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Professor Peter van Nieuwenhuizen is honoured today:
"for the discovery of supergravity theory and research in its sub-

sequent development. Prior to the discovery of supergravity, he
made important contributions to the understanding of the quan-
tum behaviour of ordinary gravity as well as matter coupled to
gravity, through a systematic study of their divergence structure.
The search for a gravity theory with better quantum behaviour, by
inclusion of fermionic fields, eventually led to a highly non-trivial
fusion of supersymmetry with gravity, culminating in the semi-
nal paper with Sergio Ferrara and Daniel Z. Freedman in 1976,
where the first supergravity theory was proposed. This theory com-
bines, in a non-trivial fashion, the spin 2 graviton with a spin 3/2
particle called the gravitino to elevate supersymmetry to a local
gauge symmetry. This led to an explosion of interest in quan-
tum gravity and it transformed the subject, playing a significant
role in very important developments in string theory as well as
Kaluza-Klein theory. Professor van Nieuwenhuizen played a ma-
jor role in the development of the subject, with his studies on the
quantum aspects of supergravity, coupling of supergravity to mat-
ter, super Higgs effect, extended supergravity theories, conformal
supergravity and many other aspects of the theory. In particular,
he contributed to the construction of the ten-dimensional Einstein-
Yang-Mills supergravity, which has been studied intensely in recent
years as the low energy limit of the ten-dimensional heterotic string
theory. Currently any grand unified theory incorporating gravity
is based on a supergravity theory coupled to matter in four dimen-
sions. These theories emerge naturally from the compactifications
of the ten-dimensional heterotic string."



Professor Peter van Nieuwenhiuzen was born in Utrecht (The
Netherlands) on 26 October 1938. He studied both physics and
mathematics at the University of Utrecht, and in 1971 he ob-
tained his Ph.D in physics with a thesis on Radiative Corrections
to Muonic Processes under the supervision of Prof. M.Veltman.
From 1965 to 1969 Professor van Nieuwenhuizen was Postdoctoral
Fellow at the Dutch National Science Foundation. From 1969 to
1971 he was Fellow at CERN in the Theory Division and from
1971 to 1973 Juliot Curie Fellow at the University of Paris, Orsay
in France. From 1973 to 1975 he was Research Associate at Bran-
deis University at Waltham, Massachusetts. From 1975 to 1985
he held different positions at the State University of New York at
Stony Brook where he is now Leading Professor of Physics. Profes-
sor van Nieuwenhuizen is editor of the Journal of Modern Physics
A, and was editor of the Journal of Mathematical Physics and
Classical and Quantum Gravity. In 1985 he was appointed Teyler
Professor of Physics at Leiden University. He is the author of 250
scientific publications; his Physics Report on Supergravity was on
the CERN list of the 20 most referenced publications during the
decade 1980-1990.
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1 Introduction.

It is a very great honor to stand here today, 18 years after the
discovery of supergravity, to receive together with Dan Freedman
and Sergio Ferrara, the Dirac medal and prize for the year 1993. I
would like to thank Abdus Salam for his continuing strong support
over the years of new theoretical ideas such as supersymmetry, su-
pergravity and superstrings. In the early 1980's I helped organize
with him and others a series of schools at Trieste on supergravity
which later became the Trieste Spring Schools on strings. We had
many meetings together and I recall, with pleasure, his intense
interest in supergravity (on which he wrote many papers) as well
as his sense of humor.

Before coming to the topic of my lecture, I would like to ac-
knowledge the gratitude I feel for two other great physicists. First,
Tini Veltman, my Ph.D. advisor: from him I learned to do Feyn-
man graph calculations on the computer which I used in the final
stages of the construction of supergravity. He will shudder at
the thought that he indirectly contributed to the discoveryof su-
pergravity because he has become, with Glashow and others, an
outspoken critic of all super-things, but our friendship has only



increased over the years. As to the validity of their criticism I can
only say that interesting and clean problems in traditional areas
of physics are nowadays very hard to find, whereas the new fields
abound with such problems. The idea that for every boson there
should be a fermionic partner, and vice-versa, is so radical that it
repels some physicists, but it is not more radical than the predic-
tion of Dirac in the 1930's that for every particle there should be
an antiparticle. The recent dramatic precision of the unification of
the running SU(3) x 517(2) x U(l) coupling constants in the min-
imal supersymmetric extension of the standard model (precision
1 in 1000) clearly is an indirect manifestation of supersymmetry,
but what the future of supersymmetry and supergravity will be, I
cannot tell.

The other great physicist I feel very grateful to, is Prank Yang.
Not only is he one of this century's greatest physicists (parity vi-
olation, Yang-Mills theory, Yang-Baxter equation etc.), but also
he has managed to create an institute where, for the almost 20
years I have worked there, a very friendly and constructive atmo-
sphere exists, among professors and students. Quite a difference
from some other places where graduate students and junior fac-
ulty are often viewed as lower forms of life. When I was a high
school student, my father came to me one day with Time mag-
azine, where he had just read that two young Chinese physicists
had been awarded the Nobel prize "for discovering that God is
left-handed". He told me it must be marvelous to make such dis-
coveries. I could hardly have imagined that one day I would be
Frank's colleague and friend.

I realize that a lecture like the one today should not be a tech-
nical lecture on some of one's latest results, but rather a historical
lecture looking back at the times when the discovery was made.
My lecture will be in this vein, and among other anecdotes I will
recall my encounter with Dirac and his reaction to supergravity.

If I would have the time, I would in the second part of my
lecture present a very simple proof of supergravity, much simpler



than our (FvNF) original proof, or the equivalent first-order refor-
mulation of Deser and Zumino (DZ). Now I must refer you to lec-
tures I gave this month in Varenna. Those of you who have never
studied or understood supergravity, will find there the simplest
version I am aware of. It was constructed over the years by com-
bining the ideas of quite a few people (Freedman, Ferrara, myself,
Deser, Zumino, Townsend, Volkov, Soroka, MacDowell, Mansouri,
Chamseddine, West and others). According to this approach, the
action for N = 1 supergravity with a supercosmological constant
can be written in the following Yang-Mills-like form by "gauging"
the super anti-de Sitter algebra

ix (1)

provided one imposes the curvature constraint Rfliy
m(P) — 0. The

curvatures Rlxv
mn(M) and Rfj,v

a{Q) are Yang-Mills curvatures be-
longing to the Lorentz generators Mmn and the supersymmetry
generators Qa of the super-anti de Sitter algebra. One begins
by first "gauging" the latter, i.e., by associating to each genera-
tor (Mmn,QQ,Pm) a gauge field {ufJ,

mn
1i/jfil

a,efi
m) and construct-

ing the corresponding Yang-Mills curvatures. But then one must
impose the constraints Rfll/

m{P) = 0. These constraints are a
gauge choice which leaves only the diagonal subgroup in the di-
rect product of Yang-Mills transformations corresponding to Pm

and general coordinate transformations. They express the spin
connection wM

mn as a complicated composite object depending on
vielbein fields e^m(m = 0,3) and spin 3/2 gauge fields ("graviti-
nos") ip^ia = 1,4). The constraint R^iP) - 0 is also a field
equation, namely the field equation of the spin connection itself,
61/Sujfj"171 — 0. Imposing these constraints (equivalently: solving
this field equation), one recovers the second-order formulation of
FvNF, but a crucial simplification is that one can keep denoting
oj^rnn(e, ip) by the symbol wM

mn (like in the first-order approach of



DZ) without ever expanding it, since the variation 6ii>fl
mn(e, ifi) is

(of course) multiplied by the field equation bljbu}iH
nn which van-

ishes identically. Of course, even with this simplification, the proof
of invariance of the action is not totally trivial. If one does not
impose the constraints and keeps uil

mn as an independent field,
the transformation law of u)fi

mn is nonzero (and complicated) 1,
as first correctly found by Deser and Zumino.

Supergravity can also be written in superspace. Superspace was
invented by Salam and Strathdee as an application of the theory of
coset manifiolds (the coset manifold is here {Pm, Qa, Mmn}/{Mmn}).
In superspace one also needs constraints (on the supertorsions as
first found by Wess and Zumino and solved by Siegel and Gates)
but a simple geometrical derivation of all these constraints has
not yet been found. In the geometrical approach to W gravity
by Schoutens, Sevrin and myself, one has constraints on all curva-
tures, but here corresponding "W-superspace" is even unknown.
Perhaps some of you can solve these intriguing problems.

2 Some historical recollections.

In this section I will recall how and why I came to supergravity.
This is not a historical review where related work is discussed and
compared with my own; rather it contains some personal recollec-
tions.

In the fall of 1975 I came to Stony Brook as an assistant pro-
fessor and thereby became a colleague of Dan Freedman whom I
had met at the Paris summer institute. The previous two years
I had been at Brandeis University, busy applying the then recent
covariant quantization rules of 't Hooft and Veltman to gravity,
in collaboration with Stanley Deser, Marc Grisaru and others.

1 Volkov and Soroka gauged the super Poincare algebra in 1973, and treated
o>M

mn as an independent field, like DZ, but did not impose a constraint or field
equation. Consequently, they found <5wM

mn = 0, which is incorrect, as with
this law the action is not invariant.



These rules dispensed with the problems of operator ordering and
unsolvable constraints which had been complicating the Hamil-
tonian approaches to quantum gravity, and now one could really
calculate. Moreover, unitarity was guaranteed provided one in-
troduced ghosts for the spacetime gauge symmetries, so the main
problem was renormalizability. We had used a background field
formalism to compute the one-loop divergences for all kinds of sys-
tems: the Maxwell-Einstein system, the Dirac-Einstein system,
the Yang-Mills-Einstein system, QED coupled to gravity, gravi-
tational lepton-lepton scattering, etc. Together with the earlier
computation of 't Hooft and Veltman for pure gravity and grav-
ity coupled to scalar fields, the results were uniformly disastrous:
in all these cases (except pure gravity) there were one-loop di-
vergences which were nonrenormalizable. For example, in the
Maxwell-Einstein system, we found, using dimensional regular-
ization, and imposing the Maxwell field equation D^F^ = 0 and
the Einstein field equation G^ = —\T^ (photon)

f=Q 137 „
n - 4 60 '

(The number 137 was curious but it was an integer, not a"1.)
Since the form of this counter term is different from the form of
the terms in the original action, ordinary renormalizability could
not be used to get rid of these divergences, and hence these diver-
gences were unrenormalizable. There were some unexpected or, as
we called it, "miraculous?" cancellations (which we attributed to
the duality invariance of the action and of T^ (photon) = F2

tlv+*
F2^ under SF =*F) due to which F^ only appeared in the combi-
nation TpG (photon) and (D^F^)2 but not as (F2)2, R^pc
or RF2. However, terms with R^2, R2, T^,2, TlluR

fU' and
remained, and these yielded the above quoted final result after us-
ing the classical field equations.

[Of course, a shift g^v —» g^v + aR^ + Pg^R produces in the
Einstein action terms like R^J2, but such field redefinitions do not
modify the on-shell divergences.]



So it seemed, as it does today, that a perturbative approach
to Einstein quantum gravity leads to non-renormalizable diver-
gences. Physically, it was clear that due to the dimensionality of
the gravitational coupling constant «, one was expanding in pow-
ers of nk where k is a momentum, which is not a good expansion
for ultraviolet divergences. That was the end of the story, so it
seemed.

However, although in QED coupled to gravity the infinities did
not cancel, there remained in several people's minds a lingering
doubt that perhaps a magical combination of fields existed for
which the infinities did cancel. The reason for this hope was that
the coefficients of divergences proportional to i?M,,2 or JPM,,2 were
always positive as followed from unitarity (whether due to fermion
loops or boson loops) but that cross terms R^T11" had often an
opposite sign when one used the Einstein equation G^ = —\T^V.
The big question, of course, was what that magical combination
of fields was.

It seemed highly probable that it should have an extra symme-
try, beyond the spacetime symmetries (general coordinate (=Ein-
stein) invariance and local Lorentz invariance), but it was not
clear what that extra symmetry should be. Natural candidates
were: local scale, or perhaps even local conformal symmetry, or
the fermi-bose symmetry (also called supersymmetry, or "susy")
discovered by Gel'fand and Lichtman (1971), Akulov and Volkov
(1973) and Wess and Zumino (1974).2

One problem with the latter symmetry was that so far no local
fermi-bose symmetry had been constructed, only a rigid one. In an
early attempt in 1975, Arnowitt and Nath had proposed a gauge
theory for supersymmetry in superspace ("supergauge theory" as
they called it) which they obtained from Einstein gravity by simply

2 Originally it was called supergauge symmetry, but because the parameter
ea is constant, it was changed to global supersymmetry. However, to avoid
the impression that global meant "defined on the whole manifold", the name
was finally changed to rigid supersymmetry, and that is the present name.



letting everywhere all indices become super indices (with a bosonic
and a fermionic part). This theory has no constraints and as a
consequence it contains higher spin fields and ghosts, and for that
reason it has been abandoned. Yet, I recall that already at that
time two physicists suggested to study the one loop ultraviolet
divergences for spin 3/2 fields coupled to gravity: Salam at the
London conference of 1975, and Veltman. I did not get down to
computing the divergences of this system, although I reported this
as a research project at a conference at Christmas 1975 in Caracas,
because I was a bit tired of all these long calculations which in the
end always gave a negative result.

In the spring of 1976, Dan Freedman came back from the Ecole
Normale Superieure in Paris, where he had studied various topics
in physics, as well as the remarkable food market on the rue Mouf-
fetard. The year before he had with Bernard de Wit applied the
low energy theorems of current algebra to spontaneously broken
supersymmetric systems, in order to find out whether the neutrino
could be the supersymmetric partner of the photon. Their con-
clusion was negative, as it remains today, although the argument
today is not based on current algebra but on the simple fact that
in the standard model they have different SU(3) x 517(2) x U{\)
quantum numbers. (The conjugate Higgs doublet has the same
quantum numbers as the (ve,e~) doublet, but there are no part-
ners for the (Ufj,,iJ,~) and (VT,T~) doublets).

In the very friendly atmosphere of the Institute for Theoretical
Physics at Stony Brook, we had lunch together every day in the
common room, and much of the remaining time was spent near
the coffee machine, which was next to my office. It was only nat-
ural that colleagues would enter my office in a relaxed mood with
a cup of coffee in their hand, and begin discussing physics. In this
way, Dan and I came into scientific contact. Dan suggested that
we start looking into a gauge theory of supersymmetry, which I
immediately fully embraced because it was something new, excit-
ing, and still in the domain of gravity with spinors where I had



spent so much time. In this way we started working together. In
Paris, Dan had also met Sergio Ferrara, who was an expert in rigid
supersymmetry, and who had suggested to construct a theory of
local supersymmetry, and he joined us from CERN. In those days
there was no e-mail, but we managed to stay in touch.

So, how should we start? The basic property of rigid supersym-
metry was (and is) that the commutator of two supersymmetry
transformations gives a translation, {Qa,Q/3} = l^a&P^ s o upon
making supersymmetry local, we would expect to obtain a local
translation. Now the concept of local translations looked to us very
much like a general coordinate transformation, so we expected that
a theory of local supersymmetry would necessarily contain gravity,
and this explains the name supergravity for the gauge theory of
supersymmetry. Conversely, in the presence of gravity a constant
supersymmetry parameter becomes spacetime dependent after a
local Lorentz rotation, hence rigid supersymmetry in the presence
of gravity must turn into local supersymmetry.

So, local supersymmetry predicted the existence of gravity, and
that was for us one of the most attractive aspects of supergrav-
ity. Nowadays, people like to motivate their interest in super-
symmetry by referring to the hierarchy problem which is solved
by supersymmetry (provided one accepts some plausible assump-
tions which resolve the so-called yn-problem). Also, for supergrav-
ity the motivation has changed over time: whereas originally it
was hoped that it might solve the nonrenormalizability problem
of ordinary quantum gravity, nowadays one considers supergravity
rather as the "low-energy" limit of superstring theory. The latter
is finite and thus solves the problem of quantum gravity, but for
phenomenology one needs the effective field theory which results
at low energy, and this effective field theory inevitably caries along
with it an infinite tower of higher-dimensional operators divided
by powers of the string mass scale, and any truncation of this infi-
nite tower is nonrenormalizable. In 1976, none of these interesting
developments were known, of course.



Given that supergravity must contain at least gravity, we ex-
pected to need at least one other field, its fermionic partner which
should be the gauge field of local supersymmetry. The gravita-
tional field describes gravitons, with spin 2, or rather helicity ±2,
and from the theory of massless irreducible representations of the
super Poincare algebra it was known that susy required fermi-bose
pairs with adjacent spins (j, j + 1/2). Clearly, we needed either
a massless spin 3/2 field, or a massless spin 5/2 field. Any sen-
sible person would begin with spin 3/2, and that is what we did.
(Later it was found that one cannot couple massless spin 5/2 fields
to gravity in a consistent way. At the level of algebra that is also
clear: one would need spin 3/2 generators, but then the anticom-
mutator of two such generators would produce a spin 3 generator,
which is not known to exist in 4 dimensions. In 2 dimensions it
exists and leads to W gravity, but that we did not know in 1976).

In fact, in the 1960's and 1970's many concepts which are now
so well understood that they have become almost trivial, were
then confusing. Just to illustrate this, I may tell an anecdote of
the 1960's concerning quantization of gauge field theories. My
advisor was (and is) referee of Physics Letters B, and received
one day a paper by Faddeev-Popov dealing with path-integrals,
quantization and gauge theories. Now path-integrals were little
used in those days, so people were unfamiliar with them. He could
not make much sense out of the article (it did not contain their
ghosts in the quantum action but rather there was a determinant
in the measure) but neither could he find anything obviously wrong
with this paper, so he decided, after much hesitation, to accept it
for publication. Fortunately (with hindsight), just imagine what
would have happened if he had rejected this article.

Although a spin (3/2, 2) doublet seemed to us the obvious
choice, massless spin 3/2 fields were in disrepute due to the Johnson-
Zwanziger-Velo "theorem". They had observed that if one cou-
pled complex massless spin 3/2 fields to electromagnetism, this
coupling was inconsistent. The field equation was expected to be



p = 0 with D^y = d^v — ieA^y, so upon contract-
ing with Dyi one would get F^v = 0, clearly too strong a condition.
These couplings also led to signals which traveled faster than light.
We were never intimidated by those no-go theorems, because we
believed that the case of spin (1, 3/2) is very different from the
case of spin (3/2,2). In fact, by the time you have carefully for-
mulated a no-go theorem, you can often see the solution and turn
it into a "yes-go" theorem. (Later it was indeed found that one
can couple spin 3/2 to spin 1 provided also gravity to present:
this coupling leads to N = 2 extended supergravity, which is the
susy extension of the Maxwell-Einstein system which unifies elec-
tromagnetism and gravity. When we get there, we shall of course
come back to the question of " magical cancellation of infinities").

Although we decided to begin with the free field action for spin
3/2 fields and couple it in the usual way (the minimal way, like
spin 1/2) to gravity, there arose immediately a problem: which ac-
tion? We went to the library, and found a paper by Bargman and
Wigner, who discussed free-field higher-spin theories, in particular
some spin 3/2 theories. Most of them were really field equations
with subsidiary conditions, so of no use for us. We were looking for
an action with a vector-spinor field ?/>M, because gauge fields have
always the structure of d^ times the parameter. Soon we found a
gem of a paper with this field W : t n e famous Rarita-Schwinger
paper. These authors had entertained in 1941 the conjecture that
the neutrino in (3 decay had spin 3/2 instead of spin 1/2, and com-
puted the angular distribution of the neutrinos. The results were
in complete disaccord with the experimental data, so that was the
end of that idea, but for us this was no set-back: it seemed to us
that rather than the action for neutrinos in flat space, Rarita and
Schwinger had found the leading fermionic term of supergravity.
Their free-field action reads (for our purposes we distinguish be-
tween curved indices of the gauge fields Vv a nd flat indices of the



constant Dirac matrices 7m)

c(RS) = -I^t-yv^pM^ (3)

and it has a local gauge invariance, namely 6ip<j = d^e(x) where
e(x) is a 4-component spinor, just what one needs for a gauge field
of supersymmetry! (Recall that gauge fields always transform into
the derivative of the parameter + more). Since the fermionic part-
ner of the real graviton should be real,^v too should be somehow
real. If the matrices 7 0 , 7 \7 2 , 7 3 (satisfying {7m,7n} = 2r/mn

with r)mn = (—1, +1,+1, +1)) should be real (a so-called Majo-
rana representation of the Dirac matrices) then also V<7 c a n be
taken real, and C(RS) is real. That seemed a problem to us,
because then the conjugate momentum of ip^ would be a linear
combination of tp^. (Later I learned about Dirac quantization
which resolves this problem.) So, we decided to work with com-
plex Dirac matrices but we still needed some reality condition on
ipn to avoid overcounting. Here we must make a short technical
stop and discuss Majorana spinors.

A Majorana spinor ipa(a = 1,4) satisfies the property that
its Majorana conjugate •ipM = tyTC (with the charge conjugation
matrix C defined by C^C'1 = -(7m)T) is equal to its Dirac
conjugate •ipo = ̂ ry° . It is easy to show that •ipM and t/>£) trans-
form in the same way under Lorentz transformations, and satisfy
the same Dirac equation. So xp^ in C(RS) is both equal to ip^C
and ipli'f0:, and this shows that the action is hermitian and that
VV7^m7n7rVp *s symmetric in /z and p. For what follows it is also
important to know that ^piii

m"'Pv is antisymmetric in (/x, v).
In 4 dimensions one can write 7lm7n7rl as emnrs757s (as it in

fact occurs in the Rarita-Schwinger paper) and this is useful be-
cause putting the Rarita-Schwinger action in curved space (cou-
pling it to gravity), the e-tensor becomes a density and eliminates
the need to add the usual factor y/—g. Furthermore, as I knew
from the Einstein-Dirac system, we had to replace <5m

M by "vier-



bein fields" em^ (tetrads, later called "vielbein" fields by Gell-
Mann at the EST conference in San Francisco because vier=four
and viel=many in German) and finally we had to replace the curl
dvipp — dptpv by Dvtpp — Dptl)v where Dv is a suitable gravitationally
covariant derivative. So

C(RS, gravity ) = - ^ ^ - y s ^ D ^ (4)

The symbol e^upa is ±1 or 0, and a density while the factor 1/2 is
arbitrary but customary for real (bosonic or fermionic) fields.

The problem was, of course, what that suitable covariant deriva-
tive Dp was. We knew (for example from Weinberg's book on
general relativity) that one possibility was

DpiPa = dpipa - rptT
T(g)ipT + ^ P

m n ( e ) 7 m 7 n t / V (5)

where Tpcr
T{g) is the usual Christoffel symbol and u)p

mn(e) the spin
connection, related to Ypcx

T{g) by the "vielbein postulate"

Dpea
m = dpea

m - Tp(T
T{g)eT

m + Upm
n{e)en

a = 0. (6)

But we also studied papers by Hehl and collaborators, who intro-
duced torsion in theories involving bosonic matter fields, where
they wrote

T^ = r^(g) + K^ (7)

with K^v9 = —KViL
p the "contorsion tensor". We adopted this

procedure for our problem and wrote u>i^
nn = ujfJ

mn(e) + 3 terms
involving the contorsion tensor, omitting Tpa

T(g) in (4) because it
cancelled in the curl. By this ansatz as starting point we already
committed ourselves to what is now called second-order formalism
(with gravitino torsion).

So, our starting point was

(8)J



where 7^ = jn^i/n with constant j n . The Einstein-Hilbert action
is R = R^mnem

ven» and R^mn = d^J™ + w ^ w A - M «->
i/ with ui^mn = ulj

mn{e) to lowest order in K. AS lowest order
supersymmetry transformation rules we took

« « % = i ^ e = -(d^e + j^ m " ( e )7 T O 7ne) (9)
/C ti 4

with again ojll
mn{e) but anticipating further terms, and

n, a a constant. (10)

This latter law was not obvious, but it was linear in fields, just
like in rigid susy where one has 6 (boson) ~ (fermion) e. An
alternative, 5eM

m = aKe/yfJ.ipL,et/
nrfim we rejected because it was

not linear in fields. The law for S^tp^ was also to lowest order
in fields and for constant e of the expected form 6 (fermion) —
d (boson) e, since u>l/

nn(e) contains to lowest order indeed only
terms of the form d (boson), namely derivatives of the vielbein
field.

The first test came immediately: are there encouraging can-
cellations in 61^1 One obtains from varying the vielbeins in €2,
using g^ = e M

m n

6C2 = \( l ^

On the other hand, varying ij)^ and ipa in £3/2, gave

<xWn(€75{7^7m7n}V/x) (12)

where we partially integrated the derivative on D^e, used
[Dp,Da]e = \Rpomnnfm'yn£, and finally used the Majorana prop-
erty •0M757i/7m7ne = -(-Inlmlvl^ii- We then found a fantastic



cancellation ("heart warming" we called it): the variations of £2
and £3y2 in (11) and (12) actually cancelled. To see this, one
may replace {7t,,7?n7w} by 2eJ/etmns757s, use 752 = 1 and write
eiivpo ermns QS a product of four vielbeins fields, properly antisym-
metrized. Then, for suitable a, these variations cancelled.

However, this was only the beginning of a whole series of can-
cellations which were needed to prove that the final action was
susy. Not yet taken into account were: the variations of ujfJ

Tnn(e),
the derivative D^e^7 picked up in the process of partial integration
and the variation of ev

T in 7J,. We solved this problem by adding
new suitable terms of higher order in K to action and transfor-
mation laws each time when the variations of the action did not
cancel. ("The Noether method", see below). This was tedious
work, which required a steady hand in manipulations with Dirac
matrices and Riemannian geometry. Every morning I could hear
Dan coming into the institute, humming always the same two sen-
tences, "In heaven there is no beer, that's why we drink it here",
but we actually did not drink any beer, but worked very hard, at
least 12 hours a day, weekends included, for several months. We
never knew whether our approach would work, and many times we
thought supergravity was dead, only to find the next day a solu-
tion which brought it back to life. An amusing incident happened
when at some point we found that a sum of five terms involving
Riemann tensors and complicated spinor structures had to can-
cel. By taking special values for indices and fields, we got strong
indications that they did. We started reading J. Schouten's fa-
mous book, but did not find there an explanation, and then went
to some mathematicians, who got very interested and thought we
might have discovered some new identity. Eventually, we realized
the truth was much more pedestrian: in 4 dimensions a tensor
with 5 indices, totally antisymmetrized, always vanishes. Yet, as
a tribute to this episode, we introduced the verb to "Schoutenize"
which indicates the interchange of indices which results from this
identity, and even today this word can be found in the literature.



In this way we pushed, with a lot of algebra, the proof of invari-
ance up to the level of five gravitino fields and one e in 8£. This
last calculation was so complicated that only a computer seemed
able to do it.

We had at that time a connection to the big computer at
Brookhaven National Laboratory, at least big for those years. I
started writing a simple Fortran program, to collect all variations
and check whether the coefficients of all independent spinor com-
binations were zero. Rather than work with Majorana spinors,
we rewrote them as 2 component Weyl spinors since this saved
memory , and wrote all terms in the form

tabcdef9h(TPtabiPc)(^daeiPf)^agi>h) (13)

where t is an integer-valued tensor constructed from e symbols and
Kronecker deltas. In some test runs we found output values like
0.1875. I was puzzled, but for Dan it was obvious that this was ^
(the factor j$ we later traced to our normalization of spinors) and
he still sees this as a characteristic difference between a European
and American education. (Americans measure length in units of
1/16 of an inch, and students are trained to convert this into
decimals.)

Taking into account antisymmetry relations between the spinors,
we needed to compute about a thousand coefficients, each of which
should come out zero. We spent an enormous time simplifying the
program in order to reduce the costs of computing time, (which
was in the end of the order of 50 dollars) and we got it down to
about 3 minutes. Many trial runs were made to get rid of all bugs,
but after days of work, one night everything was ready, and now
it was up or down. I was sitting alone that night in the com-
puter room, except for a colleague (Junn-Ming Wang), who often
worked late. It was late (2 o'clock at night) and after starting the
decisive run and waiting the expected 3 minutes, the results came
in. As always the first few hundred entries were zero, but that
was no reason for optimism because we already knew that these



terms were zero. However, zeros kept coming, and I started mak-
ing strange noises. Jimmy asked me what was going on, and I told
him that I needed still a few hundred zeros, and if there was at
least one nonzero entry, all our work would be in vain. The zeros
kept coming, the tension mounted and then the program came to
the end with only having produced zeros. It worked, supergravity
existed!! Instead of being happy I was very, very tired. I phoned
Dan, who was in a hotel in Chicago for a conference and who had
told me to inform him of the result, no matter what the time was,
and he said "Oh, that is wonderful" in also a very tired voice. I
then went home, and felt depressed. In fact, I have often heard
that physicists feel depressed just after a major discovery; perhaps
that is the physicists' equivalent of post-partum depression.

However, the next days we became again enthusiastic. It was
clear that an almost endless series of problems lay ahead of us,
each problem even more interesting than the previous one. We
had to redo for this new gauge theory all that one had done in
the past for Yang-Mills gauge theories. The first problem was, of
course, the coupling of matter to supergravity. By then it was
summer 1976, and I went to Europe (Paris) while Dan went to
Aspen. We decided that each should press on with research in
supergravity. In Paris, I met for the first time Sergio Ferrara,
with his usual cigar, and suggested to him that we try to couple
scalar fields to supergravity. That was the first time I noticed
his superb instinct for making the right choices, for he told me
that my suggestion was excellent and we certainly should try to
couple scalars, but perhaps spin 1 fields were even more interesting
because of the extra Maxwell gauge invariance. Since I had no
strong feelings one way or the other, I accepted his proposal. Later
it was found that the coupling to scalars is much more complicated
than the coupling to vectors. So the choice of vectors was very
lucky. In that collaboration also Joel Scherk joined. At some
point we got stuck because we were left with a term proportional to
Flia€

ai'paFpcr, but Joel remembered that he had passed a summer



in Cambridge deriving (under a tree, but not being hit by apples!)
all kind of identities for fun, and he vaguely remembered that there
was something interesting with this term. He went to a pile of
notebooks in the corner of his office, and produced from the middle
a notebook in which he found that this term is proportional to 8^.
Joel did work for years with us; he was absolutely creative, and
his death in 1980 was a great blow to all workers in supergravity,
and to me personally, as I had become very close to him.

This brings me to a point I want to stress here, and which
I think is not at all sufficiently understood by physicists outside
the circle of supergravity practitioners. From 1976 on, a group
of young, enormously enthusiastic physicists did work that, in my
opinion, is of an almost unique high standard in physics. Some
older physicists have told me later that they also tried to enter
the field, but that as soon as they sat down to begin this study, a
flood of new papers by these young physicists deflated their energy.
The drawback of this situation has been that relatively few senior
physicists were involved with supergravity, so that when these
young people needed a faculty position they had not always the
backing from the establishment which they should have had. Still,
looking around, I see that most of them have become professors,
and almost all of them are still as active today as then.

The coupling of matter to gravity (and also all subsequent cou-
plings, and also the construction of the gauge action itself) was
achieved by using the "Noether method", where one evaluates 6C
order by order in K, and when 8C is nonzero, one adds further
terms to the action and/or transformation laws such that up to
that level in K 8C becomes zero. For example, if 8C contains a
term d^e one could add a new term to the action obtained by re-
placing d^e by — Kip^ since varying W m t o «dMe m t n e n e w t e r m

would cancel the old variation. However, this would not work with
a term like V^7mc^e since /^fJ,'y

rn"tptJ' = 0, so there were fermionic
integrability conditions. As a byproduct we also found two alter-
native derivations of supergravity: 1) by starting with rigidly susy



matter and then making e local and at the same time introducing
the gauge fields of supergravity, 2) by starting with the iS-matrix
and 3-point couplings and deducing the 4-point and higher cou-
plings by imposing gauge-invariance (transversality). These ap-
proaches are well-known in ordinary gauge field theories, and it
was comforting to see that they also worked well here.

In the fall of 1976, after the coupling of spin (1, 1/2) and later
spin (0, 1/2) matter of supergravity, another interesting system to
consider was the coupling of a rigidly susy spin (3/2, 1) matter
system to supergravity which is a spin (3/2,2) system. It seemed
to Ferrara and me that there should in the end be an extra O(2)
symmetry in the action between both gravitinos, and that is what
we found. The resulting system was "N=2 extended supergrav-
ity" with N — 2 gravitinos. This theory unifies electromagnetism
and gravity ("Einstein's dream") by adding gravitinos as "glue".
Later, Dan constructed N = 3 extended supergravity with Ashok
Das, and discovered that one can couple the spin 1 fields to the
other fields as an 50(3) Yang-Mills system, provided one also
added a supercosmological constant. And then the N = 4 and
N = 8 (and N = 5,6,7) extended supergravities were constructed.

Of course, the quantization was a topic of major interest. It
turned out that the covariant quantization rules of 't Hooft and
Veltman could once more be applied, with as gauge-fixing term
for susy the expression •ip • 7^7 • ip, leading to commuting spino-
rial Faddeev-Popov ghosts. However, because the gauge algebra3

was "open", one needed an unusual 4-ghost coupling to restore
unitarity. A direct Feynman graph calculation revealed that the
coupling of supergravity to spin (0,1/2) or spin (1/2,1) matter
was in general nonrenormalizable, but that in the extended sug-
ras, the infinities cancelled at the one-loop level. So, here finally
we found a "magical combination of fields". For me the latter

3 Open gauge algebras, field dependent structure functions, auxiliary fields
which close the gauge algebra, and that all in the context of superalgebras has
become a whole new field in mathematics.



result was very gratifying because (i) it showed that supergravity
was at least one-loop finite, and (ii) it also showed that my pre-
vious one-loop calculations for matter-supergravity systems with
nonvanishing divergences were correct because they were used as
input into this calculation. After the one-loop divergences were
found to cancel in the N = 2 and N = 4 extended supergravities,
the question was of course: do they cancel at the 2-loop level? I
had a bet with a very good friend for a crate of champagne that
they would cancel. Marc Grisaru found a nice argument that they
do. 4 Then Stanley Deser and Kelly Stelle found that at 3-loop
level one could write down a possible counterterm, but till today
nobody has computed its coefficient. Most people believe that its
coefficient is nonzero, but nobody knows. (The counterterm is of
the generic form R3. Also in 6 dimensions the one-loop countert-
erm is of this form, and I have shown that there its coefficient is
nonzero. However, I do not think this gives information on the
4-dimensional situation, and it would be interesting if somebody
would compute the 4-dimensional coefficient).

Incidentally, the name gravitino has also some history to it.
With Marc Grisaru and Hugh Pendleton, I looked into the S-
matrix of supergravity, and found relations between various cross-
sections such as graviton-graviton scattering and the scattering
of two massless spin 3/2 particles. At a short visit to Caltech,
Gell-Mann had looked with me in dictionaries for a venerable
name for these particles and had come up with "hemitrion" ("half-
3"). So, in that 5-matrix paper, we wrote "hemitrion-hemitrion
scattering", but the editors of Physical Review did not allow this
neo nomen, and we had to revert to "massless Rarita-Schwinger-
massless Rarita-Schwinger scattering". It was Sidney Coleman
and Heinz Pagels who coined "gravitino". (Actually, I was sur-
prised some years later to read in a letter of recommendation that
Sidney wrote that he was uninterested in gravity and superinter-
ested in supergravity. He seems to have changed his mind a bit).

4 I got in the end only one bottle of champagne from my friend.



While all this work on supergravity was going on, our students
had a golden time, because (unlike today) there were far more
exciting and doable problems than people. We also gave many
seminars. I recall a few interesting occasions. On one occasion, I
was to discuss (at the request of the chairman of that department)
the progress in supergravity, and after he had introduced me (with
the usual statement that he hoped to have pronounced my name
correctly), he whispered to me, "Oh, I forgot to tell you, but please
do not use the Dirac equation or other such difficult things because
our faculty is mostly specialized in ..." (some other field). That
required some improvisation on the spot ! On another occasion, I
was in Tallahassee, where to my delight Professor Dirac was in the
audience. To my even greater delight, when the chairman asked at
the end of my lecture if anybody wanted to ask a question, Dirac
raised his hand. "How many anticommuting variables does your
theory have?". I quickly thought: at each point in spacetime a
real 4-component spinor (ea(x)), so I answered: "Infinity to the
fourth power." "That is a large number", he replied. I waited for a
further comment, but no more was forthcoming. Later, he told me
that Feynman graph calculations were in his opinion not the way
to quantum theory; rather, they were like the coupling of Bohr-
orbits in the early days of quantum mechanics. I was invited that
evening for a dinner at his home, and as I knew that he was not
an effusive speaker, I was not surprised that he only turned to me
at the end of the dinner to ask me "Have you ever read (the book)
the Red Rose?". I said I had not, and again no further comment
was forthcoming. I have a short movie from that visit where you
can see Dirac swimming among the mangroves. There were also
alligators nearby, and I was too afraid to swim, but he told me
there was no danger. A last recollection I have is that he told me
that he found life in the USA a bit different from life in England.
"Did you know that if you buy here a grand piano you get a gun
for free?" I have now lived in the States for 20 years, and must
agree with him that it sometimes is a bit different from Europe,



but it is a very positive optimistic country and as a physicist I
appreciate that young people are treated equally to older people,
and that there is not much secrecy in appointments or promotions.

These were a few recollections of the exciting early days of su-
pergravity. Supergravity then went on: there came a Kaluza-Klein
era, and a 2-dimensional era with a models, and supersymmetric
quantum mechanics, and then came superstring theory which is
also a kind of supergravity theory as it is also based on a local
fermi-bose symmetry. We have now reached a level of sophistica-
tion where we should be able to explain nature around us, and,
as always in fundamental science, many people become somewhat
pessimistic about the chances of success. Some people go even
further these days and say that particle physics is dead. Also that
has been said before. I would like to state that the unification of
running coupling constants I mentioned before is a clear though in-
direct manifestation of the existence in nature of rigid susy. Also
gravity exists. Rigid susy plus gravity is supergravity, that we
showed in 1976. For these reasons, I must conclude that super-
gravity exists and will be detected. I am confident that nature is
aware of our efforts.


