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Preface

These lecture notes were written during a Mastermath (Dutch national pro-
gramme for master-level courses in mathematics) course, taught in the fall
of 2018.

The main sources I used are:

1) My course notes Basic Category Theory and Topos Theory ([8]), ma-
terial for the lecture course to which the present course is a sequel.
Referred to in the text as the Basic Course.

2) MacLane’s Categories for the Working Mathematician ([5]). Referred
to as ”MacLane”.

3) Peter Johnstone’s Topos Theory ([3]). This is referred to in the text
by PTJ.

4) MacLane and Moerdijk’s Sheaves in Geometry and Logic ([6]). Re-
ferred to by MM.

5) Francis Borceux’s Handbook of Categorical Algebra ([1]).

6) Peter Johnstone’s Sketches of an Elephant ([4]). Referred to by Ele-
phant.

7) Moerdijk’s Classifying Spaces and Classifying Topoi ([7]).

8) Olivia Caramello’s Theories, Sites, Toposes ([2]).

9) Jaap van Oosten’s Realizability: an Introduction to its Categorical
Side ([9]).

There is no original material in the text, except for a few exercises and some
proofs.

Conventions: in a categorical product, the projections are usually de-
noted by p0 and p1, so p1 is the second projection.

0.1 The plural of the word “topos”

Everyone knows the quip at the end of the Introduction of [3], which asks
those toposophers who persist in talking about topoi whether, when they
go out for a ramble on a cold day, they carry supplies of hot tea with them
in thermoi. Since then, everyone has to declare what, in his or her view,
is the plural of “topos”. The form “topoi”, of course, is the plural of the
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ancient Greek word for “place”. However, Topology is not the science of
places, and the name Topology is what inspired Grothendieck to introduce
the word Topos.

Someone (I forget who) proposed: the word “topos” is French, and its
plural is “topos”. True, but English has adopted many French words, which
are then treated as English words. The French plural of “bus” is “bus”, but
in English it is “buses”.

I stick with “toposes”.
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Introduction

We start by recalling some basic definitions from the course Category Theory
and Topos Theory, which is a prerequisite for this course. For motivation, we
start by exhibiting the elementary notions at work in the example of sheaves
on a topological space. Later in this introductory chapter, we review a few
definitions and results from Category Theory.

Definition 0.1 A topos is a category with finite limits which is cartesian
closed and has a subobject classifier. A subobject classifier is an arrow
t : 1 → Ω such that every monomorphism is a pullback of t in a unique
way: for every mono m : X → Y there is a unique arrow χm : Y → Ω (the
classifying map, or characteristic map of m) such that the diagram

X

m
��

// 1

t
��

Y χm
// Ω

is a pullback.

In the introductory course we have seen that the category Ĉ of presheaves
on C (for a small category C) is a topos, and if J is a Grothendieck topology
on C then the full subcategory of Ĉ on the sheaves for J , usually denoted
Sh(C, J), is also a topos. The pair (C, J) is called a site; and a topos of the
form Sh(C, J) is called a Grothendieck topos.

Let us see a concrete example, in order to illustrate some of the themes
which are important in Topos Theory.

0.2 Sheaves on Spaces

Given a topological space X with set of opens OX , we view OX as a (posetal)

category, and form the topos ÔX of presheaves on X (as it is usually called).
For an open U ⊆ X, a sieve on U can be identified with a set S of open
subsets of U which is downwards closed: if V ⊆ W ⊆ U and W ∈ S,
then also V ∈ S. There is a very natural and straightforward Grothendieck
topology on OX : declare a sieve S on U to be covering if

⋃
S = U . The

category of sheaves on OX for this Grothendieck topology is simply called
the category of sheaves on X, and denoted Sh(X).

Let F be a presheaf on X; an element s ∈ F (U) is called a local section of
F at U . For the action of F on local sections, that is: F (V ⊆ U)(s) ∈ F (V )
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(where V is a subset of U and the unique morphism from V to U is denoted
by the inclusion), we write s�V .

Now let x be a point of the space X. We consider an equivalence relation
on the set {(s, U) |x ∈ U, s ∈ F (U)} of local sections defined at x, by
stipulating: (s, U) ∼x (t, V ) iff there is some neighbourhood W of x such
that W ⊆ U ∩ V and s�W = t�W . An equivalence class [(s, U)] is called a
germ at x and is denoted sx; the set of all germs at x is Gx, the stalk of x.

Define a topology on the disjoint union
∐
x∈X Gx of all the stalks: a

basic open set is of the form

OUs = {(y, sy) | y ∈ U}

for U ∈ OX and s ∈ F (U). This is indeed a basis: suppose (x, g) ∈ OUs ∩OVt .
then g = sx = tx, so there is a neighbourhood W of x such that W ⊆ V ∩U
and s�W = t�W . We see that

(x, g) ∈ OWs�W ⊆ OUs ∩ OVt .

We have a map π :
∐
x∈X Gx → X, sending (x, g) to x. If U ∈ OX and

(x, g) = (x, sx) ∈ π−1(U) then (x, sx) ∈ OUs ⊆ π−1(U), so π is continuous.
Moreover, π(OUs ) = U , so π is an open map.

The map π has another important property. Let (x, g) = (x, sx) ∈∐
x∈X Gx. Fix some U such that x ∈ U and s ∈ F (U). The restriction

of the map π to OUs gives a bijection from OUs to U . Since this bijection
is also continuous and open, it is a homeomorphism. We conclude that
every element of

∐
x∈X Gx has a neighbourhood such that the restriction

of the map π to that neighbourhood is a homeomorphism. Such maps of
topological spaces are called local homeomorphisms, or étale maps.

Let Top denote the category of topological spaces and continuous func-
tions. For a space X let Top/X be the slice category of maps into X, and
let Et(X) be the full subcategory of Top/X on the local homeomorphisms
into X. We have the following theorem in sheaf theory:

Theorem 0.2 The categories Et(X) and Sh(X) are equivalent.

Proof. [Outline] For an étale map p : Y → X, define a presheaf F on X by
putting:

F(U) = {s : U → Y | s continuous and ps = idU}.

This explains the terminology local sections. Then F is a sheaf on X. Con-
versely, given a sheaf F on X, define the corresponding étale map as the
map π :

∐
x∈X Gx → X constructed above. These two operations are, up to

isomorphism in the respective categories, each other’s inverse.
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Exercise 1 Show that for a presheaf F and the associated local homeo-
morphism π :

∐
x∈X Gx → X that we have constructed, the following holds:

every morphism of presheaves F → H, where H is a sheaf, factors uniquely
through the sheaf corresponding to π :

∐
x∈X Gx → X. Conclude that

π :
∐
x∈X Gx → X is the associated sheaf of F .

Next, let us consider the effect of continuous maps on categories of
sheaves. First of all, given a continuous map φ : Y → X we have the
inverse image map φ−1 : OX → OY and hence a functor

φ∗ = Set(φ−1)
op

: ÔY → ÔX

and the functor φ∗ restricts to a functor Sh(Y )→ Sh(X).
There is also a functor in the other direction: given a sheaf F on X, let

F → X be the corresponding étale map. It is easy to verify that étale maps
are stable under pullback, so if

G //

��

F

��

Y
φ
// X

is a pullback diagram in Top, let φ∗(F ) be the sheaf on Y which corresponds
to the local homeomorphism G → Y . This defines a functor Sh(X)→ Sh(Y ).

Proposition 0.3 We have an adjunction φ∗ a φ∗; moreover, the left adjoint
φ∗ preserves finite limits.

Definition 0.4 Let E and F be toposes. A geometric morphism: F → E
consists of functors f∗ : F → E and f∗ : E → F satisfying: f∗ a f∗ and f∗

preserves finite limits. The functor f∗ is called the direct image functor of
the geometric morphism, and f∗ the inverse image functor.

It is clear that Definition 0.4 gives us a category Top of toposes and geometric
morphisms, and the treatment of categories of sheaves on spaces shows that
we have a functor Top → Top from topological spaces to toposes. This
functor allows us to relate topological properties of a space to category-
theoretic properties of its associated topos of sheaves.

Another example of geometric morphism that we have seen, is the one
Sh(C, J) → Ĉ, where the direct image is inclusion as subcategory, and the
inverse image is sheafification.

Other examples of geometric morphisms we shall meet during this course,
are:
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i) Any functor F : C → D between small categories gives rise to a geo-
metric morphism Ĉ → D̂.

ii) If E is a topos and X is an object of E , then the slice category E/X
is a topos; and if f : X → Y is an arrow in E then we will have a
geometric morphism E/X → E/Y .

iii) If E is a topos and H : E → E is a finite-limit preserving comonad on
E , then the category EH of coalgebras for H in E is a topos, and there
is a geometric morphism E → EH .

There is another important notion of “morphism between toposes”: log-
ical functors.

Definition 0.5 A logical functor between toposes is a functor which pre-
serves the topos structure, that is: finite limits, exponentials and the sub-
object classifier.

0.3 Notions from Category Theory

First, let us deal with a subtlety we overlooked in the Category Theory and
Topos Theory course. There, we said (following MacLane) that a functor
F : C → D creates limits of type J if for every diagram M : J → C and every
limiting cone (D,µ) for FM in D, there is a unique cone (C, ν) for M in C
which is mapped by F to (D,µ), and moreover the cone (C, ν) is a limiting
cone for M .

For an adjunction F a G : C → D (so G : C → D, F : D → C) we have
a comparison functor K : C → DGF , where DGF is the category of algebras
for the monad GF on D. MacLane, consistently, defines the functor G to be
monadic if K is an isomorphism of categories. It follows that every monadic
functor creates limits.

However, we defined the functor G to be monadic if K is an equivalence.
And whilst the forgetful functor UT : CT → C always creates limits (here CT
denotes the category of algebras for a monad T ), with the strict definition we
gave this is no longer guaranteed if UT is composed with an equivalence of
categories. Yet, there are good reasons to consider “monadic” functors where
the comparison is only an equivalence, and we would like to have a “creation
of limits” definition which is stable under equivalence. For example, the
“Crude Tripleability Theorem” (0.10) below only ensures an equivalence
with the category of algebras.
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Definition 0.6 (Creation of Limits) A functor F : C → D creates limits
of type J if for any diagram M : J → C and any limiting cone (X,µ) for
FM in D the following hold:

i) There exists a cone (Y, ν) for M in C such that its F -image is isomor-
phic to (X,µ) (in the category of cones for M).

ii) Any cone (Y, ν) for M which is mapped by F to a cone isomorphic to
(X,µ), is limiting.

We say that the functor F creates limits if F creates limits of every small
type J .

For the record:

Theorem 0.7 Let C G→ D monadic. Then G creates limits.

The following remark appears on the first pages of Johnstone’s Sketches of
an Elephant, and is very useful.

Remark 0.8 (Elephant A1.1.1) Let A
U
// C

Foo be an adjunction with

F a U . If there is a natural isomorphism between FU and the identity on
A, then the counit is a natural isomorphism. Of course, by duality a similar
statement holds for units.

Definition 0.9 A parallel pair of arrows X
g
//

f
// Y is a reflexive pair if f

and g have a common section: a morphism s : Y → X for which fs = gs =
idY . A category is said to have coequalizers of reflexive pairs if for every
reflexive pair the coequalizer exists.

Theorem 0.10 (Beck’s “Crude Tripleability Theorem”) Let

A
U
// C

Foo

be an adjunction with F a U ; let T = UF be the induced monad on C.
Suppose that A has coequalizers of reflexive pairs, that U preserves them,
and moreover that U reflects isomorphisms. Then the functor U is monadic.

Proof. We start by constructing a left adjoint L to the functor K. Recall

that K : A→ CT sends an object Y of A to the T -algebra UFUY
U(εY )→ UY .
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Let UFX
h→ X be a T -algebra. We have that ηX is a section of h by

the axioms for an algebra, and F (ηX) is a section of εFX by the triangular
identities for an adjunction. So the parallel pair

FUFX
εFX

//

F (h)
// FX

is reflexive with common section F (ηX); let FX
e→ E be its coequalizer. We

define L(h) to be the object E. Clearly, this is functorial in h.
Let us prove that KL(h) is isomorphic to h. Note that the underlying

object of the T -algebra KL(h) is UE. By construction of L(h) and the
assumptions on U , the diagram

UFUFX
U(εFX)

//

UF (h)
// UFX

U(e)
// UE

is a coequalizer. By the associativity of the algebra h, the map h coequalizes
the pair (UF (h), U(εFX)); so we have a unique ξ : UE → X satisfying

ξ◦U(e) = h.

We also have the map U(e)◦ηX : X → UE. It is routine to check that these
maps are each other’s inverse, as well as that ξ is in fact an algebra map.
This shows that KL(h) is naturally isomorphic to h.

Let us show that L a K. Maps in A from E = L(h) to an object
Y correspond, by the coequalizer property of E, to arrows f : FX → Y
satisfying f◦F (h) = f◦εFX . Transposing along the adjunction F a U , these
correspond to maps f̄ : X → UY satisfying f̄◦h = U(εY )◦UF (f̄); that
is, to T -algebra maps from h to K(Y ). This establishes the adjunction and
applying Johnstone’s remark 0.8 we conclude that the unit of the adjunction
is an isomorphism.

In order to show that also the counit of L a K is an isomorphism, we
recall that for an object Y of A, LK(Y ) is the vertex of the coequalizer
diagram

FUFUY
εFUY

//
FU(εY )

// FUY
w //W

Since also εY coequalizes the parallel pair, we have a unique map W
v→

Y satisfying vw = εY . Itis now not too hard to prove that U(v) is an
isomorphism; since U reflects isomorphisms, v is an isomorphism, and we
are done.

The following theorem is called “Adjoint lifting theorem”.
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Theorem 0.11 (Adjoint Lifting Theorem; PTJ 0.15) Let T and S be
monads on categories C and D respectively. Suppose we have a commutative
diagram of functors

CT

UT

��

F̄ // DS

US

��

C
F
// D

where UT , US are the forgetful functors. Suppose F has a left adjoint L.
Moreover, assume that the category CT has coequalizers of reflexive pairs.
Then the functor F̄ also has a left adjoint.

Proof. [Sketch] Let (T, η, µ) and (S, ι, ν) be the respective monad structures
on T and S. Our first remark is that every S-algebra is a coequalizer of a

reflexive pair of arrows between free S-algebras. For an S-algebra SX
h→ X,

consider the parallel pair

S2X
Sh //

νX
// SX

This is a diagram of algebra maps FS(SX) → FS(X): νXS
2h = ShνSX

by naturality of ν, and νXνSX = νXS(νX) by associativity of ν. The two
arrows have a common splitting S(ιX) which is also an algebra map since
it is FS(ιX). That is: we have a reflexive pair in S-Alg. It is easy to see
that h : SX → X coequalizes this pair: this is the associativity of h as an
algebra. If a : FS(X)→ (ξ : SY → Y ) is an algebra map which coequalizes
our reflexive pair then a factors through h : FS(X) → (h : SX → X) by

aιX : (SX
h→ X)→(SY

ξ→ Y )) and the factorization is unique because the
arrow h is split epi in C.

This construction is functorial. Given an S-algebra map f : (SX
h→

X)→ (SY
k→ Y ) the diagram

S2X
νX //

Sh
//

S2f
��

SX

Sf

��

S2Y
νY //

Sk
// SY

commutes serially (i.e., SfνX = νY S
2f and SfSh = SkS2f). So, we have

a functor R from S-Alg to the category of diagrams of shape ◦ //
// ◦ in

S-Alg, with the properties:
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i) The vertices of R(h) are free algebras.

ii) R(h) is always a reflexive pair.

iii) The colimit of R(h) is h.

Our second remark is that since F̄ is a lifting of F (USF̄ = FUT ) there
is a natural transformation λ : SF → FT constructed as follows. Consider
F (η) : F → FT = FUTF T = USF̄F T and let λ̃ : FSF → F̄F T be its
transpose along FS a US . Define λ as the composite

SF = USFSF
US λ̃−→ USF̄F T = FUTF T = FT.

Claim: The natural transformation λ makes the following diagram commute:

F
ιF //

F (η !!BBBBBBBB SF

λ
��

S2F
νFoo

Sλ
��

FT SFT

λT
��

FT 2
Fµ

ccGGGGGGGG

Now we are ready for the definition of L̄ on objects: if L̄ is going to be
left adjoint to F̄ then, by uniqueness of adjoints and the fact that adjoints
compose, L̄FS = F TL, so we know what L̄ should do on free S-algebras
FSY . Now every S-algebra ξ : SY → Y is coequalizer of a reflexive pair
of arrows between free S-algebras, and as a left adjoint, L̄ should preserve
coequalizers. Therefore we expect L̄(ξ) to be coequalizer of a reflexive pair

F TLSY = L̄FS(SY )
fξ
//

gξ
// L̄FS(Y ) = F TLY

between free T -algebras. It is now our task to determine fξ and gξ.
By our first remark we have a coequalizer

FS(SY )
Sξ

//

νY
// FSY

ξ
// (ξ)

and the topmost arrow of the reflexive pair is in the image of the functor FS ,
so we can take F TL(ξ) for fξ. The other map – ν – is not in the image of
FS and needs a bit of doctoring using the adjunction L a F and the natural
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transformation λ we constructed. Let α be the unit of the adjunction L a F .
Consider the arrow

SY
S(αY )−→ SFL(Y )

λL(Y )−→ FTL(Y )

This transposes under L a F to a map LS(Y )→ TL(Y ) = UTF TL(Y ), and
this in turn transposes under F T a UT to a map

F TLS(Y )→ F TL(Y )

which we take as our gξ.
Note that the construction is natural in ξ, so if k : ξ → ζ is a map of

S-algebras, we obtain a natural transformation from the diagram of parallel
arrows fξ, gξ to the diagram with parallel arrows fζ , gζ . Hence we also get a
map from the coequalizer of the first diagram, which is L̄(ξ), to the coequal-
izer of the second one, which is L̄(ζ). And this map between coequalizers
will be L̄(k).

There is still a lot to check. This is meticulously done in Volume 2 of
Borceux’s Handbook of Categorical Algebra, section 4.5. There the proof
takes 10 pages.

Remark 0.12 There is a better theorem than the one we just partially
proved: the Adjoint Triangle Theorem. It says that whenever we have

functors B R→ C U→ D such that B has reflexive coequalizers and U is of
descent type (that is: U has a left adjoint J and the comparison functor
K : C → UJ−Alg is full and faithful), then UR has a left adjoint if and only
if R has one.

Note, that given the diagram of Theorem 0.11, the diagram

CT F̄→ DS US→ D

satisfies the conditions of the Adjoint Triangle Theorem. Since the compo-
sition USF̄ , which is F TL, has a left adjoint, we conclude that F̄ has a left
adjoint. Note in particular that we do not use that CT is monadic.

Definition 0.13 A diagram a
f
//

g
// b

h // c in a category is called a split

fork if hf = hg and there exist maps

a b
too c

soo

such that hs = idc, ft = idb and gt = sh.
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Exercise 2 Show that every split fork is a coequalizer diagram, and more-
over a coequalizer which is preserved by any functor (this is called an absolute
coequalizer).

Exercise 3 Suppose D1 is the diagram a
g
//

f
// b

h // c in a category C,

and D2 is the diagram a′
g′
//

f ′
// b′

h′ // c′ in C. Assume that D2 is a retract

of D1 in the category of diagrams in C of type • //
// • // • . Prove that

if D1 is a split fork, then so is D2.

Definition 0.14 In a category, a family of arrows {fi : Ai → B | i ∈ I}
is called epimorphic if for every parallel pair of arrows u, v : B → C the
following holds: if ufi = vfi for all i ∈ I, then u = v.

Exercise 4 If the ambient category has I-indexed coproducts, a family {fi :
Ai → B | i ∈ I} is epimorphic if and only if the induced arrow from the
coproduct

∑
i∈I Ai to B is an epimorphism.

We shall also have to deal with comonads; a comonad on a category C
is a monad on Cop. Explicitly, we have a functor G : C → C with natural
transformations ε : G ⇒ idC (the “counit”)) and δ : G ⇒ G2 (the “co-
multiplication”) which make the following (coassociativity and counitarity)
diagrams commute:

G
δ //

δ
��

G2

δG
��

G2
Gδ
// G3

G

δ
��

G

id

>>}}}}}}}}
G2

εG
oo

Gε
// G

id

``AAAAAAAA

Dual to the treatment for monads, we have the category G-Coalg of G-
coalgebras, the notion of a functor being “comonadic”, etcetera. We have
the forgetful functor V : G−Coalg → C which has a right adjoint C : C →
G−Coalg, the “cofree coalgebra functor”. Without proof we record the
following theorem:

Theorem 0.15 (Eilenberg-Moore; MM V.8.1-2; PTJ 0.14) Suppose T
is a monad on a category C, such that the functor T has a right adjoint G.
Then there is a unique comonad structure (ε, δ) on G such that the categories
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T -Alg and G-Coalg are isomorphic by an isomorphism which commutes with
the forgetful functors:

T−Alg

U
##FFFFFFFFF
L // G−Coalg

V
zzuuuuuuuuuu

C

Corollary 0.16 If (T, η, µ) is a monad on C and the functor T has a right
adjoint G, then the forgetful functor T −Alg→ C has both a left and a right
adjoint.
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1 Elementary Toposes

In this chapter we are going through Chapter 1 of P.T. Johnstone’s Topos
Theory, expanding the proofs a bit when necessary.

Example 1.1 Let G be a group. In the topos Ĝ of right G-sets (sets X with
G-action X × G → X, written (x, g) 7→ x·g) we have:

i) the subobject classifier 1
t→ Ω is the map from {∗} to {0, 1} which

sends ∗ to 1; here {0, 1} has the trivial G-action.

ii) The exponent Y X of two G-sets X and Y is the set of all functions

X
φ→ Y , with G-action:

(φ·g)(x) = (φ(x·g−1))·g

We see at once that the forgetful functor Ĝ → Set is logical, as is the functor
Set→ Ĝ which sends a set X to the set X with trivial G-action.

We can also consider the category SetG
op

f of finite G-sets; and we see
that this is also a topos (even if G itself is not finite); the inclusion functor
SetG

op

f → Ĝ is logical.

Lemma 1.2 (PTJ 1.21) In a topos, every mono is regular.

Proof. Every mono is a pullback of 1
t→ Ω, and t is split mono, so regular.

Corollary 1.3 (PTJ 1.22) Every map in a topos which is both epi and
mono is an isomorphism (one says that a topos is balanced).

Definition 1.4 In a category with finite limits, an equivalence relation on
an object X is a subobject R of X ×X for which the following statements
hold:

i) The diagonal embedding X → X ×X factors through R.

ii) The composition R→ X ×X tw→ X ×X factors through R, where tw
denotes the twist map

〈p1, p0〉 : X ×X → X ×X.

(Here p0, p1 : X ×X → X are the projections)
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iii) The map 〈p0s, p1t〉 : R′ → X×X factors through R, where we assume
that the subobject R is represented by the arrow 〈r0, r1〉 : R→ X×X,
and the maps s and t are defined by the pullback diagram

R′

s
��

t // R

r0
��

R r1
// X ×X

.

The subobject R′ is the “object of R-related triples”.

Equivalently, a subobject R of X×X is an equivalence relation on X if and
only if for every object Y , the relation

{(f, g) | 〈f, g〉 : Y → X ×X factors through R}

is an equivalence relation on the set of arrows Y → X.
Clearly, for every arrow f : X → Y , the kernel pair of f , seen as a

subobject of X ×X, is an equivalence relation on X. Equivalence relations
which are kernel pairs are called effective (don’t ask me why).

Proposition 1.5 (PTJ 1.23) In a topos, every equivalence relation is ef-
fective, i.e. a kernel pair.

Proof. Let φ : X × X → Ω classify the subobject 〈r0, r1〉 : R → X × X,
and let φ̄ : X → ΩX be its exponential transpose (in Set, φ̄(x) will be the
R-equivalence class of x). We claim that the square

R

r0
��

r1 // X

φ̄
��

X
φ̄
// ΩX

is a pullback, so that R is the kernel pair of φ̄. To see that it commutes, we
look at the transposes of the compositions φ̄ri, which are maps

R×X ri×id
// X ×X φ

// Ω

Both these maps classify the object R′ of R-related triples, seen as subobject
of R × X, so they are equal. To see that the given diagram is a pullback,
suppose we have maps f, g : U → X satisfying φ̄f = φ̄g. Then φ(f × idX) =
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φ(g × idX) : U ×X → Ω. Composing with the map 〈idU , g〉 : U → U ×X
we get that the square

U
〈f,g〉

//

〈g,g〉
��

X ×X
φ
��

X ×X
φ

// Ω

commutes. Now φ classifies R and by reflexivity of R the map 〈g, g〉 factors

through R, so φ〈g, g〉 is the composite map U
!→ 1

t→ Ω; so this also holds
for the other composite and therefore also 〈f, g〉 must factor through R,
which says that the given diagram is indeed a pullback.

The least equivalence relation on an object X is the diagonal δ = 〈idX , idX〉 :
X → X ×X. It is classified by some ∆ : X ×X → Ω; let {·} : X → ΩX be
the exponential transpose of ∆. The map {·} is of course thought of as the
singleton map from X to its power object.

Exercise 5 Prove that the map {·} is monic. [Hint: for an arrow f : Y →
X, the composite {·}◦f transposes to a map which classifies the graph of f
(as subobject of Y ×X).]

Definition 1.6 A partial map from X to Y is an arrow from a subobject
of X to Y . More precisely, it is a diagram

U

m
��

f
// Y

X

with m mono.

We write f : X ⇀ Y to emphasize that the map is partial.
We say that partial maps are representable if for each object Y there

is a monomorphism ηY : Y → Ỹ with the property that for every partial

map X U
moo

f
// Y from X to Y there is a unique arrow f̃ : X → Ỹ ,

making the square

U

m
��

f
// Y

ηY
��

X
f̃

// Ỹ

3



a pullback.
Let us spell out what this means for Y = 1: we have an arrow η : 1→ 1̃

such that for every mono m : U → X there is a unique map X → 1̃ making
the square

U

m
��

// 1

η
��

X // 1̃

a pullback. But this is just the definition of a subobject classifier; we con-

clude that 1
η→ 1̃ is 1

t→ Ω.

Theorem 1.7 (PTJ 1.26) In a topos, partial maps are representable.

Proof. Let φ : ΩY × Y → Ω classify the graph of the singleton map:

Y

��

〈{·},id〉
// ΩY × Y

φ
��

1
t

// Ω

and let φ̄ : ΩY → ΩY be its exponential transpose.
Let

E
e // ΩY

φ̄
//

id
// ΩY

be an equalizer. We shall show that we can take E for Ỹ . Think of E as
the “set”

{α ⊆ Y | ∀y(y ∈ α↔ α = {y})},

that is: the set of subsets of Y having at most one element. We consider
the pullback diagram

Y

δ
��

id // Y

〈{·},id〉
��

Y × Y
{·}×idY

// ΩY × Y

4



Composing this with the diagram defining φ, we obtain pullbacks

Y
δ //

id
��

Y × Y

{·}×idY
��

Y
〈{·},idY 〉

//

��

ΩY × Y

φ
��

1
t

// Ω

from which we conclude that φ({·} × idY ) classifies the diagonal map on Y ;
hence its exponential transpose, which is φ̄◦{·} : Y → ΩY , is equal to {·}.
Therefore the map {·} : Y → ΩY factors through the equalizer E above; so
we have the required map Y → E = Ỹ (which is monic since {·} is).

In order to show that the constructed mono Y → Ỹ indeed represents
partial maps into Y , let

U

m
��

f
// Y

X

be a partial map X ⇀ Y , so m is monic. Consider the graph of f : U
〈m,f〉−→

X × Y . It is classified by a map ψ : X × Y → Ω; let ψ̄ : X → ΩY be the
exponential transpose of ψ. We have a commutative diagram

(∗)

U

〈m,f〉
��

f
// Y

〈{·},id〉
��

X × Y

��

ψ̄×id
// ΩY × Y

��

X
ψ̄

// ΩY

The lower square is a pullback, so the outer square is a pullback if and only if
the upper square is. We prove that the outer square is a pullback. Suppose

V
a→ X, V

b→ Y are maps such that {·}b = ψ̄a. Then by transposing, the
square

V × Y

a×id
��

b×id
// Y × Y

∆
��

X × Y
ψ

// Ω

5



commutes (recall that ∆ classifies the diagonal Y → Y × Y ). Composing

with the map V
〈id,b〉−→ V × Y gives

ψ◦〈a, b〉 = ∆◦〈b, b〉 = (by definition of ∆)

= V → 1
t→ Ω

So ψ◦〈a, b〉 factors through t, and since ψ classifies the graph of f , the map

V
〈a,b〉−→ X × Y factors through U ; we conclude that the outer square of (∗)

is indeed a pullback. Hence the upper square of (∗) is a pullback.
Now since

ΩY × Y φ
// Ω

Y

〈{·},id〉

OO

// 1

OO

is a pullback by definition of φ, composing with the upper square of (∗)
yields pullbacks

X × Y ψ̄×id
// ΩY × Y φ

// Ω

U

〈m,f〉

OO

// Y

〈{·},id〉

OO

// 1

t

OO

So the graph of f is classified by φ◦(ψ̄× id). It follows that φ◦(ψ̄× id) = ψ,
and by transposing we get φ̄ψ̄ = ψ̄ : X → ΩY . So ψ̄ : X → ΩY factors
through Ỹ → ΩY by a map f̃ : X → Ỹ . The factorization is unique since
Ỹ → ΩY is monic. Summarizing, we have

U
f
//

m

��

Y

ηY
��

Ỹ

��

X
ψ̄
//

f̃
>>}}}}}}}}
ΩY

where the outer square is a pullback (it is the outer square of (∗)), and since
Ỹ → ΩY is monic the upper square is a pullback too.

From the uniqueness of f̃ we can prove that the assignment Y ⇒ Ỹ ,
together with the maps ηY : Y → Ỹ , gives a functor E → E (where E

6



denotes the ambient topos): given a map f : X → Y , let f̃ : X̃ → Ỹ
represent the partial map

X

f
��

ηX // X̃

Y

By uniqueness we see that g̃f̃ = g̃f . We also see that η is a natural trans-

formation idE ⇒ (̃·). It has the special property that all naturality squares
are pullbacks.

An object of the form X̃ is called a partial map classifier.

Proposition 1.8 (PTJ 1.27) The partial map classifiers Z̃ are injective.

Proof. Given a diagram

X ′

X

m

OO

f
// Z̃

with m mono, we need to find a map X ′ → Z̃ making the triangle commute.
To this end, form the pullback

X
f
// Z̃

Y

n

OO

g
// Z

ηZ

OO

Let the partial map X ′ ⇀ Z given by X ′ Y
mnoo

g
// Z be represented

by g̃ : X ′ → Z̃. It is left to you to verify that the square

X
g̃m
// Z̃

Y

n

OO

g
// Z

ηZ

OO

is a pullback. We see that the arrows f and g̃m represent the same partial
map, hence the triangle commutes.
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Corollary 1.9 (PTJ 1.28) Suppose we are given a pushout square

X

f
��

m // Y

g

��

Z // T

with f mono. Then g is also mono, and the square is also a pullback.

Proof. Consider the partial map Z ⇀ Y given by the diagram Z X
f
oo m // Y ;

let it be represented by a map h : Z → Ỹ . Since the original square is a
pushout, we have a unique map T → Ỹ making the diagram

X

f
��

m // Y

g

��
ηY

��
//////////////

Z //

h
''OOOOOOOOOOOOOOO T

��
????????

Ỹ

commute. Then g is mono because ηY is mono, and the outer square is a
pullback, so the inner square is a pullback too.

Remark 1.10 Proposition 1.8 shows, in particular, that a topos has enough
injectives: that is, for every objectX there is a mono fromX into an injective
object. The following exercise elaborates on this.

Exercise 6 a) Show that, in a topos, an object is injective if and only if
it is a retract of ΩY for some Y .

b) Suppose A G→ B be a functor with left adjoint B F→ A. Show that if F
preserves monos, G preserves injectives; and that the converse holds
if A has enough injectives.

In the following, let E be a topos. We start by considering the category Eop.

We have a functor P : Eop → E : on objects, PX = ΩX and for maps X
f→ Y

we have Pf : ΩY → ΩX , the map which is the exponential transpose of the

composition ΩY ×X id×f−→ ΩY × Y ev→ Ω.
Note that the same data define a functor P ∗ : E → Eop, and we have:

Lemma 1.11 P ∗ a P .
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Proof. We have natural bijections

Eop(P ∗X,Y ) = Eop(ωX , Y ) = E(Y,ΩX) ' E(Y ×X,Ω)
' E(X × Y,Ω) ' E(X,ΩY ) = E(X,PY )

Hence, we have a monad T = PP ∗ on E , and thus a comparison functor
K : Eop → ET .

For a mono g : W → Z we also have a map ∃g : ΩW → ΩZ : it is the
transpose of the map ∃̃g : ΩW × Z → Ω which classifies the mono

∈W // ΩW ×W id×g
// ΩW × Z

(here ∈W is the subobject of ΩW × W classified by the evaluation map
evW : ΩW ×W → Ω).

We have that the square

∈W //

��

ΩW ×W id×g
// ΩW × Z

∃̃g
��

1
t

// Ω

is a pullback; hence, since g is mono, also the square

∈W

��

// ΩW ×W

id×g
��

ΩW × Z

∃̃g
��

1
t

// Ω

is a pullback. We see that ∃̃g◦(id × g) classifies the mono ∈W→ ΩW ×W ,

and we conclude that ∃̃g◦(id× g) = evW .

Lemma 1.12 (PTJ 1.32; “Beck Condition”) Suppose the square

X
f
//

g

��

Y

h
��

Z
k
// T

9



is a pullback with the arrows g and h monic. Then the following square
commutes:

ΩY

∃h
��

Pf
// ΩX

∃g
��

ΩT
Ph
// ΩZ

Proof. We look at the exponential transposes of the two compositions. For
the clockwise composition ∃g◦Pf : ΩY → ΩZ , its transpose is the top row
of

ΩY × Z Pf×id
// ΩX × Z ∃̃g // Ω

ΩY ×X

id×g

OO

Pf×id
// ΩX ×X

id×g

OO

E

OO

// ∈X

OO

// 1

t

OO

.

We see that this top row classifies the subobject E → ΩY ×X id×g−→ ΩY ×Z.
Since ∃̃g◦(id × g) = evX as we noted just before the statement of the

lemma, the subobject E → ΩY × X is classified by the composition ΩY ×
X

Pf×id−→ ΩX ×X evX−→ Ω, which equals the composition ΩY ×X id×f−→ ΩY ×
Y

evY−→ Ω sich both compositions are transposes of Pf . Therefore we have a
pullback diagram

E

��

// ΩY ×X

id×f
��

∈Y // ΩY × Y

For the counterclockwise composition Pk◦∃h, its transpose is ΩY × Z ∃h×id−→
ΩT×Z id×k−→ ΩT×T evT−→ Ω which equals ΩY ×Z id×k−→ ΩY ×T ∃h×id−→ ΩT×T evT−→
Ω.

Now evT ◦(∃h× id) and ∃̃h : ΩY ×T → Ω both transpose to ∃h, so these
maps are equal. We conclude that Pk◦∃h transposes to the composition

10



ΩY × Z id×k−→ ΩY × T ∃̃h−→ Ω, and we consider pullbacks

E //

��

ΩY ×X

id×f
��

id×g
// ΩY × Z

id×k
��

∈Y //

��

ΩY × Y id×h
// ΩY × T

∃̃h
��

1 // Ω

Again, we have ∃̃h◦(id × h) = evY : ΩY × Y → Ω and we see that the
counterclockwise composition transposes to a map which classifies the same

subobject E → ΩY ×X id×g−→ ΩY ×Z as we saw for the clockwise composition.
Therefore the two compositions are equal, and the given diagram com-

mutes.

Corollary 1.13 (PTJ 1.33) If f : X → Y is mono then Pf◦∃f = idΩX .

Proof. Apply 1.12 to the pullback diagram

X
id //

id
��

X

f
��

X
f
// Y

Theorem 1.14 (PTJ 1.34) The functor P : Eop → E is monadic.

Proof. We use the Crude Tripleability Theorem (0.10). We need to verify
its conditions:

1) Eop has coequalizers of reflexive pairs.

2) P preserves coequalizers of reflexive pairs.

3) P reflects isomorphisms.

Verification of 1) is trivial, since coequalizers in Eop are equalizers in E , and
E has finite limits.

For 2), let X
f
// Y

g
//

h
// Z be a diagram in E which is a coequalizer

of a reflexive pair in Eop. Since the pair (g, h) is reflexive in Eop we have

11



an arrow Z
d→ Y satisfying dg = dh = idY . This means that g and h are

monos, and the square

X

f
��

f
// Y

g

��

Y
h
// Z

is a pullback. We see that also f is mono, and applying 1.12 we find
that ∃f◦Pf = Ph◦∃g. Moreover by 1.13 we have the equalities Pf◦∃f =
idΩX , Pg◦∃g = idΩY . Using these equalities we see that the P -image of the
original coequalizer diagram:

ΩZ
Pg
//

Ph
// ΩY Pf

// ΩX

is a split fork in E , with splittings ∃g : ΩY → ΩZ , ∃f : ΩX → ΩY . In
particular it is a coequalizer in E .

For 3), we observe that for any morphism f : X → Y in E , the map

Y
{·}→ ΩY Pf→ ΩX transposes to the map Y × X → Ω which classifies the

graph of f , i.e. the subobject represented by 〈f, id〉 : X → Y ×X. Note that
if the graphs of f and g : X → Y coincide then f = g. Therefore, Pf = Pg
implies f = g and P is faithful, hence reflects both monos and epis. By
Corollary 1.3, P reflects isomorphisms.

Corollary 1.15 (PTJ 1.36) A topos has finite colimits.

Proof. For a finite diagram M : I → E consider Mop : Iop → Eop and
compose with P : Eop → E . The diagram P◦Mop has a limit in E since E
has finite limits. But P , being monadic, creates limits so Mop has a limit
in Eop; that is, M has a limit in E .

Corollary 1.16 (PTJ 1.37) Let T : E → F be a logical functor between
toposes. Then the following hold:

i) T preserves finite limits.

ii) If T has a left adjoint, it also has a right adjoint.

Proof. i) Since T is logical, the diagram

Eop

P
��

T op
// Fop

P
��

E
T
// F

12



commutes up to isomorphism. Proving that T preserves finite colimits
amounts to proving that T op preserves finite limits. So let M : I → Eop

be a finite diagram, with limiting cone (D,µ) in Eop. Now T and P preserve
finite limits, so TP (D,µ) is a limiting cone for TPM ; hence PT op(D,µ)
is a limiting cone for PT opM by commutativity of the diagram. Since P
creates limits, T op(D,µ) is a limitng cone for T opM . We conclude that T op

preserves finite limits.
For ii), we employ the Adjoint Lifting Theorem (0.11) to the same dia-

gram. The assumptions are readily verified, and we conclude that T op has
a left adjoint. But this means that T has a right adjoint.

We now discuss slice categories of toposes. In any category E with finite
limits, for each object X we have the category E/X whose objects are arrows

into X and whose arrows: (Y
f→ X) → (Z

g→ X) are arrows Y
h→ Z such

that f = gh. Given an arrow f : Y → X we have a pullback functor

f∗ : E/X → E/Y , which has a left adjoint
∑

f ;
∑

f (Z
g→ Y = (Z

fg→ X).
In the case of the unique arrow X → 1 we write X∗ : E ∼= E/1 → E/X for
the pullback functor. Note that X∗(Y ) is the projection Y ×X → X. Note

also that X
id→ X is a terminal object of E/X.

The following theorem was dubbed the “Fundamental Theorem of Topos
Theory” by Peter Freyd.

Theorem 1.17 (PTJ 1.42) Let E be a topos and X an object of E. Then
E/X is a topos, and the functor X∗ : E → E/X is logical.

Proof. In the case E = Set, it is useful to view objects of E/X as “X-
indexed families of sets” rather than as functions into X. This intuition will
also guide us in the general case.

Binary products in E/X are pullbacks over X: if we adopt the notation
Y ×X Z for the vertex of the pullback diagram

Y ×X Z

��

// Z

g

��

Y
f

// X

then in E/X, the product f × g is the arrow Y ×X Z → X. Equalizers in
E/X are just equalizers in E . So E/X has finite limits, and the functor X∗

preserves finite limits since it has a left adjoint
∑

f as we remarked.
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Monos in E/X are monos in E , and the diagram

X
〈t,id〉

//

id
##FFFFFFFFF Ω×X

π

��

X,

seen as an arrow in E/X, is a subobject classifier in E/X. Note, that this

map is X∗(1
t→ Ω), so X∗ preserves subobject classifiers.

In order to prove cartesian closure, first observe that for E = Set, the

exponent (Z
g→ X)(Y

f→X) is the X-indexed family (g−1(x)f
−1(x))x∈X , or the

projection function from the set {(h, x) |h : f−1(x)→ g−1(x)} to X.

We first construct the exponential (Z
g→ X)(Y

f→X), then explain its
meaning in intuitive terms (as if E were the topos Set); then we prove that
it has the required universal property.

Let θ : X × Y → X̃ represent the partial map X Y
f
oo

〈f,id〉
// X × Y ,

i.e. let

Y

f
��

〈f,id〉
// X × Y

θ
��

X ηX
// X̃

be a pullback. Let θ̄ : X → X̃Y be the exponential transpose of θ. Finally,
let

E

p

��

q
// Z̃Y

g̃Y
��

X
θ̄
// X̃Y

be a pullback; the claim is that E
p→ X is the required exponential.

Intuitive explanation: think of X̃ as the set of subsets of X having at
most one element. So θ(x, y) = {x | f(y) = x}. The function g̃ : Z̃ → X̃
sends subset α of Z to {g(z) | z ∈ α}. Then, the function g̃Y : Z̃Y → X̃Y

sends a function h : Y → Z̃ to the function y 7→ {g(z) | z ∈ h(y)}. We have
θ̄(x)(y) = {x | f(y) = x}. So the object E can be identified with the set of
pairs (x, h) satisfying:

x ∈ X,h : Y ⇀ Z
dom(h) = f−1(x)
for all y ∈ f−1(x), h(y) ∈ g−1(x).
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That is, E is isomorphic to {(h, x) |h : f−1(x)→ g−1(x)}.
Now we prove that the constructed E

p→ X has the property of the

exponential (Z
g→ X)(Y

f→X).

For an arbitrary object (T
k→ X) of E/X, maps in E/X from k to

p correspond bijectively to maps T
l→ Z̃Y satisfying g̃Y l = θ̄k. These

correspond to maps T × Y l̄→ Z̃ satisfying θ(k × idY ) = g̃l̄. These in turn,

correspond to maps T ×X Y
¯̄l→ Z which satisfy that g¯̄l is the composite

T ×X Y → T × Y → Y
f→ X; that is, to maps from T ×X Y to Z making

the triangle
T ×X Y

$$HHHHHHHHH
// Z

g
��~~~~~~~~

X

commute; that is, maps from k × f to g in E/X.
For the third correspondence in the chain above, suppose we have

T × Y l̄→ Z̃ satisfying θ(k × idY ) = g̃l̄. Let

W //

��

T × Y

l̄
��

Z ηZ
// Z̃

be a pullback. We then have a commutative diagram

T

k

��

T × Yπoo

k×id

��

l̄
##FFFFFFFFF Woo

  
@@@@@@@@

��

Z̃

g̃

��

Z
ηZoo

g

��

X X × Yπoo

θ
##FFFFFFFFF

// Y

f
  

@@@@@@@@

X̃ X
ηXoo

The front face and the top face of the cube are pullbacks, as is the bottom.
Hence the back face is a pullback too. Composing the back face with the
left hand square reveals that W is T ×X Y .

The fact that X∗ preserves exponentials is left as an exercise.

15



Exercise 7 Show that X∗ preserves exponentials.

Corollary 1.18 (PTJ 1.43) For any arrow f : X → Y in E the pullback
functor f∗ : E/Y → E/X is logical, and has a right adjoint

∏
f .

Proof. We now know that E/Y is a topos, so we can apply Theorem 1.17
with E/Y in the role of E and f in the role of X. We see that f∗ is logical.
By Corollary 1.16, f∗ has a right adjoint, since it has a left adjoint

∑
f .

However, we can also exhibit the right adjoint
∏
f directly: we do this

for the case Y = 1. Given an object (Y
f→ X) of E/X let pidq : 1 → XX

denote the exponential transpose of the identity arrow on X, and let

Z // Y X
fX
//

pidq◦!
// XX

be an equalizer diagram. Think of Z as the object of sections of f . Now for
any object W of E , arrows g : X∗(W )→ f :

W ×X g
//

##HHHHHHHHH Y

f~~~~~~~~~~

X

correspond, via the exponential adjunction, to arrows g̃ : W → Y X such
that fX◦g̃ factors through pidq; that is to arrows W → Z. Therefore Z is∏
X(f).

Example 1.19 Consider the subobject classifier 1
t→ Ω; let us calculate∏

t : E → E/Ω. For an object X of E and an arrow Y
m→ Ω we have that

maps from m to
∏
t(X) in E/Ω correspond to maps from Y ′ to X, where Y ′

is the subobject of Y classified by m. That is, to maps g : Y → X̃ for which
the domain (i.e. the map g∗(ηX) : Y ′ → Y ) is the subobject of Y classified
by m. But these correspond to maps in E/Ω from m to the arrow s : X̃ → Ω

which classifies the mono X
ηX→ X̃.

Corollary 1.20 (PTJ 1.46) Every arrow f : X → Y in E induces a geo-
metric morphism

f : E/X ∏
f

// E/Y
f∗
oo

.

This geometric morphism has the special features that the inverse image
functor f∗ is logical and has a left adjoint.
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Definition 1.21 A geometric morphism f for which the inverse image func-
tor f∗ has a left adjoint is called essential.

Without proof, we mention the following partial converse to corollary 1.20.

Theorem 1.22 (PTJ 1.47) Let f : F → E be an essential geometric mor-
phism such that f∗ is logical and its left adjoint f! preserves equalizers. Then
there is an object X of E, unique up to isomorphism, such that F is equiv-
alent to E/X and, modulo this equivalence, the geometric morphism f is
isomorphic to the geometric morphism (X∗ a

∏
X) of Corollary 1.20.

We recall from the Category Theory and Topos Theory course that a regular
category is a category with finite limits, which has coequalizers of kernel
pairs, and in which regular epimorphisms are stable under pullback. Recall
that in such a category, every arrow factors, essentially uniquely, as a regular
epimorphism followed by a monomorphism. The construction is as follows:
given f : X → Y , let X

e→ E be the coequalizer of the kernel pair of f , and
let m : E → Y be the unique factorization of f through this coequalizer.

Since pullback functors have right adjoints, they preserve regular epi-
morphisms, so every topos is a regular category.

Lemma 1.23 (PTJ 1.53) In a topos, every epi is regular.

Proof. Given an epi f : X → Y , let X
e→ E

m→ Y be its regular epi-mono
factorization. Since f is epi, m must be epi; by 1.3, m is an isomorphism.
So f is regular epi.

Definition 1.24 An exact category is a regular category in which every
equivalence relation is effective.

By 1.5 we have:

Proposition 1.25 Every topos is an exact category.

Proposition 1.26 (PTJ 1.56) In a topos the initial object 0 is strict; that
is, every arrow into 0 is an isomorphism.

Proof. Given X
i→ 0, we have a pullback

X

idX
��

i // 0

id0

��

X
i
// 0
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so idX = i∗(id0). Now id0 is initial in E/0, so idX is initial in E/X (since i∗,
having a right adjoint, preserves initial objects). But that means that X is
initial in E , since for any object Y of E there is a bijection between arrows
X → Y in E , and arrows idX → X∗(Y ) in E/X.

Corollary 1.27 (PTJ 1.57) In a topos, every coprojection X → X+Y is
monic. Moreover, “coproducts are disjoint”: that is, the square

0 //

��

X

��

Y // X + Y

is a pullback.

Proof. From Proposition 1.26 it follows easily that every map 0 → X is
monic. Since the given square is always a pushout, the statement follows at
once from Corollary 1.9.

Exercise 8 Prove that for a topos E and objects X,Y of E the categories
E/(X + Y ) and E/X × E/Y are equivalent.

As a consequence of regularity (and existence of coproducts) we can form
unions of subobjects: given subobjects M,N of X, represented by monos
M

m→ X,N
n→ X, its union M ∪N (least upper bound in the poset Sub(X))

is defined by the regular epi-mono factorization

M +N →M ∪N → X

of the map

[
m
n

]
: M +N→X. We have:

Proposition 1.28 In a topos, for any object X the poset Sub(X) of sub-

objects of X is a distributive lattice. Moreover, for any arrow X
f→ Y the

pullback functor f∗ : Sub(Y ) → Sub(X) between subobject lattices has both
adjoints ∃f and ∀f .

Proof. Finite meets in Sub(X) (from now on called “intersections” of sub-
objects) are given by pullbacks, and unions by the construction above. Dis-
tributivity follows from the fact that pullback functors preserve coproducts
and regular epimorphisms. The left adjoint ∃f is constructed using regular
epi-mono factorization as in the course Category Theory and Topos The-
ory. The right adjoint ∀f is just the restriction of

∏
f to subobjects:

∏
f

preserves monos.

The following fact will be important later on.
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Proposition 1.29 (Elephant, A1.4.3) Let M
m→ X,N

n→ X be monos
into X (we also write M,N for the subobjects represented by m and n). Let
the intersection and union of M and N be represented by arrows M ∩N →
X, M ∪N → X, respectively. Then the diagram

M ∩N

��

//M

��

N //M ∪N

is both a pullback and a pushout in E.

Proof. This proof is not the proof given in Elephant.
The partial order Sub(X) is, as a category, equivalent to the full sub-

category Mon/X of the slice E/X on the monomorphisms into X. Since
the given square is a pullback in Sub(X) hence in Mon/X, and the domain
functor Mon/X → E preserves pullbacks, the square is a pullback in E .

Let us define Sub≤1(X) as the set of those subobjects M
m→ X for

which the unique map M → 1 is a monomorphism. Note that there is a
natural bijection between Sub≤1(X) and E(1, X̃), where X̃ is the partial
map classifier of X. Writing M both for a subobject of X and for the
corresponding map 1 → X̃, we define the subobject dom(M) of 1 by the
pullback

dom(M)

��

// 1

M
��

X ηX
// X̃

Note, that dom(M) is also the image of the map M → 1. For a subobject c
of 1, we define M�c by the pullback

M�c

��

//M

��

c // 1

We have the following lemma.

Lemma 1.30 Let M,N ∈ Sub≤1(X), with dom(M) = c,dom(N) = d. If
M�(c ∩ d) = N�(c ∩ d) as subobjects of X, then M ∪N ∈ Sub≤1(X).

Proof. We must prove that the map φ : M ∪N → 1 is monic. Clearly, this
map factors through c∪ d, so it is enough to prove that (c∪ d)∗(φ) is monic
in E/(c ∪ d).
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We have c∗(M ∪N) = c∗(M) ∪ c∗(N). Since c∗(N) has domain c∗(d) =
c∩d and M and N agree on c∩ d, we have c∗(N) ≤ c∗(M), so c∗(M ∪N) =
c∗(M) and c∗(φ) is monic. In a symmetric way, d∗(M ∪ N) = d∗(N) and
d∗(φ) is monic.

The topos E/(c+ d) is isomorphic to E/c×E/d by Exercise 8, so we see
that (c+ d)∗(φ) is monic. Now c+ d→ c ∪ d is epi, so the pullback functor
E/(c∪d)→ E/(c+d) reflects monomorphisms. We conclude that (c∪d)∗(φ)
monic, as required. This proves the lemma.

Continuing the proof of Proposition 1.29: as usual, we may do as if X = 1.
So we have subobjects c, d of 1 and we wish to prove that the square

c ∩ d

��

// c

��

d // c ∪ d

is a pushout. Let M : c → X, N : d → X be maps which agree on
c∩d. Then M and N define elements of Sub≤1(X) for which the hypothesis
of Lemma 1.30 holds. Therefore, the map c ∪ d → X which names the
subobject M ∪ N is a mediating map, which is unique because the maps
{c→ c ∪ d, d→ c ∪ d} form an epimorphic family.
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2 Geometric Morphisms

This section contains material from the book Sheaves in Geometry and Logic
by MacLane and Moerdijk; hereafter referred to by “MM”.

We recall that a geometric morphism F → E between toposes is an
adjoint pair f∗ a f∗ with f∗ : E → F (the inverse image functor), f∗ : F → E
(the direct image functor), with the additional property that f∗ preserves
finite limits.

A geometric morphism Set→ E is called a point of E .

Examples 2.1 1) In the Introduction we have seen that every continu-
ous function of topological spaces f : X → Y determines a geometric
morphism Sh(X) → Sh(Y ). If the space Y is sufficiently separated
(here we shall assume that Y is Hausdorff, although the weaker condi-
tion of sober suffices) then there is a converse to this: every geometric
morphism Sh(X)→ Sh(Y ) is induced by a unique continuous function.
Indeed, let f be such a geometric morphism. In Sh(Y ), the lattice of
subobjects of 1 (the terminal object) is in 1-1, order-preserving, bi-
jection with O(Y ), the set of open subsets of Y . The same for X, of
course. Now the inverse image f∗, preserving finite limits, preserves
subobjects of 1 and therefore induces a function f− : O(Y )→ O(X).
Since f∗ preserves colimits and finite limits, the function f− preserves
the top element (f−(Y ) = X), finite intersections and arbitrary unions
(in particular, f−(∅) = ∅).
Define a relation R from X to Y as follows: R(x, y) holds if and only
if x ∈ f−(V ) for every open neighbourhood V of y. We shall show
that R is in fact a function X → Y , leaving the remaining details as
an exercise.

i) Assume R(x, y) and R(x, y′) both hold, and y 6= y′. By the
Hausdorff property, y and y′ have disjoint open neighbourhoods
Vy and Vy′ . By assumption and the preservation properties of
f− we have:

x ∈ f−(Vy) ∩ f−(Vy′) = f−(Vy ∩ Vy′) = f−(∅) = ∅

a clear contradiction. So the relation R is single-valued.

ii) Suppose for x ∈ X there is no y ∈ Y satisfying R(x, y). Then
for every y there is a neighbourhood Vy such that x 6∈ f−(Vy).
Then we have

x 6∈
⋃
y∈Y

f−(Vy) = f−(
⋃
y∈Y

Vy) = f−(Y ) = X
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also a clear contradiction. So the relation R is total, and there-
fore a function.

Exercise 9 Show that the function R just constructed is continuous,
and that it induces the given geometric morphism f .

2) Consider, for a group G, the category Ĝ of right G-sets. Let ∆ : Set→
Ĝ be the functor which sends a set X to the trivial G-set X (i.e. the
G-action is the identity). Note that ∆ preserves finite limits. The
functor ∆ has a right adjoint Γ, which sends a G-set X to its subset
of G-invariant elements, i.e. to the set

{x ∈ X |xg = x for all g ∈ G}

Note that Ĝ(∆(Y ), X) is naturally isomorphic to Set(Y,Γ(X)), so we
have a geometric morphism Ĝ → Set. Actually, this geometric mor-
phism is essential, because ∆ also has a left adjoint: we have that
Ĝ(X,∆(Y )) is naturally isomorphic to Set(Orb(X), Y ), where Orb(X)
denotes the set of orbits of X under the G-action.

Exercise 10 Prove that the functor Orb does not preserve equalizers
(Hint: you can do this directly (think of two maps G→ G), or apply
Theorem 1.22).

This example can be generalized in two directions, as the following
items show.

3) Let E be a cocomplete topos. Then there is exactly one geometric
morphism E → Set, up to natural isomorphism. For, a geometric mor-
phism is determined by its inverse image functor, which must preserve
1 and coproducts; and since, in Set, every object X is the coproduct
of X copies of 1, for f : E → Set we must have f∗(X) =

∑
x∈X 1.

For a function φ : X → Y we have [µφ(x)]x∈X :
∑

x∈X 1 →
∑

y∈Y 1
(where µi sends 1 to the i’th cofactor of the coproduct

∑
y∈Y 1) which

is f∗(φ) : f∗(X)→ f∗(Y ). This defines f∗ : Set→ E .

Exercise 11 Show that the functor f∗ preserves finite limits.

The functor f∗ has a right adjoint: for a set X and object Y of E we
have

E(f∗(X), Y ) ' E(
∑
x∈X

1, Y ) '
∏
x∈X
E(1, Y ) ' Set(X, E(1, Y ))
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so the functor which sends Y to its set of global sections (arrows 1→
Y ) is right adjoint to f∗. The “global sections functor” is usually
denoted by the letter Γ; its left adjoint by ∆.

4) Consider presheaf categories Ĉ, D̂, and let F : C → D be a functor.
We have a geometric morphism F̂ : Ĉ → D̂ constructed as follows. We
have a functor F̂ ∗ : D̂ → Ĉ which sends a presheaf X : Dop → Set to
X◦F op : Cop → Set. In other words,

F̂ ∗(X)(C) = X(F (C))

Exercise 12 Prove that the functor F̂ ∗ preserves all small limits.

A right adjoint F̂∗ for F̂ ∗ may be constructed using the Yoneda Lemma.
Indeed, for F̂∗ to exist, it should satisfy:

F̂∗(Y )(D) ' D̂(yD, F̂∗(Y )) ' Ĉ(F̂ ∗(yD), Y )

so we just define F̂∗ on objects by putting F̂∗(Y )(D) = Ĉ(F̂ ∗(yD), Y ).

Exercise 13 Complete the definition of F̂∗ as a functor, and show
that it is indeed a right adjoint for F̂ ∗.

The functor F̂ ∗ : D̂ → Ĉ has also a left adjoint (so the geometric
morphism F̂ is essential). Recall that for a presheaf X on C we have
the category of elements of X, denoted Elts(X): objects are pairs
(x,C) with x ∈ X(C), and arrows (x,C) → (x′, C ′) are arrows f :
C → C ′ in C satisfying X(f)(x′) = x. We have the projection functor
π : Elts(X)→ C. Define the functor F̂! : Ĉ → D̂ as follows: for X ∈ Ĉ,
F̂!(X) is the colimit in D̂ of the diagram

Elts(X)
π→ C F→ D y→ D̂

We shall shortly see a more concrete presentation of functors of such
“left Kan extensions”.

5) In the course Basic Category Theory and Topos Theory we have seen
that if Cov is a Grothendieck topology on a small category C, then the
category Sh(C,Cov) of sheaves for Cov is a topos, and the inclusion
functor Sh(C,Cov) → Ĉ has a left adjoint (sheafification ) which pre-
serves finite limits; so this is also an example of a geometric morphism.
Henceforth we shall denote a Grothendieck topology by J instead of
Cov.
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2.1 Points of Ĉ

We recall from the course Basic Category Theory and Topos Theory that
the functor y : C → Ĉ is the “free cocompletion of C”. That means the
following: given an arbitrary functor F from C to a cocomplete category
E there is a unique (up to natural isomorphism) colimit-preserving functor
F̃ : Ĉ → E such that the diagram

C F //

y
��

======== E

Ĉ
F̃

OO

commutes up to isomorphism. The functor F̂ is called the “left Kan exten-
sion of F along y”.

Of course, F̃ (X) can be defined as the colimit in E of the diagram

Elts(X)
π→ C F→ E . We wish to present this colimit as a form of “tensor

product”. Let us review the definition from Commutative Algebra.
IfR is a commutative ring andM,N areR-modules, the set HomR(M,N)

of R-module homomorphisms from M to N is also an R-module (with point-
wise operations), and the functor HomR(M,−) : R-Mod → R-Mod has a left
adjoint (−)⊗RM . For an R-module L we define an equivalence relation ∼
on the set L×M : it is the least equivalence relation satisfying

(x, y·r) ∼ (x·r, y)

for all x ∈ L, y ∈M, r ∈ R. The equivalence class of (x, y) is denoted x⊗ y,
and L ⊗M is the R-module generated by all such elements x ⊗ y, subject
to the relations

((x+ x′)⊗ y) = x⊗ y + x′ ⊗ y x⊗ (y + y′) = x⊗ y + x⊗ y′

and with R-action (x ⊗ y)r = (xr ⊗ y) = (x ⊗ ry). In fact, one has a
coequalizer diagram of abelian groups:

L×R×M
φ
//

ψ
// L×M // L⊗M

where φ(x, r, y) = (xr, y) and ψ(x, r, y) = (x, ry). The R-module M is called
flat if the functor (−)⊗M preserves exact sequences; given that this functor
is a left adjoint, this is equivalent to saying that it preserves finite limits.
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Something similar happens if we have a functor A : C → Set and a
presheaf X on C and we wish to calculate the value of the left Kan extension
Ã on X. Let C1 be the set of arrows of C. On A =

∑
C∈C A(C) there is a

(partial) “left C1-action” x 7→ f ·x = A(f)(x), for x ∈ A(C) and f : C → C ′.
Similarly, on X =

∑
C∈C X(C) there is a partial “right C1-action” x 7→ x·f =

X(f)(x), for x ∈ X(C ′) and f : C → C ′. We can now represent the set Ã(X)
as a coequalizer of sets

∑
C,C′∈C X(C ′)× C(C,C ′)×A(C)

φ
//

ψ
//
∑

C,C′∈C X(C)×A(C) // Ã(X)

where φ(x, f, a) = (x·f, a) and ψ(x, f, a) = (x, f ·a). Therefore we write,
from now on, X ⊗C A for Ã(X).

Theorem 2.2 (MM VII.2.2) Let A : C → Set be a functor. Then we
have an adjunction

Set
R
// Ĉ

Loo

with L a R, R(Y )(C) = Set(A(C), Y ) and L(X) = X ⊗C A.

Now for geometric morphisms Set→ Ĉ we need the left adjoint (−)⊗C A to
preserve finite limits.

Definition 2.3 (MM VII.5.1) A functor A : C → Set is called flat if the
functor (−)⊗C A preserves finite limits.

The following theorem summarizes our remarks so far.

Theorem 2.4 (MM VII.5.2) Points of the presheaf topos Ĉ correspond
to flat functors C → Set.

Definition 2.5 A category I is called filtering if the following conditions
are satisfied:

i) I is nonempty.

ii) For each pair of objects (i, j) of I there is a diagram i← k → j in I.

iii) For each parallel pair i
a //

b
// j there is an arrow k

c→ i which equalizes

the pair.
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Now let A : C → Set. We have the category Elts(A): objects are pairs (x,C)
with x ∈ A(C); an arrow (x,C) → (x′, C ′) is a morphism f : C → C ′ in C
such that A(f)(x) = x′.

Definition 2.6 A functor A : C → Set is called filtering if the category
Elts(A) is filtering.

Exercise 14 Let P be a poset and A : P → Set a filtering functor. Show
that the category Elts(A) is isomorphic to a filter in P , that is: a nonempty
subset F ⊆ P with the following properties:

i) The set F is upwards closed: if p ≤ q and p ∈ F , then q ∈ F .

ii) Any two elements of F have a common lower bound in F .

The following theorem provides a concrete handle on flat functors.

Theorem 2.7 (MM VII.6.3) A functor A : C → Set is flat if and only if
A is filtering.

Proof. Assume that A : C → Set is flat. By definition, the following
diagram commutes up to isomorphism:

C A //

yC
��

======== Set

Ĉ
(−)⊗CA

>>~~~~~~~~

So, yC ⊗C A ' A(C), for objects C of C. We check the conditions for a
filtering category.

i) Since (−) ⊗C A preserves terminal objects, 1 ⊗C A is a one-point set.
This shows that A is nonempty.

ii) Since (−)⊗C A preserves binary products, we have that the map

(yC × yD)⊗C A→ A(C)×A(D)((B
u→ C,B

v→ D), a) 7→ (u·a, v·a)

must be an isomorphism; in particular it is surjective. That is condi-
tion ii) of the definition of a filtering functor.
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iii) Finally, consider a parallel pair C
u //

v
// D in C and an element a ∈

A(C) such that u·a = v·a (that is, a parallel pair in Elts(A)). Let

P // yC
yu
//

yv
// yD

be an equalizer diagram in Ĉ. Since (−)⊗C A preserves equalizers, we
have an equalizer diagram

P ⊗C A i // A(C)
A(u)

//

A(v)
// A(D)

in Set. Here, for w ∈ P (B), b ∈ A(B), i(w ⊗ b) = w·b ∈ A(C). Since
u·a = v·a, there must be some pair (w, b) for which i(w⊗ b) = a. This
gives condition iii) of the definition of a filtering functor.

For the converse, only a sketch: suppose A is filtering. Now for R ∈ Ĉ, the
set R⊗C A is a quotient of the sum

∑
C∈C R(C)×A(C) by the equivalence

relation ∼ generated by the set of equivalent pairs ((r·g, a), (r, g·a)) for r ∈
R(C), a ∈ A(C ′) and g : C ′ → C. However, given that A is filtering this
can be simplified. We have: (r, a) ∈ R(C)× A(C) is equivalent to (r′, a′) ∈
R(C ′)×A(C ′) if and only if there is a diagram C D

uoo v // C ′ in C and
an element b ∈ A(D) such that the equations

u·b = a v·b = a′ r·u = r·v

hold. From this definition, it is straightforward to prove that (−) ⊗C A
preserves finite limits.

Corollary 2.8 (MM VII.6.4) Suppose C is a category with finite limits.
Then a functor A : C → Set is flat if and only if it preserves finite limits.

Proof. Again we use that the composite functor ((−)⊗C A)◦y : C → Set is
naturally isomorphic to A. If A is flat, then (−)⊗C A preserves finite limits
and y always preserves existing finite limits, so then A preserves all finite
limits. Note, that this direction does not require C to have all finite limits.

Conversely, suppose C has finite limits and A preserves them. Then A
is filtering:

i) A(1) = 1, so A is nonempty.
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ii) We have A(C)×A(D) ' A(C×D) so in condition ii) of Definition 2.5

we can take the projections C C ×DπCoo
πD // D and appropriate

element of A(C ×D).

iii) By a similar argument, now involving an equalizer in C.

Corollary 2.9 (MM VII.6.5) Let D be a small category. Then the col-
imit functor SetD → Set preserves finite limits if and only if Dop is filtering.

Remark 2.10 In standard text books in category theory, for example Mac-
Lane, one finds a dual definition of “filtering” (i.e., a category is “filtering”
in MacLane’s sense if its opposite category is filtering in our sense). For
this notion of filtering, part of Corollary 2.9 is contained in the slogan that
“filtered colimits commute with finite limits in Set”.

Exercise 15 Deduce Corollary 2.9.

2.2 Geometric Morphisms E → Ĉ for cocomplete E

The universal property of the Yoneda embedding y : C → Ĉ (Ĉ being the free
cocompletion of C) holds with respect to all cocomplete categories, not just
Set. Therefore, every geometric morphism f : E → Ĉ is determined by the
composite functor f∗◦y : C → E . Again, we have a suitably defined “tensor
product” X ⊗C A (when A : C → E is a functor and X ∈ Ĉ), which is now
defined as a colimit in E rather than in Set.

We cannot write down exactly the same formula for what will be the
functor (−)⊗C A as we did for the case of Set, as something like “X(C ′)×
C(C,C ′)×A(C)” is not meaningful: X(C ′) and C(C,C ′) are sets but A(C)
is an object of E . However, using the cocompleteness of E we have the
expression

∑
x∈X(C′),f :C→C′ A(C ′) which, in the case of E = Set, is the same

thing. Let, for a coproduct
∑

i∈I Xi, µi : Xi →
∑

i∈I Xi denote the i’th
coprojection. Then we define X ⊗C A as the coequalizer

∑
C∈C,x∈X(C),f :C′→C A(C ′)

θ //

τ
//
∑

C∈C,x∈X(C)A(C) // X ⊗C A

where θ = [θC,x,f ]C∈C,x∈X(C),f :C′→C ; and θC,x,f is defined to be the compos-
ite

A(C ′)
A(f)−→ A(C)

µC,x−→
∑

C∈C,x∈X(C)

A(C).
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Likewise, τ = [τC,x,f ]C∈C,x∈X(C),f :C′→C where τC,x,f is the map

A(C)
µC′,x·f−→

∑
C∈C,x∈X(C)

A(C).

Again, we define the functor A : C → E to be flat if the functor (−)⊗C A :
Ĉ → E preserves finite limits. And we have a similar notion of filtering as
in 2.6:

Definition 2.11 (MM VII.8.1) A functor A : C → E is filtering if the
following conditions hold:

i) The family of all maps A(C)→ 1 is epimorphic.

ii) For objects C,D of C, the family of maps

{〈A(u), A(v)〉 : A(B)→ A(C)×A(D) |u : B → C, v : B → D}

is epimorphic.

iii) For any parallel pair of arrows u, v : C → D in C and equalizer diagram

Eu,v
e // A(C)

A(u)
//

A(v)
// A(D)

in E , the family of all arrows

{A(B)
f→ Eu,v | for some w : B → C in C with uw = vw, ef = A(w)}

is epimorphic.

Without proof, we record:

Theorem 2.12 (MM VII.9.1) Let E be a cocomplete topos, and C a small
category. Then a functor A : C → E is flat if and only if it is filtering.

We see that geometric morphisms E → Ĉ correspond to filtering functors
C → E , for cocomplete E .
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2.3 Geometric morphisms to E → Sh(C, J) for cocomplete E

Recall that we use the letter J to denote a general Grothendieck topology; so
J(C) is a collection of covering sieves on C (where C is an object of C). Also
recall that a sieve on C can be regarded as a subobject of the representable
presheaf yC . Finally, we established in the basic course that an object X of
Ĉ is a sheaf for J , if and only if for every object C of C and every J-covering
sieve R on C, any diagram

R

��

// yC

X

has a unique filler: an arrow yC → X making the triangle commute.
For the remainder of this section, E will always be a cocomplete topos.

Exercise 16 Let i : Sh(C, J) → Ĉ the geometric morphism where i∗ is
the inclusion and i∗ is sheafification. Suppose p : E → Ĉ is a geometric
morphism such that the direct image p∗ factors through i∗ by a functor
q : E → Sh(C, J). Show that the composite p∗i∗ is left adjoint to q and
conclude that the inverse image p∗ is isomorphic to a functor which factors
through Sh(C, J).

Exercise 16 tells us that a geometric morphism p : E → Ĉ factors through
Sh(C, J) if and only if every object p∗(E) is a sheaf for J . The following
exercise gives us a criterion for when this is the case.

Exercise 17 Let p : E → Ĉ be a geometric morphism, and let J be a Gro-
thendieck topology on C. Then the following two statements are equivalent:

i) For every object E of E , p∗E is a sheaf for J .

ii) For every J-covering sieve R on C, p∗ sends the inclusion R → yC to
an isomorphism in E .

Now we characterized geometric morphisms E → Ĉ by flat functors C → E ;
so we would like to characterize also geometric morphisms p : E → Sh(C, J)
in terms of such functors. Every such geometric morphism determines a
geometric morphism into Ĉ, hence a flat functor A : C → E ; we need to see
which flat functors give rise to geometric morphisms which factor through
Sh(C, J). It should not be a surprise that we can characterize these functors
by their behaviour on covering sieves, now seen as diagrams in C: every sieve
on C is a diagram of arrows with codomain C.
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Lemma 2.13 (MM VII.7.3) Let J be a Grothendieck topology on a small
category C, and let f : E → Ĉ be a geometric morphism. Then the following
statements are equivalent:

i) The geometric morphism f factors through Sh(C, J).

ii) The composite f∗◦y : C → E sends J-covering sieves to colimiting
cocones in E.

iii) The composite f∗◦y sends J-covering sieves to epimorphic families in
E.

Definition 2.14 A functor A : C → E is called continuous if it has the
properties of the composite f∗◦y in Lemma 2.13.

We can now state:

Theorem 2.15 (MM, Corollary VII.7.4) There is an equivalence of cat-
egories between

Top(E ,Sh(C, J))

and the category of flat and continuous functors C → E.

2.4 Surjections and the Topos of Coalgebras

Theorem 2.16 (MM V.8.4; PTJ 2.32) Let (G, δ, ε) be a comonad on a
topos E such that the functor G preserves finite limits. Then the category
EG of G-coalgebras is a topos, and there is a geometric morphism

E
f∗
// EG

f∗
oo

where f∗ is the forgetful functor and f∗ the cofree coalgebra functor.

Proof. Finite limits are created by V the forgetful functor EG → E , since
G preserves finite limits; so EG has finite limits.

Let R : E → EG be the cofree coalgebra functor: RX = GX
δX→ G2X.

For coalgebras (A, s), (B, t), (C, u) we have:

E(A×B,C) ' E(A,CB) ' EG((A, s), R(CB))

where f : A×B → C corresponds to f̃ : A→ CB and to f ′ = G(f̃)◦s : A→
G(CB). Note that f = ev◦(f̃ × id).
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Now f : A × B → C is a coalgebra map if and only if the following
diagram commutes:

A×B

f
��

s×t
// GA×GB ∼ // G(A×B)

G(f)
��

C u
// GC

We consider the exponential transposes of both compositions in this
diagram. The clockwise composition transposes to

(∗) A
f ′
// G(CB)

ρ
// GCGB

GCt // GCB

where ρ is the transpose of the map G(CB)×GB ∼→ G(CB ×B)
G(ev)→ GC.

The counterclockwise composition transposes to

(∗∗) A
f̃
// CB

uB // GCB

We wish to describe those maps f : A × B → C which make these two
transposes equal. Let V : EG → E be the forgetful functor and C the cofree
coalgebra functor; we have V a C and V C = G. Under this adjunction, the
map (∗) corresponds to the compositie

A
f ′
// G(CB)

δ // G2(CB)
Gρ
// G(GCGB)

G(GCt)
// G(GCB)

and the map (∗∗) corresponds to the composite

A
f ′
// G(CB)

G(uB)
// G(GCB)

Note that both these composites are maps of coalgebras. So, the maps
f : A×B → C we are looking for, correspond to maps f̄ : A→ E, where

G2(CB)
Gρ
// G(GCGB)

G(GCt)

&&MMMMMMMMMM

E // G(CB)

δ
99ttttttttt

G(uB)
// G(GCb)

is an equalizer in EG (equalizer of two maps between cofree coalgebras). So
E is the exponent (C, u)(B,t) in EG.
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It remains to show that EG has a subobject classifier. To this end we have
a look at subobjects of (A, s) in EG. Our first remark is that if m : D → A is
a subobject of A in E , there is at most one coalgebra structure d : D → GD
on D such that m is a coalgebra map. Indeed, for m to be a coalgebra map
we should have G(m)d = sm; now G(m) is mono, so there is at most one
such d.

On the other hand, if m : D → A is a subobject and d : D → GD is any
map such that G(m)d = sm, then (D, d) is a G-coalgebra and the square

D
d //

m
��

GD

Gm
��

A s
// GA

is a pullback in E . To see this, consider

D
d //

d

��

m

""FFFFFFFFF GD
Gm

{{vvvvvvvvv

Gd

��

A
s //

s
��

GA

Gs
��

GA
δA
// G2A

GD

Gm

<<yyyyyyyyy

δD
// G2D

G2m

ccGGGGGGGG

The inner square commutes since (A, s) is a coalgebra. The three upper
squares commute because of the assumption G(m)d = sm, and the lower
square is a naturality square for δ. Hence the outer square commutes, which
says that the map d is coassociative. To see that d is also counitary, consider
the diagram

D
d //

m
��

GD

Gm
��

εD // D

m
��

A s
// GA εA

// A

Since m(εDd) = m and m is mono, εDd = idD. Moreover, one sees that the
left hand square is a pullback.

Now suppose m : (D, d) → (A, s) is the inclusion of a subobject in EG.

Let τ : G(Ω) → Ω be the classifying map of the mono 1 ' G(1)
G(t)→ G(Ω).
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Let h : A→ Ω be the classifying map of m. In the diagram

D

m

��

d // GD

Gm
��

// 1

G(t)
��

// 1

t
��

A s
// GA

G(h)
// G(Ω) τ

// Ω

all three squares are pullbacks (check!), and therefore τG(h)s = h by unique-
ness of the classifying map. Moreover, since (A, s) is a coalgebra we have
G(h)s = G(τ)δΩG(h)s, so if we form an equalizer

ΩG
e // G(Ω)

G(τ)δΩ
//

id
// G(Ω)

(equalizer taken in EG, the two maps seen as maps between cofree coalge-
bras), then we see that the map G(h)s factors through ΩG. Also the map
G(t) : 1→ G(Ω) factors through this equalizer by a map e : 1→ ΩG, which
is the subobject classifier of EG.

Corollary 2.17 (MM V.7.7) If (T, η, µ) is a monad on a topos E and the
functor T has a right adjoint, then the category of T -algebras is again a
topos.

Proof. Combine Theorems 0.15 and 2.16.

To give an example, consider a monoid M : a set with an associative multi-
plication, for which it has a two-sided unit element. The functor (−)×M :
Set → Set has the structure of a monad (using the multiplication and the
unit element of M). The category of algebras for this monad is the category

of right M -sets, i.e. the category M̂ . Note that the functor (−)×M has a

right adjoint (−)M , so we have another proof that M̂ is a topos.
The construction of the topos EG and its accompanying geometric mor-

phism E → EG (the inverse image part of which is the forgetful functor,
which is faithful) motivates the following definition.

Definition 2.18 A geometric morphism f : F → E is called a surjection if
the inverse image functor f∗ is faithful.

Lemma 2.19 (MM Vii.4.3) For a geometric morphism f : F → E the
following are equivalent:

i) The inverse image f∗ is faithful.
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ii) Every component of the unit η of the adjunction f∗ a f∗ is a monomor-
phism.

iii) The functor f∗ reflects isomorphisms.

iv) The functor f∗ induces an injective homomorphism of lattices SubE(E)→
SubF (f∗E).

v) The functor f∗ reflects the order on subobjects: for A,B ∈ SubE(E),
f∗A ≤ f∗B if and only if A ≤ B.

Proof. The equivalence (i)⇔(ii) is basic Category Theory.
For (i)⇒(iii): a faithful functor reflects monos and epis, and a topos is

balanced (1.3).
For (iii)⇒(iv): Since f∗ preserves monos, it induces a map on subob-

jects. Furthermore f∗ preserves images and coproducts, hence unions of
subobjects; also, f∗ preserves intersections. So f∗ induces a lattice homo-
morphism. Since f∗ reflects isomorphisms, it is injective.

For (iv)⇒(v): If f∗A ≤ f∗B then f∗A = f∗A∩f∗B = f∗(A∩B) because
f∗ is a lattice homomorphism. Hence A = A ∩ B since f∗ is injective; so
A ≤ B.

For (v)⇒(i): if X
u //

v
// Y is a parallel pair with equalizer E

e→ X,

then f∗(u) = f∗(v) entails (since f∗ preserves equalizers) that f∗(E) is the
maximal subobject of f∗X. By (v), this entails that E is the maximal
subobject of X; in other words, u = v. So f∗ is faithful.

Proposition 2.20 (MM VII.4.4) A geometric morphism f : F → E is
a surjection if and only if E is equivalent to the topos of coalgebras for a
finite limit preserving comonad on F and f is, modulo this equivalence, the
cofree-forgetful geometric morphism.

Proof. One direction is clear, since the forgetful functor is always faithful.
For the other, suppose f is a surjection and consider the comonad f∗f∗ on
F . Let us spell out the dual version of Beck’s Crude Tripleability Theorem
(0.10):

CTTop Let A
U
// C

Foo be an adjunction with F a U . Suppose C has equaliz-

ers of coreflexive pairs, F preserves them and F reflects isomorphisms.
Then the functor F is comonadic.
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It is clear that for a surjection f , the conditions are satisfied. The conclusion
follows.

Examples 2.21 1) For a continuous map f of topological T1-spaces, the
induced geometric morphism is a surjection if and only if the map f
is surjective (MM, start of §VII.4).

2) For a morphism f : A→ B in a topos E , the induced geometric mor-
phism E/A→ E/B is a surjection if and only if f is an epimorphism.

3) For a functor F : C → D between small categories, the induced geo-
metric morphism F̂ : Ĉ → D̂ of Example 2.1 4) is a surjection if and
only if every object of D is a retract of an object in the image of F
(Elephant, A4.2.7).

2.5 Embeddings and Sheaf Subtoposes

In this section we work again in an arbitrary (not necessarily cocomplete)
topos E . First we establish an internalization of the intersection (∩) opera-
tion on subobjects.

Proposition 2.22 Let 1
t→ Ω be a subobject classifier and denote by ∧ :

Ω × Ω → Ω the classifying map of the monomorphism 1
〈t,t〉−→ Ω × Ω. Then

for subobjects M,N of X we have: if M is classified by φ : X → Ω and N
by ψ : X × Ω then the intersection M ∩N is classified by the composite

X
〈φ,ψ〉−→ Ω× Ω

∧→ Ω.

Proof. Consider maps f : Y → X. If 〈φ, ψ〉◦f : Y → Ω × Ω is equal to
〈t◦!, t◦!〉 : Y → Ω× Ω, then φf = t! and ψf = t!, so f factors both through
M and through N , hence f factors through the intersection M ∩ N . We
conclude that the diagram

M ∧N

��

// X

〈φ,ψ〉
��

1
〈t,t〉

// Ω× Ω

is a pullback, and the statement follows.

Definition 2.23 A Lawvere-Tierney topology (MM) or simply topology (PTJ)
in a topos E is an arrow j : Ω→ Ω with the following properties:
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i) jt = t :

1
t //

t
��

>>>>>>> Ω

j
��

Ω

ii) jj = j :

Ω
j
//

j
��

???????? Ω

j
��

Ω

iii) j◦∧ = ∧◦(j × j) :

Ω× Ω

j×j
��

∧ // Ω

j
��

Ω× Ω ∧
// Ω

In the course Basic Category Theory and Topos Theory we have seen that for
E = Ĉ, Lawvere-Tierney topologies correspond to Grothendieck topologies
on C.

Definition 2.24 (PTJ 3.13) A universal closure operation on a topos E
is given by, for each object X, a map cX : Sub(X)→ Sub(X), which system
has the following properties:

i) M ≤ cX(M) for every subobject M of X (the operation is inflation-
ary).

ii) M ≤ N implies cX(M) ≤ cX(N) for M,N ∈ Sub(X) (the operation
is order-preserving).

iii) cX(cX(M)) = cX(M) for each M ∈ Sub(X) (the operation is idempo-
tent).

iv) For every arrow f : Y → X and every M ∈ Sub(X) we have

cY (f∗(M)) = f∗(cX(M))

(the operation is stable).

Instead of cX(M) we shall also sometimes write M , if the subobject lattice
in which we work is clear.

Exercise 18 Use the stability (requirement iv) of 2.24) to deduce that a
closure operation commutes with finite intersections: M ∩N = M ∩N .
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Note that the result of Exercise 18 means that a universal closure operation
is different from “closure” in Topology, where closure commutes with union,
not with intersection of subsets.

Proposition 2.25 (MM V.1.1; PTJ 3.14) There is a bijection between
universal closure operations and Lawvere-Tierney topologies.

Proof. If j is a Lawvere-Tierney topology, define for M ∈ Sub(X), classified
by φ : X → Ω, M as the subobject of X classified by jφ. We use the letter
J to denote the subobject of Ω classified by j:

J

��

// Ω

j
��

1
t
// Ω

We see that J is the closure of the subobject (1
t→ Ω). We have: M is the

vertex of the pullback

M

��

// X

φ
��

J // Ω

and we conclude that M ≤M . The other properties of the universal closure
operation are straightforward and left to you.

In the other direction, given a universal closure operation cX(−), let j be

the classifying map of cΩ(1
t→ Ω). The verification of the properties of a

Lawvere-Tierney topology, as well as that the two described operations are
inverse to each other, is again left to you.

Definition 2.26 Given a Lawvere-Tierney topology j with associated clo-
sure operation cX(−) (or (−)), we call a subobject M of X:

dense if M = X

closed if M = M .

Definition 2.27 Consider, for an object X, partial maps into X with do-
main a dense subobject:

M ′

!!CCCCCCCC
m //M

X
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with m : M ′ → M a dense mono (i.e., the subobject represented by the
mono m is dense).

The object X is called separated for j if any such partial map has at
most one extension to a map M → X.

The object X is called a sheaf for j (or a j-sheaf) if any such partial
map has exactly one extension to a map M → X.

We write Shj(E) for the full subcategory of E on the sheaves for j.

Theorem 2.28 (MM V.2.5; PTJ §3.2) For any topos E with Lawvere-
Tierney topology j, the category Shj(E) is a topos. The inclusion functor
Shj(E) → E preserves finite limits and exponentials, and Shj(E) is closed
under finite limits in E.

Proof. Suppose I is a finite category and X : I → Shj(E) a functor with
limiting cone (N,µ) in E . Given a diagram

M ′

!!CCCCCCCC
m //M

N

we have partial maps M ⇀ X(i) for all objects i of I, and these partial maps
have unique extensions M → X(i) since the X(i) are sheaves. Therefore we
have a cone for X with vertex M and hence a unique map of cones M → N ,
which is also the unique extension of the given partial map. Therefore, N
is a sheaf and we see that Shj(E) is closed under the finite limits of E , that
it has finite limits and that the inclusion preserves them.

Secondly, if F is a sheaf, then the exponential F Y is a sheaf, for any
object Y . For, given a partial map

M ′

!!CCCCCCCC
m //M

F Y

with m dense, this diagram transposes under the exponential adjunction to
a partial map

M ′ × Y

&&LLLLLLLLLLL
m×id

//M × Y

F
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Now by the stability of the closure operation, the subobject M ′ × Y m×id−→
M × Y is dense. Sine F is a sheaf we have a unique extension M × Y → F ,
which transposes back to give a unique extension for the original diagram.
We conclude that Shj(E) is cartesian closed and that the inlusion into E
preserves exponentials.

For the subobject classifier of Shj(E) we need an intermediate result,

which we have already seen in the case E = Ĉ.

Lemma 2.29 Let M be a sheaf and M ′ a subobject of M . Then M ′ is a
sheaf if and only if M ′ is closed in M .

Proof. Suppose M ′ is closed in M and M ′ N ′
f
oo // N is a partial

map with N ′ dense in N . Let i : M ′ →M be the inclusion. Now i◦f has a
unique extension g : N →M . Let

L

��

// N

g

��

M ′ //M

be a pullback. Then f : N ′ → M ′ factors through L → M ′, so N ′ ≤ L as
subobjects of N , but L is closed (since it is a pullback of M ′ →M) and N ′

is dense. We see that N = N ′ ≤ L = L, so L → N is an isomorphism and
we have g : N →M ′. So M ′ is a sheaf.

Conversely if M ′ ∈ Sub(M) is a sheaf, consider the partial map

M ′

id
��

//M ′

M ′

Since M ′ → M ′ is dense, there is a unique extension M ′ → M ′. It follows
that M ′ = M ′, so M ′ is closed in M .

Returning to the proof of 2.28: closed subobjects of X are classified by
maps of the form jφ, hence their classifying maps land in the image of j,
which is (by the idempotence of j) the equalizer

Ωj
// Ω

j
//

id // Ω

Hence, Ωj is a subobject classifier for Shj(E) provided we can show that it
is a sheaf.
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Now partial maps Ωj M ′oo //M correspond to closed subobjects

of M ′. But given that M ′ is dense in M , there is an order-preserving bijec-
tion between the closed subobjects of M ′ and of M , given as follows: for A
closed in M , we have A ∩M ′ closed in M ′ and for B closed in M ′ we have
cM (B) closed in M . To see that these operations are each other’s inverse,
observe that for A closed in M :

cM (A ∩M ′) = cM (A) ∩ cM (M ′) = cM (A) = A

and for B closed in M ′ we have

cM (B) ∩M ′ = cM ′(B) = B

The given partial map has therefore a unique extension M → Ωj (the clas-
sifier of the closed subobject of M corresponding to the closed subobject of
M ′ classified by the partial map); and Ωj is a sheaf, as desired.

Proposition 2.30 For an object X of E the following are equivalent:

i) X is j-separated.

ii) X is a subobject of a j-sheaf.

iii) X is a subobject of a sheaf of the form ΩE
j .

iv) The diagonal δ : X → X ×X is a j-closed subobject of X ×X.

Proof. We prove i)⇒iv)⇒iii)⇒ii)⇒i).
For i)⇒iv): let X be separated and let δ be the closure of δ as subobject

of X ×X. Consider the partial map

X

id
��

// δ

X

If i : δ → X×X is the inclusion and p1, p2 : X×X → X are the projections,
then both p1i and p2i are fillers for this diagram, so since X is separated,
p1i = p2i. This means that i : δ → X ×X factors through the equalizer of
p1 and p2, which is δ. So δ = δ as subobjects of X ×X.

For iv)⇒iii): Let ∆ : X ×X → Ω classify the diagonal δ, and {·} : X →
ΩX its exponential transpose, which is a monomorphism. Since δ is closed
in X ×X, ∆ factors through Ωj , and therefore {·} factors through ΩX

j . So

X is a subobject of ΩX
j , which is a j-sheaf.
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The implication iii)⇒ii) is trivial.

For ii)⇒i): Let X
i→ F be mono, with F a j-sheaf. Suppose that

M ′

k
��

m //M

X

is a partial map with m a dense mono. If both of f, g : M → X are fillers
for this diagram then if = ig since F is a sheaf; hence f = g since i is mono.
So X is j-separated.

Lemma 2.31 Let j be a Lawvere-Tierney topology in a topos E, and let X
be an object of E. As usual, we denote the diagonal subobject of X ×X by
δ and its closure by δ.

a) If f, g : Z → X is a parallel pair of arrows into X, then the morphism
〈f, g〉 : Z → X ×X factors through δ if and only if the equalizer of f
and g is a j-dense subobject of Z.

b) The subobject δ of X ×X is an equivalence relation on X.

c) Let X → MX be the coequalizer of the pair δ //
// X . Then any

map X → L, for a j-separated object L of E, factors uniquely through
X →MX. Hence the assignment X 7→MX induces a functor which
is left adjoint to the inclusion sepj(E)→ E, where sepj(E) denotes the
full subcategory of E on the j-separated objects.

Proof. a) Let Efg → Z denote the equalizer of f, g. Consider the diagram:

E′

��

##GGGGGGGGGG

Efg

��

//

=={{{{{{{{
Z

〈f,g〉

��

δ

##GGGGGGGGGG

X

=={{{{{{{{{

δ
// X ×X

where all the squares are pullbacks. We see that E′ is the closure of Efg,
and we see that the map 〈f, g〉 factors through δ if and only if E′ → Z is an
isomorphism, which holds if and only if Efg is a dense subobject of Z.
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b) We prove that for an arbitrary object Z of E , the set of ordered pairs

{(f, g) ∈ E(Z,X)2 | 〈f, g〉 factors through δ}

is an equivalence relation on E(Z,X). Now reflexivity and symmetry are
obvious, and using the notation above for equalizers we easily see that Efg∧
Egh ≤ Efh. Since the meet of two dense subobjects is dense, we see that
the relation is transitive.

c) We have to prove that any map f : X → L with L separated, co-
equalizes the parallel pair r0, r1 : δ → X which is the equivalence relation
from part b). Now clearly for f × f : X × X → L × L, the composite

(f × f)◦δ factors through the diagonal subobject L
δL→ L × L, so the com-

posite (f × f)◦〈r0, r1〉 factors through the closure of δL. But δL is closed by
Proposition 2.30iv), so fr0 = fr1 and f factors uniquely through X →MX.
The adjointness is also clear, provided we can show that MX is separated.
Now δ is classified by ∆ : X ×X → Ω, which has as exponential transpose
the map {·} : X → ΩX . So, δ is the kernel pair of {·}. Now δ is classified
by j◦∆, the exponential transpose of which is jX◦{·} : X → ΩX

j . And δ

is the kernel pair of jX◦{·}. We see that, by the construction of epi-mono
factorizations in a regular category, X →MX → ΩX

j is an epi-mono factor-
ization. So MX is a subobject of a sheaf, and therefore separated by 2.30.

Lemma 2.32 Suppose we have an operation which, to any object X of E,

assigns a sheaf LX and a dense inclusion MX
iX→ LX. Then this extends

to a unique functor L : E → E. Moreover, this functor has the property
that for every X, every map from X to a sheaf factors uniquely through

the composite X → MX
iX→ LX, so L : E → Shj(E) is left adjoint to the

inclusion of sheaves.

Proof. For f : X → X ′, define Lf : LX → LX ′ as the unique filler for the
partial map

MX

iX′◦Mf
��

iX // LX

LX ′ .

The functoriality and the adjointness follow at once.

Theorem 2.33 The inclusion functor Shj(E)→ E has a left adjoint which
preserves finite limits. Hence, we have a geometric morphism i : Shj(E) →
E.
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Proof. Let, as before, ∆ : X×X → Ω classify the diagonal δ : X → X×X.
Then j◦∆ : X × X → Ωj classifies the closure δ; let {·} : X → ΩX

j be its

exponential transpose. One can easily verify that the kernel pair of {·} is
δ, so {·} factors as X → MX → ΩX

j which, since a topos is regular, is the

epi-mono factorization of {·}. Let LX be the closure of the subobject MX
of ΩX

j . Then we have the assumptions of Lemma 2.32 verified, so L is a
functor left adjoint to the inclusion Shj(E) → E . We need to prove that L
preserves finite limits. The following proof is taken from Elephant, A4.4.7.

First of all, we have seen in the proof of Theorem 2.28 that shj(E) is an
exponential ideal in E (for a sheaf F and an arbitrary X, FX is a sheaf).
From this, it follows easily that L preserves finite products: for objects A
and B of E and a sheaf F , we have the following natural bijections:

E(L(A×B), F ) ' E(A×B,F ) ' E(A,FB) ' E(LA,FB) '
E(B,FLA) ' E(LB,FLA) ' E(LA× LB,F )

so L(A×B) ' LA× LB.
Furthermore, by Exercise 6, an object in shj(E) is injective if and only

if it is a retract of some ΩX
j ; since the inclusion shj(E) → E preserves

exponentials and since Ωj is a retract of Ω (hence ΩX
j is a retract of ΩX),

we see that the inclusion preserves injective objects. Given that shj(E) has
enough injectives, by the same exercise we have that L preserves monos.

Now we wish to show that L preserves “coreflexive equalizers”. A core-

flexive pair is a parallel pair X
g
//

f
// Y with common retraction Y

h→ X:

hf = hg = idX . A coreflexive equalizer is an equalizer of a coreflexive pair.
In a category with finite products, every equalizer appears also as core-

flexive equalizer: the arrow E
e→ X is an equalizer of f, g : X → Y if and

only if e is an equalizer of the coreflexive pair 〈idX , f〉, 〈idX , g〉 : X → X×Y
(which has as common retraction the projection X × Y → X). Therefore,
if coreflexive equalizers exist, all equalizers exist and if coreflexive equaliz-
ers are preserved (by a product-preserving functor) then all equalizers are
preserved.

Let f, g : X → Y be a coreflexive pair. You should check that e : E → X
is an equalizer of f, g if and only if the square

E

e
��

e // X

f
��

X g
// Y
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is a pullback. Therefore, if e is an equalizer of f, g then E → X is the meet
(intersection) in Sub(Y ) of the subobjects represented by f and g. We wish
therefore to show that L preserves meets of subobjects.

To this end, let M
m→ X,N

n→ X be monos representing subobjects M
and N , and let M ∩N , M ∪N be their intersection and union. The square

M ∩N

��

//M

��

N //M ∪N

is a pushout in E by Proposition 1.29. Since L is a left adjoint, the square

L(M ∩N)

��

// LM

��

LN // L(M ∪N)

is a pushout in shj(E). We know that L preserves monos, so L(M∩N)→ LN
is mono; so Corollary 1.9 applies and the square is also a pullback. Since
also L(M ∪N)→ LX is mono, also the square

L(M ∩N)

��

// LM

��

LN // X

is a pullback. We conclude that L(M∩N) = LM∩LN so L indeed preserves
meets of subobjects.

Definition 2.34 A geometric morphism f : F → E is called an embedding
if the direct image functor f∗ is full and faithful.

The geometric morphism of Theorem 2.33 is an embedding. Moreover we
shall see that every embedding is of this form (Proposition 2.37).

Examples 2.35 For our usual examples of geometric morphisms, we have:

1) Given a continuous map of topological spaces f : X → Y , the asso-
ciated geometric morphism Sh(X) → Sh(Y ) is an embedding if and
only if f is an embedding of topological spaces (i.e. X is a subspace
of Y ).
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2) For a morphism u : X → Y in a topos E , the geometric morphism
E/X → E/Y is an embedding if and only if u is mono.

3) For a functor F : C → D between small categories, the geometric
morphism F̂ : Ĉ → D̂ is an embedding if and only if F is full and
faithful.

2.6 The Factorization Theorem

Theorem 2.36 (MM VII.4.6) Let f : F → E be a geometric morphism.
There exists a Lawvere-Tierney topology j in E such that f factors as

F

p
""FFFFFFFFF
f

// E

Shj(E)

i

<<yyyyyyyyy

where p is a surjection and i is the geometric morphism from Theorem 2.33.

Moreover, given another factorization F q→ G k→ E of f with q a surjection
and k an embedding, there is an equivalence G → Shj(E) which makes the
following diagram commute:

F f
//

p

""FFFFFFFFF

q

��
3333333333333333 E

Shj(E)

i

<<yyyyyyyyy

G

OO k

EE����������������

.

Proof. Consider the closure operation c(−) on E defined as follows: for

a subobject U
u→ X, cX(u) is the subobject of X given by the following

pullback:

cX(u)

��

// f∗f
∗U

f∗f∗u
��

X ηX
// f∗f

∗X

where η is the unit of the adjunction f∗ a f∗.

Exercise 19 Check yourself that this defines a universal closure operation.
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We claim that for arbitrary subobjects U, V of X the following holds: V ≤
cX(U) if and only if f∗V ≤ f∗U . Indeed, consider the commuting diagram:

V

��

η
// f∗f

∗V

��

X
η
// f∗f

∗X

cX(U)

OO

// f∗f
∗U

OO

where η is the unit of the adjunction f∗ a f∗. If f∗V ≤ f∗U then f∗f
∗V ≤

f∗f
∗U so, since the lower square is a pullback, the arrow V → X factors

through cX(U); i.e., V ≤ cX(U).

Conversely, if V ≤ cX(U), we obtain an arrow V
µ→ f∗f

∗U such that the
following diagram commutes:

V
µ
//

""FFFFFFFFF f∗f
∗U // f∗f

∗X

X

η

99ssssssssss

Transposing along f∗ a f∗ we get

f∗V

""FFFFFFFF
µ̂
// f∗U // f∗X

f∗X

id

;;xxxxxxxx

and, since f∗V → f∗X is mono, also µ̂ is mono, and f∗V ≤ f∗U .
The following exercise is very similar to Exercise 17b):

Exercise 20 Suppose F f→ E is a geometric morphism and j is a Lawvere-
Tierney topology in E . Then f∗ factors through the inclusion shj(E)→ E if
and only if f∗ maps j-dense monos to isomorphisms in F .

Now if U
u→ X is a mono which is dense for (the topology associated to)

the closure operator cX , then X ≤ cX(U), so f∗X ≤ f∗U and f ∗ u is an
isomorphism. By the exercise, we conclude that f∗ factors through shj(E).
And by reasoning as in Exercise 16, we obtain a factorization of geometric
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morphisms:

F

p
""DDDDDDDD
f

// E

shj(E
i

==zzzzzzzz
.

Remains to see that p is a surjection. Consider subobjects U ≤ V of X in
shj(E); suppose p∗U ' p∗V . Then f∗i∗U ' f∗i∗V so, since U and V are
closed subobjects of X, we have i∗U ' i∗V . Since i∗ is full and faithful,
U ' V follows. We conclude that p∗ reflects isomorphisms of subobjects; by
Lemma 2.19, p is a surjection as claimed.

For the essential uniqueness of the decomposition, I refer to MM, The-
orem VII.4.8.

We can now give the promised characterization of embeddings:

Proposition 2.37 For a geometric morphism f : F → E the following
statements are equivalent:

i) f is an embedding (i.e., f∗ is full and faithful).

ii) The counit ε : f∗f∗ ⇒ idF is an isomorphism.

iii) There is a Lawvere-Tierney topology j in E and an equivalence e :
F → shj(E) such that the diagram

F

e
""FFFFFFFFF

f
// E

shj(E)

OO

commutes up to isomorphism.

Proof. The equivalence between i) and ii) is standard Category Theory, and
the implication iii)⇒i) is clear. For the converse, assume f is an embedding.
By Theorem 2.36, there is a factorization

F f
//

p
""FFFFFFFFF E

shj(E)

i

OO
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with p a surjection. Since i∗ and f∗ are full and faithful, so is p∗ (check!).
Therefore the counit ε for p∗ a p∗ is an isomorphism. Consider the “trian-
gular identity” from basic Category Theory for arbitrary E ∈ E :

p∗E

id $$JJJJJJJJJ
p∗ηE // p∗p∗p

∗E

εp∗E
��

p∗E

Since ε is an isomorphism, we see that p∗(ηE) is an isomorphism. But p
is a surjection, so ηE is an isomorphism. We see that both ε and η are
isomorphisms, so p is an equivalence.

Examples 2.38 Let us see how standard geometric morphisms decompose:

1) Every continuous map f : X → Y of topological spaces factors as
X → Z → Y , where Z is the image of X, topologized as a subspace of
Y . The map X → Z is surjective, the map Z → Y is an embedding.
Hence the geometric morphism Sh(X) → Sh(Z) is a surjection and
Sh(Z)→ Sh(Y ) is an embedding.

2) Every morphism in a topos has an epi-mono factorization, as we have
seen. This gives at once a surjection-embedding factorization of the
geometric morphism between the slice toposes.

3) For a functor F : C → D between small categories, let B be the full

subcategory of D on objects in the image of F ; and let C G→ B H→ D be
the evident factorization. Then G is surjective on objects and H is full

and faithful; so Ĉ Ĝ→ B̂ Ĥ→ D̂ is a surjection-embedding factorization of
F̂ .
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3 Logic in Toposes

In 2.22 we have seen the map ∧ : Ω × Ω → Ω, which classifies the sub-

object 1
〈t,t〉−→ Ω × Ω; whenever subobjects M,N of X are classified by φ, ψ

respectively, the intersection (meet) M ∩N is classified by the composite

X
〈φ,ψ〉−→ Ω× Ω

∧→ Ω.

We have also seen that Sub(X) has unions (joins): for subobjects M
m→ X,

N
n→ X, M ∪ N → X is the mono-part of the epi-mono factorization of[

m
n

]
: M + N → X. Equivalently, by Proposition 1.29, M ∪ N may be

constructed as the pushout:

M ∩N

��

//M

��

N //M ∪N

Let ∨ : Ω × Ω → Ω classify the union of the subobjects Ω
〈id,t〉−→ Ω × Ω and

Ω
〈t,id〉−→ Ω× Ω.

Exercise 21 If the subobjects M,N of X are classified by φ, ψ : X → Ω
respectively, then M ∪N is classified by the composite

X
〈φ,ψ〉−→ Ω× Ω

∨→ Ω.

We define also the mono Ω1 → Ω×Ω as the equalizer of π0,∧ : Ω×Ω→ Ω
(where π0 is the first projection).

Exercise 22 For subobjects M,N of X, classified by φ, ψ we have: M ≤ N
if and only if the map 〈φ, ψ : X → Ω× Ω factors through Ω1.

Furthermore, we have the arrow f : 1→ Ω, which classifies the mono 0→ 1.

Definition 3.1 In a category C with finite limits, an internal lattice is an
object L together with morphisms >,⊥ : 1→ L and t,u : L× L→ L such
that the diagrams expressing the following equations commute:

1 x u > = x x t > = >
2 x u ⊥ = ⊥ x t ⊥ = x
3 x u y = y u x x t y = y t x
4 x u (y u z) = (x u y) u z x t (y t z) = (x t y) t z
5 x u (x t y) = x y t (x u y) = y
6 x u x = x x t x = x
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Note that in a lattice (L,⊥,>,u,t) a partial ordering can be defined as the
equalizer of u and the first projection (equivalently, the equalizer of t and
the second projection). If, in the context of an internal lattice, we use the
symbol ≤, it refers to this ordering.

Such a lattice is distributive if moreover x u (y t z) = (x u y) t (x u z)
holds.

Exercise 23 Show that, with the operations ∧ and ∨ and the elements
t, f : 1→ Ω, Ω is a distributive internal lattice.

But Ω has more structure. A Heyting algebra is a lattice which is cartesian
closed as a poset: for elements x and y there is the exponent x ⇒ y which
has the universal property that z ≤ (x ⇒ y) if and only if z u x ≤ y.
This property can also be given equationally, so we can define the notion of
internal Heyting algebra:

Definition 3.2 In a category C with finite limits, a internal Heyting algebra
is an internal lattice (L,>,⊥,u,t) and an operation ⇒: L × L → L such
that the diagram expressing the following equations commute:

(x⇒ x) = > (x⇒ (y u z)) = (x⇒ y) u (x⇒ z)
x u (x⇒ y) = x u y y u (x⇒ y) = y

For Ω, we have a map⇒: Ω×Ω→ Ω which classifies the mono Ω1 → Ω×Ω.

Exercise 24 Prove that (Ω, t, f,∧,∨,⇒) is an internal Heyting algebra. If
M,N are subobjects of X classified by φ, ψ respectively, then the composite

X
〈φ,ψ〉−→ Ω× Ω

⇒→ Ω

classifies the largest subobject K of X which satisfies K ∩M ≤ N .

In any Heyting algebra, we have the operation ¬ (pseudocomplement): ¬x =
x⇒ ⊥. A Heyting algebra is a Boolean algebra if x t ¬x = > for all x.

Definition 3.3 A topos E is called Boolean if Ω is an internal Boolean
algebra.

Proposition 3.4 For a topos E, the following statements are equivalent:

i) E is Boolean.

ii) The map ¬¬ is the identity map on Ω.
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iii) Every subobject M of an object X has a complement, that is: a sub-
object N of X satisfying M ∩N = 0 and M ∪N = X.

iv) The map

[
t
f

]
: 1 + 1→ Ω is an isomorphism.

Obviously, if f : F → E is a logical functor and F is Boolean, then so is E .

Theorem 3.5 (PTJ 5.17) For every topos E, ¬¬ is a Lawvere-Tierney
topology in E, and sh¬¬(E) is Boolean.

Proof. The map ¬ is order-reversing, and for subobjects M,M ′ of X M ≤
¬M ′ if and only if M ′ ≤ ¬M . Hence (taking ¬M for M ′) M ≤ ¬¬M
(i.e., ¬¬ is inflationary) and ¬M = ¬¬¬M ; so ¬¬ is idempotent. Also,
¬¬X = X and ¬¬ commutes with meets: ¬¬M ∧ ¬¬M ′ = ¬¬(M ∧M ′).

The subobject classifier of sh¬¬(E) is Ω¬¬, which is an internal Boolean
algebra in E , hence also an internal Boolean algebra in sh¬¬(E).

For the following proposition, we need the pointwise ordering on maps into
Ω: for f, g : X → Ω we set f ≤ g if and only if the map 〈f, g〉 : X → Ω× Ω
factors through Ω1.

Proposition 3.6 The map ¬¬ is the largest topology for which the inclusion
0→ 1 is closed (equivalently, for which the object 0 is a sheaf).

Proof. Clearly, ¬¬f = f (since ¬f = t), so 0→ 1 is closed.
Conversely, let j be a topology for which 0 → 1 is closed. Let X ′

σ→ X
be a j-dense mono. Let X ′′ = ¬X ′ (in Sub(X)). We have a pullback

0

��

// X ′

σ
��

X ′′ // X

so 0→ X ′′ is j-dense. But 0→ X ′′ is also j-closed, since also.the square

0

��

// 0

��

X ′′ // 1

is a pullback. So, 0→ X ′′ is an isomorphism, and X = ¬X ′′ = ¬¬X ′; so σ
is ¬¬-dense. It follows that j ≤ ¬¬.

Definition 3.7 Let E be a topos.
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1) We say that supports split in E (or, that E satisfies SS) if, whenever

X //

""FFFFFFFFF 1

σ1(X)

<<yyyyyyyyy

is an epi-mono factorization, the epi X → σ1(X) is split.

2) We say that E satisfies the Axiom of Choice (AC) if every epi in E is
split.

Exercise 25 Prove that E satisfies SS if and only if every subobject of 1
is projective in E ; and that E satisfies AC if and only if every object is
projective in E .

The following is a classical result, but we shall later see a stronger statement,
so the proof is deferred.

Theorem 3.8 (Diaconescu; PTJ 5.23) If a topos satisfies AC, it is Boolean.

Exercise 26 For a group G, show that Ĝ is Boolean but does not satisfy
AC.

Definition 3.9 An object X of a topos E is called internally projective if
the functor (−)X preserves epimorphisms.

An epimorphism f : X → Y in E is called locally split if there is an
object V of E such that V → 1 is epi and V ∗(f) is split epi in E/V .

Exercise 27 Show that an epi f : X → Y is locally split if and only if there
is an epi h : Z → Y such that h∗(f) is split epi in E .

Proposition 3.10 (PTJ 5.25) The following statements are equivalent for
a topos E:

i) Every object of E is internally projective.

ii) Every epi in E is locally split.

iii) If X
f→ Y is epi, then

∏
Y (f)→ 1 is epi.

Proof. Recall from the proof of Corollary 1.18 that∏
Y (f) // Y X

fX
//

pidq◦!
// XX

is an equalizer diagram, where pidq : 1 → XX denotes the exponential
transpose of the identity arrow on X.
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4 Classifying Toposes

4.1 Examples

Example 4.1 (Torsors) Let G be a group and suppose γ : E → Set is
a geometric morphism (we speak of a “topos over Set”, i.e. a topos with a
geometric morphism to Set). Then γ∗(G) is a group object in E . A G-torsor
over E is an object T of E equipped with a left group action

µ : γ∗(G)× T → T

which, apart from the axioms for a group action, satisfies the following
conditions:

i) T → 1 is an epimorphism.

ii) The action µ induces an isomorphism

〈µ, p1〉 : γ∗(G)× T → T × T

(recall that p1 denotes the projection on the second coordinate)

In the topos Ĝ of right G-sets, we have a torsor whose underlying set is G
itself, with its canonical action on the left (note that the actions on the left
and on the right commute with each other, so the left action is a map of
G-sets). We call this G-torsor UG.

The G-torsors in E form a category Tor(E , G), whose objects are G-
torsors over E and whose morphisms are morphisms of left G-sets in E .
Since for cocomplete toposes, the geometric morphism to Set is essentially
unique, we have, for a geometric morphism f : E → Ĝ, a diagram

E f
//

γ
  

AAAAAAAA Ĝ

g
~~}}}}}}}}

Set

which commutes up to isomorphism (where g is the geometric morphism we
have already seen).

Clearly, the structures of a G-torsor and of a map between G-torsors
are preserved by inverse images of geometric morphisms, so any geometric
morphism f : F → E gives rise to a functor f∗ : Tor(E , G)→ Tor(F , G).

For the following theorem we should state the 2-dimensional character
of the category Top: for two geometric morphisms f, g : F → E we can also
consider natural transformations f∗ → g∗. In this way we have, for any two
toposes F ,G a category Top(F , E).

54



Theorem 4.2 (MM VIII.2.7) For a topos E over Set there is an equiva-
lence of categories

Top(E , Ĝ) ' Tor(E , G).

This equivalence is, on objects, induced by the operation which sends the
geometric morphism g : E → Ĝ to the G-torsor g∗(UG) and is therefore
natural in E.

This example is an instance of a general phenomenon. We consider, for a
topos E , the category ET of “structures of a type T” in E . For the moment,
let us not worry about what these structures are or what the morphisms
could be, except that we suppose that when M is such a structure in E and
f : F → E is a geometric morphism, then f∗M is such a structure in F ;
and similarly, if we have an arrow µ : M → N in ET then f∗(µ) is an arrow
f∗M → f∗N in FT , so that we have a functor f∗ : ET → FT .

Definition 4.3 A classifying topos for structures of type T is a topos B(T )
over Set, for which there is a natural equivalence of categories

Top(E ,B(T ))→ ET

Applying the equivalence to the identity geometric morphism on B(T ) and
reasoning like in the Yoneda Lemma, we see that there is a structure UT
of type T in B(T ) (the universal T -structure), such that the equivalence of
Definition 4.3 is given by: f 7→ f∗(UT ).

We shall later specify what “structures of type T” will be (models of a
certain logical theory); for now, we continue with some more examples.

Example 4.4 (Objects) The simplest “structure of type T” is: just an
object. If B is a classifying topos for objects, we have an equivalence of
categories

Top(E ,B)→ E
given by f 7→ f∗(U) for some “universal object” U of B.

Lemma 4.5 (MM VIII.4.1) Let Setf be the category of finite sets. Then
Setf is the free category with finite colimits generated by one object.

Proof. The statement of the lemma means: there is a finite set X such that
for every category C with finite colimits and every object C of C, there is an
essentially unique functor FC : Setf → C which preserves finite colimits and
sends X to C. Indeed, let X be a one-element set. For an arbitrary finite
set E, let

FC(E) =
∑
e∈E

C
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Clearly, FC(X) = C. Moreover, FC preserves all finite colimits (see MM
VIII.4.1 for details).

Dual to Lemma 4.5 we have:

Lemma 4.6 (MM VIII.4.2) The category Setop
f is the free category with

finite limits, generated by one object.

Now we have a chain of equivalences:

Geometric morphisms E → SetSetf '
Flat functors Setop

f → E '
Finite limit preserving functors Setop

f → E '
E

So, the classifying topos for objects is SetSetf .

Exercise 28 What is the “universal object” in SetSetf ?

Example 4.7 (Rings) Our next example concerns commutative rings, here
just called rings. In a category C with finite limits, a ring object is a diagram

1
0 //

1
// R R×R

+
oo

·
oo

for which the axioms for rings (expressed by commuting diagrams) hold. We
have an obvious definition of homomorphism of ring objects in C, and hence
a category ring(C). Any finite limit preserving functor F : C → D induces a
functor ring(C)→ ring(D).

Definition 4.8 A ring is finitely presented if it is isomorphic to

Z[X1, . . . , Xn]/I

where Z[X1, . . . , Xn] is the ring of polynomials in n variables with integer
coefficients, and I is an ideal. Since Z[X1, . . . , Xn] is Noetherian, the ideal
I can be written as (P1, . . . , Pk) for elements P1, . . . , Pk of Z[X1, . . . , Xn].

Let fp-rings be the full subcategory of the category of rings on the finitely
presented rings. A morphism

α : Z[X1, . . . , Xn]/(P1, . . . , Pk)→ Z[Y1, . . . , Ym]/(Q1, . . . , Ql)

is given by an n-tuple (α(X1), . . . , α(Xn)) of polynomials in Y1, . . . , Ym, such
that the polynomials

Pj(α(X1), . . . , α(Xn))
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are elements of the ideal (Q1, . . . , Ql).
The category fp-rings has finite coproducts: the initial object is Z, and

the sum

Z[X1, . . . , Xn]/(P1. . . . , Pk) + Z[Y1, . . . , Ym]/(Q1, . . . , Ql)

(where we assume that the strings of variables ~X and ~Y are disjoint) is the
ring

Z[X1, . . . , Xn, Y1, . . . , Ym]/(P1, . . . , Pk, Q1, . . . , Ql)

Moreover, the category fp-rings has coequalizers: given a parallel pair of
arrows

Z[ ~X]/(~P )
α //

β
// Z[~Y ]/( ~Q)

its coequalizer is the quotient ring

Z[~Y ]/( ~Q, α(X1)− β(X1), . . . , α(Xn)− β(Xn))

with the evident quotient map.
Now, we consider fp-ringsop. This is a category with finite limits. Note

that Z is terminal in fp-ringsop. A ring object in fp-ringsop is a diagram

Z R
0oo

1
oo //

// R+R

in fp-rings, subject to the duals of the axioms for rings. An example of such
a structure in fp-rings is the ring Z[X] with maps 0, 1 : Z[X]→ Z sending
a polynomial P to P (0) and to P (1) respectively; and +, · : Z[X]→ Z[X,Y ]
(note that Z[X,Y ] = Z[X] + Z[X] in fp-rings, sending P (X) to P (X + Y )
and to P (XY ) respectively.

Lemma 4.9 (MM VIII.5.1) The category fp-ringsop, together with the
ring object Z[X] as just described, is the free category with finite limits and
a ring object.

The statement of the lemma means: for any category C with finite limits and
ring object R, there is an essentially unique finite limit preserving functor
from fp-ringsop to C which sends Z[X] to R.

We can now argue in exactly the same way as in the two previous ex-
amples: ring objects in a topos E correspond to flat, that is: finite limit
preserving, functors from fp-ringsop to E , which correspond to geometric
morphisms from E to Setfp−rings; the latter therefore being the “classsifying
topos for rings”.
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In each of the three examples we have just seen, the classifying topos was a
presheaf topos. That is because of the “algebraic character” of the type of
structures we considered: the structure is given by a number of operations
and the axioms are equations. Not every structure which admits a classifying
topos is of such a simple kind. But let us now define what kind of structures
we have in mind: structures for geometric logic.

4.2 Geometric Logic

We consider a multi-sorted language. That is: we have a set of sorts, a stock
of variables for each sort (we write xS in order to indicate that the variable
x has sort S), and constants, function symbols and relation symbols with
also specified sorts. We write:

cS to indicate that the constant c is of sort S;

f : S1, . . . , Sn → T to indicate that the function symbol f takes argu-
ments of sorts S1, . . . , Sn, and then yields something of sort T ;

R ⊆ S1, . . . , Sn to indicate that the relation symbol R takes arguments
of sorts S1, . . . , Sn.

All terms of the language have a specified sort: for a variable xS of sort S,
xS is a term of sort S. Every constant of sort S is a term of sort S. If
f : S1, . . . , Sn → T is a function symbol and t1, . . . , tn are terms of sorts
S1, . . . , Sn respectively, then f(t1, . . . , tn) is a term of sort T .

An atomic formula is an expression of one of three forms: it is the symbol
> (for “true”), it is an equation t = s where t and s are terms of the same
sort, or it is an expression R(t1, . . . , tn), where R ⊆ S1, . . . , Sn is a relation
symbol and ti is a term of sort Si for i = 1, . . . , n.

The class of geometric formulas (for a given language) is defined as
follows:

Every atomic formula is a geometric formula;

If φ and ψ are geometric formulas, then φ ∧ ψ is a geometric formula;

If φ is a geometric formula and xS is a variable, then ∃xSφ is a geo-
metric formula;

If X is a set of geometric formulas and X contains only finitely many
free variables, then

∨
X is a geometric formula.
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If E is a cocomplete topos, then there is a straightforward definition of
what a structure for a language in E should be: for every sort S, we have
an object [[S ]] of E ; for every function symbol f : S1, . . . , Sn → T we have
a morphism [[ f ]] : [[S1 ]]× · · · × [[Sn ]]→ [[T ]] in E ; for every relation symbol
R ⊆ S1, . . . , Sn we have a subobject [[R ]] of [[S1 ]]× · · · × [[Sn ]].

Just as straightforwardly, one now obtains, for any formula φ with free
variables xS1

1 , . . . , xSnn , a subobject [[φ ]] of [[S1 ]] × · · · × [[Sn ]]. For the case
when φ is of the form

∨
X, we use of course the cocompleteness of E , which

implies that subobject lattices are complete (have arbitrary joins).
A geometric sequent is an expression of the form φ `~x ψ, where φ and

ψ are geometric formulas, and ~x is a finite list of variables which contains
every variable which appears freely in φ or ψ.

If a structure for the language is given, let us write [[ ~x ]] for the product∏n
i=1[[Si ]] if ~x = (xS1

1 , . . . , xSnn ). If ~yφ is the list of variables appearing freely
in φ and ~yψ the list of those in ψ, then we have evident projections pφ :
[[ ~x ]] → [[ ~yφ ]] and pψ : [[ ~x ]] → [[ ~yψ ]], and hence subobjects [[φ ]]~x = p∗φ([[φ ]])
and [[ψ ]]~x = p∗ψ([[ψ ]]) of [[ ~x ]].

We say that the sequent φ `~x ψ is true in the given structure, if [[φ ]]~x ≤
[[ψ ]]~x in Sub([[ ~x ]]). We think of the sequent φ `~x ψ as of the “formula”

∀~x(φ⇒ ψ)

For instance, if for one of the variables xS in ~x we have that the object
[[S ]] is initial, then the sequent φ `~x ψ is always true.

Let us denote a structure for a given language by M. So we have the
interpretation [[ · ]]M of the sorts, function symbols, constants and relation
symbols in some topos E . If f : F → E is a geometric morphism, we have
a structure f∗M in F by applying the inverse image functor f∗ to all the
data of M. We now have interpretations [[φ ]]M in E and [[φ ]]f

∗M in F .

Proposition 4.10 Let M be a structure for a language in a topos E, and
suppose f : F → E is a geometric morphism. Then we have:

a) For any formula φ of the language, [[φ ]]f
∗M = f∗([[φ ]]M).

b) If the sequent φ `~x ψ is true with respect to the structure M, then it
is also true with respect to f∗M.

c) If the geometric morphism f is a surjection, then the converse of b)
holds: if φ `~x ψ is true with respect to the structure f∗M then it is
true with respect to M.
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A geometric theory in a given language is a set of geometric sequents in that
language. If M is a structure in which every sequent of a theory is true,
then M is called a model of the theory.

Now we can be more precise about the “structures of a type T” men-
tioned in Definition 4.3: they are, in fact, models of a geometric theory.
One advantage of making this notion precise is, that we can investigate ge-
ometric theories also syntactically, and, much as in classical Model Theory,
study relations between syntactic properties of theories and topos-theoretic
properties of their classifying toposes.

For example, in the examples we have discussed so far, the classifying
toposes were presheaf toposes (as we already remarked). This is connected to
the fact that the respective theories are all universal: no

∨
and no existential

quantifier (you might object by saying that in the theory of rings we need
to express that every element has an additive inverse, and that we need an
existential quantifier for this; however, since the additive inverse is unique
this existential quantifier is not essential and we could expand the language
with an extra function symbol).

Example 4.11 (Flat functors) Let us now consider a theory where the
use of existential quantifiers and (possibly infinite) disjunctions is necessary:
the theory of flat functors form a small category C.

Given a small category C, let LC be the language which has:

for every object C of C a sort C;

for every arrow f : C → D in C, a function symbol f : C → D.

The geometric theory Flat(C) has the following sequents:

1) For every commutative triangle

C
f
//

h   
@@@@@@@@ D

g

��

E

a sequent > `xC h(x) = g(f(x)).

2) A sequent

> `
∨
C∈C0

∃xC(x = x).
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3) A sequent

> `xC ,yD
∨

f :E→C,g:E→D
∃zE(f(z) = x ∧ g(z) = y)

4) A sequent

f(x) = g(x) `xC
∨

h:D→C,fh=gh

∃yD(h(y) = x)

Exercise 29 Show that for a topos E , a model of Flat(C) in E is nothing
but a flat functor C → E ; and hence, that the topos Ĉ classifies models of
Flat(C).

Admittedly, in this example the classifying topos is still a presheaf topos.
However, this changes if we extend the theory Flat(C) according to sec-
tion 2.3.

Definition 4.12 Let (C, J) be a site. The theory FlatCont(C, J) of flat and
J-continuous functors from C, is an extension of the theory Flat(C) by the
following axioms: for every object C of C and every covering sieve R ∈ J(C)
we have the axiom

> `xC
∨

f :D→C,f∈R
∃yD(f(y) = x)

Theorem 2.15 now implies:

Proposition 4.13 A model of FlatCont(C, J) is a topos E is nothing but
a flat and J-continuous functor from C to E. Therefore, the topos Sh(C, J)
classifies models of FlatCont(C, J).

And we conclude:

Theorem 4.14 (Classifying Topos Theorem, part I) Every Grothen-
dieck topos is the classifying topos of some geometric theory.

The geometric theory which a Grothendieck topos classifies is by no means
unique, as the following example shows.

Example 4.15 (MM, §VIII.8) Let ∆ be the category of nonempty finite
ordinals and order-preserving (i.e., ≤-preserving) functions. The presheaf
category ∆̂ is of paramount importance in algebraic topology and higher
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category theory; it is the category of simplicial sets. In the indicated section
of their book, MacLane and Moerdijk give a detailed proof of the fact that ∆̂
classifies the theory of linear orders with distinct top and bottom elements,
and order-preserving maps which also preserve top and bottom.

This looks rather different from the category Flat(∆)!

If geometric theories T and T ′ have equivalent classifying toposes, we call
them Morita equivalent. In a picture strongly advocated by Olivia Caramello,
the classifying topos forms a “bridge” between the theories T and T ′.

4.3 Syntactic categories

In section 4.2 we have already seen (in the notations φ `~x ψ and [[φ ]]~x) that
it is useful to consider so-called formulas in context : a formula in context
is a pair [~x.φ] where φ is a geometric formula and ~x a finite list of variables
which contains all variables which appear freely in φ.

Given a geometric theory T and a geometric sequent φ `~x ψ, we write
T |= (φ `~x ψ) to mean that φ `~x ψ is true in every model of T in every
topos.

There is a deduction system for geometric logic, giving a notion T `
(φ `~x ψ), which is described in Elephant, §D1.3. We have a Completeness
Theorem, which says that the notions T |= (φ `~x ψ) and T ` (φ `~x ψ) are
equivalent; this theorem is outside the scope of these lecture notes. We shall
only use the |=-notion.

We construct for any geometric theory T a so-called syntactic category
Syn(T ), as follows.

Call two geometric formulas in context [~x.φ] and [~y.ψ] equivalent if [~y.ψ]
is obtained from [~x.φ] by a renaming of variables (both free and bound).
An object of Syn(T ) is an equivalence class of such formulas in context. We
shall just write [~x.φ] for its equivalence class.

When discussing arrows from [~x.φ] to ~y.ψ] we may, by our convention on
equivalence, assume that the contexts ~x and ~y are disjoint.

A morphism [~x.φ]→ [~y.ψ] in Syn(T ) is an equivalence class of formulas
in context [~x, ~y.θ] which satisfy:

i) T |= (θ(~x, ~y) `~x,~y φ(~x) ∧ ψ(~y)).

ii) T |= (φ(~x) `~x ∃~yθ(~x, ~y)).

iii) T |= (θ(~x, ~y) ∧ θ(~x, ~y′) `
~x,~y,~y′

~y = ~y′).
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where in the last clause, for ~y = y1, . . . , yn and ~y′ = y′1, . . . , y
′
n, ~y = ~y′

abbreviates the formula y1 = y′1 ∧ · · · ∧ yn = y′n.
Two such θ(~x, ~y) and θ′(~x, ~y) represent the same morphism if they are

equivalent modulo T .
Given morphisms θ(~x, ~y) : [~x.φ] → [~y.ψ] and ξ : [~y.ψ] → [~z.χ], the

composition ξ ◦ θ : [~x.φ] → [~z.χ] is represented by the formula ∃~y(θ(~x, ~y) ∧
ξ(~y, ~z)). For any object [~x.φ], the identity arrow [~x.φ] → [~y.φ] (recall our
convention about equivalent formulas in context) is the formula x1 = y1 ∧
· · · ∧ xn = yn.

Exercise 30 Prove that Syn(T ) is a category.

Definition 4.16 A geometric category is a regular category in which subob-
ject lattices have arbitrary joins, and these joins are stable under pullback.

Exercise 31 i) Characterize the monomorphisms in the category Syn(T ).

ii) Show that Syn(T ) is a regular category.

iii) Show that Syn(T ) is a geometric category.

The category Syn(T ) has a tautological model of T : for any sort S, [[S ]] is the
formula in context [xS .x = x]; for any function symbol f : S1, . . . , Sn → T ,
the arrow [[ f ]] is the formula

f(xS1
1 , . . . , xSnn ) = yT

and for any relation symbol R ⊆ S1, . . . , Sn, the subobject [[R ]] is repre-
sented by the evident monomorphism with domain R(xS1

1 , . . . , xSnn ).
For every geometric category C, there is a geometric topology on C: the

covering sieves are those families{fi : Di → C}i∈I for which the subobject∨
i∈I

im(fi)

is the maximal subobject of C (here im(fi) denotes the image of fi as sub-
object of C).

Without proof, we state:

Theorem 4.17 Let T be a geometric theory. For any cocomplete topos E
(or, for any geometric category E), the category of models of T in E is
equivalent to the category of flat and continuous functors from Syn(T ) to E.
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Therefore we have:

Theorem 4.18 (Classifying Topos Theorem, part II) The category Sh(Syn(T ), J),
where J is the geometric topology on Syn(T ), is a classifying topos for T .
Hence every geometric theory has a classifying topos.
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