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Preface

These lecture notes were written during a Mastermath (Dutch national pro-
gramme for master-level courses in mathematics) course, taught in the fall
of 2018.

The main sources I used are:

1) My course notes Basic Category Theory and Topos Theory ([8]), ma-
terial for the lecture course to which the present course is a sequel.
Referred to in the text as the Basic Course.

2) MacLane’s Categories for the Working Mathematician ([5]). Referred
to as ”MacLane”.

3) Peter Johnstone’s Topos Theory ([3]). This is referred to in the text
by PTJ.

4) MacLane and Moerdijk’s Sheaves in Geometry and Logic ([6]). Re-
ferred to by M M.

5) Francis Borceux’s Handbook of Categorical Algebra ([1]).

6) Peter Johnstone’s Sketches of an Elephant ([4]). Referred to by Ele-
phant.

7)  Moerdijk’s Classifying Spaces and Classifying Topoi ([7]).
8) Olivia Caramello’s Theories, Sites, Toposes ([2]).

9) Jaap van Oosten’s Realizability: an Introduction to its Categorical
Side ([9]).

There is no original material in the text, except for a few exercises and some
proofs.

Conventions: in a categorical product, the projections are usually de-
noted by pg and p1, so p; is the second projection.

0.1 The plural of the word “topos”

Everyone knows the quip at the end of the Introduction of [3], which asks
those toposophers who persist in talking about topoi whether, when they
go out for a ramble on a cold day, they carry supplies of hot tea with them
in thermoi. Since then, everyone has to declare what, in his or her view,
is the plural of “topos”. The form “topoi”, of course, is the plural of the



ancient Greek word for “place”. However, Topology is not the science of
places, and the name Topology is what inspired Grothendieck to introduce
the word Topos.

Someone (I forget who) proposed: the word “topos” is French, and its
plural is “topos”. True, but English has adopted many French words, which
are then treated as English words. The French plural of “bus” is “bus”, but
in English it is “buses”.

I stick with “toposes”.
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Introduction

We start by recalling some basic definitions from the course Category Theory
and Topos Theory, which is a prerequisite for this course. For motivation, we
start by exhibiting the elementary notions at work in the example of sheaves
on a topological space. Later in this introductory chapter, we review a few
definitions and results from Category Theory.

Definition 0.1 A topos is a category with finite limits which is cartesian
closed and has a subobject classifier. A subobject classifier is an arrow
t: 1 — Q such that every monomorphism is a pullback of ¢ in a unique
way: for every mono m : X — Y there is a unique arrow x,, : ¥ — Q (the
classifying map, or characteristic map of m) such that the diagram

X —1

ml t
Y=t

is a pullback.

In the introductory course we have seen that the category C of presheaves
on C (for a small category C) is a topos, and if J is a Grothendieck topology
on C then the full subcategory of C on the sheaves for J , usually denoted
Sh(C, J), is also a topos. The pair (C,J) is called a site; and a topos of the
form Sh(C, J) is called a Grothendieck topos.

Let us see a concrete example, in order to illustrate some of the themes
which are important in Topos Theory.

0.2 Sheaves on Spaces

Given a topological space X with set of opens Ox, we view Ox as a (posetal)
category, and form the topos (7); of presheaves on X (as it is usually called).
For an open U C X, a sieve on U can be identified with a set S of open
subsets of U which is downwards closed: if V. C W C U and W € S,
then also V' € S. There is a very natural and straightforward Grothendieck
topology on Ox: declare a sieve S on U to be covering if |JS = U. The
category of sheaves on Ox for this Grothendieck topology is simply called
the category of sheaves on X, and denoted Sh(X).

Let F be a presheaf on X; an element s € F/(U) is called a local section of
F at U. For the action of F on local sections, that is: F(V C U)(s) € F(V)
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(where V' is a subset of U and the unique morphism from V to U is denoted
by the inclusion), we write s[V.

Now let = be a point of the space X. We consider an equivalence relation
on the set {(s,U)|z € U,s € F(U)} of local sections defined at z, by
stipulating: (s,U) ~ (¢, V) iff there is some neighbourhood W of = such
that W C U NV and s[W = ¢t[W. An equivalence class [(s,U)] is called a
germ at x and is denoted s;; the set of all germs at x is G, the stalk of x.

Define a topology on the disjoint union [[ .y G, of all the stalks: a
basic open set is of the form

O = {(y,sy) ly € U}

for U € Ox and s € F(U). This is indeed a basis: suppose (z,g) € OV N0} .
then g = s, = t,, so there is a neighbourhood W of x such that W C V NU
and s[W = t|W. We see that

(z,9) € Oy €OV NOY.

We have a map 7 : [ . x G — X, sending (z,g) to z. If U € Ox and
(z,9) = (v,5;) € 7~ Y(U) then (z,s,) € OY C 7= 1(U), so 7 is continuous.
Moreover, 7(OV) = U, so 7 is an open map.

The map 7 has another important property. Let (z,9) = (z,s;) €
[l,cx Gz. Fix some U such that » € U and s € F(U). The restriction
of the map 7 to OV gives a bijection from OV to U. Since this bijection
is also continuous and open, it is a homeomorphism. We conclude that
every element of [[ .y G, has a neighbourhood such that the restriction
of the map 7 to that neighbourhood is a homeomorphism. Such maps of
topological spaces are called local homeomorphisms, or étale maps.

Let Top denote the category of topological spaces and continuous func-
tions. For a space X let Top/X be the slice category of maps into X, and
let Et(X) be the full subcategory of Top/X on the local homeomorphisms
into X. We have the following theorem in sheaf theory:

Theorem 0.2 The categories Et(X) and Sh(X) are equivalent.
Proof. [Outline] For an étale map p : Y — X, define a presheaf F on X by
putting:

F(U) = {s:U — Y| s continuous and ps = idy }.
This explains the terminology local sections. Then F is a sheaf on X. Con-
versely, given a sheaf F' on X, define the corresponding étale map as the

map 7 : [[,cx Gz — X constructed above. These two operations are, up to
isomorphism in the respective categories, each other’s inverse. [ |



Exercise 1 Show that for a presheaf F' and the associated local homeo-
morphism 7 : [[ .y Gz — X that we have constructed, the following holds:
every morphism of presheaves F' — H, where H is a sheaf, factors uniquely
through the sheaf corresponding to m : [[,.x G, — X. Conclude that
7 : [{,ex Go — X is the associated sheaf of F.

Next, let us consider the effect of continuous maps on categories of
sheaves. First of all, given a continuous map ¢ : ¥ — X we have the
inverse image map ¢! : Ox — Oy and hence a functor

¢ = Set@ " Oy — Oy

and the functor ¢, restricts to a functor Sh(Y) — Sh(X).

There is also a functor in the other direction: given a sheaf ' on X, let
F — X be the corresponding étale map. It is easy to verify that étale maps
are stable under pullback, so if

|

by

<

—_
¢

is a pullback diagram in Top, let ¢*(F') be the sheaf on Y which corresponds
to the local homeomorphism G — Y. This defines a functor Sh(X) — Sh(Y').

Proposition 0.3 We have an adjunction ¢* - ¢.; moreover, the left adjoint
¢* preserves finite limits.

Definition 0.4 Let £ and F be toposes. A geometric morphism: F — &
consists of functors f, : F — £ and f*: & — F satisfying: f* 4 f, and f*
preserves finite limits. The functor f, is called the direct image functor of
the geometric morphism, and f* the inverse image functor.

Tt is clear that Definition 0.4 gives us a category Top of toposes and geometric
morphisms, and the treatment of categories of sheaves on spaces shows that
we have a functor Top — Top from topological spaces to toposes. This
functor allows us to relate topological properties of a space to category-
theoretic properties of its associated topos of sheaves.

Another example of geometric morphism that we have seen, is the one
Sh(C,J) — C, where the direct image is inclusion as subcategory, and the
inverse image is sheafification.

Other examples of geometric morphisms we shall meet during this course,
are:
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i) Any functor F' : C — D between small categories gives rise to a geo-
metric morphism C — D.

ii) If £ is a topos and X is an object of &, then the slice category £/X
is a topos; and if f : X — Y is an arrow in £ then we will have a
geometric morphism £/X — £/Y.

iii) If £ is a topos and H : £ — £ is a finite-limit preserving comonad on
&, then the category £ of coalgebras for H in £ is a topos, and there
is a geometric morphism & — £p.

There is another important notion of “morphism between toposes”: log-
ical functors.

Definition 0.5 A logical functor between toposes is a functor which pre-
serves the topos structure, that is: finite limits, exponentials and the sub-
object classifier.

0.3 Notions from Category Theory

First, let us deal with a subtlety we overlooked in the Category Theory and
Topos Theory course. There, we said (following MacLane) that a functor
F : C — D creates limits of type J if for every diagram M : J — C and every
limiting cone (D, p) for FM in D, there is a unique cone (C,v) for M in C
which is mapped by F to (D, i), and moreover the cone (C,v) is a limiting
cone for M.

For an adjunction F 4G :C = D (so G:C — D,F : D — C) we have
a comparison functor K : C — DY, where DY is the category of algebras
for the monad GF on D. MacLane, consistently, defines the functor G to be
monadic if K is an isomorphism of categories. It follows that every monadic
functor creates limits.

However, we defined the functor G to be monadic if K is an equivalence.
And whilst the forgetful functor UT : CT — C always creates limits (here C
denotes the category of algebras for a monad T'), with the strict definition we
gave this is no longer guaranteed if U’ is composed with an equivalence of
categories. Yet, there are good reasons to consider “monadic” functors where
the comparison is only an equivalence, and we would like to have a “creation
of limits” definition which is stable under equivalence. For example, the
“Crude Tripleability Theorem” (0.10) below only ensures an equivalence
with the category of algebras.
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Definition 0.6 (Creation of Limits) A functor F': C — D creates limits
of type J if for any diagram M : J — C and any limiting cone (X, u) for
FM in D the following hold:

i) There exists a cone (Y,v) for M in C such that its F-image is isomor-
phic to (X, ) (in the category of cones for M).

ii) Any cone (Y,v) for M which is mapped by F' to a cone isomorphic to
(X, ), is limiting.

We say that the functor F' creates limits if F' creates limits of every small
type J.

For the record:
Theorem 0.7 Let C g) D monadic. Then G creates limits.

The following remark appears on the first pages of Johnstone’s Sketches of
an Elephant, and is very useful.

F
Remark 0.8 (Elephant A1.1.1) Let A% C' be an adjunction with

F 4 U. If there is a natural isomorphism between F'U and the identity on
A, then the counit is a natural isomorphism. Of course, by duality a similar
statement holds for units.

f
Definition 0.9 A parallel pair of arrows X ——= Y is a reflexive pair if f
g

and ¢ have a common section: a morphism s : Y — X for which fs = gs =
idy. A category is said to have coequalizers of reflexive pairs if for every
reflexive pair the coequalizer exists.

Theorem 0.10 (Beck’s “Crude Tripleability Theorem”) Let

F
A——=C
U

be an adjunction with F 4 U; let T = UF be the induced monad on C.
Suppose that A has coequalizers of reflexive pairs, that U preserves them,
and moreover that U reflects isomorphisms. Then the functor U is monadic.

Proof. We start by constructing a left adjoint L to the functor K. Recall
that K : A — C7 sends an object Y of A to the T-algebra UFUY U(i;) UY.
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Let UFX % X be a T-algebra. We have that nx is a section of h by
the axioms for an algebra, and F(nx) is a section of epx by the triangular
identities for an adjunction. So the parallel pair

F(h)
FUFX —= FX

EFX

is reflexive with common section F(nx); let FX < E be its coequalizer. We
define L(h) to be the object E. Clearly, this is functorial in h.

Let us prove that K L(h) is isomorphic to h. Note that the underlying
object of the T-algebra KL(h) is UE. By construction of L(h) and the
assumptions on U, the diagram

UF(h) Ue)
UFUFX —UFX —UEFE
U(erx)

is a coequalizer. By the associativity of the algebra h, the map h coequalizes
the pair (UF(h),U(epx)); so we have a unique £ : UE — X satisfying

&oU(e) = h.

We also have the map U(e)onx : X — UE. It is routine to check that these
maps are each other’s inverse, as well as that £ is in fact an algebra map.
This shows that K L(h) is naturally isomorphic to h.

Let us show that L 4 K. Maps in A from E = L(h) to an object
Y correspond, by the coequalizer property of F, to arrows f : FX — Y
satisfying foF'(h) = foepx. Transposing along the adjunction F' 4 U, these
correspond to maps f : X — UY satisfying foh = U(ey)oUF(f); that
is, to T-algebra maps from h to K(Y'). This establishes the adjunction and
applying Johnstone’s remark 0.8 we conclude that the unit of the adjunction
is an isomorphism.

In order to show that also the counit of L 4 K is an isomorphism, we
recall that for an object Y of A, LK(Y) is the vertex of the coequalizer
diagram

FUFUYgﬁé)

Uy

FUY ——W

Since also ey coequalizes the parallel pair, we have a unique map W —»

Y satisfying vw = ey. Itis now not too hard to prove that U(v) is an

isomorphism; since U reflects isomorphisms, v is an isomorphism, and we

are done. [ |
The following theorem is called “Adjoint lifting theorem”.
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Theorem 0.11 (Adjoint Lifting Theorem; PTJ 0.15) Let T and S be
monads on categories C and D respectively. Suppose we have a commutative
diagram of functors

where UL, US are the forgetful functors. Suppose F has a left adjoint L.
Moreover, assume that the category CT has coequalizers of reflexive pairs.
Then the functor F also has a left adjoint.

Proof. [Sketch]Let (T, n, 1) and (S, ¢,v) be the respective monad structures
on T and S. Our first remark is that every S-algebra is a coequalizer of a

reflexive pair of arrows between free S-algebras. For an S-algebra SX Mx ,
consider the parallel pair

9 Sh
S*X —=SX
vx

This is a diagram of algebra maps F°(SX) — F9(X): vxS%h = Shvgx
by naturality of v, and vxvsx = vxS(vx) by associativity of v. The two
arrows have a common splitting S(vx) which is also an algebra map since
it is F¥(1x). That is: we have a reflexive pair in S-Alg. It is easy to see
that h : SX — X coequalizes this pair: this is the associativity of h as an
algebra. If a : F¥(X) — (£: SY — Y) is an algebra map which coequalizes
our reflexive pair then a factors through h : F¥(X) — (h : SX — X) by

acx : (SX LN X)L (SY 5 Y')) and the factorization is unique because the
arrow h is split epi in C.

This construction is functorial. Given an S-algebra map f : (SX N
X) — (SY LN Y') the diagram

S2X Sﬁ SX
h
S2fl JSf
S2y —— §Y
Sk
commutes serially (i.e., Sfvxy = vy S%f and SfSh = SkS?f). So, we have

a functor R from S-Alg to the category of diagrams of shape o —=o in
S-Alg, with the properties:



i) The vertices of R(h) are free algebras.
ii) R(h) is always a reflexive pair.
iii) The colimit of R(h) is h.

Our second remark is that since F' is a lifting of F/ (USF = FUT) there
is a natural transformation A : SF' — F'T constructed as follows. Consider
F(p) : F — FT = FUTFT = USFFT and let A : FSF — FFT be its
transpose along F° 4 U®. Define \ as the composite

Sy _
SF=USFSF Y3 USFFT = FUTFT = FT.
Claim: The natural transformation A makes the following diagram commute:

F-Y2.op" s2p

e

FT SFT
\ l/\T
Fp
FT1?

Now we are ready for the definition of L on objects: if L is going to be
left adjoint to F then, by uniqueness of adjoints and the fact that adjoints
compose, LF® = FTL, so we know what L should do on free S-algebras
FSY. Now every S-algebra & : SY — Y is coequalizer of a reflexive pair
of arrows between free S-algebras, and as a left adjoint, L should preserve
coequalizers. Therefore we expect L(£) to be coequalizer of a reflexive pair

) feo
FTLSY = LFS(SY) ——= LFS(Y) = FTLY
9e

between free T-algebras. It is now our task to determine f¢ and ge.
By our first remark we have a coequalizer

FS(SY) %; FSY S5 (¢)

and the topmost arrow of the reflexive pair is in the image of the functor F'¥,
so we can take FTL() for fe. The other map — v — is not in the image of
FS and needs a bit of doctoring using the adjunction L 4 F and the natural
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transformation A we constructed. Let « be the unit of the adjunction L 4 F.
Consider the arrow

A
sy 2% sEry) Y FTL(Y)
This transposes under L - F to a map LS(Y) — TL(Y) = UTFTL(Y), and
this in turn transposes under F7 4 U7T to a map

FTLS(Y) — FTL(Y)

which we take as our gg.

Note that the construction is natural in &, so if k£ : £ — ( is a map of
S-algebras, we obtain a natural transformation from the diagram of parallel
arrows f¢, ge to the diagram with parallel arrows f¢, gc. Hence we also get a
map from the coequalizer of the first diagram, which is L(¢), to the coequal-
izer of the second one, which is L(¢). And this map between coequalizers
will be L(k).

There is still a lot to check. This is meticulously done in Volume 2 of
Borceux’s Handbook of Categorical Algebra, section 4.5. There the proof
takes 10 pages. [ |

Remark 0.12 There is a better theorem than the one we just partially
proved: the Adjoint Triangle Theorem. It says that whenever we have

functors B 25 ¢ % D such that B has reflexive coequalizers and U is of
descent type (that is: U has a left adjoint J and the comparison functor
K : C — UJ—Alg is full and faithful), then UR has a left adjoint if and only
if R has one.
Note, that given the diagram of Theorem 0.11, the diagram
T EpsUp

satisfies the conditions of the Adjoint Triangle Theorem. Since the compo-
sition USF, which is FTL, has a left adjoint, we conclude that F' has a left
adjoint. Note in particular that we do not use that C* is monadic.

f
Definition 0.13 A diagram ¢ —=b ~h e ina category is called a split
g
fork if hf = hg and there exist maps
t s
a+——b+——c

such that hs = id., ft =idy and gt = sh.
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Exercise 2 Show that every split fork is a coequalizer diagram, and more-
over a coequalizer which is preserved by any functor (this is called an absolute
coequalizer).

. . . f :
Exercise 3 Suppose D; is the diagram ¢ —=b —h it ina category C,
g

f! /
and D is the diagram o —= ¥/ M, ¢ inC. Assume that Dy is a retract
g/

of Dy in the category of diagrams in C of type @ —— e —— e . Prove that
if Dy is a split fork, then so is Ds.

Definition 0.14 In a category, a family of arrows {f; : 4; — B|i € I}
is called epimorphic if for every parallel pair of arrows u,v : B — C the
following holds: if uf; = vf; for all ¢ € I, then u = v.

Exercise 4 If the ambient category has I-indexed coproducts, a family {f; :
A; — BJi € I} is epimorphic if and only if the induced arrow from the
coproduct ), ; A; to B is an epimorphism.

We shall also have to deal with comonads; a comonad on a category C
is a monad on C°P. Explicitly, we have a functor G : C — C with natural
transformations € : G = id¢ (the “counit”)) and 6§ : G = G2 (the “co-
multiplication”) which make the following (coassociativity and counitarity)
diagrams commute:

G—2,q? G
id id
5l LSG / L;\
2
G? W G° G eG G Ge G

Dual to the treatment for monads, we have the category G-Coalg of G-
coalgebras, the notion of a functor being “comonadic”, etcetera. We have
the forgetful functor V : G—Coalg — C which has a right adjoint C' : C —
G—Coalg, the “cofree coalgebra functor”. Without proof we record the
following theorem:

Theorem 0.15 (Eilenberg-Moore; MM V.8.1-2; PTJ 0.14) Suppose T
is a monad on a category C, such that the functor T has a right adjoint G.
Then there is a unique comonad structure (¢,6) on G such that the categories
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T-Alg and G-Coalg are isomorphic by an isomorphism which commutes with
the forgetful functors:

T— Alg—>G Coalg

N

Corollary 0.16 If (T, n,u) is a monad on C and the functor T has a right
adjoint G, then the forgetful functor T — Alg — C has both a left and a right
adjoint.
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1 Elementary Toposes

In this chapter we are going through Chapter 1 of P.T. Johnstone’s Topos
Theory, expanding the proofs a bit when necessary.

Example 1.1 Let G be a group. In the topos Q\ of right G-sets (sets X with
G-action X x G — X, written (z, g) — x-g) we have:

i) the subobject classifier 1 - © is the map from {*} to {0,1} which
sends * to 1; here {0, 1} has the trivial G-action.

ii) The exponent YX of two G-sets X and Y is the set of all functions
X 4y, with G-action:

(¢-9)(x) = (d(x-g™"))-g

We see at once that the forgetful functor G — Set is logical, as is the functor
Set — QA which sends a set X to the set X with trivial G-action.

We can also consider the category Se‘cfgop of finite G-sets; and we see
that this is also a topos (even if G itself is not finite); the inclusion functor
Setfg P 5 Gis logical.

Lemma 1.2 (PTJ 1.21) In a topos, every mono is regular.

Proof. Every mono is a pullback of 1 LA ), and t is split mono, so regular.

Corollary 1.3 (PTJ 1.22) Every map in a topos which is both epi and
mono is an isomorphism (one says that a topos is balanced ).

Definition 1.4 In a category with finite limits, an equivalence relation on
an object X is a subobject R of X x X for which the following statements
hold:

i) The diagonal embedding X — X x X factors through R.

ii) The composition R — X x X ™ X x X factors through R, where tw
denotes the twist map

(p1,p0) : X x X — X x X.

(Here po,p1 : X x X — X are the projections)



iii) The map (pps,pit) : R — X x X factors through R, where we assume
that the subobject R is represented by the arrow (rg,7m1) : R = X x X,
and the maps s and t are defined by the pullback diagram

R—" R

R*TﬁXXX

The subobject R’ is the “object of R-related triples”.

Equivalently, a subobject R of X x X is an equivalence relation on X if and
only if for every object Y, the relation

{(f,9)|{f,g9): Y = X x X factors through R}

is an equivalence relation on the set of arrows ¥ — X.

Clearly, for every arrow f : X — Y, the kernel pair of f, seen as a
subobject of X x X, is an equivalence relation on X. Equivalence relations
which are kernel pairs are called effective (don’t ask me why).

Proposition 1.5 (PTJ 1.23) In a topos, every equivalence relation is ef-
fective, i.e. a kernel pair.

Proof. Let ¢ : X x X — Q classify the subobject (ro,r1) : R = X x X,
and let ¢ : X — QX be its exponential transpose (in Set, ¢(x) will be the
R-equivalence class of z). We claim that the square

R .X

S

XTQX

is a pullback, so that R is the kernel pair ofﬁ. To see that it commutes, we
look at the transposes of the compositions ¢r;, which are maps
T‘Z'><id ¢
RxX—XxX—0Q
Both these maps classify the object R’ of R-related triples, seen as subobject

of R x X, so they are equal. To see that the given diagram is a pullback,
suppose we have maps f, g : U — X satisfying ¢f = ¢g. Then ¢(f xidy) =



¢(g xidx) : U x X — Q. Composing with the map (idy,g) : U — U x X
we get that the square

U —><f’g> X xX

<9,y)l Jqﬁ

X><X¢—>Q

commutes. Now ¢ classifies R and by reflexivity of R the map (g, g) factors

through R, so ¢(g, g) is the composite map U S ; so this also holds
for the other composite and therefore also (f,g) must factor through R,
which says that the given diagram is indeed a pullback. [ |

The least equivalence relation on an object X is the diagonal § = (idx,idx) :
X — X x X. It is classified by some A : X x X — Q; let {-} : X — Q¥ be
the exponential transpose of A. The map {-} is of course thought of as the
singleton map from X to its power object.

Exercise 5 Prove that the map {-} is monic. [Hint: for an arrow f:Y —
X, the composite {-}of transposes to a map which classifies the graph of f
(as subobject of ¥ x X).]

Definition 1.6 A partial map from X to Y is an arrow from a subobject
of X to Y. More precisely, it is a diagram

UL>Y
m

X

with m mono.

We write f: X — Y to emphasize that the map is partial.

We say that partial maps are representable if for each object Y there
is a monomorphism ny : Y — Y with the property that for every partial
map xy ™ [y L) y from X to Y there is a unique arrow f X Y,

making the square

UL>

~

m

<;
3
=

~h

X —

f

w



a pullback.
Let us spell out what this means for Y = 1: we have an arrow np: 1 — 1
such that for every mono m : U — X there is a unique map X — 1 making

1
|
1

a pullback. But this is just the definition of a subobject classifier; we con-
clude that 1 5 1is 1 5 Q.

the square
U——

3

X —

Theorem 1.7 (PTJ 1.26) In a topos, partial maps are representable.

Proof. Let ¢ : QY x Y — Q classify the graph of the singleton map:

WHd) oy v

Y
| )
1——Q
and let ¢ : QY — QY be its exponential transpose.
Let

¢
E%QY?QY

be an equalizer. We shall show that we can take E for Y. Think of E as
the “set”

{aCY|Vy(y € a < a={y})},

that is: the set of subsets of Y having at most one element. We consider
the pullback diagram

Y id Y

Y XY ——— QY xY
{-}dey




Composing this with the diagram defining ¢, we obtain pullbacks

Y—6>Y><Y

J' J{{}Xidy
({}idy)

— =LY <Y

.

—)Q

from which we conclude that ¢({-} x idy) classifies the diagonal map on Y;
hence its exponential transpose, which is gz_So{-} (Y — QY is equal to {}.
Therefore the map {-} : Y — QY factors through the equalizer E above; so
we have the required map Y — E =Y (which is monic since {-} is).

In order to show that the constructed mono ¥ — Y indeed represents
partial maps into Y, let

ULY
X

be a partial map X — Y, so m is monic. Consider the graph of f: U <m—’f>>

X x Y. It is classified by amap ¥ : X xY — Q; let ¢ : X — QY be the
exponential transpose of ). We have a commutative diagram

U%Y

<m7f>l l<{-}7id>

() XXY—0" xY

| ™|

The lower square is a pullback, so the outer square is a pullback if and only if
the upper square is. We prove that the outer square is a pullback. Suppose

V343X,V by are maps such that {-}b = ta. Then by transposing, the

square

Vxy 2y oy

oxid s

XxY ——Q



commutes (recall that A classifies the diagonal Y — Y x Y). Composing

with the map V <—>> V xY gives

Yo(a,b) = Ao(b,b) = (by definition of A)
= Vo140

So to(a,b) factors through ¢, and since v classifies the graph of f, the map

b
|4 Q X x Y factors through U; we conclude that the outer square of (%)
is indeed a pullback. Hence the upper square of (x) is a pullback.
Now since

QY xv 2 0

<{-},id>T

Y —1

is a pullback by definition of ¢, composing with the upper square of (x)
yields pullbacks

XxY wXIdQYxYLM)

(m,fﬁ T(HJd} Tt

U Y 1

So the graph of f is classified by ¢o(¢) x id). It follows that ¢o(¢) x id) = 1,
and by transposing we get gmp p: X 5 QY. Sov: X = QY factors
through Y — QY by amap f: X — Y. The factorization is unique since
Y — QY is monic. Summarizing, we have

~

f
—

D

—Q
P

e
s

>~<

where the outer square is a pullback (it is the outer square of (%)), and since
Y — QY is monic the upper square is a pullback too.

From the uniqueness of f we can prove that the assignment ¥ = Y,
together with the maps ny : ¥ — Y, gives a functor & — & (where &



denotes the ambient topos): given a map f : X — Y, let f : X 5Y
represent the partial map

X

/|

Y

By uniqueness we see that g f = H We also see that 7 is a natural trans-

nx it
— X

formation idg = (-). It has the special property that all naturality squares
are pullbacks. [ |

An object of the form X is called a partial map classifier.
Proposition 1.8 (PTJ 1.27) The partial map classifiers Z are injective.

Proof. Given a diagram

X/
|
XT}Z

with m mono, we need to find a map X’ — Z making the triangle commute.
To this end, form the pullback
RN

X
1
Y

VA

)

Let the partial map X’ — Z given by x7/.™ y _9 , 7 be represented
by §: X' — Z. It is left to you to verify that the square

am

Z

X
HT nz
Y

VA

|

)

is a pullback. We see that the arrows f and gm represent the same partial
map, hence the triangle commutes. [ |



Corollary 1.9 (PTJ 1.28) Suppose we are given a pushout square

X5y

s

Z ——T

with f mono. Then g is also mono, and the square is also a pullback.

Proof. Consider the partial map Z — Y given by the diagram 5 f X _ "Ly

let it be represented by a map h : Z — Y. Since the original square is a
pushout, we have a unique map 7" — Y making the diagram

X2y

I

commute. Then ¢ is mono because 7y is mono, and the outer square is a
pullback, so the inner square is a pullback too. [ |

Remark 1.10 Proposition 1.8 shows, in particular, that a topos has enough
injectives: that is, for every object X there is a mono from X into an injective
object. The following exercise elaborates on this.

Exercise 6 a) Show that, in a topos, an object is injective if and only if
it is a retract of QY for some Y.

b) Suppose A & B be a functor with left adjoint B . A. Show that if
preserves monos, G preserves injectives; and that the converse holds
if A has enough injectives.

In the following, let £ be a topos. We start by considering the category £°P.

We have a functor P : £ — £: on objects, PX = QX and for maps X i) Y
we have Pf : Q¥ — QX the map which is the exponential transpose of the

id
composition QY x X lﬁ QY xy Q.
Note that the same data define a functor P* : £ — £°P, and we have:

Lemma 1.11 P* H P.



Proof. We have natural bijections

EP(P*X,Y) = EPWX)Y) = &£, Q%) ~&(Y xX,Q)
E(X xY,Q) ~&X,QY) = E(X,PY)

12

Hence, we have a monad T' = PP* on &, and thus a comparison functor
K &% - g7,

For a mono g : W_— Z we also have a map g : OV = Q7 it is the
transpose of the map Jg : Q" x Z — Q which classifies the mono

id
Cw —— OV x W LW « 7

(here €y is the subobject of QW x W classified by the evaluation map
eviy : QW x W — Q).
We have that the square

id
Ew —— OV x W LW« 7

| 5

1 Q
t

is a pullback; hence, since g is mono, also the square

ew —— QW x W

J]idxg

oV <z

E
Q

is a pullback. We see that géo(id x g) classifies the mono ey — QW x W,
and we conclude that Jgo(id x g) = evyy.

1 t

Lemma 1.12 (PTJ 1.32; “Beck Condition”) Suppose the square

x—t.y

g h

ZT>T

Ne}



is a pullback with the arrows g and h monic. Then the following square
commutes:

v 1, qx

NS

oOr — 0%
Ph
Proof. We look at the exponential transposes of the two compositions. For
the clockwise composition IgoPf : Q¥ — Q7 its transpose is the top row
of

QY xz PP ax w73 g

ingT Tidxg

QY x X — 0¥ x X ¢
T Pfxid I
FE €x 1

We see that this top row classifies the subobject £ — QY x X 1d_><€ QY x 7.
Since Jgo(id x g) = evx as we noted just before the statement of the
lemma, the subobject E — QY x X is classified by the composition QY x
X Pf—X;d 0F x X &5 Q, which equals the composition QY x X ld—X{ QY x
Y 2% Q sich both compositions are transposes of Pf. Therefore we have a
pullback diagram
E—— QY x X

U

ey — QY xY

For the counterclockwise composition Pko3h, its transpose is Q¥ x Z Fhxid

O x 7 Pk T 7 &8 Q which equals Q¥ x Z il Yo D VY Al al C oY NGy AN
Q.
Now evro(3h x id) and Jh : Q¥ x T — Q both transpose to 3h, so these

maps are equal. We conclude that Pkodh transposes to the composition

10



QY x 7 b qv o I ), and we consider pullbacks

LY XYY 7

)
J lid X f lidx k

v — QY x Y Yoy T

T

Q

m

Again, we have %o(id x h) =evy : Q¥ xY — Q and we see that the
counterclockwise composition transposes to a map which classifies the same

. d . oL
subobject E — QY x X QY x Z as we saw for the clockwise composition.
Therefore the two compositions are equal, and the given diagram com-
mutes. [ |

Corollary 1.13 (PTJ 1.33) If f: X — Y is mono then Pfodf =idgx.

Proof. Apply 1.12 to the pullback diagram

x4, x

4

XT)Y

Theorem 1.14 (PTJ 1.34) The functor P : £EP — £ is monadic.

Proof. We use the Crude Tripleability Theorem (0.10). We need to verify
its conditions:

1)  &°P has coequalizers of reflexive pairs.
2) P preserves coequalizers of reflexive pairs.
3) P reflects isomorphisms.

Verification of 1) is trivial, since coequalizers in £°P are equalizers in £, and
£ has finite limits.

g
For 2), let X L Y ?; Z be a diagram in £ which is a coequalizer

of a reflexive pair in £°P. Since the pair (g, h) is reflexive in £°P we have

11



an arrow Z % Y satisfying dg = dh = idy. This means that g and h are
monos, and the square

X1y

1|

YT>Z

is a pullback. We see that also f is mono, and applying 1.12 we find
that AfoPf = Phodg. Moreover by 1.13 we have the equalities Pfodf =
idgx, Pgodg = idqy. Using these equalities we see that the P-image of the
original coequalizer diagram:

Pg
0Z —=qv L ox
Ph
is a split fork in &, with splittings 3¢ : Q¥ — QZ, 3f : QX — QY. In
particular it is a coequalizer in £.
For 3), we observe that for any morphism f : X — Y in &, the map

Y Q o K ox transposes to the map ¥ x X — Q which classifies the
graph of f, i.e. the subobject represented by (f,id) : X — Y x X. Note that
if the graphs of f and g : X — Y coincide then f = g. Therefore, Pf = Py
implies f = g and P is faithful, hence reflects both monos and epis. By
Corollary 1.3, P reflects isomorphisms. [ |

Corollary 1.15 (PTJ 1.36) A topos has finite colimits.

Proof. For a finite diagram M : I — &£ consider M°P : [°P — £°P and
compose with P : £°P — £. The diagram PoM®°P has a limit in £ since &
has finite limits. But P, being monadic, creates limits so M°P has a limit
in £°P; that is, M has a limit in . [ |

Corollary 1.16 (PTJ 1.37) Let T : £ — F be a logical functor between
toposes. Then the following hold:

i) T preserves finite limits.
it) If T has a left adjoint, it also has a right adjoint.

Proof. i) Since T is logical, the diagram

ToP
EP —— FP

o

E———F

12



commutes up to isomorphism. Proving that T preserves finite colimits
amounts to proving that T°P preserves finite limits. So let M : I — &£°°P
be a finite diagram, with limiting cone (D, ) in £°P. Now T" and P preserve
finite limits, so T'P(D, ) is a limiting cone for TPM; hence PT°P(D, u)
is a limiting cone for PT°PM by commutativity of the diagram. Since P
creates limits, T°P(D, p1) is a limitng cone for 7°°P M. We conclude that 7°P
preserves finite limits.

For ii), we employ the Adjoint Lifting Theorem (0.11) to the same dia-
gram. The assumptions are readily verified, and we conclude that T°P has
a left adjoint. But this means that 7" has a right adjoint. [ |

We now discuss slice categories of toposes. In any category £ with finite
limits, for each object X we have the category £/X whose objects are arrows

into X and whose arrows: (Y ER X) = (Z % X) are arrows Y M 7 such
that f = gh. Given an arrow f : Y — X we have a pullback functor
f* i E/X — €Y, which has a left adjoint 3,3 Y ,(Z %V = (2 4 X).
In the case of the unique arrow X — 1 we write X*: £ =2 /1 — £/X for
the pullback functor. Note that X*(Y') is the projection ¥ x X — X. Note

also that X ‘% X is a terminal object of £/X.
The following theorem was dubbed the “Fundamental Theorem of Topos
Theory” by Peter Freyd.

Theorem 1.17 (PTJ 1.42) Let £ be a topos and X an object of E. Then
E/X is a topos, and the functor X* : £ — £/X s logical.

Proof. In the case & = Set, it is useful to view objects of £/X as “X-
indexed families of sets” rather than as functions into X. This intuition will
also guide us in the general case.

Binary products in £/X are pullbacks over X: if we adopt the notation
Y xx Z for the vertex of the pullback diagram

Y xXx Z—Z

|l

YﬁX

then in £/X, the product f x g is the arrow Y xx Z — X. Equalizers in
E/X are just equalizers in £. So £/X has finite limits, and the functor X*
preserves finite limits since it has a left adjoint > 7 as we remarked.

13



Monos in £/X are monos in &, and the diagram

(t,id) Qx X

RN

X,

X—

seen as an arrow in £/X, is a subobject classifier in £/X. Note, that this

map is X*(1 4 1), so X* preserves subobject classifiers.
In order to prove cartesian closure, first observe that for £ = Set, the

exponent (Z % X)(Y%X) is the X-indexed family (¢~ (z)f ™ @) cx, or the
projection function from the set {(h,z)|h: f~'(z) = g '(z)} to X.

s
We first construct the exponential (Z END'¢ )(Y%X), then explain its
meaning in intuitive terms (as if £ were the topos Set); then we prove that
it has the required universal property.

Let 0: X x Y — X represent the partial map ) f Yy {fid) X xVY >

i.e. let

y % vy

Ik

X——X
nx

be a pullback. Let 6 : X — XY be the exponential transpose of 6. Finally,
let

E—157Y
j jg
X—UZ

be a pullback; the claim is that £ = X is the required exponential.

Intuitive explanation: think of X as the set of subsets of X having at
most one element. So #(x,y) = {z|f(y) = }. The function § : Z — X
sends subset a of Z to {g(z)|z € a}. Then, the function §¥ : Z¥ — XY
sends a function h : Y — Z to the function y — {g(2) |z € h(y)}. We have
0(x)(y) = {z| f(y) = x}. So the object E can be identified with the set of
pairs (z, h) satisfying:



That is, E is isomorphic to {(h,z)|h: f~1(z) = g~ (z)}.

Now we prove that the constructed E P X has the property of the
exponential (Z % X)(YLX).

For an arbitrary object (T LN X) of £/X, maps in £/X from k to
p correspond bijectively to maps T' Logv satisfying §¥1 = 6k. These
correspond to maps T X Y LNy satisfying 6(k x idy) = gl. These in turn,
correspond to maps T Xx Y L 7 which satisfy that gl= is the composite

TxxY =TxY =Y L X; that is, to maps from T xx Y to Z making

the triangle
TxXxY———7

N

commute; that is, maps from k x f to g in £/X.
For the third correspondence in the chain above, suppose we have

TxY L7 satisfying 0(k x idy) = gl. Let
W—TxY

|

Z——7
nz

be a pullback. We then have a commutative diagram

The front face and the top face of the cube are pullbacks, as is the bottom.
Hence the back face is a pullback too. Composing the back face with the
left hand square reveals that W is T' x x Y.

The fact that X* preserves exponentials is left as an exercise. [ |

15



Exercise 7 Show that X™ preserves exponentials.

Corollary 1.18 (PTJ 1.43) For any arrow f: X — Y in & the pullback
functor f*: E/Y — E/X is logical, and has a right adjoint Hf.

Proof. We now know that £/Y is a topos, so we can apply Theorem 1.17

with £/Y in the role of £ and f in the role of X. We see that f* is logical.

By Corollary 1.16, f* has a right adjoint, since it has a left adjoint 2
However, we can also exhibit the right adjoint [] 7 directly: we do this

for the case Y = 1. Given an object (Y ER X)of £/X let Tid7: 1 — XX
denote the exponential transpose of the identity arrow on X, and let

X
7 ——YX fﬂ XX
Tido!

be an equalizer diagram. Think of Z as the object of sections of f. Now for
any object W of £, arrows g : X*(W) — f:

Wxx\_/y

correspond, via the exponential adjunction, to arrows § : W — YX such
that fXog factors through Tid7; that is to arrows W — Z. Therefore Z is

[Lx(f) |

Example 1.19 Consider the subobject classifier 1 L Q; let us calculate
1, : £ = £/9. For an object X of £ and an arrow Y 5 Q we have that
maps from m to [[,(X) in £/ correspond to maps from Y’ to X, where Y’
is the subobject of Y classified by m. That is, to maps ¢ : Y — X for which
the domain (i.e. the map ¢g*(nx) : Y’ — Y) is the subobject of Y classified
by m. But these correspond to maps in £/ from m to the arrow s : X =50

which classifies the mono X = X.

Corollary 1.20 (PTJ 1.46) Every arrow f: X — Y in & induces a geo-
metric morphism

f*
f: 5/X<H:>5/Y,
f

This geometric morphism has the special features that the inverse image
functor f* is logical and has a left adjoint.

16



Definition 1.21 A geometric morphism f for which the inverse image func-
tor f* has a left adjoint is called essential.

Without proof, we mention the following partial converse to corollary 1.20.

Theorem 1.22 (PTJ 1.47) Let f : F — & be an essential geometric mor-
phism such that f* is logical and its left adjoint fi preserves equalizers. Then
there is an object X of €, unique up to isomorphism, such that F is equiv-
alent to £/X and, modulo this equivalence, the geometric morphism f is
isomorphic to the geometric morphism (X* 4 [y) of Corollary 1.20.

We recall from the Category Theory and Topos Theory course that a regular
category is a category with finite limits, which has coequalizers of kernel
pairs, and in which regular epimorphisms are stable under pullback. Recall
that in such a category, every arrow factors, essentially uniquely, as a regular
epimorphism followed by a monomorphism. The construction is as follows:
given f: X =Y, let X 5 E be the coequalizer of the kernel pair of f, and
let m : E — Y be the unique factorization of f through this coequalizer.

Since pullback functors have right adjoints, they preserve regular epi-
morphisms, so every topos is a regular category.

Lemma 1.23 (PTJ 1.53) In a topos, every epi is reqular.

Proof. Given an epi f: X = Y, let X 5 E B Y be its regular epi-mono
factorization. Since f is epi, m must be epi; by 1.3, m is an isomorphism.
So f is regular epi. [ |

Definition 1.24 An ezxact category is a regular category in which every
equivalence relation is effective.

By 1.5 we have:

Proposition 1.25 FEvery topos is an exact category.

Proposition 1.26 (PTJ 1.56) In a topos the initial object 0 is strict; that
18, every arrow into 0 is an isomorphism.

Proof. Given X -5 0, we have a pullback

X%

0
id Xl ido

X—0

%

17



so idy = *(idp). Now idp is initial in £/0, so idx is initial in £/X (since i*,
having a right adjoint, preserves initial objects). But that means that X is
initial in &£, since for any object Y of £ there is a bijection between arrows
X =Y in &, and arrows idx — X*(Y) in £/X. [

Corollary 1.27 (PTJ 1.57) In a topos, every coprojection X — X +Y is
monic. Moreover, “coproducts are disjoint”: that is, the square

00— X

|

Y —X+Y
s a pullback.

Proof. From Proposition 1.26 it follows easily that every map 0 — X is
monic. Since the given square is always a pushout, the statement follows at
once from Corollary 1.9. [ |

Exercise 8 Prove that for a topos £ and objects X, Y of £ the categories
E/(X+Y)and £/X x £/Y are equivalent.

As a consequence of regularity (and existence of coproducts) we can form
unions of subobjects: given subobjects M, N of X, represented by monos
M2 X, N X, its union M UN (least upper bound in the poset Sub(X))
is defined by the regular epi-mono factorization

M+N-—-MUN—=X
of the map [7:] : M + N—X. We have:

Proposition 1.28 In a topos, for any object X the poset Sub(X) of sub-

objects of X is a distributive lattice. Moreover, for any arrow X i) Y the
pullback functor f* : Sub(Y) — Sub(X) between subobject lattices has both
adjoints 4y and V.

Proof. Finite meets in Sub(X) (from now on called “intersections” of sub-
objects) are given by pullbacks, and unions by the construction above. Dis-
tributivity follows from the fact that pullback functors preserve coproducts
and regular epimorphisms. The left adjoint 3f is constructed using regular
epi-mono factorization as in the course Category Theory and Topos The-
ory. The right adjoint Vf is just the restriction of J], to subobjects: [],
preserves monos. |

The following fact will be important later on.

18



Proposition 1.29 (Elephant, A1.4.3) Let M = X, N % X be monos
into X (we also write M, N for the subobjects represented by m and n). Let
the intersection and union of M and N be represented by arrows M NN —
X, MUN — X, respectively. Then the diagram

MAN —— M

]

N—MUN
18 both a pullback and a pushout in E.

Proof. This proof is not the proof given in Elephant.

The partial order Sub(X) is, as a category, equivalent to the full sub-
category Mon/X of the slice £/X on the monomorphisms into X. Since
the given square is a pullback in Sub(X) hence in Mon/ X, and the domain
functor Mon/X — & preserves pullbacks, the square is a pullback in £.

Let us define Sub<;(X) as the set of those subobjects M % X for
which the unique map M — 1 is a monomorphism. Note that there is a
natural bijection between Sub<;(X) and £(1,X), where X is the partial
map classifier of X. Writing M both for a subobject of X and for the
corresponding map 1 — X, we define the subobject dom(M) of 1 by the
pullback

dom(M) ——1
l M
X—X
nx

Note, that dom(M) is also the image of the map M — 1. For a subobject ¢
of 1, we define M [¢ by the pullback

Mic—— M
c—1
We have the following lemma.

Lemma 1.30 Let M, N € Sub<;(X), with dom(M) = ¢,dom(N) = d. If
M[(cnd) = NJ(cnd) as subobjects of X, then M UN € Sub<;(X).

Proof. We must prove that the map ¢ : M UN — 1 is monic. Clearly, this
map factors through cUd, so it is enough to prove that (cUd)*(¢) is monic
in £/(cUd).



We have ¢*(M UN) = ¢*(M) U c*(N). Since ¢*(N) has domain ¢*(d) =
cNdand M and N agree on cNd, we have ¢*(N) < ¢*(M),so c*(MUN) =
c¢*(M) and c¢*(¢) is monic. In a symmetric way, d*(M U N) = d*(N) and
d*(¢) is monic.

The topos £/(c+ d) is isomorphic to £/c¢ x £/d by Exercise 8, so we see
that (¢ + d)*(¢) is monic. Now ¢+ d — cUd is epi, so the pullback functor
E/(cud) — £/(c+d) reflects monomorphisms. We conclude that (cUd)*(¢)
monic, as required. This proves the lemma. [ |

Continuing the proof of Proposition 1.29: as usual, we may do as if X = 1.
So we have subobjects ¢, d of 1 and we wish to prove that the square

cNd—c

L]

d———cUd

is a pushout. Let M : ¢ - X, N : d — X be maps which agree on
c¢Nd. Then M and N define elements of Sub<;(X) for which the hypothesis
of Lemma 1.30 holds. Therefore, the map ¢ Ud — X which names the
subobject M U N is a mediating map, which is unique because the maps
{¢ = cUd,d — ¢Ud} form an epimorphic family. [ |
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2 Geometric Morphisms

This section contains material from the book Sheaves in Geometry and Logic
by MacLane and Moerdijk; hereafter referred to by “MM”.

We recall that a geometric morphism F — & between toposes is an
adjoint pair f* - f, with f* : £ — F (the inverse image functor), f« : F — &
(the direct image functor), with the additional property that f* preserves
finite limits.

A geometric morphism Set — £ is called a point of £.

Examples 2.1 1) In the Introduction we have seen that every continu-

ous function of topological spaces f : X — Y determines a geometric
morphism Sh(X) — Sh(Y'). If the space Y is sufficiently separated
(here we shall assume that Y is Hausdorff, although the weaker condi-
tion of sober suffices) then there is a converse to this: every geometric
morphism Sh(X) — Sh(Y") is induced by a unique continuous function.
Indeed, let f be such a geometric morphism. In Sh(Y’), the lattice of
subobjects of 1 (the terminal object) is in 1-1, order-preserving, bi-
jection with O(Y'), the set of open subsets of Y. The same for X, of
course. Now the inverse image f*, preserving finite limits, preserves
subobjects of 1 and therefore induces a function f~ : O(Y) — O(X).
Since f* preserves colimits and finite limits, the function f~ preserves
the top element (f~(Y) = X), finite intersections and arbitrary unions
(in particular, f~(0) = 0).
Define a relation R from X to Y as follows: R(z,y) holds if and only
if x € f~(V) for every open neighbourhood V' of y. We shall show
that R is in fact a function X — Y, leaving the remaining details as
an exercise.

i) Assume R(z,y) and R(z,y’) both hold, and y # y'. By the
Hausdorff property, y and v’ have disjoint open neighbourhoods
V, and V. By assumption and the preservation properties of
f~ we have:

(S f_(vy) N f_(vy’) = f_(vy n Vy’) = f_(®> =0
a clear contradiction. So the relation R is single-valued.

ii) Suppose for x € X there is no y € Y satisfying R(z,y). Then
for every y there is a neighbourhood Vj, such that = ¢ f~(V,).
Then we have

e | Jrvy)=r(Jw =) =x

yey yey
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also a clear contradiction. So the relation R is total, and there-
fore a function.

Exercise 9 Show that the function R just constructed is continuous,
and that it induces the given geometric morphism f.

Consider, for a group G, the category G of right G-sets. Let A : Set —
G be the functor which sends a set X to the trivial G-set X (i.e. the
G-action is the identity). Note that A preserves finite limits. The
functor A has a right adjoint I', which sends a G-set X to its subset
of G-invariant elements, i.e. to the set

{r € X|zg=uxforall ge G}

Note that G(A(Y), X) is naturally isomorphic to Set(Y,I'(X)), so we
have a geometric morphism G — Set. Actually, this geometric mor-
phism is essential, because A also has a left adjoint: we have that

o~

G(X,A(Y)) is naturally isomorphic to Set(Orb(X),Y"), where Orb(X)
denotes the set of orbits of X under the G-action.

Exercise 10 Prove that the functor Orb does not preserve equalizers
(Hint: you can do this directly (think of two maps G — G), or apply
Theorem 1.22).

This example can be generalized in two directions, as the following
items show.

Let £ be a cocomplete topos. Then there is exactly one geometric
morphism £ — Set, up to natural isomorphism. For, a geometric mor-
phism is determined by its inverse image functor, which must preserve
1 and coproducts; and since, in Set, every object X is the coproduct
of X copies of 1, for f : & — Set we must have f*(X) = > -1
For a function ¢ : X — Y we have [ug)lzex  Dopex 1 = Doyey 1
(where p1; sends 1 to the i’th cofactor of the coproduct »_ .y 1) which
is f*(¢) : f(X)— f*(Y). This defines f*: Set — £.

Exercise 11 Show that the functor f* preserves finite limits.

The functor f* has a right adjoint: for a set X and object Y of £ we
have

E(f(X),Y) =€) 1Y)~ [] £(1,Y) = Set(X, £(1,Y))

rzeX zeX
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so the functor which sends Y to its set of global sections (arrows 1 —
Y) is right adjoint to f*. The “global sections functor” is usually
denoted by the letter I'; its left adjoint by A.

Consider presheaf categories C D and let F' : C — D be a functor.
We have a geometric morphism F : C — D constructed as follows. We
have a functor F* : D — C which sends a presheaf X : D°P — Set to
XoF®°P : C°P — Set. In other words,

FH(X)(C) = X(F(C))
Exercise 12 Prove that the functor F* preserves all small limits.

A right adjoint F, for F* may be constructed using the Yoneda Lemma.
Indeed, for F, to exist, it should satisfy:

E.(Y)(D) = D(yp, Bu(Y)) = C(F*(yp).Y)

~

so we just define F, on objects by putting ﬁ*(Y)(D) = (ﬁ*(yp),Y).

Exercise 13 Complete the definition of F\* as a functor, and show
that it is indeed a right adjoint for F™.

The functor F* : D — C has also a left adjoint (so the geometric
morphism F is essential). Recall that for a presheaf X on C we have
the category of elements of X, denoted Elts(X): objects are pairs
(z,C) with € X(C), and arrows (z,C) — (2/,C") are arrows [ :
C — C" in C satisfying X (f)(2) = 2. We have the projection functor
7 : Elts(X) — C. Define the functor F :C — D as follows: for X € C,
F/(X) is the colimit in D of the diagram

Elts(X) 5¢ 5D %D

We shall shortly see a more concrete presentation of functors of such
“left Kan extensions”.

In the course Basic Category Theory and Topos Theory we have seen
that if Cov is a Grothendieck topology on a small category C, then the
category Sh(C,Cov) of sheaves for Cov is a topos, and the inclusion
functor Sh(C, Cov) — C has a left adjoint (sheafification ) which pre-
serves finite limits; so this is also an example of a geometric morphism.
Henceforth we shall denote a Grothendieck topology by J instead of
Cov.
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2.1 Points of C

We recall from the course Basic Category Theory and Topos Theory that
the functor y : C — C is the “free cocompletion of C”. That means the
following: given an arbitrary functor F' from C to a cocomplete category
€ there is a unique (up to natural isomorphism) colimit-preserving functor

F :C — & such that the diagram
F
—
PN

commutes up to isomorphism. The functor F is called the “left Kan exten-
sion of F' along y”.
Of course, F(X) can be defined as the colimit in £ of the diagram

Elts(X) & C £ €. We wish to present this colimit as a form of “tensor
product”. Let us review the definition from Commutative Algebra.

If R is a commutative ring and M, N are R-modules, the set Hompg(M, N)
of R-module homomorphisms from M to N is also an R-module (with point-
wise operations), and the functor Homp (M, —) : R-Mod — R-Mod has a left
adjoint (—) ® g M. For an R-module L we define an equivalence relation ~
on the set L x M: it is the least equivalence relation satisfying

C

F

QAy——> M

('1"7 y-T) ~ (x-r, y)

forall z € L,y € M,r € R. The equivalence class of (x,y) is denoted = ® y,
and L ® M is the R-module generated by all such elements z ® y, subject
to the relations

(z+2)oy) =r0y+2'0y 20 Y+y)=r0y+tzy

and with R-action (z ® y)r = (zr ® y) = (z ® ry). In fact, one has a
coequalizer diagram of abelian groups:

¢
LXRXxM—=LxM-—LeM
p

where ¢(z,r,y) = (xr,y) and ¢ (z,r,y) = (x,ry). The R-module M is called
flat if the functor (—)® M preserves exact sequences; given that this functor
is a left adjoint, this is equivalent to saying that it preserves finite limits.
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Something similar happens if we have a functor A : C — Set and a
presheaf X on C and we wish to calculate the value of the left Kan extension
A on X. Let C; be the set of arrows of C. On A = > cec A(C) there is a
(partial) “left Ci-action” x +— f-x = A(f)(z), for x € A(C) and f:C — C'.
Similarly, on X = 3~ X (C) there is a partial “right Ci-action” x — x-f =
X(f)(z), forz € X(C") and f : C — C'. We can now represent the set A(X)
as a coequalizer of sets

Secree X(C) X C(C,C) x AC) == g eree X(€) x A(C) — A(X)

where ¢(z, f,a) = (z-f,a) and ¥(z, f,a) = (x, f-a). Therefore we write,

from now on, X ®¢ A for A(X).

Theorem 2.2 (MM VII.2.2) Let A : C — Set be a functor. Then we
have an adjunction

L ~
Set &——=C
R

with L4 R, R(Y)(C) = Set(A(C),Y) and L(X) = X ®¢ A.

Now for geometric morphisms Set — C we need the left adjoint (—) ®¢ A4 to
preserve finite limits.

Definition 2.3 (MM VII.5.1) A functor A : C — Set is called flat if the

functor (—) ®¢ A preserves finite limits.
The following theorem summarizes our remarks so far.

Theorem 2.4 (MM VII1.5.2) Points of the presheaf topos C correspond
to flat functors C — Set.

Definition 2.5 A category [ is called filtering if the following conditions
are satisfied:

i) I is nonempty.

ii) For each pair of objects (i, ) of I there is a diagram i < k — j in I.

a
iii) For each parallel pair ¢ :bij there is an arrow k — i which equalizes

the pair.
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Now let A : C — Set. We have the category Elts(A): objects are pairs (z, C)
with z € A(C); an arrow (z,C) — (2/,C") is a morphism f: C — C" in C
such that A(f)(z) = 2.

Definition 2.6 A functor A : C — Set is called filtering if the category
Elts(A) is filtering.

Exercise 14 Let P be a poset and A : P — Set a filtering functor. Show
that the category Elts(A) is isomorphic to a filter in P, that is: a nonempty
subset F' C P with the following properties:

i) The set F is upwards closed: if p < g and p € F, then ¢ € F.

ii) Any two elements of F' have a common lower bound in F'.

The following theorem provides a concrete handle on flat functors.

Theorem 2.7 (MM VII.6.3) A functor A :C — Set is flat if and only if
A is filtering.

Proof. Assume that A : C — Set is flat. By definition, the following
diagram commutes up to isomorphism:

C —> Set
\ /;@CA

So, yo ®c A ~ A(C), for objects C' of C. We check the conditions for a
filtering category.

i) Since (—) ®c¢ A preserves terminal objects, 1 ®¢ A is a one-point set.
This shows that A is nonempty.

ii) Since (—) ®¢ A preserves binary products, we have that the map
(yo x yp) ®c A — A(C) x A(D)((B = C,B = D), a) — (ua,va)

must be an isomorphism; in particular it is surjective. That is condi-
tion ii) of the definition of a filtering functor.
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iii) Finally, consider a parallel pair C i; D in C and an element a €
v
A(C) such that u-a = v-a (that is, a parallel pair in Elts(A)). Let

Yu
P—>ycy:§yp

be an equalizer diagram in C. Since (—) ®¢ A preserves equalizers, we
have an equalizer diagram

P®c A—1— A(C) —= A(D)

in Set. Here, for w € P(B),b € A(B), i(w®b) = w-b € A(C). Since
u-a = v-a, there must be some pair (w, b) for which i(w ® b) = a. This
gives condition iii) of the definition of a filtering functor.

For the converse, only a sketch: suppose A is filtering. Now for R € C, , the
set R ®c A is a quotient of the sum ) ., R(C) x A(C) by the equivalence
relation ~ generated by the set of equivalent pairs ((r-g,a), (r, g-a)) for r €
R(C),a € A(C') and g : C" — C. However, given that A is filtering this
can be simplified. We have: (r,a) € R(C) x A(C) is equivalent to (1',a’) €
R(C") x A(C") if and only if there is a diagram ¢ «*%“_ p Y, ¢’ inC and
an element b € A(D) such that the equations

wb=a vb=d ru=rwv

hold. From this definition, it is straightforward to prove that (—) ®¢ A
preserves finite limits. [ |

Corollary 2.8 (MM VII1.6.4) Suppose C is a category with finite limits.
Then a functor A : C — Set is flat if and only if it preserves finite limits.

Proof. Again we use that the composite functor ((—) ®¢ A)oy : C — Set is
naturally isomorphic to A. If A is flat, then (—) ®¢ A preserves finite limits
and y always preserves existing finite limits, so then A preserves all finite
limits. Note, that this direction does not require C to have all finite limits.

Conversely, suppose C has finite limits and A preserves them. Then A
is filtering:

i) A(1l) =1, so A is nonempty.
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ii) We have A(C) x A(D) ~ A(C x D) so in condition ii) of Definition 2.5
we can take the projections ('« "¢ ' x D X2 p and appropriate
element of A(C x D).

iii) By a similar argument, now involving an equalizer in C.
|

Corollary 2.9 (MM VII.6.5) Let D be a small category. Then the col-
imit functor Set? — Set preserves finite limits if and only if D°P is filtering.

Remark 2.10 In standard text books in category theory, for example Mac-
Lane, one finds a dual definition of “filtering” (i.e., a category is “filtering”
in MacLane’s sense if its opposite category is filtering in our sense). For
this notion of filtering, part of Corollary 2.9 is contained in the slogan that
“filtered colimits commute with finite limits in Set”.

Exercise 15 Deduce Corollary 2.9.

2.2 Geometric Morphisms & — C for cocomplete £

The universal property of the Yoneda embedding y : C — C (CA being the free
cocompletion of C) holds with respect to all cocomplete categories, not just
Set. Therefore, every geometric morphism f : £ — C is determined by the
composite functor f*oy : C — £. Again, we have a suitably defined “tensor
product” X ®¢ A (when A :C — £ is a functor and X € CA), which is now
defined as a colimit in £ rather than in Set.

We cannot write down exactly the same formula for what will be the
functor (—) ®c¢ A as we did for the case of Set, as something like “X(C”) x
C(C,C") x A(C)” is not meaningful: X (C”") and C(C, ") are sets but A(C)
is an object of £. However, using the cocompleteness of £ we have the
expression erX(C,)J:C%C, A(C") which, in the case of £ = Set, is the same
thing. Let, for a coproduct ) . ; X;, p; + X; — > ,c; X; denote the 4’th
coprojection. Then we define X ®¢ A as the coequalizer

0
Ycecaex(0).fc—c AC) /=2 Y cecrex(o) AlC) — X ®c A

where 0 = [0c . flceczex(C),f:0'—c; and Oc 4 ¢ is defined to be the compos-
ite
A M a3 A).

CeC,zeX(C)
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Likewise, T = [T¢ .z, flceczex(C),f:0'—c Where 7o ¢ is the map
A" N A0
CeC,zeX(C)

Again, we define the functor A : C — & to be flat if the functor (—) ®c A :
C — & preserves finite limits. And we have a similar notion of filtering as
in 2.6:

Definition 2.11 (MM VIIL.8.1) A functor A : C — & is filtering if the
following conditions hold:

i) The family of all maps A(C') — 1 is epimorphic.
ii) For objects C, D of C, the family of maps
{(A(u), A(v)) : A(B) = A(C) x A(D)|u: B — C,v: B — D}
is epimorphic.
iii) For any parallel pair of arrows u,v : C — D in C and equalizer diagram

Aw)
Euw —— A(C) %; A(D)
A(v

in &, the family of all arrows

{A(B) ER Ey | for some w: B — C in C with uw = vw, ef = A(w)}
is epimorphic.
Without proof, we record:

Theorem 2.12 (MM VIIL.9.1) Let & be a cocomplete topos, and C a small
category. Then a functor A :C — & is flat if and only if it is filtering.

We see that geometric morphisms & — C correspond to filtering functors
C — &, for cocomplete £.
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2.3 Geometric morphisms to £ — Sh(C, J) for cocomplete &

Recall that we use the letter J to denote a general Grothendieck topology; so
J(C) is a collection of covering sieves on C' (where C' is an object of C). Also
recall that a sieve on C' can be regarded as a subobject of the representable
presheaf yc. Finally, we established in the basic course that an object X of
C is a sheaf for J , if and only if for every object C' of C and every J-covering
sieve R on C, any diagram

R——yc

X

has a unique filler: an arrow yo — X making the triangle commute.
For the remainder of this section, £ will always be a cocomplete topos.

Exercise 16 Let ¢ : Sh(C,J) — C the geometric morphism where i, is
the inclusion and ¢* is sheafification. Suppose p : £ — Cisa geometric
morphism such that the direct image p, factors through i, by a functor
q : &€ — Sh(C,J). Show that the composite p*i, is left adjoint to ¢ and
conclude that the inverse image p* is isomorphic to a functor which factors
through Sh(C, J).

Exercise 16 tells us that a geometric morphism p : & — C factors through
Sh(C, J) if and only if every object p.(E) is a sheaf for J. The following
exercise gives us a criterion for when this is the case.

Exercise 17 Let p: £ — C be a geometric morphism, and let J be a Gro-
thendieck topology on C. Then the following two statements are equivalent:

i) For every object E of &, p,.E is a sheaf for J.

ii) For every J-covering sieve R on C, p* sends the inclusion R — y¢ to
an isomorphism in &.

Now we characterized geometric morphisms & — C by flat functors C — &;
so we would like to characterize also geometric morphisms p : € — Sh(C, J)
in terms of such functors. Every such geometric morphism determines a
geometric morphism into C. , hence a flat functor A : C — &; we need to see
which flat functors give rise to geometric morphisms which factor through
Sh(C, J). It should not be a surprise that we can characterize these functors
by their behaviour on covering sieves, now seen as diagrams in C: every sieve
on C'is a diagram of arrows with codomain C.
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Lemma 2.13 (MM VII.7£’;) Let J be a Grothendieck topology on a small
category C, and let f: £ — C be a geometric morphism. Then the following
statements are equivalent:

i) The geometric morphism f factors through Sh(C,J).

it) The composite f*oy : C — & sends J-covering sieves to colimiting
cocones in &.

i11) The composite f*oy sends J-covering sieves to epimorphic families in

.

Definition 2.14 A functor A : C — & is called continuous if it has the
properties of the composite f*oy in Lemma 2.13.

We can now state:

Theorem 2.15 (MM, Corollary VII.7.4) There is an equivalence of cat-
egories between

Top(E,Sh(C, J))

and the category of flat and continuous functors C — £.

2.4 Surjections and the Topos of Coalgebras

Theorem 2.16 (MM V.8.4; PTJ 2.32) Let (G,0d,¢) be a comonad on a
topos € such that the functor G preserves finite limits. Then the category
Ea of G-coalgebras is a topos, and there is a geometric morphism
f*
E——¢&q

where f* is the forgetful functor and f. the cofree coalgebra functor.

Proof. Finite limits are created by V the forgetful functor £ — &£, since
G preserves finite limits; so &g has finite limits.

Let R : & — &g be the cofree coalgebra functor: RX = GX % q2x.
For coalgebras (A4, s), (B, t), (C,u) we have:

E(Ax B,C) ~ E(A,CB) ~ £4((A, 5), R(CP))

where f : Ax B — C corresponds to f:A=CPandto f' = G(flos: A—
G(CPB). Note that f = evo(f x id).
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Now f : A x B — C is a coalgebra map if and only if the following
diagram commutes:

sXt

Ax B—GAXxGB——-G(Ax B)

fl JG(f)

c GC

u

We consider the exponential transposes of both compositions in this
diagram. The clockwise composition transposes to

() a—LqeBy L aeos S o

~ G(ev
where p is the transpose of the map G(CP) x GB = G(C® x B) <) qe.
The counterclockwise composition transposes to

() gL om 22 gon

We wish to describe those maps f : A x B — C which make these two
transposes equal. Let V' : £ — £ be the forgetful functor and C' the cofree
coalgebra functor; we have V4 C' and VC = G. Under this adjunction, the
map (*) corresponds to the compositie

~, qeeB ) qaod)

A—LiqeB) 2 g2 e
and the map (x*) corresponds to the composite

f! B G(uP) B
A—L qeB) 2 q(aeB)

Note that both these composites are maps of coalgebras. So, the maps
f:Ax B — C we are looking for, correspond to maps f : A — E, where

G2(CB) 2 G(GOCB)
/ %@)
E—G(CP) . feltelels

is an equalizer in g (equalizer of two maps between cofree coalgebras). So
E is the exponent (C,u)B!) in &;.
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It remains to show that £; has a subobject classifier. To this end we have
a look at subobjects of (A, s) in Eg. Our first remark is that if m : D — A is
a subobject of A in &, there is at most one coalgebra structure d : D — GD
on D such that m is a coalgebra map. Indeed, for m to be a coalgebra map
we should have G(m)d = sm; now G(m) is mono, so there is at most one
such d.

On the other hand, if m : D — A is a subobject and d : D — GD is any
map such that G(m)d = sm, then (D, d) is a G-coalgebra and the square

D—4.GD

o Jon

A——GA
is a pullback in €. To see this, consider
d GD

N

A—2 5 GA

I e e

D

d
GA—— G?A
04
Gm
/ %
GD G?D
op

The inner square commutes since (4, s) is a coalgebra. The three upper
squares commute because of the assumption G(m)d = sm, and the lower
square is a naturality square for . Hence the outer square commutes, which
says that the map d is coassociative. To see that d is also counitary, consider
the diagram

D—4.gD=L D

I

A GA A

s €A

Since m(epd) = m and m is mono, epd = idp. Moreover, one sees that the
left hand square is a pullback.
Now suppose m : (D,d) — (A, s) is the inclusion of a subobject in Eg.

Let 7 : G(2) — Q be the classifying map of the mono 1 ~ G(1) Q) G(Q).
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Let h: A — Q be the classifying map of m. In the diagram

d

D—%aD 1 1
mJ Gml G(t)l lt
A GA— 2 G(9) = 0

all three squares are pullbacks (check!), and therefore 7G(h)s = h by unique-
ness of the classifying map. Moreover, since (A, s) is a coalgebra we have
G(h)s = G(1)0aG(h)s, so if we form an equalizer

e G(1)dq
Qe —— G(Q) ? G(Q)
(equalizer taken in &g, the two maps seen as maps between cofree coalge-
bras), then we see that the map G(h)s factors through Q. Also the map
G(t) : 1 — G(Q) factors through this equalizer by a map e : 1 — Q¢, which
is the subobject classifier of &g. [ |

Corollary 2.17 (MM V.7.7) If (T,n, ) is a monad on a topos € and the
functor T has a right adjoint, then the category of T-algebras is again a
topos.

Proof. Combine Theorems 0.15 and 2.16. [ |

To give an example, consider a monoid M: a set with an associative multi-
plication, for which it has a two-sided unit element. The functor (—) x M :
Set — Set has the structure of a monad (using the multiplication and the
unit element of M). The category of algebras for this monad is the category
of right M-sets, i.e. the category M. Note that the functor (=) x M has a
right adjoint (—)™, so we have another proof that Mis a topos.

The construction of the topos £z and its accompanying geometric mor-
phism & — &g (the inverse image part of which is the forgetful functor,
which is faithful) motivates the following definition.

Definition 2.18 A geometric morphism f : F — £ is called a surjection if
the inverse image functor f* is faithful.

Lemma 2.19 (MM Vii.4.3) For a geometric morphism f : F — £ the
following are equivalent:

i) The inverse image f* is faithful.
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1t)  Bvery component of the unit n of the adjunction f* - f is a monomor-
) y comp 7 j
phism.

ii1) The functor f* reflects isomorphisms.

iv) The functor f* induces an injective homomorphism of lattices Subg (E) —
Subr(f*E).

v) The functor f* reflects the order on subobjects: for A, B € Subg(E),
fFAL f*B if and only if A < B.

Proof. The equivalence (i)<(ii) is basic Category Theory.

For (i)=-(iii): a faithful functor reflects monos and epis, and a topos is
balanced (1.3).

For (iii)=-(iv): Since f* preserves monos, it induces a map on subob-
jects. Furthermore f* preserves images and coproducts, hence unions of
subobjects; also, f* preserves intersections. So f* induces a lattice homo-
morphism. Since f* reflects isomorphisms, it is injective.

For (iv)=(v): If f*A < f*B then f*A = f*ANf*B = f*(ANB) because
f* is a lattice homomorphism. Hence A = AN B since f* is injective; so
A < B.

For (v)=(i): if X i; Y is a parallel pair with equalizer E = X,
v

then f*(u) = f*(v) entails (since f* preserves equalizers) that f*(E) is the
maximal subobject of f*X. By (v), this entails that F is the maximal
subobject of X; in other words, u = v. So f* is faithful. [ |

Proposition 2.20 (MM VII1.4.4) A geometric morphism f : F — & is
a surjection if and only if € is equivalent to the topos of coalgebras for a
finite limit preserving comonad on F and f is, modulo this equivalence, the
cofree-forgetful geometric morphism.

Proof. One direction is clear, since the forgetful functor is always faithful.
For the other, suppose f is a surjection and consider the comonad f*f, on
F. Let us spell out the dual version of Beck’s Crude Tripleability Theorem
(0.10):

F
CTT®P Let A<—= C be an adjunction with F' 4 U. Suppose C has equaliz-
U

ers of coreflexive pairs, F' preserves them and F’ reflects isomorphisms.
Then the functor F' is comonadic.
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It is clear that for a surjection f, the conditions are satisfied. The conclusion
follows. [ |

Examples 2.21 1) For a continuous map f of topological T}-spaces, the
induced geometric morphism is a surjection if and only if the map f
is surjective (MM, start of §VIL.4).

2) For a morphism f: A — B in a topos &, the induced geometric mor-
phism £/A — £/B is a surjection if and only if f is an epimorphism.

3) For a functor F' : C — D between small categories, the induced geo-
metric morphism F : C — D of Example 2.1 4) is a surjection if and
only if every object of D is a retract of an object in the image of F
(Elephant, A4.2.7).

2.5 Embeddings and Sheaf Subtoposes

In this section we work again in an arbitrary (not necessarily cocomplete)
topos €. First we establish an internalization of the intersection (N) opera-
tion on subobjects.

Proposition 2.22 Let 1 L Qbea subobject classifier and denote by A :

Q x Q — Q the classifying map of the monomorphism 1 @ Q x Q. Then
for subobjects M, N of X we have: if M is classified by ¢ : X — Q and N
by ¥ : X x Q) then the intersection M N N is classified by the composite

x“Yaoxala.

Proof. Consider maps f : Y — X. If (¢p,9)of : Y — Q x Q is equal to
(tol,tol) : Y — Q x Q, then ¢f = t! and ¢pf = t!, so f factors both through
M and through N, hence f factors through the intersection M N N. We
conclude that the diagram

MAN—X

[ e

] ——OxQ
(t,t)

is a pullback, and the statement follows. [ |

Definition 2.23 A Lawvere-Tierney topology (MM) or simply topology (PTJ)
in a topos £ is an arrow j : 2 —  with the following properties:
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—
.

<.

i) ji=4: Xl

OxNL 0
iii) joA=Ao(j xj): jle lj
QXQA—>Q

In the course Basic Category Theory and Topos Theory we have seen that for
& = C, Lawvere-Tierney topologies correspond to Grothendieck topologies
on C.

Definition 2.24 (PTJ 3.13) A wuniversal closure operation on a topos &
is given by, for each object X, a map cx : Sub(X) — Sub(X), which system
has the following properties:

i) M < cx(M) for every subobject M of X (the operation is inflation-
ary).

ii) M < N implies cx (M) < c¢x(N) for M, N € Sub(X) (the operation
is order-preserving).

iii) cx(ex(M)) = cx(M) for each M € Sub(X) (the operation is idempo-
tent).

iv) For every arrow f:Y — X and every M € Sub(X) we have
ey (f1(M)) = f*(ex (M))
(the operation is stable).

Instead of cx (M) we shall also sometimes write M, if the subobject lattice
in which we work is clear.

Exercise 18 Use the stability (requirement iv) of 2.24) to deduce that a
closure operation commutes with finite intersections: M NN = M N N.
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Note that the result of Exercise 18 means that a universal closure operation
is different from “closure” in Topology, where closure commutes with union,
not with intersection of subsets.

Proposition 2.25 (MM V.1.1; PTJ 3.14) There is a bijection between
universal closure operations and Lawvere-Tierney topologies.

Proof. If j is a Lawvere-Tierney topology, define for M € Sub(X), classified
by ¢ : X — Q, M as the subobject of X classified by j¢. We use the letter
J to denote the subobject of Q classified by j:

J——0

-

t

We see that J is the closure of the subobject (1 4 Q). We have: M is the
vertex of the pullback

M—X
[

J——Q
and we conclude that M < M. The other properties of the universal closure
operation are straightforward and left to you.

In the other direction, given a universal closure operation cx(—), let j be

the classifying map of cq(1 N Q). The verification of the properties of a
Lawvere-Tierney topology, as well as that the two described operations are
inverse to each other, is again left to you. [ |

Definition 2.26 Given a Lawvere-Tierney topology j with associated clo-

sure operation cx(—) (or (—)), we call a subobject M of X:
dense if M = X
closed if M = M.

Definition 2.27 Consider, for an object X, partial maps into X with do-
main a dense subobject:

MM

.

X
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with m : M’ — M a dense mono (i.e., the subobject represented by the
mono m is dense).

The object X is called separated for j if any such partial map has at
most one extension to a map M — X.

The object X is called a sheaf for j (or a j-sheaf) if any such partial
map has exactly one extension to a map M — X.

We write Sh;(€) for the full subcategory of £ on the sheaves for j.

Theorem 2.28 (MM V.2.5; PTJ §3.2) For any topos £ with Lawvere-
Tierney topology j, the category Sh;(E) is a topos. The inclusion functor
Sh;(€) — &£ preserves finite limits and exponentials, and Sh;(E) is closed
under finite limits in E.

Proof. Suppose 7 is a finite category and X : Z — Sh;(&) a functor with
limiting cone (N, ) in €. Given a diagram

M 25 M

.

N

we have partial maps M — X (1) for all objects i of Z, and these partial maps
have unique extensions M — X (i) since the X (i) are sheaves. Therefore we
have a cone for X with vertex M and hence a unique map of cones M — N,
which is also the unique extension of the given partial map. Therefore, N
is a sheaf and we see that Sh;(&) is closed under the finite limits of £, that
it has finite limits and that the inclusion preserves them.

Secondly, if F is a sheaf, then the exponential FY is a sheaf, for any
object Y. For, given a partial map

M -2 M
FY

with m dense, this diagram transposes under the exponential adjunction to

a partial map
mxid

MxY —MxY

N

F
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mxid

Now by the stability of the closure operation, the subobject M’ x Y ——
M xY is dense. Sine F' is a sheaf we have a unique extension M xY — F|
which transposes back to give a unique extension for the original diagram.
We conclude that Sh;(&) is cartesian closed and that the inlusion into &£
preserves exponentials.

For the subobject classifier of Sh;(£) we need an intermediate result,

which we have already seen in the case € = C.

Lemma 2.29 Let M be a sheaf and M’ a subobject of M. Then M’ is a
sheaf if and only if M’ is closed in M.

Proof. Suppose M’ is closed in M and f N/ N is a partial

map with N’ dense in N. Let i : M’ — M be the inclusion. Now iof has a
unique extension g : N — M. Let

L— N

)

M — M

be a pullback. Then f : N’ — M’ factors through L — M’, so N’ < L as
subobjects of N, but L is closed (since it is a pullback of M’ — M) and N’
is dense. We see that N = N’ < L = L, so L — N is an isomorphism and
we have g : N — M’. So M’ is a sheaf.

Conversely if M’ € Sub(M) is a sheaf, consider the partial map

M —— 3T
idJ{
M/

Since M’ — M’ is dense, there is a unique extension M’ — M’. It follows
that M’ = M’, so M’ is closed in M. [ |

Returning to the proof of 2.28: closed subobjects of X are classified by
maps of the form j¢, hence their classifying maps land in the image of j,
which is (by the idempotence of j) the equalizer

id
Q — Q==
j

Hence, Q; is a subobject classifier for Sh;(€) provided we can show that it
is a shealf.
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Now partial maps Qj «—— M’ —— M correspond to closed subobjects

of M’. But given that M’ is dense in M, there is an order-preserving bijec-
tion between the closed subobjects of M’ and of M, given as follows: for A
closed in M, we have AN M’ closed in M’ and for B closed in M’ we have
ey (B) closed in M. To see that these operations are each other’s inverse,
observe that for A closed in M:

e (AN M’) =cpy(A)N CM(M,) =cy(A)=A4
and for B closed in M’ we have
CM(B) N M, = CM/(B) =B

The given partial map has therefore a unique extension M — Q; (the clas-
sifier of the closed subobject of M corresponding to the closed subobject of
M’ classified by the partial map); and €; is a sheaf, as desired. [ |

Proposition 2.30 For an object X of £ the following are equivalent:

i) X is j-separated.

i) X is a subobject of a j-sheaf.

i) X is a subobject of a sheaf of the form Qf

iv) The diagonal 6 : X — X x X is a j-closed subobject of X x X.

Proof. We prove i)=iv)=iii)=ii)=i).
For i)=iv): let X be separated and let § be the closure of § as subobject
of X x X. Consider the partial map

X——946

)

X

If i : § = X x X is the inclusion and p1,ps2 : X x X — X are the projections,
then both pii and poi are fillers for this diagram, so since X is separated,
p1i = poi. This means that i : 6 — X x X factors through the equalizer of
p1 and po, which is 6. So § = § as subobjects of X x X.

For iv)=ii): Let A : X x X —  classify the diagonal ¢, and {-} : X —
OX its exponential transpose, which is a monomorphism. Since ¢ is closed
in X x X, A factors through Q;, and therefore {-} factors through Qj( . So

X is a subobject of Qi( , which is a j-sheaf.
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The implication iii)=-ii) is trivial.
For ii)=): Let X - F be mono, with F a j-sheaf. Suppose that

M -2 M

;

is a partial map with m a dense mono. If both of f,g: M — X are fillers
for this diagram then i f = ig since F' is a sheaf; hence f = g since ¢ is mono.
So X is j-separated. [ |

Lemma 2.31 Let j be a Lawvere-Tierney topology in a topos £, and let X
be an object of . As usual, we denote the diagonal subobject of X x X by
0 and its closure by J.

a) If f,9:Z — X is a parallel pair of arrows into X, then the morphism
(f,9): Z — X x X factors through & if and only if the equalizer of f
and g is a j-dense subobject of Z.

b) The subobject & of X x X is an equivalence relation on X.

c) Let X — MX be the coequalizer of the pair 6 —= X - Then any
map X — L, for a j-separated object L of £, factors uniquely through
X — MX. Hence the assignment X — M X induces a functor which
is left adjoint to the inclusion sep;(£) — &, where sep;(£) denotes the
full subcategory of £ on the j-separated objects.

Proof. a) Let Eyy — Z denote the equalizer of f,g. Consider the diagram:

N

SN

X—>X><X

E/

where all the squares are pullbacks. We see that E’ is the closure of Eyg,
and we see that the map (f, g) factors through ¢ if and only if E/ — Z is an
isomorphism, which holds if and only if Ey, is a dense subobject of Z.
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b) We prove that for an arbitrary object Z of £, the set of ordered pairs
{(f,9) € £(Z,X)?|(f,g) factors through &}

is an equivalence relation on £(Z, X). Now reflexivity and symmetry are
obvious, and using the notation above for equalizers we easily see that Eyg, A
Ey, < Eyp. Since the meet of two dense subobjects is dense, we see that
the relation is transitive.

¢) We have to prove that any map f : X — L with L separated, co-
equalizes the parallel pair rg,71 : 6 — X which is the equivalence relation
from part b). Now clearly for f x f : X x X — L x L, the composite

(f x f)od factors through the diagonal subobject L LI L, so the com-
posite (f x f)o(rg,r1) factors through the closure of ;. But dy, is closed by
Proposition 2.30iv), so fro = fr1 and f factors uniquely through X — MX.
The adjointness is also clear, provided we can show that M X is separated.
Now 0 is classified by A : X x X — €, which has as exponential transpose
the map {-} : X — QX. So, § is the kernel pair of {-}. Now ¢ is classified
by joA, the exponential transpose of which is jXo{-} : X — QJX And §
is the kernel pair of j¥o{-}. We see that, by the construction of epi-mono
factorizations in a regular category, X — M X — QJX is an epi-mono factor-

ization. So M X is a subobject of a sheaf, and therefore separated by 2.30.
[ |

Lemma 2.32 Suppose we have an operation which, to any object X of &,

assigns a sheaf LX and a dense inclusion MX X LX. Then this extends
to a unique functor L : € — £. Moreover, this functor has the property
that for every X, every map from X to a sheaf factors uniquely through

the composite X — M X 2.4 LX, so L : & — Sh;(€) is left adjoint to the
inclusion of sheaves.

Proof. For f: X — X', define Lf : LX — LX' as the unique filler for the
partial map

MX -2, LX
ixroM fJ{
LX'
The functoriality and the adjointness follow at once. [ |

Theorem 2.33 The inclusion functor Shj(€) — & has a left adjoint which
preserves finite limits. Hence, we have a geometric morphism i : Sh;(€) —

€.
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Proof. Let, as before, A : X x X —  classify the diagonal § : X — X x X.
Then joA : X x X — ) classifies the closure ¢; let {-} : X — QJX be its

exponential transpose. One can easily verify that the kernel pair of {}is
J, so {-} factors as X - MX — Q]X which, since a topos is regular, is the

epi-mono factorization of ﬁ Let LX be the closure of the subobject M X
of QJX . Then we have the assumptions of Lemma 2.32 verified, so L is a
functor left adjoint to the inclusion Sh;(£) — £. We need to prove that L
preserves finite limits. The following proof is taken from Elephant, A4.4.7.

First of all, we have seen in the proof of Theorem 2.28 that sh;(€) is an
exponential ideal in £ (for a sheaf ' and an arbitrary X, FX is a sheaf).
From this, it follows easily that L preserves finite products: for objects A
and B of £ and a sheaf F', we have the following natural bijections:

E(L(AX B),F)~&(Ax B,F)~&(A FB) ~ E(LA, FB) ~
E(B,F') ~ £(LB,F'Y) ~ (LA x LB, F)

so L(A x B) ~ LA x LB.

Furthermore, by Exercise 6, an object in sh;(£) is injective if and only
if it is a retract of some Qf ; since the inclusion sh;(£) — & preserves
exponentials and since §2; is a retract of € (hence Qf is a retract of Q%),
we see that the inclusion preserves injective objects. Given that sh;(€) has
enough injectives, by the same exercise we have that L preserves monos.

Now we wish to show that L preserves “coreflexive equalizers”. A core-
. . . f . .
flexive pair is a parallel pair X ——=Y with common retraction Y M ox.
g

hf =hg =idx. A coreflexive equalizer is an equalizer of a coreflexive pair.

In a category with finite products, every equalizer appears also as core-
flexive equalizer: the arrow F - X is an equalizer of f,g : X — Y if and
only if e is an equalizer of the coreflexive pair (idx, f), (idx,g) : X — X xY
(which has as common retraction the projection X x Y — X). Therefore,
if coref