h in of the 
orre
t form,and whi
h satis�es d�2p2 
 d�2q2Bm+1m d�0p0 
 d�0q0 .� q0 = q and p0 < p: then �0 = �. If p0 = p�1 then take d�p 
d�q , if p0 < p�1then take d�0p0+1 
 d�0q0 for d�2p2 
 d�2q2 .� p0 < p and q0 < q: then �0 = � and �0 = (�)p0+1. Do the same as in the�rst 
ase. Note that it is not possible to do the same as in the se
ond 
asebe
ause then �0 would not 
ome out right.26



For the se
ond part, there are three possibilities for d�3p3
d�3q3 , namely d�2p2
d(�)p2q2�1 ,d+p2�1 
 d�2q2 , and d+p2�1 
 d(�)p2q2�1 . The �rst one of these three is indeed not oneof the d�0p0 
 d�0q0 sin
e �0 6= (�)p0+1 , the se
ond one not be
ause �0 6= �, and forthe third one the requirements on either �0 or �0 are 
ontradi
tory as well.To show that the former is 
ontained in the latter, I have to show thatfor every d�3p3 
 d�3q3 2 R(fd�2p2 
 d�2q2 jp2 + q2 = m + 1; : : :g), it is either inR(fd�0p0 
 d�0q0 jp0 + q0 = m; : : :g), or in E(R(fd�2p2 
 d�2q2 jp2 + q2 = m + 1; : : :g)).Three 
ases:� if q3 � q2 � 2 then one of the reasons for d�3p3 
 d�3q3 to be in R(d�2p2 
 d�2q2 )must be via d�2p2 
 d(�)p2+1q2�1 , whi
h 
an be taken for d�0p0 
 d�0q0 sin
e it is ofthe 
orre
t form. This also works if q3 = q2 � 1 and �3 = (�)p2+1.� if p3 � p2 � 2 then via d�p2�1 
 d�2q2 , whi
h also works if p3 = p2 � 1 and�3 = �.� all other 
ases, namely d�2p2 
d�2q2 , d�2p2 
d(�)p2q2�1 , d+p2�1
d�2q2 or d�p2�1
d(�)p2q2�1 ,are in E(d�2p2 
 d�2q2 ). 2Lemma 5.6 For every d�p 
 d�q 2 T , R(d�p 
 d�q ) is well formed.Proof. Sin
e sm(R(d�p 
 d�q )) and tm(R(d�p 
 d�q )) are both R of something,they are subpasting s
hemes of R(d�p 
 d�q ). They are also 
ompatible: forBm�1(d�0p0 
 d�0q0 ) and Bm�1(d�01p01 
 d�01q01 ) to have something in 
ommon one needsp0 and p01, and q0 and q01 at most one apart from ea
h other. This leaves onlythe 
onse
utive pairs to 
he
k, and then the 
onditions on �0, �01, �0 and �01 givethat Bm�1(d�0p0 
 d�0q0 ) \ Bm�1(d�01p01 
 d�01q01 ) = ?. Noting that s0(R(d�p 
 d�q )) isalways a singleton, namely fd�0 
 d�0 g, �nishes the proof. 2Proposition 5.7 The pasting s
heme T is loop free.Proof. Conditions (i) and (ii) of loop-freeness are lemmas 5.4 and 5.6respe
tively.For 
ondition (iv), 
onsider again table 1, and suppose a = u 2 sj(R(x)),b = u0 2 sj(R(x)), for some x 2 T . I will show that then also a1 2 sj(R(x)),27



and then indu
tion will do the rest. So x = d�2p2 
 d�2q2 , say, and j = p+ q. Then� = � or � = (�)p or both. In all these 
ases, for the sequen
e a; a1; : : : to
ontinue til at least a2 one needs �1 = (�)p�1 or �1 = �. In 
ase �1 = (�)p�1,ai will never be in sj(R(x)) whi
h 
ontradi
ts b 2 sj(R(x)), and in 
ase �1 = �indeed a1 2 sj(R(x)). Thus T is loop free. 2Thus T is a loop-free pasting s
heme. Furthermore, there are also pastings
hemes 2p
 2q de�ned in the obvious way, whi
h are well formed and loop freeeither by dire
t 
al
ulation or by viewing them as R(x) for some x 2 T .Now ba
k to the pasting presentation (GG
G; RG
G). De�ne a labeled past-ing s
heme (2p 
 2q;Ldp
dq), where d�0p0 
 d�0q0 gets labeled by (�p0+q0 ;Ld�0p0
d�0q0 ).Lemma 5.8 In (GG
G; RG
G), dom(2p 
 2q;Ldp
dq) is a generatedpasting whi
h is equivalent to dom(�p+q;Ldp
dq). Also, if p0 < por q0 < q then dom(�p+q;L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 ) is equivalent to(�p+q�1;L�j("i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 )) for some j.Proof. The proof will be by indu
tion on p + q. So to show that dom(2p 
2q;Ldp
dq ) is a generated pasting, take a 
ell labeled by (�p0+q0 ;Ld�0p0 
d�0q0 ). By theindu
tion hypothesis, its domain is indeed equivalent to the domain of its label.To show that (dom(2p
2q);Ldp
dq ) is equivalent to dom(�p+q;Ldp
dq ), observethat their di�eren
e is some identities, whi
h 
an be inserted and repla
ed bydegenera
ies as before.
dom(�3;Ld�2 
d�1 ) = d�0 
d+0 d�1 
d+0 d+0 
d+0d�0 
d�0 d�1 
d�0d�0 
d�1 d�1 
d�1d�2 
d�0d+0 
d�0 d+0 
d+0d�0 
d�0 d+1 
d�0 d+0 
d�0 d+0 
d�1and dom(d�2 
 d�1 ) = d+0 
d+0 d�1 
d+0d�0 
d�0d�0 
d�1d+1 
d�0 d�1 
d�1d+0 
d+0d+0 
d�0 d+0 
d�1 :

28



For the last statement, the di�eren
e is a number of degenera
ies, whi
h 
anbe dealt with as in lemma 3.3. 2Proposition 5.9 ��(G 
G) �= P(T ).Proof. This proof will follow the lines of the proof of proposition 5.2 
losely,I will only do the se
ond part in some detail.So given an appropriate realization (2! 
 2!; fi) in C , de�ne a family ofrealizations (GG
G; 'i) in C by'p+q(�p+q;L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 ) = fp0+q0(d�p0 
 d�q0):To show it respe
ts (m+1)-labels if it respe
ts m-labels, if p0+ q0 < m+1 thensm('m+1(�m+1;L:::
:::)) == sm(fp0+q0(d�p0 
 d�q0))= fp0+q0(d�p0 
 d�q0)= 'm(�m;L��j (:::
:::)) for some j= '��m;L��j (:::
:::)� be
ause ' m-extends (GG
G; 'i)= '�dom(�m+1;L:::
:::)� by lemma 5.8;and if m0 = m+ 1 thensm('m+1(�m+1;L:::
:::)) == sm(fm0(d�p0 
 d�q0))= f(dom(d�p0 
 d�q0)) by m-appropriateness of (2! 
 2!; fj)=  dom(d�p0
d�q0 )(dom(d�p0 
 d�q0)) be
ause both are the 
omposite of thesame appropriate realization= '�dom(d�p0 
 d�q0 ;Ld�p0
d�q0 )� by the formula for ' in se
tion 10 of [5℄= '�dom(�m+1;Ld�p0
d�q0 )� by lemma 5.8. 2Be
ause ��(G) �= P(2!) is the \generi
" !-
ategory, this proposition sug-gests that P(T ) is the generi
 tensor produ
t of !-
ategories, a viewpoint thatwill prove to be fruitful. 29



6 Pasting s
heme tensor globeGiven a p-dimensional pasting s
heme A, I des
ribe a well-formed loop-freepasting s
heme A
2q, whi
h 
ould be termed its right q-th path pasting s
heme.This pasting s
heme will be used in the relations of a pasting presentation forthe tensor produ
t of !-
ategories in se
tion 7.For a well-formed loop-free pasting s
heme A, the i-
ells of the graded setA
 2q are expressions a
 d�q0 , where a 2 Ap0 , � = �, p0 + q0 = i and q0 � q. Ifq0 = q then both d+q and d�q are 
onsidered synonymous to dq 2 2q, as before.The relations Eij and Bij on A
 2q are su
h that (a
 d�q0 ; y) 2 Eij if and only ifone of the following:1. y = a2 
 d�q0 , aEp0p2a2,2. y = a2 
 d(�)p0q0�1 , aEp0p2a2.Bij is de�ned dually, i.e., it has Bp0p2 instead of Ep0p2 and (�)p0+1 instead of (�)p0 .Proposition 6.1 If A is a well-formed loop-free pasting s
heme, then A 
 2qis a pasting s
heme.Proof. The proof of this will be analogous to the proof of proposition 5.3,only somewhat more involved. The �rst three pasting axioms are easy.For the \)" part of pasting axiom (iv), with w = a 
 d�q0 , there are twopossibilities for x. If x = a2
 d�q0 where aEp0p2a2 then by pasting axiom (iv) in Aapplied to aEp0p2a2 there are b and b0 of dimension p0� 1 whi
h make that b
 d�q0and b0 
 d�q0 
an be taken for u and v. If x = a2 
 d(�)p0q0�1 where aEp0p2a2 thenby pasting axiom (iv) in A applied to aEp0p2a2 there is a b0, and then a 
 d(�)p0q0�1and b0 
 d�q0 
an be taken for u and v respe
tively. Noti
e that although thissituation looks asymmetri
 it is not, sin
e the dual situation utilizes b
 d�q0 anda
 d(�)p0+1q0�1 .For the \(" part of pasting axiom (iv), with w = a 
 d�q0 , distinguish thefollowing possibilities for u and v: 30



� u = a2 
 d�q0 where aEp0p0�1a2 and v = a3 
 d�q0 where aEp0p0�1a3. Then xmust be a4
d�q0 with a2Ep0�1p4 a4 and a3Bp0�1p4 a4, and appli
ation of pastingaxiom (iv) in A gives that wEijx,� u = a2
d�q0 where aEp0p0�1a2 and v = a
d(�)p0q0�1 . Then there is no x sin
e ifthe dimensions in 2q agree then the exponents are di�erent. Compare thiswith proof of proposition 5.3, where this possibility was also ex
luded.� u = a
d(�)p0q0�1 and v = a3
d�q0 where aEp0p0�1a3. Then x must be a4
d(�)p0q0�1with aEp0p4a4 (and a3Bp0�1p4 a4), and so wEijx.For pasting axiom (v), with w = a
 d�q0 , there are four possibilities:� x = a2 
 d(�)p0q0�1 with aEp0p2a2: x is already at the end of w,� x = a2 
 d(�)p0q0�2 with aEp0p2a2: take v = a
 d(�)p0+1q0�1 ,� x = a3 
 d(�)p0q0�1 with a0Ep0�1p3 a3: if aEp0p3a3 then take v = a 
 d(�)p0+1q0�1 ,otherwise there exists, by pasting axiom (v) in A, an a4 su
h thataBp0p0�1a4Ep0�1p3 a3, then take v = a4 
 d(�)p0+1q0�1 ,� x = a3 
 d�q0 with a0Ep0�1p3 a3: if aEp0p3a3 then x is already at the end ofw, otherwise there exists an a4 su
h that aBp0p0�1a4Ep0�1p3 a3, then take v =a4 
 d�q0 . 2I will now analyse the situation b/b0 in A
2q for b = a
d�q0, dim(a)+q0 = i.Table 2 gives the possibilities for a1 and a2.Lemma 6.2 If A is a well-formed loop-free pasting s
heme, then the pastings
heme A
 2q has no dire
t loops.Proof. Consider table 2. The key to this proof are the dimensions and theexponents in 2q. For if in bi this dimension is di�erent from q0 then in later bi'sit must be even further away from q0. Also 
ompare the proof of lemma 5.4!So the only relevant dimensions are q0 + 1, q0 and q0 � 1.31



b = b0 Ei�1(b0) \ Bi�1(b1) b1 Ei�1(b1) \ Bi�1(b2) b2a7 
 d�q0with a7Bp0p0�1a4a4 
 d�q0with a2Ep0p0�1a4 a4 
 d�1q0+1if � = (�)p0a2 
 d�q0with a2Bp0p0�1a0 a2 
 d(�)p0q0�1 a8 
 d(�)p0q0�1with a8Bp0+1p0 a2a0 
 d�q0with aEp0p0�1a0 a9 
 d�1q0+1with a9Bp0�1p0�2a5a5 
 d�1q0+1with a0Ep0�1p0�2a5 a5 
 d�2q0+2if �1 = (�)p0�1a0 
 d�1q0+1if � = (�)p0 a0 
 d(�)p�1q0 a10 
 d(�)p0�1q0with a10Bp0p0�1a0a
 d�q0 a6 
 d(�)p0q0�1with a3Ep0+1p0 a6 a11 
 d(�)p0q0�1with a11Bp0+1p0 a6a
 d(�)p0q0�1 a3 
 d(�)p0q0�1with a3Bp0+1p0 a a3 
 d(�)p0+1q0�2 a12 
 d(�)p0+1q0�2with a12Bp0+2p0+1a3 ;and B(b) = f~a
 d�q0 jaBp0~p ~ag [ f~a
 d(�)p0+1q0�1 jaBp0~p ~ag.Table 2: b / b1 / b2 : : : in A
 2q32



� bi of the form a4 
 d�1q0+1: then an element in B(b) \ E(bi) needs d(�)p0�1q0whi
h is impossible sin
e at the same time � = (�)p0 ,� bi of the form a8 
 d(�)p0q0�1 : again, the exponent needs to be (�)p0 and(�)p0+1 at the same time,� bi of the form a7 
 d�q0 : then a /A a7 and B(b) \ E(bi) 6= ? gives a dire
tloop in A,� bi of the form a10 
 d(�)p0�1q0 : either the exponent is wrong, or it redu
esto a dire
t loop in A as well.SoA
2q has no dire
t loops sin
e B(b)\E(b) = fbg be
ause inA B(a)\E(a) =fag. 2I will show that the m-sour
es and m-targets of A
 2q also satisfy a gener-alized form of the Leibnitz rule.Lemma 6.3 For A a p-dimensional well-formed loop-free pasting s
hemeand m � n = p+ q,sm(A
 2q) = R(fa
 d�0q0 ja 2 sp0(A); p0 + q0 = m; 0 � q0 � q;if q0 6= q then �0 = (�)p0+1g)and dually.Proof. Along the lines of the proof of lemma 5.5. If m = n then theformula above gives R(fa
 d�0q ja 2 Ag), whi
h is indeed equal to A
 2q.For the �rst part of \�", distinguish two 
ases:� q0 < q: then �0 = (�)p0+1, and take a
 dq or a
 d�0q0+1 for a2 
 d�2q2 ,� q0 = q and hen
e p0 < p: then a 2 sp0(A). If a 2 sp0+1(A) then take a
dq,otherwise a has an in
oming 
ell a0 of dimension p0+1 whi
h 
an be 
hosenin sp0+1(A) by lemma 4.2 of [5℄, and take a0 
 dq for a2 
 d�2q2 .For the se
ond part of \�" there are two possibilities, namely a3 
 d�2q2 or a3 
d(�)p2q2�1 , with a2Ep2p3a3, where in the latter 
ase a3 
an be equal to a2. If inthe �rst 
ase there is an a0 
 d�0q0 then a3 2 R(a0) and q2 � q0 whi
h impliesa3 2 sp0(A) by well-formedness of A and p2 > p0 by the 
onditions p0 + q0 = m33



and p2 + q2 = m + 1. But a3 has an in
oming p2-
ell a2, 
ontradi
tion. Andif in the se
ond 
ase there is an a0 
 d�0q0 then a3 2 R(a0) and q2 � 1 � q0 sop2 � p0. p2 > p0 leads to 
ontradi
tion as in the �rst 
ase, and p2 = p0 impliesq0 = q2 � 1 6= q so �0 needs to be equal to (�)p0+1, whi
h is not the 
ase.For \�", there are two 
ases:� if q3 � q2 � 2 or q3 = q2 � 1 and �3 = (�)p2+1 then a3 
 d�3q3 2 R(a2 
d(�)p2+1q2�1 ),� if q3 = q2 � 1 and �3 = (�)p2 or q3 = q2 then a3 2 R(a2) whi
h, by well-formedness of A implies a3 2 sp2(A). If a3 has an in
oming p2-dimensional
ell a02 2 sp2(A) then a3 
 d�3q3 2 E(a02 
 d�2q2 ), otherwise a3 2 sp2�1(A) anda3 
 d�3q3 2 R(a3 
 d�2q2 ). 2Proposition 6.4 For a well-formed loop-free pasting s
heme A, the pastings
heme A
 2q is well formed.Proof. Sin
e sm(A
 2q) and tm(A
 2q)) are both R of something, they aresubpasting s
hemes of A
 2q).Compatibility: if Bm�1(a 
 d�0q0 ) \ Bm�1(a0 
 d�0q0 ) 6= ? then Bm�1(a) \Bm�1(a0) 6= ? 
ontradi
ting 
ompatibility of sp0(A), and if Bm�1(a 
 d�0q0 ) \Bm�1(a0 
 d�2q0+1) 6= ? then �0 needs to be (�)p0+1 and (�)p0 at the same time.And s0(A
 2q) is the singleton fa
 d�0 ja 2 s0(A)g. 2Lemma 6.5 Ra
2q (a
 d�0q0 ) �= RA(a)
 2q0 .Proof. Immediate. 2It follows thatsm(R(a
 d�0q0 )) = R(fa2 
 d�2q2 ja2 2 sp2(R(a)); p2 + q2 = m; 0 � q0 � q;if q2 6= q0 then �2 = (�)p2+1;if q2 = q0 then �2 = �0g):Lemma 6.6 For all a 
 d�0q0 2 A 
 2q, the subpasting s
heme R(a 
 d�0q0 ) iswell formed. 34



Proof. Combine the above two lemmas with proposition 6.4. 2Before loop-freeness, I need to relate well-formed subpasting s
hemes of A
2q to well-formed subpasting s
hemes of A. Thus suppose Y 0 is a j-dimensionalwell-formed subpasting s
heme of A
 2q 
ontaining a
 d�q0. De�ne a subgradedset Y of A by Y = fa0 2 Aja0 
 d�0q0 2 Y 0 for some �0g. It is p0-dimensionalbe
ause Y 0 is j-dimensional and a 2 Y . It is a subpasting s
heme of A be
auseY 0 is of A
 2q. Before showing it is well formed, I will 
al
ulatedom(Y ) = fa0 2 Aja0 
 d�0q0 2 Y 0 for some �0,a0 having no in
oming p0-
ell in Y g= fa0 2 Aja0 
 d�0q0 2 Y 0 for some �0,there is no a2 
 d�2q0 2 Y 0 with a2 p0-dimensional and in
oming in ag= fa0 2 Aja0 
 d�0q0 2 dom(Y 0)g,where the last equality is be
ause Y 0 is a subpasting s
heme of A 
 2q. Soit suÆ
es to show 
ompatibility of Y for every Y 0. So suppose Bp0�1(a0) \Bp0�1(a2) 6= ? in Y , a0 being in Y be
ause a0 
 d�0q0 2 Y 0 and a2 be
ausea2 
 d�2q0 2 Y 0. But these elements 
ontradi
t strong 
ompatibility of Y 0 [23,Proposition 10℄.Proposition 6.7 For a well-formed loop-free pasting s
heme A, the pastings
heme A
 2q is loop free.Proof. Conditions (i) and (ii) of loop-freeness are lemmas 6.2 and 6.6respe
tively.For 
ondition (iv), 
onsider again table 2, and suppose b = u 2 sj(R(x)),b0 = u0 2 sj(R(x)), for some x = a2
d�2q2 2 A
2q. I will show that b1 2 sj(R(x)).There are three possibilities in the sequen
e b / b0 for q0:� q0 going up: the 
ondition on � for
es q0 = q2. To get below q2 again thisgoes via an a10 
 dp0�1q0 whi
h is not in sj(R(x)), nor is anything furtheron sin
e the exponent is the wrong one all the time,� q0 going down: look at a3
d(�)p0q0�1 , if it is not in sj(R(x)) then a3 =2 sp0+1(A).But then there exists a03 2 sp0+1(A) with a03Bp0+1p0 a by 4.2 of [5℄, so a03
d(�)p0q0�135



2 sj(R(x)) � Y , so if also a3
 d(�)p0q0�1 2 Y then Y is not 
ompatible. Thusa3 2 sp0+1(A) and a3 
 d(�)p0q0�1 2 sj(R(x)),� q0 doesn't 
hange: take x0 = a2 2 A and the well-formed subpasting s
hemeof A 
orresponding to Y , as 
onstru
ted just before this proposition. Then
ondition (iv) in A applied to a /A a7 /A � � � in this situation gives thata2 2 sp0(R(x0)). And now � needs to be equal to (�)p0+1, otherwise Ywould't be 
ompatible. So a2 
 d�q0 2 sj(R(x)). 2I will also need:Lemma 6.8 If A is a round pasting s
heme then A
 2q is round as well.Proof. Lemma 6.3 gives that sn�1(A
 2q) = R(fa
d�0q0 ja 2 sp0(A); p0+ q0 =n�1; 0 � q0 � q; if q0 6= q then �0 = (�)p0+1g) and tn�1(A
2q) = R(fa
d�0q0 ja 2tp0(A); p0+ q0 = n�1; 0 � q0 � q; if q0 6= q then �0 = (�)p0g). Suppose a2
d�2q2in their interse
tion, say in R(a3 
 d�3q3 ) and in R(a4 
 d�4q4 ). Four 
ases:� a3 2 sp(A), q3 = q�1, a4 2 tp(A), q4 = q�1: either a3
d�2q�2 or a4
d�2q�2must be an intermediate stage, so a2 
 d�2q2 2 sp�2(A
 2q) [ tp�2(A
 2q),� a3 2 sp�1(A), q3 = q, a4 2 tp�1(A), q4 = q: then a2 2 sp�1(A)\ tp�1(A) =sp�2(A) [ tp�2(A). If in sp�2(A) then a2 
 d�2q2 2 sp�2(A
 2q) and dually,� a3 2 sp�1(A), q3 = q, a4 2 tp(A), q4 = q � 1 (a3 2 sp(A), q3 = q � 1,a4 2 tp�1(A), q4 = q analogous): if via a3 
 d(�)pq�1 then in sp�2(A 
 2q).But it is always possible to do this be
ause if via a3 
 d(�)p�1q�1 then �4 isnot right so q2 < q � 1. 2De�nition 6.9 A well-formed loop-free pasting s
heme is globular if all m-sour
es and m-targets are round. 3Lemma 6.10 If A is globular then A
 2q is globular.Proof. Analogous to the proof of the previous lemma. 236



7 A pasting presentation for the tensor produ
tof !-
ategoriesThis se
tion is the 
entral part of this paper. In it, I give a detaileddes
ription of the tensor produ
t of two !-
ategories C and D by giving a pastingpresentation (GC ;D ; RC ;D ) for it. The usefulness of this des
ription is that theuniversal property of pasting presentations makes it relatively easy to deal with!-fun
tors going from a tensor produ
t. This will be used to prove asso
iativityand 
oheren
e of the tensor produ
t, in se
tion 8, and to prove the adjun
tionsbetween the tensor produ
t and the internal homs, in se
tion 11. It will alsogive 
on
rete formulae for 
ategories enri
hed in this monoidal 
ategory !-Cat,an example of whi
h is !-Cat itself, see se
tion 12. Another point is thatworking with pasting s
hemes is more 
on
eptual than the approa
h of [2, 34℄.Gray's tensor produ
t of 2-
ategories [21℄ is de�ned using essentially the sameapproa
h as here: it is de�ned by generators and relations, and a des
riptionof the generated 
ells is given. Be
ause of the restri
tion to dimension 2, thetensor produ
t of 2-
ategories is de�ned as a 2-
ategory. It 
an be obtainedfrom the 4-
ategory it is here by taking 
onne
ted 
omponents in dimension 2,i.e., it has the same 0- and 1-
ells, and 2-
ells are equivalen
e 
lasses of 2-
ellsin the 4-
ategory, the equivalen
e relation being generated by the requirementthat two 2-
ells are equivalent if there is a 3-
ell in between them. This explainsall extra 
onditions on the 2-
ells of [21℄'s tensor produ
t.7.1 GeneratorsA generator in GC ;D in dimension n is a labeled pasting s
heme (2p 
 2q;L

d)su
h that p + q = n, for some p-dimensional 
 2 C and some q-dimensionald 2 D , where d�p0 
 d�q0 is labeled by (2p0 
 2q0 ;L
0
d0) for 
0 = d�p0(
) in C andd0 = d�q0(d) in D . Cells x in the domain or 
odomain of 2p 
 2q all have R(x)equal to a generator of lower dimension, so these labeled pasting s
hemes 
anindeed be taken as generators. Sometimes the generator (2p 
 2q;L

d) will be
alled 

 d for short.7.2 RelationsTo de�ne the relations in RC ;D I will make use of labeled pasting s
hemes (A
2q;L(A;fi)
d), for some appropriate realization (A; fi) of A in C and some d 2 D ,where a 
 d�q0 is labeled by the generator fp0(a) 
 d�q0(d). Of 
ourse, labeled37



pasting s
hemes (2p
B;L

(B;gi)) will also be used, but sin
e the use of these is
ompletely analogous, I will 
on
entrate on the �rst ones. One might think thatalso something like (A
B;L(A;fi)
(B;gi)) 
ould be used, but this is not the 
ase,be
ause A
B, de�ned in the same way as A
 2q, 
an fail to be a well-formedloop-free pasting s
heme. If A 
 B is equal to the produ
t of pasting s
hemesJohnson and Street have in mind, then this failure has been observed by them aswell [22℄. Here it 
an be seen from a table like table 2, sin
e the dimension ofthe se
ond 
oordinate 
an go up and down, making dire
t loops, or to sequen
esy / y0 violating 
ondition (iv) of loop-freeness possible. But it isn't ne
essary to
onsider A
B, as the sequel shows.Now ba
k to the relations. It is not possible to prove dire
tly that (A; fi)
dis a generated pasting, be
ause for this relations in lower dimensions will beneeded. So, as in se
tion 11 of [5℄, the approa
h will be indu
tive, in fa
t, thiswhole se
tion is 
ompletely along the lines of the proof of se
tion 11 of [5℄, onlyworked out a little bit, but only a little bit, more. Some intermediate resultswill be derived, whi
h illustrate, in fa
t, are derived from, the intuition behindthe tensor produ
t.For round pasting s
heme A with appropriate realization (A; fi) in C andd 2 D , de�ne a labeled pasting s
heme ((A
 2q)t;L((A;fi)
d)t), whi
h is labeledas (A; fi)
 d ex
ept for the top-dimensional 
ell, whi
h is labeled by f(A)
 d,where f(A) denotes the 
omposite of (A; fi).For (p � 1)-dimensional 
 2 C and q-dimensional d 2 D , de�ne a labeledpasting s
heme (2p 
 2q;Lidl

d), whi
h is labeled as id

d ex
ept for the top-dimensional 
ell, whi
h is labeled by the formal expression id

d.Assume:� for every appropriate realization (A; fi) of a p-dimensional well-formedloop-free pasting s
heme A in C and every q-dimensional d 2 D withp+ q � n, the labeled pasting s
heme (A; fi)
 d is a generated pasting,� for every appropriate realization (A; fi) of a p-dimensional round pastings
heme A in C and every q-dimensional d 2 D with p+ q � n, the labeledpasting s
heme ((A; fi)
 d)t is a generated pasting,� for every appropriate realization (A; fi) of a p-dimensional round pastings
heme A in C and every q-dimensional d 2 D with p+q � n, the generatedpasting (A; fi)
 d is fully repla
able in (A; fi)
 d,� for every (p�1)-dimensional 
 2 C and q-dimensional d 2 D with p+q � n,the labeled pasting s
heme idl

d is a generated pasting,38



� for every (p�1)-dimensional 
 2 C and q-dimensional d 2 D with p+q � n,the generated pasting id

d is fully repla
able in id

d,� for every appropriate realization (A; fi) of a p-dimensional round pastings
heme A in C and every q-dimensional d 2 D with p + q � n, there isde�ned a relation between (A; fi)
 d and ((A; fi)
 d)t,� for every (p�1)-dimensional 
 2 C and q-dimensional d 2 D with p+q � n,there is de�ned a relation between id

d and idl

d,and the same for (2p 
B;L

(B;gi)), et
.I will derive some 
onsequen
es of these assumptions that will be used in thenext dimension.Lemma 7.1 For every appropriate realization (A; fi) of a p-dimensionalglobular pasting s
heme A in C and every q-dimensional d 2 D with p+ q � n,(A; fi)
 d is equivalent to f(A)
 d.Proof. The idea is to repla
e high dimensional pie
es by their 
omposite, sothat when 
ontinuing this for lower dimensions �nally 2p 
 2q is rea
hed. Thereason for starting with high dimensions is that this leaves not many higherdimensional 
ells being able to spoil full repla
ability. This is implemented asfollows.De�ne (A
2q)n:0:4 = A
2q [(A
2q)t=A
2q ℄, and for 0 � j0 � j < n, de�ne(A
 2q)j:j0:1 = (A
 2q)j:(j0+1):4[(sj0(A)
 d(�)j0j�j0 )t=A
 d(�)j0j�j0 ℄ if j0 < j= (A
 2q)(j+1):0:4[(sj0(A)
 d(�)j0j�j0 )t=A
 d(�)j0j�j0 ℄ if j0 = j(A
 2q)j:j0:2 = (A
 2q)j:j0:1[(sj0(A)
 d(�)j0+1j�j0 )t=sj0(A)
 d(�)j0+1j�j0 ℄(A
 2q)j:j0:3 = (A
 2q)j:j0:2[(tj0(A)
 d(�)j0j�j0 )t=tj0(A)
 d(�)j0j�j0 ℄(A
 2q)j:j0:4 = (A
 2q)j:j0:3[(tj0(A)
 d(�)j0+1j�j0 )t=tj0(A)
 d(�)j0+1j�j0 ℄whenever this makes sense, i.e., when 0 � j0 � p and 0 � j � j0 � q, otherwisedon't repla
e anything, and if j0 = p or j � j0 = q then do only two of thefour repla
ements. So with index j all j-dimensional pie
es are repla
ed bytheir 
omposites, and (A
 2q)0:0:4 �= 2p 
 2q. The above de�nitions make sensebe
ause the pasting s
hemes that are to be repla
ed 
an indeed be 
onsidered assubpasting s
hemes of the (A
 2q)j:j0:j00 's. The pasting s
hemes to be repla
edare round be
ause A is globular and be
ause of lemma 6.8. For the rest offull repla
ability, I will now des
ribe the pasting s
hemes. They 
onsist of 
ells39



d�0p0 
 d�0q0 in dimensions greater than j, and of the 
ells of A
 2q in dimensionsless than j, while in dimension j some pie
es have been repla
ed already. The Eand B relations make that the d�0p0 
 d�0q0 's relate as in 2p
 2q, the 
ells of A
 2qrelate as in a 
 2q, and their mutual relations are su
h that the pie
es a
t aslow dimensional 
ells of 2p 
 2q. The 
omposites are labeled by the appropriate
omposites, and the 
ells are labeled by their old labels. On
e I've shown fullrepla
ability the labeled pasting s
hemes above are generated pastings be
ausethis is a lo
al property.Now for repla
ability. Elementary repla
ability is immediate from the abobedes
ription of the B and E relations. There are no dire
t loops of dimensionj+1 in (A
 2q)j:j0:j00 be
ause if there were one not meeting (: : :)t this would bea dire
t loop in the previous step as well, and if there were one meeting (: : :)t,any p-dimensional x0 2 eX instead of it would make it into a dire
t loop in theprevious step. There are no dire
t loops of dimension j, whi
h follows froma 
ombination of tables 1 and 2. There are no dire
t loops in dimensionsgreater than j +1 and less than j sin
e su
h a loop is also a loop in 2p
 2q andA
 2q respe
tively.Finally, 
ondition (iv) of loop-freeness is proven as in the proof of proposition6.7. 2Given an appropriate realization (A; fi) in C , I need an appropriate realiza-tion of a globular pasting s
heme having the same 
omposite. Take (Gl(A); fi),where the identities are realized by the 
omposite of the subpasting s
hemesthey are identities on (see se
tion 11 of [5℄). Having de�ned this, a generatedpasting (A; fi)
d gives rise to a generated pasting (Gl(A); fi)
d. Note that inthis latter pasting s
heme all 
ells are labeled by a
tual generators, not by formalidentities!Lemma 7.2 For every appropriate realization (A; fi) of a p-dimensionalpasting s
heme A in C and every q-dimensional d 2 D with p+q � n, (A; fi)
dis equivalent to (Gl(A); fi)
 d.Proof. The idea is to use the globularization pro
edure for A, as des
ribedin se
tion 8 of [5℄, as basis for the insertions that have to o

ur. For every stepof the globularization pro
edure for A there will be many steps here, in orderto ensure the result is of the 
orre
t form. Finally, the labeling of the formalidentities will be 
hanged in a
tual labels.De�ne (A
2q)(�1):0:4 = A
2q , and for 0 � m � p = dim(A) and q � q0 � 0,40



de�ne(A
 2q)m:q0:1 = (A
 2q)m:(q0+1):4[idsm(A)
d�q0 :Wm:q0:1℄ if q0 < q= (A
 2q)(m�1):0:4[idsm(A)
d�q0 :Wm:q0:1℄ if q0 = q(A
 2q)m:q0:2 = (A
 2q)m:q0:1[idsm(A)
d+q0 :Wm:q0:2℄(A
 2q)m:q0:3 = (A
 2q)m:q0:2[idtm(A)
d�q0 :Wm:q0:2℄(A
 2q)m:q0:4 = (A
 2q)m:q0:3[idtm(A)
d+q0 :Wm:q0:2℄;where if q0 = q do only two of the four repla
ements, and where the witnessingspe
i�
ations Wm:q0:j are su
h that the position of the identities is the positionthey are to have in Gl(A)
2q. After having 
ompleted them-th stage the pastings
heme is anm-th globulatization of A, so (A
2q)p:0:4 �= Gl(A)
2q, as a pastings
heme. The pasting s
hemes on whi
h identities are inserted are round be
ausethey have been made so in the previous steps. For elementary repla
ability, theonly relevant (m+q0+2)-
ells are previously added higher-dimensional identities,whi
h indeed have the required property. And the intermediate results aresuÆ
iently like Glm(A) 
 2q to prove them being well-formed loop-free pastings
hemes in the same way.Now I need to repla
e the labels on the identities. I will do that along theway, so this amount to a modi�
ation of the above pro
ess, whi
h has beenpresented nontheless for reasons of 
larity. The idea is to add another bun
h ofidentities, so that if the label on idX is to be repla
ed, the subpasting s
hemeX is 
ompletely surrounded by identities. Then X 
an be repla
ed by some2p0 
 2q0 , on whi
h an identity 
an be inserted, whi
h 
an then be relabeledto some id

d. Then the whole thing 
an be undone be
ause this relabelingdoesn't 
hange the pasting s
heme but only a label, and �nally it is ensuredthat the identity whi
h remains is the one whi
h has been a
tually labeled. Soit remains to des
ribe when and where these extra identities are inserted. Torelabel idsm(A)
d�q0 , say, other 
ases are analogous, steps m:q00:1 and m:q00:2 arerepeated for all q00 � q0. So this 
omes down to globularizing this pie
e for ase
ond time, and then the pie
e in between the identities is the isolated 
opyof X. Going ba
k, there is an extra identity on X, and now the two identitieswhi
h have been inserted �rst 
an be removed, so that indeed idX remains. 2Proposition 7.3 For every appropriate realization (A; fi) of a p-dimensionalwell-formed loop-free pasting s
heme A in C and every q-dimensional d 2 D withp+ q � n, (A; fi)
 d is equivalent to f(A)
 d.41



Proof. Combine lemma 7.1 with lemma 7.2. 2Now I 
an prove all the assumptions in one dimension higher.Lemma 7.4 Under the above assumptions, for every appropriate realization(A; fi) of a p-dimensional well-formed loop-free pasting s
heme A in C and everyq-dimensional d 2 D with p+ q � n+ 1, the labeled pasting s
heme (A; fi) 
 dis a generated pasting.Proof. I have to show that for every a 
 d�q0 2 A 
 2q,�dom(R(a
 d�q0));L(A;fi)
djdom(R(a
d�q0 ))� is equivalent to (dom(2p0 
 2q0);Lfp0(a)
d�q0 (d)jdom(2p0
2q0 )). This 
an be done by modifying the 
onstru
tions ofthe previous two lemmas in order to make it work on dom(R(a)
 2q0), by doingonly the insertions and the repla
ements whi
h take pla
e there. This whole
onstru
tion then uses only generators, generated pastings and relations up todimension n. 2Lemma 7.5 Under the above assumptions, for every appropriate realization(A; fi) of a p-dimensional round pasting s
heme A in C and every q-dimensionald 2 D with p+ q � n+1, the labeled pasting s
heme ((A; fi)
 d)t is a generatedpasting.Proof. The only thing left to 
he
k is the labeling of the top-dimensional
ell. So the question is, whether (dom(A
2q);L(A;fi)
djdom(A
2q)) is equivalentto (dom(2p 
 2q);Lf(A)
djdom(2p
2q)). For this the same modi�
ation of 
on-stru
tions of lemmas 7.1 and 7.2 as in the previous lemma works. Note, bythe way, that roundness of A is needed to make any sense out of (A
2q)t, usinglemma 6.8. 2Lemma 7.6 Under the above assumptions,for every appropriate realization(A; fi) of a p-dimensional round pasting s
heme A in C and every q-dimensionald 2 D with p+ q � n+ 1, the generated pasting (A; fi)
 d is fully repla
able in(A; fi)
 d.Proof. By lemma 5.9 of [5℄ only roundness needs to be 
he
ked, but this holdsbe
ause of lemma 6.8. 242



Lemma 7.7 Under the above assumptions, for every (p � 1)-dimensional 
 2C and q-dimensional d 2 D with p+ q � n, the labeled pasting s
heme idl

d isa generated pasting.Proof. I need prove that dom(id

d) is equivalent to 

 d. As before, this
an be done by inserting identities and relabeling them, whi
h in this 
ase iseasier be
ause in relabeling there's no need to isolate be
ause the relevant 
ellsare already of the 
orre
t form. 2Lemma 7.8 Under the above assumptions, for every (p � 1)-dimensional 
 2C and q-dimensional d 2 D with p+ q � n, the generated pasting id

d is fullyrepla
able in id

d.Proof. 2p 
 2q is round be
ause 2p is. 2Thus, relations in dimension n+ 1 
an now be de�ned by:� for every appropriate realization (A; fi) of a p-dimensional round pastings
heme A in C and every q-dimensional d 2 D with p+ q � n+1, there isa relation between (A; fi)
 d and ((A; fi)
 d)t,� for every (p� 1)-dimensional 
 2 C and q-dimensional d 2 D with p+ q �n+ 1, there is a relation between id

d and idl

d,and the same for (2p 
B;L

(B;gi)).7.3 !-fun
torialityGiven an !-fun
tor g : C ! C 0 , de�ne a family of realizations (GC ;D ; (g 
 D )i)of (GC ;D ; RC ;D ) in C 0 
 D by(g 
 D )i(

 d) = g(
) 
 dwhere the latter is a generator hen
e a generated pasting, by lemma 7.3 of [5℄, inthe pasting presentation (GC 0 ;D ; RC 0 ;D ) of C 0 
 D . This family of realizationsrespe
ts relations:(g 
 D )((A; fi)
 d) == (A; g Æ fi)
 dequivalent to (g Æ f)(A)
 d= g(f(A)) 
 d be
ause g is an !-fun
tor= (g 
 D )(f(A) 
 d);43



and it respe
ts labels:dom((g 
 D )i(

 d)) = dom(g(
) 
 d)= (g 
 D )(dom(

 d)) be
ause both are 
ompos-ite of the same appropriaterealization of dom(2p
2q).Thus this de�nes an !-fun
tor g 
 D : C 
 D ! C 0 
 D .8 Asso
iativity and other properties of the tensorprodu
tVarious properties of the tensor produ
t of !-
ategories ne
essary for amonoidal stru
ture are 
he
ked. Furthermore, there's a brief dis
ussion on du-ality, the example of tensoring two standard 
ubes as !-
ategories, and a verybrief ex
ursion into knot theory.8.1 Asso
iativityFor asso
iativity of the tensor produ
t, I need to 
ompare C 
 (D 
 E ) with(C 
 D ) 
 E . To this end, de�ne an !-
ategory C 
 D 
 E by the followingpasting presentation (GC ;D ;E ; RC ;D ;E ): generators are labeled pasting s
hemes(2p
 2q
 2r;L

d
e) with obvious labeling, and relations are dimensionwise, asin the pasting presentation for C 
 D .Lemma 8.1 There is a 
anoni
al isomorphism between C 
 (D 
 E ) andC 
 D 
 E , and also between (C 
 D ) 
 E and C 
 D 
 E .Proof. Of 
ourse, this 
anoni
al isomorphism is the unique one whi
h ex-ists be
ause both !-
ategories satisfy the same universal property, i.e., I willshow that respe
table families of realizations of (GC ;D
E ; RC ;D
E ) 
orrespond torespe
table families of realizations of (GC ;D ;E ; RC ;D ;E ). The other 
ase will besimilar.So 
onsider a respe
table family of realizations (GC ;D
E ; 'i) of (GC ;D
E ;RC ;D
E ) in F. De�ne a family of realizations (GC ;D ;E ; 'i) of (GC ;D ;E ; RC ;D ;E ) inF by 'p+q+r(

 d
 e) = 'p+q+r(

 (d
 e)):44



To show this family of realizations respe
ts labels, de�ne for every 
 2 C , d 2 Dand e 2 E a generated pasting (2p
2q
2r;L

d
e) in (GC ;D
E ; RC ;D
E ), whered�0p0 
 d�0q0 
 d
0r0 gets labeled by d�0p0 (
)
 (d�0q0 (d)
 d
0r0 (e)). Then:dom('p+q+r(

 d
 e)) == dom ('p+q+r(

 (d
 e)))= '(dom(

 (d
 e))) be
ause (GC ;D
E ; 'i) respe
ts labels= '(dom(2p 
 2q 
 2r;L

d
e)) be
ause of proposition 7.3= '(dom(

 d
 e)) be
ause both are 
omposite of the sameappropriate realization.To show it respe
ts relations, de�ne for every 
 2 C , (B; gi) an appropriaterealization of a round pasting s
heme B in D and e 2 E , a generated pasting(2p 
 B 
 2r;L

(B;gi)
e) in (GC ;D
E ; RC ;D
E ), where d�0p0 
 b
 d
0r0 gets labeledby d�0p0 (
)
 (gq0(b)
 d
0r0 (e)). Then:'(

 (B; gi)
 e) == '(2p 
B 
 2r;L

(B;gi)
e) be
ause both are 
ompos-ite of the same appropriaterealization of 2p 
 b
 2r= '((2p 
B 
 2r)t;L(

(B;gi)
e)t) be
ause this is a relationin RC ;D
E sin
e B 
 2r isround= ' ((

 (B; gi)
 e)t) ;or, more 
on
eptually,'(

 (B; gi)
 e) == '(2p 
B 
 2r;L

(B;gi)
e)= '(2p 
 2q 
 2r;L

g(B)
e) by the analog of proposition 7.3= 'p+q+r(

 g(B)
 e)= ' ((

 (B; gi)
 e)t) be
ause the latter has only one top-dimensional 
ell,and'(

 idd
e) = '(

 (idd
e))= '(

 idld
e) by a relation in RD ;E= '(

 idd
e)= '(idr

(d
e))) by a relation in RC ;D
E= '(2p 
 2q+1 
 2r;Lidm

d
e)= '(idm

d
e); 45



and the other relations are done similarly.Conversely, 
onsider a respe
table family of realizations (GC ;D ;E ; �i) of(GC ;D ;E ; RC ;D ;E ) in F. To de�ne a family of realizations (GC ;D
E ; e�i) of(GC ;D
E ; RC ;D
E ) in F, de�ne for every 
 2 C and generated pasting (B;LD
EB )in (GD ;E ; RD ;E ) a generated pasting (2p
B;L

LD
EB ) in (GC ;D ;E ; RC ;D ;E ), whered�0p0 
 b gets labeled by d�0p0 (
)
d
e when b is labeled by d
e in (B;LD
EB ), andby an identity when b is labeled by an identity in (B;LD
EB ). De�ne (GC ;D
E ; e�i)by e�i �

 (B;LD
EB )� = �(2p 
B;L

LD
EB ):This family of realizations is well de�ned be
ause the relations in (GD
E ; RD
E )are 
omponentwise. To show it respe
ts relations, take for every appropriaterealization (B; gi) of a pasting s
heme B in D 
 E , say gi(b) represented by(Bb;LD
EBb ), any representative (B;LD
EB ) of g(B). Then:e�(

 (B; gi)) = 
omposition of �(2p 
Bb;LD
EBb )'s via 2p 
 B= �(2p 
B;L

LD
EB ) be
ause � is an !-fun
tor= e�i(

 g(B))= e�i ((

 g(B))t)ande�i(

 id(B;LD
EB )) == �(2p 
B[idB:?℄;L

LD
EB[idB :?℄) by de�nition of identity in!(GD ;E ; RD ;E )= id�(2p
B;L

LD
EB ) be
ause the top-
ell of 2p 
B[idB :?℄is labeled by an identity= ide��

(B;LD
EB )�= e�(id

(B;LD
EB ))= e�(idr

(B;LD
EB )):That it respe
ts labels is left to the reader. 2Lemma 8.2 The tensor produ
t of !-
ategories is asso
iative.Proof. Compose the isomorphisms of lemma 8.1 to obtain an isomorphismC 
 (D 
 E) �= (C 
 D ) 
 E . Naturality follows from the uni
ity in the universalproperty of the !-
ategory generated by a pasting presentation. 246



8.2 Coheren
eLemma 8.3 The asso
iativity of the tensor produ
t of !-
ategories is 
oher-ent.Proof. Analogous to the pasting presentation (GC ;D ;E ; RC ;D ;E ) used in theproof of asso
iativity, de�ne a pasting presentation (GC ;D ;E ;F ; RC ;D ;E ;F ) for an!-
ategory C 
 D 
 E 
 F. Then in the diagram
C (D (E F ))

(C D )(E F)
((C D )E )F

C ((D E )F ) (C (D E ))F
C D E F

C D (E F) �= (C D )E F�=
C (D E F ) �=

C (D E )F
�= (C D E )F�=

�=
�=

�= �= �=
�=

�= �= �= �=
;

where the 
's have been omitted for reasons of spa
e, all squares 
ommutebe
ause of the uni
ity of the !-fun
tor indu
ed by a respe
table family of real-izations. So by Ma
 Lane's 
oheren
e theorem [30℄ 
oheren
e of the asso
iativityisomorphism follows. 2Coheren
e 
ould also be dedu
ed by means of proposition 4.2, but thatwouldn't give expli
it des
riptions of the asso
iativity isomorphism and no �llingof the pentagon. 47



8.3 Another pasting presentation for C 
 P(2q)Be
ause 2q is a free !-
ategory the pasting presentation (GC ;P(2q ); RC ;P(2q )) forC 
P(2q ) as given above 
an be simpli�ed, in that it doesn't use all 
ells of P(2q)but only generators. This is possible be
ause the set of generators in
ludes theglobes.So the generators for a pasting presentation (GC ;2q ; RC ;2q ) are 
 
 d�0q0 for
 2 C and q0 � q. For every appropriate realization (A; fi) of a round pastings
heme A in C , there is de�ned a relation between (A; fi)
d�0q0 and ((A; fi)
d�0q0 )t,and for every 
 2 C , there is de�ned a relation between id

d�0q0 and idl

d�0q0 .Lemma 8.4 (GC ;2q ; RC ;2q ) is a pasting presentation for C 
P(2q).Proof. The idea is that identities in the !-
ategory P(2q) don't matterbe
ause of the relations between formal and a
tual identities in (GC ;2q ; RC ;2q ).Details are left to the reader. 28.4 Unit for 
The pasting presentation (GC ;20 ; RC ;20 ) of C 
 20 is pre
isely the standard pre-sentation of C . So C 
 20 �= C via a 
anoni
al isomorphism, and be
ause also20
 C �= C , 20 = I0 is the two-sided unit for the tensor produ
t of !-
ategories.Proposition 8.5 The tensor produ
t 
 and unit I0 give !-Cat the stru
tureof a monoidal 
ategory.Proof. Asso
iativity and 
oheren
e of the tensor produ
t have been donealready in lemmas 8.2 and 8.3, and the axioms for the unit are easy. 28.5 DualityThe three di�erent dualities of 
ubi
al sets, des
ribed in se
tion 2, give rise tothree dualities of !-
ategories. This 
an be seen best by 
onsidering the 
ubi
alset G and its duals, and 
al
ulating what are their respe
tive !-
ategorizations.Of 
ourse, they are all isomorphi
 to P(2!), but the non-trivial isomorphismsshow what 
hanges.The transposition duality gives rise to an even duality, whi
h will be denotedby op, and whi
h inter
hanges sour
e and target of even-dimensional 
ells. The48




ombined duality gives rise to an odd duality, whi
h will be denoted by 
o, andwhi
h inter
hanges sour
e and target of odd-dimensional 
ells. There's also op 
owhi
h 
omes from the se
ond duality of 
ubi
al sets and whi
h inter
hangessour
e and targets of all 
ells, and 
o op, whi
h is equal to op 
o.Before 
omparing pasting presentations for (C 
D )op and (D op 
C op ), I will
ompare the pasting s
hemes (2q)op 
 (2p)op and (2p 
 2q)op. The �rst one isisomorphi
 to 2q 
 2p, but to see how the 
ells intera
t in terms of 2q and 2p,whi
h will be important for the 
omparison of pasting presentations followingshortly, it will be 
onsidered to 
onsist of symbols (d�q )op
(d�p )op, with relations((d�q )op 
 (d�p )op; y) 2 Eij if and only if one of the following:1. y = (d(�)q+1q�1 )op 
 (d�p )op,2. y = (d�q )op 
 (d(�)q+p+1p�1 )op,3. y = (d(�)q+1q�1 )op 
 (d(�)q+p+1p�1 )op.Similarly, (2p 
 2q)op 
onsists of symbols (d�p 
 d�q )op with relations ((d�p 
d�q )op; y) 2 Eij for i > j if and only if one of the following:1. y = d�p 
 d(�)p+q+1+pq�1 ,2. y = d(�)p+q+1p�1 
 d�q ,3. y = d(�)p+q+1p�1 
 d(�)p+q+1+pq�1 .And indeed, there is an obvious isomorphism given by (d�q )op 
 (d�p )op 7! (d�p 
d�q )op whi
h preserves the relations sin
e 2p is even.The pasting presentation (GC ;D ; RC ;D ) of C 
D gives rise to a pasting presen-tation (GopC ;D ; RopC ;D ) of (C 
 D )op by taking the op-dual of the generating pastings
hemes, and by essentially keeping the same relations, only taking into a

ountthat they are between dualized generated pastings.Now to 
ompare (GDop ;C op ; RDop ;Cop ), and (GopC ;D ; RopC ;D ), let (GDop ;Cop ; 'i) bea respe
table family of realizations of (GDop ;Cop ; RDop ;Cop ) in E . De�ne a familyof realizations (GopC ;D ; 'i) in E by'i((

 d)op) = 'i(dop 
 
op):49



This family of realizations is respe
table be
ausedom ('i((

 d)op)) == dom('i(dop 
 
op))= '(dom(dop 
 
op)) by respe
tability of (GDop ;Cop ; 'i)= ' (dom((

 d)op))be
ause the labelings on the isomorphi
 pasting s
hemes 
oin
ide:'i�1(d�q�1(dop)
 
op) = 'i�1 �(

 d(�)q+1q�1 (d))op� and 'i�1(dop 
 d(�)qp�1 (
op)) ='i�1 �(d(�)q+p+1p�1 (
) 
 d)op�. Conversely, by the same formula a respe
tablefamily of realizations (GopC ;D ; 'i) in E gives rise to a family of realizations(GDop ;Cop ; 'i) in E whi
h is respe
table for the same reasons. Thus C op 
 D op �=(C 
 D )op . And also for 
o, whi
h is proven 
ompletely analogous.[21℄ also 
onsiders duality. The even (resp. odd) duality here is the extensionof the weak or verti
al (resp. strong or horizontal) duality 
onsidered there.8.6 Cube tensor 
ubeI will show that the tensor produ
t of two 
ubes is again a 
ube, as expe
ted.For a fa
e x of �p+q, de�ne a labeled pasting s
heme (�p0+q0 ;L(�lp
�rq)(x)),where a fa
e x0 of �p0+q0 , 
onsidered as a morphism r ! p+ q, is labeled by(2p0 
 2q0 ;LR(�lpÆxÆx0)
R(�rqÆxÆx0)), whi
h is indeed a generator in GIp;Iq : R(�lp Æx Æ x0) and R(�rq Æ x Æ x0) are elements of Ip and Iq respe
tively.Given well-formed subpasting s
hemes P and Q of Ip and Iq respe
tively,de�ne a subgraded set of �p+q by P �Q = fx 2 �p+qj�lp Æ x 2 P; �rq Æ x 2 Qg.Lemma 8.6 P �Q is a well-formed subpasting s
heme of �p+q.Proof. For x0 2 R(x) for x 2 P � Q, �lp Æ x Æ x0 2 P and �rq Æ x Æ x0 2 Qbe
ause P and Q are subpasting s
hemes of �p and �q respe
tively, so P �Q isa subpasting s
heme of �p+q.For well-formedness, �rst observe that sm(P �Q) = Sfd�p0(P )�d(�)p0+1q0 (Q)jp0 + q0 = mg, whi
h 
an be proven by indu
tion on m. That this is a sub-pasting s
heme follows by the same argument as just given, so it remains toshow 
ompatibility. So let y and y0 of dimension m in sm(P �Q) be su
h thatz 2 Em�1(y) \ Em�1(y0). Then for dimension reasons exa
tly one of the equa-tions �lp Æ y = �lp Æ z and �rq Æ y = �rq Æ z holds, and also for y0. So this givesfour possibilities, two where the equalities o

ur on the same side, left say, twowhere they o

ur on di�erent sides. In the �rst 
ase well-formedness of Q gives50



�rq Æ y = �rq Æ y0 whi
h implies, be
ause of the equalities on the other side, thaty = y0. In the se
ond 
ase the exponents give a 
ontradi
tion, pre
isely as inthe proof of well-formedness in lemma 5.6. 2De�ne a labeled pasting s
heme (P � Q;L�lp
�rq), where an element x ofP � Q is labeled by (2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx)). De�ne also a labeled past-ing s
heme (�p0+q0 ;Lid(�lp)
id(�rq)), where a fa
e x of �p0+q0 is labeled by (2p0 
2q0 ;LR(�lpÆx)
R(�rqÆx)) or by the appropriate identity.Lemma 8.7 In (GIp;Iq ; RIp;Iq), for every fa
e x of �p+q, dom(�p0+q0 ;L(�lp
�rq)(x)) is a generated pasting, whi
h is equivalent to dom(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx)).Moreover, for all well-formed subpasting s
hemes P and Q of Ip and Iqrespe
tively, dom(P � Q;L(�lp
�rq)) is a generated pasting, whi
h is equivalentto dom(2p0 
 2q0 ;LP
Q). And dom(�p0+q0 ;Lid(�lp)
id(�rq)) is a generated pastingequivalent to dom(2p0 
 2q0 ;Lid(P )
id(Q)).Proof. Left to the reader as an exer
ise in manipulating generated pastings.The following pi
tures indi
ate what needs to be done in the �rst 
ase:
dom(�2+1;L(�l2
�r1)(000)) = � �0
+ � 0+
+���
00�
� �0
000
�� 0+
0�� 0+
� � ++
0and dom(22 
 21;LR(�l2Æ000)
R(�r1Æ000)) = � s1(00)
+���
0t1(00)
� 00
�s1(00)
0�� ++
0need to be equivalent, whi
h 
an be proven, as before, by 
omposing from highdimensions downwards. 2Proposition 8.8 Ip 
 Iq �= Ip+q. 51



Proof. The proof will be analogous to the proof of propositions 5.2 and5.9, but a little more involved be
ause the pasting presentation for Ip 
 Iq hasmore diÆ
ult relations, namely those indu
ed by 
ompositions in Ip and Iq.Given a respe
table family of realizations (GIp;Iq ; 'j) in C , de�ne a realiza-tion (�p+q; fj) in C byfj(x) = 'j(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx))for x a fa
e of �p+q. Suppose this realization is m-appropriate. Thensm(fm+1(x)) == sm �'m+1(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx))�= '�dom(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx))� be
ause (GIp;Iq ; 'j) re-spe
ts labels= '�dom(�p0+q0 ;L(�lp
�rq)(x))� by lemma 8.7= f (sm(R(x))) be
ause both are 
ompos-ite of the same appropriaterealization of sm(R(x)),whi
h proves that it is (m+ 1)-appropriate.Given an appropriate realization (�p+q; fj) in C , de�ne a family of realiza-tions (GIp;Iq ; 'j) in C by'j(2p0 
 2q0 ;Lid(P )
id(Q)) = f(P �Q)for subpasting s
hemes P and Q of Ip and Iq respe
tively, where the right handside is de�ned be
ause of lemma 8.6.This family respe
ts relations sin
e the identities are allright, and for 
ompos-ites 'j(2p0
2q0 ;L(P[P 0)
Q) = f((P[P 0)�Q) and '((2p[2p0)
2q;LP
Q;P 0
Q) =f(P �Q) 
omposed with f(P 0 �Q) need to be equal, whi
h is the 
ase sin
e fis an !-fun
tor and 
omposition in P(�p+q) is union.Now suppose the family respe
ts m-labels. Then if there are identitiesaround, thensm �'m+1(2p0 
 2q0 ;Lid(P )
id(Q))� == sm(f(P �Q))= f(P �Q)= '�dom(�p0+q0 ;Lid(�lp)
id(�rq))� be
ause both are 
ompos-ite of the same appropriaterealization of dom(�p0+q0)= '�dom(2p0 
 2q0 ;Lid(P )
id(Q))� by lemma 8.7.52



If there are no identities around, thensm('m+1(2p0 
 2q0 ;LP
Q)) == sm(f(P �Q))= f(sm(P �Q)) be
ause f is an !-fun
tor= '�sm(P �Q;L�lp
�rq)� be
ause both are 
omposite of the sameappropriate realization of sm(P �Q)= '�dom(2p0 
 2q0 ;LP
Q)� by lemma 8.7.Thus it respe
ts (m+ 1)-labels. 28.7 Triple tensor and Yang-BaxterNow look at 21 
 21 
 21, whi
h is just the 3-dimensional 
ube, but with aninteresting labeling:� �� d�0 
d1
d1d1
d1
d�0� d1
d+0 
d1 �� � d1
d1
d13 � d1
d1
d+0�� d1
d�0 
d1 � �� d+0 
d1
d1� :The two-
ells in this pasting s
heme 
an now be seen as Yang-Baxter operatorson 
omposites of 1-
ells. The domain of d1
d1
d1 then be
omes one side of theYang-Baxter equation, and the 
odomain the other. Thus from the !-
ategori
alviewpoint, Yang-Baxter should be a 
ell, and not an equality.Another way of seeing the 
ube above as Yang-Baxter is by taking the planardual of domain and 
odomain, resulting in� �� d1
d1
d13 �� � ;
whi
h is one of the Reidemeister moves of knot theory [33℄.53



9 Lax-q-transformations and quasi-!-fun
tors ofmore variablesAnalogous to the quasi-natural transformations of [21℄, and to the m-foldhomotopies of [10℄, I introdu
e the notion of lax-q-transformation. This notionuni�es the pseudo-natural transformations, modi�
ations and perturbations of[20℄, and makes the terminology ready for higher dimensions. It answers asuggestion of [2℄, that 
ubes 
an be used as domains for higher homotopies of!-
ategories, negatively: it is the globes that are used as su
h.Analogous to the quasi-fun
tors of two and of n variables of [21℄ and to thebimorphisms of [10℄, I introdu
e the notions of quasi-!-fun
tor of two and of nvariables.All this will be used in the des
ription of the internal homs of !-
ategoriesin se
tion 10.9.1 Lax-q-transformationsDe�nition 9.1 A right lax-q-transformation C ! D is an !-fun
tor C 
P(2q)! D . A left lax-q-transformation C ! D is an !-fun
tor P(2q)
 C ! D .3 In other words, a right lax-q-transformation is a respe
table family of real-izations (GC ;2q ; 'i) of (GC ;2q ; RC ;2q ) in D . I will des
ribe the data whi
h giverise to this expli
itly.A right lax-q-transformation (GC ;2q ; 'i) from C to D assigns to every p0-dimensional 
 2 C and every d�0q0 2 2q with p0 + q0 = i an i-
ell 'i(
 
 d�0q0 ) 2 D ,satisfying:� (respe
ts labels) for every 
 2 C , the 
omposite of the realization ofdom(
 
 d�0q0 ) indu
ed by 'i, whi
h is appropriate be
ause 'i respe
tsm-labels, is equal to sm('m+1(

 d�0q0 )), as in se
tion 10 of [5℄,� (respe
ts relations) for every appropriate realization (A; fi) of a roundpasting s
heme A in C with 
omposite f(A), the 
omposite of the appro-priate (be
ause 'i respe
ts m-labels) realization of A
 d�0q0 indu
ed by �iis equal to 'i(f(A)
 d�0q0 ), and for every 
 2 C , 'i+1(id

d�0q0 ) is equal toid'i(

d�0q0 ). 54



Working out the 
omposite in the �rst 
ase the 
ondition be
omes thatsm('m+1(
 
 d�0q0 )) is the 
omposite of 'm(
 
 d(�)p0+1q0�1 ) and 'm(sp0�1(
) 
 d�0q0 )with lower dimensional 
ells, i.e., is the 
omposite of the appropriate realizationof a pasting s
heme having those two m-
ells as highest dimensional 
ells.A parti
ular 
onsequen
e of the se
ond 
ase is, be
ause for every A,(A; fi) 
 d�0q0 is equivalent to f(A) 
 d�0q0 , that the 
omposite of 'p0+q0(
 
 d�0q0 )with 'p00+q(
0 
 d�0q0 ) a

ording to the appropriate realization of the pastings
heme (2p0 Æm 2p00) 
 d�0q0 having these as highest dimensional 
ells is equalto 'maxfp;p0g+q0(
0 Æm 

d�0q0 ). Be
ause of freeness of P(A), the previous equalityand the 
ondition on the identity also imply that 'i respe
ts relations!In order to have a short notation for a 
omposite when there is no need toexpli
itly des
ribe the realization, a 
omposite like the one above will be denotedby D(2p0 Æm 2p00)
 d�0q0 ; ('p0+q0(

 d�0q0 ); 'p00+q0(
0 
 d�0q0 ))E. Thus hA; (fi(a))a2Aiwould denote f(A) for appropriate realization (A; fi).The 
onsequen
e of the above observation is that:Lemma 9.2 A right lax-q-transformation C ! D 
onsists of assignments%q : Cp0 ! Dp0+q and %�0q0 : Cp0 ! Dp0+q0 for every q0 < q, where %q 
an also bedenoted by %�q , su
h that:(i) dom(%�0q0 (
)) is the 
omposite of %(�)p0+1q0�1 (
) and %�0q0 (sp0�1(
)) a

ording todom(2p0
2q0), ie, is equal to �dom(2p0 
 2q0);�%(�)p0+1q0�1 (
); %�0q0 (sp0�1(
))��and dually,(ii) %�0q0 (
0 Æm 
) is the 
omposite of %�0q0 (
) with %�0q0 (
0) a

ording to (2p0 Æm2p00)
 2q0 , i.e., is equal to D(2p0 Æm 2p00)
 2q0 ; (%�0q0 (
); %�0q0 (
0))E,(iii) %�0q0 (id
) is equal to id%�0q0 (
).Proof. Translate statements about 'i into statements about %�0q0 . 2In low dimensions this looks as follows. Condition (i) for a right lax-2-55



transformation % and a 1-
ell 
:%+0 (s0(
)) %+0 (
)%�0 (s0(
))%�1 (s0(
)) %2(s0(
))%�0 (
) %+1 (
) %+0 (t0(
))%�0 (t0(
)) %+1 (t0(
)) %2(
)3 %+0 (s0(
)) %+0 (
)%�0 (s0(
))%�1 (s0(
))
%�0 (
) %�1 (
) %+0 (t0(
))%�0 (t0(
)) %+1 (t0(
))%2(t0(
)) :

Condition (ii) for a right lax-1-transformation % and 2-
ell 
 and 1-
ell 
0:�� %�0 (
)%1(s1(
))�� %1(
0) �� %1(
0Æ0
)3 � %+0 (
)�%1(t1(
)) �� %1(
0) �� :
9.2 Quasi-!-fun
tors of two variablesDe�nition 9.3 A quasi-!-fun
tor of two variables � : (C ; D ) ! E 
onsists ofa left lax-p-transformation �(
;�) : D ! E for every p-dimensional 
 2 C and aright lax q-transformation �(�; d) : C ! E for every q-dimensional d 2 D , su
hthat� �(
;�)p(d) = �(�; d)q(
) def= �(
; d),� �(
;�)�0p0 = �(d�0p0 (
);�)p0 , and� �(�; d)�0q0 = �(�; d�0q0 (d))q0 . 3Proposition 9.4 A quasi-!-fun
tor of two variables � : (C ; D ) ! E 
orre-sponds an !-fun
tor C 
 D ! E .Proof. De�ne a family of realizations (GC ;D ; �i) of (GC ;D ; RC ;D ) in E by �i(

d) = �(
; d). Be
ause the relations in (GC ;D ; RC ;D ) are 
omponent-wise, the fa
t56



that the �(
;�) and the �(�; d) are lax transformations implies respe
tabilityof this family. Conversely, given (GC ;D ; �i), de�ne � by the same equation, andrespe
tability of the family implies that � is a quasi-!-fun
tor of two variables.The reader may 
he
k the details of this. 2Thus C 
 D is the universal re
ipient of quasi-!-fun
tors of two variablesfrom (C ; D ).The above proposition shows that it is not a 
oin
iden
e that it is not ne
es-sary to look at tensor of pasting s
hemes in general, but that the theory for
esthat the information 
an be broken up, so that only pasting s
hemes A
2q and2p 
B need to be 
onsidered.9.3 Quasi-!-fun
tors of n variablesContrary to the two-dimensional 
ase [21℄, it is not possible to de�ne quasi-!-fun
tors of more variables indu
tively, in fa
t be
ause the 3-dimensional 
ube isnot a 
ommutativity 
ondition, but a 3-dimensional 
ell.De�nition 9.5 A (p1; p2; : : : ; pi�1;�; pi+1; : : : ; pn)-lax-transformation C !D is an !-fun
tor P(2p1)
P(2p2)
: : :
P(2pi�1)
C
P(2pi+1 )
: : :
P(2pn)! D .3 With this terminology, a left lax-p-transformation is a (p;�)-lax-transforma-tion. Note that any tensor produ
t of globes gives a well-formed loop-free pastings
heme by repeated appli
ation of the propositions in se
tion 6.De�nition 9.6 A quasi-!-fun
tor of n variables 
onsists of a multiple laxtransformation of the right type for every (n� 1)-tuple of 
ells of the respe
tive!-
ategories, satisfying obvious 
ompatibility 
onditions. 3Proposition 9.7 A quasi-!-fun
tor of n variables (C 1 ; : : : ; C n) ! D 
orre-sponds to an !-fun
tor C 1 
 : : : 
 C n ! D .Proof. Straightforward extension of the proof of proposition 9.4. 29.4 Asso
iativity and 
oheren
e revisitedThere's a relation between quasi-!-fun
tors of four variables and 
oheren
e ofthe asso
iativity of the tensor produ
t in se
tion 8, be
ause in the previous57



proposition it is possible to insert bra
kets in the tensor produ
t in all pos-sible ways, without a�e
ting its validity. On the one hand, this follows from
oheren
e, see proposition 8.3, on the other hand, it 
an be proven expli
itlyanalogous to the proof of proposition 9.4, and then 
oheren
e follows from this.However, both proofs are equally diÆ
ult, sin
e they make use of the universalproperty of the same pasting presentations.10 Internal homsThe internal hom !-
ategories Homr(C ; D ) and Homl(C ; D ) extend [21℄'sFun and Funu respe
tively. Homl(C ; D ) relates to [10℄'s !-GPD and CRS. Ionly des
ribe Homr(C ; D ) expli
itly, the se
ond one is dual in a sense that willbe explained in se
tion 11.As a graded set, Homr(C ; D ) 
onsists of right lax transformations, where aright lax-q-transformation is of dimension q. From here on I will omit the pre�xsin
e it will invariably be a right one.10.1 sm and tmThe m-sour
es and m-targets of a lax-q-transformation % : C ! D are given bysm(%)i(

 d�0q0 ) = tm(%)i(

 d�0q0 ) = %i(

 d�0q0 ) for q � m;sm(%)i(

 d�0q0 ) = ( %i(

 d�m) if q0 = m%i(

 d�0q0 ) if q0 < m;and tm(%)i(

 d�0q0 ) = ( %i(

 d+m) if q0 = m%i(

 d�0q0 ) if q0 < m for q > m;whi
h are right lax-m-transformations.Or: (sm(%))�0m0(
) = (tm(%))�0m0(
) = %�0m0(
) for q � m(sm(%))�0m0(
) = � %�m(
) if m0 = m%�0m0(
) if m0 < m;and (tm(%))�0m0(
) = � %+m(
) if m0 = m%�0m0(
) if m0 < m for q > m;58



whi
h are lax-m-transformations in the terms of lemma 9.2. And the 
on-ditions there are obviously satis�ed sin
e they are lo
al in some sense. For alax-2-transformation % and one-dimensional 
, this looks as follows:� t0(%)0(
)�s0(%)0(
) t1(%)1(
)�� %2(
)3 � t0(%)0(
)�s0(%)0(
)s1(%)1(
) �� :
So it is not ne
essary that the domain of a lax-q-transformation % in Homr(C ; D )is in the domain of the 
ells %q(
)!10.2 CompositionNow suppose % is a lax-q-transformation, � is a lax-q0-transformation, and thattm(%) = sm(�). Their m-
omposition is given by(� Æm %)�00q00 (
) =8>>><>>>: ��00q00 (
) for q00 < m,%�m(
) if �00 = ��+m(
) if �00 = + for q00 =m,D2p0 
 (2minfq;q00g Æm 2minfq0;q00g); (%�00minfq;q00g(
); ��00minfq0;q00g(
))E for q00 > m.The formula for the 
omposition in the 
artesian internal hom !-
ategory [C ; D ℄in [35℄ is not 
orre
t be
ause it doesn't make [C ; D ℄ into an !-
ategory, whi
hexplains the di�erent format here.Lemma 10.1 For % a lax-q-transformation, � a lax-q0-transformation, andtm(%) = sm(�), � Æm % is a lax-(maxfq; q0g)-transformation.Proof. For 
ondition (i),dom((� Æm %)�00q00 (
)) = 59



= dom�D2p0 
 (2q00 Æm 2q00); (%�00q00 (
); ��00q00 (
)�E)if q00 6= m and q00 < minfq; q0g= �dom(2p0 
 (2q00 Æm 2q00));�%(�)p0+1q00�1 (
); %�00q00 (sp0�1(
));�(�)p0+1q00�1 (
); ��00q00 (sp0�1(
)�� by 
ondition (i) for % and �= �dom(2p0 
 2q00);�(� Æm %)(�)p0+1q00�1 (
); (� Æm %)�00q00 (sp0�1(
))��by the formula for � Æm %;and similar for other q00.For 
ondition (ii),(� Æm %)�00q00 (
0 Æm0 
) = D2p0 
 (2q00 Æm 2q00); (%�00q00 (
0 Æm0 
); ��00q00 (
0 Æm0 
))Esay, whi
h needs to be= D(2p00 Æm0 2p0)
 2q00 ; (� Æm %)�00q00 (
); (� Æm %)�00q00 (
0))E :Perhaps this 
ould be done by using (2p00 Æm0 2p0) 
 (2q00 Æm 2q00), provided it isa well-formed loop-free pasting s
heme, but I don't want to 
he
k this. It isnot ne
essary, sin
e the above 
omposites 
an be obtained as the 
omposite ofsome appropriate realization in D of some pasting s
heme whi
h 
an be seenas a generated pasting in the standard presentation of D and in that respe
t isequivalent to the two generated pastings des
ribed above, whi
h explains their
omposites being equal. This pasting s
heme is (2p00 Æm0 2p0) 
 (2q00 Æm 2q00)with lots of identities inserted, but that's not the way it is obtained: it is2p0 
 (2q00 Æm 2q00) with identities inserted and with 
ells split up, and it is(2p00 Æm0 2p0) 
 2q00 with identities inserted and with 
ells split up. The highestdimensional 
ells of this resulting pasting s
heme are realized by identities andby the 
ells %�00q00 (
), %�00q00 (
0), ��00q00 (
) and ��00q00 (
0). 2�� �+1 (
) ��s0(�Æ0%)0(
) %+1 (
) �� (�Æ0%)2(
)3 � t0(�Æ0%)0(
)� ��1 (
) �� %�1 (
) ��60



10.3 IdentityFor a lax-q-transformation %, de�ne id% by(id%)q+1(
) = id%q(
)(id%)�0q0 (
) = %�0q0 (
) for q0 � qLemma 10.2 For lax-q-transformation %, id% is a lax-(q + 1)-transformation.Proof. For 
ondition (i),dom((id%)q+1(
)) = dom(id%q(
))= %q(
)= Ddom(2p 
 2q+1);�%q(
); id%q(sp0�1(
))�E ;and for 
ondition (ii) a similar argument as in the previous lemma works. 210.4 !-
ategoryProposition 10.3 Homr(C ; D ), with the above de�ned operations, is an !-
ategory.Proof. The elementary properties of sm and tm are immediate be
ause theyare already in
orporated in the data for a lax-q-transformation.For identity(� Æm id%)q+1(
) = 
2p0 
 (2q+1 Æm 2q0); (id%q(
); �q0(
))�= (id�Æm%)q+1(
);and similarly for other 
ases.Asso
iativity and inter
hange law follow be
ause, for example, ((� Æm �) Æm%)maxfq;q0;q00g(
) and (� Æm (� Æm %))maxfq;q0;q00g(
) are both equal to the 
ompos-ite 
2p0 
 (2q Æm 2q0 Æm 2q00); (%q(
); �q0(
); �q00(
))�, and similarly for inter
hange.The reader 
onvin
es herself or himself of the validity of this statement!Finally, the other 
omposition axioms are immediate be
ause they are in
or-porated in the de�nition of 
omposition. 261



10.5 !-fun
torialityGiven an !-fun
tor g : D ! D 0 , de�ne an !-fun
tor g� : Homr(C ; D ) !Homr(C ; D 0) by g�(%)�0q0 (
) = g(%�0q0 (
)):Indeed, it is 
ompletely straightforward to show that g�(%) is a lax-q-transforma-tion if % is, and it is only slightly less straightforward to show that g� is an!-fun
tor, in both 
ases making full use of g being an !-fun
tor, in the sensethat g 
ommutes with 
omposites of appropriate realizations.Given an !-fun
tor f : C 0 ! C , de�ne an !-fun
tor f� : Homr(C ; D ) !Homr(C 0 ; D ) by f�(%)�0q0 (
) = %�0q0 (f(
)):And indeed, it is 
ompletely straightforward to show that f� is an !-fun
tor, andit is only slightly less straightforward to show that f�(%) is a lax-q-transformationif % is.11 The adjun
tions between the tensor produ
tand the internal homsI prove the adjun
tions and mention some 
onsequen
es, among whi
h du-alities relating both internal homs.11.1 The 
orresponden
eThere are two adjun
tions to 
onsider: C 
 � a Homr(C ;�) and � 
 D aHoml(D ;�). I will do the �rst one in some detail, the se
ond one is analogous.Given an !-fun
tor ' : C 
 D ! E , i.e., a respe
table family of realizations(GC ;D ; 'j) in E , de�ne an !-fun
tor ' : D ! Homr(C ; E ) by'(d)�0q0 (
) = 'p+q0(

 d�0q0 (d)):Indeed, '(d) is a lax-q-transformation, for example62



dom('(d)�0q0 (
)) == dom�'p+q0(

 d�0q0 (d))�= '�dom(

 d�0q0 (d))� be
ause (GC ;D ; 'j) respe
ts labels= Ddom�2p 
 2q0 ;�'p+q0�1(dom(
)
 d�0q0 (d)); 'p+q0�1(

 d(�)p+1q0�1 (d))��E= Ddom�2p 
 2q0 ;�'(d)�0q0 (dom(
)); '(d)(�)p+1q0�1 (
)��E ;so 
ondition (i) of lemma 9.2 holds, and the other 
onditions are similar. And' is an !-fun
tor, for example'(d0 Æm d)�0q0 (
) == 'p+q0(

 d�0q0 (d0 Æm d))= '�

 (d�0q0 (d0) Æm d�0q0 (d))� if q0 6=m= '�2p 
 (2q0 Æm 2q0);L

d�0q0 (d);

d�0q0 (d0)� be
ause these generatedpastings are equivalent= D2p 
 (2q0 Æm 2q0); (
 
 d�0q0 (d); 
 
 d�0q0 (d0))E= D2p 
 (2q0 Æm 2q0); ('(d)�0q0 (
); '(d0)�0q0 (
))E= ('(d0) Æm '(d))�0q0 (
);and the other 
onditions are easy.In the other dire
tion, given an !-fun
tor � : D ! Homr(C ; E ), de�ne an!-fun
tor e� : C 
 D ! E , i.e., a respe
table family of realizations (GC ;D ; e�j) inE by e�j(

 d) = �(d)q(
):Indeed, (GC ;D ; e�j) respe
ts labels:sm(e�m+1(

 d)) = dom(�(d)q(
))= Ddom(2p 
 2q);��(d)q(dom(
)); �(d)(�)p+1q�1 (
)�E= Ddom(2p 
 2q);��(d)q(dom(
)); �(d(�)p+1q�1 )q�1(
)�E= e�(dom(

 d));and it respe
ts relations: 63



e�((A; fi)
 d) = DA
 2q; (e�(fi(a)
 d))a2AE= 
A
 2q; (�(d)q(fi(a)))a2A�= �(d)q(f(A)) be
ause �(d), 
onsideredas a family of realizations,respe
ts relations= e�(f(A)
 d);ande�(

 (B; gi)) = D2p 
B;�e�(

 gi(b))�b2BE= 
2p 
B; (�(gi(b))q(
))b2B�= �(g(B))q(
) be
ause � is an !-fun
tor= e�(

 g(B));and similarly for the relations with respe
t to identities.11.2 NaturalThe 
orresponden
e is natural in D be
ause for g : D ! D 0 ,Dg !-Cat(C 
 D ; E ) !-Cat(D ;Homr(C ; E ))eD 0 !-Cat(C 
 D 0 ; E )�Æ(C
g) !-Cat(D 0 ;Homr(C ; E ))e �Æg
Figure 3: naturality in D(e� Æ (C 
 g))(
 
 d) = e�(

 g(d))= �(g(d))q(
)= ((� Æ g)(d))q(
)= (̂� Æ g)(

 d);and it is natural in E be
ause for h : E ! E 0 ,(h Æ e�)(

 d) = h(�(d)q(
))= h�(�(d))q(
)= (h� Æ �)(d)q(
)= ^(h� Æ �)(

 d):64



Eh !-Cat(C 
 D ; E )hÆ� !-Cat(D ;Homr(C ; E ))e h�Æ�E 0 !-Cat(C 
 D ; E 0) !-Cat(D ;Homr(C ; E 0 ))eFigure 4: naturality in ENote that be
ause the 
orresponden
e is an isomorphism this also makesnatural in D and E .Theorem 11.1 The internal homs Homr and Homl give the monoidal 
ate-gory !-Cat the stru
ture of a monoidal bi
losed 
ategory. Moreover, this stru
-ture 
oin
ides with the monoidal bi
losed stru
ture of proposition 4.1.Proof. The adjun
tions have just been proven, and the moreover part isimmediate from propositions 4.2 and 8.8. 211.3 Strength of the adjun
tionsOne of the 
onsequen
es of the monoidal bi
losed stru
ture is that the natural
orresponden
e !-Cat(C 
 D ; E ) �= !-Cat(D ;Homr(C ; E )) above is in fa
t the0-dimensional re
e
tion of a 
orresponden
e between internal Homs, see e.g.[14℄. This 
an also be seen dire
tly:Homr(C 
 D ; E )q �= !-Cat(C 
 D 
 2q; E )�= !-Cat(D 
 2q;Homr(C ; E ))�= Homr(D ;Homr(C ; E ))q :It is left to the reader to 
he
k this indeed gives an !-fun
tor between the two.11.4 MixedIt is also possible to relate both internal homs:Homl(C ;Homr(D ; E ))r �= !-Cat(2r 
 C ;Homr(D ; E ))�= !-Cat(D 
 2r 
 C ; E )�= !-Cat(D 
 2r;Homl(C ; E ))�= Homr(D ;Homl(C ; E ))r :65



11.5 DualityAs a 
onsequen
e of the adjun
tion, there are also duals of the internal homs:!-Cat(C ;Homr(D ; E )op ) �=�= !-Cat(C op ;Homr(D ; E ))�= !-Cat(D 
 C op ; E ) by the adjun
tion for Homr�= !-Cat((D 
 C op)op; E op)�= !-Cat(C 
 D op ; E op )�= !-Cat(C ;Homl(D op ; E op)) by the adjun
tion for Homl:So one internal hom 
ould have been de�ned in terms of the other byHoml(C ; D ) = Homr(C op ; D op )op, and by Homr(C 
o ; D 
o )
o. Another 
onse-quen
e is that Homr(C op 
o; D op 
o) �= Homr(C ; D )op 
o.12 !-Cat is an (!-Cat)
-CATegoryAs shown in [28℄, a monoidal 
losed stru
ture on a 
ategory makes this 
at-egory an enri
hed 
ategory over itself. I des
ribe the resulting stru
ture for oneof the internal homs on !-Cat, namely the right one. This stru
ture extendsthe enri
hment whi
h makes 2-Cat into a (2-Cat)
-CATegory [21℄.There is an !-fun
tor � : Homr(C ; D ) 
 Homr(D ; E ) ! Homr(C ; E ) whi
h
an be 
onsidered as \horizontal" 
omposition of lax-q-transformations. In fa
t,� = ^(idHomr(D ;E )) Æ � ^(idHomr(C ;D ) )
Homr(D ; E )�, and this ensures that � is an!-fun
tor, and that � is natural in all three variables.To des
ribe �, let % be a right lax-q-transformation C ! D , � a right lax-r-transformation D ! E , and 
 a p-dimensional 
ell of C . Then�(%; �)Æ0s0(
) = *2p 
 dÆ0s0(2q 
 2r);��
0r0 (%�0q0 (
))�d�0q0
d
0r02dÆ0s0 (2q
2r)+ :In parti
ular, �(%; �)q+r(
) = �r(%q(
)), and the domain of this is a 
ompositionof (�(�)q+1r�1 Æ%q)(
) and (�r Æ%�q�1)(
). Other parti
ular instan
es are when q = 0in whi
h 
ase �(%; �) = %�(�), and when r = 0 in whi
h 
ase �(%; �) = ��(%),see se
tion 10.The !-fun
tor � : 20 ! Homr(C ; C ) 
orresponds, under the adjun
tion, tothe 
anoni
al isomorphism 20 
 C �= C , and as su
h it is�(d0) = (id : C ! C ):66



Finally, a pi
ture of �(%; �)4(
) and all its fa
es for % a right lax-2-transforma-tion, � a right lax-2-transformation, and 
 a 2-dimensional 
ell of C . As it is arealization of 22 
 22 
 22 in E , I will give the names of the 
ells in this pastings
heme, the 
ell d�p 
 d�q 
 d
r being realized by �
r �%�q (d�p (
))�.

A1
A2 A3

A4
A5 A6

d�1 
 d2 
 d2 5
d2 
 d2 
 d+1 5

d2 
 d�1 
 d25 d2 
 d2 
 d�15

d2 
 d+1 
 d25 d+1 
 d2 
 d25
d2 
 d2 
 d26

where the Ai are given by: 67



A1:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B153
3

B1933
B183 3

B173 3
B263

3
B25 33

B233 3B22 33
B16 33d�1 
d+1 
d+13

B21 33B243 3
B203 3 d�1 
d�1 
d+13

d�0 
d2
d24 d2
d�0 
d24
d2
d2
d�04

d�1 
d+1 
d24
d�1 
d2
d+14

d2
d�1 
d+14
in whi
h B18 3B21 3 B22 33 B19B23 3d2
d�0 
d24 = B32 3B21 33 B26 3 B19B25 3d2
d�0 
d24 ;68



A2:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B273 3

B243 3
B203 3

B313 3
B2833 B1933B263

3
B25 33

B303
3B29 333

B323 3B21 333 d+0 
d2
d24d2
d�0 
d24d2
d2
d�04

d�1 
d2
d�14
d�1 
d�1 
d24

d2
d�1 
d+14
in whi
h B30 3B32 3 B26 33 B7B19 3d+0 
d2
d24 = B29 3B32 33 B6 3 B7B18 3d+0 
d2
d24and B30 3B26 33 B7 3 B8B19 3d+0 
d2
d24 = B33 3B26 3 B13 33 B8B14 3d+0 
d2
d24 ;69



A3:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B273 3
B333
3 B383

3 B393 3
B343 3

B313 3
B2833 B3533 B3633 B373

33
B30 3

3
B29 33

d+0 
d2
d24
d2
d2
d�04

d2
d+0 
d24

d�1 
d2
d�14
d2
d�1 
d�14

d+1 
d�1 
d24
in whi
h B31 3B2 33 B34 3 B35B33 3d2
d2
d�04 = B28 3B2 3 B27 33 B35B45 3d2
d2
d�04and B31 3B1 3 B2 33 B34B33 3d2
d2
d�04 = B20 3B1 33 B24 3 B34B9 3d2
d2
d�04 ;70



and in whi
h B35 3B33 3 B34 33 B36B39 3d2
d+0 
d24 = B45 3B33 33 B46 3 B36B38 3d2
d+0 
d24 ;A4:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23B333

3
B403

3
B4133B453 3

B383
3

B4633
B4233

B393 3
B3633

B443 3B433 3d+1 
d+1 
d�13
B373

3d+1 
d�1 
d�13 d+0 
d2
d24
d2
d2
d+04

d2
d+0 
d24
d2
d+1 
d�14

d+1 
d2
d�14
d+1 
d�1 
d24

in whi
h B45 3B33 33 B46 3 B42B38 3d2
d+0 
d24 = B41 3B33 3 B38 33 B42B54 3d2
d+0 
d24 ;71



A5:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B153
3
B473

3 B4833
B1933

B183 3
B173 3B513 3B523 3B533 3B49 333

B50 33
B16 333d�0 
d2
d24

d2
d2
d+04
d2
d�0 
d24

d�1 
d+1 
d24
d2
d+1 
d+14

d+1 
d2
d+14
in whi
h B19 3B50 3 B51 33 B14B52 3d2
d2
d+04 = B23 3B50 33 B53 3 B14B49 3d2
d2
d+04and B19 3B51 33 B14 3 B8B52 3d2
d2
d+04 = B7 3B51 3 B45 33 B8B43 3d2
d2
d+04 ;72



and in whi
hB17 3B16 33 B51 3 B19B50 3d�0 
d2
d24 = B18 3B16 3 B22 33 B19B23 3d�0 
d2
d24 ;A6:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23B333

3
B403

3
B4133

B473
3

B4833
B543
3

B4233
B443 3B433 33
B523 3B533 3B49 333

d�0 
d2
d24 d2
d2
d+04d2
d+0 
d24 d2
d+1 
d�14
d+1 
d+1 
d24

d+1 
d2
d+14
in whi
h B33 3B1 3 B9 33 B40B47 3d�0 
d2
d24 = B2 3B1 33 B3 3 B40B15 3d�0 
d2
d2473



and B33 3B9 33 B40 3 B54B47 3d�0 
d2
d24 = B40 3B9 3 B10 33 B54B48 3d�0 
d2
d24 ;and where the Bj are as follows:B1 � �� � �� �
B2 � �� � �� �

B3 � �� � �� �B4 � �� � �� �
B5 � �� � �� �

B6 � �� � �� �B7 � �� � �� �
B8 � �� � �� �
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