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-CATegory 66Referenes 781 IntrodutionIn 1945, Eilenberg and Ma Lane invented ategories [15℄. In 1967, B�enabouinvented biategories [4℄, and he proved that every biategory is biequivalentto a 2-ategory. In 1993, Gordon, Power and Street introdued triategories,and they proved that every triategory is triequivalent not to a 3-ategory, butto a Gray-ategory [20℄. In algebrai topology, some weakening is needed indimension 3 as well: homotopy 2-types are lassi�ed by 2-groupoids [31, 16, 29℄,but homotopy 3-types are lassi�ed not by 3-groupoids, but by Gray-groupoids[25, 24, 6℄.In order to �nd out what happens in higher dimensions, and to avoid doing3



dimension 4, then dimension 5, et., I propose to work !-dimensionally fromthe start. I think this is the best way to get grip on the omplex notion of weakn-ategory.So the �rst step to take is to start with something !-dimensional whih isstrit and known, !-ategories [35, 23℄, and to analyse the struture whih inthe ase of 2-ategories leads to the onept of Gray-ategory. This struture,whih makes !-Cat, the ategory of small !-ategories, into a monoidal bilosedategory, already has interesting ompliations, onsequenes and appliations.A ompliation is, that the mahinery of pasting presentations of [5℄is needed. A onsequene is, that it gives higher homotopies [10℄ in terms of!-ategories. An appliation is that \!-ategories might serve as a model foronurreny in omputing, and tensor produts would be important in this the-ory" [2, 32℄.This paper is onneted to previous work of Brown and Higgins [10℄, Gray[21℄ and Al-Agl and Steiner [2℄. Throughout, I keep lose trak of the relationbetween the results there and here. For one thing, the terminology is di�erent:what I all an !-ategory is termed 1-ategory in [2℄, and what is alled !-groupoid in [10℄ I all a ubial !-groupoid, reserving the name !-groupoid forwhat [7, 8℄ all an 1-groupoid. For the !-ategories of Street [35℄ I agree withVerity's suggestion to all these !+-ategories. Another soure is [5℄, towhih the reader is referred for preliminaries on !-ategories, pasting shemesand pasting presentations.The entral idea of this paper is that the tensor produt of ubes indues amonoidal bilosed struture on !-Cat. I sketh how this follows formally fromresults of Day [11, 12℄, the main point being that !-Cat is monoidal monadiover the ategory Cub of ubial sets. Impliitly, Brown and Higgins [10℄ givethe same motivation for the existene of a tensor produt of ubial !-groupoids.There are two disadvantages to the formal approah, though: it doesn't give ex-pliit formulae, and using ubes onits with globes representing elements of!-ategories [35℄. Therefore, the atual approah uses Johnson's theory of past-ing shemes [23℄, thereby making preise the \appropriate omposites of faes"of [2℄. Conretely, I give a pasting sheme for the tensor produt of two globesas !-ategories, whih is used as a basi ingredient in the de�nition of a pastingpresentation for the tensor produt. This gives the desired expliit formulae,without the need to ever write out omposites as in [34℄. It also gives formu-lae for higher dimensional lax natural transformations and for the internal homs.This paper is organized as follows. In setions 2 and 3 ubes, ubial4



sets and the adjuntion between ubial sets and !-ategories are treated. Se-tion 4 explains why the tensor produt of ubes indues a monoidal bilosedstruture on !-Cat. Setions 5 and 6 desribe pasting shemes for tensorof and with globes, whih are used for the pasting presentation of the tensorprodut in setion 7. In setion 8 some properties of the tensor produtare heked. Setions 9 to 11 deal with the internal homs, and with higherdimensional lax natural transformations. The �nal setion is on !-Cat as anenrihed ategory.Some of the ideas here were announed at the Conferene on Pure Mathe-matis of the University of Wales, 24-26 may 1993, Gregynog, UK.2 Cubes and ubial setsA simpliial set is usually de�ned as a olletion of ells together with bound-ary operations and degeneray operations satisfying some relations [26℄. A moreategorial de�nition is that a simpliial set is a funtor �op ! Sets, where �is the ategory of �nite ordered sets and order preserving maps between them[13, 19℄. For ubial sets, there are two analoga of the �rst desription, onewithout and one with so-alled onnetions [9, 36℄. Perhaps for this reasonthere seems to be no ategorial desription of ubial sets available. I intendto �ll part of this gap, by de�ning a ategory � whih is to ubial sets, withoutonnetions, what � is to simpliial sets. In fat, I de�ne a ubial set as afuntor �! Sets, and I show that this de�nition oinides with the usual one[9℄. Analogous to the simpliial ase the objets of � are alled the standardubes.2.1 Cubes ombinatoriallyAihison has given an extensive aount on ubes [1℄, from whih I will use thefollowing ombinatorial de�nition of the n-dimensional ube.Let n be the ordered set f1; : : : ; ng and � = f�; 0;+g. Then �n = fx :n ! �g an be thought of as the n-dimensional ube. For example, the three-dimensional ube an be labeled with elements of �3 as in5
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the interior of the ube being labeled by 000.Some terminology: if x and y are elements of �n then x is a subube of y iffor every l 2 n, x(l) � y(l) in the partial order � < 0 > + on �. The dimensionof x 2 �n is #x�1(0).2.2 A model ategory for ubesI will make the set fnjn 2 !g into a ategory � by de�ning morphisms mirroringthe behaviour of faes and degeneraies.De�nition 2.1 A morphism f : n ! m is a funtion f� : m ! n [ f+;�gsuh that f�(k) � f�(k0) 2 n implies k � k0 and f�(k) = f�(k0) 2 n impliesk = k0. 3This may look a little bit awkward, but something more ompliated than\order preserving" is expeted beause ubes have opposite faes instead of faesopposite to a vertex. And this notion is relevant to ubes sine a morphismf : n! m indues a funtion f : �n ! �m byf(x)(k) = x(f�(k)) if f�(k) 2 n= f�(k) otherwise.This funtion behaves well:Lemma 2.2 If f : n ! m is a morphism then the indued funtion f : �n !�m sends sububes to sububes.Proof. Let x and y be sububes of �n, and let k 2 m. Then f(x)(k) =x(f�(k)) � y(f�(k)) = f(y)(k) if f�(k) 2 n, otherwise f(x)(k) = f�(k) =f(y)(k). Thus f(x) is a subube of f(y). 26



Composition of morphisms: let f : n! m and g : m! r. De�ne(g Æ f)�(p) = f�(g�(p)) if g�(p) 2 m= g�(p) otherwise.With this de�nition, g Æ f is a morphism n! p: if (g Æ f)�(p) � (g Æ f)�(p0) 2 nthen g�(p) and g�(p0) are in m and g�(p) � g�(p0), so p � p0. Similarly for(g Æ f)�(p) = (g Æ f)�(p0) 2 n. The identity on n, denoted idn, is given by(idn)�(l) = l:Proposition 2.3 � is a ategory.Proof. Composition of morphisms in � is assoiative:(h Æ g Æ f)�(q) = f� (g�(h�(q))) if h�(q) 2 r and g�(h�(q)) 2m= g�(h�(q)) if h�(q) 2 r and not g�(h�(q)) 2 m= h�(q) otherwisefor both ways of putting in brakets. And it is easy to see that the identitybehaves as an identity should. 22.3 Generating the model ategory for ubesTo relate the ategory � to the usual notion of ubial sets, I will show thatevery morphism is a omposite of fae and degeneray morphisms.De�nition 2.4 A morphism f : n ! m is surjetive if for all k 2 m, f�(k) 2n. It is injetive if for all l 2 n there exists k 2 m with f�(k) = l. 3An example of a surjetive morphism is "i : n! n� 1, for 1 � i � n, whih isde�ned by ("i)�(l) = l if l < i= l + 1 if l � i:An example of an injetive morphism is ��i : n� 1 ! n, for 1 � i � n and� = �, whih is de�ned by(��i )�(l) = l if l < i= � if l = i= l � 1 if l > i:Note that there are the following relations between the "i and the ��i :7



(i) ��j ��i = ��i ��j�1 for all i < j � n and �, � = �,(ii) "j"i = "i"j+1 for all i � j � n,(iii) "j��i = ��i "j�1 if i < j= ��i�1"j if i > j= idKn if i = j; for all i, j � n and � = �These relations are heked easily by immediate alulation.Proposition 2.5 Every morphism an be fatored as a surjetion followedby an inlusion.Proof. Given f : n! m, de�ne r = #fk 2 mjf�(k) 2 ng. De�ne morphismsg : n! r and h : r! m byg�(p) = f�(k) for k the p-th element of m for whih f�(k) 2 nh�(k) = p if k is the p-th element of m for whih f�(k) 2 n= f�(k) otherwise:g is a morphism beause if f�(k) = g�(p) � g�(p) = f�(k0) then k � k0 andso p � p0, and likewise for g�(p) = g�(p), and h is a morphism beause ifp = h�(k) � h�(k0) = p0 then k � k0 and h�(k) � h�(k0) likewise, all theseases when k the p-th element of m for whih f�(k) 2 n. g is surjetive beausefor p 2 r, g�(p) 2 n, and h is injetive beause for p 2 r there exists k 2 mwith h�(k) = p, namely the p-th element of m. Their omposite is given by(h Æ g)�(k) = g�(h�(k)) = g�(p) = f�(k) if k is the p-th element of m for whihf�(k) 2 n and (h Æ g)�(k) = h�(k) = f�(k) otherwise, so indeed f = h Æ g. 2Proposition 2.6 Every surjetion is omposite of "i's. Every injetion isomposite of ��i 's.Proof. Suppose f : n ! m is a surjetion. Then n � m, and if n = m thenf is the identity. So assume n > m, and let i be the �rst element of n whih isnot f�(k) for any k 2 m. De�ne h : n� 1 ! m by h�(k) = f�(k) if f�(k) < i,and h�(k) = f�(k) � 1 if f�(k) > i. h is a morphism beause of the onditionon i, it is surjetive by de�nition, and (h Æ "i)�(k) = "�i (h�(k)) = f�(k), whihshows that f = h Æ "i. Indution on the di�erene of n and m �nishes the proofof the �rst statement.Suppose f : n ! m is an injetion. Then n � m, and if n = m then f isthe identity. So assume n < m, and let i be the �rst element of m for whih8



f�(i) =2 n, say f�(i) = �. De�ne g : n ! m� 1 by g�(p) = f�(p) if p < i andg�(p) = f�(p + 1) if p � i. Then g is an injetive morphism, and f = ��i Æ g,indution �nishing the proof of the seond statement. 2Thus, � is the ategory generated by the "i and the ��i subjet to the relationsgiven above.2.4 Cubial setsDe�nition 2.7 A ubial set is a funtor �op ! Sets. A ubial map is anatural transformation of suh funtors. 3Proposition 2.8 A ubial set K is a family of sets Kn (n � 0), togetherwith fae maps ��i : Kn ! Kn�1 and degeneray maps "i : Kn�1 ! Kn, forevery 1 � i � n and � = �, suh that(i) ��i ��j = ��j�1��i for all i < j � n and �, � = �,(ii) "i"j = "j+1"i for all i � j � n,(iii) ��i "j = "j�1��i if i < j= "j��i�1 if i > j= idKn if i = j for all i, j � n and � = �.A ubial map f : K ! L is a family of funtions fn : Kn ! Ln ommutingwith the fae and degeneray maps.Proof. Beause of propositions 2.5 and 2.6, and the relations betweenthe "i and the ��i in �, whih are dual to the ones above. 2The ategory of ubial sets will be denoted by Sets�op or by Cub, depend-ing on whih viewpoint is taken.As an example, onsider the representative ubial sets, i.e., the standardn-ubes as ubial set. De�ne a ubial set In by In(m) = �(m;n). Note thatif m > n then all elements of (In)m are degenerate. In is related to �n: ifA : m ! � has A(k) = 0 for all k 2 m, then (f : m ! n) 2 In orresponds toA Æ f� 2 �n.2.5 DualityThere are three forms of duality of ubial sets that will be of importane inthe sequel. The �rst one is the transposition funtor T onsidered in [10℄. For9



ubial set X, T (X) has the same elements as X in eah dimension but hasits fae and degeneray operators numbered in reverse order. The seond oneonsists simply of reversing the signs in the exponents of the ��i , and the thirdis just the ombination of these two.3 The !-ategorization of ubial sets and the u-bial nerve of !-ategoriesThe standard n-simplex an be given the struture of an n-ategory: it isStreet's n-th oriental [35℄. This funtor � ! !-Cat indues, by general ate-gorial arguments, two adjoint funtors between simpliial sets and !-ategories:!-ategorization and simpliial nerve.Analogous to a desription of the orientals in terms of pasting shemes [22℄ Ide�ne a funtor from ubes to !-ategories, and I desribe the indued funtorsbetween ubial sets and !-ategories. The !-ategorization of a ubial setis given by a pasting presentation, and the ubial nerve of an !-ategory isexpressed using realizations of pasting shemes.3.1 Cubial omplexesTo desribe the orientals, Johnson [22℄ uses the notion of simpliial omplex.De�nition 3.1 [Cubial analogue of Johnson's simpliial omplexes℄ A ubi-al omplex is a �nite or ountably in�nite set K together with a olletion K ofmaps K ! � suh that if B 2 K and B0 : K ! � satis�es B0(k) � B(k) in thepartial order � < 0 > + on � for all k 2 K, then B0 2 K. A ubial omplex isoriented if K is linearly ordered. 3An oriented ubial omplex generates a ubial set whose non degenerateelements are the same as the elements of the omplex.An example of an oriented ubial omplex is (!;�f!), where �f! onsists ofthe �nite dimensional maps ! ! �. This ubial omplex, and sometimes alsothe ubial set generated by it, will be alled the !-ube. The standard n-ubesan also be seen as ubial sets generated by oriented ubial omplexes.3.2 Pasting shemes for the !-ube and for the n-ubesIn the simpliial ase, a partiular simpliial omplex is made into a pastingsheme by taking odd faes in the beginning and even faes in the end of a ell.10



In the ubial ase, I will do the same, but for a di�erent way of expressing andpositioning odd and even faes. This will be done suh that the diretion of theells is the same as in the oriented ubes of [1℄.Let x be an i-dimensional element of the !-ube, and let B 2 �i. De�nerB(x) : ! ! � byrB(x)(k) = x(k) if x(k) 6= 0= B(l) if k is the l-th element of x�1(0):Write bB(x) for rB(x) if for all l 2 i, B(l) 6= 0 implies B(l) = (�)l, and eB(x) iffor all l 2 n, B(l) 6= 0 implies B(l) = (�)l+1.Consider the graded set �f!. De�ne relations E and B on �f! by (x; y) 2 Eijfor x 2 (�f!)i and y 2 (�f!)j if and only if there exists B : i ! � suh thaty = eB(x), and (x; y) 2 Bij if and only if there exists B : i ! � suh thaty = bB(x).�f! is a loop-free pasting sheme, sine it is the same pasting sheme asonsidered by Kapranov-Voevodsky [27℄.Taking n instead of ! in the above makes �n into a well-formed loop-freepasting sheme, beause it an be viewed as a well-formed subpasting shemeof �f!. I will need domains and odomains of its ells.Lemma 3.2 For (m + 1)-dimensional x 2 �n, sm(R(x)) = SfR(rB(x))jB 2�m+1; dim(B) = m; rB(x) = bB(x)g, and dually.Proof. Aording to [23, Proposition 7℄ sm(R(x)) = R(Bm(x)), whih isexatly the right hand set above. 2In �gure 1, the pasting sheme �4.3.3 Cubes and !-ategoriesThe morphisms "i and ��i in � indue !-funtors "i : P(�n) ! P(�n�1) and��i : P(�n�1) ! P(�n) respetively, where P(A) denotes the !-ategory ofomponents of the pasting sheme A [23℄, as follows.De�ne a realization (�n; fj) of �n in P(�n�1) by fj(x) = R(xÆ("i)�). BeauseP(�n�1) is onsidered one sorted this ould also mean an identity on this, to getits dimension right! It is an identity exatly when x(i) = 0, beause "i erasesthe i-th entry. Assume (�n; fj) is m-appropriate, I will show it is (m + 1)-appropriate. In ase x(i) = 0, sm(fm+1(x)) = sm �idR(xÆ("i)�)� = R(x Æ ("i)�),11
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Figure 1: The four dimensional ube as a pasting sheme12



andf (sm(R(x))) == SfR(rB(x))j : : :g by lemma 3.2= Sffm(rB(x))j : : :g beause f is the m-extension of (�n; fj)= SfR(rB(x) Æ ("i)�)j : : :g:All these are identities exept when rB(x)(i) 6= 0, in whih ase it is R(xÆ ("i)�).So as elements of P(�n�1), sm(fm+1(x)) and f (sm(R(x))) are equal. In asex(i) = � one sees that for all B, rB(x Æ ("i)�) = rB(x) Æ ("i)�. This, togetherwith lemma 3.2 and that f is the m-extension of (�n; fj), proves in a similarway that in this ase sm(fm+1(x)) = f (sm(R(x))) as well. Thus indeed (�n; fj)is appropriate.Analogously, one de�nes an appropriate realization (�n�1; gj) of �n�1 inP(�n) by gj(x) = R(x Æ (��i )�).These indued !-funtors "i and ��i satisfy the same identities as in � beauseof the identities there and beause the indued !-funtors extend (�n; fj) and(�n�1; gj). Thus, there is a funtor Q : � ! !-Cat, de�ned on objets byQ(n) = P(�n). Q(n) ould be termed the n-th q-bial oriental, or even the n-thqriental.3.4 !-ategorizationThe funtor Q indues a funtor �� from ubial sets to !-ategories, whih isthe left Kan-extension of Q along the Yoneda embedding �! Sets�op [30℄. Itan be given by ��(X) = Z nXn � Q(n);where the oend is in !-Cat. A more expliit desription of ��(X) is by thepasting presentation (GX ; RX).For X a ubial set, generators in GX in dimension n will be (�n;Lx) forx 2 Xn, where the elements of �n will be labeled by the orresponding faes of x,i.e., B 2 �n will be labeled by X(B)(x), the restrition of x along B onsideredas a map �dim(B) ! �n. Note that it is not required that x is non degenerate!These are indeed generators beause dom(�n) is a generated pasting, the ellsall being labeled by generators.Relations in RX in dimension n will ome from degeneraies. I want to saythat a degenerate ube is equivalent to an identity, but in this I have to uselower dimensional relations. So the approah will be indutively.13



Consider the labeled pasting sheme (�n+1;L"ix ), where L"ix is equal to L"i(x)exept that the top-dimensional ell is labeled with the formal identity idxinstead of with "i(x). Consider also the labeled pasting sheme (�n+1;Lix),where Lix di�ers from L"i(x) in that ells labeled "i(x)jB with B(i) = 0 in thelatter, are labeled idxj�+i (B) in the former. It would make no di�erene to takeidxj��i (B) beause of the ubial identities. So for example (�3;L100) is�+b ++b id++��bid�� 00bid0�+�bid+� id+0 ++e��e +�e id003 �+bid�+ id0+++b id++��bid�� id�0 �+e ++e��e 00e+�e ;where the e and b subsripts distinguish di�erent ells with equal labels.Lemma 3.3 Suppose that for n0 � n (�n0 ;L"ix ) is a generated pasting, thatit is de�ned to be related to (�n0 ;L"i(x)), and that with these relations in alldimensions up to n0 both are equivalent to (�n0 ;Lix). Then (�n+1;L"ix ) is agenerated pasting, and if it is de�ned to be related to (�n+1;L"i(x)) then both areequivalent to (�n+1;Lix).Proof. To prove that (�n+1;L"ix ) is a generated pasting, I need to show thatits domain is equivalent to (�n;Lx). For example,dom(�3;L"1(00)) = �+b ++b "1(++)��b"1(��) 00b"1(0�)+�b"1(+�) "1(+0)++e��e +�eand (�2;L00) = �+�� 00 +++�14



should be equivalent. By adding identities to �n in the right plaes, �rst highdimensional ones, then lower dimensional ones to make the higher dimensionalones in the form of ubes, (�n;Lx) an be seen to be equivalent to a generatedpasting with pasting sheme dom(�n+1). Then identities an be replaed bydegeneraies, �rst low dimensional ones, then higher dimensional ones, beausethen the relevant subpasting shemes are orretly labeled. The result is exatlydom(�n+1;L"ix ) beause the position of the inserted identities is suh that theyend up in the same position as their orresponding degeneraies. Details, suhas full replaeability and full insertability at eah stage of this proess, are takenfor granted.It is possible to de�ne the relation as laimed sine the pasting shemes areequal and the labelings oinide in lower dimensions.The equivalenes hold sine again identities an be replaed by degeneraiesfrom low dimensions up. 2So relations an be de�ned by requiring L"i(x) to be related to (�n+1;L"ix )for every x 2 X.Proposition 3.4 The pasting presentation (GX ; RX) is a pasting presenta-tion for ��(X).Proof. !(GX ; RX) and ��(X) satisfy the same universal property, as anbe seen from the oend desription. 2For the representative ubial sets In, I will make no notational distintionbetween the ubial set and its !-ategorization, as usual.3.5 Cubial nerveThe ubial nerve of an !-ategory C is given by�op Q !-Catop !-Cat(�;C ) Set:It is funtorial in C , and this funtor N� is right adjoint to ��. The existene ofsuh a right adjoint follows from Freyd's adjoint funtor theorem [30℄ sine thestandard ubes form a generating set of objets of Sets�op . Using the desriptionof Q(n) in terms of a pasting sheme,N�(C )n = !-Cat(Q(n); C )= f(�n; fj)jfj is an appropriate realization of �n in C g:15



The ubial operations on N�(C ) are indued by the !-funtors "i : P(�n) !P(�n�1) and ��i : P(�n�1)! P(�n). More onretely, for (�n�1; fj) an appro-priate realization of �n�1 in C , (�n; "i(f)j) has "i(f)j(x) = fj0(x Æ ("i)�), whihde�nes an appropriate realization of �n in C beause of the formula for "i asan !-funtor P(�n) ! P(�n�1), and for (�n; fj) an appropriate realization of�n in C , (�n�1; ��i (f)j) has ��i (f)j(x) = fj0(x Æ (��i )�), whih de�nes an appro-priate realization of �n�1 in C beause of the formula for ��i as an !-funtorP(�n�1) ! P(�n). This also implies that ��i (f)j = fjj��i , so a fae of an el-ement of the nerve is the orresponding fae of the omposable diagram. Fora related approah, whih also gives a desription of a ategory of ubial setswith struture making the adjuntion an equivalene of ategories, see [36℄.4 Existene and uniqueness of a monoidal bi-losed strutureThat the tensor produt of ubial sets indues a monoidal bilosed strutureon !-Cat was already remarked in [2℄, and is analogous to the ase of rossedomplexes [10℄, whih makes use of ubial !-groupoids as an intermediate stage.As noted there, this works sine \!-Gpd is an equationally de�ned ategory ofmany sorted algebras in whih the domains of the operations are de�ned by �nitelimit diagrams. General theorems on suh algebrai theories (see [17, 18, 28, 3℄)imply that !-Gpd is omplete and oomplete and that it is monadi over theategory Cub of ubial sets", and beause presentations an be used. Althoughit is the essene, this is not the whole story. Using methods of Day [11, 12℄, Ishow that the monoidal bilosed struture on ubial sets [10℄ is in fat theextension of a tensor produt on �, and I sketh how pasting presentations anbe used to transfer this extension to !-ategories, the main point being thatthe monad for !-ategories is monoidal. Details are omitted in this last stepsine in setions 5 to 11 I will give a ompletely independent proof of theexistene of a monoidal bilosed struture on !-Cat satisfying Ip 
 Iq �= Ip+q,by desribing it expliitly. The uniqueness of suh a struture gives that mydesription is indeed of the monoidal bilosed struture on !-Cat indued bythe tensor produt of ubes.4.1 Monoidal struture on �Addition of natural numbers gives � the struture of a strit monoidal ategory:16



let m
 n = m+ n and let I = 0 = ?. To make 
 into a funtor �! �, de�nef 
 g : m
 n! m0 
 n0, for f : m! m0 and g : n! n0, by(f 
 g)�(p) = f�(p) if p � m= g�(p�m) + n if p > m and g�(p�m) 2 n= g�(p�m) otherwise:It is easily heked that f 
 g is indeed a morphism in �, and that idn
 idm =idn
n.De�ne two morphisms �lp : p+ q ! p and �rq : p+ q ! q in � by�lp = "p+1 Æ : : : Æ "p+q�rq = "1 Æ : : : Æ "1| {z }p ;where the "i denote morphisms in �. These will be used later.4.2 Indued monoidal bilosed struture on ubial setsBeause of [11℄, the above monoidal struture on � indues a bilosed monoidalstruture on the funtor ategory Sets�op = Cub.For ubial sets X and Y , their tensor produt isX 
 Y = Z m;n(X(m)� Y (n)) � Im
n:The unit for the tensor produt is ��(I) = I0. The internal homs an bedesribed by Homr(X;Y ) = Zn Sets(X(n); Y (n
�))and Homl(X;Y ) = Zn Sets(X(n); Y (�
 n)):Writing out the oend for the tensor produt in elementary terms, thisgives the same desription as in [10℄: if K and L are ubial sets, then (K 
L)n = (`p+q=nKp � Lq)=� where � is the equivalene relation generated by("r+1(x); y) � (x; "1(y)) for x 2 Kr, y 2 Ln�r�1. The equivalene lass of (x; y)will be denoted by x
 y. De�ne fae and degeneray maps by��i (x
 y) = ��i (x)
 y if 1 � i � p= x
 ��i�p(y) if p < i � n"i(x
 y) = "i(x)
 y if 1 � i � p+ 1= x
 "i�p(y) if p+ 1 � i � n:17



In partiular, "p+1(x)
 y = x
 "1(y) for all x 2 Kp. K 
 L is a ubial set.The desription of the internal hom in [10℄ an be obtained by writing outthe end for the left internal hom, whih �ts niely with the use of the left pathomplex there.4.3 Existene of a monoidal bilosed struture on !-ategoriesThe ategory of !-ategories is monadi over ubial sets, and the orrespondingmonad M is the endofuntor indued by the adjuntion �� a N�, soM(X)(r) = !-Cat(Q(r);Z nXn � Q(n));with multipliation indued by the ounit of the adjuntion. The point is thatthis monad is monoidal, i.e., there are ubial maps fM : M(X) 
 M(Y ) !M(X 
 Y ) and M0 :M(I0)! I0 with respet to whih the multipliation andthe unit ofM are monoidal natural transformations [12℄. To desribe these maps,however, the struture of !-ategories is essential, and as suh it is neessaryto make use of pasting presentations, analogous to the use of presentations ofubial !-groupoids in [10℄, and analogous to the ase of modules referred tothere.To give a ubial map M(X) 
M(Y ) ! M(X 
 Y ) amounts to give an!-funtor ��(M(X)
M(Y ))! ��(X 
 Y ). This in turn orresponds to a re-spetable family of realizations (GM(X)
M(Y ); 'i) in ��(X 
 Y ) of the pastingpresentation (GM(X)
M(Y ); RM(X)
M(Y )) desribed in setion 3. To de�nesuh a family of realizations, onsider a generator  = (�n; fi) 
 (�m; f 0j) of(GM(X)
M(Y ); RM(X)
M(Y )), so fi(z) 2 ��(X) for every z 2 �n, say repre-sented by (Af;z;Lf;z), and similarly for f 0j(z0) 2 ��(Y ). To desribe 'i(), takefor every af;z 2 Af;z and af 0;z0 2 Af 0;z0 labeled by xf;z 2 Xp and yf 0;z0 2 Yq agenerator (�p+q;Lxf;z
yf 0;z0 ) in ��(X 
 Y ). For �xed af;z, the ells xf;z 
 yf 0;z0an be omposed using any way of omposing Af 0;�m to determine the order andthe diretions of omposition. The resulting omposites an then be omposedusing any way of omposing Af;�n . The resulting omposite is 'i(). Details,suh as what to do with identities, the exat way of omposing, that this is inde-pendent of the hosen order of omposition, and that this family of realizationsis respetable, are taken for granted.Proposition 4.1 The monoidal bilosed struture on ubial sets indues amonoidal bilosed struture on !-Cat.18



Proof. Well, to prove this I \only" need to go through [12, x4℄, and hek allthe requirements of the propositions there. But all of them are immediate fromeither the monoidal bilosed struture on Cub or from ompleteness of Cuband oompleteness of !-Cat. Note that assoiativity of the tensor produt andits oherene also follow. 24.4 UniquenessIt is even possible to speak of the monoidal bilosed struture on !-Cat induedby the tensor produt of ubes:Proposition 4.2 The funtor 
 : !-Cat � !-Cat ! !-Cat is the uniqueone, up to isomorphism, for whih C 
 � and � 
 C have right adjoints forevery !-ategory C and whih satis�es Ip 
 Iq �= Ip+q for every p, q.Proof. That it satis�es these properties is beause it is part if a monoidalbilosed struture indued by the tensor produt on �, and that it is the uniquesuh is immediate from the ubes being a generating set of objets for !-Cat,see also [2℄. 25 Globe tensor globeBeause the tensor produt of !-ategories is indued by the tensor produtof ubial sets, and beause globes represent elements of !-ategories [35℄, it islear that essential information is ontained in the !-ategorization of the tensorprodut of two globes as ubial sets. I show that this !-ategorization is the!-ategory of omponents of a pasting sheme T . This pasting sheme T , orrather, its ells, will be used for the generators of a pasting presentation for thetensor produt of !-ategories in setion 7.5.1 n-globes as ubial setsConsider the ubial set G whih has as non degenerate elements in dimensionn d+n and d�n , with fae maps de�ned by��i (d�n) = ("1)i�1(d�n�i):19



So the only non degenerate (n � 1)-dimensional faes are ��1 (d�n) = d�n�1. Forexample, the faes of d�3 look liked+0 "1d+0
"1d+0

bak: ("1)2d+0top: d�2 d+0"1d+0right: "1d+1d�0 d�1 "1d�0"1d�0left: "1d�1
d�0 d+1"1d�0d+0 "1d+0 d+0bottom: d+2d�0 "1d�0d�1front: ("1)2d�0 d�0 d+1 ;

the interior of the ube being labeled by d�3 .Reall that ��(G) has a pasting presentation (GG; RG) whih has as gen-erators labeled pasting shemes (�n;Lx) for x 2 Gn, whih is a degeneray ofsome d�n0 , and that its relations are that L"i(x) is related to (�n+1;L"ix ) for everyx 2 Gn.Lemma 5.1 In (GG; RG), the generated pastings dom(�m+1;Ld�m+1) and(�m;Ld�m) are equivalent. Also, dom(�m+1;L"i1 :::"im+1�m0 d�m0 ) is equivalent to(�m;L��1 "i1 :::"im+1�m0 d�m0 ).Proof. For example,
dom(�3;Ld�3 ) = d+0 d+0d�0d�1 d�2d�0 d+1 "1(d+1 ) d+0d�0 d�0 d+1and 20



(�2;Ld�2 ) = d+0d�0d�1 d�2 d+0d�0 d+1need to be ompared. In the general ases, the di�erene between the two is abunh of degeneraies, whih an be added by �rst adding identities and thenreplaing these by these degeneraies, ompare the proof of lemma 3.3! 2I now laim that the !-ategorization of G is free. To this end, de�ne apasting sheme 2! whih is the obvious extension of 2n, i.e., it onsists of twoells in every dimension, ending and beginning in the two di�erent ells of onedimension less. For example, R2!(d�3 ) looks liked�0 d�1d+1d�3d�2 d+2 d+0 :Proposition 5.2 ��(G) �= P(2!).Proof. I will show that both !-ategories satisfy the same universal property.Thus, that respetable families of realizations of (GG; RG) in C orrespond toappropriate realizations of 2! in C .Let (GG; 'j) be a respetable family of realizations in C . De�ne a realization(2!; fj) in C by fj(d�j ) = 'j(�j ;Ld�j ):Suppose it is m-appropriate. Thensm(fm+1(d�m+1)) = sm('m+1(�m+1;Ld�m+1))= '�dom(�m+1;Ld�m+1)� by respetability of (GG; 'j)= '��m;Ld�m� by lemma 5.1= 'm(�m;Ld�m) beause ' extends (GG; 'j)= fm(d�m)= f(R(d�m)) beause f m-extends (2!; fj)= f �sm(R(d�m+1))� ;21



whih proves that (2!; fj) is (m+ 1)-appropriate.Let (2!; fj) be an appropriate realization in C . De�ne a family of realizations(GG; 'j) in C by 'j(�j ;L"i1 :::"ij�j0 d�j0 ) = fj0(d�j0);where C is onsidered one-sorted. This family respets relations sine if j0 < jthen 'j(�j ;L"i1 :::"ij�j0 d�j0 ) is indeed the orret identity. Now suppose it respetsm-labels. Then if m0 < m+ 1sm('m+1(�m+1;L:::)) == sm(fm0(d�m0))= fm0(d�m0)= 'm(�m;L��1 :::)= '��m;L��1 :::� beause ' m-extends (GG; 'j)= '�dom(�m+1;L:::)� by lemma 5.1;and if m0 = m+ 1 thensm('m+1(�m+1;L:::)) == sm(fm0(d�m0))= f(R(d�m)) by m-appropriateness of (2! ; fj)= fm(d�m) beause f m-extends (2!; fj)= 'm(�m;Ld�m)= '��m;Ld�m� beause ' m-extends (GG; 'j)= '�dom(�m+1;L:::)� by lemma 5.1:Thus (GG; 'j) respets (m+ 1)-labels.It is immediate that the above gives a bijetion between respetable familiesof realizations of (GG; RG) in C and appropriate realizations of 2! in C . 2It would also be possible to take other faes degenerate in the de�nition ofG, but the above de�nition is hosen beause it it gives rise to formulae similarto ones familiar from homologial algebra later on.A notational onvention for later use: in the pasting sheme 2n the top-dimensional ell dn an also be denoted by d�n and by d+n . This onvention willavoid unneessary splitting up in ases where one formula is learer.22



5.2 2! 
 2!Reall that ��(G 
 G) has a pasting presentation (GG
G; RG
G). It has asgenerators labeled pasting shemes (�p+q;L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 ), where the"i denote maps in G. To desribe the labeling, a fae x of �p+q an be onsideredas a morphism r ! p+ q in �, and L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 labels x by (�lp Æx)�("i1 : : : "ip�p0d�p0)
 (�r Æx)�("i01 : : : "i0q�q0d�q0). Thus, for example, (�3;Ld�2 
d�1 )looks like d�0 
d+0 d�1 
d+0bak: d�2 
d+0top: d�1 
d�1 d+0 
d+0right: "1(d+0 
d�1 )d�0 
d�0d�0 
d�1 d�1 
d�0
left: "1(d�0 
d�1 )

d+0 
d�0 d+0 
d�0d�0 
d+0 d+1 
d+0 d+0 
d+0bottom: d+1 
d�1d�0 
d�0 d+1 
d�0d�0 
d�1 front: d�2 
d�0 d+0 
d�0 d+0 
d�1 :
The relations make that degeneraies are equivalent to identities.I laim that ��(G 
 G) is free. To this end, de�ne a graded set T whereTn = fd�p 
 d�q j�; � = �; p + q = ng. De�ne relations E and B on T by(d�p 
 d�q ; y) 2 Eij for i > j if and only if one of the following:1. y = d�p 
 d(�)pq�1 ,2. y = d+p�1 
 d�q ,3. y = d+p�1 
 d(�)pq�1 .So Eij is empty for j < i � 2. Bij di�ers from Eij in having � instead of +and (�)p+1 instead of (�)p. These relations an be viewed as a modi�ed orgeneralized version of the Leibnitz rule.In �gure 2, a low-dimensional part of T .23



d�0 
d+0d�0 
d�0 d�1 
d�1 d+0 
d+0d+0 
d�0 d�2
d�13d�0 
d+0 d�1 
d+0d�0 
d�0d�0 
d�1d+1 
d�0 d�1 
d+1 d+0 
d+0d+0 
d�0 d+0 
d+1
d�1 
d�23
d�2
d+13 d�2
d�24 d�0 
d+0 d�1 
d+0d�0 
d�0d�0 
d�1d+1 
d�0 d+1 
d�1 d+0 
d+0d+0 
d�0 d+0 
d+1d�0 
d+0d�0 
d�0 d+1 
d+1 d+0 
d+0d+0 
d�0

d+1 
d�23
Figure 2: The faes of d�2 
 d�2Proposition 5.3 T is a pasting sheme.Proof. Pasting axiom (i) is trivial, (ii) an be fored to hold, and (iii) isimmediate.The only non trivial ase of pasting axiom (iv) is when j = i�2. But the onlypossibility for either side to hold, with w = d�p 
 d�q , is when x = d+p�1 
 d(�)pq�1 ,u = d�p 
 d(�)pq�1 and v = d+p�1 
 d�q .For pasting axiom (v) the ase j = i� 1 is trivial. If j = i� 2 there are fourpossibilities, with w = d�p 
 d�q :� x = d+p�1 
 d(�)pq�1 : x is already at the end of w,� x = d�p 
 d(�)pq�2 : take v = d�p 
 d(�)p+1q�1 ,24



� x = d+p�1 
 d(�)p�1q�1 : idem,� x = d+p�2 
 d�q : take v = d�p�1 
 d�q .If j = i� 3 there are two possibilities:� x = d+p�2 
 d(�)p+1q�1 : take v = d�p�1 
 d�q ,� x = d+p�1 
 d(�)pq�2 : take v = d�p 
 d(�)p+1q�1 .For j < i� 3 the relation Ei�1j is empty so the ondition is void. 2I will now analyse the situation a / b in T for a = d�p 
 d�q , p+ q = i. Table1 gives the possibilities for a1 and a2.a = a0 Ei�1(a0) \ Bi�1(a1) a1 Ei�1(a1) \ Bi�1(a2) a2d+p�2 
 d�1q+1 d�p�2 
 d�2q+2if �1 = (�)p�1d+p�1 
 d�q d+p�1 
 d�1q+1if � = (�)p d+p�1 
 d(�)p�1q �d�p 
 d�q d+p 
 d(�)pq�1 �d�p 
 d(�)pq�1 d�1p+1 
 d(�)pq�1if � = � d�1p+1 
 d(�)p+1q�2 d�2p+2 
 d(�)p+1q�2if �1 = � ;and B(a) = fd�p 
 d�q ; d�p�1 
 d�q ; d�p 
 d(�)p+1q�1 ; d�p�1 
 d(�)p+1q�1 g.Table 1: a / a1 / a2 : : : in TLemma 5.4 The pasting sheme T has no diret loops.Proof. Sine elements in Ei�2(a1) always have an index p�2 or q�2 it followsfrom the table above that E(a1)\B(a) = ?. Continuing the table it follows thatai is always of the form d�ip�i 
 d�iq�i from whih follows that for all i � 2 also25



E(ai) \ B(a) = ?. So T has no diret loops sine obviously B(a) \ E(a) = fag.2 Before well-formedness of R(d�p 
 d�q ), its m-soures and m-targets need tobe onsidered. I will show that they satisfy a generalized form of the Leibnitzrule.Lemma 5.5 For m � n = p+ q,sm(R(d�p 
 d�q )) = R(fd�0p0 
 d�0q0 jp0 + q0 = m; 0 � p0 � p; 0 � q0 � q;if p0 6= p then �0 = �;if p0 = p then �0 = �;if q0 6= q then �0 = (�)p0+1;if q0 = q then �0 = �g);and dually.Proof. Downward indution on m. If m = n then sm(R(d�p 
 d�q )) = R(d�p 
d�q ) whih agrees with the formula above. Now suppose this formula is provenfor m+ 1, then I have to show that sm(R(d�p 
 d�q )) = dom sm+1(R(d�p 
 d�q )) =domR(fd�2p2 
d�2q2 jp2+ q2 = m+1; : : :g) = R(fd�2p2 
d�2q2 jp2+ q2 = m+1; : : :g)�E(R(fd�2p2 
d�2q2 jp2+q2 = m+1; : : :g)) is equal to R(fd�0p0 
d�0q0 jp0+q0 = m; : : :g).That the latter is ontained in the former falls apart in two: that R(d�0p0 
d�0q0 )is ontained in R(fd�2p2 
 d�2q2 jp2 + q2 = m+ 1; : : :g), and that if d�3p3 
 d�3q3 is inE(R(fd�2p2 
 d�2q2 jp2 + q2 = m + 1; : : :g)) then it is not in R(fd�0p0 
 d�0q0 jp0 + q0 =m; : : :g). For the �rst part it suÆes that the d�0p0 
 d�0q0 are in the former.Distinguish three ases, namely� p0 = p and q0 < q: then �0 = (�)p0+1. If q0 = q � 1 then take d�0p0 
 d�q , ifq0 < q� 1 then take d�0p0 
d�0q0+1 for d�2p2 
d�2q2 , whih in of the orret form,and whih satis�es d�2p2 
 d�2q2Bm+1m d�0p0 
 d�0q0 .� q0 = q and p0 < p: then �0 = �. If p0 = p�1 then take d�p 
d�q , if p0 < p�1then take d�0p0+1 
 d�0q0 for d�2p2 
 d�2q2 .� p0 < p and q0 < q: then �0 = � and �0 = (�)p0+1. Do the same as in the�rst ase. Note that it is not possible to do the same as in the seond asebeause then �0 would not ome out right.26



For the seond part, there are three possibilities for d�3p3
d�3q3 , namely d�2p2
d(�)p2q2�1 ,d+p2�1 
 d�2q2 , and d+p2�1 
 d(�)p2q2�1 . The �rst one of these three is indeed not oneof the d�0p0 
 d�0q0 sine �0 6= (�)p0+1 , the seond one not beause �0 6= �, and forthe third one the requirements on either �0 or �0 are ontraditory as well.To show that the former is ontained in the latter, I have to show thatfor every d�3p3 
 d�3q3 2 R(fd�2p2 
 d�2q2 jp2 + q2 = m + 1; : : :g), it is either inR(fd�0p0 
 d�0q0 jp0 + q0 = m; : : :g), or in E(R(fd�2p2 
 d�2q2 jp2 + q2 = m + 1; : : :g)).Three ases:� if q3 � q2 � 2 then one of the reasons for d�3p3 
 d�3q3 to be in R(d�2p2 
 d�2q2 )must be via d�2p2 
 d(�)p2+1q2�1 , whih an be taken for d�0p0 
 d�0q0 sine it is ofthe orret form. This also works if q3 = q2 � 1 and �3 = (�)p2+1.� if p3 � p2 � 2 then via d�p2�1 
 d�2q2 , whih also works if p3 = p2 � 1 and�3 = �.� all other ases, namely d�2p2 
d�2q2 , d�2p2 
d(�)p2q2�1 , d+p2�1
d�2q2 or d�p2�1
d(�)p2q2�1 ,are in E(d�2p2 
 d�2q2 ). 2Lemma 5.6 For every d�p 
 d�q 2 T , R(d�p 
 d�q ) is well formed.Proof. Sine sm(R(d�p 
 d�q )) and tm(R(d�p 
 d�q )) are both R of something,they are subpasting shemes of R(d�p 
 d�q ). They are also ompatible: forBm�1(d�0p0 
 d�0q0 ) and Bm�1(d�01p01 
 d�01q01 ) to have something in ommon one needsp0 and p01, and q0 and q01 at most one apart from eah other. This leaves onlythe onseutive pairs to hek, and then the onditions on �0, �01, �0 and �01 givethat Bm�1(d�0p0 
 d�0q0 ) \ Bm�1(d�01p01 
 d�01q01 ) = ?. Noting that s0(R(d�p 
 d�q )) isalways a singleton, namely fd�0 
 d�0 g, �nishes the proof. 2Proposition 5.7 The pasting sheme T is loop free.Proof. Conditions (i) and (ii) of loop-freeness are lemmas 5.4 and 5.6respetively.For ondition (iv), onsider again table 1, and suppose a = u 2 sj(R(x)),b = u0 2 sj(R(x)), for some x 2 T . I will show that then also a1 2 sj(R(x)),27



and then indution will do the rest. So x = d�2p2 
 d�2q2 , say, and j = p+ q. Then� = � or � = (�)p or both. In all these ases, for the sequene a; a1; : : : toontinue til at least a2 one needs �1 = (�)p�1 or �1 = �. In ase �1 = (�)p�1,ai will never be in sj(R(x)) whih ontradits b 2 sj(R(x)), and in ase �1 = �indeed a1 2 sj(R(x)). Thus T is loop free. 2Thus T is a loop-free pasting sheme. Furthermore, there are also pastingshemes 2p
 2q de�ned in the obvious way, whih are well formed and loop freeeither by diret alulation or by viewing them as R(x) for some x 2 T .Now bak to the pasting presentation (GG
G; RG
G). De�ne a labeled past-ing sheme (2p 
 2q;Ldp
dq), where d�0p0 
 d�0q0 gets labeled by (�p0+q0 ;Ld�0p0
d�0q0 ).Lemma 5.8 In (GG
G; RG
G), dom(2p 
 2q;Ldp
dq) is a generatedpasting whih is equivalent to dom(�p+q;Ldp
dq). Also, if p0 < por q0 < q then dom(�p+q;L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 ) is equivalent to(�p+q�1;L�j("i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 )) for some j.Proof. The proof will be by indution on p + q. So to show that dom(2p 
2q;Ldp
dq ) is a generated pasting, take a ell labeled by (�p0+q0 ;Ld�0p0 
d�0q0 ). By theindution hypothesis, its domain is indeed equivalent to the domain of its label.To show that (dom(2p
2q);Ldp
dq ) is equivalent to dom(�p+q;Ldp
dq ), observethat their di�erene is some identities, whih an be inserted and replaed bydegeneraies as before.
dom(�3;Ld�2 
d�1 ) = d�0 
d+0 d�1 
d+0 d+0 
d+0d�0 
d�0 d�1 
d�0d�0 
d�1 d�1 
d�1d�2 
d�0d+0 
d�0 d+0 
d+0d�0 
d�0 d+1 
d�0 d+0 
d�0 d+0 
d�1and dom(d�2 
 d�1 ) = d+0 
d+0 d�1 
d+0d�0 
d�0d�0 
d�1d+1 
d�0 d�1 
d�1d+0 
d+0d+0 
d�0 d+0 
d�1 :

28



For the last statement, the di�erene is a number of degeneraies, whih anbe dealt with as in lemma 3.3. 2Proposition 5.9 ��(G 
G) �= P(T ).Proof. This proof will follow the lines of the proof of proposition 5.2 losely,I will only do the seond part in some detail.So given an appropriate realization (2! 
 2!; fi) in C , de�ne a family ofrealizations (GG
G; 'i) in C by'p+q(�p+q;L"i1 :::"ip�p0 d�p0
"i01 :::"i0q�q0 d�q0 ) = fp0+q0(d�p0 
 d�q0):To show it respets (m+1)-labels if it respets m-labels, if p0+ q0 < m+1 thensm('m+1(�m+1;L:::
:::)) == sm(fp0+q0(d�p0 
 d�q0))= fp0+q0(d�p0 
 d�q0)= 'm(�m;L��j (:::
:::)) for some j= '��m;L��j (:::
:::)� beause ' m-extends (GG
G; 'i)= '�dom(�m+1;L:::
:::)� by lemma 5.8;and if m0 = m+ 1 thensm('m+1(�m+1;L:::
:::)) == sm(fm0(d�p0 
 d�q0))= f(dom(d�p0 
 d�q0)) by m-appropriateness of (2! 
 2!; fj)=  dom(d�p0
d�q0 )(dom(d�p0 
 d�q0)) beause both are the omposite of thesame appropriate realization= '�dom(d�p0 
 d�q0 ;Ld�p0
d�q0 )� by the formula for ' in setion 10 of [5℄= '�dom(�m+1;Ld�p0
d�q0 )� by lemma 5.8. 2Beause ��(G) �= P(2!) is the \generi" !-ategory, this proposition sug-gests that P(T ) is the generi tensor produt of !-ategories, a viewpoint thatwill prove to be fruitful. 29



6 Pasting sheme tensor globeGiven a p-dimensional pasting sheme A, I desribe a well-formed loop-freepasting sheme A
2q, whih ould be termed its right q-th path pasting sheme.This pasting sheme will be used in the relations of a pasting presentation forthe tensor produt of !-ategories in setion 7.For a well-formed loop-free pasting sheme A, the i-ells of the graded setA
 2q are expressions a
 d�q0 , where a 2 Ap0 , � = �, p0 + q0 = i and q0 � q. Ifq0 = q then both d+q and d�q are onsidered synonymous to dq 2 2q, as before.The relations Eij and Bij on A
 2q are suh that (a
 d�q0 ; y) 2 Eij if and only ifone of the following:1. y = a2 
 d�q0 , aEp0p2a2,2. y = a2 
 d(�)p0q0�1 , aEp0p2a2.Bij is de�ned dually, i.e., it has Bp0p2 instead of Ep0p2 and (�)p0+1 instead of (�)p0 .Proposition 6.1 If A is a well-formed loop-free pasting sheme, then A 
 2qis a pasting sheme.Proof. The proof of this will be analogous to the proof of proposition 5.3,only somewhat more involved. The �rst three pasting axioms are easy.For the \)" part of pasting axiom (iv), with w = a 
 d�q0 , there are twopossibilities for x. If x = a2
 d�q0 where aEp0p2a2 then by pasting axiom (iv) in Aapplied to aEp0p2a2 there are b and b0 of dimension p0� 1 whih make that b
 d�q0and b0 
 d�q0 an be taken for u and v. If x = a2 
 d(�)p0q0�1 where aEp0p2a2 thenby pasting axiom (iv) in A applied to aEp0p2a2 there is a b0, and then a 
 d(�)p0q0�1and b0 
 d�q0 an be taken for u and v respetively. Notie that although thissituation looks asymmetri it is not, sine the dual situation utilizes b
 d�q0 anda
 d(�)p0+1q0�1 .For the \(" part of pasting axiom (iv), with w = a 
 d�q0 , distinguish thefollowing possibilities for u and v: 30



� u = a2 
 d�q0 where aEp0p0�1a2 and v = a3 
 d�q0 where aEp0p0�1a3. Then xmust be a4
d�q0 with a2Ep0�1p4 a4 and a3Bp0�1p4 a4, and appliation of pastingaxiom (iv) in A gives that wEijx,� u = a2
d�q0 where aEp0p0�1a2 and v = a
d(�)p0q0�1 . Then there is no x sine ifthe dimensions in 2q agree then the exponents are di�erent. Compare thiswith proof of proposition 5.3, where this possibility was also exluded.� u = a
d(�)p0q0�1 and v = a3
d�q0 where aEp0p0�1a3. Then x must be a4
d(�)p0q0�1with aEp0p4a4 (and a3Bp0�1p4 a4), and so wEijx.For pasting axiom (v), with w = a
 d�q0 , there are four possibilities:� x = a2 
 d(�)p0q0�1 with aEp0p2a2: x is already at the end of w,� x = a2 
 d(�)p0q0�2 with aEp0p2a2: take v = a
 d(�)p0+1q0�1 ,� x = a3 
 d(�)p0q0�1 with a0Ep0�1p3 a3: if aEp0p3a3 then take v = a 
 d(�)p0+1q0�1 ,otherwise there exists, by pasting axiom (v) in A, an a4 suh thataBp0p0�1a4Ep0�1p3 a3, then take v = a4 
 d(�)p0+1q0�1 ,� x = a3 
 d�q0 with a0Ep0�1p3 a3: if aEp0p3a3 then x is already at the end ofw, otherwise there exists an a4 suh that aBp0p0�1a4Ep0�1p3 a3, then take v =a4 
 d�q0 . 2I will now analyse the situation b/b0 in A
2q for b = a
d�q0, dim(a)+q0 = i.Table 2 gives the possibilities for a1 and a2.Lemma 6.2 If A is a well-formed loop-free pasting sheme, then the pastingsheme A
 2q has no diret loops.Proof. Consider table 2. The key to this proof are the dimensions and theexponents in 2q. For if in bi this dimension is di�erent from q0 then in later bi'sit must be even further away from q0. Also ompare the proof of lemma 5.4!So the only relevant dimensions are q0 + 1, q0 and q0 � 1.31



b = b0 Ei�1(b0) \ Bi�1(b1) b1 Ei�1(b1) \ Bi�1(b2) b2a7 
 d�q0with a7Bp0p0�1a4a4 
 d�q0with a2Ep0p0�1a4 a4 
 d�1q0+1if � = (�)p0a2 
 d�q0with a2Bp0p0�1a0 a2 
 d(�)p0q0�1 a8 
 d(�)p0q0�1with a8Bp0+1p0 a2a0 
 d�q0with aEp0p0�1a0 a9 
 d�1q0+1with a9Bp0�1p0�2a5a5 
 d�1q0+1with a0Ep0�1p0�2a5 a5 
 d�2q0+2if �1 = (�)p0�1a0 
 d�1q0+1if � = (�)p0 a0 
 d(�)p�1q0 a10 
 d(�)p0�1q0with a10Bp0p0�1a0a
 d�q0 a6 
 d(�)p0q0�1with a3Ep0+1p0 a6 a11 
 d(�)p0q0�1with a11Bp0+1p0 a6a
 d(�)p0q0�1 a3 
 d(�)p0q0�1with a3Bp0+1p0 a a3 
 d(�)p0+1q0�2 a12 
 d(�)p0+1q0�2with a12Bp0+2p0+1a3 ;and B(b) = f~a
 d�q0 jaBp0~p ~ag [ f~a
 d(�)p0+1q0�1 jaBp0~p ~ag.Table 2: b / b1 / b2 : : : in A
 2q32



� bi of the form a4 
 d�1q0+1: then an element in B(b) \ E(bi) needs d(�)p0�1q0whih is impossible sine at the same time � = (�)p0 ,� bi of the form a8 
 d(�)p0q0�1 : again, the exponent needs to be (�)p0 and(�)p0+1 at the same time,� bi of the form a7 
 d�q0 : then a /A a7 and B(b) \ E(bi) 6= ? gives a diretloop in A,� bi of the form a10 
 d(�)p0�1q0 : either the exponent is wrong, or it reduesto a diret loop in A as well.SoA
2q has no diret loops sine B(b)\E(b) = fbg beause inA B(a)\E(a) =fag. 2I will show that the m-soures and m-targets of A
 2q also satisfy a gener-alized form of the Leibnitz rule.Lemma 6.3 For A a p-dimensional well-formed loop-free pasting shemeand m � n = p+ q,sm(A
 2q) = R(fa
 d�0q0 ja 2 sp0(A); p0 + q0 = m; 0 � q0 � q;if q0 6= q then �0 = (�)p0+1g)and dually.Proof. Along the lines of the proof of lemma 5.5. If m = n then theformula above gives R(fa
 d�0q ja 2 Ag), whih is indeed equal to A
 2q.For the �rst part of \�", distinguish two ases:� q0 < q: then �0 = (�)p0+1, and take a
 dq or a
 d�0q0+1 for a2 
 d�2q2 ,� q0 = q and hene p0 < p: then a 2 sp0(A). If a 2 sp0+1(A) then take a
dq,otherwise a has an inoming ell a0 of dimension p0+1 whih an be hosenin sp0+1(A) by lemma 4.2 of [5℄, and take a0 
 dq for a2 
 d�2q2 .For the seond part of \�" there are two possibilities, namely a3 
 d�2q2 or a3 
d(�)p2q2�1 , with a2Ep2p3a3, where in the latter ase a3 an be equal to a2. If inthe �rst ase there is an a0 
 d�0q0 then a3 2 R(a0) and q2 � q0 whih impliesa3 2 sp0(A) by well-formedness of A and p2 > p0 by the onditions p0 + q0 = m33



and p2 + q2 = m + 1. But a3 has an inoming p2-ell a2, ontradition. Andif in the seond ase there is an a0 
 d�0q0 then a3 2 R(a0) and q2 � 1 � q0 sop2 � p0. p2 > p0 leads to ontradition as in the �rst ase, and p2 = p0 impliesq0 = q2 � 1 6= q so �0 needs to be equal to (�)p0+1, whih is not the ase.For \�", there are two ases:� if q3 � q2 � 2 or q3 = q2 � 1 and �3 = (�)p2+1 then a3 
 d�3q3 2 R(a2 
d(�)p2+1q2�1 ),� if q3 = q2 � 1 and �3 = (�)p2 or q3 = q2 then a3 2 R(a2) whih, by well-formedness of A implies a3 2 sp2(A). If a3 has an inoming p2-dimensionalell a02 2 sp2(A) then a3 
 d�3q3 2 E(a02 
 d�2q2 ), otherwise a3 2 sp2�1(A) anda3 
 d�3q3 2 R(a3 
 d�2q2 ). 2Proposition 6.4 For a well-formed loop-free pasting sheme A, the pastingsheme A
 2q is well formed.Proof. Sine sm(A
 2q) and tm(A
 2q)) are both R of something, they aresubpasting shemes of A
 2q).Compatibility: if Bm�1(a 
 d�0q0 ) \ Bm�1(a0 
 d�0q0 ) 6= ? then Bm�1(a) \Bm�1(a0) 6= ? ontraditing ompatibility of sp0(A), and if Bm�1(a 
 d�0q0 ) \Bm�1(a0 
 d�2q0+1) 6= ? then �0 needs to be (�)p0+1 and (�)p0 at the same time.And s0(A
 2q) is the singleton fa
 d�0 ja 2 s0(A)g. 2Lemma 6.5 Ra
2q (a
 d�0q0 ) �= RA(a)
 2q0 .Proof. Immediate. 2It follows thatsm(R(a
 d�0q0 )) = R(fa2 
 d�2q2 ja2 2 sp2(R(a)); p2 + q2 = m; 0 � q0 � q;if q2 6= q0 then �2 = (�)p2+1;if q2 = q0 then �2 = �0g):Lemma 6.6 For all a 
 d�0q0 2 A 
 2q, the subpasting sheme R(a 
 d�0q0 ) iswell formed. 34



Proof. Combine the above two lemmas with proposition 6.4. 2Before loop-freeness, I need to relate well-formed subpasting shemes of A
2q to well-formed subpasting shemes of A. Thus suppose Y 0 is a j-dimensionalwell-formed subpasting sheme of A
 2q ontaining a
 d�q0. De�ne a subgradedset Y of A by Y = fa0 2 Aja0 
 d�0q0 2 Y 0 for some �0g. It is p0-dimensionalbeause Y 0 is j-dimensional and a 2 Y . It is a subpasting sheme of A beauseY 0 is of A
 2q. Before showing it is well formed, I will alulatedom(Y ) = fa0 2 Aja0 
 d�0q0 2 Y 0 for some �0,a0 having no inoming p0-ell in Y g= fa0 2 Aja0 
 d�0q0 2 Y 0 for some �0,there is no a2 
 d�2q0 2 Y 0 with a2 p0-dimensional and inoming in ag= fa0 2 Aja0 
 d�0q0 2 dom(Y 0)g,where the last equality is beause Y 0 is a subpasting sheme of A 
 2q. Soit suÆes to show ompatibility of Y for every Y 0. So suppose Bp0�1(a0) \Bp0�1(a2) 6= ? in Y , a0 being in Y beause a0 
 d�0q0 2 Y 0 and a2 beausea2 
 d�2q0 2 Y 0. But these elements ontradit strong ompatibility of Y 0 [23,Proposition 10℄.Proposition 6.7 For a well-formed loop-free pasting sheme A, the pastingsheme A
 2q is loop free.Proof. Conditions (i) and (ii) of loop-freeness are lemmas 6.2 and 6.6respetively.For ondition (iv), onsider again table 2, and suppose b = u 2 sj(R(x)),b0 = u0 2 sj(R(x)), for some x = a2
d�2q2 2 A
2q. I will show that b1 2 sj(R(x)).There are three possibilities in the sequene b / b0 for q0:� q0 going up: the ondition on � fores q0 = q2. To get below q2 again thisgoes via an a10 
 dp0�1q0 whih is not in sj(R(x)), nor is anything furtheron sine the exponent is the wrong one all the time,� q0 going down: look at a3
d(�)p0q0�1 , if it is not in sj(R(x)) then a3 =2 sp0+1(A).But then there exists a03 2 sp0+1(A) with a03Bp0+1p0 a by 4.2 of [5℄, so a03
d(�)p0q0�135



2 sj(R(x)) � Y , so if also a3
 d(�)p0q0�1 2 Y then Y is not ompatible. Thusa3 2 sp0+1(A) and a3 
 d(�)p0q0�1 2 sj(R(x)),� q0 doesn't hange: take x0 = a2 2 A and the well-formed subpasting shemeof A orresponding to Y , as onstruted just before this proposition. Thenondition (iv) in A applied to a /A a7 /A � � � in this situation gives thata2 2 sp0(R(x0)). And now � needs to be equal to (�)p0+1, otherwise Ywould't be ompatible. So a2 
 d�q0 2 sj(R(x)). 2I will also need:Lemma 6.8 If A is a round pasting sheme then A
 2q is round as well.Proof. Lemma 6.3 gives that sn�1(A
 2q) = R(fa
d�0q0 ja 2 sp0(A); p0+ q0 =n�1; 0 � q0 � q; if q0 6= q then �0 = (�)p0+1g) and tn�1(A
2q) = R(fa
d�0q0 ja 2tp0(A); p0+ q0 = n�1; 0 � q0 � q; if q0 6= q then �0 = (�)p0g). Suppose a2
d�2q2in their intersetion, say in R(a3 
 d�3q3 ) and in R(a4 
 d�4q4 ). Four ases:� a3 2 sp(A), q3 = q�1, a4 2 tp(A), q4 = q�1: either a3
d�2q�2 or a4
d�2q�2must be an intermediate stage, so a2 
 d�2q2 2 sp�2(A
 2q) [ tp�2(A
 2q),� a3 2 sp�1(A), q3 = q, a4 2 tp�1(A), q4 = q: then a2 2 sp�1(A)\ tp�1(A) =sp�2(A) [ tp�2(A). If in sp�2(A) then a2 
 d�2q2 2 sp�2(A
 2q) and dually,� a3 2 sp�1(A), q3 = q, a4 2 tp(A), q4 = q � 1 (a3 2 sp(A), q3 = q � 1,a4 2 tp�1(A), q4 = q analogous): if via a3 
 d(�)pq�1 then in sp�2(A 
 2q).But it is always possible to do this beause if via a3 
 d(�)p�1q�1 then �4 isnot right so q2 < q � 1. 2De�nition 6.9 A well-formed loop-free pasting sheme is globular if all m-soures and m-targets are round. 3Lemma 6.10 If A is globular then A
 2q is globular.Proof. Analogous to the proof of the previous lemma. 236



7 A pasting presentation for the tensor produtof !-ategoriesThis setion is the entral part of this paper. In it, I give a detaileddesription of the tensor produt of two !-ategories C and D by giving a pastingpresentation (GC ;D ; RC ;D ) for it. The usefulness of this desription is that theuniversal property of pasting presentations makes it relatively easy to deal with!-funtors going from a tensor produt. This will be used to prove assoiativityand oherene of the tensor produt, in setion 8, and to prove the adjuntionsbetween the tensor produt and the internal homs, in setion 11. It will alsogive onrete formulae for ategories enrihed in this monoidal ategory !-Cat,an example of whih is !-Cat itself, see setion 12. Another point is thatworking with pasting shemes is more oneptual than the approah of [2, 34℄.Gray's tensor produt of 2-ategories [21℄ is de�ned using essentially the sameapproah as here: it is de�ned by generators and relations, and a desriptionof the generated ells is given. Beause of the restrition to dimension 2, thetensor produt of 2-ategories is de�ned as a 2-ategory. It an be obtainedfrom the 4-ategory it is here by taking onneted omponents in dimension 2,i.e., it has the same 0- and 1-ells, and 2-ells are equivalene lasses of 2-ellsin the 4-ategory, the equivalene relation being generated by the requirementthat two 2-ells are equivalent if there is a 3-ell in between them. This explainsall extra onditions on the 2-ells of [21℄'s tensor produt.7.1 GeneratorsA generator in GC ;D in dimension n is a labeled pasting sheme (2p 
 2q;L
d)suh that p + q = n, for some p-dimensional  2 C and some q-dimensionald 2 D , where d�p0 
 d�q0 is labeled by (2p0 
 2q0 ;L0
d0) for 0 = d�p0() in C andd0 = d�q0(d) in D . Cells x in the domain or odomain of 2p 
 2q all have R(x)equal to a generator of lower dimension, so these labeled pasting shemes anindeed be taken as generators. Sometimes the generator (2p 
 2q;L
d) will bealled 
 d for short.7.2 RelationsTo de�ne the relations in RC ;D I will make use of labeled pasting shemes (A
2q;L(A;fi)
d), for some appropriate realization (A; fi) of A in C and some d 2 D ,where a 
 d�q0 is labeled by the generator fp0(a) 
 d�q0(d). Of ourse, labeled37



pasting shemes (2p
B;L
(B;gi)) will also be used, but sine the use of these isompletely analogous, I will onentrate on the �rst ones. One might think thatalso something like (A
B;L(A;fi)
(B;gi)) ould be used, but this is not the ase,beause A
B, de�ned in the same way as A
 2q, an fail to be a well-formedloop-free pasting sheme. If A 
 B is equal to the produt of pasting shemesJohnson and Street have in mind, then this failure has been observed by them aswell [22℄. Here it an be seen from a table like table 2, sine the dimension ofthe seond oordinate an go up and down, making diret loops, or to sequenesy / y0 violating ondition (iv) of loop-freeness possible. But it isn't neessary toonsider A
B, as the sequel shows.Now bak to the relations. It is not possible to prove diretly that (A; fi)
dis a generated pasting, beause for this relations in lower dimensions will beneeded. So, as in setion 11 of [5℄, the approah will be indutive, in fat, thiswhole setion is ompletely along the lines of the proof of setion 11 of [5℄, onlyworked out a little bit, but only a little bit, more. Some intermediate resultswill be derived, whih illustrate, in fat, are derived from, the intuition behindthe tensor produt.For round pasting sheme A with appropriate realization (A; fi) in C andd 2 D , de�ne a labeled pasting sheme ((A
 2q)t;L((A;fi)
d)t), whih is labeledas (A; fi)
 d exept for the top-dimensional ell, whih is labeled by f(A)
 d,where f(A) denotes the omposite of (A; fi).For (p � 1)-dimensional  2 C and q-dimensional d 2 D , de�ne a labeledpasting sheme (2p 
 2q;Lidl
d), whih is labeled as id
d exept for the top-dimensional ell, whih is labeled by the formal expression id
d.Assume:� for every appropriate realization (A; fi) of a p-dimensional well-formedloop-free pasting sheme A in C and every q-dimensional d 2 D withp+ q � n, the labeled pasting sheme (A; fi)
 d is a generated pasting,� for every appropriate realization (A; fi) of a p-dimensional round pastingsheme A in C and every q-dimensional d 2 D with p+ q � n, the labeledpasting sheme ((A; fi)
 d)t is a generated pasting,� for every appropriate realization (A; fi) of a p-dimensional round pastingsheme A in C and every q-dimensional d 2 D with p+q � n, the generatedpasting (A; fi)
 d is fully replaable in (A; fi)
 d,� for every (p�1)-dimensional  2 C and q-dimensional d 2 D with p+q � n,the labeled pasting sheme idl
d is a generated pasting,38



� for every (p�1)-dimensional  2 C and q-dimensional d 2 D with p+q � n,the generated pasting id
d is fully replaable in id
d,� for every appropriate realization (A; fi) of a p-dimensional round pastingsheme A in C and every q-dimensional d 2 D with p + q � n, there isde�ned a relation between (A; fi)
 d and ((A; fi)
 d)t,� for every (p�1)-dimensional  2 C and q-dimensional d 2 D with p+q � n,there is de�ned a relation between id
d and idl
d,and the same for (2p 
B;L
(B;gi)), et.I will derive some onsequenes of these assumptions that will be used in thenext dimension.Lemma 7.1 For every appropriate realization (A; fi) of a p-dimensionalglobular pasting sheme A in C and every q-dimensional d 2 D with p+ q � n,(A; fi)
 d is equivalent to f(A)
 d.Proof. The idea is to replae high dimensional piees by their omposite, sothat when ontinuing this for lower dimensions �nally 2p 
 2q is reahed. Thereason for starting with high dimensions is that this leaves not many higherdimensional ells being able to spoil full replaability. This is implemented asfollows.De�ne (A
2q)n:0:4 = A
2q [(A
2q)t=A
2q ℄, and for 0 � j0 � j < n, de�ne(A
 2q)j:j0:1 = (A
 2q)j:(j0+1):4[(sj0(A)
 d(�)j0j�j0 )t=A
 d(�)j0j�j0 ℄ if j0 < j= (A
 2q)(j+1):0:4[(sj0(A)
 d(�)j0j�j0 )t=A
 d(�)j0j�j0 ℄ if j0 = j(A
 2q)j:j0:2 = (A
 2q)j:j0:1[(sj0(A)
 d(�)j0+1j�j0 )t=sj0(A)
 d(�)j0+1j�j0 ℄(A
 2q)j:j0:3 = (A
 2q)j:j0:2[(tj0(A)
 d(�)j0j�j0 )t=tj0(A)
 d(�)j0j�j0 ℄(A
 2q)j:j0:4 = (A
 2q)j:j0:3[(tj0(A)
 d(�)j0+1j�j0 )t=tj0(A)
 d(�)j0+1j�j0 ℄whenever this makes sense, i.e., when 0 � j0 � p and 0 � j � j0 � q, otherwisedon't replae anything, and if j0 = p or j � j0 = q then do only two of thefour replaements. So with index j all j-dimensional piees are replaed bytheir omposites, and (A
 2q)0:0:4 �= 2p 
 2q. The above de�nitions make sensebeause the pasting shemes that are to be replaed an indeed be onsidered assubpasting shemes of the (A
 2q)j:j0:j00 's. The pasting shemes to be replaedare round beause A is globular and beause of lemma 6.8. For the rest offull replaability, I will now desribe the pasting shemes. They onsist of ells39



d�0p0 
 d�0q0 in dimensions greater than j, and of the ells of A
 2q in dimensionsless than j, while in dimension j some piees have been replaed already. The Eand B relations make that the d�0p0 
 d�0q0 's relate as in 2p
 2q, the ells of A
 2qrelate as in a 
 2q, and their mutual relations are suh that the piees at aslow dimensional ells of 2p 
 2q. The omposites are labeled by the appropriateomposites, and the ells are labeled by their old labels. One I've shown fullreplaability the labeled pasting shemes above are generated pastings beausethis is a loal property.Now for replaability. Elementary replaability is immediate from the abobedesription of the B and E relations. There are no diret loops of dimensionj+1 in (A
 2q)j:j0:j00 beause if there were one not meeting (: : :)t this would bea diret loop in the previous step as well, and if there were one meeting (: : :)t,any p-dimensional x0 2 eX instead of it would make it into a diret loop in theprevious step. There are no diret loops of dimension j, whih follows froma ombination of tables 1 and 2. There are no diret loops in dimensionsgreater than j +1 and less than j sine suh a loop is also a loop in 2p
 2q andA
 2q respetively.Finally, ondition (iv) of loop-freeness is proven as in the proof of proposition6.7. 2Given an appropriate realization (A; fi) in C , I need an appropriate realiza-tion of a globular pasting sheme having the same omposite. Take (Gl(A); fi),where the identities are realized by the omposite of the subpasting shemesthey are identities on (see setion 11 of [5℄). Having de�ned this, a generatedpasting (A; fi)
d gives rise to a generated pasting (Gl(A); fi)
d. Note that inthis latter pasting sheme all ells are labeled by atual generators, not by formalidentities!Lemma 7.2 For every appropriate realization (A; fi) of a p-dimensionalpasting sheme A in C and every q-dimensional d 2 D with p+q � n, (A; fi)
dis equivalent to (Gl(A); fi)
 d.Proof. The idea is to use the globularization proedure for A, as desribedin setion 8 of [5℄, as basis for the insertions that have to our. For every stepof the globularization proedure for A there will be many steps here, in orderto ensure the result is of the orret form. Finally, the labeling of the formalidentities will be hanged in atual labels.De�ne (A
2q)(�1):0:4 = A
2q , and for 0 � m � p = dim(A) and q � q0 � 0,40



de�ne(A
 2q)m:q0:1 = (A
 2q)m:(q0+1):4[idsm(A)
d�q0 :Wm:q0:1℄ if q0 < q= (A
 2q)(m�1):0:4[idsm(A)
d�q0 :Wm:q0:1℄ if q0 = q(A
 2q)m:q0:2 = (A
 2q)m:q0:1[idsm(A)
d+q0 :Wm:q0:2℄(A
 2q)m:q0:3 = (A
 2q)m:q0:2[idtm(A)
d�q0 :Wm:q0:2℄(A
 2q)m:q0:4 = (A
 2q)m:q0:3[idtm(A)
d+q0 :Wm:q0:2℄;where if q0 = q do only two of the four replaements, and where the witnessingspei�ations Wm:q0:j are suh that the position of the identities is the positionthey are to have in Gl(A)
2q. After having ompleted them-th stage the pastingsheme is anm-th globulatization of A, so (A
2q)p:0:4 �= Gl(A)
2q, as a pastingsheme. The pasting shemes on whih identities are inserted are round beausethey have been made so in the previous steps. For elementary replaability, theonly relevant (m+q0+2)-ells are previously added higher-dimensional identities,whih indeed have the required property. And the intermediate results aresuÆiently like Glm(A) 
 2q to prove them being well-formed loop-free pastingshemes in the same way.Now I need to replae the labels on the identities. I will do that along theway, so this amount to a modi�ation of the above proess, whih has beenpresented nontheless for reasons of larity. The idea is to add another bunh ofidentities, so that if the label on idX is to be replaed, the subpasting shemeX is ompletely surrounded by identities. Then X an be replaed by some2p0 
 2q0 , on whih an identity an be inserted, whih an then be relabeledto some id
d. Then the whole thing an be undone beause this relabelingdoesn't hange the pasting sheme but only a label, and �nally it is ensuredthat the identity whih remains is the one whih has been atually labeled. Soit remains to desribe when and where these extra identities are inserted. Torelabel idsm(A)
d�q0 , say, other ases are analogous, steps m:q00:1 and m:q00:2 arerepeated for all q00 � q0. So this omes down to globularizing this piee for aseond time, and then the piee in between the identities is the isolated opyof X. Going bak, there is an extra identity on X, and now the two identitieswhih have been inserted �rst an be removed, so that indeed idX remains. 2Proposition 7.3 For every appropriate realization (A; fi) of a p-dimensionalwell-formed loop-free pasting sheme A in C and every q-dimensional d 2 D withp+ q � n, (A; fi)
 d is equivalent to f(A)
 d.41



Proof. Combine lemma 7.1 with lemma 7.2. 2Now I an prove all the assumptions in one dimension higher.Lemma 7.4 Under the above assumptions, for every appropriate realization(A; fi) of a p-dimensional well-formed loop-free pasting sheme A in C and everyq-dimensional d 2 D with p+ q � n+ 1, the labeled pasting sheme (A; fi) 
 dis a generated pasting.Proof. I have to show that for every a 
 d�q0 2 A 
 2q,�dom(R(a
 d�q0));L(A;fi)
djdom(R(a
d�q0 ))� is equivalent to (dom(2p0 
 2q0);Lfp0(a)
d�q0 (d)jdom(2p0
2q0 )). This an be done by modifying the onstrutions ofthe previous two lemmas in order to make it work on dom(R(a)
 2q0), by doingonly the insertions and the replaements whih take plae there. This wholeonstrution then uses only generators, generated pastings and relations up todimension n. 2Lemma 7.5 Under the above assumptions, for every appropriate realization(A; fi) of a p-dimensional round pasting sheme A in C and every q-dimensionald 2 D with p+ q � n+1, the labeled pasting sheme ((A; fi)
 d)t is a generatedpasting.Proof. The only thing left to hek is the labeling of the top-dimensionalell. So the question is, whether (dom(A
2q);L(A;fi)
djdom(A
2q)) is equivalentto (dom(2p 
 2q);Lf(A)
djdom(2p
2q)). For this the same modi�ation of on-strutions of lemmas 7.1 and 7.2 as in the previous lemma works. Note, bythe way, that roundness of A is needed to make any sense out of (A
2q)t, usinglemma 6.8. 2Lemma 7.6 Under the above assumptions,for every appropriate realization(A; fi) of a p-dimensional round pasting sheme A in C and every q-dimensionald 2 D with p+ q � n+ 1, the generated pasting (A; fi)
 d is fully replaable in(A; fi)
 d.Proof. By lemma 5.9 of [5℄ only roundness needs to be heked, but this holdsbeause of lemma 6.8. 242



Lemma 7.7 Under the above assumptions, for every (p � 1)-dimensional  2C and q-dimensional d 2 D with p+ q � n, the labeled pasting sheme idl
d isa generated pasting.Proof. I need prove that dom(id
d) is equivalent to 
 d. As before, thisan be done by inserting identities and relabeling them, whih in this ase iseasier beause in relabeling there's no need to isolate beause the relevant ellsare already of the orret form. 2Lemma 7.8 Under the above assumptions, for every (p � 1)-dimensional  2C and q-dimensional d 2 D with p+ q � n, the generated pasting id
d is fullyreplaable in id
d.Proof. 2p 
 2q is round beause 2p is. 2Thus, relations in dimension n+ 1 an now be de�ned by:� for every appropriate realization (A; fi) of a p-dimensional round pastingsheme A in C and every q-dimensional d 2 D with p+ q � n+1, there isa relation between (A; fi)
 d and ((A; fi)
 d)t,� for every (p� 1)-dimensional  2 C and q-dimensional d 2 D with p+ q �n+ 1, there is a relation between id
d and idl
d,and the same for (2p 
B;L
(B;gi)).7.3 !-funtorialityGiven an !-funtor g : C ! C 0 , de�ne a family of realizations (GC ;D ; (g 
 D )i)of (GC ;D ; RC ;D ) in C 0 
 D by(g 
 D )i(
 d) = g() 
 dwhere the latter is a generator hene a generated pasting, by lemma 7.3 of [5℄, inthe pasting presentation (GC 0 ;D ; RC 0 ;D ) of C 0 
 D . This family of realizationsrespets relations:(g 
 D )((A; fi)
 d) == (A; g Æ fi)
 dequivalent to (g Æ f)(A)
 d= g(f(A)) 
 d beause g is an !-funtor= (g 
 D )(f(A) 
 d);43



and it respets labels:dom((g 
 D )i(
 d)) = dom(g() 
 d)= (g 
 D )(dom(
 d)) beause both are ompos-ite of the same appropriaterealization of dom(2p
2q).Thus this de�nes an !-funtor g 
 D : C 
 D ! C 0 
 D .8 Assoiativity and other properties of the tensorprodutVarious properties of the tensor produt of !-ategories neessary for amonoidal struture are heked. Furthermore, there's a brief disussion on du-ality, the example of tensoring two standard ubes as !-ategories, and a verybrief exursion into knot theory.8.1 AssoiativityFor assoiativity of the tensor produt, I need to ompare C 
 (D 
 E ) with(C 
 D ) 
 E . To this end, de�ne an !-ategory C 
 D 
 E by the followingpasting presentation (GC ;D ;E ; RC ;D ;E ): generators are labeled pasting shemes(2p
 2q
 2r;L
d
e) with obvious labeling, and relations are dimensionwise, asin the pasting presentation for C 
 D .Lemma 8.1 There is a anonial isomorphism between C 
 (D 
 E ) andC 
 D 
 E , and also between (C 
 D ) 
 E and C 
 D 
 E .Proof. Of ourse, this anonial isomorphism is the unique one whih ex-ists beause both !-ategories satisfy the same universal property, i.e., I willshow that respetable families of realizations of (GC ;D
E ; RC ;D
E ) orrespond torespetable families of realizations of (GC ;D ;E ; RC ;D ;E ). The other ase will besimilar.So onsider a respetable family of realizations (GC ;D
E ; 'i) of (GC ;D
E ;RC ;D
E ) in F. De�ne a family of realizations (GC ;D ;E ; 'i) of (GC ;D ;E ; RC ;D ;E ) inF by 'p+q+r(
 d
 e) = 'p+q+r(
 (d
 e)):44



To show this family of realizations respets labels, de�ne for every  2 C , d 2 Dand e 2 E a generated pasting (2p
2q
2r;L
d
e) in (GC ;D
E ; RC ;D
E ), whered�0p0 
 d�0q0 
 d0r0 gets labeled by d�0p0 ()
 (d�0q0 (d)
 d0r0 (e)). Then:dom('p+q+r(
 d
 e)) == dom ('p+q+r(
 (d
 e)))= '(dom(
 (d
 e))) beause (GC ;D
E ; 'i) respets labels= '(dom(2p 
 2q 
 2r;L
d
e)) beause of proposition 7.3= '(dom(
 d
 e)) beause both are omposite of the sameappropriate realization.To show it respets relations, de�ne for every  2 C , (B; gi) an appropriaterealization of a round pasting sheme B in D and e 2 E , a generated pasting(2p 
 B 
 2r;L
(B;gi)
e) in (GC ;D
E ; RC ;D
E ), where d�0p0 
 b
 d0r0 gets labeledby d�0p0 ()
 (gq0(b)
 d0r0 (e)). Then:'(
 (B; gi)
 e) == '(2p 
B 
 2r;L
(B;gi)
e) beause both are ompos-ite of the same appropriaterealization of 2p 
 b
 2r= '((2p 
B 
 2r)t;L(
(B;gi)
e)t) beause this is a relationin RC ;D
E sine B 
 2r isround= ' ((
 (B; gi)
 e)t) ;or, more oneptually,'(
 (B; gi)
 e) == '(2p 
B 
 2r;L
(B;gi)
e)= '(2p 
 2q 
 2r;L
g(B)
e) by the analog of proposition 7.3= 'p+q+r(
 g(B)
 e)= ' ((
 (B; gi)
 e)t) beause the latter has only one top-dimensional ell,and'(
 idd
e) = '(
 (idd
e))= '(
 idld
e) by a relation in RD ;E= '(
 idd
e)= '(idr
(d
e))) by a relation in RC ;D
E= '(2p 
 2q+1 
 2r;Lidm
d
e)= '(idm
d
e); 45



and the other relations are done similarly.Conversely, onsider a respetable family of realizations (GC ;D ;E ; �i) of(GC ;D ;E ; RC ;D ;E ) in F. To de�ne a family of realizations (GC ;D
E ; e�i) of(GC ;D
E ; RC ;D
E ) in F, de�ne for every  2 C and generated pasting (B;LD
EB )in (GD ;E ; RD ;E ) a generated pasting (2p
B;L
LD
EB ) in (GC ;D ;E ; RC ;D ;E ), whered�0p0 
 b gets labeled by d�0p0 ()
d
e when b is labeled by d
e in (B;LD
EB ), andby an identity when b is labeled by an identity in (B;LD
EB ). De�ne (GC ;D
E ; e�i)by e�i �
 (B;LD
EB )� = �(2p 
B;L
LD
EB ):This family of realizations is well de�ned beause the relations in (GD
E ; RD
E )are omponentwise. To show it respets relations, take for every appropriaterealization (B; gi) of a pasting sheme B in D 
 E , say gi(b) represented by(Bb;LD
EBb ), any representative (B;LD
EB ) of g(B). Then:e�(
 (B; gi)) = omposition of �(2p 
Bb;LD
EBb )'s via 2p 
 B= �(2p 
B;L
LD
EB ) beause � is an !-funtor= e�i(
 g(B))= e�i ((
 g(B))t)ande�i(
 id(B;LD
EB )) == �(2p 
B[idB:?℄;L
LD
EB[idB :?℄) by de�nition of identity in!(GD ;E ; RD ;E )= id�(2p
B;L
LD
EB ) beause the top-ell of 2p 
B[idB :?℄is labeled by an identity= ide��
(B;LD
EB )�= e�(id
(B;LD
EB ))= e�(idr
(B;LD
EB )):That it respets labels is left to the reader. 2Lemma 8.2 The tensor produt of !-ategories is assoiative.Proof. Compose the isomorphisms of lemma 8.1 to obtain an isomorphismC 
 (D 
 E) �= (C 
 D ) 
 E . Naturality follows from the uniity in the universalproperty of the !-ategory generated by a pasting presentation. 246



8.2 CohereneLemma 8.3 The assoiativity of the tensor produt of !-ategories is oher-ent.Proof. Analogous to the pasting presentation (GC ;D ;E ; RC ;D ;E ) used in theproof of assoiativity, de�ne a pasting presentation (GC ;D ;E ;F ; RC ;D ;E ;F ) for an!-ategory C 
 D 
 E 
 F. Then in the diagram
C (D (E F ))

(C D )(E F)
((C D )E )F

C ((D E )F ) (C (D E ))F
C D E F

C D (E F) �= (C D )E F�=
C (D E F ) �=

C (D E )F
�= (C D E )F�=

�=
�=

�= �= �=
�=

�= �= �= �=
;

where the 
's have been omitted for reasons of spae, all squares ommutebeause of the uniity of the !-funtor indued by a respetable family of real-izations. So by Ma Lane's oherene theorem [30℄ oherene of the assoiativityisomorphism follows. 2Coherene ould also be dedued by means of proposition 4.2, but thatwouldn't give expliit desriptions of the assoiativity isomorphism and no �llingof the pentagon. 47



8.3 Another pasting presentation for C 
 P(2q)Beause 2q is a free !-ategory the pasting presentation (GC ;P(2q ); RC ;P(2q )) forC 
P(2q ) as given above an be simpli�ed, in that it doesn't use all ells of P(2q)but only generators. This is possible beause the set of generators inludes theglobes.So the generators for a pasting presentation (GC ;2q ; RC ;2q ) are  
 d�0q0 for 2 C and q0 � q. For every appropriate realization (A; fi) of a round pastingsheme A in C , there is de�ned a relation between (A; fi)
d�0q0 and ((A; fi)
d�0q0 )t,and for every  2 C , there is de�ned a relation between id
d�0q0 and idl
d�0q0 .Lemma 8.4 (GC ;2q ; RC ;2q ) is a pasting presentation for C 
P(2q).Proof. The idea is that identities in the !-ategory P(2q) don't matterbeause of the relations between formal and atual identities in (GC ;2q ; RC ;2q ).Details are left to the reader. 28.4 Unit for 
The pasting presentation (GC ;20 ; RC ;20 ) of C 
 20 is preisely the standard pre-sentation of C . So C 
 20 �= C via a anonial isomorphism, and beause also20
 C �= C , 20 = I0 is the two-sided unit for the tensor produt of !-ategories.Proposition 8.5 The tensor produt 
 and unit I0 give !-Cat the strutureof a monoidal ategory.Proof. Assoiativity and oherene of the tensor produt have been donealready in lemmas 8.2 and 8.3, and the axioms for the unit are easy. 28.5 DualityThe three di�erent dualities of ubial sets, desribed in setion 2, give rise tothree dualities of !-ategories. This an be seen best by onsidering the ubialset G and its duals, and alulating what are their respetive !-ategorizations.Of ourse, they are all isomorphi to P(2!), but the non-trivial isomorphismsshow what hanges.The transposition duality gives rise to an even duality, whih will be denotedby op, and whih interhanges soure and target of even-dimensional ells. The48



ombined duality gives rise to an odd duality, whih will be denoted by o, andwhih interhanges soure and target of odd-dimensional ells. There's also op owhih omes from the seond duality of ubial sets and whih interhangessoure and targets of all ells, and o op, whih is equal to op o.Before omparing pasting presentations for (C 
D )op and (D op 
C op ), I willompare the pasting shemes (2q)op 
 (2p)op and (2p 
 2q)op. The �rst one isisomorphi to 2q 
 2p, but to see how the ells interat in terms of 2q and 2p,whih will be important for the omparison of pasting presentations followingshortly, it will be onsidered to onsist of symbols (d�q )op
(d�p )op, with relations((d�q )op 
 (d�p )op; y) 2 Eij if and only if one of the following:1. y = (d(�)q+1q�1 )op 
 (d�p )op,2. y = (d�q )op 
 (d(�)q+p+1p�1 )op,3. y = (d(�)q+1q�1 )op 
 (d(�)q+p+1p�1 )op.Similarly, (2p 
 2q)op onsists of symbols (d�p 
 d�q )op with relations ((d�p 
d�q )op; y) 2 Eij for i > j if and only if one of the following:1. y = d�p 
 d(�)p+q+1+pq�1 ,2. y = d(�)p+q+1p�1 
 d�q ,3. y = d(�)p+q+1p�1 
 d(�)p+q+1+pq�1 .And indeed, there is an obvious isomorphism given by (d�q )op 
 (d�p )op 7! (d�p 
d�q )op whih preserves the relations sine 2p is even.The pasting presentation (GC ;D ; RC ;D ) of C 
D gives rise to a pasting presen-tation (GopC ;D ; RopC ;D ) of (C 
 D )op by taking the op-dual of the generating pastingshemes, and by essentially keeping the same relations, only taking into aountthat they are between dualized generated pastings.Now to ompare (GDop ;C op ; RDop ;Cop ), and (GopC ;D ; RopC ;D ), let (GDop ;Cop ; 'i) bea respetable family of realizations of (GDop ;Cop ; RDop ;Cop ) in E . De�ne a familyof realizations (GopC ;D ; 'i) in E by'i((
 d)op) = 'i(dop 
 op):49



This family of realizations is respetable beausedom ('i((
 d)op)) == dom('i(dop 
 op))= '(dom(dop 
 op)) by respetability of (GDop ;Cop ; 'i)= ' (dom((
 d)op))beause the labelings on the isomorphi pasting shemes oinide:'i�1(d�q�1(dop)
 op) = 'i�1 �(
 d(�)q+1q�1 (d))op� and 'i�1(dop 
 d(�)qp�1 (op)) ='i�1 �(d(�)q+p+1p�1 () 
 d)op�. Conversely, by the same formula a respetablefamily of realizations (GopC ;D ; 'i) in E gives rise to a family of realizations(GDop ;Cop ; 'i) in E whih is respetable for the same reasons. Thus C op 
 D op �=(C 
 D )op . And also for o, whih is proven ompletely analogous.[21℄ also onsiders duality. The even (resp. odd) duality here is the extensionof the weak or vertial (resp. strong or horizontal) duality onsidered there.8.6 Cube tensor ubeI will show that the tensor produt of two ubes is again a ube, as expeted.For a fae x of �p+q, de�ne a labeled pasting sheme (�p0+q0 ;L(�lp
�rq)(x)),where a fae x0 of �p0+q0 , onsidered as a morphism r ! p+ q, is labeled by(2p0 
 2q0 ;LR(�lpÆxÆx0)
R(�rqÆxÆx0)), whih is indeed a generator in GIp;Iq : R(�lp Æx Æ x0) and R(�rq Æ x Æ x0) are elements of Ip and Iq respetively.Given well-formed subpasting shemes P and Q of Ip and Iq respetively,de�ne a subgraded set of �p+q by P �Q = fx 2 �p+qj�lp Æ x 2 P; �rq Æ x 2 Qg.Lemma 8.6 P �Q is a well-formed subpasting sheme of �p+q.Proof. For x0 2 R(x) for x 2 P � Q, �lp Æ x Æ x0 2 P and �rq Æ x Æ x0 2 Qbeause P and Q are subpasting shemes of �p and �q respetively, so P �Q isa subpasting sheme of �p+q.For well-formedness, �rst observe that sm(P �Q) = Sfd�p0(P )�d(�)p0+1q0 (Q)jp0 + q0 = mg, whih an be proven by indution on m. That this is a sub-pasting sheme follows by the same argument as just given, so it remains toshow ompatibility. So let y and y0 of dimension m in sm(P �Q) be suh thatz 2 Em�1(y) \ Em�1(y0). Then for dimension reasons exatly one of the equa-tions �lp Æ y = �lp Æ z and �rq Æ y = �rq Æ z holds, and also for y0. So this givesfour possibilities, two where the equalities our on the same side, left say, twowhere they our on di�erent sides. In the �rst ase well-formedness of Q gives50



�rq Æ y = �rq Æ y0 whih implies, beause of the equalities on the other side, thaty = y0. In the seond ase the exponents give a ontradition, preisely as inthe proof of well-formedness in lemma 5.6. 2De�ne a labeled pasting sheme (P � Q;L�lp
�rq), where an element x ofP � Q is labeled by (2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx)). De�ne also a labeled past-ing sheme (�p0+q0 ;Lid(�lp)
id(�rq)), where a fae x of �p0+q0 is labeled by (2p0 
2q0 ;LR(�lpÆx)
R(�rqÆx)) or by the appropriate identity.Lemma 8.7 In (GIp;Iq ; RIp;Iq), for every fae x of �p+q, dom(�p0+q0 ;L(�lp
�rq)(x)) is a generated pasting, whih is equivalent to dom(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx)).Moreover, for all well-formed subpasting shemes P and Q of Ip and Iqrespetively, dom(P � Q;L(�lp
�rq)) is a generated pasting, whih is equivalentto dom(2p0 
 2q0 ;LP
Q). And dom(�p0+q0 ;Lid(�lp)
id(�rq)) is a generated pastingequivalent to dom(2p0 
 2q0 ;Lid(P )
id(Q)).Proof. Left to the reader as an exerise in manipulating generated pastings.The following pitures indiate what needs to be done in the �rst ase:
dom(�2+1;L(�l2
�r1)(000)) = � �0
+ � 0+
+���
00�
� �0
000
�� 0+
0�� 0+
� � ++
0and dom(22 
 21;LR(�l2Æ000)
R(�r1Æ000)) = � s1(00)
+���
0t1(00)
� 00
�s1(00)
0�� ++
0need to be equivalent, whih an be proven, as before, by omposing from highdimensions downwards. 2Proposition 8.8 Ip 
 Iq �= Ip+q. 51



Proof. The proof will be analogous to the proof of propositions 5.2 and5.9, but a little more involved beause the pasting presentation for Ip 
 Iq hasmore diÆult relations, namely those indued by ompositions in Ip and Iq.Given a respetable family of realizations (GIp;Iq ; 'j) in C , de�ne a realiza-tion (�p+q; fj) in C byfj(x) = 'j(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx))for x a fae of �p+q. Suppose this realization is m-appropriate. Thensm(fm+1(x)) == sm �'m+1(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx))�= '�dom(2p0 
 2q0 ;LR(�lpÆx)
R(�rqÆx))� beause (GIp;Iq ; 'j) re-spets labels= '�dom(�p0+q0 ;L(�lp
�rq)(x))� by lemma 8.7= f (sm(R(x))) beause both are ompos-ite of the same appropriaterealization of sm(R(x)),whih proves that it is (m+ 1)-appropriate.Given an appropriate realization (�p+q; fj) in C , de�ne a family of realiza-tions (GIp;Iq ; 'j) in C by'j(2p0 
 2q0 ;Lid(P )
id(Q)) = f(P �Q)for subpasting shemes P and Q of Ip and Iq respetively, where the right handside is de�ned beause of lemma 8.6.This family respets relations sine the identities are allright, and for ompos-ites 'j(2p0
2q0 ;L(P[P 0)
Q) = f((P[P 0)�Q) and '((2p[2p0)
2q;LP
Q;P 0
Q) =f(P �Q) omposed with f(P 0 �Q) need to be equal, whih is the ase sine fis an !-funtor and omposition in P(�p+q) is union.Now suppose the family respets m-labels. Then if there are identitiesaround, thensm �'m+1(2p0 
 2q0 ;Lid(P )
id(Q))� == sm(f(P �Q))= f(P �Q)= '�dom(�p0+q0 ;Lid(�lp)
id(�rq))� beause both are ompos-ite of the same appropriaterealization of dom(�p0+q0)= '�dom(2p0 
 2q0 ;Lid(P )
id(Q))� by lemma 8.7.52



If there are no identities around, thensm('m+1(2p0 
 2q0 ;LP
Q)) == sm(f(P �Q))= f(sm(P �Q)) beause f is an !-funtor= '�sm(P �Q;L�lp
�rq)� beause both are omposite of the sameappropriate realization of sm(P �Q)= '�dom(2p0 
 2q0 ;LP
Q)� by lemma 8.7.Thus it respets (m+ 1)-labels. 28.7 Triple tensor and Yang-BaxterNow look at 21 
 21 
 21, whih is just the 3-dimensional ube, but with aninteresting labeling:� �� d�0 
d1
d1d1
d1
d�0� d1
d+0 
d1 �� � d1
d1
d13 � d1
d1
d+0�� d1
d�0 
d1 � �� d+0 
d1
d1� :The two-ells in this pasting sheme an now be seen as Yang-Baxter operatorson omposites of 1-ells. The domain of d1
d1
d1 then beomes one side of theYang-Baxter equation, and the odomain the other. Thus from the !-ategorialviewpoint, Yang-Baxter should be a ell, and not an equality.Another way of seeing the ube above as Yang-Baxter is by taking the planardual of domain and odomain, resulting in� �� d1
d1
d13 �� � ;
whih is one of the Reidemeister moves of knot theory [33℄.53



9 Lax-q-transformations and quasi-!-funtors ofmore variablesAnalogous to the quasi-natural transformations of [21℄, and to the m-foldhomotopies of [10℄, I introdue the notion of lax-q-transformation. This notionuni�es the pseudo-natural transformations, modi�ations and perturbations of[20℄, and makes the terminology ready for higher dimensions. It answers asuggestion of [2℄, that ubes an be used as domains for higher homotopies of!-ategories, negatively: it is the globes that are used as suh.Analogous to the quasi-funtors of two and of n variables of [21℄ and to thebimorphisms of [10℄, I introdue the notions of quasi-!-funtor of two and of nvariables.All this will be used in the desription of the internal homs of !-ategoriesin setion 10.9.1 Lax-q-transformationsDe�nition 9.1 A right lax-q-transformation C ! D is an !-funtor C 
P(2q)! D . A left lax-q-transformation C ! D is an !-funtor P(2q)
 C ! D .3 In other words, a right lax-q-transformation is a respetable family of real-izations (GC ;2q ; 'i) of (GC ;2q ; RC ;2q ) in D . I will desribe the data whih giverise to this expliitly.A right lax-q-transformation (GC ;2q ; 'i) from C to D assigns to every p0-dimensional  2 C and every d�0q0 2 2q with p0 + q0 = i an i-ell 'i( 
 d�0q0 ) 2 D ,satisfying:� (respets labels) for every  2 C , the omposite of the realization ofdom( 
 d�0q0 ) indued by 'i, whih is appropriate beause 'i respetsm-labels, is equal to sm('m+1(
 d�0q0 )), as in setion 10 of [5℄,� (respets relations) for every appropriate realization (A; fi) of a roundpasting sheme A in C with omposite f(A), the omposite of the appro-priate (beause 'i respets m-labels) realization of A
 d�0q0 indued by �iis equal to 'i(f(A)
 d�0q0 ), and for every  2 C , 'i+1(id
d�0q0 ) is equal toid'i(
d�0q0 ). 54



Working out the omposite in the �rst ase the ondition beomes thatsm('m+1( 
 d�0q0 )) is the omposite of 'm( 
 d(�)p0+1q0�1 ) and 'm(sp0�1() 
 d�0q0 )with lower dimensional ells, i.e., is the omposite of the appropriate realizationof a pasting sheme having those two m-ells as highest dimensional ells.A partiular onsequene of the seond ase is, beause for every A,(A; fi) 
 d�0q0 is equivalent to f(A) 
 d�0q0 , that the omposite of 'p0+q0( 
 d�0q0 )with 'p00+q(0 
 d�0q0 ) aording to the appropriate realization of the pastingsheme (2p0 Æm 2p00) 
 d�0q0 having these as highest dimensional ells is equalto 'maxfp;p0g+q0(0 Æm 
d�0q0 ). Beause of freeness of P(A), the previous equalityand the ondition on the identity also imply that 'i respets relations!In order to have a short notation for a omposite when there is no need toexpliitly desribe the realization, a omposite like the one above will be denotedby D(2p0 Æm 2p00)
 d�0q0 ; ('p0+q0(
 d�0q0 ); 'p00+q0(0 
 d�0q0 ))E. Thus hA; (fi(a))a2Aiwould denote f(A) for appropriate realization (A; fi).The onsequene of the above observation is that:Lemma 9.2 A right lax-q-transformation C ! D onsists of assignments%q : Cp0 ! Dp0+q and %�0q0 : Cp0 ! Dp0+q0 for every q0 < q, where %q an also bedenoted by %�q , suh that:(i) dom(%�0q0 ()) is the omposite of %(�)p0+1q0�1 () and %�0q0 (sp0�1()) aording todom(2p0
2q0), ie, is equal to �dom(2p0 
 2q0);�%(�)p0+1q0�1 (); %�0q0 (sp0�1())��and dually,(ii) %�0q0 (0 Æm ) is the omposite of %�0q0 () with %�0q0 (0) aording to (2p0 Æm2p00)
 2q0 , i.e., is equal to D(2p0 Æm 2p00)
 2q0 ; (%�0q0 (); %�0q0 (0))E,(iii) %�0q0 (id) is equal to id%�0q0 ().Proof. Translate statements about 'i into statements about %�0q0 . 2In low dimensions this looks as follows. Condition (i) for a right lax-2-55



transformation % and a 1-ell :%+0 (s0()) %+0 ()%�0 (s0())%�1 (s0()) %2(s0())%�0 () %+1 () %+0 (t0())%�0 (t0()) %+1 (t0()) %2()3 %+0 (s0()) %+0 ()%�0 (s0())%�1 (s0())
%�0 () %�1 () %+0 (t0())%�0 (t0()) %+1 (t0())%2(t0()) :

Condition (ii) for a right lax-1-transformation % and 2-ell  and 1-ell 0:�� %�0 ()%1(s1())�� %1(0) �� %1(0Æ0)3 � %+0 ()�%1(t1()) �� %1(0) �� :
9.2 Quasi-!-funtors of two variablesDe�nition 9.3 A quasi-!-funtor of two variables � : (C ; D ) ! E onsists ofa left lax-p-transformation �(;�) : D ! E for every p-dimensional  2 C and aright lax q-transformation �(�; d) : C ! E for every q-dimensional d 2 D , suhthat� �(;�)p(d) = �(�; d)q() def= �(; d),� �(;�)�0p0 = �(d�0p0 ();�)p0 , and� �(�; d)�0q0 = �(�; d�0q0 (d))q0 . 3Proposition 9.4 A quasi-!-funtor of two variables � : (C ; D ) ! E orre-sponds an !-funtor C 
 D ! E .Proof. De�ne a family of realizations (GC ;D ; �i) of (GC ;D ; RC ;D ) in E by �i(
d) = �(; d). Beause the relations in (GC ;D ; RC ;D ) are omponent-wise, the fat56



that the �(;�) and the �(�; d) are lax transformations implies respetabilityof this family. Conversely, given (GC ;D ; �i), de�ne � by the same equation, andrespetability of the family implies that � is a quasi-!-funtor of two variables.The reader may hek the details of this. 2Thus C 
 D is the universal reipient of quasi-!-funtors of two variablesfrom (C ; D ).The above proposition shows that it is not a oinidene that it is not nees-sary to look at tensor of pasting shemes in general, but that the theory foresthat the information an be broken up, so that only pasting shemes A
2q and2p 
B need to be onsidered.9.3 Quasi-!-funtors of n variablesContrary to the two-dimensional ase [21℄, it is not possible to de�ne quasi-!-funtors of more variables indutively, in fat beause the 3-dimensional ube isnot a ommutativity ondition, but a 3-dimensional ell.De�nition 9.5 A (p1; p2; : : : ; pi�1;�; pi+1; : : : ; pn)-lax-transformation C !D is an !-funtor P(2p1)
P(2p2)
: : :
P(2pi�1)
C
P(2pi+1 )
: : :
P(2pn)! D .3 With this terminology, a left lax-p-transformation is a (p;�)-lax-transforma-tion. Note that any tensor produt of globes gives a well-formed loop-free pastingsheme by repeated appliation of the propositions in setion 6.De�nition 9.6 A quasi-!-funtor of n variables onsists of a multiple laxtransformation of the right type for every (n� 1)-tuple of ells of the respetive!-ategories, satisfying obvious ompatibility onditions. 3Proposition 9.7 A quasi-!-funtor of n variables (C 1 ; : : : ; C n) ! D orre-sponds to an !-funtor C 1 
 : : : 
 C n ! D .Proof. Straightforward extension of the proof of proposition 9.4. 29.4 Assoiativity and oherene revisitedThere's a relation between quasi-!-funtors of four variables and oherene ofthe assoiativity of the tensor produt in setion 8, beause in the previous57



proposition it is possible to insert brakets in the tensor produt in all pos-sible ways, without a�eting its validity. On the one hand, this follows fromoherene, see proposition 8.3, on the other hand, it an be proven expliitlyanalogous to the proof of proposition 9.4, and then oherene follows from this.However, both proofs are equally diÆult, sine they make use of the universalproperty of the same pasting presentations.10 Internal homsThe internal hom !-ategories Homr(C ; D ) and Homl(C ; D ) extend [21℄'sFun and Funu respetively. Homl(C ; D ) relates to [10℄'s !-GPD and CRS. Ionly desribe Homr(C ; D ) expliitly, the seond one is dual in a sense that willbe explained in setion 11.As a graded set, Homr(C ; D ) onsists of right lax transformations, where aright lax-q-transformation is of dimension q. From here on I will omit the pre�xsine it will invariably be a right one.10.1 sm and tmThe m-soures and m-targets of a lax-q-transformation % : C ! D are given bysm(%)i(
 d�0q0 ) = tm(%)i(
 d�0q0 ) = %i(
 d�0q0 ) for q � m;sm(%)i(
 d�0q0 ) = ( %i(
 d�m) if q0 = m%i(
 d�0q0 ) if q0 < m;and tm(%)i(
 d�0q0 ) = ( %i(
 d+m) if q0 = m%i(
 d�0q0 ) if q0 < m for q > m;whih are right lax-m-transformations.Or: (sm(%))�0m0() = (tm(%))�0m0() = %�0m0() for q � m(sm(%))�0m0() = � %�m() if m0 = m%�0m0() if m0 < m;and (tm(%))�0m0() = � %+m() if m0 = m%�0m0() if m0 < m for q > m;58



whih are lax-m-transformations in the terms of lemma 9.2. And the on-ditions there are obviously satis�ed sine they are loal in some sense. For alax-2-transformation % and one-dimensional , this looks as follows:� t0(%)0()�s0(%)0() t1(%)1()�� %2()3 � t0(%)0()�s0(%)0()s1(%)1() �� :
So it is not neessary that the domain of a lax-q-transformation % in Homr(C ; D )is in the domain of the ells %q()!10.2 CompositionNow suppose % is a lax-q-transformation, � is a lax-q0-transformation, and thattm(%) = sm(�). Their m-omposition is given by(� Æm %)�00q00 () =8>>><>>>: ��00q00 () for q00 < m,%�m() if �00 = ��+m() if �00 = + for q00 =m,D2p0 
 (2minfq;q00g Æm 2minfq0;q00g); (%�00minfq;q00g(); ��00minfq0;q00g())E for q00 > m.The formula for the omposition in the artesian internal hom !-ategory [C ; D ℄in [35℄ is not orret beause it doesn't make [C ; D ℄ into an !-ategory, whihexplains the di�erent format here.Lemma 10.1 For % a lax-q-transformation, � a lax-q0-transformation, andtm(%) = sm(�), � Æm % is a lax-(maxfq; q0g)-transformation.Proof. For ondition (i),dom((� Æm %)�00q00 ()) = 59



= dom�D2p0 
 (2q00 Æm 2q00); (%�00q00 (); ��00q00 ()�E)if q00 6= m and q00 < minfq; q0g= �dom(2p0 
 (2q00 Æm 2q00));�%(�)p0+1q00�1 (); %�00q00 (sp0�1());�(�)p0+1q00�1 (); ��00q00 (sp0�1()�� by ondition (i) for % and �= �dom(2p0 
 2q00);�(� Æm %)(�)p0+1q00�1 (); (� Æm %)�00q00 (sp0�1())��by the formula for � Æm %;and similar for other q00.For ondition (ii),(� Æm %)�00q00 (0 Æm0 ) = D2p0 
 (2q00 Æm 2q00); (%�00q00 (0 Æm0 ); ��00q00 (0 Æm0 ))Esay, whih needs to be= D(2p00 Æm0 2p0)
 2q00 ; (� Æm %)�00q00 (); (� Æm %)�00q00 (0))E :Perhaps this ould be done by using (2p00 Æm0 2p0) 
 (2q00 Æm 2q00), provided it isa well-formed loop-free pasting sheme, but I don't want to hek this. It isnot neessary, sine the above omposites an be obtained as the omposite ofsome appropriate realization in D of some pasting sheme whih an be seenas a generated pasting in the standard presentation of D and in that respet isequivalent to the two generated pastings desribed above, whih explains theiromposites being equal. This pasting sheme is (2p00 Æm0 2p0) 
 (2q00 Æm 2q00)with lots of identities inserted, but that's not the way it is obtained: it is2p0 
 (2q00 Æm 2q00) with identities inserted and with ells split up, and it is(2p00 Æm0 2p0) 
 2q00 with identities inserted and with ells split up. The highestdimensional ells of this resulting pasting sheme are realized by identities andby the ells %�00q00 (), %�00q00 (0), ��00q00 () and ��00q00 (0). 2�� �+1 () ��s0(�Æ0%)0() %+1 () �� (�Æ0%)2()3 � t0(�Æ0%)0()� ��1 () �� %�1 () ��60



10.3 IdentityFor a lax-q-transformation %, de�ne id% by(id%)q+1() = id%q()(id%)�0q0 () = %�0q0 () for q0 � qLemma 10.2 For lax-q-transformation %, id% is a lax-(q + 1)-transformation.Proof. For ondition (i),dom((id%)q+1()) = dom(id%q())= %q()= Ddom(2p 
 2q+1);�%q(); id%q(sp0�1())�E ;and for ondition (ii) a similar argument as in the previous lemma works. 210.4 !-ategoryProposition 10.3 Homr(C ; D ), with the above de�ned operations, is an !-ategory.Proof. The elementary properties of sm and tm are immediate beause theyare already inorporated in the data for a lax-q-transformation.For identity(� Æm id%)q+1() = 
2p0 
 (2q+1 Æm 2q0); (id%q(); �q0())�= (id�Æm%)q+1();and similarly for other ases.Assoiativity and interhange law follow beause, for example, ((� Æm �) Æm%)maxfq;q0;q00g() and (� Æm (� Æm %))maxfq;q0;q00g() are both equal to the ompos-ite 
2p0 
 (2q Æm 2q0 Æm 2q00); (%q(); �q0(); �q00())�, and similarly for interhange.The reader onvines herself or himself of the validity of this statement!Finally, the other omposition axioms are immediate beause they are inor-porated in the de�nition of omposition. 261



10.5 !-funtorialityGiven an !-funtor g : D ! D 0 , de�ne an !-funtor g� : Homr(C ; D ) !Homr(C ; D 0) by g�(%)�0q0 () = g(%�0q0 ()):Indeed, it is ompletely straightforward to show that g�(%) is a lax-q-transforma-tion if % is, and it is only slightly less straightforward to show that g� is an!-funtor, in both ases making full use of g being an !-funtor, in the sensethat g ommutes with omposites of appropriate realizations.Given an !-funtor f : C 0 ! C , de�ne an !-funtor f� : Homr(C ; D ) !Homr(C 0 ; D ) by f�(%)�0q0 () = %�0q0 (f()):And indeed, it is ompletely straightforward to show that f� is an !-funtor, andit is only slightly less straightforward to show that f�(%) is a lax-q-transformationif % is.11 The adjuntions between the tensor produtand the internal homsI prove the adjuntions and mention some onsequenes, among whih du-alities relating both internal homs.11.1 The orrespondeneThere are two adjuntions to onsider: C 
 � a Homr(C ;�) and � 
 D aHoml(D ;�). I will do the �rst one in some detail, the seond one is analogous.Given an !-funtor ' : C 
 D ! E , i.e., a respetable family of realizations(GC ;D ; 'j) in E , de�ne an !-funtor ' : D ! Homr(C ; E ) by'(d)�0q0 () = 'p+q0(
 d�0q0 (d)):Indeed, '(d) is a lax-q-transformation, for example62



dom('(d)�0q0 ()) == dom�'p+q0(
 d�0q0 (d))�= '�dom(
 d�0q0 (d))� beause (GC ;D ; 'j) respets labels= Ddom�2p 
 2q0 ;�'p+q0�1(dom()
 d�0q0 (d)); 'p+q0�1(
 d(�)p+1q0�1 (d))��E= Ddom�2p 
 2q0 ;�'(d)�0q0 (dom()); '(d)(�)p+1q0�1 ()��E ;so ondition (i) of lemma 9.2 holds, and the other onditions are similar. And' is an !-funtor, for example'(d0 Æm d)�0q0 () == 'p+q0(
 d�0q0 (d0 Æm d))= '�
 (d�0q0 (d0) Æm d�0q0 (d))� if q0 6=m= '�2p 
 (2q0 Æm 2q0);L
d�0q0 (d);
d�0q0 (d0)� beause these generatedpastings are equivalent= D2p 
 (2q0 Æm 2q0); ( 
 d�0q0 (d);  
 d�0q0 (d0))E= D2p 
 (2q0 Æm 2q0); ('(d)�0q0 (); '(d0)�0q0 ())E= ('(d0) Æm '(d))�0q0 ();and the other onditions are easy.In the other diretion, given an !-funtor � : D ! Homr(C ; E ), de�ne an!-funtor e� : C 
 D ! E , i.e., a respetable family of realizations (GC ;D ; e�j) inE by e�j(
 d) = �(d)q():Indeed, (GC ;D ; e�j) respets labels:sm(e�m+1(
 d)) = dom(�(d)q())= Ddom(2p 
 2q);��(d)q(dom()); �(d)(�)p+1q�1 ()�E= Ddom(2p 
 2q);��(d)q(dom()); �(d(�)p+1q�1 )q�1()�E= e�(dom(
 d));and it respets relations: 63



e�((A; fi)
 d) = DA
 2q; (e�(fi(a)
 d))a2AE= 
A
 2q; (�(d)q(fi(a)))a2A�= �(d)q(f(A)) beause �(d), onsideredas a family of realizations,respets relations= e�(f(A)
 d);ande�(
 (B; gi)) = D2p 
B;�e�(
 gi(b))�b2BE= 
2p 
B; (�(gi(b))q())b2B�= �(g(B))q() beause � is an !-funtor= e�(
 g(B));and similarly for the relations with respet to identities.11.2 NaturalThe orrespondene is natural in D beause for g : D ! D 0 ,Dg !-Cat(C 
 D ; E ) !-Cat(D ;Homr(C ; E ))eD 0 !-Cat(C 
 D 0 ; E )�Æ(C
g) !-Cat(D 0 ;Homr(C ; E ))e �Æg
Figure 3: naturality in D(e� Æ (C 
 g))( 
 d) = e�(
 g(d))= �(g(d))q()= ((� Æ g)(d))q()= (̂� Æ g)(
 d);and it is natural in E beause for h : E ! E 0 ,(h Æ e�)(
 d) = h(�(d)q())= h�(�(d))q()= (h� Æ �)(d)q()= ^(h� Æ �)(
 d):64



Eh !-Cat(C 
 D ; E )hÆ� !-Cat(D ;Homr(C ; E ))e h�Æ�E 0 !-Cat(C 
 D ; E 0) !-Cat(D ;Homr(C ; E 0 ))eFigure 4: naturality in ENote that beause the orrespondene is an isomorphism this also makesnatural in D and E .Theorem 11.1 The internal homs Homr and Homl give the monoidal ate-gory !-Cat the struture of a monoidal bilosed ategory. Moreover, this stru-ture oinides with the monoidal bilosed struture of proposition 4.1.Proof. The adjuntions have just been proven, and the moreover part isimmediate from propositions 4.2 and 8.8. 211.3 Strength of the adjuntionsOne of the onsequenes of the monoidal bilosed struture is that the naturalorrespondene !-Cat(C 
 D ; E ) �= !-Cat(D ;Homr(C ; E )) above is in fat the0-dimensional reetion of a orrespondene between internal Homs, see e.g.[14℄. This an also be seen diretly:Homr(C 
 D ; E )q �= !-Cat(C 
 D 
 2q; E )�= !-Cat(D 
 2q;Homr(C ; E ))�= Homr(D ;Homr(C ; E ))q :It is left to the reader to hek this indeed gives an !-funtor between the two.11.4 MixedIt is also possible to relate both internal homs:Homl(C ;Homr(D ; E ))r �= !-Cat(2r 
 C ;Homr(D ; E ))�= !-Cat(D 
 2r 
 C ; E )�= !-Cat(D 
 2r;Homl(C ; E ))�= Homr(D ;Homl(C ; E ))r :65



11.5 DualityAs a onsequene of the adjuntion, there are also duals of the internal homs:!-Cat(C ;Homr(D ; E )op ) �=�= !-Cat(C op ;Homr(D ; E ))�= !-Cat(D 
 C op ; E ) by the adjuntion for Homr�= !-Cat((D 
 C op)op; E op)�= !-Cat(C 
 D op ; E op )�= !-Cat(C ;Homl(D op ; E op)) by the adjuntion for Homl:So one internal hom ould have been de�ned in terms of the other byHoml(C ; D ) = Homr(C op ; D op )op, and by Homr(C o ; D o )o. Another onse-quene is that Homr(C op o; D op o) �= Homr(C ; D )op o.12 !-Cat is an (!-Cat)
-CATegoryAs shown in [28℄, a monoidal losed struture on a ategory makes this at-egory an enrihed ategory over itself. I desribe the resulting struture for oneof the internal homs on !-Cat, namely the right one. This struture extendsthe enrihment whih makes 2-Cat into a (2-Cat)
-CATegory [21℄.There is an !-funtor � : Homr(C ; D ) 
 Homr(D ; E ) ! Homr(C ; E ) whihan be onsidered as \horizontal" omposition of lax-q-transformations. In fat,� = ^(idHomr(D ;E )) Æ � ^(idHomr(C ;D ) )
Homr(D ; E )�, and this ensures that � is an!-funtor, and that � is natural in all three variables.To desribe �, let % be a right lax-q-transformation C ! D , � a right lax-r-transformation D ! E , and  a p-dimensional ell of C . Then�(%; �)Æ0s0() = *2p 
 dÆ0s0(2q 
 2r);��0r0 (%�0q0 ())�d�0q0
d0r02dÆ0s0 (2q
2r)+ :In partiular, �(%; �)q+r() = �r(%q()), and the domain of this is a ompositionof (�(�)q+1r�1 Æ%q)() and (�r Æ%�q�1)(). Other partiular instanes are when q = 0in whih ase �(%; �) = %�(�), and when r = 0 in whih ase �(%; �) = ��(%),see setion 10.The !-funtor � : 20 ! Homr(C ; C ) orresponds, under the adjuntion, tothe anonial isomorphism 20 
 C �= C , and as suh it is�(d0) = (id : C ! C ):66



Finally, a piture of �(%; �)4() and all its faes for % a right lax-2-transforma-tion, � a right lax-2-transformation, and  a 2-dimensional ell of C . As it is arealization of 22 
 22 
 22 in E , I will give the names of the ells in this pastingsheme, the ell d�p 
 d�q 
 dr being realized by �r �%�q (d�p ())�.

A1
A2 A3

A4
A5 A6

d�1 
 d2 
 d2 5
d2 
 d2 
 d+1 5

d2 
 d�1 
 d25 d2 
 d2 
 d�15

d2 
 d+1 
 d25 d+1 
 d2 
 d25
d2 
 d2 
 d26

where the Ai are given by: 67



A1:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B153
3

B1933
B183 3

B173 3
B263

3
B25 33

B233 3B22 33
B16 33d�1 
d+1 
d+13

B21 33B243 3
B203 3 d�1 
d�1 
d+13

d�0 
d2
d24 d2
d�0 
d24
d2
d2
d�04

d�1 
d+1 
d24
d�1 
d2
d+14

d2
d�1 
d+14
in whih B18 3B21 3 B22 33 B19B23 3d2
d�0 
d24 = B32 3B21 33 B26 3 B19B25 3d2
d�0 
d24 ;68



A2:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B273 3

B243 3
B203 3

B313 3
B2833 B1933B263

3
B25 33

B303
3B29 333

B323 3B21 333 d+0 
d2
d24d2
d�0 
d24d2
d2
d�04

d�1 
d2
d�14
d�1 
d�1 
d24

d2
d�1 
d+14
in whih B30 3B32 3 B26 33 B7B19 3d+0 
d2
d24 = B29 3B32 33 B6 3 B7B18 3d+0 
d2
d24and B30 3B26 33 B7 3 B8B19 3d+0 
d2
d24 = B33 3B26 3 B13 33 B8B14 3d+0 
d2
d24 ;69



A3:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B273 3
B333
3 B383

3 B393 3
B343 3

B313 3
B2833 B3533 B3633 B373

33
B30 3

3
B29 33

d+0 
d2
d24
d2
d2
d�04

d2
d+0 
d24

d�1 
d2
d�14
d2
d�1 
d�14

d+1 
d�1 
d24
in whih B31 3B2 33 B34 3 B35B33 3d2
d2
d�04 = B28 3B2 3 B27 33 B35B45 3d2
d2
d�04and B31 3B1 3 B2 33 B34B33 3d2
d2
d�04 = B20 3B1 33 B24 3 B34B9 3d2
d2
d�04 ;70



and in whih B35 3B33 3 B34 33 B36B39 3d2
d+0 
d24 = B45 3B33 33 B46 3 B36B38 3d2
d+0 
d24 ;A4:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23B333

3
B403

3
B4133B453 3

B383
3

B4633
B4233

B393 3
B3633

B443 3B433 3d+1 
d+1 
d�13
B373

3d+1 
d�1 
d�13 d+0 
d2
d24
d2
d2
d+04

d2
d+0 
d24
d2
d+1 
d�14

d+1 
d2
d�14
d+1 
d�1 
d24

in whih B45 3B33 33 B46 3 B42B38 3d2
d+0 
d24 = B41 3B33 3 B38 33 B42B54 3d2
d+0 
d24 ;71



A5:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23

B153
3
B473

3 B4833
B1933

B183 3
B173 3B513 3B523 3B533 3B49 333

B50 33
B16 333d�0 
d2
d24

d2
d2
d+04
d2
d�0 
d24

d�1 
d+1 
d24
d2
d+1 
d+14

d+1 
d2
d+14
in whih B19 3B50 3 B51 33 B14B52 3d2
d2
d+04 = B23 3B50 33 B53 3 B14B49 3d2
d2
d+04and B19 3B51 33 B14 3 B8B52 3d2
d2
d+04 = B7 3B51 3 B45 33 B8B43 3d2
d2
d+04 ;72



and in whihB17 3B16 33 B51 3 B19B50 3d�0 
d2
d24 = B18 3B16 3 B22 33 B19B23 3d�0 
d2
d24 ;A6:

B1
B2 B3 B4 B5 B6 B7

B8
B9 B10 B11 B12 B13 B14

d�0 
d�1 
d2 3
d2
d+1 
d�0 3

d�0 
d2
d�1 3 d�1 
d+0 
d23 d�1 
d+1 
d�13 d�1 
d2
d+03 d2
d�0 
d�13
d2
d�1 
d+03

d2
d+0 
d+1 3 d+1 
d2
d�03 d+1 
d�1 
d+13 d+1 
d�0 
d23 d+0 
d2
d+13
d+0 
d+1 
d23B333

3
B403

3
B4133

B473
3

B4833
B543
3

B4233
B443 3B433 33
B523 3B533 3B49 333

d�0 
d2
d24 d2
d2
d+04d2
d+0 
d24 d2
d+1 
d�14
d+1 
d+1 
d24

d+1 
d2
d+14
in whih B33 3B1 3 B9 33 B40B47 3d�0 
d2
d24 = B2 3B1 33 B3 3 B40B15 3d�0 
d2
d2473



and B33 3B9 33 B40 3 B54B47 3d�0 
d2
d24 = B40 3B9 3 B10 33 B54B48 3d�0 
d2
d24 ;and where the Bj are as follows:B1 � �� � �� �
B2 � �� � �� �

B3 � �� � �� �B4 � �� � �� �
B5 � �� � �� �

B6 � �� � �� �B7 � �� � �� �
B8 � �� � �� �

B9 � �� � �� �B10 � �� � �� �
B11 � �� � �� �

B12 � �� � �� �74



B13 � �� � �� �
B14 � �� � �� �

B15 � �� � �� �B16 � �� � �� �
B17 � �� � �� �

B18 � �� � �� �B19 � �� � �� �
B20 � �� � �� �

B21 � �� � �� �B22 � �� � �� �
B23 � �� � �� �

B24 � �� � �� �B25 � �� � �� �
B26 � �� � �� �

B27 � �� � �� �75



B28 � �� � �� �
B29 � �� � �� �

B30 � �� � �� �B31 � �� � �� �
B32 � �� � �� �

B33 � �� � �� �B34 � �� � �� �
B35 � �� � �� �

B36 � �� � �� �B37 � �� � �� �
B38 � �� � �� �

B39 � �� � �� �B40 � �� � �� �
B41 � �� � �� �

B42 � �� � �� �76



B43 � �� � �� �
B44 � �� � �� �

B45 � �� � �� �B46 � �� � �� �
B47 � �� � �� �

B48 � �� � �� �B49 � �� � �� �
B50 � �� � �� �

B51 � �� � �� �B52 � �� � �� �
B53 � �� � �� �

B54 � �� � �� �AknowledgementThe author thanks Andy Tonks, Mike Johnson, the partiipants of \Investiga-tions on Multiple Categories" (Bangor, june 1993) and Ieke Moerdijk for valuabledisussions.
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